WO2021012754A1 - 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用 - Google Patents

具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用 Download PDF

Info

Publication number
WO2021012754A1
WO2021012754A1 PCT/CN2020/090042 CN2020090042W WO2021012754A1 WO 2021012754 A1 WO2021012754 A1 WO 2021012754A1 CN 2020090042 W CN2020090042 W CN 2020090042W WO 2021012754 A1 WO2021012754 A1 WO 2021012754A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
nano
preparation
self
organic carbon
Prior art date
Application number
PCT/CN2020/090042
Other languages
English (en)
French (fr)
Inventor
赵阳
石舟舟
赵超
范文智
范成力
Original Assignee
富兰克科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富兰克科技(深圳)股份有限公司 filed Critical 富兰克科技(深圳)股份有限公司
Publication of WO2021012754A1 publication Critical patent/WO2021012754A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys

Definitions

  • the invention belongs to the technical field of nano-copper materials, and specifically relates to a preparation method of self-dispersible nano-copper with long organic carbon chains, nano-copper preparations and applications thereof.
  • Metal nanoparticles refer to metal particles whose component phases are reduced to the nanometer level (5-100nm) in morphology.
  • the chemical bonding structure of this new type of nanomaterial is different from metal particles with the same chemical composition. Since Gleiter H in Germany first prepared 6nm iron nanoparticles in 1984, research on nanometals has been vigorously carried out in the world, and great progress has been made. Among them, the research of nano-copper materials has also started early, which can act as a catalyst, prepare "superplastic” steel, prepare gas sensors, and be used as a solid lubricant.
  • nano-copper is mainly limited to solid nano-copper powder, and the preparation method of nano-copper paste that can realize self-dispersion in oily and aqueous systems is rarely reported.
  • nano copper powder (10-100nm) has the characteristics of small size, large specific surface area, small resistance, quantum size effect, macro quantum tunneling effect, etc., it also has some new characteristics different from conventional materials. The research on preparation, performance and application has been receiving extensive attention at home and abroad.
  • Nano-copper powder has many applications, including: 1. Nano-copper powder is used in solid lubricants. Nano-copper powder can be dispersed in various lubricating oils in an appropriate manner to form a stable suspension. This oil contains several Millions of ultra-fine metal powder particles combine with the solid surface to form a smooth protective layer, while filling micro scratches, thereby greatly reducing friction and wear, especially under heavy load, low speed and high temperature vibration conditions The effect is more significant; 2. Nano copper powder is used for conductive materials. Nano copper powder has high conductivity and can be used to make conductive paste (conductive glue, magnetic conductive glue, etc.).
  • Nano-copper powder is used to manufacture nano-copper materials, and a new process is used to synthesize high density and high
  • the pure nano-copper has a grain size of only 30nm, which is one hundred thousandths of conventional copper. Further cold rolling experiments have found that its superplastic ductility at room temperature. Nano-copper can deform up to 50 times at room temperature. No cracks appeared. The relevant paper was published in Science on February 25, 2000; PG Sanders et al.
  • nano-copper powder also has high application value in modified phenolic resin, as a drug price adjustment material for treating osteoporosis and bone hyperplasia, and in the aviation field.
  • nano-copper powder lubricant additives As for the application of nano-copper powder in the field of lubrication, there are still problems that are greatly limited due to its poor dispersibility.
  • the common method for preparing nano-copper powder lubricant additives is to prepare nano-copper powder first, and then add nano-copper powder to lubricating oil.
  • nano-copper particles are added to lubricating oil, because of their small particle size, The surface energy is high, there is attraction between the particles, the tendency of automatic aggregation is great, and agglomeration is very easy to occur. Even if this kind of agglomeration is forcibly dispersed in the lubricant, the particles will reunite when they collide with each other. Shen.
  • the particles Once the particles are agglomerated, precipitated or denatured, they no longer have the original characteristics, and may also have a negative impact on the mechanical system based on oil lubrication design. This not only requires the addition of a large amount of surfactants and coupling agents to solve the compatibility problem between the nano copper powder and the lubricant, but also because the nano copper powder is easily oxidized before being added to the lubricant, it is not easy to It is so difficult to realize industrialization.
  • the first category is dialkyldithiophosphoric acid (HDDP) and its derivatives
  • the second category is dithioalkylaminocarboxylic acid (DTC) and Its derivatives
  • the third category is thioglycolic acid and its derivatives, including natural amino acids such as cysteine
  • the fourth category is non-thio molecules, including oleylamine, oleic acid, PVP and derivatives.
  • the common feature of the first three is that they all have organic sulfur functional groups that can coordinate with the surface of nano-copper.
  • the main differences between these four types of coating agents are: 1.
  • the first type of coating agent HDDP and the second type of coating agent DTC are dithio chelating systems, and the third type of coating agent thioglycolic acid is a monothio complex. In the third type of system, the coordination ability of the third type is weak, and the formed nano-copper particles are easy to agglomerate, oxidize and settle; 2.
  • the first type of coating HDDP includes a phosphorus atom in addition to two sulfur atoms, while the second type of coating DTC does not contain phosphorus atoms.
  • the second type of coating is inferior to the first type of coating in terms of anti-wear and pressure resistance; the third and fourth types of coatings are not as good as the nano-copper system due to the lack of sulfur atoms. Stable, it is extremely difficult to generate small particle size or easy to settle.
  • the lubricating, wear-resistant, pressure-resistant and anti-oxidation properties of the first type of coating HDDP have attracted people's attention very early.
  • HDDP cannot be used directly because of its pungent odor.
  • the main application of HDDP is the preparation of zinc dialkyl dithiophosphate (ZDDP).
  • ZDDP zinc dialkyl dithiophosphate
  • the alkyl group in ZDDP is usually derived from short-chain alcohols.
  • ZDDP also has a certain pungent odor, which limits its application in the field of metal processing.
  • the nano-copper prepared by HDDP also enhances lubricating activity and antibacterial properties due to the presence of copper.
  • the technical problem to be solved by the present invention is to provide a method for preparing self-dispersible nano-copper with long organic carbon chains, which combines the practical advantages of lubricating, anti-wear, pressure, rust, and anti-oxidation antibacterial additives in the field of metal processing.
  • the preparation method of organic carbon chain self-dispersible nano-copper realizes the synthesis of an oily and emulsion system that can stabilize and self-disperse nano-copper preparation.
  • the invention provides a method for preparing self-dispersible nano copper with long organic carbon chains, which comprises the following steps:
  • step 2) Add a reducing agent to the reaction system of step 1) to obtain a reduced copper source solution;
  • step 4) Add the coating solution obtained in step 3) to the reduced copper source solution obtained in step 2) for reaction;
  • the molar ratio of the copper source to the reducing agent is 1:20-20:1;
  • the molar ratio of the copper source to the HDDP coating agent is 1:5 to 5:1.
  • the copper source aqueous solution in step 1) is selected from any one or more of copper sulfate pentahydrate, copper chloride, copper bromide, copper acetate, copper nitrate, and copper acetylacetonate aqueous solution.
  • the reducing agent in step 2) is selected from any one or more of hydrazine hydrate, sodium hypophosphite (NaH 2 PO 2 ), sodium borohydride, ascorbic acid (vitamin C) and sodium ascorbate.
  • the organic solvent in step 3) is selected from petroleum ether, dichloromethane, chloroform, pentane, ethyl acetate, ether, carbon tetrachloride, benzene, toluene, xylene, and base oil. Any one or more.
