WO2019075750A1 - 像素传感模块及图像撷取装置 - Google Patents

像素传感模块及图像撷取装置 Download PDF

Info

Publication number
WO2019075750A1
WO2019075750A1 PCT/CN2017/107114 CN2017107114W WO2019075750A1 WO 2019075750 A1 WO2019075750 A1 WO 2019075750A1 CN 2017107114 W CN2017107114 W CN 2017107114W WO 2019075750 A1 WO2019075750 A1 WO 2019075750A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
photosensitive
unit
sensing module
Prior art date
Application number
PCT/CN2017/107114
Other languages
English (en)
French (fr)
Inventor
赵维民
曾千鉴
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2017/107114 priority Critical patent/WO2019075750A1/zh
Priority to EP17902588.7A priority patent/EP3499869B1/en
Priority to CN201780001398.2A priority patent/CN107980219B/zh
Priority to US16/158,279 priority patent/US10644045B2/en
Publication of WO2019075750A1 publication Critical patent/WO2019075750A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to a pixel sensing module and an image capturing device, and more particularly to a pixel sensing module and an image capturing device for improving light sensitivity.
  • an image sensor includes a pixel sensing array, and the pixel sensing array is composed of a plurality of pixel sensing units arranged in an array, such as a photodiode or a phototransistor.
  • the photosensitive component and the conversion circuit, and the sensitivity of the pixel sensing unit is related to/proportional to the photosensitive area of the photosensitive component.
  • a pixel sensing unit including a photodiode the photodiode is charged and stored in a potential well of the photodiode, and is generated by a photodiode through a conversion circuit composed of a transistor. The charge is converted into a potential signal, which is the pixel value corresponding to the pixel sensing unit, and the light sensitivity of the pixel sensing unit is related to the area of the photodiode in the circuit layout or in the light receiving surface.
  • each pixel sensing unit contains only a single photosensitive component, in other words, a pixel.
  • the only photosensitive component in the sensing unit needs to reach the required photosensitive area of the pixel sensing unit.
  • the charge in the (potential well) is not easily removed by the conversion circuit, resulting in Residual charge is left in the photosensitive component and causes unnecessary image sticking by the digital camera.
  • image sensors typically have a collimator for projecting light into the pixel sensing unit.
  • the pixel sensing unit and the collimator are not perfectly aligned, resulting in a problem of crosstalk between the optical paths.
  • some of the embodiments of the present application aim to provide a pixel sensing module and an image capturing device to improve the disadvantages of the prior art.
  • the embodiment of the present application provides a pixel sensing module, including a pixel photosensitive unit that receives illumination on a light receiving surface and outputs a pixel value, and the pixel photosensitive unit includes a plurality of sub-pixel photosensitive components for And outputting a plurality of sub-pixel values; and an integrating unit coupled to the pixel photosensitive unit for outputting the pixel value according to the plurality of sub-pixel values; and a collimating unit having a plurality of openings, wherein the plurality of The openings are aligned with the area of the pixel photosensitive unit, and the projection of the plurality of openings on the light receiving surface falls in a region of the pixel photosensitive unit on the light receiving surface.
  • a first opening of the plurality of openings is aligned with at least one of the plurality of sub-pixel photosensitive components.
  • the plurality of sub-pixel photosensitive components include a plurality of photosensitive regions and a plurality of non-sensitive regions, and the projection of the first openings on the light receiving surface is only at least one sensitive to the at least one first sub-pixel photosensitive member.
  • the area coincides.
  • the plurality of sub-pixel photosensitive components include a photodiode.
  • the integration unit performs an averaging operation on the plurality of sub-pixel values to output the pixel value as an average of the plurality of sub-pixel values.
  • the integration unit performs an addition operation on the plurality of sub-pixel values to output the pixel value as an addition result of the plurality of sub-pixel values.
  • the integration unit outputs the pixel value as a sub-pixel value of the plurality of sub-pixel values.
  • An embodiment of the present application provides an image capturing device that includes a plurality of pixel sensing modules arranged in an array, wherein each pixel sensing module includes a pixel photosensitive unit that receives illumination on a light receiving surface and outputs a pixel value.
  • the pixel photosensitive unit has a region on the light receiving mask, the pixel photosensitive unit includes a plurality of sub-pixel photosensitive components for outputting a plurality of sub-pixel values, and an integrating unit coupled to the pixel photosensitive unit for a plurality of sub-pixel values, outputting the pixel value; a collimating unit having a plurality of openings, wherein the plurality of openings are aligned with the area of the pixel photosensitive unit, the plurality of openings being received by the light The projection of the face falls in the area.
