WO2019073853A1 - Optical device and system - Google Patents

Optical device and system Download PDF

Info

Publication number
WO2019073853A1
WO2019073853A1 PCT/JP2018/036803 JP2018036803W WO2019073853A1 WO 2019073853 A1 WO2019073853 A1 WO 2019073853A1 JP 2018036803 W JP2018036803 W JP 2018036803W WO 2019073853 A1 WO2019073853 A1 WO 2019073853A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
view
conductive portion
plan
optical device
Prior art date
Application number
PCT/JP2018/036803
Other languages
French (fr)
Japanese (ja)
Inventor
裕輝 田沼
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017197793A external-priority patent/JP2021028918A/en
Priority claimed from JP2017226431A external-priority patent/JP2021028919A/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2019073853A1 publication Critical patent/WO2019073853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present disclosure relates to optical devices and systems.
  • the conventional optical device includes, for example, a substrate, a light emitting element, a wiring pattern, a bonding layer, and a sealing resin.
  • the wiring pattern is formed on the substrate.
  • the light emitting element is disposed in the wiring pattern via the bonding layer.
  • the sealing resin is disposed on the base material and covers the light emitting element and the wiring pattern. When the light emitting element emits light, light is emitted from the optical device.
  • the present disclosure is conceived under the above-described circumstances, and its main object is to provide a more preferable optical device.
  • an optical device comprising a support and an optical element.
  • the optical element is disposed on the support and emits light.
  • the support comprises at least one positioning part.
  • the at least one positioning portion is for positioning the optical element and the irradiation target area by fixing to a part of a member having the irradiation target area to which the light from the optical element is irradiated. is there.
  • a system includes the optical device provided by the first aspect of the present disclosure, a wiring substrate on which the optical device is disposed, a bonding portion bonding the optical device and the wiring substrate, and the irradiation target area. And a member.
  • FIG. 1 It is a top view which shows the inner surface of the 2nd member of the optical apparatus of 1st Embodiment. It is a back view of the optical apparatus of 1st Embodiment. It is sectional drawing which expands a part of optical apparatus of 1st Embodiment typically, and is shown. It is a top view of the modification of the optical device of a 1st embodiment. It is a top view of the modification of the optical device of a 1st embodiment. It is a top view of the modification of the optical device of a 1st embodiment. It is sectional drawing of the optical element of the optical apparatus of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. FIG.
  • FIG. 5 is a cross-sectional view at a point in time of a method of manufacturing the optical device shown in FIG. 4. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is sectional drawing of the modification of the system of 1st Embodiment. It is section
  • FIG. 29 is a bottom view of the semiconductor laser device shown in FIG. 28.
  • FIG. 29 is a front view of the semiconductor laser device shown in FIG. 28.
  • FIG. 29 is a cross-sectional view taken along the line XXXI-XXXI of FIG. 28.
  • FIG. 29 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 28.
  • FIG. 29 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 28.
  • FIG. 29 is a plan view of a semiconductor laser device of the semiconductor laser device shown in FIG. 28.
  • FIG. 34 is a cross-sectional view taken along the line XXXIV-XXXIV of FIG. It is a top view (it permeate
  • FIG. 36 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. It is a top view (it permeate
  • FIG. 34 is a cross-sectional view taken along the line XXXIV-XXXIV of FIG. It is a top view (it permeate
  • FIG. 36 is a
  • FIG. 18 is a cross-sectional view of a semiconductor laser device according to a third modification of the second embodiment of the present disclosure. It is a top view (it permeate
  • FIG. 40 is a bottom view of the semiconductor laser device shown in FIG. 39.
  • FIG. 40 is a cross-sectional view along the line XLI-XLI in FIG. 39. It is a top view (it permeate
  • FIG. 43 is a bottom view of the semiconductor laser device shown in FIG. 42.
  • FIG. 43 is a cross-sectional view taken along the line XLIV-XLIV of FIG. 42.
  • FIG. 43 is a cross-sectional view along the line XLV-XLV of FIG. 42.
  • FIG. 43 is a partial enlarged plan view of a semiconductor laser device or the like of the semiconductor laser device shown in FIG. 42.
  • FIG. 47 is a cross-sectional view along the line XLVII-XLVII in FIG. 46. It is a top view (it permeate
  • FIG. 49 is a cross-sectional view along the line XLIX-XLIX of FIG. 48.
  • the terms “a certain item A is formed on a certain item B” and “a certain item A is formed on a certain item B” mean “a certain item A is present unless otherwise specified. It is included that the substance B is formed directly, and that the substance A is formed into a substance B while another substance is interposed between the substance A and the substance B. Similarly, the terms “an item A is located on an item B” and “an item A is located on an item B” mean “an item A is located unless otherwise specified.” It is included that it is disposed directly to B, and that "an object A is disposed to an object B while interposing another object between the object A and the object B".
  • the polygonal shape may include a complete polygon and a shape similar to a polygon.
  • the circular shape may include a perfect circle and a shape similar to a circle.
  • FIG. 1 is a diagram showing a part of the system of the first embodiment.
  • a system 800 shown in the figure includes an optical device A1, a wiring substrate 801, conductive portions 802 and 803, a bonding portion 805, and a member 810.
  • the optical device A1 can include the optical element 3 and the support B1.
  • the optical element 3 is disposed on the support B1 and emits light 890.
  • Examples of light 890 may include, for example, laser light, visible light, and infrared light. Although the light 890 is described as laser light in the present disclosure, the light 890 may be visible light or infrared light. The specific configuration of the optical device A1 will be described later.
  • Wiring substrate 801 is, for example, an insulating substrate.
  • the wiring substrate 801 may be, for example, a flexible substrate or a glass epoxy substrate.
  • the conductive portion 802 is disposed on the wiring substrate 801.
  • the conductive portion 802 is made of a conductive material.
  • the material which comprises the electroconductive part 802 is Cu, for example.
  • the material forming the conductive portion 802 may be a material other than Cu.
  • the conductive portion 802 may be referred to as a wiring pattern.
  • the conductive portion 803 is disposed on the wiring substrate 801.
  • the conductive portion 803 is made of, for example, a conductive material, and can perform a heat dissipation function, for example.
  • the bonding portion 805 is for bonding the optical device A 1 to the wiring substrate 801.
  • the bonding portion 805 is made of, for example, a conductive material and is derived from, for example, solder.
  • the optical device A ⁇ b> 1 is disposed on the wiring substrate 801 via the bonding portion 805.
  • the joint 805 may be made of an insulating material.
  • the member 810 is fixed to the optical device A1.
  • the member 810 includes an irradiation target range 811, a main body 812, and a plurality of positioning portions 813.
  • the light 890 from the optical element 3 is irradiated to the irradiation target range 811.
  • the irradiation target range 811 is a target range to which the light 890 from the optical element 3 is irradiated.
  • the shape in plan view of the irradiation target area 811 may be any shape.
  • the planar view shape of the irradiation target area 811 may be rectangular, circular, or triangular.
  • the irradiation target range 811 may be configured by an optical component. Examples of optical components that constitute the irradiation target area 811 include, for example, mirrors, lenses, optical fibers, and transparent plates.
  • the irradiation target range 811 is fixed to the main body 812.
  • the optical component which comprises the irradiation target range 811 is a transparent board.
  • the main body 812 is typically an electronic component housing.
  • casing is resin, for example.
  • the main body 812 is not limited to the housing of the electronic component.
  • the irradiation target range 811 and the main body 812 may not be separate bodies, and the irradiation target range 811 and the main body 812 may be an integral body.
  • the plurality of positioning portions 813 are fixed to the plurality of positioning portions 7 (described later) in the optical device A1.
  • Each of the plurality of positioning portions 813 may be a recess or a protrusion.
  • the plurality of positioning portions 813 are each a recess.
  • the plurality of positioning portions 813 may be convex portions.
  • some of the plurality of positioning portions 813 may be concave portions, and some of the remaining positioning portions may be convex portions.
  • the member 810 may not have a plurality of positioning portions 813 and may have only one positioning portion 813.
  • system 800 may further include an optical device 820.
  • the optical device 820 is, for example, a light receiving device and includes a light receiving element.
  • the light 890 from the optical device A1 is reflected by the object 830 via the irradiation target range 811 and then received by the optical device 820.
  • FIG. 3 is a perspective view of the optical device of the first embodiment.
  • FIG. 4 is a cross-sectional view of the optical device of the first embodiment.
  • FIG. 5 is a plan view of the optical device of the first embodiment.
  • FIG. 6 is a plan view of the optical device of the first embodiment.
  • FIG. 11 is a back view of the optical device of the first embodiment.
  • the optical device A1 shown in these figures includes a first member 1, a second member 2, an optical element 3, a first conductive portion 41, a second conductive portion 43, and a plurality of third conductive portions 45.
  • a first wire 51, a second wire 52, a functional element 58, a member 6, an insulating portion 81, and bonding portions 83, 85, 87 are provided.
  • the member 6 is shown in a transparent manner.
  • Reference numerals 85 and 87 constitute a support B1.
  • the first member 1 shown in FIG. 4 and the like is made of an insulating material or a conductive material.
  • the first member 1 is made of an insulating material.
  • an insulating material for example, an insulating resin or ceramic may be mentioned.
  • an insulating resin an epoxy resin (for example, glass or paper may be included), a phenol resin, a polyimide, polyester, etc. are mentioned, for example.
  • the ceramic include Al 2 O 3 , SiC, and AlN.
  • the first member 1 may be one in which an insulating film is formed on a substrate made of a conductive material such as aluminum.
  • the first member 1 has a rectangular shape in a plan view (direction Z1 view).
  • the first member 1 has a first surface 11, a second surface 12, a first side surface 1A, a second side surface 1B, a third side surface 1C, and a fourth side surface 1D.
  • Each of the first surface 11, the second surface 12, the first side surface 1A, the second side surface 1B, the third side surface 1C, and the fourth side surface 1D is, for example, rectangular.
  • the first surface 11 and the second surface 12 are separated in the direction Z ⁇ b> 1 orthogonal to the first surface 11 and face away from each other.
  • the first surface 11 and the second surface 12 are both flat.
  • the first surface 11 constitutes a first surface of the support B1.
  • the first side surface 1A and the second side surface 1B are separated in the first direction X1 and face away from each other.
  • the first direction X1 is orthogonal to the direction Z1.
  • the first side surface 1A and the second side surface 1B are both connected to the first surface 11 and the second surface 12. Both the first side 1A and the second side 1B are flat.
  • the third side surface 1C and the fourth side surface 1D are separated in the second direction Y1 and face opposite to each other.
  • the second direction Y1 is orthogonal to the first direction X1 and the direction Z1.
  • the third side surface 1C and the fourth side surface 1D are both connected to the first surface 11 and the second surface 12.
  • the third side surface 1C and the fourth side surface 1D are both flat.
  • FIG. 7 is a plan view of the optical device of the first embodiment. In FIG. 7, a part of the configuration is made transparent. As shown in FIGS. 4 and 7, a plurality of through holes are formed in the first member 1.
  • the plurality of through holes formed in the first member 1 includes a plurality of first through holes 14 and one second through hole 15.
  • Each of the plurality of first through holes 14 penetrates the first member 1 and extends from the first surface 11 to the second surface 12 of the first member 1.
  • the shapes of the plurality of first through holes 14 in plan view may be circular.
  • the shapes of the plurality of first through holes 14 in plan view may be shapes other than circular (rectangular or triangular).
  • FIG. 7 shows an example in which a plurality of first through holes 14 are formed, different from FIG. 7, only one first through hole may be formed.
  • the plurality of first through holes 14 have an inner surface 14S. The inner surfaces 14S of the plurality of first through holes 14 are connected to the first surface 11 and the second surface 12.
  • the inner surfaces 14S of the plurality of first through holes 14 extend in a direction intersecting with the direction Z1.
  • the inner surface 14S of the plurality of first through holes 14 and the first surface 11 form a portion forming an acute angle in the first member 1
  • the inner surface 14S of the plurality of first through holes 14 and the second The surface 12 forms an obtuse-angled portion in the first member 1.
  • part which makes an obtuse angle in the 1st member 1 is formed of the inner surface 14S and the 1st surface 11 of several 1st through-hole 14, and the inner surface 14S of several 1st through-hole 14 And the second surface 12 form a portion that forms an acute angle in the first member 1.
  • the inner surfaces 14S of the plurality of first through holes 14 may extend along the direction Z1.
  • an inner surface 14S of the plurality of first through holes 14 and the first surface 11 form a portion that forms 90 degrees in the first member 1, and the inner surface 14S of the plurality of first through holes 14 and the second The surface 12 can form a 90-degree portion in the first member 1.
  • the second through holes 15 pass through the first member 1 and extend from the first surface 11 to the second surface 12 of the first member 1.
  • the shape of the second through hole 15 in plan view may be circular.
  • the shape of the second through hole 15 in plan view may be a shape other than a circular shape (rectangular or triangular).
  • FIG. 7 shows an example in which one second through hole 15 is formed, different from FIG. 7, a plurality of second through holes may be formed.
  • the second through hole 15 has an inner surface 15S.
  • the inner surface 15S of the second through hole 15 is connected to the first surface 11 and the second surface 12. In the example shown in FIG. 4 and FIG.
  • the inner surface 15S of the second through hole 15 extends in a direction intersecting with the direction Z1.
  • a portion forming an acute angle in the first member 1 is formed by the inner surface 15S of the second through hole 15 and the first surface 11, and the inner surface 15S of the second through hole 15 and the second surface 12 are formed.
  • the first member 1 is formed with a portion forming an obtuse angle.
  • part which makes an obtuse angle in the 1st member 1 is formed of the inner surface 15S of the 2nd through-hole 15, and the 1st surface 11, and the inner surface 15S of the 2nd through-hole 15 and the 2nd surface A portion forming an acute angle is formed in the first member 1 by 12.
  • the inner surface 15S of the second through hole 15 may extend along the direction Z1.
  • the inner surface 15S of the second through hole 15 and the first surface 11 form a portion at 90 degrees to the first member 1, and the inner surface 15S of the second through hole 15 and the second surface 12
  • the first member 1 can form a portion that makes 90 degrees.
  • a void 17 is formed in the first member 1.
  • the air gap 17 penetrates the first member 1 and extends from the first surface 11 to the second surface 12 of the first member 1.
  • the air gap 17 is hollow.
  • the shape of the air gap 17 in a plan view may be circular.
  • the shape of the air gap 17 in a plan view may be a shape other than a circular shape (a rectangular shape or a triangular shape).
  • FIG. 7 shows an example in which one air gap 17 is formed, different from FIG. 7, a plurality of air gaps 17 may be formed.
  • the air gap 17 has an inner surface 17S.
  • the inner surface 17S of the air gap 17 is connected to the first surface 11 and the second surface 12.
  • the inner surface 17S of the air gap 17 extends along the direction Z1.
  • the inner surface 17S of the air gap 17 may extend in the direction Z1.
  • the 1st member 1 has 1st area
  • the first region R1 and the second region R2 are adjacent to each other in the first direction X1 across the virtual straight line LL in plan view.
  • the virtual straight line LL passes through the center C1 of the first member 1 in a plan view, and extends in the second direction Y1.
  • the second member 2 is made of an insulating material or a conductive material.
  • the second member 2 shown in FIG. 4 is made of an insulating material.
  • an insulating material for example, an insulating resin or ceramic may be mentioned.
  • an insulating resin an epoxy resin (for example, glass or paper may be included), a phenol resin, a polyimide, polyester, etc. are mentioned, for example.
  • the ceramic include Al 2 O 3 , SiC, and AlN.
  • the second member 2 may be one in which an insulating film is formed on a substrate made of a conductive material such as aluminum.
  • the second member 2 has a rectangular shape in a plan view.
  • the 2nd member 2 has the surface 21, the back surface 22, 1st side 2A, 2nd side 2B, 3rd side 2C, and 4th side 2D.
  • the front surface 21, the back surface 22, the first side surface 2A, the second side surface 2B, the third side surface 2C, and the fourth side surface 2D are all rectangular, for example.
  • the front surface 21 and the back surface 22 are separated in the direction Z1 orthogonal to the front surface 21 and face in opposite directions.
  • the front surface 21 and the back surface 22 are both flat.
  • the first side surface 2A and the second side surface 2B are separated in the first direction X1 and face in opposite directions to each other.
  • the first direction X1 is orthogonal to the direction Z1.
  • the first side surface 2A and the second side surface 2B are both connected to the front surface 21 and the back surface 22. Both the first side surface 2A and the second side surface 2B are flat.
  • the third side surface 2C and the fourth side surface 2D are separated in the second direction Y1 and face opposite to each other.
  • the second direction Y1 is orthogonal to the first direction X1 and the direction Z1.
  • the third side surface 2C and the fourth side surface 2D are both connected to the front surface 21 and the back surface 22.
  • the third side surface 2C and the fourth side surface 2D are both flat.
  • the first side surface 2A, the second side surface 2B, the third side surface 2C, and the fourth side surface 2D in the second member 2 are respectively the first side surface 1A in the first member 1 , And may be flush with the second side 1B, the third side 1C, and the fourth side 1D.
  • the second member 2 has an inner surface 24 surrounding the optical element 3.
  • the inner surface 24 extends along the direction Z1. Unlike the present embodiment, the inner surface 24 may extend in the direction Z1.
  • the inner surface 24 is connected to the front surface 21 and the back surface 22.
  • the inner surface 24 has a first portion 241, a second portion 242, a third portion 243, a fourth portion 244, a fifth portion 245, a sixth portion 246, a seventh portion 247, and an eighth portion 248. And.
  • FIG. 10 is a plan view showing the inner surface 24 of the second member of the optical device of the first embodiment.
  • the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 are all curved in plan view.
  • the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 are all curved from the optical element 3 toward the second member 2 in plan view. ing.
  • each of the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 is a part of an arc of a circle having a diameter R11 centered on the center C1 of the first member 1. .
  • any of the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 may not be curved in a plan view and may be linear. .
  • the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are all curved in plan view.
  • all of the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are curved from the optical element 3 toward the second member 2 in plan view.
  • the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are each a part of arcs of different circles of diameter R12 (diameter R12 is smaller than diameter R11). It is.
  • the second part 242 is connected to the first part 241 and the third part 243
  • the fourth part 244 is connected to the third part 243 and the fifth part 245,
  • the sixth part 246 is connected to the fifth part 245.
  • the seventh portion 247, and the eighth portion 248 is connected to the seventh portion 247 and the first portion 241.
  • any of the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 may not be curved in plan view and may be linear. .
  • the inner surface 24 of the second member 2 may be circular or rectangular.
  • a joint portion 85 shown in FIG. 4 or the like is interposed between the first member 1 and the second member 2 and joins the first member 1 and the second member 2.
  • the bonding portion 85 is made of, for example, an epoxy type, a silicone type, or an acrylic type material.
  • the optical element 3 shown in FIGS. 4 and 6 is disposed on the first surface 11 of the first member 1.
  • the optical element 3 emits light 890.
  • the light 890 may be laser light, visible light, or infrared light. In the example shown, the light 890 is a laser light.
  • the area where the optical element 3 and the first region R1 overlap in plan view is larger than half of the area of the optical element 3 in plan view.
  • the area where the optical element 3 and the first region R1 overlap in plan view may be equal to half the area of the optical element 3 in plan view.
  • the area where the optical element 3 and the first region R1 overlap in plan view may be smaller than half of the area of the optical element 3 in plan view.
  • the optical element 3 disclosed in FIG. 6 is a laser diode, and more specifically, a laser diode of a VCSEL (Vertical Cavity Surface Emitting Laser) type.
  • the optical element 3 is not limited to a VCSEL type laser diode.
  • the optical element 3 disclosed in FIGS. 4 and 6 has, for example, a rectangular shape having a length of 100 to 1400 ⁇ m and a width of 100 to 1400 ⁇ m in a plan view.
  • the thickness (dimension in the direction Z1) of the optical element 3 disclosed in FIGS. 4 and 6 is, for example, 50 to 200 ⁇ m.
  • the optical element 3 can include a plurality of light emitting units 35.
  • the plurality of light emitting units 35 are disposed at mutually different positions in plan view.
  • the plurality of light emitting units 35 are separated from each other in plan view.
  • Each of the plurality of light emitting units 35 emits light.
  • the optical element 3 emits planar light 890 along the direction Z1 by including the plurality of light emitting units 35.
  • the light 890 emitted from the optical element 3 reaches the irradiation target range 811 (see FIG. 1) of the member 810.
  • the optical element 3 includes the front surface 31, the back surface 32, the first side surface 3A, the second side surface 3B, the third side surface 3C, and the fourth side surface 3D. Including.
  • the front surface 31 and the back surface 32 are separated in the direction Z1 orthogonal to the front surface 31, and face opposite to each other.
  • the front surface 31 and the back surface 32 are both flat.
  • a plurality of light emitting units 35 are disposed closer to the front surface 31 than the back surface 32.
  • the first side surface 3A and the second side surface 3B are separated in the first direction X1 and face opposite to each other.
  • the first direction X1 is orthogonal to the direction Z1.
  • the first side surface 3A and the second side surface 3B are both connected to the front surface 31 and the back surface 32. Both the first side 3A and the second side 3B are flat.
  • the third side surface 3C and the fourth side surface 3D are separated in the second direction Y1 and face opposite to each other.
  • the second direction Y1 is orthogonal to the first direction X1 and the direction Z1.
  • the third side surface 3C and the fourth side surface 3D are both connected to the front surface 31 and the back surface 32.
  • the third side surface 3C and the fourth side surface 3D are both flat.
  • FIG. 16 is a cross-sectional view of the optical element 3 of the optical device of the first embodiment, and shows an example of a cross-sectional view of a VCSEL type laser diode.
  • the optical element 3 includes the substrate 311, the first semiconductor layer 312, the second semiconductor layer 313, the active layer 315, the insulating layer 317, the current confinement layer 318, and the first conductivity.
  • a layer 33 and a second conductive layer 34 are provided.
  • the substrate 311 is made of a semiconductor.
  • the semiconductor forming the substrate 311 is, for example, GaAs.
  • the semiconductor constituting the substrate 311 may be other than GaAs.
  • the active layer 315 is made of, for example, a compound semiconductor that emits light of a wavelength of 980 nm band (hereinafter referred to as “ ⁇ a”) by spontaneous emission and stimulated emission.
  • ⁇ a a compound semiconductor that emits light of a wavelength of 980 nm band
  • the active layer 315 is located between the first semiconductor layer 312 and the second semiconductor layer 313.
  • the first semiconductor layer 312 is typically a DBR (Distributed Bragg Reflector) layer, and is formed on the substrate 311.
  • the first semiconductor layer 312 is made of a semiconductor having a first conductivity type. In the present embodiment, the first conductivity type is n-type.
  • the first semiconductor layer 312 is configured as a DBR for efficiently reflecting the light emitted from the active layer 315. More specifically, the first semiconductor layer 312 is formed by overlapping a plurality of pairs of two layers which are AlGaAs layers with a thickness of ⁇ a / 4 and have different reflectances.
  • the second semiconductor layer 313 is typically a DBR layer and is made of a semiconductor having a second conductivity type.
  • the second conductivity type is p-type.
  • the first conductivity type may be p-type and the second conductivity type may be n-type.
  • the first semiconductor layer 312 is located between the second semiconductor layer 313 and the substrate 311.
  • the second semiconductor layer 313 is configured as a DBR for efficiently reflecting the light emitted from the active layer 315. More specifically, the second semiconductor layer 313 is an AlGaAs layer with a thickness of ⁇ a / 4, and is configured by superposing a plurality of pairs of two layers having different reflectances.
  • the second semiconductor layer 313 has a surface 3131.
  • the surface 3131 faces away from the side where the first semiconductor layer 312 is located.
  • the current confinement layer 318 is located in the second semiconductor layer 313.
  • the current confinement layer 318 contains, for example, a large amount of Al and is a layer susceptible to oxidation.
  • the current confinement layer 318 is formed by oxidizing the easily oxidized layer.
  • the current confinement layer 318 does not necessarily have to be formed by oxidation, and may be formed by other methods (for example, ion implantation).
  • An opening 3181 is formed in the current confinement layer 318. A current flows through the opening.
  • the insulating layer 317 is formed on the second semiconductor layer 313.
  • the insulating layer 317 is made of, for example, SiO 2 .
  • the first conductive layer 33 is formed on the insulating layer 317.
  • the first conductive layer 33 is made of a conductive material (for example, metal).
  • an opening 331 ⁇ / b> A is formed in the first conductive layer 33.
  • the opening 331A exposes the insulating layer 317 and overlaps the active layer 315 in the direction Z1. As can be understood from FIG. 16, the opening 331A overlaps the opening 3181 in the current confinement layer 318 in the direction Z1.
  • Each of the plurality of openings 331A defines the shape of the plurality of light emitting units 35 in plan view.
  • the first conductive layer 33 includes portions 3333 and 339.
  • the portion 3333 penetrates the insulating layer 317. A current flows between the portion 3333 and the second semiconductor layer 313.
  • the portion 339 is electrically connected to the surface 3131.
  • the first wire 51 (see FIG. 6) is joined to the portion 339.
  • the second conductive layer 34 is formed on the lower surface of the substrate 311 in FIG.
  • the second conductive layer 34 is made of a conductive material (for example, metal).
  • the substrate 311 is located between the second conductive layer 34 and the first semiconductor layer 312.
  • the optical element 3 may be one shown in FIG.
  • the number of light emitting units 35 of the optical element 3 of FIG. 13 is smaller than the number of light emitting units 35 of the optical element 3 of FIG.
  • the optical element 3 may have only one light emitting unit 35 (see FIG. 14).
  • the first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 is a current for supplying power to the optical element 3.
  • the first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 are made of, for example, a single type or a plurality of types of metals such as Cu, Ni, Ti, and Au.
  • the first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 may be formed by plating, for example, but are not limited thereto.
  • each of the first conductive portion 41 and the second conductive portion 43 includes a plurality of layers.
  • the first conductive unit 41 and the second conductive unit 43 each include a first conductive layer 491, a second conductive layer 492, and a third conductive layer 493.
  • the first conductive layer 491 is made of, for example, Cu
  • the second conductive layer 492 is made of, for example, Ni
  • the third conductive layer 493 is made of, for example, Au.
  • a Pd layer may be disposed between the second conductive layer 492 and the third conductive layer 493.
  • the thickness of the first conductive layer 491 is, for example, 20 to 40 ⁇ m
  • the thickness of the second conductive layer 492 is, for example, 1 to 10 ⁇ m
  • the thickness of the third conductive layer 493 is, for example, 0. It is 05 to 0.2 ⁇ m.
  • FIG. 8 is a diagram in which the second member 2, the optical element 3, the first wire 51, the second wire 52, the functional element 58 and the like are omitted from FIG.
  • the first conductive portion 41 is formed on the first surface 11 of the first member 1.
  • the first conductive portion 41 includes a first conductive portion 411 and a second conductive portion 412.
  • the optical element 3 is disposed in the first conductive portion 411.
  • the first conductive portion 411 is electrically connected to the second conductive layer 34 of the optical element 3.
  • the first conductive portion 411 has edges 411A to 411F.
  • the edge 411A extends along the second direction Y1.
  • the edge 411B is connected to the edge 411A and extends along the first direction X1.
  • the edge 411C is connected to the edge 411B and extends along the second direction Y1.
  • the edge 411D extends along the first direction X1.
  • the edge 411E is connected to the edge 411D and extends along the second direction Y1.
  • the edge 411F is connected to the edge 411E and the edge 411A, and extends along the first direction X1.
  • the first conductive site 411 has a first defect site 4111, a second defect site 4112, and a defect site 4113.
  • the first defect portion 4111, the second defect portion 4112, and the defect portion 4113 have shapes lost in a plan view.
  • the first defect site 4111, the second defect site 4112, and the defect site 4113 may be an opening formed in the first conductive site 411 or a recess formed in the first conductive site 411.
  • the first defect site 4111 is an opening
  • the second defect site 4112 is a recess recessed from the edge 411C
  • the defect portion 4113 is a recess recessed from the edge 411D.
  • the first defect site 4111 and the second defect site 4112 can be used as marks when the optical element 3 is disposed in the first conductive portion 41. At least a part of the defect portion 4113 overlaps the air gap 17 in a plan view.
  • the first conductive portion 41 has two defect sites (a first defect site 4111 and a second defect site 4112) is shown, but the first conductive portion 41 is a single defect site or three or more It may have a defect site. Alternatively, the first conductive portion 41 may not have a defect site. In the present disclosure, an example in which the first conductive portion 41 has one defect portion 4113 is shown, but the first conductive portion 41 may have two or more defect portions. Alternatively, the first conductive portion 41 may not have a defective portion. The positions of the defect portion and the defect portion in the first conductive portion 41 are not limited to those illustrated, but can be changed.
  • the first wire 51 is bonded to the second conductive portion 412.
  • the second conductive portion 412 is electrically connected to the first conductive layer 33 of the optical element 3 through the first wire 51.
  • the area of the second conductive portion 412 is smaller than the area of the first conductive portion 411.
  • the second conductive portion 412 has edges 412A-412D.
  • the edge 412A extends along the second direction Y1.
  • the edge 412B is connected to the edge 412A and extends along the first direction X1.
  • the edge 412C is connected to the edge 412B and extends along the second direction Y1.
  • the edge 412D is connected to the edge 412C and extends along the first direction X1.
  • the second conductive portion 43 is formed on the second surface 12 of the first member 1.
  • the second conductive portion 43 includes a first conductive portion 431, a second conductive portion 432, a third conductive portion 433, and a conductive portion 435.
  • the first conductive portion 431, the second conductive portion 432, the third conductive portion 433 and the conductive portion 435 are spaced apart from one another.
  • the first conductive portion 431 is electrically connected to the first conductive portion 411 via the third conductive portion 45.
  • the first conductive portion 431 has edges 431A to 431D.
  • the edge 431A extends along the second direction Y1.
  • the edge 431B is connected to the edge 431A and extends along the first direction X1.
  • the edge 431C is connected to the edge 431B and extends along the second direction Y1.
  • the edge 431D is connected to the edge 431C and the edge 431A and extends along the first direction X1.
  • the second conductive portion 432 is electrically connected to the second conductive portion 412 via the third conductive portion 45.
  • the second conductive portion 432 has edges 432A to 432D.
  • the edge 432A extends along the second direction Y1.
  • the edge 432B is connected to the edge 432A and extends along the first direction X1.
  • the edge 432C is connected to the edge 432B and extends along the second direction Y1.
  • the edge 432D is connected to the edge 432C and the edge 432A, and extends along the first direction X1.
  • the third conductive portion 433 is not electrically connected to the first conductive portion 411 or the second conductive portion 412. Unlike the present disclosure, the third conductive portion 433 may be electrically connected to the first conductive portion 411 via the third conductive portion 45.
  • the third conductive portion 433 has edges 433A to 433D.
  • the edge 433A extends along the second direction Y1.
  • the edge 433B is connected to the edge 433A and extends along the first direction X1.
  • the edge 433C is connected to the edge 433B and extends along the second direction Y1.
  • the edge 433D is connected to the edge 433C and the edge 433A, and extends along the first direction X1.
  • the conductive portion 435 is not in conduction with the first conductive portion 411 or the second conductive portion 412. Unlike the present disclosure, the conductive portion 435 may be electrically connected to the first conductive portion 411 via the third conductive portion 45.
  • Conductive portion 435 has edges 435A-435D.
  • the edge 435A extends along the second direction Y1.
  • the edge 435B is connected to the edge 435A and extends along the first direction X1.
  • Edge 435C is connected to edge 435B and is arc-shaped.
  • the edge 435D is connected to the edge 435C and the edge 435A, and extends along the first direction X1.
  • the conductive portion 435 has a defect portion 4351.
  • the missing portion 4351 has a lost shape in plan view.
  • Defect portion 4351 can be an opening formed in conductive portion 435 or a recess formed in conductive portion 435.
  • defect portion 4351 is an aperture. At least a part of the defect portion 4351 overlaps the air gap 17 in plan view.
  • the edge 4352 of the defect portion 4351 has a closed shape surrounding the air gap 17 in a plan view.
  • the said shape in FIG. 11 is circular shape. Unlike FIG. 11, the edge 4352 of the defect portion 4351 may have other shapes besides circular. Unlike FIG. 11, the edge 4352 of the defect portion 4351 may not have a closed shape.
  • the plurality of third conductive portions 45 shown in FIGS. 4, 7, 11 and 12 respectively penetrate the first member 1 and are connected to the first conductive portion 41 and the second conductive portion 43.
  • the plurality of third conductive portions 45 are disposed in any one of the plurality of first through holes 14 or the second through holes 15.
  • the material which comprises the 3rd conductive part 45 is not limited, the material (for example, Cu which constitutes the 1st conductive layer 491 in the 1st conductive layer 491 in the 1st conductive part 41 or the 2nd conductive part 43) And may be identical to
  • the third conductive portion 45 may be formed, for example, by plating, but not limited thereto.
  • the plurality of third conductive portions 45 include at least one first portion 45 ⁇ / b> A and at least one second portion 45 ⁇ / b> B.
  • the at least one first portion 45A is connected to the first conductive portion 411 of the first conductive portion 41 and the first conductive portion 431 of the second conductive portion 43, respectively. As shown in FIG. 7, one or several of the at least one first portions 45 ⁇ / b> A may overlap the optical element 3 in a plan view.
  • At least one second portion 45 ⁇ / b> B is connected to the second conductive portion 412 of the first conductive portion 41 and the second conductive portion 432 of the second conductive portion 43.
  • the number of at least one first portion 45A is greater than the number of at least one second portion 45B.
  • the number of at least one first portion 45A is, for example, 5 to 30.
  • the number of at least one second portion 45B is, for example, 1 to 3.
  • the number of at least one first portion 45A that overlaps the optical element 3 may be greater than the number of at least one second portion 45B.
  • the number of at least one first portion 45A and the number of at least one second portion 45B can be changed as appropriate.
  • the bonding portion 83 is interposed between the optical element 3 and the first conductive portion 411.
  • Bonding portion 83 is made of, for example, a conductive material.
  • the joint 83 is derived from, for example, silver paste. Unlike the present embodiment, the joint 83 may be made of an insulating material.
  • the bonding portion 83 is in contact with the side surface of the optical element 3 (the first side surface 3A, the second side surface 3B, the third side surface 3C, or the fourth side surface 3D) and the first conductive portion 411 preferable. This is preferable in that the bonding portion 83 can hold the optical element 3 more firmly.
  • the insulating portion 81 shown in FIG. 8 and the like is formed on the first surface 11 of the first member 1.
  • the insulating portion 81 may be called a resist layer.
  • the insulating portion 81 exposes a portion of the first conductive portion 41 (specifically, a portion of the first conductive portion 411 and a portion of the second conductive portion 412).
  • Insulating portion 81 includes an edge 81A and an edge 81B.
  • the edge 81A is shaped along the first side 1A, the second side 1B, the third side 1C, and the fourth side 1D of the first member 1.
  • the edge 81B surrounds the optical element 3 in plan view.
  • the functional element 58 shown in FIG. 6 and the like is disposed in the first conductive portion 411 in the first conductive portion 41.
  • the functional element 58 is, for example, a semiconductor element, and more specifically, may be a zener diode.
  • the optical device A1 may not have the functional element 58.
  • the first wire 51 shown in FIGS. 6 and 7 is made of a conductive material.
  • the conductive material constituting the first wire 51 includes, for example, at least one of Cu, Ag, and Au.
  • the first wire 51 in plan view, the first wire 51 extends so as to intersect the first direction X1.
  • the first wire 51 may extend along the first direction X1 or may extend along the second direction Y1.
  • the first wire 51 has a first end 511 and a second end 512.
  • the first end 511 of the first wire 51 is joined to the optical element 3 (specifically, the first conductive layer 33), and in a plan view, two light emitting units 35 of the plurality of light emitting units 35.
  • the 1st end 511 may be arranged at the 3rd side 3C side.
  • the second end 512 of the first wire 51 is joined to the second conductive portion 412 of the first conductive portion 41.
  • the second end 512 of the first wire 51 is located in the second region R2 in plan view. As shown in FIG. 6, even if the second end 512 of the first wire 51 is positioned between the first end 511 of the first wire 51 and the air gap 17 of the first member 1 in the first direction X1. Good.
  • the second end 512 of the first wire 51 may be located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1.
  • the second end 512 of the first wire 51 may be located between the optical element 3 and the positioning unit 7 in the first direction X1.
  • the second wire 52 shown in FIGS. 6 and 7 is made of a conductive material.
  • the conductive material constituting the second wire 52 includes, for example, at least one of Cu, Ag, and Au.
  • the second wire 52 in plan view, the second wire 52 extends along the second direction Y1.
  • the second wire 52 may extend along the first direction X1 or may extend crossing the second direction Y1.
  • the second wire 52 has a first end 521 and a second end 522.
  • the first end 521 of the second wire 52 is joined to the functional element 58.
  • the second end 522 of the second wire 52 is joined to the second conductive portion 412 of the first conductive portion 41.
  • the second end 522 of the second wire 52 is located in the second region R2 in plan view. As shown in FIG. 6, even if the second end 522 of the second wire 52 is located between the first end 511 of the second wire 52 and the air gap 17 of the first member 1 in the first direction X1. Good. As shown in FIG. 6, the second end 522 of the second wire 52 may be located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1. As shown in FIG. 6, the second end 522 of the second wire 52 may be located between the optical element 3 and the positioning unit 7 in the first direction X1.
  • the third wire 53 may be bonded to the optical element 3 and the first conductive portion 411.
  • the optical element 3 may be electrically connected to the first conductive portion 41 without using a wire.
  • the member 6 shown in FIG. 2 and the like is fixed to the first member 1. More specifically, the member 6 is fixed to the first member 1 via the second member 2.
  • the member 6 has a portion overlapping the optical element 3 in a plan view.
  • the member 6 transmits the light 890 from the optical element 3.
  • the member 6 can be made of an insulating material.
  • the member 6 constituting the member 6 includes, for example, polyphthalamide, an epoxy resin, and a silicone-based material.
  • the front surface 61 and the back surface 62 are separated in the direction Z1 orthogonal to the front surface 61, and face away from each other.
  • the front surface 61 and the back surface 62 are both flat.
  • the first side surface 6A and the second side surface 6B are separated in the first direction X1 and face opposite to each other.
  • the first direction X1 is orthogonal to the direction Z1.
  • the first side surface 6A and the second side surface 6B are both connected to the front surface 61 and the back surface 62.
  • the first side 6A and the second side 6B are both flat.
  • the third side surface 6C and the fourth side surface 6D are separated in the second direction Y1 and face opposite to each other.
  • the second direction Y1 is orthogonal to the first direction X1 and the direction Z1.
  • the third side surface 6C and the fourth side surface 6D are both connected to the front surface 61 and the back surface 62.
  • the third side surface 6C and the fourth side surface 6D are both flat.
  • the first side surface 6A, the second side surface 6B, the third side surface 6C, and the fourth side surface 6D in the member 6 are the first side surface 1A, the second side surface in the first member 1, respectively. It may be flush with 1B, the 3rd side 1C, and the 4th side 1D.
  • the joint portion 87 is interposed between the member 6 and the second member 2, and joins the member 6 and the second member 2.
  • the bonding portion 87 is made of, for example, an epoxy type, a silicone type, or an acrylic type material.
  • a support B1 (in the figure, the first member 1, the second member 2, the first conductive portion 41, the second conductive portion 43, and a plurality of third conductive portions)
  • the portion 45, the member 6, the insulating portion 81, and the bonding portions 85 and 87) include a plurality of positioning portions 7.
  • the plurality of positioning portions 7 are used to position the optical element 3 and the irradiation target range 811 by fixing to a part of the member 810.
  • the plurality of positioning portions 7 can be fixed to the plurality of positioning portions 812 of the member 810, respectively.
  • Each of the plurality of positioning portions 7 may be a recess or a protrusion. In the example shown in FIG. 4, FIG.
  • the plurality of positioning portions 7 are convex portions. Unlike the example shown in FIG. 4 and FIG. 5, the plurality of positioning portions 7 may be concave portions. In one variation, some of the plurality of positioning portions 7 may be recesses, and the remaining some may be protrusions. In another variation, the support B1 may not have the plurality of positioning portions 7 and may have only one positioning portion 7. As shown in FIG. 2, a bonding layer 815 may be disposed between the positioning unit 7 and the positioning unit 813.
  • the bonding layer 815 is made of, for example, an epoxy-based, silicone-based or acrylic-based material.
  • the plurality of positioning portions 7 are a part of the member 6.
  • the plurality of positioning units 7 may be arranged at a position different from that of the optical element 3 in a plan view.
  • at least one part of any one of the several positioning part 7 may overlap 2nd area
  • the optical element 3 is positioned between the plurality of positioning portions 7 and the first surface 11 in the direction Z1.
  • the plurality of positioning portions 7 have surfaces 7S facing in the direction intersecting with the direction Z1.
  • the surfaces 7S of the plurality of positioning portions 7 are the outermost edges of the optical device A1 having a closed shape of the support B1 in plan view (for example, the first side 1A, the second side 1B, and the third side in FIG. It may be located inside the side surface 1C and the fourth side surface 1D).
  • the plurality of positioning units 7 include a first positioning unit 71 and a second positioning unit 72.
  • the first positioning portion 71 overlaps the first conductive portion 411 of the first conductive portion 41 in a plan view
  • the second positioning portion 72 is a first conductive portion 41 in a plan view.
  • the positioning portion 7 may have the engaging portion 74 and the member 810 may have the engaging portion 814.
  • the engagement portion 74 and the engagement portion 814 can engage with each other.
  • the intermediate shown in FIG. 18 is manufactured and manufactured by dicing the first member 1, the second member 2, the member 6 and the like.
  • the dicing lines are indicated by the two-dot chain lines extending in the longitudinal direction.
  • the positioning section 7 positions the optical element 3 and the irradiation target area 811 by fixing to a part of the member 810 having the irradiation target area 811 to which the light 890 from the optical element 3 is irradiated.
  • the optical element 3 and the irradiation target range 811 can be positioned, the light 890 from the optical element 3 can be brought to the irradiation target range 811 more efficiently. Thereby, the power consumption of the optical device A1 can be further reduced.
  • the optical element 3 and the irradiation target range 811 are positioned. Since the member 6 can be disposed based on the position of the optical element 3, the configuration of the present embodiment is preferable because the positioning of the optical element 3 and the irradiation target range 811 can be realized with higher accuracy.
  • the surface that emits the planar light in FIG. 6, the surface of the optical element 3 It is possible to avoid, as much as possible, excessively increasing the size of (approximately corresponding to 31). Thereby, the excessive enlargement in planar view of the optical element 3 can be prevented as much as possible.
  • the air gap 17 penetrating from the first surface 11 to the second surface 12 is formed, and the air gap 17 is hollow. According to such a configuration, when the optical device A1 is mounted on the wiring substrate 801, even if the space on the first surface 11 is filled with a gas (air), the gas can be inserted via the air gap 17. It can be emitted outside the optical device A1. This makes it possible to avoid, as much as possible, the problem of peeling off two parts (for example, the member 6 and the second member 2) in the optical device A1 when the optical device A1 is mounted.
  • the second end 512 of the first wire 51 is between the first end 511 of the first wire 51 and the air gap 17 of the first member 1 in the first direction X1 orthogonal to the first surface 11. It is located in Such a configuration is suitable for arranging the air gap 17 as far as possible from the optical element 3 in a plan view. Thereby, even if a liquid (for example, water) used for dicing intrudes into the air gap 17 from the second surface 12 side of the first member 1 during dicing when manufacturing the optical device A1, the liquid does not flow to the optical element 3 It can be avoided as much as possible.
  • a liquid for example, water
  • the second end 522 of the second wire 52 is located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1 orthogonal to the first surface 11.
  • Such a configuration is suitable for arranging the air gap 17 as far as possible from the optical element 3 in a plan view. Thereby, even if a liquid (for example, water) used for dicing intrudes into the air gap 17 from the second surface 12 side of the first member 1 during dicing when manufacturing the optical device A1, the liquid does not flow to the optical element 3 It can be avoided as much as possible.
  • a liquid for example, water
  • the second end 522 of the second wire 52 is located between the optical element 3 and the positioning unit 7 in the first direction X1.
  • Such a configuration is suitable for disposing the positioning portion 7 while reducing the distance between the second end 522 of the second wire 52 and the optical element 3 in the first direction X1.
  • the optical device A1 having the positioning portion 7 can be miniaturized.
  • the portion of the second conductive portion 43 which constitutes the defect portion 4351 can hold the liquid (for example, water) used for dicing.
  • the liquid for example, water
  • the edge 4352 of the defect portion 4351 of the conductive portion 435 in the second conductive portion 43 has a closed shape surrounding the air gap 17 in a plan view. According to such a configuration, the liquid can be more suitably suppressed from reaching the optical element 3.
  • the first wire 51 in plan view, extends in a cross direction to the first direction X1.
  • Such a configuration is suitable for reducing the area of the second conductive portion 412 of the first conductive portion 41 in plan view.
  • the area in planar view of the 1st electric conduction part 411 can be enlarged more.
  • the heat generated by the optical element 3 can be more efficiently released to the outside of the optical device A1.
  • the first end 511 of the first wire 51 is joined to the optical element 3 and is located between two light emitting units 35 of the plurality of light emitting units 35 in plan view.
  • the light 890 from the two light emitting units 35 further reduces the light contrast between the vicinity of the first end 511 of the surface 31 and the other region of the surface 31. As a result, it is possible to suppress that the vicinity of the first end 511 becomes extremely dark.
  • the plurality of third conductive portions 45 include at least one first portion 45 ⁇ / b> A connected to the first conductive portion 411 of the first conductive portion 41. According to such a configuration, the heat generated in the optical element 3 can be more efficiently released to the outside of the optical device A1 through the first conductive portion 41 and the first portion 45A.
  • the number of at least one first portion 45A is greater than the number of at least one second portion 45B. According to such a configuration, the heat generated in the optical element 3 can be more efficiently released to the outside of the optical device A1 via the first conductive portion 41 and the first portion 45A.
  • the inner surface 24 includes a first portion 241 and a second portion 242.
  • the second portion 242 is connected to the first portion 241, and is curved outward from the optical element 3 to the second member 2 in a plan view.
  • the area of the surface 21 of the second member 2 can be increased as compared to the case where the second portion 242 is formed by three sides of a rectangle.
  • the bonding area between the surface 21 of the second member 2 and the member 6 can be further increased, and an improvement in bonding strength between the second member 2 and the member 6 can be realized.
  • a collet (not shown) for disposing the functional element 58 can be prevented from contacting the second portion 242 when the optical device A1 is manufactured.
  • the modified example shown in FIG. 19 differs from the optical device A1 in that the positioning portion 813 is a convex portion and the positioning portion 7 is a concave portion. As described above, the combination of the convex portion and the concave portion of the positioning portion 813 and the positioning portion 7 can be appropriately changed.
  • the side surfaces of the member 6 are the side surfaces of the first member 1 (for example, the first side surface 1A or the second side surface 1B).
  • the optical device A1 differs from the optical device A1 in that it is located inside the.
  • the positioning portion 7 is not a protrusion formed on the surface 61 of the member 6 but a side surface of the member 6 (for example, the first side surface 6A or the second side surface 6B) Differs from the above-described optical device A3 in that
  • the outermost edge of the optical device A1 in which the surface 7S of the positioning portion 7 is the closed shape of the support B1 for example, the first side 1A, the second side 1B, and the third side
  • 1C the fourth side face 1D