  • the petroleum ether is distillate petroleum ether at 60-90°C.
  • the nano-copper mixture is subjected to liquid separation treatment to remove the lower water phase to obtain the upper oil phase; the oil phase is centrifuged to obtain the supernatant liquid; the supernatant liquid is concentrated, Obtain the nano copper paste.
  • the collected supernatant is processed to remove the organic solvent.
  • the organic solvent is removed by rotary evaporation, reduced pressure distillation or atmospheric distillation.
  • the HDDP coating agent is prepared by reacting a carbon-based alcohol compound and phosphorus pentasulfide, and the molar ratio of the two is 2:1-8:1.
  • the carbon-based alcohol compound is at least one of saturated fatty alcohols.
  • the carbon-based alcohol is at least one of dodecyl alcohol, isooctyl alcohol or n-dodecyl alcohol.
  • the carbon-based alcohol compound is a mixture of dodecyl alcohol and ethanol, and the molar ratio of the two is 5:1 to 4:1.
  • the present invention also provides a self-dispersible nano copper preparation with long organic carbon chain, which is prepared by any of the above methods.
  • the prepared nano-copper has a particle size of 10-50 nm, and the mass ratio of pure copper in the nano-copper preparation is 20%-25%.
  • the invention also provides the application of the nano copper preparation in the preparation of paint additives, engine oil additives and oil film bearing oil additives.
  • the invention provides a method for preparing self-dispersible nano-copper with long organic carbon chains.
  • the nano-copper prepared by the coating agent has excellent oxidation resistance and metal rust resistance because it contains thioorganophosphate.
  • the method of the present invention closely combines the actual requirements of the metal processing field for lubrication, anti-wear, pressure, rust, and anti-oxidation antibacterial additives.
  • the method of the present invention introduces a large number of coating agents during the preparation of nano-copper. After the nano-copper is formed, it is combined with the coating agent to generate stable nano-copper clusters. Since the main mass of the clusters is the coating agent, the clusters mainly reflect The physical properties of the coating agent molecules are revealed, rather than the physical properties of the exposed nano-copper powder.
  • the nano-copper preparation prepared by the method of the present invention is a nano-copper paste that can realize the self-dispersion of oily and emulsion systems.
  • the formed nano-copper has uniform particle size distribution, long-term stability, good transparency, and high The copper content. As a multifunctional metal processing additive, it can be widely used in many fields and has extremely broad application prospects.
  • Figure 1 is a schematic flow chart of the method for preparing self-dispersible nano copper with long organic carbon chains according to the present invention.
  • the reagents used in this specification are all commercially available products, and the hydrazine hydrate is a commercially available 80% hydrazine hydrate.
  • the present invention has a long organic carbon chain self-dispersible nano-copper preparation method.
  • the HDDP coating agent is prepared: the carbon-based alcohol compound is reacted with phosphorus pentasulfide to obtain the dialkyl Dithiophosphoric acid coating agent.
  • the molar ratio of the carbon-based alcohol compound to phosphorus pentasulfide can be selected according to actual needs.
  • the molar ratio of the carbon-based alcohol compound to phosphorus pentasulfide is 2:1-8:1.
  • the carbon-based alcohol compound may be aliphatic alcohol and aromatic alcohol.
  • the carbon-based alcohol compound is at least one of saturated fatty alcohols, such as ethanol, isopropanol, isooctyl alcohol, decanol, n-dodecyl alcohol , One or more of the dodecyl isomeric alcohols.
  • saturated fatty alcohols such as ethanol, isopropanol, isooctyl alcohol, decanol, n-dodecyl alcohol , One or more of the dodecyl isomeric alcohols.
  • Step 1 Mix the copper source with water to obtain a copper source solution. Place the copper source solution in a nitrogen, argon, or air atmosphere and heat it to 40°C to 75°C, preferably 50°C to 65°C , Further preferably 55°C; the copper source aqueous solution is selected from any one or more of copper sulfate pentahydrate, copper chloride, copper bromide, copper acetate, copper nitrate, and copper acetylacetonate aqueous solution.
  • Step 2 Add a reducing agent to the copper source solution heated in step 1 for reaction to obtain a reduced copper source solution;
  • the reducing agent is selected from hydrazine hydrate, sodium hypophosphite (NaH 2 PO 2 ), sodium borohydride, ascorbic acid (vitamin C ) And any one or more of sodium ascorbate.
  • Step 3 Mix the dialkyl dithiophosphoric acid coating agent with an organic solvent to obtain a coating agent solution;
  • the organic solvent is selected from petroleum ether 60-90, dichloromethane, chloroform, pentane, and acetic acid Any one or more of ethyl ester, ether, carbon tetrachloride, benzene, toluene, xylene, and base oil.
  • Step 4 Add the coating agent solution to the reduced copper source solution for reaction to obtain a nano-copper mixture.
  • the molar ratio of the copper source to the dialkyl dithiophosphoric acid coating agent can be adjusted according to specific needs.
  • the molar ratio of the copper source to the dialkyl dithiophosphoric acid coating agent is 1:5 ⁇ 5:1.
  • the molar ratio of the copper source to the reducing agent is 1:20-20:1.
  • the above preparation method may further include: subjecting the nano-copper mixture to liquid separation treatment to remove the lower water phase to obtain an upper oil phase; subjecting the oil phase to centrifugal treatment to obtain a supernatant liquid; The liquid is concentrated to obtain a nano copper paste.
  • the particle size of the nano copper obtained in the invention is 10-50nm measured by a nano particle size detector; the mass ratio of pure copper in the nano-copper preparation measured by a thermogravimetric analyzer is 20-25%.
  • This embodiment is a method for preparing self-dispersible nano copper, which includes the following steps:
  • HDDP coating agent The specific preparation process of HDDP coating agent is as follows:
  • the hydrogen sulfide gas generated by the reaction can also be absorbed by alkaline systems such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, or emulsion. Combustion or oxidation can also be used to convert hydrogen sulfide gas into sulfur dioxide and then absorb it separately.
  • alkaline systems such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, or emulsion.
  • Combustion or oxidation can also be used to convert hydrogen sulfide gas into sulfur dioxide and then absorb it separately.
  • Step 1 Add the copper source and water to a 500mL beaker to fully dissolve the copper source in the water to obtain a copper source solution. Pour the copper source solution into the reactor, and then close the reactor; Nitrogen, and the reaction system is heated to 55°C;
  • Step 2 Add reducing agent to the reaction kettle and react for 10 minutes under stirring conditions;
  • Step 3 Mix the dialkyl dithiophosphoric acid coating agent and the organic solvent at a final concentration of 0.1 mol/L to 0.9 mol/L to obtain a coating agent solution;
  • Step 4 Add the coating agent solution to the reaction kettle, react for 2 hours, stop stirring and heating;
  • Step 5 Obtain the nano-copper mixture.
  • step 6 Pour the nano-copper mixture from the reactor, separate the liquid with a separatory funnel, remove the lower water phase, and obtain the upper oil phase; centrifuge the obtained oil phase to remove larger copper powder particles , Obtain the supernatant liquid; rotate the supernatant liquid to remove the solvent, and obtain the nano copper paste.
  • vacuum distillation or atmospheric distillation can also be used.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid is 5:4, and the organic solvent is Petroleum ether 60-90, the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • step 1 the carbon-based alcohol compound is isooctyl alcohol, the dosage is 45.5g (350mmol), the dosage of phosphorus pentasulfide is 22.2g (100mmol), the molar ratio of isooctyl alcohol to phosphorus pentasulfide is 3.5:1, and the final step 1 The bis(2-ethylhexyl)dithiophosphoric acid is obtained.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4g (150mmol), the water to dissolve the copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120mL (about 2mol).