  • the application utilizes a collimating unit having a plurality of openings to align the area of the pixel photosensitive unit on the light receiving surface to eliminate the problem of mutual interference between the optical paths while achieving the maximum amount of light entering; and sensitizing the plurality of sub-pixels in the pixel photosensitive unit Components that enhance the ability to extract photoelectrons. Furthermore, the present application places the sub-pixel photosensitive component such that the projection of the aperture on the light-receiving surface (ie, the light-transmitting region) coincides only with the photosensitive region of the sub-pixel photosensitive component, and does not overlap with the plurality of sub-pixel photosensitive components. The non-photosensitive areas coincide to achieve better light sensitivity.
  • FIG. 1 is a schematic diagram of an image capturing device according to an embodiment of the present application.
  • FIG. 2 is a side view of a pixel sensing module according to an embodiment of the present application.
  • FIG. 3 is a top plan view of a pixel photosensitive unit according to an embodiment of the present application.
  • FIG. 4 is a top plan view of a sub-pixel photosensitive assembly according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an image capturing device 10 according to an embodiment of the present invention.
  • FIG. 2 is a side view of a pixel sensing module PXM according to an embodiment of the present application
  • FIG. 3 is a first embodiment of the present application.
  • the image capturing device 10 can be a complementary gold-oxygen half image sensing CMOS Image Sensor (CIS), which can be applied to devices such as optical fingerprint detection or cameras that need to capture images.
  • CIS complementary gold-oxygen half image sensing CMOS Image Sensor
  • the image capturing device 10 includes a plurality of pixel sensing modules PXM.
  • the plurality of pixel sensing modules PXM are arranged in an array, and the plurality of pixel sensing modules PXM output a plurality of pixel values VP corresponding to an image. For image processing or calculations for the back end circuit or device.
  • the pixel sensing module PXM includes a pixel photosensitive unit PX and a collimator CM.
  • Each pixel photosensitive unit PX receives illumination on a light receiving surface P1, and generates light due to illumination. The photoelectron is taken out and its pixel value VP corresponding to the pixel photosensitive unit PX is output.
  • a pixel photosensitive member having a large photosensitive area photoelectrons stored in the pixel photosensitive member are not easily taken out, leaving residual charges in the photosensitive member, resulting in unnecessary image sticking by the image capturing device.
  • a pixel photosensitive member having a large photosensitive area can be cut into a plurality of sub-pixel photosensitive members having a small photosensitive area, so that photoelectrons are more easily taken out.
  • the pixel photosensitive unit PX includes a plurality of sub-pixel photosensitive members SPX and an integration unit 20.
  • the pixel photosensitive unit PX needs to have a photosensitive area to achieve a specific light sensitivity, the sum of the plurality of sub-sensing areas corresponding to the plurality of sub-pixel photosensitive elements SPX may be substantially the photosensitive area.
  • the sub-pixel photosensitive component SPX may include a photodiode that can output its corresponding sub-pixel value SVP.
  • the integration unit 20 is coupled to the plurality of sub-pixel photosensitive components SPX to receive a plurality of sub-pixel values SVP corresponding to the plurality of sub-pixel photosensitive elements SPX, and the integration unit 20 is configured to integrate the plurality of sub-pixel values SVP into the pixel value VP, in other words
  • the integration unit 20 may output a single pixel value VP according to a plurality of sub-pixel values SVP corresponding to the plurality of sub-pixel photosensitive elements SPX.
  • the pixel photosensitive unit PX includes 16 sub-pixel photosensitive elements SPX, which are located in a region ZN of the light receiving surface P1 and arranged in a 4 ⁇ 4 array.
  • the 16 sub-pixel photosensitive elements SPX respectively output 16 sub-pixel values SVP to the integration unit 20, and the integration unit 20 outputs a single pixel value VP according to the 16 sub-pixel values SVP.
  • the collimating unit CM may include a lens LN and a plurality of openings H located at the light transmission at the bottom of the collimating unit CM. Both the lens LN and the opening H allow light outside the image capturing device 10 to pass through the collimating unit CM and illuminate the pixel photosensitive unit PX. In other words, the plurality of openings H of the collimating unit CM are aligned with the pixel.
  • the photosensitive unit PX that is, the projection of the plurality of openings H of the collimating unit CM on the plane of the pixel photosensitive unit PX (ie, the light receiving surface of the pixel photosensitive unit PX) completely falls on the area where the single pixel photosensitive unit PX is located on the light receiving surface P1.