  • the optical device A5 does not include the second member 2, and the shape of the member 6 is different from that of the optical device A1.
  • the positioning portion 7 is not a projection formed on the surface 61 of the member 6 but a side surface (for example, the first side surface 6A or the second side surface 6B) of the member 6 Differs from the above-described optical device A5 in that
  • the optical device A7 mainly differs in the configuration of the first member 1 and the second member 2 from the optical device A3.
  • the first member 1 shown in the figure is made of a conductive material.
  • the first member 1 of this modification may be referred to as a lead frame.
  • the second member 2 is made of an insulating material or a conductive material.
  • the second member 2 is made of an insulating material.
  • the second member 2 is formed, for example, using a mold, but not limited thereto.
  • the optical device A8 differs from the optical device A6 in that the positioning portion 7 is not a part of the member 6 but a part of the second member 2.
  • the member 6 is formed with a missing portion 611 which is missing.
  • the defect portion 611 is, for example, a recess or an opening.
  • FIG. 25A shows an example in which the defect portion 611 is a recess.
  • the positioning unit 7 is disposed in the defect portion 611.
  • the optical device A81 of the modified example shown in FIG. 25B is different from the optical device A8 shown in FIG. 25A in that it includes the resin portion 9, and the other points are the same.
  • the resin portion 9 may be made of a material that transmits the light 890 from the optical element 3.
  • the resin portion 9 covers the optical element 3.
  • the resin portion 9 may be made of, for example, a silicone type, an epoxy type, or an acrylic type material.
  • the resin portion 9 may be formed of an optical device other than the optical device A8 (ie, the optical devices A1 to A7, A9 to A10).
  • the optical device A9 differs from the optical device A8 in that a part of the lower part of the second member 2 in the drawing constitutes the positioning portion 7.
  • the positioning unit 7 can be fixed to the wiring substrate 801.
  • the optical device A10 is different from the optical device A1 in that the positioning device 7 is not provided.
  • a support An optical element disposed on the support and emitting light;
  • the support includes at least one positioning portion, and the at least one positioning portion is fixed to a part of a member having an irradiation target range to which light from the optical element is irradiated, An optical apparatus for positioning with the irradiation target area.
  • the support has a first surface on which the optical element is disposed, The optical device according to attachment A1, wherein the optical element is located between the at least one positioning portion and the first surface in a direction orthogonal to the first surface.
  • the optical device according to any one of appendices A1 to A5, wherein the at least one positioning part is a convex part or a concave part.
  • the support is A first member in which the optical element is disposed;
  • the first member has the first surface and a second surface opposite to the first surface, and is insulating.
  • the optical element includes a first conductive layer and a second conductive layer insulated from each other, Appendix A7, wherein the first conductive portion includes a first conductive portion conductive to the second conductive layer of the optical element, and a second conductive portion conductive to the first conductive layer of the optical element Optical device.
  • the first conductive portion in the first conductive portion includes at least one defective portion which is lost in plan view, The optical device according to attachment A8, wherein each of the at least one defect site of the first conductive site is a recess formed in the first conductive site or an opening formed in the conductive site.
  • the first member an air gap penetrating from the first surface to the second surface is formed, The optical device according to Appendix A8 or A9, wherein the air gap is hollow.
  • the first conductive portion includes a deficient portion deficient in a plan view, The optical device according to attachment A10, wherein at least a part of the defect portion in the first conductive portion overlaps the air gap in plan view.
  • the device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire.
  • the optical device according to A10 or Supplementary note A11. [Supplementary Note A13] It further comprises a second conductive portion formed on the second surface of the first member, The second conductive portion includes a conductive portion including a defective portion lost in plan view, The optical device according to any one of appendices A10 to A12, wherein at least a part of the defect part of the conductive part in the second conductive part overlaps the air gap in a plan view.
  • the optical device according to attachment A13, wherein an edge of the defective portion of the conductive portion in the second conductive portion has a closed shape surrounding the air gap in a plan view.
  • the first member includes a first area and a second area adjacent to each other in a first direction across a virtual straight line, The virtual straight line extends in the second direction, passing through the center of the first member in plan view,
  • the device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire. 1 joined to the second conductive portion of the conductive portion, The optical device according to attachment A15, wherein the second end of the first wire is located in the second region in a plan view. [Supplementary Note A17] The optical device according to attachment A16, wherein in plan view the first wire extends across the first direction.
  • the optical device according to attachment A16 or A17, wherein in plan view at least a portion of the at least one positioning portion overlaps the second region.
  • the at least one positioning unit includes a first positioning unit and a second positioning unit, The first positioning portion overlaps the first conductive portion of the first conductive portion in plan view, and the second positioning portion is in the second conductive portion of the first conductive portion in plan view.
  • the optical device according to any of Appendices A16 to A18, which overlaps.
  • the optical element includes a plurality of light emitting units, and the plurality of light emitting units are separated from each other in plan view, and each of the plurality of light emitting units emits light.
  • the light emitting device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and in a plan view, the first end of the plurality of light emitting portions.
  • the optical device located between two light emitting parts of [Supplementary Note A21]
  • a second conductive portion formed on the second surface of the first member; At least one third conductive portion penetrating the first member and connected to the first conductive portion and the second conductive portion;
  • the optical apparatus according to attachment A8, wherein the at least one third conductive portion includes at least one first portion connected to the first conductive portion of the first conductive portion.
  • the at least one third conductive portion includes at least one second portion connected to the second conductive portion of the first conductive portion, The optical device according to attachment A21, wherein the number of the at least one first portion is larger than the number of the at least one second portion.
  • the second member has an inner surface surrounding the optical element, The inner surface includes a first portion and a second portion, The optical device according to attachment A7, wherein the second portion is connected to the first portion, and is curved from the optical element toward the outer side of the second member in plan view.
  • the semiconductor laser device A10 includes a first terminal 11, a second terminal 12, a semiconductor laser element 30, a wire 40, a first light transmitting member 51, and a second light transmitting member 52.
  • FIG. 28 transmits the second light transmitting member 52 for the convenience of understanding.
  • the second light transmitting member 52 transmitted in FIG. 28 is indicated by an imaginary line (imaginary line).
  • FIG. 34 illustrates the wire 40 and the first light transmitting member 51 in addition to the semiconductor laser device 30.
  • the semiconductor laser device A10 shown in FIGS. 28 to 34 is of a type mounted on the surface of a wiring board of various electronic devices such as a smartphone.
  • the semiconductor laser device A10 in the thickness direction z of the semiconductor laser element 30 (hereinafter referred to as “plan view”), the semiconductor laser device A10 has a rectangular shape.
  • first direction x the direction in which the long side of the semiconductor laser device A10 extends at right angles to the thickness direction z of the semiconductor laser device 30 (hereinafter abbreviated to “thickness direction z”) is referred to as “first direction x”.
  • first direction x the direction in which the short side of the semiconductor laser device A10 extends at right angles to both the thickness direction z and the first direction x is referred to as a "second direction y”.
  • the first terminal 11 has a semiconductor laser element 30 electrically joined.
  • the first terminal 11 is a conductive member that constitutes a part of the conductive path between the wiring substrate located outside and the semiconductor laser element 30.
  • the first terminal 11 is a cathode of the semiconductor laser device A10.
  • the first terminal 11 is formed of a metal lead frame made of Cu (copper) or the like.
  • the first terminal 11 has a first connection surface 11A, a first mounting surface 11B, a first side surface 11C, a first curved portion 11D, and two protrusions 11E.
  • the first connection surface 11A faces the side where the semiconductor laser device 30 is located in the thickness direction z.
  • the semiconductor laser device 30 is electrically bonded to the first connection surface 11A.
  • the first connection surface 11A is covered with an Ag (silver) plated layer.
  • the plating layer is formed by electrolytic plating.
  • the first mounting surface 11B faces the opposite side to the first connection surface 11A.
  • the first mounting surface 11B is used when mounting the semiconductor laser device A10 on a wiring board.
  • the first mounting surface 11B is covered with an alloy plating layer containing Sn (tin) as a main component.
  • the plating layer is formed by electrolytic plating.
  • the first side surface 11C is connected to the first connection surface 11A and faces in both the first direction x and the second direction y.
  • the first side surface 11C has two regions facing in the first direction x and two regions facing in the second direction y.
  • the first bending portion 11D intrudes into the inside of the first terminal 11 from both the first mounting surface 11B and the first side surface 11C.
  • the first curved portion 11D is formed along the first side surface 11C in a plan view.
  • the first curved portion 11D has a curved surface.
  • the first curved portion 11D is formed by performing half etching on the lead frame.
  • the two protrusions 11E protrude in the second direction y from the two regions of the first side surface 11C facing the second direction y.
  • the two protrusions 11E are part of a support member for supporting the first terminal 11 on the lead frame.
  • the second terminal 12 is spaced apart from the first terminal 11 in the first direction x, as shown in FIG.
  • the wire 40 is connected to the second terminal 12.
  • the second terminal 12 is a conductive member that constitutes a part of the conductive path between the semiconductor laser element 30 and the wiring substrate located outside with the wire 40.
  • the second terminal 12 is an anode of the semiconductor laser device A10.
  • the second terminal 12 is formed of a metal lead frame made of Cu or the like. In the semiconductor laser device A10, the first terminal 11 and the second terminal 12 are formed of the same lead frame.
  • the second terminal 12 has a second connection surface 12A, a second mounting surface 12B, a second side surface 12C, a second curved portion 12D, and two protrusions 12E.
  • the second connection surface 12A faces the side (the side on which the semiconductor laser element 30 is located) to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • the wire 40 is connected to the second connection surface 12A.
  • the second connection surface 12A is covered with an Ag plating layer.
  • the plating layer is formed by electrolytic plating.
  • the second mounting surface 12B faces away from the second connection surface 12A.
  • the second mounting surface 12B is used when mounting the semiconductor laser device A10 on a wiring board.
  • the second mounting surface 12B is covered with an alloy plating layer containing Sn as a main component.
  • the plating layer is formed by electrolytic plating.
  • the second side surface 12C is connected to the second connection surface 12A and faces in both the first direction x and the second direction y.
  • the second side surface 12C has two regions facing in the first direction x and two regions facing in the second direction y.
  • the second curved portion 12D intrudes into the interior of the second terminal 12 from both the second mounting surface 12B and the second side surface 12C.
  • the second curved portion 12D is formed along the second side surface 12C in a plan view.
  • the second curved portion 12D has a curved surface.
  • the second curved portion 12D is formed by subjecting the lead frame to half etching.
  • the two protrusions 12E protrude in the second direction y from the two regions of the second side surface 12C facing the second direction y.
  • the two protrusions 12E are part of a support member for supporting the second terminal 12 on the lead frame.
  • the semiconductor laser element 30 is a semiconductor element that emits laser light to the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • the semiconductor laser device 30 emits infrared (IR) light having a wavelength of 800 nm or more.
  • the semiconductor laser element 30 is a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • the semiconductor laser device 30 is electrically joined to the first terminal 11 such that the long side in a plan view extends along the first direction x.
  • the semiconductor laser device 30 has a plurality of light emitting regions 30A, device side surfaces 30B, a first electrode 31, and a second electrode 32.
  • the plurality of light emitting regions 30A are in the form of protrusions (mesa shapes) formed to be separated from each other in plan view.
  • the plurality of light emitting regions 30A protrude to the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • Laser light is emitted from each of the light emitting regions 30A.
  • the plurality of light emitting regions 30A are covered by the second electrode 32.
  • the second electrode 32 has a plurality of outlets 321 penetrating in the thickness direction z and corresponding to the respective light emitting areas 30A. Laser light is emitted from each of the light emitting regions 30A through the emission port 321.
  • the element side surface 30B faces in the direction orthogonal to the thickness direction z, that is, the first direction x and the second direction y.
  • the element side surface 30B has two regions directed in the first direction x and two regions directed in the second direction y.
  • the semiconductor laser device 30 is stacked in the order of the first semiconductor layer 302, the active layer 303, and the second semiconductor layer 304 on the semiconductor substrate 301 in the thickness direction z.
  • the surface of the second semiconductor layer 304 is covered by the insulating layer 305.
  • a current confinement layer 306 is disposed inside the second semiconductor layer 304.
  • the components of the plurality of light emitting regions 30A include the active layer 303, the second semiconductor layer 304, the insulating layer 305, and the current confinement layer 306.
  • the semiconductor substrate 301 is made of an n-type semiconductor.
  • the main component of the semiconductor substrate 301 is a compound semiconductor such as GaAs (gallium arsenide).
  • the first semiconductor layer 302 is stacked on the top surface of the semiconductor substrate 301.
  • the first semiconductor layer 302 is made of an n-type semiconductor, and its constituent elements include an n-type DBR (Distributed Bragg Reflector) layer.
  • the n-type DBR layer is an AlGaAs layer having a thickness of ⁇ p / 4 ( ⁇ p: wavelength of light emitted from the active layer 303), and a plurality of stacked layers of two layers having different refractive indices. It is configured by
  • the first electrode 31 is disposed on the lower surface of the semiconductor substrate 301.
  • the first electrode 31 is a cathode of the semiconductor laser device 30.
  • the first electrode 31 is a metal layer containing, for example, Au (gold), and is formed by vapor deposition.
  • the first electrode 31 is electrically connected to the first semiconductor layer 302 through the semiconductor substrate 301.
  • the first electrode 31 is electrically bonded to the first connection surface 11A of the first terminal 11 via the conductive bonding layer 39. Therefore, the first terminal 11 is electrically connected to the first semiconductor layer 302.
  • the conductive bonding layer 39 is, for example, a synthetic resin (so-called Ag paste) containing silver.
  • the active layer 303 is stacked on the first semiconductor layer 302.
  • the active layer 303 is a compound semiconductor that emits light with a wavelength of ⁇ p by spontaneous emission and stimulated emission.
  • the length of ⁇ p is 940 nm or 850 nm.
  • the second semiconductor layer 304 is stacked on the active layer 303.
  • the second semiconductor layer 304 is made of a p-type semiconductor, and the component includes a p-type DBR layer.
  • the p-type DBR layer is an AlGaAs layer having a thickness of ⁇ p / 4 ( ⁇ p: wavelength of light emitted from the active layer 303), and a plurality of stacked layers in which two layers having different refractive indices are combined. It is configured by The light emitted from the active layer 303 is reflected in the thickness direction by both the n-type DBR layer included in the first semiconductor layer 302 and the p-type DBR layer included in the second semiconductor layer 304, thereby causing resonance. Do. The resonated light becomes laser light.
  • the insulating layer 305 covers the surface of each of the first semiconductor layer 302 and the second semiconductor layer 304.
  • the insulating layer 305 transmits light with a wavelength of 800 nm or more.
  • the constituent material of insulating layer 305 is, for example, SiO 2 .
  • the insulating layer 305 has a plurality of openings 305A penetrating in the thickness direction z and corresponding to the respective light emitting regions 30A.
  • the second electrode 32 passes through each of the openings 305A.
  • the current confinement layer 306 is disposed inside the second semiconductor layer 304 and located in the vicinity of the active layer 303 in the thickness direction z.
  • the current confinement layer 306 contains a large amount of Al (aluminum) and is made of a material that is easily oxidized.
  • the current confinement layer 306 is formed by oxidizing a part of the p-type DBR layer included in the second semiconductor layer 304. Note that the current confinement layer 306 can be formed by ion implantation.
  • the current confinement layer 306 has an opening 306A penetrating in the thickness direction z.
  • the opening 306A overlaps the exit opening 321 of the second electrode 32 in plan view.
  • the second semiconductor layer 304 passes through the opening 306A. Thereby, current flows along the thickness direction z through the opening 306A.
  • the second electrode 32 is disposed to cover the insulating layer 305.
  • the second electrode 32 is an anode of the semiconductor laser device 30.
  • the second electrode 32 is a metal layer containing, for example, Au, and is formed by vapor deposition.
  • the insulating layer 305 is exposed from the exit 321 of each of the second electrodes 32 described above.
  • the second electrode 32 is electrically connected to the second semiconductor layer 304 through the plurality of openings 305A formed in the insulating layer 305.
  • the second electrode 32 has a bump portion 322 which is formed to protrude to the side (the side to which the first connection surface 11A of the first terminal 11 faces) away from the semiconductor laser element 30 in the thickness direction z.
  • the bump part 322 is comprised from the ball bonding part obtained in the process of wire bonding.
  • the wire 40 connects the second electrode 32 of the semiconductor laser device 30 and the second terminal 12 as shown in FIG. 28 and FIG.
  • the wire 40 is a conductive member that constitutes a part of the conductive path between the semiconductor laser element 30 and the wiring board located outside with the second terminal 12.
  • the constituent material of the wire 40 is, for example, Au.
  • the wire 40 is formed by wire bonding.
  • the wire 40 has a first bonding portion 41 connected to the second terminal 12 and a second bonding portion 42 connected to the second electrode 32.
  • the first bonding portion 41 is a ball bonding portion.
  • the semiconductor laser device A ⁇ b> 10 the first bonding portion 41 is connected to the second connection surface 12 ⁇ / b> A of the second terminal 12.
  • the second bonding portion 42 is a stitch bonding portion. As shown in FIG. 34, the second bonding portion 42 is connected to the bump portion 322 of the second electrode 32.
  • the first light transmitting member 51 is supported by the semiconductor laser device 30, and overlaps the plurality of light emitting regions 30A of the semiconductor laser device 30 in plan view.
  • “Supported by the semiconductor laser device 30” refers to a configuration supported by the semiconductor laser device 30 indirectly via other members, in addition to the configuration supported by the semiconductor laser device 30 by being in contact with the semiconductor laser device 30. including.
  • the semiconductor laser device A ⁇ b> 10 the first light transmitting member 51 is supported by the semiconductor laser device 30 by being in contact with the second electrode 32 of the semiconductor laser device 30.
  • a polyimide covering the second electrode 32 or the like can be mentioned as the other member.
  • the first light transmitting member 51 is light transmitting and electrically insulating.
  • the first light transmitting member 51 transmits light having a wavelength of 800 nm or more.
  • the Young's modulus (elastic coefficient) of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52.
  • the constituent material of the first light transmitting member 51 is silicone such as silicone gel.
  • polyimide having a Young's modulus similar to that of silicone may be applied.
  • a plurality of the light emitting openings 321 of the respective second electrodes 32 are provided. The openings need to be provided in the polyimide by photolithography.
  • the first light transmitting member 51 covers the bump portion 322 of the second electrode 32 and the second bonding portion 42 of the wire 40. Further, in the semiconductor laser device A10, the first light transmitting member 51 electrically joins the semiconductor laser element 30 to the first terminal 11, and connects the wire 40 to the second terminal 12 and the second electrode 32. It is then formed by quantitative application using a dispenser.
  • the second light transmitting member 52 has a region located on the opposite side of the plurality of light emitting regions 30A of the semiconductor laser element 30 with the first light transmitting member 51 interposed therebetween.
  • the configuration of the region includes, in addition to the configuration in contact with the first light transmitting member 51, a configuration in which another member is interposed between the first light transmitting member 51 and the region.
  • the region is in contact with the first light transmitting member 51.
  • the second light transmitting member 52 is light transmitting and electrically insulating.
  • the second light transmitting member 52 transmits light having a wavelength of 800 nm or more.
  • the Young's modulus of the second light transmitting member 52 is higher than the Young's modulus of the first light transmitting member 51.
  • the second light transmitting member 52 covers the wire 40 and a part of each of the first terminal 11 and the second terminal 12.
  • the constituent material of the second light transmitting member 52 is, for example, an epoxy resin or a silicone resin.
  • the second light transmitting member 52 is formed by molding.
  • the first terminal 11 and the second terminal 12 are supported by the second light transmitting member 52.
  • a part of the second light transmitting member 52 is positioned.
  • the second light transmitting member 52 has a top surface 52A, a bottom surface 52B, two first side surfaces 52C, and two second side surfaces 52D.
  • the top surface 52A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • the peripheral edge of the top surface 52A coincides with the peripheral edge of the semiconductor laser device A10 in plan view.
  • the laser light emitted from the semiconductor laser device 30 is transmitted from the top surface 52A.
  • the bottom surface 52B faces the opposite side to the top surface 52A.
  • the first mounting surface 11B of the first terminal 11 and the second mounting surface 12B of the second terminal 12 are exposed from the bottom surface 52B.
  • the two first side faces 52C face in the first direction x and are separated from each other in the first direction x. Both ends of the first side surface 52C in the thickness direction z are connected to the top surface 52A and the bottom surface 52B.
  • the two second side surfaces 52D face in the second direction y and are separated from each other in the second direction y. Both ends of the second side surface 52D in the thickness direction z are connected to the top surface 52A and the bottom surface 52B. Both ends of the second side surface 52D in the first direction x are connected to the two first side surfaces 52C.
  • the protruding portion 11E of the first terminal 11 and the protruding portion 12E of the second terminal 12 are exposed from the respective second side surfaces 52D.
  • FIG. 35 passes through the second light transmitting member 52 for the convenience of understanding.
  • the second light transmitting member 52 transmitted in FIG. 35 is indicated by an imaginary line.
  • the configuration of the first light transmitting member 51 is different from that of the semiconductor laser device A10 described above.
  • the first light transmitting member 51 covers the device side surface 30B of the semiconductor laser device 30. Therefore, in the semiconductor laser device A11, the first light transmitting member 51 covers the entire semiconductor laser element 30. A first light transmitting member 51 intervenes between the semiconductor laser element 30 and the second light transmitting member 52.
  • FIG. 37 transmits the second light transmitting member 52 for the convenience of understanding.
  • the second light transmitting member 52 transmitted in FIG. 37 is indicated by an imaginary line.
  • the bonding mode of the semiconductor laser element 30 is different from that of the semiconductor laser device A10 described above.
  • the semiconductor laser device 30 is electrically joined to the first terminal 11 so that the short side in a plan view extends along the first direction x.
  • FIG. 38 The cross-sectional position in FIG. 38 is the same as the cross-sectional position in FIG.
  • the shape of the first light transmitting member 51 is not bulged in the thickness direction z like the first light transmitting member 51 of the semiconductor laser device A10, and is flat. It has become.
  • the bump portion 322 of the second electrode 32 of the semiconductor laser element 30 and the second bonding portion 42 of the wire 40 are exposed from the first light transmitting member 51.
  • the first light transmitting member 51 is formed on the semiconductor laser element 30 in a pre-process (wafer process) of the semiconductor laser device A13.
  • the first light transmitting member 51 is formed by printing so as to be in contact with the second electrode 32 using a mask. In the formation of the first light transmitting member 51, the first light transmitting member 51 is configured not to cover the bump portion 322.
  • the first light transmitting member 51 is interposed between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z.
  • the Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Accordingly, when an internal force due to an external force or thermal expansion acts on the second light transmitting member 52, the stress transmitted to the first light transmitting member 51 is smaller than the stress transmitted to the second light transmitting member 52. Therefore, the stress transmitted to the plurality of light emitting regions 30A by the external force or the like acting on the second light transmitting member 52 is relieved by the first light transmitting member 51. Therefore, according to the semiconductor laser device A10, the plurality of light emitting regions 30A can be protected from external force or the like.
  • the semiconductor laser element 30 can be covered by the second light transmitting member 52. This makes it possible to miniaturize the semiconductor laser device A10 as compared to, for example, the case of providing a translucent case.
  • the constituent material of the first light transmitting member 51 is required to be a material having a Young's modulus lower than that of the second light transmitting member 52 and having an electrical insulating property and a light transmitting property. Furthermore, since the plurality of light emitting regions 30A of the semiconductor laser element 30 generate heat, it is desirable that the constituent material of the first light transmitting member 51 be a material having excellent heat resistance. Therefore, silicone such as silicone gel is suitable as a constituent material of the first light transmitting member 51.
  • the wire 40 has a first bonding portion 41 and a second bonding portion 42.
  • the first bonding portion 41 is connected to the second terminal 12.
  • the second bonding portion 42 is connected to the second electrode 32 of the semiconductor laser device 30.
  • the second electrode 32 of the semiconductor laser device 30 has a bump portion 322 formed so as to protrude to the side away from the semiconductor laser device 30 in the thickness direction z.
  • the second bonding portion 42 of the wire 40 is connected to the bump portion 322.
  • the second bonding portion 42 can be prevented from contacting the edge of the semiconductor laser element 30.
  • the first light transmitting member 51 covers the second bonding portion 42 of the wire 40.
  • the region of the second electrode 32 to which the wire 40 is connected is disposed at a portion of the semiconductor laser element 30 formed in a projecting shape. Therefore, the first light transmitting member 51 can protect the portion from external force or the like.
  • the first light transmitting member 51 covers the device side surface 30 ⁇ / b> B of the semiconductor laser device 30.
  • the entire semiconductor laser device 30 can be protected from external force or the like.
  • FIG. 39 passes through the second light transmitting member 52 for the convenience of understanding.
  • the second light transmitting member 52 transmitted in FIG. 39 is shown by an imaginary line.
  • the semiconductor laser device A20 differs from the above-described semiconductor laser device A10 in that the configurations of the first terminal 11, the second terminal 12, and the second light transmitting member 52 and the insulating substrate 20 are provided.
  • the insulating substrate 20 supports the first terminal 11 and the second terminal 12 as shown in FIGS. 39 and 41.
  • the constituent material of the insulating substrate 20 is, for example, polychlorinated biphenyl (PCB) or glass epoxy resin.
  • Insulating substrate 20 has main surface 20A and back surface 20B.
  • the main surface 20A and the back surface 20B face in opposite directions in the thickness direction z.
  • the main surface 20A faces the side where the semiconductor laser device 30 is located in the thickness direction z.
  • the first terminal 11 has a first connection portion 111, a first mounting portion 112, a first penetrating portion 113, and two first wiring portions 114.
  • Each of the first connection portion 111, the first mounting portion 112, and the two first wiring portions 114 is a metal layer formed by electrolytic plating.
  • Cu, Ni (nickel) and Au are laminated on the metal layer.
  • the constituent material of the 1st penetration part 113 is Cu, for example.
  • the first connection portion 111 is disposed on the main surface 20 A of the insulating substrate 20, and the first electrode 31 of the semiconductor laser device 30 is electrically joined via the conductive bonding layer 39.
  • the first mounting portion 112 is disposed on the back surface 20B of the insulating substrate 20, and is used when mounting the semiconductor laser device A20 on a wiring substrate.
  • the first penetrating portion 113 penetrates the insulating substrate 20 in the thickness direction z, and connects the first connection portion 111 and the first mounting portion 112 to each other.
  • the semiconductor laser device A ⁇ b> 20 two first penetration parts 113 are arranged, but the number of arrangement places of the first penetration parts 113 is not limited to this.
  • the two first wiring portions 114 are disposed on the main surface 20A and extend from the first connection portion 111 in the second direction y.
  • the two first wiring parts 114 are conductive paths for forming the first connection part 111 and the first mounting part 112 by electrolytic plating.
  • the second terminal 12 has a second connection portion 121, a second mounting portion 122, a second penetrating portion 123, and two second wiring portions 124.
  • Each of the second connection portion 121, the second mounting portion 122, and the two second wiring portions 124 is a metal layer formed by electrolytic plating.
  • Cu, Ni and Au are laminated on the metal layer.
  • the constituent material of the 2nd penetration part 123 is Cu, for example.
  • the second connection portion 121 is disposed on the main surface 20 ⁇ / b> A of the insulating substrate 20, and the first bonding portion 41 of the wire 40 is connected.
  • the second mounting portion 122 is disposed on the back surface 20B of the insulating substrate 20, and is used when mounting the semiconductor laser device A20 on a wiring substrate.
  • the second penetrating portion 123 penetrates the insulating substrate 20 in the thickness direction z, and connects the second connection portion 121 and the second mounting portion 122 to each other.
  • one second through portion 123 is disposed, but the number of arrangement places of the second through portions 123 is not limited to this.
  • the two second wiring portions 124 are disposed on the main surface 20A and extend from the second connection portion 121 in the second direction y.
  • the two second wiring portions 124 are conductive paths for forming the second connection portion 121 and the second mounting portion 122 by electrolytic plating.
  • the second light transmitting member 52 is disposed in contact with the main surface 20A of the insulating substrate 20. Since the bottom surface 52B of the second light transmitting member 52 is in contact with the main surface 20A, the second light transmitting member 52 is supported by the insulating substrate 20. Further, the second light transmitting member 52 is a portion of the first terminal 11 and the second terminal 12 disposed on the main surface 20A, the first connection portion 111, the two first wiring portions 114, and the second connection. It covers the portion 121 and the two second wiring portions 124.
  • the first light emitting region 30A of the semiconductor laser element 30 and the second light transmitting member 52 are A light transmitting member 51 intervenes.
  • the Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the semiconductor laser device A20 can protect the plurality of light emitting regions 30A from external force and the like.
  • the semiconductor laser element 30 can be covered by the second light transmitting member 52. This makes it possible to miniaturize the semiconductor laser device A20 as compared to, for example, the case of providing a translucent case.
  • the insulating substrate 20 supports the first terminal 11, the second terminal 12, and the second light transmitting member 52 in the semiconductor laser device A20. doing. Thereby, the structure of the semiconductor laser device A20 can be made more stable as compared with the structure of the semiconductor laser device A10 in which the second light transmitting member 52 supports the first terminal 11 and the second terminal 12.
  • FIG. 46 is a partially enlarged plan view of the semiconductor laser device 30, the first light transmitting member 51, and the second light transmitting member 52. As shown in FIG. FIG. 47 illustrates a wire 40 in addition to the semiconductor laser element 30, the first light transmitting member 51, and the second light transmitting member 52.
  • the semiconductor laser device A30 is different from the above-described semiconductor laser device A10 in that the configurations of the first light transmitting member 51 and the second light transmitting member 52 and the third light transmitting member 53 and the frame member 60 are provided.
  • the second light transmitting member 52 has a plurality of lens portions 521.
  • the second light transmitting member 52 is a microlens array.
  • the plurality of lens portions 521 are formed corresponding to the light emitting regions 30 A of the respective semiconductor laser elements 30. For this reason, each lens portion 521 overlaps each light emitting area 30A in plan view.
  • Each lens portion 521 is hexagonal in plan view.
  • the plurality of lens portions 521 are lenses that are convex in the direction in which the light emitting region 30A protrudes.
  • the bump portion 322 of the second electrode 32 of the semiconductor laser element 30 and the second bonding portion 42 of the wire 40 are exposed from the first light transmitting member 51.
  • the second light transmitting member 52 is joined to the second electrode 32 covering the plurality of light emitting regions 30A of the semiconductor laser element 30 via the first light transmitting member 51.
  • the laser light emitted from each light emitting region 30A is transmitted through the first light transmitting member 51 and is incident on each lens portion 521 of the second light transmitting member 52.
  • the laser light incident on each lens portion 521 is brought close to being parallel to the thickness direction z. That is, the plurality of lens units 521 is a collimator lens that converts incident light into collimated light with higher directivity. Laser light converted into collimated light is emitted from each lens portion 521.
  • the height H (dimension in the thickness direction z) of the light emitting region 30A and the height h (dimension in the thickness direction z) of the lens portion 521 are illustrated.
  • the first light transmitting member 51 and the second light transmitting member 52 are formed on the semiconductor laser element 30 in a pre-process (wafer process) of manufacturing the semiconductor laser device A30.
  • the first light transmitting member 51 is printed so as to be in contact with the second electrode 32 of the semiconductor laser device 30 using a mask.
  • the first light transmitting member 51 is made not to cover the bump portion 322 of the second electrode 32.
  • the second light transmitting member 52 in the wafer state is bonded to the first light transmitting member 51.
  • the semiconductor laser element 30 and the second light transmitting member 52 are cut and separated into pieces by dicing to obtain the first light transmitting member 51 and the second light transmitting member 52 disposed in the semiconductor laser element 30. be able to.
  • the frame member 60 surrounds the semiconductor laser element 30 and the wire 40, as shown in FIGS.
  • the constituent material of the frame member 60 is, for example, polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the first terminal 11 and the second terminal 12 are supported by the frame-like member 60.
  • the frame-like member 60 has a top surface 60A, a bottom surface 60B, an outer peripheral surface 60C, and an inner peripheral surface 60D.
  • the top surface 60A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • the top surface 60A is frame-shaped.
  • the bottom surface 60B faces away from the top surface 60A.
  • the outer circumferential surface 60C has four regions, and faces the outside of the semiconductor laser device A30 in the first direction x and the second direction y. Both ends of the outer circumferential surface 60C in the thickness direction z are connected to the top surface 60A and the bottom surface 60B.
  • the outer circumferential surface 60C stands in the thickness direction z.
  • the inner circumferential surface 60D has four regions and faces the inside of the semiconductor laser device A30 in the first direction x and the second direction y.
  • the inner circumferential surface 60D faces the semiconductor laser device 30.
  • One end of the inner circumferential surface 60D in the thickness direction z is connected to the top surface 60A.
  • the inner peripheral surface 60D is inclined with respect to the thickness direction z, and the area formed by the peripheral edge of the inner peripheral surface 60D in plan view is maximum at a position connected to the top surface 60A in the thickness direction z.
  • the frame-like member 60 has an opening 61, two first sides 621 and two second sides 622.
  • the frame-like member 60 further includes a connecting portion 63 in addition to the above.
  • the opening 61 penetrates in the thickness direction z, and the outer edge in a plan view is rectangular.
  • the opening 61 is a hollow area surrounded by the inner peripheral surface 60D of the frame-like member 60.
  • the cross-sectional area of the opening 61 with respect to the thickness direction z is maximum at a position flush with the top surface 60A of the frame member 60, and the cross-sectional area gradually decreases as the semiconductor laser element 30 is approached.
  • the two first side portions 621 extend in the second direction y and are separated from each other in the first direction x.
  • the two second sides 622 extend in the first direction x and are separated from each other in the second direction y.
  • the two first sides 621 and the two second sides 622 surround the semiconductor laser device 30 and the wire 40 in plan view, and support the first terminal 11 and the second terminal 12.
  • the connecting portion 63 connects the two second sides 622.
  • the connecting portion 63 is interposed between the first terminal 11 and the second terminal 12 in the first direction x.
  • the third light transmitting member 53 closes the opening 61 of the frame-like member 60 as shown in FIGS.
  • the third light transmitting member 53 has a flat plate shape, and is formed of a diffractive optical element (DOE).
  • DOE diffractive optical element
  • the collimated light emitted from each lens portion 521 of the second light transmitting member 52 enters the third light transmitting member 53.
  • the third light transmitting member 53 converts incident light into approximately 15,000 to 30,000 dot light and emits the converted light.
  • the projection position of each dot light can be freely set. As a result, the laser light emitted from the light emitting region 30A of each semiconductor laser element 30 can be concentrated into one projected dot light.
  • the third light transmitting member 53 has a front surface 53A and a back surface 53B.
  • the surface 53A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z.
  • the back surface 53B faces the opposite side of the surface 53A.
  • the back surface 53B is bonded to the top surface 60A of the frame member 60 via an adhesive (not shown).
  • the collimated light emitted from the second light transmitting member 52 is incident on the back surface 53 B and converted into dot light by the third light transmitting member 53. A plurality of dot lights are emitted from the surface 53A.
  • the semiconductor laser device A30 like the configuration of the semiconductor laser device A10 described above, between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z, A light transmitting member 51 intervenes.
  • the Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the semiconductor laser device A30 can also protect the plurality of light emitting regions 30A from external force or the like.
  • a plurality of second light transmitting members 52 which are microlens arrays, via the first light transmitting member 51 Can be bonded to the second electrode 32 covering the light emitting region 30A.
  • the semiconductor laser device A30 includes a second light transmitting member 52 that converts laser light into collimated light, a third light transmitting member 53 configured of a diffractive optical element, and a frame-shaped member 60. As a result, it is possible to emit a plurality of dot lights whose projection positions can be freely set from the semiconductor laser device A30. In addition, since the semiconductor laser element 30 has a plurality of light emitting regions 30A, the output of each dot light can be improved.
  • the frame member 60 has a connecting portion 63 connecting the two second side portions 622.
  • the connecting portion 63 is located between the first terminal 11 and the second terminal 12 in the first direction x. Thereby, the rigidity of the frame-like member 60 can be improved while securing mutual electrical insulation between the first terminal 11 and the second terminal 12.
  • FIG. 48 Fifth Embodiment A semiconductor laser device A40 according to a fifth embodiment of the present disclosure will be described based on FIG. 48 and FIG. In these drawings, the same or similar elements as or to those of the above-described semiconductor laser device A10 are denoted by the same reference numerals, to omit redundant description.
  • the third light transmitting member 53 is transmitted for the convenience of understanding.
  • the semiconductor laser device A40 includes the configurations of the first terminal 11, the second terminal 12, the first light transmitting member 51, and the second light transmitting member 52, and the insulating substrate 20, the third light transmitting member 53, and the frame member 60.
  • the point is different from the above-described semiconductor laser device A10.
  • the first terminal 11, the second terminal 12, and the insulating substrate 20 are the same as the configuration of the above-described semiconductor laser device A20, and thus the description thereof is omitted here.
  • the configurations of the first light transmitting member 51, the second light transmitting member 52, and the third light transmitting member 53 are the same as the configuration of the semiconductor laser device A30 described above, and thus the description thereof is omitted here. Therefore, the configuration of the frame-like member 60 will be described here.
  • the frame-shaped member 60 is bonded to the main surface 20A of the insulating substrate 20 via the bonding layer 69. Since the bottom surface 60B of the frame-like member 60 is bonded to the main surface 20A via the bonding layer 69, the frame-like member 60 is supported by the insulating substrate 20. Therefore, in the semiconductor laser device A40, the insulating substrate 20 is configured to support the first terminal 11, the second terminal 12, and the frame member 60.
  • the bottom surface 60B has the same shape as the top surface 60A of the frame-like member 60.
  • the bonding layer 69 is molded in accordance with the shape of the bottom surface 60B.
  • the bonding layer 69 is, for example, a solder resist film having adhesiveness.
  • the inner circumferential surface 60D of the frame-like member 60 like the outer circumferential surface 60C, stands up in the thickness direction z. In the semiconductor laser device A40, the frame-shaped member 60 does not have the connecting portion 63.
  • a light transmitting member 51 intervenes between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z.
  • the Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the plurality of light emitting regions 30A can be protected from external force and the like also by the semiconductor laser device A40.
  • the semiconductor laser device A40 since the first light transmitting member 51 protects the plurality of light emitting areas 30A of the semiconductor laser device 30 from external force or the like, the semiconductor laser device A40 has a plurality of dots from the third light transmitting member 53 like the semiconductor laser device A30. It can emit light. Furthermore, the output of dot light can be improved by the semiconductor laser element 30 having a plurality of light emitting areas 30A.
  • the frame member 60 is bonded to the main surface 20A of the insulating substrate 20, the insulating substrate 20 supports the first terminal 11, the second terminal 12, and the frame member 60 in the semiconductor laser device A40.
  • the structure of the semiconductor laser device A40 can be made more stable as compared with the structure of the semiconductor laser device A30 in which the frame-like member 60 supports the first terminal 11 and the second terminal 12.
  • a semiconductor laser device including a first semiconductor layer, an active layer, and a second semiconductor layer, the active layer being disposed between the first semiconductor layer and the second semiconductor layer in the thickness direction, the thickness being
  • a semiconductor laser device including a plurality of light emitting regions separated from one another in a direction view, and a part of each of the plurality of light emitting regions includes the active layer and the second semiconductor layer;
  • a first light transmitting member which has electrical insulation, is supported by the semiconductor laser element, and overlaps the plurality of light emitting regions when viewed in the thickness direction; It is a 2nd light transmission member which has electric insulation and has a field which is located in the side opposite to a plurality of luminescence fields on both sides of the 1st light transmission member, Young's modulus of the 1st light transmission member
  • a second light transmitting member is a 2nd light transmission member which has electric insulation and has a field which is located in the side
  • the semiconductor laser device is A first electrode electrically connected to the first semiconductor layer; And a second electrode electrically connected to the second semiconductor layer and covering the plurality of light emitting regions.
  • the semiconductor laser device according to claim B1 wherein the first light transmitting member is in contact with the second electrode.
  • the semiconductor laser device according to appendix B2 wherein the second light transmitting member is in contact with the first light transmitting member.
  • the first electrode is joined to the first terminal, The semiconductor laser device according to any one of appendices B2 to B4, further comprising a wire bonded to the second electrode and the second terminal.
  • the semiconductor laser device according to attachment B5, wherein the wire has a first bonding portion bonded to the second terminal and a second bonding portion bonded to the second electrode.
  • the second electrode has a bump portion formed so as to protrude to the side away from the semiconductor laser device in the thickness direction, The semiconductor laser device according to appendix B6, wherein the second bonding portion is connected to the bump portion.
  • [Supplementary Note B8] The semiconductor laser device according to Appendix B6 or 7, wherein the second light transmitting member covers the wire, a part of the first terminal, and a part of the second terminal.
  • the semiconductor laser device according to appendix B9 The semiconductor laser device according to appendix B8, wherein the first light transmitting member covers the second bonding portion.
  • the semiconductor laser device has a device side surface facing in a direction orthogonal to the thickness direction, The semiconductor laser device according to appendix B9, wherein the first light transmitting member covers the side surface of the element.
  • the first terminal and the second terminal are composed of a metal lead frame,
  • the first terminal is A first connection surface oriented in the thickness direction and electrically connected to the first electrode; A first mounting surface facing away from the first connection surface;
  • the second terminal is A second connection surface which is directed to the side in which the first connection surface faces in the thickness direction and to which the first bonding portion is connected; And a second mounting surface facing away from the second connection surface.
  • the first terminal and the second terminal are supported by the second light transmitting member,
  • the semiconductor laser device according to any one of appendices B8 to B10, wherein the first mounting surface and the second mounting surface are each exposed from the second light transmitting member.
  • the first terminal is A first connection portion disposed on the main surface and electrically connected to the first electrode; A first mounting unit disposed on the back surface; And a first penetrating portion penetrating the insulating substrate in the thickness direction and connecting the first connection portion and the first mounting portion to each other,
  • the second terminal is A second connection portion disposed on the main surface and electrically connected to the first bonding portion; A second mounting unit disposed on the back surface; And a second through portion penetrating the insulating substrate in the thickness direction and connecting the second connection portion and the second mounting portion to each other,
  • the semiconductor laser device according to any one of appendices B8 to B10, wherein the second light transmitting member is in contact with the main surface.
  • a frame member having an opening that surrounds the periphery of the semiconductor laser element and the wire in the thickness direction, and which penetrates in the thickness direction; And a third light transmitting member configured of a diffractive optical element and closing the opening.
  • the second light transmitting member is formed corresponding to each of the light emitting regions, and includes a plurality of lens portions that bring light emitted from each of the light emitting regions close to a state parallel to the thickness direction.
  • the semiconductor laser device according to appendix B13, wherein the second bonding portion is exposed from the first light transmitting member.
  • the first terminal is A first connection surface oriented in the thickness direction and electrically connected to the first electrode; A first mounting surface facing away from the first connection surface;
  • the second terminal is A second connection surface which is directed to the side in which the first connection surface faces in the thickness direction and to which the first bonding portion is connected; And a second mounting surface facing away from the second connection surface.
  • the frame-like member has electrical insulation, The first terminal and the second terminal are supported by the frame-like member, The semiconductor laser device according to appendix B14, wherein the first mounting surface and the second mounting surface are each exposed from the frame-like member.
  • the frame-like member is Two sides spaced apart in a direction perpendicular to the thickness direction; And a connecting portion connecting the two sides.
  • the first terminal is A first connection portion disposed on the main surface and electrically connected to the first electrode; A first mounting unit disposed on the back surface; And a first penetrating portion penetrating the insulating substrate in the thickness direction and connecting the first connection portion and the first mounting portion to each other,
  • the second terminal is A second connection portion disposed on the main surface and electrically connected to the first bonding portion; A second mounting unit disposed on the back surface; And a second through portion penetrating the insulating substrate in the thickness direction and connecting the second connection portion and the second mounting portion to each other,
  • the semiconductor laser device according to appendix B14, wherein the frame-like member is joined to the main surface.