  • the dosage of ethylhexyl) dithiophosphoric acid is 42.5g (120mmol), the molar ratio of copper sulfate pentahydrate and reducing agent is 3:40; the ratio of copper sulfate pentahydrate and bis(2-ethylhexyl) dithiophosphoric acid The molar ratio is 5:4, the organic solvent is petroleum ether 60-90, and the dosage is 250 mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • step 1 the carbon-based alcohol compound is n-dodecyl alcohol, the amount is 65.1g (350mmol), the amount of phosphorus pentasulfide is 22.2g (100mmol), the molar ratio of isooctyl alcohol to phosphorus pentasulfide is 3.5:1, Step 1 finally obtains di(n-dodecyl)dithiophosphoric acid.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4g (150mmol), the water for dissolving copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, the amount is 120mL (about 2mol), two (positive ten
  • the dosage of dialkyl)dithiophosphoric acid is 56g (120mmol)
  • the molar ratio of copper sulfate pentahydrate and reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate and di(n-dodecyl)dithiophosphoric acid
  • the ratio is 5:4
  • the organic solvent is petroleum ether 60-90, and the dosage is 250 mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • step 1 the carbon-based alcohol compound is n-dodecyl alcohol (54.4 g, 280 mmol) and ethanol (3.3 g, 70 mmol), the amount of phosphorus pentasulfide is 22.2 g (100 mmol), and the molar ratio of mixed alcohol to phosphorus pentasulfide The ratio is 3.5:1, and step 1 finally obtains a mixture of dialkyl dithiophosphoric acid.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (about 120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 5:4, organic
  • the solvent is petroleum ether 60-90, and the dosage is 250 mL.
  • the embodiment of the present invention is a preparation method of self-dispersible nano-copper. The difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 5:4, organic solvent For toluene, the amount is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • step 1 the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% isooctyl alcohol, and 15% ethanol, the total mass is 53.9g (350mmol), the amount of phosphorus pentasulfide It is 22.2 g (100 mmol), the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1, and step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 5:4, organic solvent It is base oil (100SN), and the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • step 1 the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% isooctyl alcohol, and 15% ethanol, the total mass is 53.9g (350mmol), the amount of phosphorus pentasulfide It is 22.2 g (100 mmol), the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1, and step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 56.1g (225mmol), the water for dissolving copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120mL (about 2mol).
  • the amount of phosphorothioic acid is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 9:80; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 15:8, and the organic solvent is Petroleum ether 60-90, the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture composed of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol, with a total mass of 30.8g ( 200 mmol), the amount of phosphorus pentasulfide is 22.2 g (100 mmol), the molar ratio of the alkyl alcohol mixture to phosphorus pentasulfide is 2:1, and step 1 finally obtains the dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 25g (100mmol), the water for dissolving copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, the amount is 120mL (about 2mol), dialkyl disulfide
  • the amount of phosphorous acid mixture is 200g (500mmol)
  • the molar ratio of copper sulfate pentahydrate to reducing agent is 1:20
  • the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 1:5
  • the organic solvent is Petroleum ether 60-90, the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture composed of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol, with a total mass of 123.2g ( 800 mmol), the amount of phosphorus pentasulfide is 22.2 g (100 mmol), the molar ratio of mixed alcohol to phosphorus pentasulfide is 8:1, and step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 125g (500mmol), the water for dissolving copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, and the amount is 1.5mL (about 25mmol).
  • the amount of thiophosphoric acid mixture is 40g (100mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 20:1; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid mixture is 5:1, organic solvent It is petroleum ether 60-90, and the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4g (150mmol), the water for dissolving copper sulfate pentahydrate is 200mL, the reducing agent is 60mL hydrazine hydrate (about 1mol) and sodium hypophosphite NaH 2 PO 2 (88g , 1mol), the amount of dialkyl dithiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid It is 5:4, the organic solvent is petroleum ether 60-90, and the dosage is 250mL.
  • This embodiment is a preparation method of self-dispersing nano-copper, and the difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is a mixture of copper sulfate pentahydrate and copper acetate monohydrate, the amount is 15g copper acetate monohydrate (75mmol) and copper sulfate pentahydrate 18.7g (75mmol), the water for dissolving copper salt is 200mL, and the reducing agent is 80% hydrazine hydrate, the dosage is 120mL (about 2mol), the dosage of the dialkyl dithiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; The molar ratio of alkyl dithiophosphoric acid is 5:4, the organic solvent is petroleum ether 60-90, and the dosage is 250 mL.
  • This embodiment is a method for preparing self-dispersible nano-copper. The difference from embodiment 1 is:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid is 5:4, and the organic solvent is Petroleum ether 60-90 and toluene mixture, the amount is 150mL petroleum ether and 100mL toluene.
  • This example is the application of self-dispersing nano-copper in the preparation of cutting fluid.
  • self-dispersing nano-copper can directly participate in the preparation of cutting fluid, and exhibits excellent anti-tapping torque capability in subsequent tapping torque performance testing .
  • the specific formula is shown in Table 1 below. In this example, four combinations of A, B, C, and D ratios are listed.
  • the tapping torque performance of the four groups of cutting fluids A, B, C and D was tested.
  • the tapping torques of the above 4 ratios were tested on the Microtap tapping torque meter, and the data shown in Table 2 below was obtained (the smaller the average torque, The better the torque resistance, the higher the lubricity):
  • This example is the application of self-dispersing nano-copper in the preparation of abrasion-resistant and pressure-resistant agents (sulfurized olefins, sulfurized esters).
  • abrasion-resistant and pressure-resistant agents sulfurized olefins, sulfurized esters.
  • the specific formulations are shown in Table 3 below. This example lists the ratio of E and F.
  • Proportion E number of copies
  • Proportion F number of copies
  • Nano Copper 0 20 Sulfurized olefin + sulfurized ester 6 0 Chlorinated Paraffin 15 15
  • nano-copper Compared with traditional wear-resistant compression agents (sulfurized olefins, sulfurized esters), nano-copper has the same excellent compression and wear resistance. Note: The nano-copper paste contains about 12% sulfur and 5.8% phosphorus. When the ratio reaches 20% in the formula, it can reach the sulfur content of 6% sulfurized olefin + sulfurized ester.
  • the nano copper products prepared in the above examples 1-13 are odorless and tasteless, and can be directly dissolved and dispersed in organic non-polar solvents without adding any dispersants, such as petroleum ether, pentane, hexane, octane and Various base oils, etc.
  • the dissolved liquid is slightly yellow and transparent when the mass fraction is 1%, and there is no turbidity, sedimentation, and discoloration in the observation experiment for at least two months.
  • Examples 14 and 15 show the excellent performance of the nano-copper prepared by the present invention in the preparation of metal cutting fluids and anti-wear and compression agents.
  • the present invention provides a self-dispersible preparation method of nano-copper.
  • the preparation process is simple.
  • the prepared nano-copper can be directly dissolved in an organic non-polar solvent and has good dispersibility in the solvent. , There will be no turbidity, sedimentation and discoloration.
  • the performance of the metal working fluid is greatly improved in the preparation of the metal working fluid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供一种具有长有机碳链可自分散纳米铜的制备方法,包括以下步骤:1)将含有二价铜离子的铜源水溶液置于氮气、氩气、或者空气气氛中,加热至40℃到75℃;2)向步骤1)的反应体系中加入还原剂,得到还原铜源溶液;3)将HDDP包覆剂与有机溶剂以0.1mol/L至0.9mol/L终浓度混合,配制成包覆剂溶液;4)将步骤3)所得包覆剂溶液加入到步骤2)所得的还原铜源溶液中进行反应;5)得到纳米铜产物;其中,所述铜源与所述还原剂的摩尔比为1∶20~20∶1;所述铜源与所述HDDP包覆剂的摩尔比为1∶5~5∶1。本发明实现了一种油性和乳化液体系可稳定自分散的纳米铜制剂的合成。