  • the light that has passed through the collimating unit CM will only illuminate the pixel photosensitive unit PX without illuminating the adjacent pixel photosensitive unit, thereby eliminating the problem of crosstalk between the optical paths.
  • the maximum amount of light entering is reached, wherein the projection of the opening H on the light receiving surface P1 is called the light transmitting area HP.
  • the light transmitting area HP For example, in FIG.
  • the collimating unit CM includes four openings H, each of which is open.
  • the hole H is aligned with the four sub-pixel photosensitive members SPX, and the projection corresponding to each of the openings H on the light-receiving surface P1 (i.e., the light-transmitting area HP) falls in the area ZN of the pixel photosensitive unit PX.
  • the plurality of sub-pixel values SVP outputted by the plurality of sub-pixel photosensitive units SPX are related to the corresponding pixel photosensitive unit.
  • PX's single pixel value VP, representing penetration through collimation The light of the unit CM does not cause mutual interference to the adjacent pixel photosensitive cells, and thus the problem of optical path interference can be eliminated.
  • FIG. 4 is a schematic diagram of a (top view) layout of a pixel photosensitive module SPX according to an embodiment of the present application.
  • the sub-pixel photosensitive component SPX may include a photosensitive area LSA, a transmission gate TX, and a floating node FD.
  • the photosensitive area LSA receives illumination and generates photoelectrons.
  • the transmission gate TX is used to apply a signal S TX to extract photoelectrons stored in the photosensitive area LSA to the floating node FD, and the sub-pixel value SVP is related to the floating node FD in the sub-pixel photosensitive element SPX. The number of photoelectrons.
  • the photosensitive area LSA receives illumination, its area is related to the light sensitivity of the sub-pixel photosensitive element SPX, and the transmission gate TX and the floating node FD do not need to receive illumination, and the area where it is located is independent of the light sensitivity of the sub-pixel photosensitive element SPX.
  • the area of the transmission gate TX and the floating node FD on the light receiving surface P1 can be regarded as the non-light-sensitive area of the sub-pixel photosensitive element SPX.
  • the placement positions of the plurality of sub-pixel photosensitive members SPX in the pixel photosensitive unit PX may be adjusted such that the transparent area HP (ie, the opening H is in the receiving surface of the pixel photosensitive unit PX)
  • the projection on P1 only coincides with the photosensitive region LSA of the plurality of sub-pixel photosensitive members SPX, and the light-transmitting region HP does not coincide with the non-photosensitive regions of the plurality of sub-pixel photosensitive members SPX.
  • the pixel photosensitive unit PX can have better light sensitivity.
  • the manner in which the integration unit 20 integrates the plurality of sub-pixel values SVP into the pixel value VP is not limited.
  • the integration unit 20 can perform an average on the plurality of sub-pixel values SVP.
  • the operation is such that the output pixel value VP is an average value of the plurality of sub-pixel values SVP.
  • the integration unit 20 may perform an addition operation on the plurality of sub-pixel values SVP to output the pixel value VP as an addition result of the plurality of sub-pixel values SVP.
  • the integration unit 20 may select one of the plurality of sub-pixel values SVP as the pixel value VP, and the output pixel value VP is the sub-pixel value SVP.
  • the sub-pixel photosensitive components in the pixel photosensitive unit of the present application are not limited to being arranged in a 4 ⁇ 4 array, and the pixel photosensitive unit is not limited to including 16 sub-pixel photosensitive components, and the visual needs in the pixel photosensitive cells are arranged in different forms. Without being limited to this.
  • the present application utilizes a collimating unit having a plurality of openings to align the area of each pixel photosensitive unit on the light receiving surface to eliminate the problem of mutual interference between the optical paths while achieving the maximum amount of light entering;
  • a plurality of sub-pixel photosensitive components in the unit enhance the ability to capture photoelectrons.
  • the present application places the sub-pixel photosensitive component such that the projection of the aperture on the light-receiving surface (ie, the light-transmitting region) coincides only with the photosensitive region of the sub-pixel photosensitive component, and does not overlap with the plurality of sub-pixel photosensitive components.
  • the non-photosensitive areas coincide to achieve better light sensitivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本申请提供了一种像素传感模块,包括像素感光单元,于一受光面接受光照并输出一像素值,所述像素感光单元包括多个子像素感光组件,用来输出多个子像素值;以及整合单元,耦接于所述像素感光单元,用来根据所述多个子像素值,输出所述像素值;以及准直单元,具有多个开孔,其中所述多个开孔对准所述像素感光单元的所述区域,所述多个开孔于所述受光面的投影落在所述像素感光单元于所述受光面的一区域中。