Abstract

One aspect of the present disclosure provides an optical device. This optical device is provided with a supporting body and an optical element. The optical element is arranged on the supporting body and emits light. The supporting body comprises at least one positioning unit. The at least one positioning unit is affixed to a part of a member that has an irradiation target range, onto which light from the optical element is irradiated, so as to determine the positions of the optical element and the irradiation target range relative to each other.

Description

光学装置、システムOptical device, system
 本開示は、光学装置と、システムと、に関する。 The present disclosure relates to optical devices and systems.
 従来の光学装置は、たとえば、基板、発光素子、配線パターン、接合層、および、封止樹脂を備えている。配線パターンは、基板に形成されている。発光素子は、接合層を介して配線パターンに配置されている。封止樹脂は、基材上に配置され、発光素子および配線パターンを覆っている。発光素子が光を発することにより、光学装置から光が照射される。 The conventional optical device includes, for example, a substrate, a light emitting element, a wiring pattern, a bonding layer, and a sealing resin. The wiring pattern is formed on the substrate. The light emitting element is disposed in the wiring pattern via the bonding layer. The sealing resin is disposed on the base material and covers the light emitting element and the wiring pattern. When the light emitting element emits light, light is emitted from the optical device.
 本開示は、上記した事情のもとで考え出されたものであって、より好ましい光学装置を提供することをその主たる課題とする。 The present disclosure is conceived under the above-described circumstances, and its main object is to provide a more preferable optical device.
 本開示の第1側面によると、光学装置が提供される。前記光学装置は、支持体と、光学素子と、を備える。前記光学素子は、前記支持体に配置され、光を発する。前記支持体は、少なくとも1つの位置決め部を含む。前記少なくとも1つの位置決め部は、前記光学素子からの光が照射される照射目標範囲を有する部材の一部に固定することにより、前記光学素子と前記照射目標範囲との位置決めをするためのものである。 According to a first aspect of the present disclosure, an optical device is provided. The optical device comprises a support and an optical element. The optical element is disposed on the support and emits light. The support comprises at least one positioning part. The at least one positioning portion is for positioning the optical element and the irradiation target area by fixing to a part of a member having the irradiation target area to which the light from the optical element is irradiated. is there.
 本開示の第2側面によると、システムが提供される。前記システムは、本開示の第1側面によって提供される光学装置と、前記光学装置が配置された配線基板と、前記光学装置および前記配線基板を接合する接合部と、前記照射目標範囲を有する前記部材と、を備える。 According to a second aspect of the present disclosure, a system is provided. The system includes the optical device provided by the first aspect of the present disclosure, a wiring substrate on which the optical device is disposed, a bonding portion bonding the optical device and the wiring substrate, and the irradiation target area. And a member.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
第1実施形態のシステムの一部を示す図である。It is a figure showing a part of system of a 1st embodiment. 第1実施形態のシステムの一部を示す図である。It is a figure showing a part of system of a 1st embodiment. 第1実施形態の光学装置の斜視図である。It is a perspective view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の断面図である。It is a sectional view of an optical device of a 1st embodiment. 第1実施形態の光学装置の平面図である。It is a top view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の平面図である。It is a top view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の平面図である。It is a top view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の平面図である。It is a top view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の平面図である。It is a top view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の第2部材の内面を示す平面図である。It is a top view which shows the inner surface of the 2nd member of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の裏面図である。It is a back view of the optical apparatus of 1st Embodiment. 第1実施形態の光学装置の一部を模式的に拡大して示す断面図である。It is sectional drawing which expands a part of optical apparatus of 1st Embodiment typically, and is shown. 第1実施形態の光学装置の変形例の平面図である。It is a top view of the modification of the optical device of a 1st embodiment. 第1実施形態の光学装置の変形例の平面図である。It is a top view of the modification of the optical device of a 1st embodiment. 第1実施形態の光学装置の変形例の平面図である。It is a top view of the modification of the optical device of a 1st embodiment. 第1実施形態の光学装置の光学素子の断面図である。It is sectional drawing of the optical element of the optical apparatus of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 図4に示した光学装置の製造方法の一時点の断面図である。FIG. 5 is a cross-sectional view at a point in time of a method of manufacturing the optical device shown in FIG. 4. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 第1実施形態のシステムの変形例の断面図である。It is sectional drawing of the modification of the system of 1st Embodiment. 本開示の第2実施形態にかかる半導体レーザ装置の平面図(第2透光部材を透過)である。It is a top view (it permeate | transmits a 2nd light transmission member) of the semiconductor laser apparatus concerning 2nd Embodiment of this indication. 図28に示す半導体レーザ装置の底面図である。FIG. 29 is a bottom view of the semiconductor laser device shown in FIG. 28. 図28に示す半導体レーザ装置の正面図である。FIG. 29 is a front view of the semiconductor laser device shown in FIG. 28. 図28のXXXI-XXXI線に沿う断面図である。FIG. 29 is a cross-sectional view taken along the line XXXI-XXXI of FIG. 28. 図28のXXXII-XXXII線に沿う断面図である。FIG. 29 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 28. 図28に示す半導体レーザ装置の半導体レーザ素子の平面図である。FIG. 29 is a plan view of a semiconductor laser device of the semiconductor laser device shown in FIG. 28. 図33のXXXIV-XXXIV線に沿う断面図である。FIG. 34 is a cross-sectional view taken along the line XXXIV-XXXIV of FIG. 本開示の第2実施形態の第1変形例にかかる半導体レーザ装置の平面図(第2透光部材を透過)である。It is a top view (it permeate | transmits a 2nd light transmission member) of the semiconductor laser apparatus concerning the 1st modification of 2nd Embodiment of this indication. 図35のXXXVI-XXXVI線に沿う断面図である。FIG. 36 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. 本開示の第2実施形態の第2変形例にかかる半導体レーザ装置の平面図(第2透光部材を透過)である。It is a top view (it permeate | transmits a 2nd light transmission member) of the semiconductor laser apparatus concerning the 2nd modification of 2nd Embodiment of this indication. 本開示の第2実施形態の第3変形例にかかる半導体レーザ素子の断面図である。FIG. 18 is a cross-sectional view of a semiconductor laser device according to a third modification of the second embodiment of the present disclosure. 本開示の第3実施形態にかかる半導体レーザ装置の平面図(第2透光部材を透過)である。It is a top view (it permeate | transmits a 2nd light transmission member) of the semiconductor laser apparatus concerning 3rd Embodiment of this indication. 図39に示す半導体レーザ装置の底面図である。FIG. 40 is a bottom view of the semiconductor laser device shown in FIG. 39. 図39のXLI-XLI線に沿う断面図である。FIG. 40 is a cross-sectional view along the line XLI-XLI in FIG. 39. 本開示の第4実施形態にかかる半導体レーザ装置の平面図(第3透光部材を透過)である。It is a top view (it permeate | transmits a 3rd light transmission member) of the semiconductor laser apparatus concerning 4th Embodiment of this indication. 図42に示す半導体レーザ装置の底面図である。FIG. 43 is a bottom view of the semiconductor laser device shown in FIG. 42. 図42のXLIV-XLIV線に沿う断面図である。FIG. 43 is a cross-sectional view taken along the line XLIV-XLIV of FIG. 42. 図42のXLV-XLV線に沿う断面図である。FIG. 43 is a cross-sectional view along the line XLV-XLV of FIG. 42. 図42に示す半導体レーザ装置の半導体レーザ素子などの部分拡大平面図である。FIG. 43 is a partial enlarged plan view of a semiconductor laser device or the like of the semiconductor laser device shown in FIG. 42. 図46のXLVII-XLVII線に沿う断面図である。FIG. 47 is a cross-sectional view along the line XLVII-XLVII in FIG. 46. 本開示の第5実施形態にかかる半導体レーザ装置の平面図(第3透光部材を透過)である。It is a top view (it permeate | transmits a 3rd light transmission member) of the semiconductor laser apparatus concerning 5th Embodiment of this indication. 図48のXLIX-XLIX線に沿う断面図である。FIG. 49 is a cross-sectional view along the line XLIX-XLIX of FIG. 48.
 以下、本開示の実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, embodiments of the present disclosure will be specifically described with reference to the drawings.
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物Bに積層されている」および「ある物Aがある物B上に積層されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接積層されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに積層されていること」を含む。多角形状とは、完全な多角形および多角形に類似する形状を含んでいてもよい。円形状とは、完全な円形および円形に類似する形状を含んでいてもよい。 In the present disclosure, the terms “a certain item A is formed on a certain item B” and “a certain item A is formed on a certain item B” mean “a certain item A is present unless otherwise specified. It is included that the substance B is formed directly, and that the substance A is formed into a substance B while another substance is interposed between the substance A and the substance B. Similarly, the terms "an item A is located on an item B" and "an item A is located on an item B" mean "an item A is located unless otherwise specified." It is included that it is disposed directly to B, and that "an object A is disposed to an object B while interposing another object between the object A and the object B". Similarly, the terms “some A is laminated to some B” and “some A is laminated onto some B” refer to “some A as being unless otherwise noted. And “being laminated to a certain thing B while being interposed with another thing between a certain thing A and a certain thing B”. The polygonal shape may include a complete polygon and a shape similar to a polygon. The circular shape may include a perfect circle and a shape similar to a circle.
<第1実施形態>
 図1~図18を用いて、本開示の第1実施形態について説明する。
First Embodiment
A first embodiment of the present disclosure will be described using FIGS. 1 to 18.
 図1は、第1実施形態のシステムの一部を示す図である。同図に示すシステム800は、光学装置A1と、配線基板801と、導電部802、803と、接合部805と、部材810と、を備える。 FIG. 1 is a diagram showing a part of the system of the first embodiment. A system 800 shown in the figure includes an optical device A1, a wiring substrate 801, conductive portions 802 and 803, a bonding portion 805, and a member 810.
 光学装置A1は、光学素子3および支持体B1を含みうる。図1に示す例では、光学素子3は、支持体B1に配置され、光890を発する。光890の例は、たとえば、レーザ光、可視光、および、赤外光を含みうる。本開示では、光890がレーザ光であるとして説明するが、光890は、可視光や赤外光であってもよい。光学装置A1の具体的構成については後述する。 The optical device A1 can include the optical element 3 and the support B1. In the example shown in FIG. 1, the optical element 3 is disposed on the support B1 and emits light 890. Examples of light 890 may include, for example, laser light, visible light, and infrared light. Although the light 890 is described as laser light in the present disclosure, the light 890 may be visible light or infrared light. The specific configuration of the optical device A1 will be described later.
 配線基板801はたとえば絶縁性の基板である。配線基板801は、たとえばフレキシブル基板あるいはガラスエポキシ基板でありうる。導電部802は、配線基板801に配置されている。導電部802は、導電材料よりなる。導電部802を構成する材料はたとえばCuである。導電部802を構成する材料は、Cu以外の材料であってもよい。導電部802は、配線パターンと称されることもある。導電部803は、配線基板801に配置されている。導電部803は、たとえば、導電材料よりなり、たとえば、放熱機能を果たしうる。 Wiring substrate 801 is, for example, an insulating substrate. The wiring substrate 801 may be, for example, a flexible substrate or a glass epoxy substrate. The conductive portion 802 is disposed on the wiring substrate 801. The conductive portion 802 is made of a conductive material. The material which comprises the electroconductive part 802 is Cu, for example. The material forming the conductive portion 802 may be a material other than Cu. The conductive portion 802 may be referred to as a wiring pattern. The conductive portion 803 is disposed on the wiring substrate 801. The conductive portion 803 is made of, for example, a conductive material, and can perform a heat dissipation function, for example.
 接合部805は、光学装置A1を配線基板801に接合するためのものである。接合部805は、たとえば、導電材料よりなり、たとえばハンダに由来する。図1に示す例においては、接合部805を介して、配線基板801には光学装置A1が配置されている。接合部805は、絶縁材料よりなっていてもよい。 The bonding portion 805 is for bonding the optical device A 1 to the wiring substrate 801. The bonding portion 805 is made of, for example, a conductive material and is derived from, for example, solder. In the example illustrated in FIG. 1, the optical device A <b> 1 is disposed on the wiring substrate 801 via the bonding portion 805. The joint 805 may be made of an insulating material.
 部材810は、光学装置A1に対して固定されている。本実施形態においては、部材810は、照射目標範囲811と、本体812と、複数の位置決め部813と、を含む。 The member 810 is fixed to the optical device A1. In the present embodiment, the member 810 includes an irradiation target range 811, a main body 812, and a plurality of positioning portions 813.
 照射目標範囲811には、光学素子3からの光890が照射される。照射目標範囲811は、光学素子3からの光890を照射する目標範囲である。照射目標範囲811の平面視の形状は、どのような形状でもよい。たとえば、照射目標範囲811の平面視の形状は、矩形、円形、あるいは三角形であってもよい。照射目標範囲811は、光学部品により構成されうる。照射目標範囲811を構成する光学部品の具体例は、たとえば、ミラー、レンズ、光ファイバ、および透明な板を含む。図1に示す例においては、本体812に照射目標範囲811が固定されている。図1に示す例においては照射目標範囲811を構成する光学部品は透明な板である。 The light 890 from the optical element 3 is irradiated to the irradiation target range 811. The irradiation target range 811 is a target range to which the light 890 from the optical element 3 is irradiated. The shape in plan view of the irradiation target area 811 may be any shape. For example, the planar view shape of the irradiation target area 811 may be rectangular, circular, or triangular. The irradiation target range 811 may be configured by an optical component. Examples of optical components that constitute the irradiation target area 811 include, for example, mirrors, lenses, optical fibers, and transparent plates. In the example shown in FIG. 1, the irradiation target range 811 is fixed to the main body 812. In the example shown in FIG. 1, the optical component which comprises the irradiation target range 811 is a transparent board.
 本体812は典型的には電子部品の筐体である。筐体を構成する材料はたとえば樹脂である。本体812は電子部品の筐体には限定されない。照射目標範囲811と本体812が別体でなくてもよく、照射目標範囲811と本体812が一体物であってもよい。 The main body 812 is typically an electronic component housing. The material which comprises a housing | casing is resin, for example. The main body 812 is not limited to the housing of the electronic component. The irradiation target range 811 and the main body 812 may not be separate bodies, and the irradiation target range 811 and the main body 812 may be an integral body.
 複数の位置決め部813(図1には1つのみ示す)は、光学装置A1における複数の位置決め部7(後述)に対しそれぞれ固定される。複数の位置決め部813は各々、凹部または凸部であるとよい。図1に示す例では、複数の位置決め部813は各々凹部である。図1に示す例とは異なり、複数の位置決め部813が凸部であってもよい。一変形例においては、複数の位置決め部813のうちのいくつかが凹部であり、残りのいくつかが凸部であってもよい。他の一変形例においては、部材810が複数の位置決め部813を有さず、1つの位置決め部813のみを有していてもよい。 The plurality of positioning portions 813 (only one is shown in FIG. 1) are fixed to the plurality of positioning portions 7 (described later) in the optical device A1. Each of the plurality of positioning portions 813 may be a recess or a protrusion. In the example shown in FIG. 1, the plurality of positioning portions 813 are each a recess. Unlike the example shown in FIG. 1, the plurality of positioning portions 813 may be convex portions. In one variation, some of the plurality of positioning portions 813 may be concave portions, and some of the remaining positioning portions may be convex portions. In another variation, the member 810 may not have a plurality of positioning portions 813 and may have only one positioning portion 813.
 図2に示すように、システム800は、光学装置820を更に備えていてもよい。光学装置820は、たとえば受光装置であり、受光素子を含む。光学装置A1からの光890は、照射目標範囲811を経由して、対象体830にて反射した後、光学装置820に受光される。 As shown in FIG. 2, system 800 may further include an optical device 820. The optical device 820 is, for example, a light receiving device and includes a light receiving element. The light 890 from the optical device A1 is reflected by the object 830 via the irradiation target range 811 and then received by the optical device 820.
 図3は、第1実施形態の光学装置の斜視図である。図4は、第1実施形態の光学装置の断面図である。図5は、第1実施形態の光学装置の平面図である。図6は、第1実施形態の光学装置の平面図である。図11は、第1実施形態の光学装置の裏面図である。 FIG. 3 is a perspective view of the optical device of the first embodiment. FIG. 4 is a cross-sectional view of the optical device of the first embodiment. FIG. 5 is a plan view of the optical device of the first embodiment. FIG. 6 is a plan view of the optical device of the first embodiment. FIG. 11 is a back view of the optical device of the first embodiment.
 これらの図に示す光学装置A1は、第1部材1と、第2部材2と、光学素子3と、第1導電部41と、第2導電部43と、複数の第3導電部45と、第1ワイヤ51と、第2ワイヤ52と、機能素子58と、部材6と、絶縁部81と、接合部83、85、87と、を備える。図6では、部材6を透過して示している。本開示では、第1部材1と、第2部材2と、第1導電部41と、第2導電部43と、複数の第3導電部45と、部材6と、絶縁部81と、接合部85、87とは、支持体B1を構成している。 The optical device A1 shown in these figures includes a first member 1, a second member 2, an optical element 3, a first conductive portion 41, a second conductive portion 43, and a plurality of third conductive portions 45. A first wire 51, a second wire 52, a functional element 58, a member 6, an insulating portion 81, and bonding portions 83, 85, 87 are provided. In FIG. 6, the member 6 is shown in a transparent manner. In the present disclosure, the first member 1, the second member 2, the first conductive portion 41, the second conductive portion 43, the plurality of third conductive portions 45, the member 6, the insulating portion 81, and the joint portion Reference numerals 85 and 87 constitute a support B1.
 図4等に示す第1部材1は、絶縁材料あるいは導電材料よりなる。図4等に示す例においては、第1部材1は、絶縁材料よりなる。このような絶縁材料としては、例えば、絶縁性の樹脂もしくはセラミックなどが挙げられる。絶縁性の樹脂としては、例えば、エポキシ樹脂(たとえばガラスあるいは紙を含んでいてもよい)、フェノール樹脂、ポリイミド、およびポリエステルなどが挙げられる。セラミックとしては、例えば、Al23、SiC、およびAlNなどが挙げられる。第1部材1は、アルミニウムなどの導電材料よりなる基板に、絶縁膜が形成されたものであってもよい。第1部材1は、平面視(方向Z1視)において、矩形状を呈する。 The first member 1 shown in FIG. 4 and the like is made of an insulating material or a conductive material. In the example shown in FIG. 4 and the like, the first member 1 is made of an insulating material. As such an insulating material, for example, an insulating resin or ceramic may be mentioned. As an insulating resin, an epoxy resin (for example, glass or paper may be included), a phenol resin, a polyimide, polyester, etc. are mentioned, for example. Examples of the ceramic include Al 2 O 3 , SiC, and AlN. The first member 1 may be one in which an insulating film is formed on a substrate made of a conductive material such as aluminum. The first member 1 has a rectangular shape in a plan view (direction Z1 view).
 図4、図6に示すように、第1部材1は、第1面11、第2面12、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dを有する。第1面11、第2面12、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dはいずれも、たとえば、矩形状である。 As shown in FIGS. 4 and 6, the first member 1 has a first surface 11, a second surface 12, a first side surface 1A, a second side surface 1B, a third side surface 1C, and a fourth side surface 1D. Each of the first surface 11, the second surface 12, the first side surface 1A, the second side surface 1B, the third side surface 1C, and the fourth side surface 1D is, for example, rectangular.
 図4に示すように、第1面11および第2面12は、第1面11に直交する方向Z1において、離間しており、互いに反対側を向く。第1面11および第2面12はともに、平坦である。第1面11は、支持体B1の第1面を構成している。 As shown in FIG. 4, the first surface 11 and the second surface 12 are separated in the direction Z <b> 1 orthogonal to the first surface 11 and face away from each other. The first surface 11 and the second surface 12 are both flat. The first surface 11 constitutes a first surface of the support B1.
 図6に示すように、第1側面1Aおよび第2側面1Bは、第1方向X1に離間しており、互いに反対側を向く。第1方向X1は、方向Z1に直交する。第1側面1Aおよび第2側面1Bはともに、第1面11および第2面12につながっている。第1側面1Aおよび第2側面1Bはともに、平坦である。 As shown in FIG. 6, the first side surface 1A and the second side surface 1B are separated in the first direction X1 and face away from each other. The first direction X1 is orthogonal to the direction Z1. The first side surface 1A and the second side surface 1B are both connected to the first surface 11 and the second surface 12. Both the first side 1A and the second side 1B are flat.
 第3側面1Cおよび第4側面1Dは、第2方向Y1に離間しており、互いに反対側を向く。第2方向Y1は、第1方向X1および方向Z1に直交する。第3側面1Cおよび第4側面1Dはともに、第1面11および第2面12につながっている。第3側面1Cおよび第4側面1Dはともに、平坦である。 The third side surface 1C and the fourth side surface 1D are separated in the second direction Y1 and face opposite to each other. The second direction Y1 is orthogonal to the first direction X1 and the direction Z1. The third side surface 1C and the fourth side surface 1D are both connected to the first surface 11 and the second surface 12. The third side surface 1C and the fourth side surface 1D are both flat.
 図7は、第1実施形態の光学装置の平面図である。図7では、一部構成を透視化している。図4、図7に示すように、第1部材1には、複数の貫通孔が形成されている。第1部材1に形成された複数の貫通孔は、複数の第1貫通孔14と、1つの第2貫通孔15と、を含む。 FIG. 7 is a plan view of the optical device of the first embodiment. In FIG. 7, a part of the configuration is made transparent. As shown in FIGS. 4 and 7, a plurality of through holes are formed in the first member 1. The plurality of through holes formed in the first member 1 includes a plurality of first through holes 14 and one second through hole 15.
 複数の第1貫通孔14は各々、第1部材1を貫通しており、第1部材1の第1面11から第2面12に至っている。図7に示すように、平面視における複数の第1貫通孔14の形状は円形状であってもよい。あるいは、図7とは異なり、平面視における複数の第1貫通孔14の形状は円形状以外の形状(矩形状や三角形状)であってもよい。図7では、複数の第1貫通孔14が形成された例を示しているが、図7とは異なり、1つの第1貫通孔のみが形成されていてもよい。図4および図12(貫通孔を拡大して示す)に示すように、複数の第1貫通孔14は、内面14Sを有する。複数の第1貫通孔14の内面14Sは、第1面11および第2面12につながっている。図12等に示す例においては、複数の第1貫通孔14の内面14Sは、方向Z1に対し交差して延びている。同図では、複数の第1貫通孔14の内面14Sと第1面11とによって、第1部材1に鋭角をなす部位を形成しており、複数の第1貫通孔14の内面14Sと第2面12とによって、第1部材1に鈍角をなす部位を形成している。図4等とは異なり、複数の第1貫通孔14の内面14Sと第1面11とによって、第1部材1に鈍角をなす部位を形成しており、複数の第1貫通孔14の内面14Sと第2面12とによって、第1部材1に鋭角をなす部位を形成している。あるいは、図4等に示す例とは異なり、複数の第1貫通孔14の内面14Sは方向Z1に沿って延びていてもよい。この場合、複数の第1貫通孔14の内面14Sと第1面11とによって、第1部材1に90度をなす部位を形成しており、複数の第1貫通孔14の内面14Sと第2面12とによって、第1部材1に90度をなす部位を形成しうる。 Each of the plurality of first through holes 14 penetrates the first member 1 and extends from the first surface 11 to the second surface 12 of the first member 1. As shown in FIG. 7, the shapes of the plurality of first through holes 14 in plan view may be circular. Alternatively, unlike in FIG. 7, the shapes of the plurality of first through holes 14 in plan view may be shapes other than circular (rectangular or triangular). Although FIG. 7 shows an example in which a plurality of first through holes 14 are formed, different from FIG. 7, only one first through hole may be formed. As shown in FIGS. 4 and 12 (the through holes are shown enlarged), the plurality of first through holes 14 have an inner surface 14S. The inner surfaces 14S of the plurality of first through holes 14 are connected to the first surface 11 and the second surface 12. In the example shown in FIG. 12 and the like, the inner surfaces 14S of the plurality of first through holes 14 extend in a direction intersecting with the direction Z1. In the same figure, the inner surface 14S of the plurality of first through holes 14 and the first surface 11 form a portion forming an acute angle in the first member 1, and the inner surface 14S of the plurality of first through holes 14 and the second The surface 12 forms an obtuse-angled portion in the first member 1. Unlike FIG. 4 etc., the site | part which makes an obtuse angle in the 1st member 1 is formed of the inner surface 14S and the 1st surface 11 of several 1st through-hole 14, and the inner surface 14S of several 1st through-hole 14 And the second surface 12 form a portion that forms an acute angle in the first member 1. Alternatively, unlike the example shown in FIG. 4 and the like, the inner surfaces 14S of the plurality of first through holes 14 may extend along the direction Z1. In this case, an inner surface 14S of the plurality of first through holes 14 and the first surface 11 form a portion that forms 90 degrees in the first member 1, and the inner surface 14S of the plurality of first through holes 14 and the second The surface 12 can form a 90-degree portion in the first member 1.
 第2貫通孔15は各々、第1部材1を貫通しており、第1部材1の第1面11から第2面12に至っている。図7に示すように、平面視における第2貫通孔15の形状は円形状であってもよい。あるいは、図7とは異なり、平面視における第2貫通孔15の形状は円形状以外の形状(矩形状や三角形状)であってもよい。図7では、1つの第2貫通孔15が形成された例を示しているが、図7とは異なり、複数の第2貫通孔が形成されていてもよい。第2貫通孔15は、内面15Sを有する。第2貫通孔15の内面15Sは、第1面11および第2面12につながっている。図4および図12に示す例においては、第2貫通孔15の内面15Sは、方向Z1に対し交差して延びている。同図では、第2貫通孔15の内面15Sと第1面11とによって、第1部材1に鋭角をなす部位を形成しており、第2貫通孔15の内面15Sと第2面12とによって、第1部材1に鈍角をなす部位を形成している。図4等とは異なり、第2貫通孔15の内面15Sと第1面11とによって、第1部材1に鈍角をなす部位を形成しており、第2貫通孔15の内面15Sと第2面12とによって、第1部材1に鋭角をなす部位を形成している。あるいは、図4等に示す例とは異なり、第2貫通孔15の内面15Sは方向Z1に沿って延びていてもよい。この場合、第2貫通孔15の内面15Sと第1面11とによって、第1部材1に90度をなす部位を形成しており、第2貫通孔15の内面15Sと第2面12とによって、第1部材1に90度をなす部位を形成しうる。 The second through holes 15 pass through the first member 1 and extend from the first surface 11 to the second surface 12 of the first member 1. As shown in FIG. 7, the shape of the second through hole 15 in plan view may be circular. Alternatively, unlike in FIG. 7, the shape of the second through hole 15 in plan view may be a shape other than a circular shape (rectangular or triangular). Although FIG. 7 shows an example in which one second through hole 15 is formed, different from FIG. 7, a plurality of second through holes may be formed. The second through hole 15 has an inner surface 15S. The inner surface 15S of the second through hole 15 is connected to the first surface 11 and the second surface 12. In the example shown in FIG. 4 and FIG. 12, the inner surface 15S of the second through hole 15 extends in a direction intersecting with the direction Z1. In the same figure, a portion forming an acute angle in the first member 1 is formed by the inner surface 15S of the second through hole 15 and the first surface 11, and the inner surface 15S of the second through hole 15 and the second surface 12 are formed. The first member 1 is formed with a portion forming an obtuse angle. Unlike FIG. 4 etc., the site | part which makes an obtuse angle in the 1st member 1 is formed of the inner surface 15S of the 2nd through-hole 15, and the 1st surface 11, and the inner surface 15S of the 2nd through-hole 15 and the 2nd surface A portion forming an acute angle is formed in the first member 1 by 12. Alternatively, unlike the example shown in FIG. 4 or the like, the inner surface 15S of the second through hole 15 may extend along the direction Z1. In this case, the inner surface 15S of the second through hole 15 and the first surface 11 form a portion at 90 degrees to the first member 1, and the inner surface 15S of the second through hole 15 and the second surface 12 The first member 1 can form a portion that makes 90 degrees.
 図4、図7、図12に示すように、第1部材1には、空隙17が形成されている。空隙17は、第1部材1を貫通しており、第1部材1の第1面11から第2面12に至っている。空隙17は、中空となっている。図7に示すように、平面視における空隙17の形状は円形状であってもよい。あるいは、図7とは異なり、平面視における空隙17の形状は円形状以外の形状(矩形状や三角形状)であってもよい。図7では、1つの空隙17が形成された例を示しているが、図7とは異なり、複数の空隙17が形成されていてもよい。図12に示すように、空隙17は、内面17Sを有する。空隙17の内面17Sは、第1面11および第2面12につながっている。図12に示す例においては、空隙17の内面17Sは、方向Z1に沿って延びている。同図に示した例とは異なり、空隙17の内面17Sは、方向Z1に交差して延びていてもよい。 As shown in FIG. 4, FIG. 7, and FIG. 12, a void 17 is formed in the first member 1. The air gap 17 penetrates the first member 1 and extends from the first surface 11 to the second surface 12 of the first member 1. The air gap 17 is hollow. As shown in FIG. 7, the shape of the air gap 17 in a plan view may be circular. Alternatively, unlike FIG. 7, the shape of the air gap 17 in a plan view may be a shape other than a circular shape (a rectangular shape or a triangular shape). Although FIG. 7 shows an example in which one air gap 17 is formed, different from FIG. 7, a plurality of air gaps 17 may be formed. As shown in FIG. 12, the air gap 17 has an inner surface 17S. The inner surface 17S of the air gap 17 is connected to the first surface 11 and the second surface 12. In the example shown in FIG. 12, the inner surface 17S of the air gap 17 extends along the direction Z1. Unlike the example shown in the figure, the inner surface 17S of the air gap 17 may extend in the direction Z1.
 図5、図6等に示すように、第1部材1は、第1領域R1と、第2領域R2と、を有する。第1領域R1と第2領域R2は、平面視において、仮想直線LLを挟んで第1方向X1に互いに隣接する。仮想直線LLは、平面視において第1部材1の中心C1を通り、第2方向Y1に延びている。 As shown in FIG. 5, FIG. 6, etc., the 1st member 1 has 1st area | region R1 and 2nd area | region R2. The first region R1 and the second region R2 are adjacent to each other in the first direction X1 across the virtual straight line LL in plan view. The virtual straight line LL passes through the center C1 of the first member 1 in a plan view, and extends in the second direction Y1.
 第2部材2は、絶縁材料あるいは導電材料よりなる。図4に示す第2部材2は、絶縁材料よりなる。このような絶縁材料としては、例えば、絶縁性の樹脂もしくはセラミックなどが挙げられる。絶縁性の樹脂としては、例えば、エポキシ樹脂(たとえばガラスあるいは紙を含んでいてもよい)、フェノール樹脂、ポリイミド、およびポリエステルなどが挙げられる。セラミックとしては、例えば、Al23、SiC、およびAlNなどが挙げられる。第2部材2は、アルミニウムなどの導電材料よりなる基板に、絶縁膜が形成されたものであってもよい。第2部材2は、平面視において、矩形状を呈する。 The second member 2 is made of an insulating material or a conductive material. The second member 2 shown in FIG. 4 is made of an insulating material. As such an insulating material, for example, an insulating resin or ceramic may be mentioned. As an insulating resin, an epoxy resin (for example, glass or paper may be included), a phenol resin, a polyimide, polyester, etc. are mentioned, for example. Examples of the ceramic include Al 2 O 3 , SiC, and AlN. The second member 2 may be one in which an insulating film is formed on a substrate made of a conductive material such as aluminum. The second member 2 has a rectangular shape in a plan view.
 図4、図6に示すように、第2部材2は、表面21、裏面22、第1側面2A、第2側面2B、第3側面2C、および第4側面2Dを有する。表面21、裏面22、第1側面2A、第2側面2B、第3側面2C、および第4側面2Dはいずれも、たとえば、矩形状である。 As shown to FIG. 4, FIG. 6, the 2nd member 2 has the surface 21, the back surface 22, 1st side 2A, 2nd side 2B, 3rd side 2C, and 4th side 2D. The front surface 21, the back surface 22, the first side surface 2A, the second side surface 2B, the third side surface 2C, and the fourth side surface 2D are all rectangular, for example.
 図4に示すように、表面21および裏面22は、表面21に直交する方向Z1において、離間しており、互いに反対側を向く。表面21および裏面22はともに、平坦である。 As shown in FIG. 4, the front surface 21 and the back surface 22 are separated in the direction Z1 orthogonal to the front surface 21 and face in opposite directions. The front surface 21 and the back surface 22 are both flat.
 図6に示すように、第1側面2Aおよび第2側面2Bは、第1方向X1に離間しており、互いに反対側を向く。第1方向X1は、方向Z1に直交する。第1側面2Aおよび第2側面2Bはともに、表面21および裏面22につながっている。第1側面2Aおよび第2側面2Bはともに、平坦である。 As shown in FIG. 6, the first side surface 2A and the second side surface 2B are separated in the first direction X1 and face in opposite directions to each other. The first direction X1 is orthogonal to the direction Z1. The first side surface 2A and the second side surface 2B are both connected to the front surface 21 and the back surface 22. Both the first side surface 2A and the second side surface 2B are flat.
 第3側面2Cおよび第4側面2Dは、第2方向Y1に離間しており、互いに反対側を向く。第2方向Y1は、第1方向X1および方向Z1に直交する。第3側面2Cおよび第4側面2Dはともに、表面21および裏面22につながっている。第3側面2Cおよび第4側面2Dはともに、平坦である。 The third side surface 2C and the fourth side surface 2D are separated in the second direction Y1 and face opposite to each other. The second direction Y1 is orthogonal to the first direction X1 and the direction Z1. The third side surface 2C and the fourth side surface 2D are both connected to the front surface 21 and the back surface 22. The third side surface 2C and the fourth side surface 2D are both flat.
 図4、図6に示すように、第2部材2における、第1側面2A、第2側面2B、第3側面2C、および第4側面2Dは、それぞれ、第1部材1における、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dと面一となっていてもよい。 As shown in FIGS. 4 and 6, the first side surface 2A, the second side surface 2B, the third side surface 2C, and the fourth side surface 2D in the second member 2 are respectively the first side surface 1A in the first member 1 , And may be flush with the second side 1B, the third side 1C, and the fourth side 1D.
 図4、図6、図7等に示すように、第2部材2は、光学素子3を囲む内面24を有する。内面24は、方向Z1に沿って延びている。本実施形態とは異なり、内面24は、方向Z1に交差して延びていてもよい。内面24は、表面21および裏面22につながっている。内面24は、第1部位241と、第2部位242と、第3部位243と、第4部位244と、第5部位245と、第6部位246と、第7部位247と、第8部位248と、を有する。 As shown in FIG. 4, FIG. 6, FIG. 7, etc., the second member 2 has an inner surface 24 surrounding the optical element 3. The inner surface 24 extends along the direction Z1. Unlike the present embodiment, the inner surface 24 may extend in the direction Z1. The inner surface 24 is connected to the front surface 21 and the back surface 22. The inner surface 24 has a first portion 241, a second portion 242, a third portion 243, a fourth portion 244, a fifth portion 245, a sixth portion 246, a seventh portion 247, and an eighth portion 248. And.
 図10は、第1実施形態の光学装置の第2部材の内面24を示す平面図である。同図に示す例においては、第1部位241、第3部位243、第5部位245、および第7部位247は、いずれも、平面視において湾曲している。本開示においては、第1部位241、第3部位243、第5部位245、および第7部位247は、いずれも、平面視において、光学素子3から第2部材2の外方に向かって湾曲している。本開示においては、第1部位241、第3部位243、第5部位245、および第7部位247は各々、第1部材1の中心C1を中心とした直径R11の円の円弧の一部である。図24に示す例とは異なり、第1部位241、第3部位243、第5部位245、および第7部位247は、いずれも、平面視において湾曲しておらず、直線状であってもよい。 FIG. 10 is a plan view showing the inner surface 24 of the second member of the optical device of the first embodiment. In the example shown in the figure, the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 are all curved in plan view. In the present disclosure, the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 are all curved from the optical element 3 toward the second member 2 in plan view. ing. In the present disclosure, each of the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 is a part of an arc of a circle having a diameter R11 centered on the center C1 of the first member 1. . Unlike the example shown in FIG. 24, any of the first portion 241, the third portion 243, the fifth portion 245, and the seventh portion 247 may not be curved in a plan view and may be linear. .
 図10に示す例においては、第2部位242、第4部位244、第6部位246、および第8部位248は、いずれも、平面視において、湾曲している。本開示においては、第2部位242、第4部位244、第6部位246、および第8部位248はいずれも、平面視において、光学素子3から第2部材2の外方に向かって湾曲している。本開示においては、第2部位242、第4部位244、第6部位246、および第8部位248は各々、直径R12(直径R12は、直径R11よりも小さい)の互いに異なる円の円弧の一部である。第2部位242は、第1部位241および第3部位243につながっており、第4部位244は、第3部位243および第5部位245につながっており、第6部位246は、第5部位245および第7部位247につながっており、第8部位248は、第7部位247および第1部位241につながっている。図10に示す例とは異なり、第2部位242、第4部位244、第6部位246、および第8部位248は、いずれも、平面視において湾曲しておらず、直線状であってもよい。 In the example shown in FIG. 10, the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are all curved in plan view. In the present disclosure, all of the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are curved from the optical element 3 toward the second member 2 in plan view. There is. In the present disclosure, the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 are each a part of arcs of different circles of diameter R12 (diameter R12 is smaller than diameter R11). It is. The second part 242 is connected to the first part 241 and the third part 243, the fourth part 244 is connected to the third part 243 and the fifth part 245, and the sixth part 246 is connected to the fifth part 245. And the seventh portion 247, and the eighth portion 248 is connected to the seventh portion 247 and the first portion 241. Unlike the example shown in FIG. 10, any of the second portion 242, the fourth portion 244, the sixth portion 246, and the eighth portion 248 may not be curved in plan view and may be linear. .
 図10に示す例とは異なり、第2部材2における内面24は、円形状や矩形状であってもよい。 Unlike the example shown in FIG. 10, the inner surface 24 of the second member 2 may be circular or rectangular.
 図4等に示す接合部85は、第1部材1および第2部材2の間に介在しており、第1部材1および第2部材2を接合している。接合部85は、たとえば、エポキシ系、シリコーン系、あるいはアクリル系の材料よりなる。 A joint portion 85 shown in FIG. 4 or the like is interposed between the first member 1 and the second member 2 and joins the first member 1 and the second member 2. The bonding portion 85 is made of, for example, an epoxy type, a silicone type, or an acrylic type material.
 図4、図6等に示す光学素子3は、第1部材1の第1面11に配置されている。光学素子3は、光890を照射する。光890は、レーザ光、可視光、あるいは赤外光でありうる。図に示す例では、光890は、レーザ光である。 The optical element 3 shown in FIGS. 4 and 6 is disposed on the first surface 11 of the first member 1. The optical element 3 emits light 890. The light 890 may be laser light, visible light, or infrared light. In the example shown, the light 890 is a laser light.
 図6、図7に示す例では、平面視において、光学素子3と第1領域R1とが重なる面積は、平面視における光学素子3の面積の半分より大きい。図6、図7に示す例とは異なり、平面視において、光学素子3と第1領域R1とが重なる面積は、平面視における光学素子3の面積の半分と同一であってもよい。あるいは、平面視において、光学素子3と第1領域R1とが重なる面積は、平面視における光学素子3の面積の半分より小さくてもよい。 In the example shown in FIG. 6 and FIG. 7, the area where the optical element 3 and the first region R1 overlap in plan view is larger than half of the area of the optical element 3 in plan view. Unlike the example shown in FIG. 6 and FIG. 7, the area where the optical element 3 and the first region R1 overlap in plan view may be equal to half the area of the optical element 3 in plan view. Alternatively, the area where the optical element 3 and the first region R1 overlap in plan view may be smaller than half of the area of the optical element 3 in plan view.