Description

具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用 技术领域
本发明属于纳米铜材料技术领域,具体涉及具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用。
背景技术
金属纳米粒子是指组分相在形态上被缩小至纳米程度(5~100nm)的金属颗粒,这种新型纳米材料,其化学成键结构不同于化学成分相同的金属粒子。自德国Gleiter H于1984年首次制备出6nm的铁纳米粒子以来,世界上对纳米金属的研究蓬勃开展,并取得了很大的进展。其中纳米铜材料的研究也早有起步,其可以充当催化剂、制备“超塑”钢、制备气体传感器、以及用作固体润滑剂等。
目前为止,纳米铜的制备主要局限于固体纳米铜粉末,而可以实现油性和水性体系自分散的纳米铜膏体的制备方法则鲜有报道。由于纳米铜粉(10~100nm)具有尺寸小、比表面积大、电阻小及量子尺寸效应、宏观量子隧道效应等特点,其还拥有与常规材料不同的一些新特性,近年来有关纳米铜粉的制备、性能及应用的研究在国内外一直受到广泛的关注。
纳米铜粉末具有很多应用,包括:1、纳米铜粉用于固体润滑剂,纳米铜粉以适当方式分散于各种润滑油中可形成一种稳定的悬浮液,这种油每升中含有数百万个超细金属粉末颗粒,它们与固体表面相结合,形成一个光滑的保护层,同时填塞微划痕,从而大幅度降低摩擦和磨损,尤其是在重载、低速和高温振动条件下的作用更为显著;2、纳米铜粉用于导电材料,纳米铜粉导电率高,可用于制造导电浆料(导电胶、导磁胶等),导电浆 料在工业中广泛用于制作导电布、导电封带、导电材料的连接胶等,纳米铜粉对微电子器件的小型化起着重要的作用;3、纳米铜粉用于制造纳米铜材料,采用新的工艺合成出高密度、高纯度的纳米铜,晶粒尺寸仅有30nm,是常规铜的几十万分之一,进一步的冷轧实验发现其室温下的超塑延展性,纳米铜在室温下可变形达50多倍而没有出现裂纹,有关论文发表于2000年2月25日《Science》杂志;P.G Sanders等人得到了纳米铜材(晶粒尺寸10~110nm)的拉伸力学性能,发现其屈服强度是一般退火铜(晶粒尺寸20μm)的10倍(~300MPa),延伸率也可达到8%以上;这表明铜纳米化后其强度和塑性有明显的改善,这对材料的精细加工、微型机械制造有着重要的价值。除上述应用之外,纳米铜粉还在改性酚醛树脂、作为治疗骨质疏松、骨质增生等药物调价材料、航空领域等呈现较高的应用价值。
就纳米铜粉末在润滑领域的应用而言,仍存在因其分散性差而受到极大限制的问题。目前,制备纳米铜粉润滑油添加剂的常用方法是先制备出纳米铜粉,然后再将纳米铜粉添加到润滑油中制得,但是当纳米铜颗粒添加到润滑油中,因其粒度小、表面能高,颗粒之间存在吸引力,自动聚集的倾向很大,极易发生团聚,这种团聚即使在润滑油中被强行分散,颗粒之间也会在相互碰撞时再次团聚,从而发生聚沉。而颗粒一旦发生团聚、沉淀或变性,就不再具有原有特性,同时还可能对基于油润滑设计的机械系统造成负面影响。这不仅需要通过添加大量的表面活性剂和偶联剂等助剂来解决纳米铜粉与润滑油之间的相容性问题,而且纳米铜粉由于在添入润滑油之前极易被氧化、不易保存,以至于难以实现产业化。
目前,现有技术中已有可自分散的纳米铜体系,但仍存在显著的缺陷,例如有刺鼻臭味、抗氧化稳定性差、容易变色、容易沉降、不易分散、抗酸碱能力差、抗阴阳离子能力差。而这些缺陷基本上都是因为以下设计思路造成的,即:包覆剂有效配位端偏少、包覆剂位阻偏小、包覆剂自身稳定性差等。所以主要的技术难度集中在包覆剂分子的设计上。
目前常见的应用于包覆剂分子主要分为四大类:第一类是二烷基二硫 代磷酸(HDDP)及其衍生物;第二类是二硫代烷胺基甲酸(DTC)及其衍生物;第三类是巯基乙酸及其衍生物,包括半胱氨酸等天然氨基酸;第四类是非硫代分子,包括油胺、油酸、PVP及衍生物。前三者共同的特点是都具有可以和纳米铜表面配位的有机硫官能团。
Figure PCTCN2020090042-appb-000001
这四类包覆剂的主要区别为:一、第一类包覆剂HDDP和第二类包覆剂DTC是二硫代鳌合体系,第三类包覆剂巯基乙酸是单硫代配位体系,第三类配位能力较弱,形成的纳米铜粒子容易团聚、氧化直至沉降;二、第一类包覆剂HDDP除了两个硫原子以外还包括一个磷原子,而第二类包覆剂DTC不包含磷原子,在抗磨耐压性能上第二类包覆剂不如第一类包覆剂;第三、第四类包覆剂因为硫原子缺失导致其形成的纳米铜体系更加不稳定,极难生成小粒径颗粒或极易沉降。
其中,第一类包覆剂HDDP的润滑抗磨耐压与抗氧化性能很早就引起了人们的注意。但是因为HDDP本身具有刺激性臭味而无法直接使用,目前HDDP最主要的应用还是制备二烷基二硫代磷酸锌盐(ZDDP)。其中,ZDDP中的烷基通常来源于短链醇类。而ZDDP也因其具有一定刺激性气味,而限制了其在金属加工领域的应用。与ZDDP相比,通过HDDP制备的纳米铜除了气味消失以外,还因为铜的存在增强了润滑活性和抗菌性。
现有技术中,已有文献报道使用HDDP制备自分散的纳米铜。但现有报道仅限于其使用的短碳链HDDP(碳数小于等于8),且未纳入金属加工领域对于抗氧化性、抗磨性、防锈性的考量,其报道的纳米铜出现了易变色、 难保存、颜色深、粘度大、铜浓度低的缺陷,其采取的制备工艺因为涉及强致癌物苯而不利于大规模生产,所以无法进行实际工业应用。
这些早期的纳米铜研究距离工业应用乃至商品化依然遥远,在理论方面需要更进一步的深化,在应用方面还需要进一步的改进。
发明内容
为此,本发明所要解决的技术问题在于提供一种具有长有机碳链可自分散纳米铜的制备方法,结合了金属加工领域对于润滑抗磨耐压防锈与抗氧化抗菌添加剂的实际具有长有机碳链可自分散纳米铜的制备方法需求,实现了一种油性和乳化液体系可稳定自分散的纳米铜制剂的合成。
本发明提供了一种具有长有机碳链可自分散纳米铜的制备方法,包括以下步骤:
1)将含有二价铜离子的铜源水溶液置于氮气、氩气、或者空气气氛中,加热至40℃到75℃;
2)向步骤1)的反应体系中加入还原剂,得到还原铜源溶液;
3)将HDDP包覆剂与有机溶剂混合,混合溶液终浓度为0.1mol/L至0.9mol/L,配制成包覆剂溶液;
4)将步骤3)所得包覆剂溶液加入到步骤2)所得的还原铜源溶液中进行反应;
5)得到纳米铜产物;
其中,所述铜源与所述还原剂的摩尔比为1∶20~20∶1;
所述铜源与所述HDDP包覆剂的摩尔比为1∶5~5∶1。
优选的,所述步骤1)中的铜源水溶液选自五水硫酸铜、氯化铜、溴化铜、醋酸铜、硝酸铜、乙酰丙酮铜水溶液中的任一种或多种。
优选的,所述步骤2)的还原剂选自水合肼、次磷酸钠(NaH 2PO 2)、硼 氢化钠、抗坏血酸(维生素C)和抗坏血酸钠中的任一种或多种。
优选的,所述步骤3)中的有机溶剂选自石油醚、二氯甲烷、三氯甲烷、戊烷、乙酸乙酯、乙醚、四氯化碳、苯、甲苯、二甲苯、基础油中的任一种或多种。
优选的,所述石油醚为60~90℃馏分石油醚。
优选的,将所述纳米铜混合物进行分液处理,去除下层的水相,得到上层的油相;将所述油相进行离心处理,得到上层清液;将所述上层清液进行浓缩处理,得到纳米铜膏体。
优选的,将收集得到的所述上层清液进行处理,除去有机溶剂。
优选的,通过旋蒸、降压蒸馏或常压蒸馏方式除去有机溶剂。
优选的,所述HDDP包覆剂的制备包括:碳基醇类化合物和五硫化二磷反应制得,二者摩尔比为2:1~8:1。
优选的,所述碳基醇类化合物为饱和脂肪醇中的至少一种。
优选的,所述碳基醇为十二碳异构醇、异辛醇或正十二烷基醇中的至少一种。
优选的,所述碳基醇类化合物为十二碳异构醇与乙醇的混合物,二者的摩尔比例为5∶1~4∶1。