Description

像素传感模块及图像撷取装置 技术领域
本申请涉及一种像素传感模块及图像撷取装置,尤其涉及一种提升光灵敏度的像素传感模块及图像撷取装置。
背景技术
互补式金氧半图像传感器(CMOS Image Sensor,CIS)已广泛的应用于具有摄影功能的电子装置以及数字摄影装置中。一般而言,图像传感器包括一像素传感阵列,像素传感阵列由排列成一阵列的多个像素传感单元所组成,像素传感单元包括如感光二极管(Photo Diode)或感光晶体管(Photo Transistor)等感光组件以及转换电路,而像素传感单元的光灵敏度(Sensitivity)相关于/正比于感光组件的感光面积。以包含感光二极管的像素传感单元为例,感光二极管受光后将其所产生的电荷储存于感光二极管的电位阱(Potential Well)中,并藉由由晶体管组成的转换电路,将感光二极管所产生的电荷转换成电位信号,该电位信号即为对应于该像素传感单元的像素值,而像素传感单元的光灵敏度相关于感光二极管于电路布局(Layout)或于受光面中的面积。
为了使图像传感器具有特定的感光效果,像素传感单元需具有特定的感光面积。现有技术中,每一像素传感单元仅包含单一感光组件,换句话说,像素 传感单元中唯一的感光组件需达到像素传感单元所需的感光面积,然而,对大面积的感光组件来说,其(电位阱)中的电荷不容易完全地被转换电路汲取出来,造成感光组件中留下残留电荷,并造成数字摄影装置产生不必要残影。另外,图像传感器一般具有准直器(Collimator),用来将光线投射至像素传感单元。然而,像素传感单元与准直器之间并非完美地对齐,而导致光路之间存在有互扰(Crosstalk)的问题。
因此,现有技术实有改进的必要。
发明内容
因此,本申请部分实施例的目的即在于提供一种像素传感模块及图像撷取装置,以改善现有技术的缺点。
为了解决上述技术问题,本申请实施例提供了一种像素传感模块,包括像素感光单元,于一受光面接受光照并输出一像素值,所述像素感光单元包括多个子像素感光组件,用来输出多个子像素值;以及整合单元,耦接于所述像素感光单元,用来根据所述多个子像素值,输出所述像素值;以及准直单元,具有多个开孔,其中所述多个开孔对准所述像素感光单元的所述区域,所述多个开孔于所述受光面的投影落在所述像素感光单元于所述受光面的一区域中。
例如,所述多个开孔中一第一开孔对准所述多个子像素感光组件中至少一第一子像素感光组件。
例如,所述多个子像素感光组件包括多个感光区以及多个非感光区,所述第一开孔于所述受光面的投影仅与所述至少一第一子像素感光组件的至少一感光区重合。
例如,所述多个子像素感光组件包括感光二极管。
例如,所述整合单元对所述多个子像素值进行一平均运算,以输出所述像素值为所述多个子像素值的一平均值。
例如,所述整合单元对所述多个子像素值进行一相加运算,以输出所述像素值为所述多个子像素值的一相加结果。
例如,所述整合单元输出所述像素值为所述多个子像素值中一子像素值。
本申请实施例提供了一种图像撷取装置包括多个像素传感模块,排列成阵列,其中每一像素传感模块包括像素感光单元,于一受光面接受光照并输出一像素值,所述像素感光单元于所述受光面具有一区域,所述像素感光单元包括多个子像素感光组件,用来输出多个子像素值;以及整合单元,耦接于所述像素感光单元,用来根据所述多个子像素值,输出所述像素值;准直单元,具有多个开孔,其中所述多个开孔对准所述像素感光单元的所述区域,所述多个开孔于所述受光面的投影落在所述区域中。
本申请利用将具有多个开孔的准直单元对准像素感光单元的于受光面的区域,以排除光路之间互扰的问题,同时达到最大进光量;利用像素感光单元中多个子像素感光组件,提升汲取光电子的能力。更进一步地,本申请透过适当摆放子像素感光组件,使得开孔于受光面的投影(即透光区)仅与子像素感光组件的感光区重合,而不与多个子像素感光组件的非感光区重合,以达到更佳的光灵敏度。
附图说明
图1为本申请实施例一图像撷取装置的示意图;
图2为本申请实施例一像素传感模块的侧视示意图;
图3为本申请实施例一像素感光单元的俯视示意图;
图4为本申请实施例一子像素感光组件的俯视示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参考图1至图3,图1为本申请实施例一图像撷取装置10的示意图,图2为本申请实施例一像素传感模块PXM的侧视示意图,图3为本申请实施例一像素感光单元PX的俯视示意图。图像撷取装置10可为互补式金氧半图像传感 器(CMOS Image Sensor,CIS),其可应用于光学指纹检测或是摄像头等需要撷取图像的装置。如图1所示,图像撷取装置10包括多个像素传感模块PXM,多个像素传感模块PXM排列成一阵列,多个像素传感模块PXM输出对应于一图像的多个像素值VP,以供后端电路或装置进行影像相关处理或运算。
如图2及图3所示,像素传感模块PXM包括像素感光单元PX以及准直单元(Collimator)CM,每一像素感光单元PX于一受光面P1接受光照,而将其因光照所产生的光电子汲取出来,并输出其对应于该像素感光单元PX的像素值VP。然而,对具有较大感光面积的像素感光组件来说,储存于像素感光组件的光电子不容易被汲取出来,而造成感光组件中留下残留电荷,导致图像撷取装置产生不必要残影。为了解决残留光电子的问题,可将具有大感光面积的像素感光组件切割成多个具有较小感光面积的子像素感光组件,使得光电子较容易被汲取出来。