 図6に開示の光学素子3は、レーザダイオードであり、より具体的には、VCSEL(Vertical Cavity Surface Emitting Laser)型のレーザダイオードである。光学素子3は、VCSEL型のレーザダイオードには限定されない。図4、図6に開示の光学素子3は、たとえば、平面視において、縦が100~1400μm、横が100~1400μmの矩形状である。図4、図6に開示の光学素子3の厚さ(方向Z1における寸法)は、たとえば、50~200μmである。 The optical element 3 disclosed in FIG. 6 is a laser diode, and more specifically, a laser diode of a VCSEL (Vertical Cavity Surface Emitting Laser) type. The optical element 3 is not limited to a VCSEL type laser diode. The optical element 3 disclosed in FIGS. 4 and 6 has, for example, a rectangular shape having a length of 100 to 1400 μm and a width of 100 to 1400 μm in a plan view. The thickness (dimension in the direction Z1) of the optical element 3 disclosed in FIGS. 4 and 6 is, for example, 50 to 200 μm.
 図6に示すように、光学素子3は、複数の発光部35を含みうる。複数の発光部35は平面視において互いに異なる位置に配置されている。複数の発光部35は、平面視において互いに離間している。複数の発光部35の各々は光を照射する。光学素子3は、複数の発光部35を含むことにより、面状の光890を方向Z1に沿って照射する。光学素子3から放たれた光890は、部材810の照射目標範囲811(図1参照)に至る。 As shown in FIG. 6, the optical element 3 can include a plurality of light emitting units 35. The plurality of light emitting units 35 are disposed at mutually different positions in plan view. The plurality of light emitting units 35 are separated from each other in plan view. Each of the plurality of light emitting units 35 emits light. The optical element 3 emits planar light 890 along the direction Z1 by including the plurality of light emitting units 35. The light 890 emitted from the optical element 3 reaches the irradiation target range 811 (see FIG. 1) of the member 810.
 図4、図6、図7に示すように、光学素子3は、表面31と、裏面32と、第1側面3Aと、第2側面3Bと、第3側面3Cと、第4側面3Dとを含む。 As shown in FIG. 4, FIG. 6, and FIG. 7, the optical element 3 includes the front surface 31, the back surface 32, the first side surface 3A, the second side surface 3B, the third side surface 3C, and the fourth side surface 3D. Including.
 表面31および裏面32は、表面31に直交する方向Z1において、離間しており、互いに反対側を向く。表面31および裏面32はともに、平坦である。裏面32よりも表面31側に、複数の発光部35が配置されている。 The front surface 31 and the back surface 32 are separated in the direction Z1 orthogonal to the front surface 31, and face opposite to each other. The front surface 31 and the back surface 32 are both flat. A plurality of light emitting units 35 are disposed closer to the front surface 31 than the back surface 32.
 第1側面3Aおよび第2側面3Bは、第1方向X1に離間しており、互いに反対側を向く。第1方向X1は、方向Z1に直交する。第1側面3Aおよび第2側面3Bはともに、表面31および裏面32につながっている。第1側面3Aおよび第2側面3Bはともに、平坦である。 The first side surface 3A and the second side surface 3B are separated in the first direction X1 and face opposite to each other. The first direction X1 is orthogonal to the direction Z1. The first side surface 3A and the second side surface 3B are both connected to the front surface 31 and the back surface 32. Both the first side 3A and the second side 3B are flat.
 第3側面3Cおよび第4側面3Dは、第2方向Y1に離間しており、互いに反対側を向く。第2方向Y1は、第1方向X1および方向Z1に直交する。第3側面3Cおよび第4側面3Dはともに、表面31および裏面32につながっている。第3側面3Cおよび第4側面3Dはともに、平坦である。 The third side surface 3C and the fourth side surface 3D are separated in the second direction Y1 and face opposite to each other. The second direction Y1 is orthogonal to the first direction X1 and the direction Z1. The third side surface 3C and the fourth side surface 3D are both connected to the front surface 31 and the back surface 32. The third side surface 3C and the fourth side surface 3D are both flat.
 光学素子3の具体的構造の一例について説明する。図16は、第1実施形態の光学装置の光学素子3の断面図であり、VCSEL型のレーザダイオードの断面図の一例を示している。図16に示す例においては、光学素子3は、基板311と、第1半導体層312と、第2半導体層313と、活性層315と、絶縁層317と、電流狭窄層318と、第1導電層33と、第2導電層34と、を備える。 An example of a specific structure of the optical element 3 will be described. FIG. 16 is a cross-sectional view of the optical element 3 of the optical device of the first embodiment, and shows an example of a cross-sectional view of a VCSEL type laser diode. In the example illustrated in FIG. 16, the optical element 3 includes the substrate 311, the first semiconductor layer 312, the second semiconductor layer 313, the active layer 315, the insulating layer 317, the current confinement layer 318, and the first conductivity. A layer 33 and a second conductive layer 34 are provided.
 基板311は半導体よりなる。基板311を構成する半導体は、たとえば、GaAsである。基板311を構成する半導体は、GaAs以外であってもよい。 The substrate 311 is made of a semiconductor. The semiconductor forming the substrate 311 is, for example, GaAs. The semiconductor constituting the substrate 311 may be other than GaAs.
 活性層315は、自然放出および誘導放出によって、たとえば、980nm帯(以下、「λa」とする)の波長の光を放出する化合物半導体により構成されている。活性層315は、第1半導体層312と第2半導体層313との間に位置している。 The active layer 315 is made of, for example, a compound semiconductor that emits light of a wavelength of 980 nm band (hereinafter referred to as “λa”) by spontaneous emission and stimulated emission. The active layer 315 is located between the first semiconductor layer 312 and the second semiconductor layer 313.
 第1半導体層312は、典型的にはDBR(Distributed Bragg Reflector)層であり、基板311に形成されている。第1半導体層312は第1導電型を有する半導体よりなる。本実施形態では第1導電型はn型である。第1半導体層312は、活性層315から発せられる光を効率よく反射させるためのDBRとして構成されている。より具体的には、第1半導体層312は、厚さλa/4のAlGaAs層であってそれぞれ反射率が異なる2層からなるペアを、複数段重ね合わせることにより構成されている。 The first semiconductor layer 312 is typically a DBR (Distributed Bragg Reflector) layer, and is formed on the substrate 311. The first semiconductor layer 312 is made of a semiconductor having a first conductivity type. In the present embodiment, the first conductivity type is n-type. The first semiconductor layer 312 is configured as a DBR for efficiently reflecting the light emitted from the active layer 315. More specifically, the first semiconductor layer 312 is formed by overlapping a plurality of pairs of two layers which are AlGaAs layers with a thickness of λa / 4 and have different reflectances.
 第2半導体層313は、典型的にはDBR層であり、第2導電型を有する半導体よりなる。本実施形態では第2導電型はp型である。本実施形態とは異なり、第1導電型がp型であり、第2導電型がn型であってもよい。第2半導体層313および基板311の間に、第1半導体層312が位置している。第2半導体層313は、活性層315から発せられる光を効率よく反射させるためのDBRとして構成されている。より具体的には、第2半導体層313は、厚さλa/4のAlGaAs層であってそれぞれ反射率が異なる2層からなるペアを、複数段重ね合わせることにより構成されている。 The second semiconductor layer 313 is typically a DBR layer and is made of a semiconductor having a second conductivity type. In the present embodiment, the second conductivity type is p-type. Unlike the present embodiment, the first conductivity type may be p-type and the second conductivity type may be n-type. The first semiconductor layer 312 is located between the second semiconductor layer 313 and the substrate 311. The second semiconductor layer 313 is configured as a DBR for efficiently reflecting the light emitted from the active layer 315. More specifically, the second semiconductor layer 313 is an AlGaAs layer with a thickness of λa / 4, and is configured by superposing a plurality of pairs of two layers having different reflectances.
 第2半導体層313は、表面3131を有する。表面3131は、第1半導体層312の位置する側とは反対側を向く。 The second semiconductor layer 313 has a surface 3131. The surface 3131 faces away from the side where the first semiconductor layer 312 is located.
 図16に示すように、電流狭窄層318は、第2半導体層313内に位置している。電流狭窄層318はたとえばAlを多く含み、酸化しやすい層からなる。電流狭窄層318は、この酸化しやすい層を酸化することにより形成される。電流狭窄層318は、酸化によって形成される必要は必ずしもなく、その他の方法(たとえばイオン注入)によって形成されてもよい。電流狭窄層318には開口3181が形成されている。当該開口を電流が流れる。 As shown in FIG. 16, the current confinement layer 318 is located in the second semiconductor layer 313. The current confinement layer 318 contains, for example, a large amount of Al and is a layer susceptible to oxidation. The current confinement layer 318 is formed by oxidizing the easily oxidized layer. The current confinement layer 318 does not necessarily have to be formed by oxidation, and may be formed by other methods (for example, ion implantation). An opening 3181 is formed in the current confinement layer 318. A current flows through the opening.
 絶縁層317は第2半導体層313に形成されている。絶縁層317は、たとえば、SiO2よりなる。 The insulating layer 317 is formed on the second semiconductor layer 313. The insulating layer 317 is made of, for example, SiO 2 .
 第1導電層33は絶縁層317に形成されている。第1導電層33は導電材料(たとえば金属)よりなる。 The first conductive layer 33 is formed on the insulating layer 317. The first conductive layer 33 is made of a conductive material (for example, metal).
 図16に示すように、第1導電層33には、開口331Aが形成されている。 As shown in FIG. 16, an opening 331 </ b> A is formed in the first conductive layer 33.
 開口331Aは、絶縁層317を露出させ、且つ、方向Z1視において活性層315に重なっている。図16から理解できるように、開口331Aは、方向Z1視において電流狭窄層318における開口3181に重なっている。複数の開口331Aは、それぞれ、複数の発光部35の平面視の形状を規定する。 The opening 331A exposes the insulating layer 317 and overlaps the active layer 315 in the direction Z1. As can be understood from FIG. 16, the opening 331A overlaps the opening 3181 in the current confinement layer 318 in the direction Z1. Each of the plurality of openings 331A defines the shape of the plurality of light emitting units 35 in plan view.
 図16に示すように、第1導電層33は、部位3333、339を含む。 As shown in FIG. 16, the first conductive layer 33 includes portions 3333 and 339.
 部位3333は、絶縁層317を貫通している。部位3333と第2半導体層313との間に電流が流れる。部位339は表面3131に導通している。部位339には、第1ワイヤ51(図6参照)が接合される。 The portion 3333 penetrates the insulating layer 317. A current flows between the portion 3333 and the second semiconductor layer 313. The portion 339 is electrically connected to the surface 3131. The first wire 51 (see FIG. 6) is joined to the portion 339.
 第2導電層34は、基板311の図16における下面に形成されている。第2導電層34は、導電材料(たとえば金属)よりなる。第2導電層34および第1半導体層312の間に、基板311が位置している。 The second conductive layer 34 is formed on the lower surface of the substrate 311 in FIG. The second conductive layer 34 is made of a conductive material (for example, metal). The substrate 311 is located between the second conductive layer 34 and the first semiconductor layer 312.
 図6、図7に示したものとは異なり、光学素子3は、図13に示すものであってもよい。図13の光学素子3の発光部35の個数は、図6の光学素子3の発光部35の個数よりも少ない。あるいは、光学素子3は、1つのみの発光部35を有してもよい(図14参照)。 Unlike those shown in FIGS. 6 and 7, the optical element 3 may be one shown in FIG. The number of light emitting units 35 of the optical element 3 of FIG. 13 is smaller than the number of light emitting units 35 of the optical element 3 of FIG. Alternatively, the optical element 3 may have only one light emitting unit 35 (see FIG. 14).
 図4等に示す例においては、第1導電部41と、第2導電部43と、複数の第3導電部45とのうちの少なくとも一部は、光学素子3に電力を供給するための電流経路を構成する。第1導電部41、第2導電部43、および複数の第3導電部45は、例えば、Cu、Ni、Ti、Auなどの単種類または複数種類の金属からなる。第1導電部41、第2導電部43、および複数の第3導電部45は、たとえば、メッキにより形成されうるがこれに限定されるものではない。 In the example shown in FIG. 4 and the like, at least a portion of the first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 is a current for supplying power to the optical element 3. Configure the route. The first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 are made of, for example, a single type or a plurality of types of metals such as Cu, Ni, Ti, and Au. The first conductive portion 41, the second conductive portion 43, and the plurality of third conductive portions 45 may be formed by plating, for example, but are not limited thereto.
 本実施形態においては、図12に示すように、第1導電部41および第2導電部43は各々、複数の層を含む。具体的には、第1導電部41および第2導電部43は各々、第1導電層491と、第2導電層492と、第3導電層493と、を含む。第1導電層491はたとえばCuよりなり、第2導電層492はたとえばNiよりなり、第3導電層493はたとえばAuよりなる。第2導電層492と第3導電層493との間にPd層が配置されていてもよい。第1導電層491の厚さは、たとえば、20~40μmであり、第2導電層492の厚さは、たとえば、1~10μmであり、第3導電層493の厚さは、たとえば、0.05~0.2μmである。 In the present embodiment, as shown in FIG. 12, each of the first conductive portion 41 and the second conductive portion 43 includes a plurality of layers. Specifically, the first conductive unit 41 and the second conductive unit 43 each include a first conductive layer 491, a second conductive layer 492, and a third conductive layer 493. The first conductive layer 491 is made of, for example, Cu, the second conductive layer 492 is made of, for example, Ni, and the third conductive layer 493 is made of, for example, Au. A Pd layer may be disposed between the second conductive layer 492 and the third conductive layer 493. The thickness of the first conductive layer 491 is, for example, 20 to 40 μm, the thickness of the second conductive layer 492 is, for example, 1 to 10 μm, and the thickness of the third conductive layer 493 is, for example, 0. It is 05 to 0.2 μm.
 図8は、図7から、第2部材2、光学素子3、第1ワイヤ51、第2ワイヤ52、および機能素子58等を省略した図である。図4、図6~図8に示すように、第1導電部41は、第1部材1の第1面11上に形成されている。第1導電部41は、第1導電部位411と、第2導電部位412と、を含む。 FIG. 8 is a diagram in which the second member 2, the optical element 3, the first wire 51, the second wire 52, the functional element 58 and the like are omitted from FIG. As shown in FIGS. 4 and 6 to 8, the first conductive portion 41 is formed on the first surface 11 of the first member 1. The first conductive portion 41 includes a first conductive portion 411 and a second conductive portion 412.
 第1導電部位411には、光学素子3が配置されている。第1導電部位411は、光学素子3の第2導電層34に導通する。 The optical element 3 is disposed in the first conductive portion 411. The first conductive portion 411 is electrically connected to the second conductive layer 34 of the optical element 3.
 図8、図9に示すように、第1導電部位411は、縁411A~411Fを有する。縁411Aは、第2方向Y1に沿って延びている。縁411Bは、縁411Aにつながり、第1方向X1に沿って延びている。縁411Cは、縁411Bにつながり、第2方向Y1に沿って延びている。縁411Dは、第1方向X1に沿って延びている。縁411Eは、縁411Dにつながり、且つ、第2方向Y1に沿って延びている。縁411Fは、縁411Eと縁411Aとにつながり、且つ、第1方向X1に沿って延びている。 As shown in FIGS. 8 and 9, the first conductive portion 411 has edges 411A to 411F. The edge 411A extends along the second direction Y1. The edge 411B is connected to the edge 411A and extends along the first direction X1. The edge 411C is connected to the edge 411B and extends along the second direction Y1. The edge 411D extends along the first direction X1. The edge 411E is connected to the edge 411D and extends along the second direction Y1. The edge 411F is connected to the edge 411E and the edge 411A, and extends along the first direction X1.
 第1導電部位411は、第1欠損部位4111、第2欠損部位4112、および、欠損部分4113を有する。第1欠損部位4111、第2欠損部位4112、および、欠損部分4113は、平面視において欠損した形状である。第1欠損部位4111、第2欠損部位4112、および、欠損部分4113は、第1導電部位411に形成された開口あるいは第1導電部位411に形成された凹部でありうる。本開示の具体例においては、第1欠損部位4111は開口であり、第2欠損部位4112は縁411Cから凹む凹部であり、欠損部分4113は縁411Dから凹む凹部である。第1欠損部位4111および第2欠損部位4112は光学素子3を第1導電部41に配置する際の目印として使用することができる。欠損部分4113の少なくとも一部は、平面視において、空隙17に重なっている。 The first conductive site 411 has a first defect site 4111, a second defect site 4112, and a defect site 4113. The first defect portion 4111, the second defect portion 4112, and the defect portion 4113 have shapes lost in a plan view. The first defect site 4111, the second defect site 4112, and the defect site 4113 may be an opening formed in the first conductive site 411 or a recess formed in the first conductive site 411. In the specific example of the present disclosure, the first defect site 4111 is an opening, the second defect site 4112 is a recess recessed from the edge 411C, and the defect portion 4113 is a recess recessed from the edge 411D. The first defect site 4111 and the second defect site 4112 can be used as marks when the optical element 3 is disposed in the first conductive portion 41. At least a part of the defect portion 4113 overlaps the air gap 17 in a plan view.
 本開示では、第1導電部41が2つの欠損部位(第1欠損部位4111および第2欠損部位4112)を有する例を示しているが、第1導電部41が1つの欠損部位あるいは3以上の欠損部位を有していてもよい。あるいは、第1導電部41が欠損部位を有していなくてもよい。本開示では、第1導電部41が1つの欠損部分4113を有している例を示しているが、第1導電部41が2以上の欠損部分を有していてもよい。あるいは、第1導電部41が欠損部分を有していなくてもよい。第1導電部41における欠損部位および欠損部分の位置は、図示したものに限定されず、変更可能である。 In the present disclosure, an example in which the first conductive portion 41 has two defect sites (a first defect site 4111 and a second defect site 4112) is shown, but the first conductive portion 41 is a single defect site or three or more It may have a defect site. Alternatively, the first conductive portion 41 may not have a defect site. In the present disclosure, an example in which the first conductive portion 41 has one defect portion 4113 is shown, but the first conductive portion 41 may have two or more defect portions. Alternatively, the first conductive portion 41 may not have a defective portion. The positions of the defect portion and the defect portion in the first conductive portion 41 are not limited to those illustrated, but can be changed.
 第2導電部位412には、第1ワイヤ51が接合されている。第2導電部位412は、第1ワイヤ51を介して、光学素子3の第1導電層33に導通する。平面視において、第2導電部位412の面積は、第1導電部位411の面積よりも小さい。 The first wire 51 is bonded to the second conductive portion 412. The second conductive portion 412 is electrically connected to the first conductive layer 33 of the optical element 3 through the first wire 51. In plan view, the area of the second conductive portion 412 is smaller than the area of the first conductive portion 411.
 図8に示すように、第2導電部位412は、縁412A~412Dを有する。縁412Aは、第2方向Y1に沿って延びている。縁412Bは、縁412Aにつながり、第1方向X1に沿って延びている。縁412Cは、縁412Bにつながり、第2方向Y1に沿って延びている。縁412Dは、縁412Cにつながり、且つ、第1方向X1に沿って延びている。 As shown in FIG. 8, the second conductive portion 412 has edges 412A-412D. The edge 412A extends along the second direction Y1. The edge 412B is connected to the edge 412A and extends along the first direction X1. The edge 412C is connected to the edge 412B and extends along the second direction Y1. The edge 412D is connected to the edge 412C and extends along the first direction X1.
 図4、図11に示すように、第2導電部43は、第1部材1の第2面12上に形成されている。図11に示すように、第2導電部43は、第1導電部位431と、第2導電部位432と、第3導電部位433と、導電部分435と、を含む。第1導電部位431と、第2導電部位432と、第3導電部位433と、導電部分435とは互いに離間している。 As shown in FIGS. 4 and 11, the second conductive portion 43 is formed on the second surface 12 of the first member 1. As shown in FIG. 11, the second conductive portion 43 includes a first conductive portion 431, a second conductive portion 432, a third conductive portion 433, and a conductive portion 435. The first conductive portion 431, the second conductive portion 432, the third conductive portion 433 and the conductive portion 435 are spaced apart from one another.
 第1導電部位431は、第3導電部45を介して、第1導電部位411に導通する。第1導電部位431は、縁431A~431Dを有する。縁431Aは、第2方向Y1に沿って延びている。縁431Bは、縁431Aにつながり、第1方向X1に沿って延びている。縁431Cは、縁431Bにつながり、第2方向Y1に沿って延びている。縁431Dは、縁431Cと縁431Aとにつながり、且つ、第1方向X1に沿って延びている。 The first conductive portion 431 is electrically connected to the first conductive portion 411 via the third conductive portion 45. The first conductive portion 431 has edges 431A to 431D. The edge 431A extends along the second direction Y1. The edge 431B is connected to the edge 431A and extends along the first direction X1. The edge 431C is connected to the edge 431B and extends along the second direction Y1. The edge 431D is connected to the edge 431C and the edge 431A and extends along the first direction X1.
 第2導電部位432は、第3導電部45を介して、第2導電部位412に導通する。第2導電部位432は、縁432A~432Dを有する。縁432Aは、第2方向Y1に沿って延びている。縁432Bは、縁432Aにつながり、第1方向X1に沿って延びている。縁432Cは、縁432Bにつながり、第2方向Y1に沿って延びている。縁432Dは、縁432Cと縁432Aとにつながり、且つ、第1方向X1に沿って延びている。 The second conductive portion 432 is electrically connected to the second conductive portion 412 via the third conductive portion 45. The second conductive portion 432 has edges 432A to 432D. The edge 432A extends along the second direction Y1. The edge 432B is connected to the edge 432A and extends along the first direction X1. The edge 432C is connected to the edge 432B and extends along the second direction Y1. The edge 432D is connected to the edge 432C and the edge 432A, and extends along the first direction X1.
 本開示では、第3導電部位433は、第1導電部位411や第2導電部位412と導通していない。本開示とは異なり、第3導電部位433は、第3導電部45を介して、第1導電部位411に導通していてもよい。第3導電部位433は、縁433A~433Dを有する。縁433Aは、第2方向Y1に沿って延びている。縁433Bは、縁433Aにつながり、第1方向X1に沿って延びている。縁433Cは、縁433Bにつながり、第2方向Y1に沿って延びている。縁433Dは、縁433Cと縁433Aとにつながり、且つ、第1方向X1に沿って延びている。 In the present disclosure, the third conductive portion 433 is not electrically connected to the first conductive portion 411 or the second conductive portion 412. Unlike the present disclosure, the third conductive portion 433 may be electrically connected to the first conductive portion 411 via the third conductive portion 45. The third conductive portion 433 has edges 433A to 433D. The edge 433A extends along the second direction Y1. The edge 433B is connected to the edge 433A and extends along the first direction X1. The edge 433C is connected to the edge 433B and extends along the second direction Y1. The edge 433D is connected to the edge 433C and the edge 433A, and extends along the first direction X1.
 本開示では、導電部分435は、第1導電部位411や第2導電部位412と導通していない。本開示とは異なり、導電部分435は、第3導電部45を介して、第1導電部位411に導通していてもよい。導電部分435は、縁435A~435Dを有する。縁435Aは、第2方向Y1に沿って延びている。縁435Bは、縁435Aにつながり、第1方向X1に沿って延びている。縁435Cは、縁435Bにつながり、円弧状である。縁435Dは、縁435Cと縁435Aとにつながり、且つ、第1方向X1に沿って延びている。 In the present disclosure, the conductive portion 435 is not in conduction with the first conductive portion 411 or the second conductive portion 412. Unlike the present disclosure, the conductive portion 435 may be electrically connected to the first conductive portion 411 via the third conductive portion 45. Conductive portion 435 has edges 435A-435D. The edge 435A extends along the second direction Y1. The edge 435B is connected to the edge 435A and extends along the first direction X1. Edge 435C is connected to edge 435B and is arc-shaped. The edge 435D is connected to the edge 435C and the edge 435A, and extends along the first direction X1.
 図11、図12に示すように、導電部分435には、欠損部分4351を有する。欠損部分4351は、平面視において欠損した形状である。欠損部分4351は、導電部分435に形成された開口あるいは導電部分435に形成された凹部でありうる。本開示の具体例においては、欠損部分4351は開口である。欠損部分4351の少なくとも一部は、平面視において、空隙17に重なっている。図11に示す例においては、欠損部分4351の縁4352は、平面視において、空隙17を囲む閉じた形状である。図11における当該形状は円形状である。図11とは異なり、欠損部分4351の縁4352は、円形以外の他の形状であってもよい。図11とは異なり、欠損部分4351の縁4352が閉じた形状ではなくてもよい。 As shown in FIGS. 11 and 12, the conductive portion 435 has a defect portion 4351. The missing portion 4351 has a lost shape in plan view. Defect portion 4351 can be an opening formed in conductive portion 435 or a recess formed in conductive portion 435. In embodiments of the present disclosure, defect portion 4351 is an aperture. At least a part of the defect portion 4351 overlaps the air gap 17 in plan view. In the example shown in FIG. 11, the edge 4352 of the defect portion 4351 has a closed shape surrounding the air gap 17 in a plan view. The said shape in FIG. 11 is circular shape. Unlike FIG. 11, the edge 4352 of the defect portion 4351 may have other shapes besides circular. Unlike FIG. 11, the edge 4352 of the defect portion 4351 may not have a closed shape.
 図4、図7、図11、図12に示す複数の第3導電部45は各々、第1部材1を貫通し且つ第1導電部41と第2導電部43とにつながる。複数の第3導電部45は、複数の第1貫通孔14、あるいは第2貫通孔15のいずれか1つの配置されている。第3導電部45を構成する材料の一例は、限定するものではないが、第1導電部41における第1導電層491あるいは第2導電部43における第1導電層491を構成する材料(たとえばCu)と同一であってもよい。第3導電部45は、限定するものではないが、たとえば、メッキにより形成されうる。 The plurality of third conductive portions 45 shown in FIGS. 4, 7, 11 and 12 respectively penetrate the first member 1 and are connected to the first conductive portion 41 and the second conductive portion 43. The plurality of third conductive portions 45 are disposed in any one of the plurality of first through holes 14 or the second through holes 15. Although an example of the material which comprises the 3rd conductive part 45 is not limited, the material (for example, Cu which constitutes the 1st conductive layer 491 in the 1st conductive layer 491 in the 1st conductive part 41 or the 2nd conductive part 43) And may be identical to The third conductive portion 45 may be formed, for example, by plating, but not limited thereto.
 図7に示すように、複数の第3導電部45は、少なくとも1つの第1部分45Aと、少なくとも1つの第2部分45Bと、を含む。 As shown in FIG. 7, the plurality of third conductive portions 45 include at least one first portion 45 </ b> A and at least one second portion 45 </ b> B.
 少なくとも1つの第1部分45Aは各々、第1導電部41の第1導電部位411と、第2導電部43の第1導電部位431とにつながる。図7に示すように、少なくとも1つの第1部分45Aの1つまたはいくつかは、平面視において、光学素子3に重なっていてもよい。 The at least one first portion 45A is connected to the first conductive portion 411 of the first conductive portion 41 and the first conductive portion 431 of the second conductive portion 43, respectively. As shown in FIG. 7, one or several of the at least one first portions 45 </ b> A may overlap the optical element 3 in a plan view.
 少なくとも1つの第2部分45Bは、第1導電部41の第2導電部位412と、第2導電部43の第2導電部位432とにつながる。好ましくは、少なくとも1つの第1部分45Aの個数は、少なくとも1つの第2部分45Bの個数よりも多い。少なくとも1つの第1部分45Aの個数は、たとえば、5~30個である。少なくとも1つの第2部分45Bの個数は、たとえば、1~3個である。図7に示すように、少なくとも1つの第1部分45Aのうち光学素子3に重なるものの個数は、少なくとも1つの第2部分45Bの個数よりも多くてもよい。少なくとも1つの第1部分45Aの個数、および、少なくとも1つの第2部分45Bの個数は、適宜変更可能である。 At least one second portion 45 </ b> B is connected to the second conductive portion 412 of the first conductive portion 41 and the second conductive portion 432 of the second conductive portion 43. Preferably, the number of at least one first portion 45A is greater than the number of at least one second portion 45B. The number of at least one first portion 45A is, for example, 5 to 30. The number of at least one second portion 45B is, for example, 1 to 3. As shown in FIG. 7, the number of at least one first portion 45A that overlaps the optical element 3 may be greater than the number of at least one second portion 45B. The number of at least one first portion 45A and the number of at least one second portion 45B can be changed as appropriate.
 図4に示すように、接合部83は光学素子3および第1導電部位411の間に介在する。接合部83はたとえば導電材料よりなる。接合部83はたとえば銀ペーストに由来する。本実施形態とは異なり接合部83は絶縁材料よりなっていてもよい。本実施形態では、接合部83は、光学素子3の側面(第1側面3A、第2側面3B、第3側面3C、あるいは第4側面3D)と、第1導電部位411に接していることが好ましい。このことは、光学素子3を接合部83がより強固に保持できる点において好ましい。 As shown in FIG. 4, the bonding portion 83 is interposed between the optical element 3 and the first conductive portion 411. Bonding portion 83 is made of, for example, a conductive material. The joint 83 is derived from, for example, silver paste. Unlike the present embodiment, the joint 83 may be made of an insulating material. In the present embodiment, the bonding portion 83 is in contact with the side surface of the optical element 3 (the first side surface 3A, the second side surface 3B, the third side surface 3C, or the fourth side surface 3D) and the first conductive portion 411 preferable. This is preferable in that the bonding portion 83 can hold the optical element 3 more firmly.
 図8等に示す絶縁部81は、第1部材1の第1面11上に形成されている。絶縁部81は、たとえば、レジスト層と呼ばれるものであってもよい。絶縁部81は、第1導電部41の一部(具体的には第1導電部位411の一部および第2導電部位412の一部)を露出させている。絶縁部81は、縁81Aおよび縁81Bを含む。縁81Aは、第1部材1の第1側面1A、第2側面1B、第3側面1C、および第4側面1Dに沿う形状である。縁81Bは、平面視において光学素子3を囲んでいる。 The insulating portion 81 shown in FIG. 8 and the like is formed on the first surface 11 of the first member 1. For example, the insulating portion 81 may be called a resist layer. The insulating portion 81 exposes a portion of the first conductive portion 41 (specifically, a portion of the first conductive portion 411 and a portion of the second conductive portion 412). Insulating portion 81 includes an edge 81A and an edge 81B. The edge 81A is shaped along the first side 1A, the second side 1B, the third side 1C, and the fourth side 1D of the first member 1. The edge 81B surrounds the optical element 3 in plan view.
 図6等に示す機能素子58は、第1導電部41における第1導電部位411に配置されている。機能素子58は、たとえば半導体素子であり、より具体的にはツェナーダイオードであってもよい。光学装置A1が機能素子58を備えていなくてもよい。 The functional element 58 shown in FIG. 6 and the like is disposed in the first conductive portion 411 in the first conductive portion 41. The functional element 58 is, for example, a semiconductor element, and more specifically, may be a zener diode. The optical device A1 may not have the functional element 58.
 図6、図7等に示す第1ワイヤ51は、導電材料よりなる。第1ワイヤ51を構成する導電材料は、たとえば、Cu、Ag、およびAuの少なくともいずれかを含む。図6、図7に示す例においては、平面視において、第1ワイヤ51は、第1方向X1に交差して延びている。図6、図7に示す例とは異なり、第1ワイヤ51は、第1方向X1に沿って延びていてもよいし、第2方向Y1に沿って延びていてもよい。第1ワイヤ51は、第1端511と第2端512とを有する。第1ワイヤ51の第1端511は、光学素子3(具体的には第1導電層33)に接合されており、且つ、平面視において、複数の発光部35のうちの2つの発光部35の間に位置する。第1端511は、第2側面3B側に配置されているが、第1端511は、第3側面3C側に配置されていてもよい。第1ワイヤ51の第2端512は、第1導電部41の第2導電部位412に接合されている。第1ワイヤ51の第2端512は、平面視において、第2領域R2に位置している。図6に示すように、第1ワイヤ51の第2端512は、第1方向X1において、第1ワイヤ51の第1端511と第1部材1の空隙17との間に位置していてもよい。図6に示すように、第1ワイヤ51の第2端512は、第1方向X1において、光学素子3と第1部材1の空隙17との間に位置していてもよい。図6に示すように、第1ワイヤ51の第2端512は、第1方向X1において、光学素子3と位置決め部7との間に位置していてもよい。 The first wire 51 shown in FIGS. 6 and 7 is made of a conductive material. The conductive material constituting the first wire 51 includes, for example, at least one of Cu, Ag, and Au. In the example shown in FIG. 6 and FIG. 7, in plan view, the first wire 51 extends so as to intersect the first direction X1. Unlike the example shown in FIG. 6 and FIG. 7, the first wire 51 may extend along the first direction X1 or may extend along the second direction Y1. The first wire 51 has a first end 511 and a second end 512. The first end 511 of the first wire 51 is joined to the optical element 3 (specifically, the first conductive layer 33), and in a plan view, two light emitting units 35 of the plurality of light emitting units 35. Located between Although the 1st end 511 is arranged at the 2nd side 3B side, the 1st end 511 may be arranged at the 3rd side 3C side. The second end 512 of the first wire 51 is joined to the second conductive portion 412 of the first conductive portion 41. The second end 512 of the first wire 51 is located in the second region R2 in plan view. As shown in FIG. 6, even if the second end 512 of the first wire 51 is positioned between the first end 511 of the first wire 51 and the air gap 17 of the first member 1 in the first direction X1. Good. As shown in FIG. 6, the second end 512 of the first wire 51 may be located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1. As shown in FIG. 6, the second end 512 of the first wire 51 may be located between the optical element 3 and the positioning unit 7 in the first direction X1.
 図6、図7等に示す第2ワイヤ52は、導電材料よりなる。第2ワイヤ52を構成する導電材料は、たとえば、Cu、Ag、およびAuの少なくともいずれかを含む。図6、図7に示す例においては、平面視において、第2ワイヤ52は、第2方向Y1に沿って延びている。図6、図7に示す例とは異なり、第2ワイヤ52は、第1方向X1に沿って延びていてもよいし、第2方向Y1に交差して延びていてもよい。第2ワイヤ52は、第1端521と第2端522とを有する。第2ワイヤ52の第1端521は、機能素子58に接合されている。第2ワイヤ52の第2端522は、第1導電部41の第2導電部位412に接合されている。第2ワイヤ52の第2端522は、平面視において、第2領域R2に位置している。図6に示すように、第2ワイヤ52の第2端522は、第1方向X1において、第2ワイヤ52の第1端511と第1部材1の空隙17との間に位置していてもよい。図6に示すように、第2ワイヤ52の第2端522は、第1方向X1において、光学素子3と第1部材1の空隙17との間に位置していてもよい。図6に示すように、第2ワイヤ52の第2端522は、第1方向X1において、光学素子3と位置決め部7との間に位置していてもよい。 The second wire 52 shown in FIGS. 6 and 7 is made of a conductive material. The conductive material constituting the second wire 52 includes, for example, at least one of Cu, Ag, and Au. In the example shown in FIGS. 6 and 7, in plan view, the second wire 52 extends along the second direction Y1. Unlike the example shown in FIG. 6 and FIG. 7, the second wire 52 may extend along the first direction X1 or may extend crossing the second direction Y1. The second wire 52 has a first end 521 and a second end 522. The first end 521 of the second wire 52 is joined to the functional element 58. The second end 522 of the second wire 52 is joined to the second conductive portion 412 of the first conductive portion 41. The second end 522 of the second wire 52 is located in the second region R2 in plan view. As shown in FIG. 6, even if the second end 522 of the second wire 52 is located between the first end 511 of the second wire 52 and the air gap 17 of the first member 1 in the first direction X1. Good. As shown in FIG. 6, the second end 522 of the second wire 52 may be located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1. As shown in FIG. 6, the second end 522 of the second wire 52 may be located between the optical element 3 and the positioning unit 7 in the first direction X1.
 図6、図7に示した例とは異なり、図15に示すように、第3ワイヤ53が光学素子3と第1導電部位411に接合されていてもよい。あるいは、光学素子3は、ワイヤを用いずに、第1導電部41と導通していてもよい。 Unlike the example shown in FIG. 6 and FIG. 7, as shown in FIG. 15, the third wire 53 may be bonded to the optical element 3 and the first conductive portion 411. Alternatively, the optical element 3 may be electrically connected to the first conductive portion 41 without using a wire.
 図2等に示す部材6は、第1部材1に対し固定されている。より具体的には、部材6は、第2部材2を介して第1部材1に対し固定されている。部材6は、平面視において光学素子3に重なる部位を有する。部材6は、光学素子3からの光890を透過させる。部材6は絶縁材料よりなりうる。部材6を構成する部材6は、たとえば、ポリフタルアミド、エポキシ樹脂、および、シリコーン系の材料が挙げられる。 The member 6 shown in FIG. 2 and the like is fixed to the first member 1. More specifically, the member 6 is fixed to the first member 1 via the second member 2. The member 6 has a portion overlapping the optical element 3 in a plan view. The member 6 transmits the light 890 from the optical element 3. The member 6 can be made of an insulating material. The member 6 constituting the member 6 includes, for example, polyphthalamide, an epoxy resin, and a silicone-based material.
 表面61および裏面62は、表面61に直交する方向Z1において、離間しており、互いに反対側を向く。表面61および裏面62はともに、平坦である。 The front surface 61 and the back surface 62 are separated in the direction Z1 orthogonal to the front surface 61, and face away from each other. The front surface 61 and the back surface 62 are both flat.
 第1側面6Aおよび第2側面6Bは、第1方向X1に離間しており、互いに反対側を向く。第1方向X1は、方向Z1に直交する。第1側面6Aおよび第2側面6Bはともに、表面61および裏面62につながっている。第1側面6Aおよび第2側面6Bはともに、平坦である。 The first side surface 6A and the second side surface 6B are separated in the first direction X1 and face opposite to each other. The first direction X1 is orthogonal to the direction Z1. The first side surface 6A and the second side surface 6B are both connected to the front surface 61 and the back surface 62. The first side 6A and the second side 6B are both flat.
 第3側面6Cおよび第4側面6Dは、第2方向Y1に離間しており、互いに反対側を向く。第2方向Y1は、第1方向X1および方向Z1に直交する。第3側面6Cおよび第4側面6Dはともに、表面61および裏面62につながっている。第3側面6Cおよび第4側面6Dはともに、平坦である。 The third side surface 6C and the fourth side surface 6D are separated in the second direction Y1 and face opposite to each other. The second direction Y1 is orthogonal to the first direction X1 and the direction Z1. The third side surface 6C and the fourth side surface 6D are both connected to the front surface 61 and the back surface 62. The third side surface 6C and the fourth side surface 6D are both flat.
 図5等に示すように、部材6における、第1側面6A、第2側面6B、第3側面6C、および第4側面6Dは、それぞれ、第1部材1における、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dと面一となっていてもよい。 As shown in FIG. 5 and the like, the first side surface 6A, the second side surface 6B, the third side surface 6C, and the fourth side surface 6D in the member 6 are the first side surface 1A, the second side surface in the first member 1, respectively. It may be flush with 1B, the 3rd side 1C, and the 4th side 1D.
 接合部87は、部材6および第2部材2の間に介在しており、部材6および第2部材2を接合している。接合部87は、たとえば、エポキシ系、シリコーン系、あるいはアクリル系の材料よりなる。 The joint portion 87 is interposed between the member 6 and the second member 2, and joins the member 6 and the second member 2. The bonding portion 87 is made of, for example, an epoxy type, a silicone type, or an acrylic type material.
 図2~図4等に示すように、支持体B1(同図では、第1部材1と、第2部材2と、第1導電部41と、第2導電部43と、複数の第3導電部45と、部材6と、絶縁部81と、接合部85、87とにより構成される)は、複数の位置決め部7を含む。複数の位置決め部7は、部材810の一部に固定することにより、光学素子3と照射目標範囲811との位置決めをするためのものである。具体的には、複数の位置決め部7は、部材810における複数の位置決め部812に対しそれぞれ固定されうる。複数の位置決め部7は各々、凹部または凸部であるとよい。図4、図5等に示す例では、複数の位置決め部7は凸部である。図4、図5に示す例とは異なり、複数の位置決め部7が凹部であってもよい。一変形例においては、複数の位置決め部7のうちのいくつかが凹部であり、残りのいくつかが凸部であってもよい。他の一変形例においては、支持体B1が複数の位置決め部7を有さず、1つの位置決め部7のみを有していてもよい。図2に示すように、位置決め部7と位置決め部813との間に、接合層815が配置されていてもよい。接合層815は、たとえば、エポキシ系、シリコーン系、あるいはアクリル系の材料よりなる。 As shown in FIGS. 2 to 4 and the like, a support B1 (in the figure, the first member 1, the second member 2, the first conductive portion 41, the second conductive portion 43, and a plurality of third conductive portions) The portion 45, the member 6, the insulating portion 81, and the bonding portions 85 and 87) include a plurality of positioning portions 7. The plurality of positioning portions 7 are used to position the optical element 3 and the irradiation target range 811 by fixing to a part of the member 810. Specifically, the plurality of positioning portions 7 can be fixed to the plurality of positioning portions 812 of the member 810, respectively. Each of the plurality of positioning portions 7 may be a recess or a protrusion. In the example shown in FIG. 4, FIG. 5, etc., the plurality of positioning portions 7 are convex portions. Unlike the example shown in FIG. 4 and FIG. 5, the plurality of positioning portions 7 may be concave portions. In one variation, some of the plurality of positioning portions 7 may be recesses, and the remaining some may be protrusions. In another variation, the support B1 may not have the plurality of positioning portions 7 and may have only one positioning portion 7. As shown in FIG. 2, a bonding layer 815 may be disposed between the positioning unit 7 and the positioning unit 813. The bonding layer 815 is made of, for example, an epoxy-based, silicone-based or acrylic-based material.