本发明还提供一种具有长有机碳链可自分散的纳米铜制剂,通过上述任一种方法制得。
优选的,所制得的纳米铜的粒径10~50nm,纳米铜制剂中纯铜的质量比为20%~25%。
本发明还提供了纳米铜制剂在制备涂料添加剂、发动机油添加剂以及油膜轴承油添加剂中的应用。
本发明提供的具有长有机碳链可自分散纳米铜的制备方法,通过包覆剂制备的纳米铜因为含有硫代有机磷酸酯而具有优秀的抗氧化性和金属防 锈性。本发明方法紧密结合了金属加工领域对于润滑抗磨耐压防锈与抗氧化抗菌添加剂的实际需求,通过大量实验和研究,充分完善并发展了HDDP体系自分散纳米铜的生产工艺;通过对包覆剂分子的重新设计和对纳米铜合成工艺中有机溶剂的筛选与优化,研制出一种目前最佳的自分散纳米铜制备工艺。本发明方法在纳米铜制备过程中引入了大量的包覆剂,纳米铜形成以后与包覆剂结合生成稳定的纳米铜团簇,由于团簇的质量主体为包覆剂,所以团簇主要体现出包覆剂分子的物理特性,而不是裸露纳米铜粉末的物理性质。本发明方法制得的纳米铜制剂,是一种可以实现油性和乳化液体系自分散的纳米铜膏体,形成的纳米铜粒径分布均匀,具有长久的稳定性,良好的透明度,和较高的铜含量。其作为多功能金属加工添加剂可以被广泛的应用于多个领域,具有极其广泛的应用前景。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
图1为本发明具有长有机碳链可自分散纳米铜的制备方法的流程示意图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。
本说明书中所采用的试剂均为市售产品,其中所述水合肼为市售的80%水合肼。
如图1所示,本发明具有长有机碳链可自分散纳米铜的制备方法,在步骤1开始前,先制备HDDP包覆剂:将碳基醇类化合物与五硫化二磷进行反应,得到二烷基二硫代磷酸包覆剂。本实施例中,碳基醇类化合物与五硫化二磷的摩尔比可以根据实际需要进行选择,优选的,所述碳基醇类化 合物与五硫化二磷的摩尔比为2:1~8:1。所述碳基醇类化合物可以为脂肪醇和芳香醇,优选碳基醇类化合物为饱和脂肪醇中的至少一种,例如乙醇、异丙醇、异辛醇、癸醇、正十二烷基醇、十二烷基异构醇中的一种或几种。
步骤1:将铜源与水混合,得到铜源溶液,将所述铜源溶液置于氮气、氩气、或者空气气氛中,进行加热,加热至40℃~75℃,优选50℃~65℃,进一步优选为55℃;铜源水溶液选自五水硫酸铜、氯化铜、溴化铜、醋酸铜、硝酸铜、乙酰丙酮铜水溶液中的任一种或多种。
步骤2:向步骤1加热后的铜源溶液中加入还原剂进行反应,得到还原铜源溶液;还原剂选自水合肼、次磷酸钠(NaH 2PO 2)、硼氢化钠、抗坏血酸(维生素C)和抗坏血酸钠中的任一种或多种。
步骤3:将所述二烷基二硫代磷酸包覆剂与有机溶剂进行混合,得到包覆剂溶液;有机溶剂选自石油醚60-90、二氯甲烷、三氯甲烷、戊烷、乙酸乙酯、乙醚、四氯化碳、苯、甲苯、二甲苯、基础油中的任一种或多种。
步骤4:将所述包覆剂溶液加入到所述还原铜源溶液中进行反应,得到纳米铜混合物。
其中,铜源与二烷基二硫代磷酸包覆剂的摩尔比可以根据具体需要进行调整,优选的,所述铜源与二烷基二硫代磷酸包覆剂的摩尔比为1:5~5:1。,优选的,所述铜源与还原剂的摩尔比为1:20~20:1。
上述制备方法还可进一步包括:将所述纳米铜混合物进行分液处理,去除下层的水相,得到上层的油相;将所述油相进行离心处理,得到上层清液;将所述上层清液进行浓缩处理,得到纳米铜膏体。
本发明所得纳米铜的粒径,经纳米粒径检测仪测定为10~50nm;经热重分析仪测定纳米铜制剂中纯铜的质量比为20%~25%。
实施例1
本实施例为一种可以自分散的纳米铜的制备方法,包括如下步骤:
HDDP包覆剂的具体制备过程如下:
在250mL的单口烧瓶中加入碳基醇类化合物和五硫化二磷,在单口烧 瓶的瓶口塞上塞子,并连接导气管,在搅拌条件下将反应混合物升温至80℃,并保温3h,反应释放的硫化氢气体通过导气管通入硫酸铜水溶液中。反应完成后去除反应体系中残留的固体,得到透明淡黄色液体,即为二烷基二硫代磷酸包覆剂。本实施例中,反应产生的硫化氢气体也可以通过氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液或乳浊液等碱性体系进行吸收。也可以采用燃烧或者氧化的办法,将硫化氢气体转化为二氧化硫,再另行吸收。
步骤1:在一个500mL的烧杯中加入铜源和水,使铜源在水中充分溶解,得到铜源溶液,将所述铜源溶液倒入反应釜中,然后关闭反应釜;对反应釜进行通氮气,并将反应体系升温至55℃;
步骤2:向反应釜中加入还原剂,在搅拌条件下反应10min;
步骤3:将二烷基二硫代磷酸包覆剂与有机溶剂以终浓度为0.1mol/L至0.9mol/L进行混合,得到包覆剂溶液;
步骤4:将所述包覆剂溶液加入到反应釜中,反应2h,停止搅拌和加热;
步骤5:得到纳米铜混合物。
还进一步包括步骤6:从反应釜中倒出纳米铜混合物,用分液漏斗进行分液,除去下层水相,得到上层的油相;将得到的油相进行离心,除去较大的铜粉颗粒,得到上层清液;将上层清液进行旋蒸,去除溶剂,得到纳米铜膏体。对上层清液进行提纯时,还可以采用减压蒸馏或常压蒸馏的方式进行。
实施例2
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五 硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000002
实施例3
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为异辛醇,用量为45.5g(350mmol),五硫化二磷的用量为22.2g(100mmol),异辛醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二(2-乙基己基)二硫代磷酸。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二(2-乙基己基)二硫代磷酸的用量为42.5g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二(2-乙基己基)二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000003
实施例4
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为正十二烷基醇,用量为65.1g (350mmol),五硫化二磷的用量为22.2g(100mmol),异辛醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二(正十二烷基)二硫代磷酸。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二(正十二烷基)二硫代磷酸的用量为56g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二(正十二烷基)二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000004
实施例5
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为正十二烷基醇(54.4g,280mmol)和乙醇(3.3g,70mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(约120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000005