具体来说,像素感光单元PX包括多个子像素感光组件SPX以及一整合单元20。其中,若像素感光单元PX需具有一感光面积以达到特定光灵敏度,则多个子像素感光组件SPX所对应多个子感光面积的总和可大致为该感光面积。子像素感光组件SPX可包含感光二极管(Photo Diode),其可输出其所对应的子像素值SVP。整合单元20耦接于多个子像素感光组件SPX,以接收对应于多个子像素感光组件SPX的多个子像素值SVP,整合单元20用来整合多个子像素值SVP而成为像素值VP,换句话说,整合单元20可根据对应于多个子像素感光组件SPX的多个子像素值SVP,输出单一像素值VP。
以图3所绘示的像素感光单元PX为例,像素感光单元PX包括16个子像素感光组件SPX,该16个子像素感光组件SPX皆位于受光面P1的一区域ZN中且排列成一4×4阵列,该16个子像素感光组件SPX分别输出16个子像素值SVP至整合单元20,整合单元20根据该16个子像素值SVP,输出单一像素值VP。
另一方面,准直单元CM可包括透镜LN以及多个开孔H,开孔H位于准直单元CM底部的透光处。透镜LN及开孔H皆可让图像撷取装置10外的光线穿透过准直单元CM而照射在像素感光单元PX上,换句话说,准直单元CM的多个开孔H对准像素感光单元PX,即准直单元CM的多个开孔H于像素感光单元PX所在平面(即像素感光单元PX的受光面)上的投影完全落在单一像素感光单元PX于受光面P1所在的区域ZN中,换句话说,穿透过准直单元CM的光线仅会照射在像素感光单元PX,而不会照射到邻近的像素感光单元,藉此排除光路之间互扰(Crosstalk)的问题,同时达到最大的进光量,其中,开孔H于受光面上P1的投影即为称之为透光区HP。举例来说,于图3中,16个子像素感光组件SPX上绘示有4个透光区HP,也就是说,于此实施例中,准直单元CM包括4个开孔H,每个开孔H对准4个子像素感光组件SPX,而对应每个开孔H于受光面P1的投影(即透光区HP)落在像素感光单元PX的区域ZN中。另外,穿透过准直单元CM的光线虽然会照射到像素感光单元PX中多个子像素感光组件SPX,但因多个子像素感光组件SPX所输出的多个子像素值SVP皆相关于对应像素感光单元PX的单一像素值VP,代表穿透过准直 单元CM的光线不会对邻近像素感光单元造成互扰,也因此可排除光路户扰的问题。
更进一步地,请参考图4,图4为本申请实施例子像素感光组件SPX的(俯视)布局示意图。子像素感光组件SPX可包含一感光区LSA、一传输闸TX以及一浮动节点(Floating Node)FD。感光区LSA接受光照并产生光电子,传输闸TX用来施加一信号STX以将储存于感光区LSA的光电子汲取至浮动节点FD,而子像素值SVP相关于子像素感光组件SPX中浮动节点FD光电子的数量。
因感光区LSA接受光照而其所在区域与子像素感光组件SPX的光灵敏度有关,而传输闸TX及浮动节点FD不需接受光照而其所在的区域与子像素感光组件SPX的光灵敏度无关,因此传输闸TX及浮动节点FD于受光面P1的区域可视为子像素感光组件SPX的非感光区。在此情形下,为了增加像素感光单元PX的光灵敏度,可调整像素感光单元PX中多个子像素感光组件SPX的摆放位置,使得透光区HP(即开孔H于像素感光单元PX受光面P1上的投影)仅与多个子像素感光组件SPX的感光区LSA重合,而透光区HP不与多个子像素感光组件SPX的非感光区重合。如此一来,像素感光单元PX可具有更佳的光灵敏度。
另外,整合单元20用来整合多个子像素值SVP而成为像素值VP的方式并未有所限。于一实施例中,整合单元20可对多个子像素值SVP进行一平均 运算,以输出像素值VP为多个子像素值SVP的一平均值。于一实施例中,整合单元20可对多个子像素值SVP进行一相加运算,以输出像素值VP为多个子像素值SVP的一相加结果。于一实施例中,整合单元20可自多个子像素值SVP中选取其中一个子像素值SVP当做是像素值VP,而输出像素值VP为该子像素值SVP。
需注意的是,前述实施例用以说明本发明的概念,本领域具通常知识者当可据以做不同修饰,而不限于此。举例来说,本申请像素感光单元中的子像素感光组件不限于排列成4×4阵列,像素感光单元也不限于包括16个子像素感光组件,像素感光单元中的可视实际需要排列成不同形式,而不限于此。
综上所述,本申请利用将具有多个开孔的准直单元对准每一像素感光单元于受光面的区域,以排除光路之间互扰的问题,同时达到最大进光量;利用像素感光单元中多个子像素感光组件,提升汲取光电子的能力。更进一步地,本申请透过适当摆放子像素感光组件,使得开孔于受光面的投影(即透光区)仅与子像素感光组件的感光区重合,而不与多个子像素感光组件的非感光区重合,以达到更佳的光灵敏度。
以上所述仅为本申请的部分实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (8)