 図2~図6等に示す例では、複数の位置決め部7は、部材6の一部である。図6に示すように、複数の位置決め部7は、平面視において、光学素子3とは異なる位置に配置されていてもよい。同図に示すように、複数の位置決め部7のいずれか1つの少なくとも一部分は、平面視において、第2領域R2に重なっていてもよい。方向Z1において、複数の位置決め部7と第1面11との間に、光学素子3が位置している。複数の位置決め部7は、方向Z1に交差する方向を向く面7Sを有する。複数の位置決め部7における面7Sは、平面視において、支持体B1の閉じた形状である光学装置A1の最も外側の縁(図6では、たとえば、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dにより構成されている)よりも内側に位置していてもよい。 In the example shown in FIGS. 2 to 6 and the like, the plurality of positioning portions 7 are a part of the member 6. As shown in FIG. 6, the plurality of positioning units 7 may be arranged at a position different from that of the optical element 3 in a plan view. As shown to the same figure, at least one part of any one of the several positioning part 7 may overlap 2nd area | region R2 in planar view. The optical element 3 is positioned between the plurality of positioning portions 7 and the first surface 11 in the direction Z1. The plurality of positioning portions 7 have surfaces 7S facing in the direction intersecting with the direction Z1. The surfaces 7S of the plurality of positioning portions 7 are the outermost edges of the optical device A1 having a closed shape of the support B1 in plan view (for example, the first side 1A, the second side 1B, and the third side in FIG. It may be located inside the side surface 1C and the fourth side surface 1D).
 図5、図6等に示すように、複数の位置決め部7は、第1位置決め部71および第2位置決め部72を含む。図6に示すように、第1位置決め部71は、平面視において、第1導電部41の第1導電部位411に重なっており、第2位置決め部72は、平面視において、第1導電部41の第2導電部位412に重なっている。図6に示すように、第1ワイヤ51の第2端512は、第1方向X1において、第1ワイヤ51の第1端511と、第1位置決め部71および第2位置決め部72との間に位置していてもよい。 As shown in FIG. 5, FIG. 6, etc., the plurality of positioning units 7 include a first positioning unit 71 and a second positioning unit 72. As shown in FIG. 6, the first positioning portion 71 overlaps the first conductive portion 411 of the first conductive portion 41 in a plan view, and the second positioning portion 72 is a first conductive portion 41 in a plan view. And the second conductive portion 412 of the As shown in FIG. 6, the second end 512 of the first wire 51 is between the first end 511 of the first wire 51 and the first positioning portion 71 and the second positioning portion 72 in the first direction X1. It may be located.
 図4に示した例とは異なり、図2に示すように、位置決め部7が係合部74を有し、部材810が係合部814を有していてもよい。係合部74および係合部814は互いに係合しうる。 Unlike the example shown in FIG. 4, as shown in FIG. 2, the positioning portion 7 may have the engaging portion 74 and the member 810 may have the engaging portion 814. The engagement portion 74 and the engagement portion 814 can engage with each other.
 光学装置A1を製造する際には、図18に示す中間体を製造し、第1部材1、第2部材2、および部材6等をダイシングすることにより、製造される。同図にはダイシング線を縦方向に延びる二点鎖線により示している。 When manufacturing the optical device A1, the intermediate shown in FIG. 18 is manufactured and manufactured by dicing the first member 1, the second member 2, the member 6 and the like. In the figure, the dicing lines are indicated by the two-dot chain lines extending in the longitudinal direction.
 本実施形態においては、位置決め部7は、光学素子3からの光890が照射される照射目標範囲811を有する部材810の一部に固定することにより、光学素子3と照射目標範囲811との位置決めをするためのものである。このような構成によると、光学素子3と照射目標範囲811との位置決めをすることができるので、光学素子3からの光890をより効率良く照射目標範囲811に至らせることができる。これにより、光学装置A1の消費電力をより小さくできる。 In the present embodiment, the positioning section 7 positions the optical element 3 and the irradiation target area 811 by fixing to a part of the member 810 having the irradiation target area 811 to which the light 890 from the optical element 3 is irradiated. To do According to such a configuration, since the optical element 3 and the irradiation target range 811 can be positioned, the light 890 from the optical element 3 can be brought to the irradiation target range 811 more efficiently. Thereby, the power consumption of the optical device A1 can be further reduced.
 たとえば、本実施形態では、部材6と部材810とを位置決めすることにより、光学素子3と照射目標範囲811とを位置決めしている。光学素子3の位置に基づき部材6が配置されうるので、本実施形態の構成は、光学素子3と照射目標範囲811との位置決めをより高精度で実現できるため、好ましい。 For example, in the present embodiment, by positioning the member 6 and the member 810, the optical element 3 and the irradiation target range 811 are positioned. Since the member 6 can be disposed based on the position of the optical element 3, the configuration of the present embodiment is preferable because the positioning of the optical element 3 and the irradiation target range 811 can be realized with higher accuracy.
 特に、図6等を参照して説明したように、光学素子3から放たれる光890が面状光である場合には、当該面状光を発する面(図6では、光学素子3の表面31に略一致する)の大きさを過度に大きくすることを極力回避できる。これにより、光学素子3の平面視における過度の大型化を極力防止できる。 In particular, as described with reference to FIG. 6 and the like, when the light 890 emitted from the optical element 3 is planar light, the surface that emits the planar light (in FIG. 6, the surface of the optical element 3 It is possible to avoid, as much as possible, excessively increasing the size of (approximately corresponding to 31). Thereby, the excessive enlargement in planar view of the optical element 3 can be prevented as much as possible.
 本実施形態においては、第1部材1は、第1面11から第2面12に貫通する空隙17が形成されており、空隙17は、中空となっている。このような構成によると、光学装置A1を配線基板801に実装する際に、第1面11上の空間に気体(空気)が充満していたとしても、当該気体を、空隙17を介して、光学装置A1の外部に放出することができる。これにより、光学装置A1の実装時に、光学装置A1における2つの部位(たとえば、部材6と第2部材2)が剥離する不具合を極力回避できる。 In the present embodiment, in the first member 1, the air gap 17 penetrating from the first surface 11 to the second surface 12 is formed, and the air gap 17 is hollow. According to such a configuration, when the optical device A1 is mounted on the wiring substrate 801, even if the space on the first surface 11 is filled with a gas (air), the gas can be inserted via the air gap 17. It can be emitted outside the optical device A1. This makes it possible to avoid, as much as possible, the problem of peeling off two parts (for example, the member 6 and the second member 2) in the optical device A1 when the optical device A1 is mounted.
 本実施形態においては、第1ワイヤ51の第2端512は、第1面11に直交する第1方向X1において、第1ワイヤ51の第1端511と第1部材1の空隙17との間に位置している。このような構成は、平面視において、空隙17を光学素子3から極力遠い位置に配置するのに適する。これにより、光学装置A1の製造の際のダイシング時に、ダイシングに用いる液体(たとえば水)が、第1部材1の第2面12側から空隙17に侵入したとしても、当該液体が光学素子3に至ることを極力回避できる。 In the present embodiment, the second end 512 of the first wire 51 is between the first end 511 of the first wire 51 and the air gap 17 of the first member 1 in the first direction X1 orthogonal to the first surface 11. It is located in Such a configuration is suitable for arranging the air gap 17 as far as possible from the optical element 3 in a plan view. Thereby, even if a liquid (for example, water) used for dicing intrudes into the air gap 17 from the second surface 12 side of the first member 1 during dicing when manufacturing the optical device A1, the liquid does not flow to the optical element 3 It can be avoided as much as possible.
 本実施形態においては、第2ワイヤ52の第2端522は、第1面11に直交する第1方向X1において、光学素子3と第1部材1の空隙17との間に位置している。このような構成は、平面視において、空隙17を光学素子3から極力遠い位置に配置するのに適する。これにより、光学装置A1の製造の際のダイシング時に、ダイシングに用いる液体(たとえば水)が、第1部材1の第2面12側から空隙17に侵入したとしても、当該液体が光学素子3に至ることを極力回避できる。 In the present embodiment, the second end 522 of the second wire 52 is located between the optical element 3 and the air gap 17 of the first member 1 in the first direction X1 orthogonal to the first surface 11. Such a configuration is suitable for arranging the air gap 17 as far as possible from the optical element 3 in a plan view. Thereby, even if a liquid (for example, water) used for dicing intrudes into the air gap 17 from the second surface 12 side of the first member 1 during dicing when manufacturing the optical device A1, the liquid does not flow to the optical element 3 It can be avoided as much as possible.
 本実施形態においては、第2ワイヤ52の第2端522は、第1方向X1において、光学素子3と位置決め部7との間に位置している。このような構成は、第1方向X1における、第2ワイヤ52の第2端522と光学素子3との距離をより小さくしつつ、位置決め部7を配置するのに適する。これにより、位置決め部7を有する光学装置A1の小型化を図ることができる。 In the present embodiment, the second end 522 of the second wire 52 is located between the optical element 3 and the positioning unit 7 in the first direction X1. Such a configuration is suitable for disposing the positioning portion 7 while reducing the distance between the second end 522 of the second wire 52 and the optical element 3 in the first direction X1. Thus, the optical device A1 having the positioning portion 7 can be miniaturized.
 本実施形態においては、第2導電部43における導電部分435の欠損部分4351の少なくとも一部は、平面視において、空隙17に重なっている。このような構成によると、光学装置A1の製造の際のダイシング時に、第2導電部43のうち欠損部分4351を構成する部位がダイシングに用いる液体(たとえば水)をせき止めることができる。その結果、当該液体が空隙17に侵入することを極力回避できる。これにより、当該液体が光学素子3に至ることを極力回避できる。 In the present embodiment, at least a part of the defect portion 4351 of the conductive portion 435 in the second conductive portion 43 overlaps the air gap 17 in plan view. According to such a configuration, at the time of dicing at the time of manufacturing the optical device A1, the portion of the second conductive portion 43 which constitutes the defect portion 4351 can hold the liquid (for example, water) used for dicing. As a result, the liquid can be prevented from entering the air gap 17 as much as possible. Thereby, the liquid can be prevented from reaching the optical element 3 as much as possible.
 本実施形態においては、第2導電部43における導電部分435の欠損部分4351の縁4352は、平面視において空隙17を囲む閉じた形状である。このような構成によると前記液体が光学素子3に至ることをより好適に抑制できる。 In the present embodiment, the edge 4352 of the defect portion 4351 of the conductive portion 435 in the second conductive portion 43 has a closed shape surrounding the air gap 17 in a plan view. According to such a configuration, the liquid can be more suitably suppressed from reaching the optical element 3.
 本実施形態においては、平面視において、第1ワイヤ51は、第1方向X1に交差して延びている。このような構成によると、第1導電部41における第2導電部位412の平面視における面積をより小さくするのに適する。これにより、第1導電部位411の平面視における面積をより大きくすることができる。その結果、光学素子3にて発生した熱をより効率よく、光学装置A1の外部へと放出できる。 In the present embodiment, in plan view, the first wire 51 extends in a cross direction to the first direction X1. Such a configuration is suitable for reducing the area of the second conductive portion 412 of the first conductive portion 41 in plan view. Thereby, the area in planar view of the 1st electric conduction part 411 can be enlarged more. As a result, the heat generated by the optical element 3 can be more efficiently released to the outside of the optical device A1.
 本実施形態においては、第1ワイヤ51の第1端511は、光学素子3に接合されており、且つ、平面視において、複数の発光部35のうちの2つの発光部35の間に位置する。このような構成によると、2つの発光部35からの光890によって、表面31のうち第1端511が位置する近傍と、表面31のうちのその他の領域との光のコントラストがより小さくなる。その結果、第1端511の近傍が極端に暗くなることを抑制できる。 In the present embodiment, the first end 511 of the first wire 51 is joined to the optical element 3 and is located between two light emitting units 35 of the plurality of light emitting units 35 in plan view. . According to such a configuration, the light 890 from the two light emitting units 35 further reduces the light contrast between the vicinity of the first end 511 of the surface 31 and the other region of the surface 31. As a result, it is possible to suppress that the vicinity of the first end 511 becomes extremely dark.
 本実施形態においては、複数の第3導電部45は、第1導電部41の第1導電部位411につながる少なくとも1つの第1部分45Aを含む。このような構成によると、光学素子3にて発生した熱を、第1導電部41と、第1部分45Aとを介して、より効率的に、光学装置A1の外部に放出することができる。 In the present embodiment, the plurality of third conductive portions 45 include at least one first portion 45 </ b> A connected to the first conductive portion 411 of the first conductive portion 41. According to such a configuration, the heat generated in the optical element 3 can be more efficiently released to the outside of the optical device A1 through the first conductive portion 41 and the first portion 45A.
 本実施形態においては、少なくとも1つの第1部分45Aの個数は、少なくとも1つの第2部分45Bの個数よりも多い。このような構成によると、光学素子3にて発生した熱を、第1導電部41と、第1部分45Aとを介して、更に効率的に、光学装置A1の外部に放出することができる。 In the present embodiment, the number of at least one first portion 45A is greater than the number of at least one second portion 45B. According to such a configuration, the heat generated in the optical element 3 can be more efficiently released to the outside of the optical device A1 via the first conductive portion 41 and the first portion 45A.
 本実施形態においては、内面24は、第1部位241と、第2部位242と、を含む。第2部位242は、第1部位241とつながり、且つ、平面視において、光学素子3から第2部材2の外方に向かって湾曲している。このような構成によると、本実施形態においては、たとえば、第2部位242が矩形の三辺で構成されている場合と比べて、第2部材2の表面21の面積を大きくできる。これにより、第2部材2の表面21と部材6との接合面積をより大きくでき、第2部材2と部材6との接合強度の向上を実現しうる。第4部位244、第6部位246、および第8部位248についても同様である。 In the present embodiment, the inner surface 24 includes a first portion 241 and a second portion 242. The second portion 242 is connected to the first portion 241, and is curved outward from the optical element 3 to the second member 2 in a plan view. According to such a configuration, in the present embodiment, for example, the area of the surface 21 of the second member 2 can be increased as compared to the case where the second portion 242 is formed by three sides of a rectangle. As a result, the bonding area between the surface 21 of the second member 2 and the member 6 can be further increased, and an improvement in bonding strength between the second member 2 and the member 6 can be realized. The same applies to the fourth portion 244, the sixth portion 246, and the eighth portion 248.
 本実施形態においては、光学装置A1の製造の際に、機能素子58を配置するためのコレット(図示略)が、第2部位242に接触することを防止できる。 In the present embodiment, a collet (not shown) for disposing the functional element 58 can be prevented from contacting the second portion 242 when the optical device A1 is manufactured.
<変形例>
 図19~図27を用いて、変形例について説明する。
<Modification>
A modification is described with reference to FIGS. 19 to 27.
 なお、以下の説明では、上記と同一または類似の構成については上記と同一の符号を付し、説明を適宜省略する。上記と同一の符号を付した構成については、上記の説明を適宜適用できる。下記の変形例の開示の技術は、上記実施形態、およびその他の変形例と互いに組み合わせ自在である。 In the following description, the same or similar components as those described above are denoted by the same reference numerals as those described above, and the description will be appropriately omitted. The above description can be appropriately applied to the configurations given the same reference numerals as the above. The techniques disclosed in the following modifications can be combined with the above-described embodiment and the other modifications.
 図19に示す変形例は、位置決め部813が凸部であり、位置決め部7が凹部である点において、光学装置A1とは異なる。上述したように、位置決め部813および位置決め部7の凸部と凹部の組み合わせは、適宜変更可能である。 The modified example shown in FIG. 19 differs from the optical device A1 in that the positioning portion 813 is a convex portion and the positioning portion 7 is a concave portion. As described above, the combination of the convex portion and the concave portion of the positioning portion 813 and the positioning portion 7 can be appropriately changed.
 図20に示す変形例では、光学装置A3は、部材6の側面(たとえば、第1側面6Aや第2側面6B)が、第1部材1の側面(たとえば、第1側面1Aや第2側面1B)よりも内側に位置している点において、光学装置A1とは異なる。 In the modification shown in FIG. 20, in the optical device A3, the side surfaces of the member 6 (for example, the first side surface 6A and the second side surface 6B) are the side surfaces of the first member 1 (for example, the first side surface 1A or the second side surface 1B). The optical device A1 differs from the optical device A1 in that it is located inside the.
 図21に示す変形例では、光学装置A4は、位置決め部7が、部材6の表面61に形成された突起ではなく、部材6の側面(たとえば、第1側面6Aや第2側面6B)によって構成されている点において、上述の光学装置A3とは異なる。このように、本変形例では、位置決め部7の面7Sが、支持体B1の閉じた形状である光学装置A1の最も外側の縁(たとえば、第1側面1A、第2側面1B、第3側面1C、および第4側面1Dにより構成されている)よりも内側に位置している。 In the modified example shown in FIG. 21, in the optical device A4, the positioning portion 7 is not a protrusion formed on the surface 61 of the member 6 but a side surface of the member 6 (for example, the first side surface 6A or the second side surface 6B) Differs from the above-described optical device A3 in that Thus, in the present modification, the outermost edge of the optical device A1 in which the surface 7S of the positioning portion 7 is the closed shape of the support B1 (for example, the first side 1A, the second side 1B, and the third side) 1C and the fourth side face 1D).
 図22に示す変形例では、光学装置A5は、第2部材2を備えておらず、部材6の形状が光学装置A1とは異なっている。図23に示す変形例では、光学装置A6は、位置決め部7が、部材6の表面61に形成された突起ではなく、部材6の側面(たとえば、第1側面6Aや第2側面6B)によって構成されている点において、上述の光学装置A5とは異なる。 In the modification shown in FIG. 22, the optical device A5 does not include the second member 2, and the shape of the member 6 is different from that of the optical device A1. In the modified example shown in FIG. 23, in the optical device A6, the positioning portion 7 is not a projection formed on the surface 61 of the member 6 but a side surface (for example, the first side surface 6A or the second side surface 6B) of the member 6 Differs from the above-described optical device A5 in that
 図24に示す変形例では、光学装置A7は、光学装置A3と比べて、第1部材1および第2部材2の構成が主に異なる。同図に示す第1部材1は、導電材料よりなる。本変形例の第1部材1は、たとえばリードフレームと称されるものであってもよい。第2部材2は絶縁材料あるいは導電材料よりなる。本変形例では、第2部材2は絶縁材料よりなる。第2部材2を構成する絶縁材料としては樹脂が挙げられる。第2部材2は、限定するものではないが、たとえば、金型を用いて形成される。 In the modification shown in FIG. 24, the optical device A7 mainly differs in the configuration of the first member 1 and the second member 2 from the optical device A3. The first member 1 shown in the figure is made of a conductive material. For example, the first member 1 of this modification may be referred to as a lead frame. The second member 2 is made of an insulating material or a conductive material. In the present modification, the second member 2 is made of an insulating material. As an insulating material which comprises the 2nd member 2, resin is mentioned. The second member 2 is formed, for example, using a mold, but not limited thereto.
 図25Aに示す変形例では、光学装置A8は、位置決め部7が、部材6の一部ではなく、第2部材2の一部である点において、光学装置A6とは異なる。図25Aに示すように、部材6には欠損している欠損部611が形成されている。欠損部611は、たとえば、凹部あるいは開口である。図25Aには、欠損部611が凹部である例を示している。欠損部611には、位置決め部7が配置されている。 In the modification shown in FIG. 25A, the optical device A8 differs from the optical device A6 in that the positioning portion 7 is not a part of the member 6 but a part of the second member 2. As shown in FIG. 25A, the member 6 is formed with a missing portion 611 which is missing. The defect portion 611 is, for example, a recess or an opening. FIG. 25A shows an example in which the defect portion 611 is a recess. The positioning unit 7 is disposed in the defect portion 611.
 図25Bに示す変形例の光学装置A81は、樹脂部9を含んでいる点において、図25Aに示した光学装置A8とは異なり、その他の点は同様である。樹脂部9は、光学素子3からの光890を透過する材料よりなるとよい。樹脂部9は、光学素子3を覆っている。樹脂部9は、たとえば、シリコーン系、エポキシ系、あるいは、アクリル系の材料よりなるとよい。樹脂部9は、光学装置A8以外の光学装置(すなわち光学装置A1~A7、A9~A10)にて、形成されていてもよい。 The optical device A81 of the modified example shown in FIG. 25B is different from the optical device A8 shown in FIG. 25A in that it includes the resin portion 9, and the other points are the same. The resin portion 9 may be made of a material that transmits the light 890 from the optical element 3. The resin portion 9 covers the optical element 3. The resin portion 9 may be made of, for example, a silicone type, an epoxy type, or an acrylic type material. The resin portion 9 may be formed of an optical device other than the optical device A8 (ie, the optical devices A1 to A7, A9 to A10).
 図26に示す変形例では、光学装置A9は、第2部材2の図下方の一部が、位置決め部7を構成している点において、光学装置A8とは異なる。位置決め部7は、配線基板801に対して固定されうる。 In the modification shown in FIG. 26, the optical device A9 differs from the optical device A8 in that a part of the lower part of the second member 2 in the drawing constitutes the positioning portion 7. The positioning unit 7 can be fixed to the wiring substrate 801.
 図27に示す変形例では、光学装置A10は、位置決め部7を備えていない点において、光学装置A1とは異なる。 In the modification shown in FIG. 27, the optical device A10 is different from the optical device A1 in that the positioning device 7 is not provided.
 本開示は、上述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。 The present disclosure is not limited to the embodiments described above. The specific configuration of each part of the present disclosure can be varied in design in many ways.
 本開示は、以下の付記にかかる実施例を含む。
  [付記A1]
 支持体と、
 前記支持体に配置され、光を発する光学素子と、を備え、
 前記支持体は、少なくとも1つの位置決め部を含み、前記少なくとも1つの位置決め部は、前記光学素子からの光が照射される照射目標範囲を有する部材の一部に固定することにより、前記光学素子と前記照射目標範囲との位置決めをするためのものである、光学装置。
  [付記A2]
 前記支持体は、前記光学素子が配置された第1面を有し、
 前記光学素子は、前記第1面に直交する方向において、前記少なくとも1つの位置決め部と前記第1面との間に位置する、付記A1に記載の光学装置。
  [付記A3]
 前記少なくとも1つの位置決め部は、前記第1面に直交する方向に交差する方向を向く面を有する、付記A2に記載の光学装置。
  [付記A4]
 前記少なくとも1つの位置決め部における前記面は、平面視において、前記光学素子とは異なる位置に配置されている、付記A3に記載の光学装置。
  [付記A5]
 前記支持体は、閉じた形状である縁を含み、前記支持体の前記縁は、平面視において前記光学装置のうち最も外側に位置し、
 前記少なくとも1つの位置決め部における前記面は、平面視において、前記支持体の前記縁よりも内側に位置している、付記A3または付記A4に記載の光学装置。
  [付記A6]
 前記少なくとも1つの位置決め部は各々、凸部あるいは凹部である、付記A1ないし付記A5のいずれかに記載の光学装置。
  [付記A7]
 前記支持体は、
  前記光学素子が配置された第1部材と、
  前記第1部材に固定され、前記第1面に直交する方向において、前記光学素子に重なっている第2部材と、を含む、付記A2に記載の光学装置。
  [付記A8]
 前記第1部材は、前記第1面と、前記第1面とは反対の第2面と、を有し、且つ、絶縁性を有し、
 前記第1部材の前記第1面上に形成された第1導電部を更に備え、
 前記光学素子は、互いに絶縁された第1導電層および第2導電層を含み、
 前記第1導電部は、前記光学素子の前記第2導電層に導通する第1導電部位と、前記光学素子の前記第1導電層に導通する第2導電部位と、を含む、付記A7に記載の光学装置。
  [付記A9]
 前記第1導電部における前記第1導電部位は、平面視において欠損した少なくとも1つの欠損部位を含み、
 前記第1導電部位の前記少なくとも1つの欠損部位の各々は、前記第1導電部位に形成された凹部あるいは前記導電部位に形成された開口である、付記A8に記載の光学装置。
  [付記A10]
 前記第1部材は、前記第1面から前記第2面に貫通する空隙が形成されており、
 前記空隙は、中空となっている、付記A8または付記A9に記載の光学装置。
  [付記A11]
 前記第1導電部には、平面視において欠損した欠損部分を含み、
 前記第1導電部における前記欠損部分の少なくとも一部は、平面視において、前記空隙に重なっている、付記A10に記載の光学装置。
  [付記A12]
 第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、前記第1ワイヤの前記第2端は、前記第1導電部の前記第2導電部位に接合されており、
 前記第1ワイヤの前記第2端は、前記第1面に直交する第1方向において、前記第1ワイヤの前記第1端と前記第1部材の前記空隙との間に位置している、付記A10または付記A11に記載の光学装置。
  [付記A13]
 前記第1部材の前記第2面上に形成された第2導電部を更に備え、
 前記第2導電部は、平面視において欠損した欠損部分を含む導電部分を含み、
 前記第2導電部における前記導電部分の前記欠損部分の少なくとも一部は、平面視において、前記空隙に重なっている、付記A10ないし付記A12のいずれかに記載の光学装置。
  [付記A14]
 前記第2導電部における前記導電部分の前記欠損部分の縁は、平面視において前記空隙を囲む閉じた形状である、付記A13に記載の光学装置。
  [付記A15]
 前記第1部材は、仮想直線を挟んで第1方向に互いに隣接する第1領域と第2領域とを含み、
 前記仮想直線は、平面視において前記第1部材の中心を通り、第2方向に延びており、
 前記第1方向は、前記第1面に直交する方向に直交し、前記第2方向は、前記第1面に直交する方向と、前記第1方向と、に直交する、付記A8に記載の光学装置。
  [付記A16]
 平面視において、前記光学素子と前記第1領域とが重なる面積は、平面視における前記光学素子の面積の半分より大きく、
 第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、前記第1ワイヤの前記第2端は、前記第1導電部の前記第2導電部位に接合されており、
 前記第1ワイヤの前記第2端は、平面視において、前記第2領域に位置している、付記A15に記載の光学装置。
  [付記A17]
 平面視において、前記第1ワイヤは、前記第1方向に交差して延びている、付記A16に記載の光学装置。
  [付記A18]
 平面視において、前記少なくとも1つの位置決め部の少なくとも一部分は、前記第2領域に重なっている、付記A16または付記A17に記載の光学装置。
  [付記A19]
 前記少なくとも1つの位置決め部は、第1位置決め部と第2位置決め部とを含み、
 前記第1位置決め部は、平面視において、前記第1導電部の前記第1導電部位に重なっており、前記第2位置決め部は、平面視において、前記第1導電部の前記第2導電部位に重なっている、付記A16ないし付記A18のいずれかに記載の光学装置。
  [付記A20]
 前記光学素子は、複数の発光部を含み、前記複数の発光部は平面視において互いに離間しており、前記複数の発光部の各々は光を照射し、
 第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、且つ、平面視において、前記複数の発光部のうちの2つの発光部の間に位置する、付記A16に記載の光学装置。
  [付記A21]
 前記第1部材の前記第2面上に形成された第2導電部と、
 前記第1部材を貫通し且つ前記第1導電部と前記第2導電部とにつながる少なくとも1つの第3導電部と、を備え、
 前記少なくとも1つの第3導電部は、前記第1導電部の前記第1導電部位につながる少なくとも1つの第1部分を含む、付記A8に記載の光学装置。
  [付記A22]
 前記少なくとも1つの第3導電部は、前記第1導電部の前記第2導電部位につながる少なくとも1つの第2部分を含み、
 前記少なくとも1つの第1部分の個数は、前記少なくとも1つの第2部分の個数よりも多い、付記A21に記載の光学装置。
  [付記A23]
 前記第2部材は、前記光学素子を囲む内面を有し、
 前記内面は、第1部位と、第2部位と、を含み、
 前記第2部位は、前記第1部位とつながり、且つ、平面視において、前記光学素子から前記第2部材の外方に向かって湾曲している、付記A7に記載の光学装置。
  [付記A24]
 前記第1部材に対し固定され、前記光学素子からの光を透過させる部材を更に備え、
 前記光を透過させる部材は、平面視において前記光学素子に重なる部位を有する、付記A7に記載の光学装置。
  [付記A25]
 付記A1に記載の光学装置と、
 前記光学装置が配置された配線基板と、
 前記光学装置および前記配線基板を接合する接合部と、
 前記照射目標範囲を有する前記部材と、を備える、システム。
This disclosure includes examples according to the following appendices.
[Supplementary Note A1]
A support,
An optical element disposed on the support and emitting light;
The support includes at least one positioning portion, and the at least one positioning portion is fixed to a part of a member having an irradiation target range to which light from the optical element is irradiated, An optical apparatus for positioning with the irradiation target area.
[Supplementary Note A2]
The support has a first surface on which the optical element is disposed,
The optical device according to attachment A1, wherein the optical element is located between the at least one positioning portion and the first surface in a direction orthogonal to the first surface.
[Supplementary Note A3]
The optical device according to appendix A2, wherein the at least one positioning portion has a surface facing in a direction orthogonal to the direction orthogonal to the first surface.
[Supplementary Note A4]
The optical device according to appendix A3, wherein the surface of the at least one positioning unit is arranged at a position different from the optical element in plan view.
[Supplementary Note A5]
The support includes an edge that is in a closed shape, and the edge of the support is located on the outermost side of the optical device in plan view;
The optical device according to Appendix A3 or A4, wherein the surface of the at least one positioning part is located inside the edge of the support in a plan view.
[Supplementary Note A6]
The optical device according to any one of appendices A1 to A5, wherein the at least one positioning part is a convex part or a concave part.
[Supplementary Note A7]
The support is
A first member in which the optical element is disposed;
The optical device according to Appendix A2, further comprising: a second member fixed to the first member and overlapping the optical element in a direction orthogonal to the first surface.
[Supplementary Note A8]
The first member has the first surface and a second surface opposite to the first surface, and is insulating.
It further comprises a first conductive portion formed on the first surface of the first member,
The optical element includes a first conductive layer and a second conductive layer insulated from each other,
Appendix A7, wherein the first conductive portion includes a first conductive portion conductive to the second conductive layer of the optical element, and a second conductive portion conductive to the first conductive layer of the optical element Optical device.
[Supplementary Note A9]
The first conductive portion in the first conductive portion includes at least one defective portion which is lost in plan view,
The optical device according to attachment A8, wherein each of the at least one defect site of the first conductive site is a recess formed in the first conductive site or an opening formed in the conductive site.
[Supplementary Note A10]
In the first member, an air gap penetrating from the first surface to the second surface is formed,
The optical device according to Appendix A8 or A9, wherein the air gap is hollow.
[Supplementary Note A11]
The first conductive portion includes a deficient portion deficient in a plan view,
The optical device according to attachment A10, wherein at least a part of the defect portion in the first conductive portion overlaps the air gap in plan view.
[Supplementary Note A12]
The device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire. 1 joined to the second conductive portion of the conductive portion,
The second end of the first wire is located between the first end of the first wire and the air gap of the first member in a first direction orthogonal to the first surface. The optical device according to A10 or Supplementary note A11.
[Supplementary Note A13]
It further comprises a second conductive portion formed on the second surface of the first member,
The second conductive portion includes a conductive portion including a defective portion lost in plan view,
The optical device according to any one of appendices A10 to A12, wherein at least a part of the defect part of the conductive part in the second conductive part overlaps the air gap in a plan view.
[Supplementary Note A14]
The optical device according to attachment A13, wherein an edge of the defective portion of the conductive portion in the second conductive portion has a closed shape surrounding the air gap in a plan view.
[Supplementary Note A15]
The first member includes a first area and a second area adjacent to each other in a first direction across a virtual straight line,
The virtual straight line extends in the second direction, passing through the center of the first member in plan view,
The optical according to appendix A8, wherein the first direction is orthogonal to a direction orthogonal to the first surface, and the second direction is orthogonal to a direction orthogonal to the first surface and the first direction. apparatus.
[Supplementary Note A16]
In plan view, the area where the optical element and the first region overlap is larger than half of the area of the optical element in plan view,
The device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire. 1 joined to the second conductive portion of the conductive portion,
The optical device according to attachment A15, wherein the second end of the first wire is located in the second region in a plan view.
[Supplementary Note A17]
The optical device according to attachment A16, wherein in plan view the first wire extends across the first direction.
[Supplementary Note A18]
The optical device according to attachment A16 or A17, wherein in plan view at least a portion of the at least one positioning portion overlaps the second region.
[Supplementary Note A19]
The at least one positioning unit includes a first positioning unit and a second positioning unit,
The first positioning portion overlaps the first conductive portion of the first conductive portion in plan view, and the second positioning portion is in the second conductive portion of the first conductive portion in plan view The optical device according to any of Appendices A16 to A18, which overlaps.
[Supplementary Note A20]
The optical element includes a plurality of light emitting units, and the plurality of light emitting units are separated from each other in plan view, and each of the plurality of light emitting units emits light.
The light emitting device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and in a plan view, the first end of the plurality of light emitting portions The optical device according to statement A16, located between two light emitting parts of
[Supplementary Note A21]
A second conductive portion formed on the second surface of the first member;
At least one third conductive portion penetrating the first member and connected to the first conductive portion and the second conductive portion;
The optical apparatus according to attachment A8, wherein the at least one third conductive portion includes at least one first portion connected to the first conductive portion of the first conductive portion.
[Supplementary Note A22]
The at least one third conductive portion includes at least one second portion connected to the second conductive portion of the first conductive portion,
The optical device according to attachment A21, wherein the number of the at least one first portion is larger than the number of the at least one second portion.
[Supplementary Note A23]
The second member has an inner surface surrounding the optical element,
The inner surface includes a first portion and a second portion,
The optical device according to attachment A7, wherein the second portion is connected to the first portion, and is curved from the optical element toward the outer side of the second member in plan view.
[Supplementary Note A24]
It further comprises a member fixed to the first member and transmitting light from the optical element,
The optical device according to appendix A7, wherein the member transmitting light has a portion overlapping the optical element in plan view.
[Supplementary Note A25]
An optical device according to appendix A1,
A wiring substrate on which the optical device is disposed;
A bonding portion for bonding the optical device and the wiring substrate;
And the member having the irradiation target area.
 〔第2実施形態〕
 図28~図34に基づき、本開示の第2実施形態にかかる半導体レーザ装置A10について説明する。第2実施形態~第5実施形態で用いる符号は、第1実施形態で用いた符号とは特に相関は無い。半導体レーザ装置A10は、第1端子11、第2端子12、半導体レーザ素子30、ワイヤ40、第1透光部材51および第2透光部材52を備える。
Second Embodiment
A semiconductor laser device A10 according to a second embodiment of the present disclosure will be described based on FIGS. 28 to 34. The codes used in the second to fifth embodiments have no particular correlation with the codes used in the first embodiment. The semiconductor laser device A10 includes a first terminal 11, a second terminal 12, a semiconductor laser element 30, a wire 40, a first light transmitting member 51, and a second light transmitting member 52.
 図28は、理解の便宜上、第2透光部材52を透過している。図28で透過した第2透光部材52を想像線(想像線)で示している。図34は、半導体レーザ素子30に加え、ワイヤ40および第1透光部材51を図示している。 FIG. 28 transmits the second light transmitting member 52 for the convenience of understanding. The second light transmitting member 52 transmitted in FIG. 28 is indicated by an imaginary line (imaginary line). FIG. 34 illustrates the wire 40 and the first light transmitting member 51 in addition to the semiconductor laser device 30.
 図28~図34に示す半導体レーザ装置A10は、スマートフォンなどの様々な電子機器の配線基板に表面実装される形式のものである。図28に示すように、半導体レーザ素子30の厚さ方向z視(以下「平面視」という。)において、半導体レーザ装置A10は矩形状である。ここで、説明の便宜上、半導体レーザ素子30の厚さ方向z(以下「厚さ方向z」に略称する。)に直角である半導体レーザ装置A10の長辺が延びる方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直角である半導体レーザ装置A10の短辺が延びる方向を「第2方向y」と呼ぶ。 The semiconductor laser device A10 shown in FIGS. 28 to 34 is of a type mounted on the surface of a wiring board of various electronic devices such as a smartphone. As shown in FIG. 28, in the thickness direction z of the semiconductor laser element 30 (hereinafter referred to as “plan view”), the semiconductor laser device A10 has a rectangular shape. Here, for convenience of explanation, the direction in which the long side of the semiconductor laser device A10 extends at right angles to the thickness direction z of the semiconductor laser device 30 (hereinafter abbreviated to “thickness direction z”) is referred to as “first direction x”. Call it The direction in which the short side of the semiconductor laser device A10 extends at right angles to both the thickness direction z and the first direction x is referred to as a "second direction y".
 第1端子11は、図31および図32に示すように、半導体レーザ素子30が電気的に接合されている。第1端子11は、外部に位置する配線基板と、半導体レーザ素子30との導電経路の一部を構成する導電部材である。第1端子11は、半導体レーザ装置A10のカソードである。第1端子11は、Cu(銅)などからなる金属製のリードフレームから構成される。図28~図32に示すように、第1端子11は、第1接続面11A、第1実装面11B、第1側面11C、第1湾曲部11D、および2つの突出部11Eを有する。 As shown in FIGS. 31 and 32, the first terminal 11 has a semiconductor laser element 30 electrically joined. The first terminal 11 is a conductive member that constitutes a part of the conductive path between the wiring substrate located outside and the semiconductor laser element 30. The first terminal 11 is a cathode of the semiconductor laser device A10. The first terminal 11 is formed of a metal lead frame made of Cu (copper) or the like. As shown in FIGS. 28 to 32, the first terminal 11 has a first connection surface 11A, a first mounting surface 11B, a first side surface 11C, a first curved portion 11D, and two protrusions 11E.
 図30~図32に示すように、第1接続面11Aは、厚さ方向zにおいて半導体レーザ素子30が位置する側を向く。第1接続面11Aには、半導体レーザ素子30が電気的に接合されている。半導体レーザ装置A10では、第1接続面11Aは、Ag(銀)めっき層により覆われている。当該めっき層は、電解めっきにより形成される。 As shown in FIGS. 30 to 32, the first connection surface 11A faces the side where the semiconductor laser device 30 is located in the thickness direction z. The semiconductor laser device 30 is electrically bonded to the first connection surface 11A. In the semiconductor laser device A10, the first connection surface 11A is covered with an Ag (silver) plated layer. The plating layer is formed by electrolytic plating.
 図30~図32に示すように、第1実装面11Bは、第1接続面11Aとは反対側を向く。第1実装面11Bは、半導体レーザ装置A10を配線基板に実装する際に利用される。半導体レーザ装置A10では、第1実装面11Bは、Sn(錫)を主成分とする合金めっき層により覆われている。当該めっき層は、電解めっきにより形成される。 As shown in FIGS. 30 to 32, the first mounting surface 11B faces the opposite side to the first connection surface 11A. The first mounting surface 11B is used when mounting the semiconductor laser device A10 on a wiring board. In the semiconductor laser device A10, the first mounting surface 11B is covered with an alloy plating layer containing Sn (tin) as a main component. The plating layer is formed by electrolytic plating.
 図28~図32に示すように、第1側面11Cは、第1接続面11Aにつながり、かつ第1方向xおよび第2方向yの双方を向く。第1側面11Cは、第1方向xを向く2つの領域と、第2方向yを向く2つの領域とを有する。 As shown in FIGS. 28 to 32, the first side surface 11C is connected to the first connection surface 11A and faces in both the first direction x and the second direction y. The first side surface 11C has two regions facing in the first direction x and two regions facing in the second direction y.
 図28~図32に示すように、第1湾曲部11Dは、第1実装面11Bおよび第1側面11Cの双方から第1端子11の内部に陥入している。第1湾曲部11Dは、平面視において第1側面11Cに沿って形成されている。第1湾曲部11Dは、曲面をなしている。第1湾曲部11Dは、リードフレームにハーフエッチングを施すことにより形成される。 As shown in FIGS. 28 to 32, the first bending portion 11D intrudes into the inside of the first terminal 11 from both the first mounting surface 11B and the first side surface 11C. The first curved portion 11D is formed along the first side surface 11C in a plan view. The first curved portion 11D has a curved surface. The first curved portion 11D is formed by performing half etching on the lead frame.