实施例6
本发明的实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为5:4,有机溶剂为甲苯,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000006
实施例7
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%异辛醇、15%乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为5:4,有机溶剂为基础油(100SN),用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000007
实施例8
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%异辛醇、15%乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为56.1g(225mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为9:80;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为15:8,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000008
实施例9
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为30.8g(200mmol),五硫化二磷的用量为22.2g(100mmol),烷基醇混合物与五硫化二磷的摩尔比为2:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为25g(100mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二 烷基二硫代磷酸混合物的用量为200g(500mmol),五水硫酸铜与还原剂的摩尔比为1:20;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为1:5,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000009
实施例10
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为123.2g(800mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为8:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为125g(500mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为1.5mL(约25mmol),二烷基二硫代磷酸混合物的用量为40g(100mmol),五水硫酸铜与还原剂的摩尔比为20:1;五水硫酸铜与二烷基二硫代磷酸混合物的摩尔比为5:1,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000010
实施例11
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五 硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为60mL水合肼(约1mol)和次磷酸钠NaH 2PO 2(88g,1mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000011
实施例12
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜和一水醋酸铜混合物,用量为15g一水醋酸铜(75mmol)与五水硫酸铜18.7g(75mmol),溶解铜盐的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000012
实施例13
本实施例为一种可以自分散的纳米铜的制备方法,与实施例1的不同 之处在于:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90和甲苯混合物,用量为石油醚150mL与甲苯100mL。
其化学反应方程式如下:
Figure PCTCN2020090042-appb-000013
实施例14
本实施例为自分散纳米铜在切削液配制中的应用,自分散纳米铜作为核心添加剂可直接参与切削液的复配,并在随后的攻丝扭矩性能检测中体现出色的抗攻丝扭矩能力。具体配方见下表1,本实施例举出了A、B、C、D四组配比。
表1A、B、C、D四组切削液的配比
Figure PCTCN2020090042-appb-000014
Figure PCTCN2020090042-appb-000015
对A、B、C、D四组切削液进行攻丝扭矩性能检测,在Microtap攻丝扭矩仪上测试上述4个配比的攻丝扭矩,得到以下表2所示数据(平均扭矩越小,抗扭矩性能越好,润滑度越高):
表2A、B、C、D四组切削液的攻丝扭矩性能检测结果
  配比A 配比B 配比C 配比D
平均扭矩 104.7 94.3 89.7 88.7
上述结果说明,少量纳米铜可以对金属切削液的攻丝扭矩性能产生非常好的提升。在D组配比中,纳米铜配比达到4份时,攻丝扭矩性能的提升基本上达到最大。相较于传统金属加工液,添加纳米铜的产品的攻丝扭矩性能至少提升了16%。
实施例15
本实施例为自分散纳米铜在耐磨抗压剂(硫化烯烃、硫化酯)配制中的应用,具体配方见下表3,本实施例举出了E、F两组配比。
表3E、F两组耐磨抗压剂的配比
添加剂名称 配比E(份数) 配比F(份数)
纳米铜 0 20
硫化烯烃+硫化酯 6 0
氯化石蜡 15 15
脂肪酸酯 2 2
植物油 3 3
矿物油 74 60
相较于传统耐磨抗压剂(硫化烯烃、硫化酯),纳米铜具有同样优秀的抗压耐磨性能。注:纳米銅膏体约含硫12%,含磷5.8%,当其配比在配方中达到20%時,可达到6%硫化烯烴+硫化酯的硫含量。
对E、F两组耐磨抗压剂进行耐压抗磨性能测试,结果如下表4所示。
表4通过四球机测试两种E、F两组配比的耐压抗磨性能
  配比E 配比F
配方运动粘度 30 30
PD值 400 400
上述结果现实两种配方可以达到相同的抗磨耐压指标。
上述实施例1-13制备得到的纳米铜产物无臭无味,可以在不添加任何分散剂的情况下直接溶解分散在有机非极性溶剂中,如石油醚、戊烷、己烷、辛烷和各类基础油等。溶解得到的液体在质量分数在1%时为微黄色透明,在至少两个月的放置观察实验中没有发生浑浊、沉降和变色等现象。此外,实施例14和15示出了本发明制得的纳米铜在金属切削液、耐磨抗压剂的配制中所发挥出的优异性能。
综上所述,本发明提供的一种可以自分散的纳米铜的制备方法,其制备过程简单,制备得到的纳米铜可以直接溶解在有机非极性溶剂中,且在溶剂中的分散性能好,不会出现浑浊、沉降和变色等现象。并且,在金属加工液的配制中极大提高的金属加工液的性能。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (15)