  1. 一种像素传感模块,其特征在于,包括:
    像素感光单元,于一受光面接受光照并输出一像素值,所述像素感光单元包括:
    多个子像素感光组件,用来输出多个子像素值;以及
    整合单元,耦接于所述像素感光单元,用来根据所述多个子像素值,输出所述像素值;以及
    准直单元,具有多个开孔,其中所述多个开孔对准所述像素感光单元的所述区域,所述多个开孔于所述受光面的投影落在所述像素感光单元于所述受光面的一区域中。
  2. 如权利要求1所述的像素传感模块,其特征在于,所述多个开孔中一第一开孔对准所述多个子像素感光组件中至少一第一子像素感光组件。
  3. 如权利要求2所述的像素传感模块,其特征在于,所述多个子像素感光组件包括多个感光区以及多个非感光区,所述第一开孔于所述受光面的投影仅与所述至少一第一子像素感光组件的至少一感光区重合。
  4. 如权利要求1所述的像素传感模块,其特征在于,所述多个子像素感光组件包括感光二极管。
  5. 如权利要求1所述的像素传感模块,其特征在于,所述整合单元对所述多个子像素值进行一平均运算,以输出所述像素值为所述多个子像素值的一平均值。
  6. 如权利要求1所述的像素传感模块,其特征在于,所述整合单元对所述多个子像素值进行一相加运算,以输出所述像素值为所述多个子像素值的一相加结果。
  7. 如权利要求1所述的像素传感模块,其特征在于,所述整合单元输出所述像素值为所述多个子像素值中一子像素值。
  8. 一种图像撷取装置,其特征在于,包括:
    多个像素传感模块,排列成阵列,其中每一像素传感模块为权利要求1-7中任意一项所述的像素传感模块。
PCT/CN2017/107114 2017-10-20 2017-10-20 像素传感模块及图像撷取装置 WO2019075750A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/107114 WO2019075750A1 (zh) 2017-10-20 2017-10-20 像素传感模块及图像撷取装置
EP17902588.7A EP3499869B1 (en) 2017-10-20 2017-10-20 Pixel sensing module and image capturing device
CN201780001398.2A CN107980219B (zh) 2017-10-20 2017-10-20 像素传感模块及图像撷取装置
US16/158,279 US10644045B2 (en) 2017-10-20 2018-10-11 Pixel sensing module and image capturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107114 WO2019075750A1 (zh) 2017-10-20 2017-10-20 像素传感模块及图像撷取装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/158,279 Continuation US10644045B2 (en) 2017-10-20 2018-10-11 Pixel sensing module and image capturing device