 図28~図32(図31を除く)に示すように、2つの突出部11Eは、第2方向yを向く第1側面11Cの2つの領域から第2方向yに突出している。2つの突出部11Eは、第1端子11をリードフレームに支持させるための支持部材の一部である。 As shown in FIGS. 28 to 32 (except for FIG. 31), the two protrusions 11E protrude in the second direction y from the two regions of the first side surface 11C facing the second direction y. The two protrusions 11E are part of a support member for supporting the first terminal 11 on the lead frame.
 第2端子12は、図28に示すように、第1方向xにおいて第1端子11に対して離間している。第2端子12には、ワイヤ40が接続されている。第2端子12は、ワイヤ40とともに、外部に位置する配線基板と、半導体レーザ素子30との導電経路の一部を構成する導電部材である。第2端子12は、半導体レーザ装置A10のアノードである。第2端子12は、Cuなどからなる金属製のリードフレームから構成される。半導体レーザ装置A10では、第1端子11および第2端子12は、同一のリードフレームから構成される。図28~図32に示すように、第2端子12は、第2接続面12A、第2実装面12B、第2側面12C、第2湾曲部12D、および2つの突出部12Eを有する。 The second terminal 12 is spaced apart from the first terminal 11 in the first direction x, as shown in FIG. The wire 40 is connected to the second terminal 12. The second terminal 12 is a conductive member that constitutes a part of the conductive path between the semiconductor laser element 30 and the wiring substrate located outside with the wire 40. The second terminal 12 is an anode of the semiconductor laser device A10. The second terminal 12 is formed of a metal lead frame made of Cu or the like. In the semiconductor laser device A10, the first terminal 11 and the second terminal 12 are formed of the same lead frame. As shown in FIGS. 28 to 32, the second terminal 12 has a second connection surface 12A, a second mounting surface 12B, a second side surface 12C, a second curved portion 12D, and two protrusions 12E.
 図30~図32に示すように、第2接続面12Aは、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側(半導体レーザ素子30が位置する側)を向く。第2接続面12Aには、ワイヤ40が接続されている。半導体レーザ装置A10では、第2接続面12Aは、Agめっき層により覆われている。当該めっき層は、電解めっきにより形成される。 As shown in FIGS. 30 to 32, the second connection surface 12A faces the side (the side on which the semiconductor laser element 30 is located) to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. The wire 40 is connected to the second connection surface 12A. In the semiconductor laser device A10, the second connection surface 12A is covered with an Ag plating layer. The plating layer is formed by electrolytic plating.
 図30~図32に示すように、第2実装面12Bは、第2接続面12Aとは反対側を向く。第2実装面12Bは、半導体レーザ装置A10を配線基板に実装する際に利用される。半導体レーザ装置A10では、第2実装面12Bは、Snを主成分とする合金めっき層により覆われている。当該めっき層は、電解めっきにより形成される。 As shown in FIGS. 30 to 32, the second mounting surface 12B faces away from the second connection surface 12A. The second mounting surface 12B is used when mounting the semiconductor laser device A10 on a wiring board. In the semiconductor laser device A10, the second mounting surface 12B is covered with an alloy plating layer containing Sn as a main component. The plating layer is formed by electrolytic plating.
 図28~図32に示すように、第2側面12Cは、第2接続面12Aにつながり、かつ第1方向xおよび第2方向yの双方を向く。第2側面12Cは、第1方向xを向く2つの領域と、第2方向yを向く2つの領域とを有する。 As shown in FIGS. 28 to 32, the second side surface 12C is connected to the second connection surface 12A and faces in both the first direction x and the second direction y. The second side surface 12C has two regions facing in the first direction x and two regions facing in the second direction y.
 図28~図32に示すように、第2湾曲部12Dは、第2実装面12Bおよび第2側面12Cの双方から第2端子12の内部に陥入している。第2湾曲部12Dは、平面視において第2側面12Cに沿って形成されている。第2湾曲部12Dは、曲面をなしている。第2湾曲部12Dは、リードフレームにハーフエッチングを施すことにより形成される。 As shown in FIGS. 28 to 32, the second curved portion 12D intrudes into the interior of the second terminal 12 from both the second mounting surface 12B and the second side surface 12C. The second curved portion 12D is formed along the second side surface 12C in a plan view. The second curved portion 12D has a curved surface. The second curved portion 12D is formed by subjecting the lead frame to half etching.
 図28~図32(図31を除く)に示すように、2つの突出部12Eは、第2方向yを向く第2側面12Cの2つの領域から第2方向yに突出している。2つの突出部12Eは、第2端子12をリードフレームに支持させるための支持部材の一部である。 As shown in FIGS. 28 to 32 (except FIG. 31), the two protrusions 12E protrude in the second direction y from the two regions of the second side surface 12C facing the second direction y. The two protrusions 12E are part of a support member for supporting the second terminal 12 on the lead frame.
 半導体レーザ素子30は、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側にレーザ光を出射する半導体素子である。半導体レーザ素子30は、波長が800nm以上の赤外線(infrared:IR)を発する。半導体レーザ素子30は、VCSEL(Vertical Cavity Surface Emitting Laser)である。図28および図31に示すように、半導体レーザ装置A10では、半導体レーザ素子30は、平面視におけるその長辺が第1方向xに沿うように第1端子11に電気的に接合されている。図33および図34に示すように、半導体レーザ素子30は、複数の発光領域30A、素子側面30B、第1電極31および第2電極32を有する。 The semiconductor laser element 30 is a semiconductor element that emits laser light to the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. The semiconductor laser device 30 emits infrared (IR) light having a wavelength of 800 nm or more. The semiconductor laser element 30 is a vertical cavity surface emitting laser (VCSEL). As shown in FIGS. 28 and 31, in the semiconductor laser device A10, the semiconductor laser device 30 is electrically joined to the first terminal 11 such that the long side in a plan view extends along the first direction x. As shown in FIGS. 33 and 34, the semiconductor laser device 30 has a plurality of light emitting regions 30A, device side surfaces 30B, a first electrode 31, and a second electrode 32.
 図33および図34に示すように、複数の発光領域30Aは、平面視において互いに離間して形成された突起状(メサ状)である。複数の発光領域30Aは、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側に突出している。各々の発光領域30Aから、レーザ光が出射される。複数の発光領域30Aは、第2電極32により覆われている。第2電極32は、厚さ方向zに貫通し、かつ各々の発光領域30Aに対応した複数の出射口321を有する。レーザ光は、各々の発光領域30Aから出射口321を通って出射される。 As shown in FIGS. 33 and 34, the plurality of light emitting regions 30A are in the form of protrusions (mesa shapes) formed to be separated from each other in plan view. The plurality of light emitting regions 30A protrude to the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. Laser light is emitted from each of the light emitting regions 30A. The plurality of light emitting regions 30A are covered by the second electrode 32. The second electrode 32 has a plurality of outlets 321 penetrating in the thickness direction z and corresponding to the respective light emitting areas 30A. Laser light is emitted from each of the light emitting regions 30A through the emission port 321.
 図31~図33に示すように、素子側面30Bは、厚さ方向zに対して直交する方向、すなわち第1方向xおよび第2方向yを向く。素子側面30Bは、第1方向xを向く2つの領域と、第2方向yを向く2つの領域とを有する。 As shown in FIGS. 31 to 33, the element side surface 30B faces in the direction orthogonal to the thickness direction z, that is, the first direction x and the second direction y. The element side surface 30B has two regions directed in the first direction x and two regions directed in the second direction y.
 図34に示すように、半導体レーザ素子30は、厚さ方向zにおいて半導体基板301の上に、第1半導体層302、活性層303、第2半導体層304の順に積層されている。第2半導体層304の表面は、絶縁層305により覆われている。第2半導体層304の内部には電流狭窄層306が配置されている。複数の発光領域30Aの構成要素には、活性層303、第2半導体層304、絶縁層305および電流狭窄層306が含まれる。 As shown in FIG. 34, the semiconductor laser device 30 is stacked in the order of the first semiconductor layer 302, the active layer 303, and the second semiconductor layer 304 on the semiconductor substrate 301 in the thickness direction z. The surface of the second semiconductor layer 304 is covered by the insulating layer 305. A current confinement layer 306 is disposed inside the second semiconductor layer 304. The components of the plurality of light emitting regions 30A include the active layer 303, the second semiconductor layer 304, the insulating layer 305, and the current confinement layer 306.
 半導体基板301は、n型半導体からなる。半導体基板301の主成分は、GaAs(ヒ化ガリウム)などの化合物半導体である。図34に示すように、半導体基板301の上面には、第1半導体層302が積層されている。第1半導体層302は、n型半導体からなり、その構成要素には、n型DBR(Distributed Bragg Reflector:分布ブラッグ反射鏡)層を含む。n型DBR層は、厚さがλp/4(λp:活性層303から放出される光の波長)のAlGaAs層であってそれぞれ屈折率が異なる2つの層を一組としたものを、複数積層させることにより構成される。 The semiconductor substrate 301 is made of an n-type semiconductor. The main component of the semiconductor substrate 301 is a compound semiconductor such as GaAs (gallium arsenide). As shown in FIG. 34, the first semiconductor layer 302 is stacked on the top surface of the semiconductor substrate 301. The first semiconductor layer 302 is made of an n-type semiconductor, and its constituent elements include an n-type DBR (Distributed Bragg Reflector) layer. The n-type DBR layer is an AlGaAs layer having a thickness of λp / 4 (λp: wavelength of light emitted from the active layer 303), and a plurality of stacked layers of two layers having different refractive indices. It is configured by
 第1電極31は、半導体基板301の下面に配置されている。第1電極31は、半導体レーザ素子30のカソードである。第1電極31は、たとえばAu(金)を含む金属層であり、蒸着により形成される。図34に示すように、第1電極31は、半導体基板301を介して第1半導体層302に導通している。また、第1電極31は、導電接合層39を介して第1端子11の第1接続面11Aに電気的に接合されている。このため、第1端子11は、第1半導体層302に導通している。なお、導電接合層39は、たとえば銀が含有された合成樹脂(いわゆるAgペースト)である。 The first electrode 31 is disposed on the lower surface of the semiconductor substrate 301. The first electrode 31 is a cathode of the semiconductor laser device 30. The first electrode 31 is a metal layer containing, for example, Au (gold), and is formed by vapor deposition. As shown in FIG. 34, the first electrode 31 is electrically connected to the first semiconductor layer 302 through the semiconductor substrate 301. The first electrode 31 is electrically bonded to the first connection surface 11A of the first terminal 11 via the conductive bonding layer 39. Therefore, the first terminal 11 is electrically connected to the first semiconductor layer 302. The conductive bonding layer 39 is, for example, a synthetic resin (so-called Ag paste) containing silver.
 活性層303は、第1半導体層302の上に積層されている。活性層303は、自然放出および誘導放出により波長がλpである光を放出する化合物半導体である。λpの長さは、940nmまたは850nmである。 The active layer 303 is stacked on the first semiconductor layer 302. The active layer 303 is a compound semiconductor that emits light with a wavelength of λp by spontaneous emission and stimulated emission. The length of λp is 940 nm or 850 nm.
 第2半導体層304は、活性層303の上に積層されている。第2半導体層304は、p型半導体からなり、その構成要素にはp型DBR層を含む。p型DBR層は、厚さがλp/4(λp:活性層303から放出される光の波長)のAlGaAs層であってそれぞれ屈折率が異なる2つの層を一組としたものを、複数積層させることにより構成される。活性層303から発せられた光は、第1半導体層302に含まれるn型DBR層と、第2半導体層304に含まれるp型DBR層との双方により厚さ方向に反射されることにより共振する。共振した光がレーザ光となる。 The second semiconductor layer 304 is stacked on the active layer 303. The second semiconductor layer 304 is made of a p-type semiconductor, and the component includes a p-type DBR layer. The p-type DBR layer is an AlGaAs layer having a thickness of λp / 4 (λp: wavelength of light emitted from the active layer 303), and a plurality of stacked layers in which two layers having different refractive indices are combined. It is configured by The light emitted from the active layer 303 is reflected in the thickness direction by both the n-type DBR layer included in the first semiconductor layer 302 and the p-type DBR layer included in the second semiconductor layer 304, thereby causing resonance. Do. The resonated light becomes laser light.
 絶縁層305は、第1半導体層302および第2半導体層304のそれぞれの表面を覆っている。絶縁層305は、波長が800nm以上の光を透過させる。絶縁層305の構成材料は、たとえばSiO2である。図34に示すように、絶縁層305は、厚さ方向zに貫通し、かつ各々の発光領域30Aに対応した複数の開口305Aを有する。各々の開口305Aに第2電極32が通っている。 The insulating layer 305 covers the surface of each of the first semiconductor layer 302 and the second semiconductor layer 304. The insulating layer 305 transmits light with a wavelength of 800 nm or more. The constituent material of insulating layer 305 is, for example, SiO 2 . As shown in FIG. 34, the insulating layer 305 has a plurality of openings 305A penetrating in the thickness direction z and corresponding to the respective light emitting regions 30A. The second electrode 32 passes through each of the openings 305A.
 電流狭窄層306は、第2半導体層304の内部に配置され、かつ厚さ方向zにおいて活性層303の近傍に位置している。電流狭窄層306は、Al(アルミニウム)を多く含み、かつ酸化されやすい材料からなる。電流狭窄層306は、第2半導体層304に含まれるp型DBR層の一部を酸化させることにより形成される。なお、電流狭窄層306は、イオン注入により形成することができる。図34に示すように、電流狭窄層306は、厚さ方向zに貫通する開口306Aを有する。開口306Aは、平面視において第2電極32の出射口321に重なっている。開口306Aに第2半導体層304が通っている。これにより、開口306Aに厚さ方向zに沿った電流が流れる。 The current confinement layer 306 is disposed inside the second semiconductor layer 304 and located in the vicinity of the active layer 303 in the thickness direction z. The current confinement layer 306 contains a large amount of Al (aluminum) and is made of a material that is easily oxidized. The current confinement layer 306 is formed by oxidizing a part of the p-type DBR layer included in the second semiconductor layer 304. Note that the current confinement layer 306 can be formed by ion implantation. As shown in FIG. 34, the current confinement layer 306 has an opening 306A penetrating in the thickness direction z. The opening 306A overlaps the exit opening 321 of the second electrode 32 in plan view. The second semiconductor layer 304 passes through the opening 306A. Thereby, current flows along the thickness direction z through the opening 306A.
 第2電極32は、絶縁層305を覆うように配置されている。第2電極32は、半導体レーザ素子30のアノードである。第2電極32は、たとえばAuを含む金属層であり、蒸着により形成される。先述した第2電極32の各々の出射口321からは、絶縁層305が露出している。第2電極32は、絶縁層305に形成された複数の開口305Aを通じて第2半導体層304に導通している。また、第2電極32は、厚さ方向zにおいて半導体レーザ素子30から遠ざかる側(第1端子11の第1接続面11Aが向く側)に突出して形成されたバンプ部322を有する。バンプ部322は、ワイヤボンディングの工程において得られるボールボンディング部から構成される。 The second electrode 32 is disposed to cover the insulating layer 305. The second electrode 32 is an anode of the semiconductor laser device 30. The second electrode 32 is a metal layer containing, for example, Au, and is formed by vapor deposition. The insulating layer 305 is exposed from the exit 321 of each of the second electrodes 32 described above. The second electrode 32 is electrically connected to the second semiconductor layer 304 through the plurality of openings 305A formed in the insulating layer 305. Further, the second electrode 32 has a bump portion 322 which is formed to protrude to the side (the side to which the first connection surface 11A of the first terminal 11 faces) away from the semiconductor laser element 30 in the thickness direction z. The bump part 322 is comprised from the ball bonding part obtained in the process of wire bonding.
 ワイヤ40は、図28および図31に示すように、半導体レーザ素子30の第2電極32と、第2端子12とを接続している。ワイヤ40は、第2端子12とともに、外部に位置する配線基板と、半導体レーザ素子30との導電経路の一部を構成する導電部材である。ワイヤ40の構成材料は、たとえばAuである。ワイヤ40は、ワイヤボンディングにより形成される。ワイヤ40は、第2端子12に接続された第1ボンディング部41と、第2電極32に接続された第2ボンディング部42とを有する。第1ボンディング部41は、ボールボンディング部である。半導体レーザ装置A10では、第1ボンディング部41は、第2端子12の第2接続面12Aに接続されている。第2ボンディング部42は、ステッチボンディング部である。図34に示すように、第2ボンディング部42は、第2電極32のバンプ部322に接続されている。 The wire 40 connects the second electrode 32 of the semiconductor laser device 30 and the second terminal 12 as shown in FIG. 28 and FIG. The wire 40 is a conductive member that constitutes a part of the conductive path between the semiconductor laser element 30 and the wiring board located outside with the second terminal 12. The constituent material of the wire 40 is, for example, Au. The wire 40 is formed by wire bonding. The wire 40 has a first bonding portion 41 connected to the second terminal 12 and a second bonding portion 42 connected to the second electrode 32. The first bonding portion 41 is a ball bonding portion. In the semiconductor laser device A <b> 10, the first bonding portion 41 is connected to the second connection surface 12 </ b> A of the second terminal 12. The second bonding portion 42 is a stitch bonding portion. As shown in FIG. 34, the second bonding portion 42 is connected to the bump portion 322 of the second electrode 32.
 第1透光部材51は、図31、図32および図34に示すように、半導体レーザ素子30に支持され、かつ平面視において半導体レーザ素子30の複数の発光領域30Aに重なっている。「半導体レーザ素子30に支持」とは、半導体レーザ素子30に接することにより半導体レーザ素子30に支持された構成の他に、他の部材を介して間接的に半導体レーザ素子30に支持された構成を含む。半導体レーザ装置A10では、第1透光部材51は、半導体レーザ素子30の第2電極32に接することにより、半導体レーザ素子30に支持されている。また、他の部材を介して間接的に半導体レーザ素子30に支持された構成では、第2電極32を覆うポリイミドなどが当該他の部材として挙げられる。第1透光部材51は、透光性かつ電気絶縁性を有する。第1透光部材51は、波長が800nm以上の光を透過させる。第1透光部材51のヤング率(弾性係数)は、第2透光部材52のヤング率よりも低い。第1透光部材51の構成材料は、シリコーンゲルなどのシリコーンである。なお、第1透光部材51の構成材料には、シリコーンと同程度のヤング率であるポリイミドを適用してもよいが、この場合、各々の第2電極32の出射口321に対応した複数の開口をフォトリソグラフィによりポリイミドに設ける必要がある。一方、第1透光部材51の構成材料にシリコーンを適用した場合、当該複数の開口を設ける必要はない。したがって、半導体レーザ装置A10の製造工程の観点から、第1透光部材51の構成材料は、シリコーンの方がポリイミドよりも好ましい。半導体レーザ装置A10では、第1透光部材51は、第2電極32のバンプ部322と、ワイヤ40の第2ボンディング部42とを覆っている。また、半導体レーザ装置A10では、第1透光部材51は、半導体レーザ素子30を第1端子11に電気的に接合させ、かつワイヤ40を第2端子12と第2電極32とに接続させた後、ディスペンサを用いた定量塗布により形成される。 As shown in FIGS. 31, 32, and 34, the first light transmitting member 51 is supported by the semiconductor laser device 30, and overlaps the plurality of light emitting regions 30A of the semiconductor laser device 30 in plan view. “Supported by the semiconductor laser device 30” refers to a configuration supported by the semiconductor laser device 30 indirectly via other members, in addition to the configuration supported by the semiconductor laser device 30 by being in contact with the semiconductor laser device 30. including. In the semiconductor laser device A <b> 10, the first light transmitting member 51 is supported by the semiconductor laser device 30 by being in contact with the second electrode 32 of the semiconductor laser device 30. Further, in a configuration in which the semiconductor laser element 30 is indirectly supported via another member, a polyimide covering the second electrode 32 or the like can be mentioned as the other member. The first light transmitting member 51 is light transmitting and electrically insulating. The first light transmitting member 51 transmits light having a wavelength of 800 nm or more. The Young's modulus (elastic coefficient) of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. The constituent material of the first light transmitting member 51 is silicone such as silicone gel. As a constituent material of the first light transmitting member 51, polyimide having a Young's modulus similar to that of silicone may be applied. In this case, a plurality of the light emitting openings 321 of the respective second electrodes 32 are provided. The openings need to be provided in the polyimide by photolithography. On the other hand, when silicone is applied to the constituent material of the first light transmitting member 51, it is not necessary to provide the plurality of openings. Therefore, in terms of the manufacturing process of the semiconductor laser device A10, silicone is more preferable than polyimide as a constituent material of the first light transmitting member 51. In the semiconductor laser device A <b> 10, the first light transmitting member 51 covers the bump portion 322 of the second electrode 32 and the second bonding portion 42 of the wire 40. Further, in the semiconductor laser device A10, the first light transmitting member 51 electrically joins the semiconductor laser element 30 to the first terminal 11, and connects the wire 40 to the second terminal 12 and the second electrode 32. It is then formed by quantitative application using a dispenser.
 第2透光部材52は、図31および図32に示すように、第1透光部材51を挟んで半導体レーザ素子30の複数の発光領域30Aとは反対側に位置する領域を有する。当該領域の構成は、第1透光部材51に接する構成の他に、第1透光部材51と当該領域との間に他の部材が介在する構成を含む。半導体レーザ装置A10では、当該領域は、第1透光部材51に接している。第2透光部材52は、透光性かつ電気絶縁性を有する。第2透光部材52は、波長が800nm以上の光を透過させる。第2透光部材52のヤング率は、第1透光部材51のヤング率よりも高い。 As shown in FIGS. 31 and 32, the second light transmitting member 52 has a region located on the opposite side of the plurality of light emitting regions 30A of the semiconductor laser element 30 with the first light transmitting member 51 interposed therebetween. The configuration of the region includes, in addition to the configuration in contact with the first light transmitting member 51, a configuration in which another member is interposed between the first light transmitting member 51 and the region. In the semiconductor laser device A <b> 10, the region is in contact with the first light transmitting member 51. The second light transmitting member 52 is light transmitting and electrically insulating. The second light transmitting member 52 transmits light having a wavelength of 800 nm or more. The Young's modulus of the second light transmitting member 52 is higher than the Young's modulus of the first light transmitting member 51.
 図28~図32に示すように、半導体レーザ装置A10では、第2透光部材52は、ワイヤ40と、第1端子11および第2端子12のそれぞれ一部ずつとを覆っている。第2透光部材52の構成材料は、たとえばエポキシ樹脂またはシリコーン樹脂である。半導体レーザ装置A10では、第2透光部材52は、モールド成形により形成される。また、半導体レーザ装置A10では、第1端子11および第2端子12は、第2透光部材52に支持されている。第1端子11の第1湾曲部11Dと、第2端子12の第2湾曲部12Dとには、それぞれ第2透光部材52の一部が位置している。第2透光部材52は、頂面52A、底面52B、2つの第1側面52C、および2つの第2側面52Dを有する。 As shown in FIGS. 28 to 32, in the semiconductor laser device A10, the second light transmitting member 52 covers the wire 40 and a part of each of the first terminal 11 and the second terminal 12. The constituent material of the second light transmitting member 52 is, for example, an epoxy resin or a silicone resin. In the semiconductor laser device A10, the second light transmitting member 52 is formed by molding. In the semiconductor laser device A <b> 10, the first terminal 11 and the second terminal 12 are supported by the second light transmitting member 52. In the first curved portion 11D of the first terminal 11 and the second curved portion 12D of the second terminal 12, a part of the second light transmitting member 52 is positioned. The second light transmitting member 52 has a top surface 52A, a bottom surface 52B, two first side surfaces 52C, and two second side surfaces 52D.
 図30~図32に示すように、頂面52Aは、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側を向く。頂面52Aの周縁は、平面視における半導体レーザ装置A10の周縁に一致している。頂面52Aから、半導体レーザ素子30から出射されたレーザ光が透過する。また、図30~図32に示すように、底面52Bは、頂面52Aとは反対側を向く。図29に示すように、半導体レーザ装置A10では、底面52Bから、第1端子11の第1実装面11Bと、第2端子12の第2実装面12Bとが露出している。 As shown in FIGS. 30 to 32, the top surface 52A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. The peripheral edge of the top surface 52A coincides with the peripheral edge of the semiconductor laser device A10 in plan view. The laser light emitted from the semiconductor laser device 30 is transmitted from the top surface 52A. Further, as shown in FIGS. 30 to 32, the bottom surface 52B faces the opposite side to the top surface 52A. As shown in FIG. 29, in the semiconductor laser device A10, the first mounting surface 11B of the first terminal 11 and the second mounting surface 12B of the second terminal 12 are exposed from the bottom surface 52B.
 図28~図31に示すように、2つの第1側面52Cは、第1方向xを向き、かつ第1方向xにおいて互いに離間している。厚さ方向zにおける第1側面52Cの両端は、頂面52Aおよび底面52Bにつながっている。また、図28~図32(図31を除く)に示すように、2つの第2側面52Dは、第2方向yを向き、かつ第2方向yにおいて互いに離間している。厚さ方向zにおける第2側面52Dの両端は、頂面52Aおよび底面52Bにつながっている。第1方向xにおける第2側面52Dの両端は、2つの第1側面52Cにつながっている。半導体レーザ装置A10では、各々の第2側面52Dから、第1端子11の突出部11Eと、第2端子12の突出部12Eとが露出している。 As shown in FIGS. 28 to 31, the two first side faces 52C face in the first direction x and are separated from each other in the first direction x. Both ends of the first side surface 52C in the thickness direction z are connected to the top surface 52A and the bottom surface 52B. Further, as shown in FIGS. 28 to 32 (except for FIG. 31), the two second side surfaces 52D face in the second direction y and are separated from each other in the second direction y. Both ends of the second side surface 52D in the thickness direction z are connected to the top surface 52A and the bottom surface 52B. Both ends of the second side surface 52D in the first direction x are connected to the two first side surfaces 52C. In the semiconductor laser device A10, the protruding portion 11E of the first terminal 11 and the protruding portion 12E of the second terminal 12 are exposed from the respective second side surfaces 52D.
 〔第1変形例〕
 次に、図35および図36に基づき、本開示の第2実施形態の第1変形例にかかる半導体レーザ装置A11について説明する。なお、図35は、理解の便宜上、第2透光部材52を透過している。図35で透過した第2透光部材52を想像線で示している。
First Modification
Next, a semiconductor laser device A11 according to a first modification of the second embodiment of the present disclosure will be described based on FIGS. 35 and 36. FIG. 35 passes through the second light transmitting member 52 for the convenience of understanding. The second light transmitting member 52 transmitted in FIG. 35 is indicated by an imaginary line.
 半導体レーザ装置A11では、第1透光部材51の構成が、先述した半導体レーザ装置A10と異なる。 In the semiconductor laser device A11, the configuration of the first light transmitting member 51 is different from that of the semiconductor laser device A10 described above.
 図35および図36に示すように、第1透光部材51は、半導体レーザ素子30の素子側面30Bを覆っている。このため、半導体レーザ装置A11では、第1透光部材51が半導体レーザ素子30の全体を覆う構成となっている。半導体レーザ素子30と第2透光部材52との間には、第1透光部材51が介在している。 As shown in FIGS. 35 and 36, the first light transmitting member 51 covers the device side surface 30B of the semiconductor laser device 30. Therefore, in the semiconductor laser device A11, the first light transmitting member 51 covers the entire semiconductor laser element 30. A first light transmitting member 51 intervenes between the semiconductor laser element 30 and the second light transmitting member 52.
 〔第2変形例〕
 次に、図37に基づき、本開示の第2実施形態の第2変形例にかかる半導体レーザ装置A12について説明する。なお、図37は、理解の便宜上、第2透光部材52を透過している。図37で透過した第2透光部材52を想像線で示している。
Second Modified Example
Next, a semiconductor laser device A12 according to a second modification of the second embodiment of the present disclosure will be described based on FIG. Note that FIG. 37 transmits the second light transmitting member 52 for the convenience of understanding. The second light transmitting member 52 transmitted in FIG. 37 is indicated by an imaginary line.
 半導体レーザ装置A12では、半導体レーザ素子30の接合形態が、先述した半導体レーザ装置A10と異なる。 In the semiconductor laser device A12, the bonding mode of the semiconductor laser element 30 is different from that of the semiconductor laser device A10 described above.
 図37に示すように、半導体レーザ装置A10では、半導体レーザ素子30は、平面視におけるその短辺が第1方向xに沿うように第1端子11に電気的に接合されている。 As shown in FIG. 37, in the semiconductor laser device A10, the semiconductor laser device 30 is electrically joined to the first terminal 11 so that the short side in a plan view extends along the first direction x.
 〔第3変形例〕
 次に、図38に基づき、本開示の第2実施形態の第3変形例にかかる半導体レーザ装置A13について説明する。なお、図38の断面位置は、図31の断面位置と同一である。
Third Modified Example
Next, a semiconductor laser device A13 according to a third modification of the second embodiment of the present disclosure will be described based on FIG. The cross-sectional position in FIG. 38 is the same as the cross-sectional position in FIG.
 図38に示すように、半導体レーザ装置A13では、第1透光部材51の形状は、半導体レーザ装置A10の第1透光部材51のように厚さ方向zに膨出したものではなく、平坦なものとなっている。半導体レーザ装置A13では、半導体レーザ素子30の第2電極32のバンプ部322と、ワイヤ40の第2ボンディング部42とは、第1透光部材51から露出している。第1透光部材51は、半導体レーザ装置A13の前工程(ウエハプロセス)において半導体レーザ素子30に形成される。第1透光部材51は、マスクを用いて第2電極32に接するように印刷をすることにより形成される。第1透光部材51の形成では、第1透光部材51がバンプ部322を覆わないようにする。 As shown in FIG. 38, in the semiconductor laser device A13, the shape of the first light transmitting member 51 is not bulged in the thickness direction z like the first light transmitting member 51 of the semiconductor laser device A10, and is flat. It has become. In the semiconductor laser device A13, the bump portion 322 of the second electrode 32 of the semiconductor laser element 30 and the second bonding portion 42 of the wire 40 are exposed from the first light transmitting member 51. The first light transmitting member 51 is formed on the semiconductor laser element 30 in a pre-process (wafer process) of the semiconductor laser device A13. The first light transmitting member 51 is formed by printing so as to be in contact with the second electrode 32 using a mask. In the formation of the first light transmitting member 51, the first light transmitting member 51 is configured not to cover the bump portion 322.
 半導体レーザ装置A10の構成によれば、厚さ方向zにおいて半導体レーザ素子30の複数の発光領域30Aと第2透光部材52との間に、第1透光部材51が介在している。第1透光部材51のヤング率は、第2透光部材52のヤング率よりも低い。これにより、外力や熱膨張による内力が第2透光部材52に作用したとき、第1透光部材51に伝達される応力は、第2透光部材52に伝達される応力よりも小さくなる。このため、第2透光部材52に作用した外力などによって複数の発光領域30Aに伝達される応力が、第1透光部材51により緩和される。したがって、半導体レーザ装置A10によれば、外力などから複数の発光領域30Aを保護することが可能となる。 According to the configuration of the semiconductor laser device A10, the first light transmitting member 51 is interposed between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z. The Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Accordingly, when an internal force due to an external force or thermal expansion acts on the second light transmitting member 52, the stress transmitted to the first light transmitting member 51 is smaller than the stress transmitted to the second light transmitting member 52. Therefore, the stress transmitted to the plurality of light emitting regions 30A by the external force or the like acting on the second light transmitting member 52 is relieved by the first light transmitting member 51. Therefore, according to the semiconductor laser device A10, the plurality of light emitting regions 30A can be protected from external force or the like.
 また、第1透光部材51が外力などから半導体レーザ素子30の複数の発光領域30Aを保護するため、半導体レーザ素子30を第2透光部材52により覆うことができる。これにより、たとえば透光性を有するケースを備える場合と比較して、半導体レーザ装置A10を小型化にすることが可能となる。 In addition, since the first light transmitting member 51 protects the plurality of light emitting regions 30 A of the semiconductor laser element 30 from an external force or the like, the semiconductor laser element 30 can be covered by the second light transmitting member 52. This makes it possible to miniaturize the semiconductor laser device A10 as compared to, for example, the case of providing a translucent case.
 第1透光部材51の構成材料は、第2透光部材52よりもヤング率が低く、かつ電気絶縁性および透光性を有する材料であることが要求される。さらには、半導体レーザ素子30の複数の発光領域30Aは熱を発するため、第1透光部材51の構成材料は、耐熱性に優れた材料であることが望ましい。そこで、シリコーンゲルなどのシリコーンは、第1透光部材51の構成材料として好適である。 The constituent material of the first light transmitting member 51 is required to be a material having a Young's modulus lower than that of the second light transmitting member 52 and having an electrical insulating property and a light transmitting property. Furthermore, since the plurality of light emitting regions 30A of the semiconductor laser element 30 generate heat, it is desirable that the constituent material of the first light transmitting member 51 be a material having excellent heat resistance. Therefore, silicone such as silicone gel is suitable as a constituent material of the first light transmitting member 51.
 ワイヤ40は、第1ボンディング部41および第2ボンディング部42を有する。第1ボンディング部41は、第2端子12に接続されている。第2ボンディング部42は、半導体レーザ素子30の第2電極32に接続されている。これにより、ワイヤボンディングによりワイヤ40を形成する際、ワイヤ40の厚さ方向zを短縮されるため、半導体レーザ装置A10の低背化を図ることができる。 The wire 40 has a first bonding portion 41 and a second bonding portion 42. The first bonding portion 41 is connected to the second terminal 12. The second bonding portion 42 is connected to the second electrode 32 of the semiconductor laser device 30. As a result, when the wire 40 is formed by wire bonding, the thickness direction z of the wire 40 is shortened, so that the height of the semiconductor laser device A10 can be reduced.
 半導体レーザ素子30の第2電極32は、厚さ方向zにおいて半導体レーザ素子30から遠ざかる側に突出して形成されたバンプ部322を有する。ワイヤ40の第2ボンディング部42は、バンプ部322に接続されている。これにより、ワイヤボンディングによりワイヤ40を第2電極32に接続する際、第2ボンディング部42が半導体レーザ素子30の縁に接触することを回避できる。 The second electrode 32 of the semiconductor laser device 30 has a bump portion 322 formed so as to protrude to the side away from the semiconductor laser device 30 in the thickness direction z. The second bonding portion 42 of the wire 40 is connected to the bump portion 322. Thus, when the wire 40 is connected to the second electrode 32 by wire bonding, the second bonding portion 42 can be prevented from contacting the edge of the semiconductor laser element 30.
 第1透光部材51は、ワイヤ40の第2ボンディング部42を覆っている。ワイヤ40が接続される第2電極32の領域は、突起状に形成された半導体レーザ素子30の部位に配置されている。そこで、第1透光部材51により、外力などから当該部位を保護することができる。 The first light transmitting member 51 covers the second bonding portion 42 of the wire 40. The region of the second electrode 32 to which the wire 40 is connected is disposed at a portion of the semiconductor laser element 30 formed in a projecting shape. Therefore, the first light transmitting member 51 can protect the portion from external force or the like.
 また、半導体レーザ装置A11では、第1透光部材51は、半導体レーザ素子30の素子側面30Bを覆っている。これにより、外力などから半導体レーザ素子30の全体を保護することができる。 Further, in the semiconductor laser device A <b> 11, the first light transmitting member 51 covers the device side surface 30 </ b> B of the semiconductor laser device 30. Thus, the entire semiconductor laser device 30 can be protected from external force or the like.
 〔第3実施形態〕
 図39~図41に基づき、本開示の第3実施形態にかかる半導体レーザ装置A20について説明する。これらの図において、先述した半導体レーザ装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。なお、図39は、理解の便宜上、第2透光部材52を透過している。図39で透過した第2透光部材52を想像線で示している。
Third Embodiment
A semiconductor laser device A20 according to a third embodiment of the present disclosure will be described based on FIG. 39 to FIG. In these drawings, the same or similar elements as or to those of the above-described semiconductor laser device A10 are denoted by the same reference numerals, to omit redundant description. 39 passes through the second light transmitting member 52 for the convenience of understanding. The second light transmitting member 52 transmitted in FIG. 39 is shown by an imaginary line.
 半導体レーザ装置A20では、第1端子11、第2端子12および第2透光部材52の構成と、絶縁基板20を備える点が、先述した半導体レーザ装置A10と異なる。 The semiconductor laser device A20 differs from the above-described semiconductor laser device A10 in that the configurations of the first terminal 11, the second terminal 12, and the second light transmitting member 52 and the insulating substrate 20 are provided.
 絶縁基板20は、図39および図41に示すように、第1端子11および第2端子12を支持している。絶縁基板20の構成材料は、たとえばポリ塩化ビフェニル(PCB)またはガラスエポキシ樹脂である。絶縁基板20は、主面20Aおよび裏面20Bを有する。主面20Aおよび裏面20Bは、厚さ方向zにおいて互いに反対側を向く。主面20Aは、厚さ方向zにおいて半導体レーザ素子30が位置する側を向く。 The insulating substrate 20 supports the first terminal 11 and the second terminal 12 as shown in FIGS. 39 and 41. The constituent material of the insulating substrate 20 is, for example, polychlorinated biphenyl (PCB) or glass epoxy resin. Insulating substrate 20 has main surface 20A and back surface 20B. The main surface 20A and the back surface 20B face in opposite directions in the thickness direction z. The main surface 20A faces the side where the semiconductor laser device 30 is located in the thickness direction z.
 図39~図41に示すように、第1端子11は、第1接続部111、第1実装部112、第1貫通部113および2つの第1配線部114を有する。第1接続部111、第1実装部112および2つの第1配線部114は、いずれも電解めっきにより形成された金属層である。当該金属層は、たとえばCu、Ni(ニッケル)およびAuが積層されている。また、第1貫通部113の構成材料は、たとえばCuである。第1接続部111は、絶縁基板20の主面20Aに配置され、かつ半導体レーザ素子30の第1電極31が導電接合層39を介して電気的に接合されている。第1実装部112は、絶縁基板20の裏面20Bに配置され、かつ半導体レーザ装置A20を配線基板に実装する際に利用される。第1貫通部113は、厚さ方向zに絶縁基板20を貫通し、かつ第1接続部111および第1実装部112を相互に接続している。半導体レーザ装置A20では、第1貫通部113は2箇所配置されているが、第1貫通部113の配置箇所数はこれに限定されない。2つの第1配線部114は、主面20Aに配置され、かつ第1接続部111から第2方向yに延びている。2つの第1配線部114は、第1接続部111および第1実装部112を電解めっきにより形成するための導電経路である。 As shown in FIGS. 39 to 41, the first terminal 11 has a first connection portion 111, a first mounting portion 112, a first penetrating portion 113, and two first wiring portions 114. Each of the first connection portion 111, the first mounting portion 112, and the two first wiring portions 114 is a metal layer formed by electrolytic plating. For example, Cu, Ni (nickel) and Au are laminated on the metal layer. Moreover, the constituent material of the 1st penetration part 113 is Cu, for example. The first connection portion 111 is disposed on the main surface 20 A of the insulating substrate 20, and the first electrode 31 of the semiconductor laser device 30 is electrically joined via the conductive bonding layer 39. The first mounting portion 112 is disposed on the back surface 20B of the insulating substrate 20, and is used when mounting the semiconductor laser device A20 on a wiring substrate. The first penetrating portion 113 penetrates the insulating substrate 20 in the thickness direction z, and connects the first connection portion 111 and the first mounting portion 112 to each other. In the semiconductor laser device A <b> 20, two first penetration parts 113 are arranged, but the number of arrangement places of the first penetration parts 113 is not limited to this. The two first wiring portions 114 are disposed on the main surface 20A and extend from the first connection portion 111 in the second direction y. The two first wiring parts 114 are conductive paths for forming the first connection part 111 and the first mounting part 112 by electrolytic plating.