  1. 一种具有长有机碳链可自分散纳米铜的制备方法,其特征在于,包括以下步骤:
    1)将含有二价铜离子的铜源水溶液置于氮气、氩气、或者空气气氛中,加热至40℃到75℃;
    2)向步骤1)的反应体系中加入还原剂,得到还原铜源溶液;
    3)将HDDP包覆剂与有机溶剂混合,混合溶液终浓度为0.1mol/L至0.9mol/L,配制成包覆剂溶液;
    4)将步骤3)所得包覆剂溶液加入到步骤2)所得的还原铜源溶液中进行反应;
    5)得到纳米铜产物;
    其中,所述铜源与所述还原剂的摩尔比为1∶20~20∶1;
    所述铜源与所述HDDP包覆剂的摩尔比为1∶5~5∶1。
  2. 根据权利要求1所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述步骤1)中的铜源水溶液选自五水硫酸铜、氯化铜、溴化铜、醋酸铜、硝酸铜、乙酰丙酮铜水溶液中的任一种或多种。
  3. 根据权利要求1所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述步骤2)的还原剂选自水合肼、次磷酸钠(NaH 2PO 2)、硼氢化钠、抗坏血酸(维生素C)和抗坏血酸钠中的任一种或多种。
  4. 根据权利要求1所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述步骤3)中的有机溶剂选自石油醚、二氯甲烷、三氯甲烷、戊烷、乙酸乙酯、乙醚、四氯化碳、苯、甲苯、二甲苯、基础油中的任一种或多种。
  5. 根据权利要求4所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述石油醚为60~90℃馏分石油醚。
  6. 根据权利要求1所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,将所述纳米铜混合物进行分液处理,去除下层的水相,得到上层的油相;将所述油相进行离心处理,得到上层清液;将所述上层清液进行浓缩处理,得到纳米铜膏体。
  7. 根据权利要求6所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,将收集得到的所述上层清液进行处理,除去有机溶剂。
  8. 根据权利要求7所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,通过旋蒸、降压蒸馏或常压蒸馏方式除去有机溶剂。
  9. 根据权利要求1-8任一所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述HDDP包覆剂的制备包括:碳基醇类化合物和五硫化二磷反应制得,二者摩尔比为2:1~8:1。
  10. 根据权利要求9所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述碳基醇类化合物为饱和脂肪醇中的至少一种。
  11. 根据权利要求10所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述碳基醇为十二碳异构醇、异辛醇或正十二烷基醇中的至少一种。
  12. 根据权利要求10所述的具有长有机碳链可自分散纳米铜的制备方法,其特征在于,所述碳基醇类化合物为十二碳异构醇与乙醇的混合物,二者的摩尔比例为5∶1~4∶1。
  13. 一种具有长有机碳链可自分散的纳米铜制剂,其特征在于,通过权利要求1-13任一所述的方法制得。
  14. 根据权利要求14所述的纳米铜制剂,其特征在于,纳米铜的粒径10~50nm,纳米铜制剂中纯铜的质量比为20%~25%。
  15. 权利要去14或15所述的纳米铜制剂在制备切削液、耐磨抗压剂、涂料添加剂、发动机油添加剂以及油膜轴承油添加剂中的应用。
PCT/CN2020/090042 2019-07-23 2020-05-13 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用 WO2021012754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910666577.9 2019-07-23
CN201910666577.9A CN112296345B (zh) 2019-07-23 2019-07-23 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用