Publications (1)

Publication Number Publication Date
WO2019075750A1 true WO2019075750A1 (zh) 2019-04-25

Family

ID=62006157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107114 WO2019075750A1 (zh) 2017-10-20 2017-10-20 像素传感模块及图像撷取装置

Country Status (4)

Country Link
US (1) US10644045B2 (zh)
EP (1) EP3499869B1 (zh)
CN (1) CN107980219B (zh)
WO (1) WO2019075750A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365900B1 (en) * 1996-12-30 2002-04-02 Commissariat A L'energie Atomique Sensing head and collimator for gamma-camera
WO2002046791A1 (en) * 2000-12-04 2002-06-13 University Of Leicester Devices for imaging radionuclide emissions
US20040218077A1 (en) * 2000-09-11 2004-11-04 General Electric Company Method and apparatus for preventing image artifacts
US20060011852A1 (en) * 2004-07-14 2006-01-19 Orbotech Medical Solutions Ltd. Radiation detector head
EP1639945A1 (en) * 2004-09-24 2006-03-29 Hitachi, Ltd. Radiation imaging apparatus and nuclear medicine diagnosis apparatus using the same
US20060138322A1 (en) * 2003-01-31 2006-06-29 Costello Kenneth A Backside imaging through a doped layer
US20110261239A1 (en) * 2010-04-21 2011-10-27 Intevac, Inc. Collimator bonding structure and method
CN102262237A (zh) * 2010-02-08 2011-11-30 原子能及能源替代委员会 光子辐射检测装置和此种装置的定制和运行方法
US20170090047A1 (en) * 2015-09-30 2017-03-30 General Electric Company Systems and methods for reduced size detector electronics