 図39~図41に示すように、第2端子12は、第2接続部121、第2実装部122、第2貫通部123および2つの第2配線部124を有する。第2接続部121、第2実装部122および2つの第2配線部124は、いずれも電解めっきにより形成された金属層である。当該金属層は、たとえばCu、NiおよびAuが積層されている。また、第2貫通部123の構成材料は、たとえばCuである。第2接続部121は、絶縁基板20の主面20Aに配置され、かつワイヤ40の第1ボンディング部41が接続されている。第2実装部122は、絶縁基板20の裏面20Bに配置され、かつ半導体レーザ装置A20を配線基板に実装する際に利用される。第2貫通部123は、厚さ方向zに絶縁基板20を貫通し、かつ第2接続部121および第2実装部122を相互に接続している。半導体レーザ装置A20では、第2貫通部123は1箇所配置されているが、第2貫通部123の配置箇所数はこれに限定されない。2つの第2配線部124は、主面20Aに配置され、かつ第2接続部121から第2方向yに延びている。2つの第2配線部124は、第2接続部121および第2実装部122を電解めっきにより形成するための導電経路である。 As shown in FIGS. 39 to 41, the second terminal 12 has a second connection portion 121, a second mounting portion 122, a second penetrating portion 123, and two second wiring portions 124. Each of the second connection portion 121, the second mounting portion 122, and the two second wiring portions 124 is a metal layer formed by electrolytic plating. For example, Cu, Ni and Au are laminated on the metal layer. Moreover, the constituent material of the 2nd penetration part 123 is Cu, for example. The second connection portion 121 is disposed on the main surface 20 </ b> A of the insulating substrate 20, and the first bonding portion 41 of the wire 40 is connected. The second mounting portion 122 is disposed on the back surface 20B of the insulating substrate 20, and is used when mounting the semiconductor laser device A20 on a wiring substrate. The second penetrating portion 123 penetrates the insulating substrate 20 in the thickness direction z, and connects the second connection portion 121 and the second mounting portion 122 to each other. In the semiconductor laser device A20, one second through portion 123 is disposed, but the number of arrangement places of the second through portions 123 is not limited to this. The two second wiring portions 124 are disposed on the main surface 20A and extend from the second connection portion 121 in the second direction y. The two second wiring portions 124 are conductive paths for forming the second connection portion 121 and the second mounting portion 122 by electrolytic plating.
 図41に示すように、第2透光部材52は、絶縁基板20の主面20Aに接して配置されている。第2透光部材52の底面52Bが主面20Aに接する構成となるため、第2透光部材52は、絶縁基板20に支持されている。また、第2透光部材52は、主面20Aに配置された第1端子11および第2端子12のそれぞれの部分である、第1接続部111、2つの第1配線部114、第2接続部121および2つの第2配線部124を覆っている。 As shown in FIG. 41, the second light transmitting member 52 is disposed in contact with the main surface 20A of the insulating substrate 20. Since the bottom surface 52B of the second light transmitting member 52 is in contact with the main surface 20A, the second light transmitting member 52 is supported by the insulating substrate 20. Further, the second light transmitting member 52 is a portion of the first terminal 11 and the second terminal 12 disposed on the main surface 20A, the first connection portion 111, the two first wiring portions 114, and the second connection. It covers the portion 121 and the two second wiring portions 124.
 半導体レーザ装置A20の構成によれば、先述した半導体レーザ装置A10の構成と同じく、厚さ方向zにおいて半導体レーザ素子30の複数の発光領域30Aと第2透光部材52との間に、第1透光部材51が介在している。第1透光部材51のヤング率は、第2透光部材52のヤング率よりも低い。したがって、半導体レーザ装置A20によっても、外力などから複数の発光領域30Aを保護することが可能となる。 According to the configuration of the semiconductor laser device A20, like the configuration of the semiconductor laser device A10 described above, the first light emitting region 30A of the semiconductor laser element 30 and the second light transmitting member 52 are A light transmitting member 51 intervenes. The Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the semiconductor laser device A20 can protect the plurality of light emitting regions 30A from external force and the like.
 また、第1透光部材51が外力などから半導体レーザ素子30の複数の発光領域30Aを保護するため、半導体レーザ素子30を第2透光部材52により覆うことができる。これにより、たとえば透光性を有するケースを備える場合と比較して、半導体レーザ装置A20を小型化にすることが可能となる。 In addition, since the first light transmitting member 51 protects the plurality of light emitting regions 30 A of the semiconductor laser element 30 from an external force or the like, the semiconductor laser element 30 can be covered by the second light transmitting member 52. This makes it possible to miniaturize the semiconductor laser device A20 as compared to, for example, the case of providing a translucent case.
 第2透光部材52が第1接続面11Aに接して配置されていることから、半導体レーザ装置A20では、絶縁基板20が第1端子11、第2端子12および第2透光部材52を支持している。これにより、第2透光部材52が第1端子11および第2端子12を支持する半導体レーザ装置A10の構造と比較して、半導体レーザ装置A20の構造をより安定させることができる。 Since the second light transmitting member 52 is disposed in contact with the first connection surface 11A, the insulating substrate 20 supports the first terminal 11, the second terminal 12, and the second light transmitting member 52 in the semiconductor laser device A20. doing. Thereby, the structure of the semiconductor laser device A20 can be made more stable as compared with the structure of the semiconductor laser device A10 in which the second light transmitting member 52 supports the first terminal 11 and the second terminal 12.
 〔第4実施形態〕
 図42~図47に基づき、本開示の第4実施形態にかかる半導体レーザ装置A30について説明する。これらの図において、先述した半導体レーザ装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。なお、図42は、理解の便宜上、第3透光部材53(詳細は後述)を透過している。図46は、半導体レーザ素子30、第1透光部材51および第2透光部材52の部分平面拡大図である。図47は、半導体レーザ素子30、第1透光部材51および第2透光部材52に加え、ワイヤ40を図示している。
Fourth Embodiment
A semiconductor laser device A30 according to a fourth embodiment of the present disclosure will be described based on FIG. 42 to FIG. In these drawings, the same or similar elements as or to those of the above-described semiconductor laser device A10 are denoted by the same reference numerals, to omit redundant description. 42 passes through the third light transmitting member 53 (details will be described later) for the convenience of understanding. FIG. 46 is a partially enlarged plan view of the semiconductor laser device 30, the first light transmitting member 51, and the second light transmitting member 52. As shown in FIG. FIG. 47 illustrates a wire 40 in addition to the semiconductor laser element 30, the first light transmitting member 51, and the second light transmitting member 52.
 半導体レーザ装置A30では、第1透光部材51および第2透光部材52の構成と、第3透光部材53および枠状部材60を備える点が、先述した半導体レーザ装置A10と異なる。 The semiconductor laser device A30 is different from the above-described semiconductor laser device A10 in that the configurations of the first light transmitting member 51 and the second light transmitting member 52 and the third light transmitting member 53 and the frame member 60 are provided.
 図44~図46に示すように、第2透光部材52は、複数のレンズ部521を有する。半導体レーザ装置A30では、第2透光部材52は、マイクロレンズアレイである。複数のレンズ部521は、各々の半導体レーザ素子30の発光領域30Aに対応して形成されている。このため、各々のレンズ部521は、平面視において各々の発光領域30Aに重なっている。各々のレンズ部521は、平面視において六角形状である。複数のレンズ部521は、発光領域30Aが突出する方向に凸のレンズである。また、半導体レーザ装置A30では、半導体レーザ素子30の第2電極32のバンプ部322と、ワイヤ40の第2ボンディング部42とは、第1透光部材51から露出している。 As shown in FIGS. 44 to 46, the second light transmitting member 52 has a plurality of lens portions 521. In the semiconductor laser device A30, the second light transmitting member 52 is a microlens array. The plurality of lens portions 521 are formed corresponding to the light emitting regions 30 A of the respective semiconductor laser elements 30. For this reason, each lens portion 521 overlaps each light emitting area 30A in plan view. Each lens portion 521 is hexagonal in plan view. The plurality of lens portions 521 are lenses that are convex in the direction in which the light emitting region 30A protrudes. In the semiconductor laser device A30, the bump portion 322 of the second electrode 32 of the semiconductor laser element 30 and the second bonding portion 42 of the wire 40 are exposed from the first light transmitting member 51.
 図47に示すように、第2透光部材52は、第1透光部材51を介して半導体レーザ素子30の複数の発光領域30Aを覆う第2電極32に接合されている。各々の発光領域30Aから出射されたレーザ光は、第1透光部材51を透過して第2透光部材52の各々のレンズ部521に入射される。各々のレンズ部521に入射したレーザ光は、厚さ方向zに対して平行である状態に近づけられる。すなわち、複数のレンズ部521は、入射した光を、より指向性の高いコリメート光に変換するコリメートレンズである。各々のレンズ部521から、コリメート光に変換されたレーザ光が出射される。なお、図47において、発光領域30Aの高さH(厚さ方向zにおける寸法)と、レンズ部521の高さh(厚さ方向zにおける寸法)とを図示している。 As shown in FIG. 47, the second light transmitting member 52 is joined to the second electrode 32 covering the plurality of light emitting regions 30A of the semiconductor laser element 30 via the first light transmitting member 51. The laser light emitted from each light emitting region 30A is transmitted through the first light transmitting member 51 and is incident on each lens portion 521 of the second light transmitting member 52. The laser light incident on each lens portion 521 is brought close to being parallel to the thickness direction z. That is, the plurality of lens units 521 is a collimator lens that converts incident light into collimated light with higher directivity. Laser light converted into collimated light is emitted from each lens portion 521. In FIG. 47, the height H (dimension in the thickness direction z) of the light emitting region 30A and the height h (dimension in the thickness direction z) of the lens portion 521 are illustrated.
 第1透光部材51および第2透光部材52は、半導体レーザ装置A30の製造の前工程(ウエハプロセス)において半導体レーザ素子30に形成される。まず、マスクを用いて半導体レーザ素子30の第2電極32に接するように第1透光部材51を印刷する。このとき、第1透光部材51が第2電極32のバンプ部322を覆わないようにする。次いで、ウエハ状態の第2透光部材52を第1透光部材51に接合する。最後に、ダイシングにより半導体レーザ素子30および第2透光部材52を切断して個片化することによって、半導体レーザ素子30に配置された第1透光部材51および第2透光部材52を得ることができる。 The first light transmitting member 51 and the second light transmitting member 52 are formed on the semiconductor laser element 30 in a pre-process (wafer process) of manufacturing the semiconductor laser device A30. First, the first light transmitting member 51 is printed so as to be in contact with the second electrode 32 of the semiconductor laser device 30 using a mask. At this time, the first light transmitting member 51 is made not to cover the bump portion 322 of the second electrode 32. Next, the second light transmitting member 52 in the wafer state is bonded to the first light transmitting member 51. Finally, the semiconductor laser element 30 and the second light transmitting member 52 are cut and separated into pieces by dicing to obtain the first light transmitting member 51 and the second light transmitting member 52 disposed in the semiconductor laser element 30. be able to.
 枠状部材60は、図42、図44および図45に示すように、半導体レーザ素子30およびワイヤ40の周囲を囲んでいる。枠状部材60の構成材料は、たとえばポリフェニレンスルファイド(PPS)である。第1端子11および第2端子12は、枠状部材60に支持されている。枠状部材60は、頂面60A、底面60B、外周面60Cおよび内周面60Dを有する。 The frame member 60 surrounds the semiconductor laser element 30 and the wire 40, as shown in FIGS. The constituent material of the frame member 60 is, for example, polyphenylene sulfide (PPS). The first terminal 11 and the second terminal 12 are supported by the frame-like member 60. The frame-like member 60 has a top surface 60A, a bottom surface 60B, an outer peripheral surface 60C, and an inner peripheral surface 60D.
 図44および図45に示すように、頂面60Aは、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側を向く。頂面60Aは、枠状である。図43~図45に示すように、底面60Bは、頂面60Aとは反対側を向く。半導体レーザ装置A30では、底面60Bから、第1端子11の第1実装面11Bと、第2端子12の第2実装面12Bとが露出している。図42~図45に示すように、外周面60Cは、4つの領域を有し、かつ第1方向xおよび第2方向yにおいて半導体レーザ装置A30の外側を向く。厚さ方向zにおける外周面60Cの両端は、頂面60Aおよび底面60Bにつながっている。外周面60Cは、厚さ方向zに起立している。図42、図44および図45に示すように、内周面60Dは、4つの領域を有し、かつ第1方向xおよび第2方向yにおいて半導体レーザ装置A30の内側を向く。内周面60Dは、半導体レーザ素子30に対向している。厚さ方向zにおける内周面60Dの一端は、頂面60Aにつながっている。内周面60Dは、厚さ方向zに対して傾斜しており、平面視において内周面60Dの周縁が形成する面積は、厚さ方向zにおいて頂面60Aにつながる位置で最大となる。 As shown in FIGS. 44 and 45, the top surface 60A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. The top surface 60A is frame-shaped. As shown in FIGS. 43-45, the bottom surface 60B faces away from the top surface 60A. In the semiconductor laser device A30, the first mounting surface 11B of the first terminal 11 and the second mounting surface 12B of the second terminal 12 are exposed from the bottom surface 60B. As shown in FIGS. 42 to 45, the outer circumferential surface 60C has four regions, and faces the outside of the semiconductor laser device A30 in the first direction x and the second direction y. Both ends of the outer circumferential surface 60C in the thickness direction z are connected to the top surface 60A and the bottom surface 60B. The outer circumferential surface 60C stands in the thickness direction z. As shown in FIGS. 42, 44 and 45, the inner circumferential surface 60D has four regions and faces the inside of the semiconductor laser device A30 in the first direction x and the second direction y. The inner circumferential surface 60D faces the semiconductor laser device 30. One end of the inner circumferential surface 60D in the thickness direction z is connected to the top surface 60A. The inner peripheral surface 60D is inclined with respect to the thickness direction z, and the area formed by the peripheral edge of the inner peripheral surface 60D in plan view is maximum at a position connected to the top surface 60A in the thickness direction z.
 図42、図44および図45に示すように、枠状部材60は、開口部61、2つの第1側部621、および2つの第2側部622を有する。半導体レーザ装置A30では、枠状部材60は、これらに加えて連結部63をさらに有する。開口部61は、厚さ方向zに貫通しており、かつ平面視における外縁が矩形状である。開口部61は、枠状部材60の内周面60Dにより囲まれた中空領域である。厚さ方向zに対する開口部61の横断面積は、枠状部材60の頂面60Aと面一の位置で最大となり、半導体レーザ素子30に近づくにつれて横断面積が徐々に小となる。 As shown in FIGS. 42, 44 and 45, the frame-like member 60 has an opening 61, two first sides 621 and two second sides 622. In the semiconductor laser device A30, the frame-like member 60 further includes a connecting portion 63 in addition to the above. The opening 61 penetrates in the thickness direction z, and the outer edge in a plan view is rectangular. The opening 61 is a hollow area surrounded by the inner peripheral surface 60D of the frame-like member 60. The cross-sectional area of the opening 61 with respect to the thickness direction z is maximum at a position flush with the top surface 60A of the frame member 60, and the cross-sectional area gradually decreases as the semiconductor laser element 30 is approached.
 図44に示すように、2つの第1側部621は、第2方向yに延び、かつ第1方向xにおいて互いに離間している。図45に示すように、2つの第2側部622は、第1方向xに延び、かつ第2方向yにおいて互いに離間している。2つの第1側部621、および2つの第2側部622は、平面視において半導体レーザ素子30およびワイヤ40を取り囲み、かつ第1端子11および第2端子12を支持している。図42および図44に示すように、連結部63は、2つの第2側部622を連結している。連結部63は、第1方向xにおいて第1端子11と第2端子12との間に介在している。 As shown in FIG. 44, the two first side portions 621 extend in the second direction y and are separated from each other in the first direction x. As shown in FIG. 45, the two second sides 622 extend in the first direction x and are separated from each other in the second direction y. The two first sides 621 and the two second sides 622 surround the semiconductor laser device 30 and the wire 40 in plan view, and support the first terminal 11 and the second terminal 12. As shown in FIGS. 42 and 44, the connecting portion 63 connects the two second sides 622. The connecting portion 63 is interposed between the first terminal 11 and the second terminal 12 in the first direction x.
 第3透光部材53は、図44および図45に示すように、枠状部材60の開口部61を塞いでいる。第3透光部材53は、平板状であり、回折光学素子(Diffractive Optical Element:DOE)から構成される。第2透光部材52の各々のレンズ部521から出射されたコリメート光は、第3透光部材53に入射する。第3透光部材53は、入射した光を約15,000~30,000のドット光に変換して出射する。各々のドット光の投影位置は、自在に設定可能である。これにより、各々の半導体レーザ素子30の発光領域30Aから出射されたレーザ光が、投影されたある1つのドット光に集約させることができる。 The third light transmitting member 53 closes the opening 61 of the frame-like member 60 as shown in FIGS. The third light transmitting member 53 has a flat plate shape, and is formed of a diffractive optical element (DOE). The collimated light emitted from each lens portion 521 of the second light transmitting member 52 enters the third light transmitting member 53. The third light transmitting member 53 converts incident light into approximately 15,000 to 30,000 dot light and emits the converted light. The projection position of each dot light can be freely set. As a result, the laser light emitted from the light emitting region 30A of each semiconductor laser element 30 can be concentrated into one projected dot light.
 図44および図45に示すように、第3透光部材53は、表面53Aおよび裏面53Bを有する。表面53Aは、厚さ方向zにおいて第1端子11の第1接続面11Aが向く側を向く。裏面53Bは、表面53Aの反対側を向く。裏面53Bは、接着剤(図示略)を介して枠状部材60の頂面60Aに接合されている。第2透光部材52から出射されたコリメート光は、裏面53Bに入射して第3透光部材53によりドット光に変換される。表面53Aから複数のドット光が出射される。 As shown in FIGS. 44 and 45, the third light transmitting member 53 has a front surface 53A and a back surface 53B. The surface 53A faces the side to which the first connection surface 11A of the first terminal 11 faces in the thickness direction z. The back surface 53B faces the opposite side of the surface 53A. The back surface 53B is bonded to the top surface 60A of the frame member 60 via an adhesive (not shown). The collimated light emitted from the second light transmitting member 52 is incident on the back surface 53 B and converted into dot light by the third light transmitting member 53. A plurality of dot lights are emitted from the surface 53A.
 半導体レーザ装置A30の構成によれば、先述した半導体レーザ装置A10の構成と同じく、厚さ方向zにおいて半導体レーザ素子30の複数の発光領域30Aと第2透光部材52との間に、第1透光部材51が介在している。第1透光部材51のヤング率は、第2透光部材52のヤング率よりも低い。したがって、半導体レーザ装置A30によっても、外力などから複数の発光領域30Aを保護することが可能となる。 According to the configuration of the semiconductor laser device A30, like the configuration of the semiconductor laser device A10 described above, between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z, A light transmitting member 51 intervenes. The Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the semiconductor laser device A30 can also protect the plurality of light emitting regions 30A from external force or the like.
 また、第1透光部材51が外力などから半導体レーザ素子30の複数の発光領域30Aを保護するため、マイクロレンズアレイである第2透光部材52を、第1透光部材51を介して複数の発光領域30Aを覆う第2電極32に接合させることができる。 In addition, in order to protect the plurality of light emitting regions 30A of the semiconductor laser element 30 from the external force or the like by the first light transmitting member 51, a plurality of second light transmitting members 52, which are microlens arrays, via the first light transmitting member 51 Can be bonded to the second electrode 32 covering the light emitting region 30A.
 半導体レーザ装置A30は、レーザ光をコリメート光に変換する第2透光部材52と、回折光学素子から構成される第3透光部材53と、枠状部材60とを備える。これにより、半導体レーザ装置A30から、投影位置を自在に設定可能な複数のドット光を出射することができる。また、半導体レーザ素子30が複数の発光領域30Aを有することにより、各々のドット光の出力を向上させることができる。 The semiconductor laser device A30 includes a second light transmitting member 52 that converts laser light into collimated light, a third light transmitting member 53 configured of a diffractive optical element, and a frame-shaped member 60. As a result, it is possible to emit a plurality of dot lights whose projection positions can be freely set from the semiconductor laser device A30. In addition, since the semiconductor laser element 30 has a plurality of light emitting regions 30A, the output of each dot light can be improved.
 枠状部材60は、2つの第2側部622を連結する連結部63を有する。連結部63は、第1方向xにおいて第1端子11と第2端子12との間に位置する。これにより、第1端子11と第2端子12との相互の電気絶縁性を確保しつつ、枠状部材60の剛性を向上させることができる。 The frame member 60 has a connecting portion 63 connecting the two second side portions 622. The connecting portion 63 is located between the first terminal 11 and the second terminal 12 in the first direction x. Thereby, the rigidity of the frame-like member 60 can be improved while securing mutual electrical insulation between the first terminal 11 and the second terminal 12.
 〔第5実施形態〕
 図48および図49に基づき、本開示の第5実施形態にかかる半導体レーザ装置A40について説明する。これらの図において、先述した半導体レーザ装置A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。なお、図48は、理解の便宜上、第3透光部材53を透過している。
Fifth Embodiment
A semiconductor laser device A40 according to a fifth embodiment of the present disclosure will be described based on FIG. 48 and FIG. In these drawings, the same or similar elements as or to those of the above-described semiconductor laser device A10 are denoted by the same reference numerals, to omit redundant description. In FIG. 48, the third light transmitting member 53 is transmitted for the convenience of understanding.
 半導体レーザ装置A40では、第1端子11、第2端子12、第1透光部材51および第2透光部材52の構成と、絶縁基板20、第3透光部材53および枠状部材60を備える点とが、先述した半導体レーザ装置A10と異なる。これらの構成要素のうち、第1端子11、第2端子12および絶縁基板20は、先述した半導体レーザ装置A20の構成と同一であるため、ここでの説明は省略する。また、第1透光部材51、第2透光部材52および第3透光部材53の構成は、先述した半導体レーザ装置A30の構成と同一であるため、ここでの説明は省略する。よって、ここでは、枠状部材60の構成について説明する。 The semiconductor laser device A40 includes the configurations of the first terminal 11, the second terminal 12, the first light transmitting member 51, and the second light transmitting member 52, and the insulating substrate 20, the third light transmitting member 53, and the frame member 60. The point is different from the above-described semiconductor laser device A10. Among these components, the first terminal 11, the second terminal 12, and the insulating substrate 20 are the same as the configuration of the above-described semiconductor laser device A20, and thus the description thereof is omitted here. Further, the configurations of the first light transmitting member 51, the second light transmitting member 52, and the third light transmitting member 53 are the same as the configuration of the semiconductor laser device A30 described above, and thus the description thereof is omitted here. Therefore, the configuration of the frame-like member 60 will be described here.
 図48および図49に示すように、枠状部材60は、接合層69を介して絶縁基板20の主面20Aに接合されている。枠状部材60の底面60Bが接合層69を介して主面20Aに接合される構成となるため、枠状部材60は、絶縁基板20に支持されている。このため、半導体レーザ装置A40では、絶縁基板20が第1端子11、第2端子12および枠状部材60を支持する構成となっている。底面60Bは、枠状部材60の頂面60Aと同一の形状である。また、接合層69は、底面60Bの形状にあわせて成形されている。接合層69は、たとえば粘着性を有するソルダーレジストフィルムである。枠状部材60の内周面60Dは、外周面60Cと同じく、厚さ方向zに起立している。なお、半導体レーザ装置A40では、枠状部材60は、連結部63を有さない構成となっている。 As shown in FIGS. 48 and 49, the frame-shaped member 60 is bonded to the main surface 20A of the insulating substrate 20 via the bonding layer 69. Since the bottom surface 60B of the frame-like member 60 is bonded to the main surface 20A via the bonding layer 69, the frame-like member 60 is supported by the insulating substrate 20. Therefore, in the semiconductor laser device A40, the insulating substrate 20 is configured to support the first terminal 11, the second terminal 12, and the frame member 60. The bottom surface 60B has the same shape as the top surface 60A of the frame-like member 60. Further, the bonding layer 69 is molded in accordance with the shape of the bottom surface 60B. The bonding layer 69 is, for example, a solder resist film having adhesiveness. The inner circumferential surface 60D of the frame-like member 60, like the outer circumferential surface 60C, stands up in the thickness direction z. In the semiconductor laser device A40, the frame-shaped member 60 does not have the connecting portion 63.
 半導体レーザ装置A40の構成によれば、先述した半導体レーザ装置A10の構成と同じく、厚さ方向zにおいて半導体レーザ素子30の複数の発光領域30Aと第2透光部材52との間に、第1透光部材51が介在している。第1透光部材51のヤング率は、第2透光部材52のヤング率よりも低い。したがって、半導体レーザ装置A40によっても、外力などから複数の発光領域30Aを保護することが可能となる。 According to the configuration of the semiconductor laser device A40, like the configuration of the semiconductor laser device A10 described above, between the plurality of light emitting regions 30A of the semiconductor laser element 30 and the second light transmitting member 52 in the thickness direction z, A light transmitting member 51 intervenes. The Young's modulus of the first light transmitting member 51 is lower than the Young's modulus of the second light transmitting member 52. Therefore, the plurality of light emitting regions 30A can be protected from external force and the like also by the semiconductor laser device A40.
 また、第1透光部材51が外力などから半導体レーザ素子30の複数の発光領域30Aを保護するため、半導体レーザ装置A40は、半導体レーザ装置A30と同じく、第3透光部材53から複数のドット光を出射させることができる。さらに、半導体レーザ素子30が複数の発光領域30Aを有することにより、ドット光の出力を向上させることができる。 In addition, since the first light transmitting member 51 protects the plurality of light emitting areas 30A of the semiconductor laser device 30 from external force or the like, the semiconductor laser device A40 has a plurality of dots from the third light transmitting member 53 like the semiconductor laser device A30. It can emit light. Furthermore, the output of dot light can be improved by the semiconductor laser element 30 having a plurality of light emitting areas 30A.
 枠状部材60が絶縁基板20の主面20Aに接合されていることから、半導体レーザ装置A40では、絶縁基板20が第1端子11、第2端子12および枠状部材60を支持している。これにより、枠状部材60が第1端子11および第2端子12を支持する半導体レーザ装置A30の構造と比較して、半導体レーザ装置A40の構造をより安定させることができる。 Since the frame member 60 is bonded to the main surface 20A of the insulating substrate 20, the insulating substrate 20 supports the first terminal 11, the second terminal 12, and the frame member 60 in the semiconductor laser device A40. Thereby, the structure of the semiconductor laser device A40 can be made more stable as compared with the structure of the semiconductor laser device A30 in which the frame-like member 60 supports the first terminal 11 and the second terminal 12.
 本開示は、先述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。 The present disclosure is not limited to the embodiments described above. The specific configuration of each part of the present disclosure can be varied in design in many ways.
 本開示の第2~第5実施形態は、以下の付記にかかる実施例を含む。
[付記B1]
 第1半導体層、活性層、および第2半導体層を含み、前記活性層は、厚さ方向において第1半導体層および第2半導体層の間に配置された半導体レーザ素子であって、前記厚さ方向視において互いに離間した複数の発光領域を含み、前記複数の発光領域の各々の一部は、前記活性層および前記第2半導体層を含む半導体レーザ素子と、
 前記第1半導体層に導通する第1端子と、
 前記第2半導体層に導通する第2端子と、
 電気絶縁性を有するとともに、前記半導体レーザ素子に支持され、かつ前記厚さ方向視において前記複数の発光領域に重なる第1透光部材と、
 電気絶縁性を有し、かつ前記第1透光部材を挟んで前記複数の発光領域とは反対側に位置する領域を有する第2透光部材であって、前記第1透光部材のヤング率は、前記第2透光部材のヤング率よりも低い、第2透光部材と、を備える、半導体レーザ装置。
[付記B2]
 前記半導体レーザ素子は、
  前記第1半導体層に導通する第1電極と、
  前記第2半導体層に導通し、かつ前記複数の発光領域を覆う第2電極と、を有し、
 前記第1透光部材は、前記第2電極に接している、付記B1に記載の半導体レーザ装置。
[付記B3]
 前記第2透光部材は、前記第1透光部材に接している、付記B2に記載の半導体レーザ装置。
[付記B4]
 前記第1透光部材の構成材料は、シリコーンである、付記B2または3に記載の半導体レーザ装置。
[付記B5]
 前記第1電極は、前記第1端子に接合され、
 前記第2電極と前記第2端子とに接合されたワイヤをさらに備える、付記B2ないし4のいずれかに記載の半導体レーザ装置。
[付記B6]
 前記ワイヤは、前記第2端子に接合された第1ボンディング部と、前記第2電極に接合された第2ボンディング部と、を有する、付記B5に記載の半導体レーザ装置。
[付記B7]
 前記第2電極は、前記厚さ方向において前記半導体レーザ素子から遠ざかる側に突出して形成されたバンプ部を有し、
 前記第2ボンディング部は、前記バンプ部に接続されている、付記B6に記載の半導体レーザ装置。
[付記B8]
 前記第2透光部材は、前記ワイヤと、前記第1端子の一部と、前記第2端子の一部と、を覆っている、付記B6または7に記載の半導体レーザ装置。
[付記B9]
 前記第1透光部材は、前記第2ボンディング部を覆っている、付記B8に記載の半導体レーザ装置。
[付記B10]
 前記半導体レーザ素子は、前記厚さ方向に対して直交する方向を向く素子側面を有し、
 前記第1透光部材は、前記素子側面を覆っている、付記B9に記載の半導体レーザ装置。
[付記B11]
 前記第1端子および前記第2端子は、金属製のリードフレームから構成され、
 前記第1端子は、
  前記厚さ方向を向き、かつ前記第1電極に導通する第1接続面と、
  前記第1接続面とは反対側を向く第1実装面と、を有し、
 前記第2端子は、
  前記厚さ方向において前記第1接続面が向く側を向き、かつ前記第1ボンディング部が接続される第2接続面と、
  前記第2接続面とは反対側を向く第2実装面と、を有し、
 前記第1端子および前記第2端子は、前記第2透光部材に支持され、
 前記第1実装面および前記第2実装面は各々、前記第2透光部材から露出している、付記B8ないし10のいずれかに記載の半導体レーザ装置。
[付記B12]
 前記厚さ方向において互いに反対側を向く主面および裏面を有する絶縁基板をさらに備え、
 前記第1端子は、
  前記主面に配置され、かつ前記第1電極に導通する第1接続部と、
  前記裏面に配置された第1実装部と、
  前記厚さ方向に前記絶縁基板を貫通し、かつ前記第1接続部および前記第1実装部を相互に接続する第1貫通部と、を有し、
 前記第2端子は、
  前記主面に配置され、かつ前記第1ボンディング部に導通する第2接続部と、
  前記裏面に配置された第2実装部と、
  前記厚さ方向に前記絶縁基板を貫通し、かつ前記第2接続部および前記第2実装部を相互に接続する第2貫通部と、を有し、
 前記第2透光部材は、前記主面に接している、付記B8ないし10のいずれかに記載の半導体レーザ装置。
[付記B13]
 前記厚さ方向視において前記半導体レーザ素子および前記ワイヤの周囲を囲み、かつ前記厚さ方向に貫通する開口部を有する枠状部材と、
 回折光学素子から構成され、かつ前記開口部を塞ぐ第3透光部材と、をさらに備え、
 前記第2透光部材は、各々の前記発光領域に対応して形成され、かつ各々の前記発光領域から出射された光を前記厚さ方向に対して平行である状態に近づける複数のレンズ部を有し、
 前記第2透光部材は、前記第1透光部材を介して前記第2電極に接合されている、付記B6または7に記載の半導体レーザ装置。
[付記B14]
 前記第2ボンディング部は、前記第1透光部材から露出している、付記B13に記載の半導体レーザ装置。
[付記B15]
 前記第1端子は、
  前記厚さ方向を向き、かつ前記第1電極に導通する第1接続面と、
  前記第1接続面とは反対側を向く第1実装面と、を有し、
 前記第2端子は、
  前記厚さ方向において前記第1接続面が向く側を向き、かつ前記第1ボンディング部が接続される第2接続面と、
  前記第2接続面とは反対側を向く第2実装面と、を有し、
 前記枠状部材は、電気絶縁性を有し、
 前記第1端子および前記第2端子は、前記枠状部材に支持され、
 前記第1実装面および前記第2実装面は各々、前記枠状部材から露出している、付記B14に記載の半導体レーザ装置。
[付記B16]
 前記枠状部材は、
  前記厚さ方向に対して直交する方向に離間した2つの側部と、
  2つの前記側部を連結する連結部と、を有し、
 前記連結部は、前記第1端子と前記第2端子との間に介在している、付記B15に記載の半導体レーザ装置。
[付記B17]
 前記厚さ方向において互いに反対側を向く主面および裏面を有する絶縁基板をさらに備え、
 前記第1端子は、
  前記主面に配置され、かつ前記第1電極に導通する第1接続部と、
  前記裏面に配置された第1実装部と、
  前記厚さ方向に前記絶縁基板を貫通し、かつ前記第1接続部および前記第1実装部を相互に接続する第1貫通部と、を有し、
 前記第2端子は、
  前記主面に配置され、かつ前記第1ボンディング部に導通する第2接続部と、
  前記裏面に配置された第2実装部と、
  前記厚さ方向に前記絶縁基板を貫通し、かつ前記第2接続部および前記第2実装部を相互に接続する第2貫通部と、を有し、
 前記枠状部材は、前記主面に接合されている、付記B14に記載の半導体レーザ装置。
The second to fifth embodiments of the present disclosure include the examples according to the following appendices.
[Supplementary Note B1]
A semiconductor laser device including a first semiconductor layer, an active layer, and a second semiconductor layer, the active layer being disposed between the first semiconductor layer and the second semiconductor layer in the thickness direction, the thickness being A semiconductor laser device including a plurality of light emitting regions separated from one another in a direction view, and a part of each of the plurality of light emitting regions includes the active layer and the second semiconductor layer;
A first terminal electrically connected to the first semiconductor layer;
A second terminal electrically connected to the second semiconductor layer;
A first light transmitting member which has electrical insulation, is supported by the semiconductor laser element, and overlaps the plurality of light emitting regions when viewed in the thickness direction;
It is a 2nd light transmission member which has electric insulation and has a field which is located in the side opposite to a plurality of luminescence fields on both sides of the 1st light transmission member, Young's modulus of the 1st light transmission member A second light transmitting member having a Young's modulus lower than that of the second light transmitting member.
[Supplementary Note B2]
The semiconductor laser device is
A first electrode electrically connected to the first semiconductor layer;
And a second electrode electrically connected to the second semiconductor layer and covering the plurality of light emitting regions.
The semiconductor laser device according to claim B1, wherein the first light transmitting member is in contact with the second electrode.
[Supplementary Note B3]
The semiconductor laser device according to appendix B2, wherein the second light transmitting member is in contact with the first light transmitting member.
[Supplementary Note B4]
The semiconductor laser device according to appendix B2 or 3, wherein a constituent material of the first light transmitting member is silicone.
[Supplementary Note B5]
The first electrode is joined to the first terminal,
The semiconductor laser device according to any one of appendices B2 to B4, further comprising a wire bonded to the second electrode and the second terminal.
[Supplementary Note B6]
The semiconductor laser device according to attachment B5, wherein the wire has a first bonding portion bonded to the second terminal and a second bonding portion bonded to the second electrode.
[Supplementary Note B7]
The second electrode has a bump portion formed so as to protrude to the side away from the semiconductor laser device in the thickness direction,
The semiconductor laser device according to appendix B6, wherein the second bonding portion is connected to the bump portion.
[Supplementary Note B8]
The semiconductor laser device according to Appendix B6 or 7, wherein the second light transmitting member covers the wire, a part of the first terminal, and a part of the second terminal.
[Supplementary Note B9]
The semiconductor laser device according to appendix B8, wherein the first light transmitting member covers the second bonding portion.
[Supplementary Note B10]
The semiconductor laser device has a device side surface facing in a direction orthogonal to the thickness direction,
The semiconductor laser device according to appendix B9, wherein the first light transmitting member covers the side surface of the element.
[Supplementary Note B11]
The first terminal and the second terminal are composed of a metal lead frame,
The first terminal is
A first connection surface oriented in the thickness direction and electrically connected to the first electrode;
A first mounting surface facing away from the first connection surface;
The second terminal is
A second connection surface which is directed to the side in which the first connection surface faces in the thickness direction and to which the first bonding portion is connected;
And a second mounting surface facing away from the second connection surface.
The first terminal and the second terminal are supported by the second light transmitting member,
The semiconductor laser device according to any one of appendices B8 to B10, wherein the first mounting surface and the second mounting surface are each exposed from the second light transmitting member.
[Supplementary Note B12]
It further comprises an insulating substrate having a main surface and a back surface facing each other in the thickness direction,
The first terminal is
A first connection portion disposed on the main surface and electrically connected to the first electrode;
A first mounting unit disposed on the back surface;
And a first penetrating portion penetrating the insulating substrate in the thickness direction and connecting the first connection portion and the first mounting portion to each other,
The second terminal is
A second connection portion disposed on the main surface and electrically connected to the first bonding portion;
A second mounting unit disposed on the back surface;
And a second through portion penetrating the insulating substrate in the thickness direction and connecting the second connection portion and the second mounting portion to each other,
The semiconductor laser device according to any one of appendices B8 to B10, wherein the second light transmitting member is in contact with the main surface.
[Supplementary Note B13]
A frame member having an opening that surrounds the periphery of the semiconductor laser element and the wire in the thickness direction, and which penetrates in the thickness direction;
And a third light transmitting member configured of a diffractive optical element and closing the opening.
The second light transmitting member is formed corresponding to each of the light emitting regions, and includes a plurality of lens portions that bring light emitted from each of the light emitting regions close to a state parallel to the thickness direction. Have
The semiconductor laser device according to appendix B6 or 7, wherein the second light transmitting member is bonded to the second electrode via the first light transmitting member.
[Supplementary Note B14]
The semiconductor laser device according to appendix B13, wherein the second bonding portion is exposed from the first light transmitting member.
[Supplementary Note B15]
The first terminal is
A first connection surface oriented in the thickness direction and electrically connected to the first electrode;
A first mounting surface facing away from the first connection surface;
The second terminal is
A second connection surface which is directed to the side in which the first connection surface faces in the thickness direction and to which the first bonding portion is connected;
And a second mounting surface facing away from the second connection surface.
The frame-like member has electrical insulation,
The first terminal and the second terminal are supported by the frame-like member,
The semiconductor laser device according to appendix B14, wherein the first mounting surface and the second mounting surface are each exposed from the frame-like member.
[Supplementary Note B16]
The frame-like member is
Two sides spaced apart in a direction perpendicular to the thickness direction;
And a connecting portion connecting the two sides.
The semiconductor laser device according to appendix B15, wherein the connecting portion is interposed between the first terminal and the second terminal.
[Supplementary Note B17]
It further comprises an insulating substrate having a main surface and a back surface facing each other in the thickness direction,
The first terminal is
A first connection portion disposed on the main surface and electrically connected to the first electrode;
A first mounting unit disposed on the back surface;
And a first penetrating portion penetrating the insulating substrate in the thickness direction and connecting the first connection portion and the first mounting portion to each other,
The second terminal is
A second connection portion disposed on the main surface and electrically connected to the first bonding portion;
A second mounting unit disposed on the back surface;
And a second through portion penetrating the insulating substrate in the thickness direction and connecting the second connection portion and the second mounting portion to each other,
The semiconductor laser device according to appendix B14, wherein the frame-like member is joined to the main surface.