Publications (1)

Publication Number Publication Date
WO2021012754A1 true WO2021012754A1 (zh) 2021-01-28

Family

ID=74193099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090042 WO2021012754A1 (zh) 2019-07-23 2020-05-13 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用

Country Status (2)

Country Link
CN (1) CN112296345B (zh)
WO (1) WO2021012754A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996799A (zh) * 2021-10-08 2022-02-01 郑州工程技术学院 铜纳米材料的制备方法
CN114210972A (zh) * 2021-11-03 2022-03-22 中科检测技术服务(重庆)有限公司 一种新型纳米铜焊接材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618799A (zh) * 2003-11-21 2005-05-25 河南大学 金属铜纳米颗粒及其制备方法和用途
CN1709617A (zh) * 2004-06-18 2005-12-21 中国科学院兰州化学物理研究所 纳米铜颗粒的制备方法
CN1766008A (zh) * 2004-10-26 2006-05-03 中国科学院兰州化学物理研究所 有机单分子层保护纳米铜复合物的制备方法
CN101200667A (zh) * 2006-12-12 2008-06-18 中国石油天然气股份有限公司 制备纳米铜润滑油添加剂的方法
CN101259531A (zh) * 2008-03-31 2008-09-10 河南大学 一种表面修饰纳米铜/铜合金微粒及其制备方法
US7749947B2 (en) * 2006-05-01 2010-07-06 Smith International, Inc. High performance rock bit grease
CN102198513A (zh) * 2011-05-27 2011-09-28 中南大学 一种纳米铜颗粒的制备方法
CN102407344A (zh) * 2011-11-13 2012-04-11 西安科技大学 一种纳米铜颗粒的工业生产方法
CN104028778A (zh) * 2014-06-25 2014-09-10 东北大学 一种快速制备纳米铜粒子的方法
WO2015191173A1 (en) * 2014-06-11 2015-12-17 Nanomech, Inc. Nano-tribology compositions and related methods including hard particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147540A (zh) * 1995-08-25 1997-04-16 许彪 一种有机钼抗磨减摩添加剂的制备技术及产品
CN1184295C (zh) * 2000-12-19 2005-01-12 邱志远 一种含钼、锌、铜有机化合物润滑油添加剂及应用
CN1966586A (zh) * 2005-11-16 2007-05-23 河南大学 一种可反应、单分散表面修饰银纳米颗粒及其制备方法
CN100441509C (zh) * 2005-12-20 2008-12-10 中国科学院兰州化学物理研究所 硫化铜纳米颗粒的制备方法
JP5392884B2 (ja) * 2007-09-21 2014-01-22 三井金属鉱業株式会社 銅粉の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618799A (zh) * 2003-11-21 2005-05-25 河南大学 金属铜纳米颗粒及其制备方法和用途
CN1709617A (zh) * 2004-06-18 2005-12-21 中国科学院兰州化学物理研究所 纳米铜颗粒的制备方法
CN1766008A (zh) * 2004-10-26 2006-05-03 中国科学院兰州化学物理研究所 有机单分子层保护纳米铜复合物的制备方法
US7749947B2 (en) * 2006-05-01 2010-07-06 Smith International, Inc. High performance rock bit grease
CN101200667A (zh) * 2006-12-12 2008-06-18 中国石油天然气股份有限公司 制备纳米铜润滑油添加剂的方法
CN101259531A (zh) * 2008-03-31 2008-09-10 河南大学 一种表面修饰纳米铜/铜合金微粒及其制备方法
CN102198513A (zh) * 2011-05-27 2011-09-28 中南大学 一种纳米铜颗粒的制备方法
CN102407344A (zh) * 2011-11-13 2012-04-11 西安科技大学 一种纳米铜颗粒的工业生产方法
WO2015191173A1 (en) * 2014-06-11 2015-12-17 Nanomech, Inc. Nano-tribology compositions and related methods including hard particles
CN104028778A (zh) * 2014-06-25 2014-09-10 东北大学 一种快速制备纳米铜粒子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, FENG ET AL.: "Self-Repairing Mechanism and Tribological Properties of Nano-Cu as Lubricating Oil Additives", MATERIALS PROTECTION, vol. 51, no. 2,, 15 February 2018 (2018-02-15), pages 22 - 25, XP055775193, ISSN: 1001-1560 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113996799A (zh) * 2021-10-08 2022-02-01 郑州工程技术学院 铜纳米材料的制备方法
CN113996799B (zh) * 2021-10-08 2024-02-02 郑州工程技术学院 铜纳米材料的制备方法
CN114210972A (zh) * 2021-11-03 2022-03-22 中科检测技术服务(重庆)有限公司 一种新型纳米铜焊接材料
CN114210972B (zh) * 2021-11-03 2023-04-14 中科检测技术服务(重庆)有限公司 一种新型纳米铜焊接材料的制备方法

Also Published As

Publication number Publication date
CN112296345B (zh) 2022-02-18
CN112296345A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
Wu et al. Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils
CN101338244B (zh) 纳米颗粒添加剂和含有该纳米颗粒添加剂的润滑剂配制料
Wu et al. Surface-functionalized nanoMOFs in oil for friction and wear reduction and antioxidation
CN106350153B (zh) 一种改性氧化石墨烯、发动机润滑油及其应用
Duan et al. Nanomaterials for lubricating oil application: A review
Zhou et al. Study on the structure and tribological properties of surface-modified Cu nanoparticles
JP6251258B2 (ja) マイクロエマルションおよびナノリアクターまたは送達ビヒクルとしてのその使用
WO2021012754A1 (zh) 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用
CN101599335B (zh) 一种耐氧化二甲基硅油基磁性液体及其制备方法
CN103702941A (zh) 用于生产固体润滑剂纳米颗粒的方法以及在油中和水中稳定的润滑剂分散体
Lingtong et al. Synthesis and surface modification of the nanoscale cerium borate as lubricant additive
CN108102763B (zh) 蛇纹石/功能化石墨烯润滑油添加剂、制备方法及其应用
WO2019076196A1 (zh) 石墨烯/四氧化三锰复合纳米润滑添加剂及其合成方法
CN106520256A (zh) 石墨烯/Fe2O3纳米粒子复合润滑油、润滑油添加剂及其制备方法
Jiang et al. Facile method preparation of oil-soluble tungsten disulfide nanosheets and their tribological properties over a wide temperature range
Li et al. Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property
Wang et al. Interface synthesis for controllable construction of 2D Zn (Bim)(OAc) nanosheets via oil/water system and their application in oil
Hao et al. Investigation on the tribological performance of functionalized nanoscale silica as an amphiphilic lubricant additive
Rajkumar et al. Studies on tribological behaviour of ZnO nanorods suspended in SAE 20w 40 engine oil
Shi et al. A low-temperature extraction–solvothermal route to the fabrication of micro-sized MoS2 spheres modified by Cyanex 301
WO2019014995A1 (zh) 分散纳米颗粒的方法、核壳结构纳米颗粒及其制备方法及润滑油
Zhao et al. Tribological properties of oleylamine-modified nickel nanoparticles as lubricating oil additive
WO2021012753A1 (zh) 纳米铜在切削液中的应用
Savrik et al. Nano zinc borate as a lubricant additive
CN107118826B (zh) 复合润滑油减摩抗磨添加剂、复合润滑油及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843390

Country of ref document: EP

Kind code of ref document: A1