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137770B2 (ja) * 2008-09-30 2013-02-06 シャープ株式会社 放射線画像撮影システム
JP5359465B2 (ja) * 2009-03-31 2013-12-04 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
JP5664141B2 (ja) * 2010-11-08 2015-02-04 ソニー株式会社 固体撮像素子およびカメラシステム
KR101890748B1 (ko) * 2011-02-01 2018-08-23 삼성전자주식회사 멀티 스택 씨모스(cmos) 이미지 센서의 화소 및 그 제조방법
JP5999750B2 (ja) * 2011-08-25 2016-09-28 ソニー株式会社 撮像素子、撮像装置及び生体撮像装置
JP2013055500A (ja) * 2011-09-02 2013-03-21 Sony Corp 固体撮像素子およびカメラシステム
CN103312950B (zh) * 2012-03-09 2016-12-28 株式会社理光 摄像装置
US20150062391A1 (en) * 2012-03-30 2015-03-05 Nikon Corporation Image sensor, photographing method, and image-capturing device
CN103515397A (zh) * 2012-06-18 2014-01-15 联咏科技股份有限公司 具有像素级自动光衰减器的图像传感装置
JP6295526B2 (ja) * 2013-07-11 2018-03-20 ソニー株式会社 固体撮像装置および電子機器
CN103888692B (zh) * 2014-04-01 2017-03-22 中国科学院上海高等研究院 图像传感装置及其操作方法
US20160050376A1 (en) * 2014-08-18 2016-02-18 Ron Fridental Image sensor with sub-wavelength resolution
JP6369233B2 (ja) * 2014-09-01 2018-08-08 ソニー株式会社 固体撮像素子及びその信号処理方法、並びに電子機器
JP6516510B2 (ja) * 2015-03-02 2019-05-22 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP6918485B2 (ja) * 2016-12-27 2021-08-11 キヤノン株式会社 画像処理装置および画像処理方法、プログラム、記憶媒体
CN106982329B (zh) * 2017-04-28 2020-08-07 Oppo广东移动通信有限公司 图像传感器、对焦控制方法、成像装置和移动终端
JP2019021991A (ja) * 2017-07-12 2019-02-07 オリンパス株式会社 撮像素子、撮像装置、撮像プログラム、撮像方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365900B1 (en) * 1996-12-30 2002-04-02 Commissariat A L'energie Atomique Sensing head and collimator for gamma-camera
US20040218077A1 (en) * 2000-09-11 2004-11-04 General Electric Company Method and apparatus for preventing image artifacts
WO2002046791A1 (en) * 2000-12-04 2002-06-13 University Of Leicester Devices for imaging radionuclide emissions
US20060138322A1 (en) * 2003-01-31 2006-06-29 Costello Kenneth A Backside imaging through a doped layer
US20060011852A1 (en) * 2004-07-14 2006-01-19 Orbotech Medical Solutions Ltd. Radiation detector head
EP1639945A1 (en) * 2004-09-24 2006-03-29 Hitachi, Ltd. Radiation imaging apparatus and nuclear medicine diagnosis apparatus using the same
CN102262237A (zh) * 2010-02-08 2011-11-30 原子能及能源替代委员会 光子辐射检测装置和此种装置的定制和运行方法
US20110261239A1 (en) * 2010-04-21 2011-10-27 Intevac, Inc. Collimator bonding structure and method
US20170090047A1 (en) * 2015-09-30 2017-03-30 General Electric Company Systems and methods for reduced size detector electronics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499869A4 *

Also Published As

Publication number Publication date
CN107980219A (zh) 2018-05-01
US20190123076A1 (en) 2019-04-25
EP3499869A1 (en) 2019-06-19
EP3499869B1 (en) 2022-05-04
EP3499869A4 (en) 2019-06-19
CN107980219B (zh) 2021-08-20
US10644045B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2020045262A1 (ja) アンダーディスプレイ型指紋認証用センサモジュールおよびアンダーディスプレイ型指紋認証装置
US10033949B2 (en) Imaging systems with high dynamic range and phase detection pixels
US9455285B2 (en) Image sensors with phase detection pixels
KR102577844B1 (ko) 이미지 센서
US9432568B2 (en) Pixel arrangements for image sensors with phase detection pixels
US10455213B2 (en) Device having a 2D image sensor and depth sensor
US20170339353A1 (en) Imaging systems with high dynamic range and phase detection pixels
US10419664B2 (en) Image sensors with phase detection pixels and a variable aperture
TWI606309B (zh) 專用於計算成像並具有進一步功能性的光學成像設備
US20150381869A1 (en) Image processing methods for image sensors with phase detection pixels
US20170374306A1 (en) Image sensor system with an automatic focus function
US10734426B2 (en) Image sensor including transmitting layers having low refractive index
CN102396066B (zh) 固态摄像设备
TWI591813B (zh) 具有黃色濾光單元之影像感測器
US20170339355A1 (en) Imaging systems with global shutter phase detection pixels
US10574872B2 (en) Methods and apparatus for single-chip multispectral object detection
TW201721085A (zh) 用於光譜及距離資料之獲取的光電模組
US20140210952A1 (en) Image sensor and imaging apparatus
WO2018214150A1 (zh) 像素传感单元及图像撷取装置
JPWO2010100897A1 (ja) 固体撮像素子および撮像装置
WO2019075750A1 (zh) 像素传感模块及图像撷取装置
US10957727B2 (en) Phase detection pixels with diffractive lenses
US11159741B2 (en) Imaging device and method, image processing device and method, and imaging element
US10063763B2 (en) Camera module
JP5537687B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017902588

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017902588

Country of ref document: EP

Effective date: 20181025

NENP Non-entry into the national phase

Ref country code: DE