Claims (25)

  1.  支持体と、
     前記支持体に配置され、光を発する光学素子と、を備え、
     前記支持体は、少なくとも1つの位置決め部を含み、前記少なくとも1つの位置決め部は、前記光学素子からの光が照射される照射目標範囲を有する部材の一部に固定することにより、前記光学素子と前記照射目標範囲との位置決めをするためのものである、光学装置。
    A support,
    An optical element disposed on the support and emitting light;
    The support includes at least one positioning portion, and the at least one positioning portion is fixed to a part of a member having an irradiation target range to which light from the optical element is irradiated, An optical apparatus for positioning with the irradiation target area.
  2.  前記支持体は、前記光学素子が配置された第1面を有し、
     前記光学素子は、前記第1面に直交する方向において、前記少なくとも1つの位置決め部と前記第1面との間に位置する、請求項1に記載の光学装置。
    The support has a first surface on which the optical element is disposed,
    The optical device according to claim 1, wherein the optical element is located between the at least one positioning portion and the first surface in a direction orthogonal to the first surface.
  3.  前記少なくとも1つの位置決め部は、前記第1面に直交する方向に交差する方向を向く面を有する、請求項2に記載の光学装置。 The optical device according to claim 2, wherein the at least one positioning unit has a surface facing in a direction orthogonal to the direction orthogonal to the first surface.
  4.  前記少なくとも1つの位置決め部における前記面は、平面視において、前記光学素子とは異なる位置に配置されている、請求項3に記載の光学装置。 The optical device according to claim 3, wherein the surface of the at least one positioning unit is disposed at a position different from the optical element in a plan view.
  5.  前記支持体は、閉じた形状である縁を含み、前記支持体の前記縁は、平面視において前記光学装置のうち最も外側に位置し、
     前記少なくとも1つの位置決め部における前記面は、平面視において、前記支持体の前記縁よりも内側に位置している、請求項3または請求項4に記載の光学装置。
    The support includes an edge that is in a closed shape, and the edge of the support is located on the outermost side of the optical device in plan view;
    The optical device according to claim 3, wherein the surface of the at least one positioning portion is located inside the edge of the support in a plan view.
  6.  前記少なくとも1つの位置決め部は各々、凸部あるいは凹部である、請求項1ないし請求項5のいずれかに記載の光学装置。 The optical device according to any one of claims 1 to 5, wherein each of the at least one positioning portions is a convex portion or a concave portion.
  7.  前記支持体は、
      前記光学素子が配置された第1部材と、
      前記第1部材に固定され、前記第1面に直交する方向において、前記光学素子に重なっている第2部材と、を含む、請求項2に記載の光学装置。
    The support is
    A first member in which the optical element is disposed;
    The optical device according to claim 2, further comprising: a second member fixed to the first member and overlapping the optical element in a direction orthogonal to the first surface.
  8.  前記第1部材は、前記第1面と、前記第1面とは反対の第2面と、を有し、且つ、絶縁性を有し、
     前記第1部材の前記第1面上に形成された第1導電部を更に備え、
     前記光学素子は、互いに絶縁された第1導電層および第2導電層を含み、
     前記第1導電部は、前記光学素子の前記第2導電層に導通する第1導電部位と、前記光学素子の前記第1導電層に導通する第2導電部位と、を含む、請求項7に記載の光学装置。
    The first member has the first surface and a second surface opposite to the first surface, and is insulating.
    It further comprises a first conductive portion formed on the first surface of the first member,
    The optical element includes a first conductive layer and a second conductive layer insulated from each other,
    The first conductive portion includes a first conductive portion conductive to the second conductive layer of the optical element, and a second conductive portion conductive to the first conductive layer of the optical element. Optical device as described.
  9.  前記第1導電部における前記第1導電部位は、平面視において欠損した少なくとも1つの欠損部位を含み、
     前記第1導電部位の前記少なくとも1つの欠損部位の各々は、前記第1導電部位に形成された凹部あるいは前記導電部位に形成された開口である、請求項8に記載の光学装置。
    The first conductive portion in the first conductive portion includes at least one defective portion which is lost in plan view,
    The optical device according to claim 8, wherein each of the at least one defect site of the first conductive site is a recess formed in the first conductive site or an opening formed in the conductive site.
  10.  前記第1部材は、前記第1面から前記第2面に貫通する空隙が形成されており、
     前記空隙は、中空となっている、請求項8または請求項9に記載の光学装置。
    In the first member, an air gap penetrating from the first surface to the second surface is formed,
    The optical device according to claim 8, wherein the air gap is hollow.
  11.  前記第1導電部には、平面視において欠損した欠損部分を含み、
     前記第1導電部における前記欠損部分の少なくとも一部は、平面視において、前記空隙に重なっている、請求項10に記載の光学装置。
    The first conductive portion includes a deficient portion deficient in a plan view,
    The optical device according to claim 10, wherein at least a part of the defect portion in the first conductive portion overlaps the air gap in a plan view.
  12.  第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、前記第1ワイヤの前記第2端は、前記第1導電部の前記第2導電部位に接合されており、
     前記第1ワイヤの前記第2端は、前記第1面に直交する第1方向において、前記第1ワイヤの前記第1端と前記第1部材の前記空隙との間に位置している、請求項10または請求項11に記載の光学装置。
    The device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire. 1 joined to the second conductive portion of the conductive portion,
    The second end of the first wire is located between the first end of the first wire and the air gap of the first member in a first direction orthogonal to the first surface. An optical device according to claim 10 or 11.
  13.  前記第1部材の前記第2面上に形成された第2導電部を更に備え、
     前記第2導電部は、平面視において欠損した欠損部分を含む導電部分を含み、
     前記第2導電部における前記導電部分の前記欠損部分の少なくとも一部は、平面視において、前記空隙に重なっている、請求項10ないし請求項12のいずれかに記載の光学装置。
    It further comprises a second conductive portion formed on the second surface of the first member,
    The second conductive portion includes a conductive portion including a defective portion lost in plan view,
    The optical device according to any one of claims 10 to 12, wherein at least a part of the defect portion of the conductive portion in the second conductive portion overlaps the air gap in a plan view.
  14.  前記第2導電部における前記導電部分の前記欠損部分の縁は、平面視において前記空隙を囲む閉じた形状である、請求項13に記載の光学装置。 The optical device according to claim 13, wherein an edge of the defective portion of the conductive portion in the second conductive portion has a closed shape surrounding the air gap in a plan view.
  15.  前記第1部材は、仮想直線を挟んで第1方向に互いに隣接する第1領域と第2領域とを含み、
     前記仮想直線は、平面視において前記第1部材の中心を通り、第2方向に延びており、
     前記第1方向は、前記第1面に直交する方向に直交し、前記第2方向は、前記第1面に直交する方向と、前記第1方向と、に直交する、請求項8に記載の光学装置。
    The first member includes a first area and a second area adjacent to each other in a first direction across a virtual straight line,
    The virtual straight line extends in the second direction, passing through the center of the first member in plan view,
    9. The apparatus according to claim 8, wherein the first direction is orthogonal to a direction orthogonal to the first surface, and the second direction is orthogonal to a direction orthogonal to the first surface and the first direction. Optical device.
  16.  平面視において、前記光学素子と前記第1領域とが重なる面積は、平面視における前記光学素子の面積の半分より大きく、
     第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、前記第1ワイヤの前記第2端は、前記第1導電部の前記第2導電部位に接合されており、
     前記第1ワイヤの前記第2端は、平面視において、前記第2領域に位置している、請求項15に記載の光学装置。
    In plan view, the area where the optical element and the first region overlap is larger than half of the area of the optical element in plan view,
    The device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and the second end of the first wire is the first end of the first wire. 1 joined to the second conductive portion of the conductive portion,
    The optical device according to claim 15, wherein the second end of the first wire is located in the second area in a plan view.
  17.  平面視において、前記第1ワイヤは、前記第1方向に交差して延びている、請求項16に記載の光学装置。 The optical device according to claim 16, wherein in a plan view, the first wire extends in a cross direction to the first direction.
  18.  平面視において、前記少なくとも1つの位置決め部の少なくとも一部分は、前記第2領域に重なっている、請求項16または請求項17に記載の光学装置。 The optical device according to claim 16, wherein at least a portion of the at least one positioning portion overlaps the second region in a plan view.
  19.  前記少なくとも1つの位置決め部は、第1位置決め部と第2位置決め部とを含み、
     前記第1位置決め部は、平面視において、前記第1導電部の前記第1導電部位に重なっており、前記第2位置決め部は、平面視において、前記第1導電部の前記第2導電部位に重なっている、請求項16ないし請求項18のいずれかに記載の光学装置。
    The at least one positioning unit includes a first positioning unit and a second positioning unit,
    The first positioning portion overlaps the first conductive portion of the first conductive portion in plan view, and the second positioning portion is in the second conductive portion of the first conductive portion in plan view 19. An optical device according to any of the claims 16-18, which is overlapping.
  20.  前記光学素子は、複数の発光部を含み、前記複数の発光部は平面視において互いに離間しており、前記複数の発光部の各々は光を照射し、
     第1端と第2端とを有する第1ワイヤを更に備え、前記第1ワイヤの前記第1端は、前記光学素子に接合されており、且つ、平面視において、前記複数の発光部のうちの2つの発光部の間に位置する、請求項16に記載の光学装置。
    The optical element includes a plurality of light emitting units, and the plurality of light emitting units are separated from each other in plan view, and each of the plurality of light emitting units emits light.
    The light emitting device further comprises a first wire having a first end and a second end, wherein the first end of the first wire is bonded to the optical element, and in a plan view, the first end of the plurality of light emitting portions The optical device according to claim 16, located between two light emitting parts of
  21.  前記第1部材の前記第2面上に形成された第2導電部と、

     前記第1部材を貫通し且つ前記第1導電部と前記第2導電部とにつながる少なくとも1つの第3導電部と、を備え、
     前記少なくとも1つの第3導電部は、前記第1導電部の前記第1導電部位につながる少なくとも1つの第1部分を含む、請求項8に記載の光学装置。
    A second conductive portion formed on the second surface of the first member;

    At least one third conductive portion penetrating the first member and connected to the first conductive portion and the second conductive portion;
    The optical device according to claim 8, wherein the at least one third conductive portion includes at least one first portion connected to the first conductive portion of the first conductive portion.
  22.  前記少なくとも1つの第3導電部は、前記第1導電部の前記第2導電部位につながる少なくとも1つの第2部分を含み、
     前記少なくとも1つの第1部分の個数は、前記少なくとも1つの第2部分の個数よりも多い、請求項21に記載の光学装置。
    The at least one third conductive portion includes at least one second portion connected to the second conductive portion of the first conductive portion,
    22. The optical device of claim 21, wherein the number of the at least one first portion is greater than the number of the at least one second portion.
  23.  前記第2部材は、前記光学素子を囲む内面を有し、
     前記内面は、第1部位と、第2部位と、を含み、
     前記第2部位は、前記第1部位とつながり、且つ、平面視において、前記光学素子から前記第2部材の外方に向かって湾曲している、請求項7に記載の光学装置。
    The second member has an inner surface surrounding the optical element,
    The inner surface includes a first portion and a second portion,
    The optical device according to claim 7, wherein the second portion is connected to the first portion, and is curved from the optical element toward the outer side of the second member in a plan view.
  24.  前記第1部材に対し固定され、前記光学素子からの光を透過させる部材を更に備え、
     前記光を透過させる部材は、平面視において前記光学素子に重なる部位を有する、請求項7に記載の光学装置。
    It further comprises a member fixed to the first member and transmitting light from the optical element,
    The optical device according to claim 7, wherein the light transmitting member has a portion overlapping with the optical element in plan view.
  25.  請求項1に記載の光学装置と、
     前記光学装置が配置された配線基板と、
     前記光学装置および前記配線基板を接合する接合部と、
     前記照射目標範囲を有する前記部材と、を備える、システム。
    An optical device according to claim 1;
    A wiring substrate on which the optical device is disposed;
    A bonding portion for bonding the optical device and the wiring substrate;
    And the member having the irradiation target area.
PCT/JP2018/036803 2017-10-10 2018-10-02 Optical device and system WO2019073853A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017196900 2017-10-10
JP2017-196900 2017-10-10
JP2017197793A JP2021028918A (en) 2017-10-10 2017-10-11 Optical device and system
JP2017-197793 2017-10-11
JP2017226431A JP2021028919A (en) 2017-11-27 2017-11-27 Semiconductor laser device
JP2017-226431 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019073853A1 true WO2019073853A1 (en) 2019-04-18

Family

ID=66100851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036803 WO2019073853A1 (en) 2017-10-10 2018-10-02 Optical device and system

Country Status (1)

Country Link
WO (1) WO2019073853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305909B2 (en) 2019-08-07 2023-07-11 ローム株式会社 semiconductor light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207694A (en) * 2002-01-15 2003-07-25 Nec Corp Optical module
JP2006302981A (en) * 2005-04-18 2006-11-02 Fuji Xerox Co Ltd Multi-spot surface-emitting laser diode and its drive method
JP2016127254A (en) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 Light emission device and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207694A (en) * 2002-01-15 2003-07-25 Nec Corp Optical module
JP2006302981A (en) * 2005-04-18 2006-11-02 Fuji Xerox Co Ltd Multi-spot surface-emitting laser diode and its drive method
JP2016127254A (en) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 Light emission device and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305909B2 (en) 2019-08-07 2023-07-11 ローム株式会社 semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US10305005B2 (en) Semiconductor light-emitting device
JP6048880B2 (en) LIGHT EMITTING ELEMENT PACKAGE AND LIGHT EMITTING DEVICE USING THE SAME
JP6304282B2 (en) Semiconductor laser device
JP2019212752A (en) Light-emitting device
JP2011233800A (en) Light emission element module
US11309680B2 (en) Light source device including lead terminals that cross space defined by base and cap
WO2011136356A1 (en) Led module
WO2019073853A1 (en) Optical device and system
JP6225834B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP7295426B2 (en) light emitting device
JP7382325B2 (en) semiconductor light emitting device
US11444228B2 (en) Light emitting device and display apparatus
JP6485518B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20190214528A1 (en) Light-emitting device
JP2021028918A (en) Optical device and system
JP2021028919A (en) Semiconductor laser device
JP6986453B2 (en) Semiconductor laser device
US20240128710A1 (en) Light-emitting device
JP7141277B2 (en) Semiconductor laser device
JP2018014443A (en) Light emitting device
JP2019160960A (en) Semiconductor light-emitting device
JP2023085830A (en) Semiconductor light-emitting device
KR101925315B1 (en) The light unit and the light emitting module having the same
JP2023085832A (en) Semiconductor light-emitting device
KR20220164440A (en) Laser Diode package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP