WO2019071971A1 - 一种激光投影设备 - Google Patents

一种激光投影设备 Download PDF

Info

Publication number
WO2019071971A1
WO2019071971A1 PCT/CN2018/090435 CN2018090435W WO2019071971A1 WO 2019071971 A1 WO2019071971 A1 WO 2019071971A1 CN 2018090435 W CN2018090435 W CN 2018090435W WO 2019071971 A1 WO2019071971 A1 WO 2019071971A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
blue
laser
blue polarized
dichroic
Prior art date
Application number
PCT/CN2018/090435
Other languages
English (en)
French (fr)
Inventor
李巍
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710933580.3A external-priority patent/CN107505807A/zh
Priority claimed from CN201710933835.6A external-priority patent/CN107544202A/zh
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2019071971A1 publication Critical patent/WO2019071971A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present disclosure relates to the field of laser display technologies, and in particular, to a laser projection device.
  • the laser light source has been applied to projector technology due to its high luminous power per unit area, long service life and good color.
  • phosphors are usually used in the laser light source, and the phosphors are excited by the laser to emit green color and the like, thereby providing red light (R light) to the projector.
  • a commonly used laser projection apparatus includes a laser array 1; a diffusion sheet 2 disposed in a light-emitting direction of the laser array 1, and a light-emitting direction of the diffusion sheet 2 and 45 degrees with respect to a light-emitting direction of the diffusion sheet 2.
  • the laser light emitted by the laser array 1 passes through the diffusion sheet 2 to form a circular Gaussian beam, which is transmitted through the dichroic mirror 3, collimated by the collimating assembly 4, and then irradiated onto the rotating fluorescent wheel 5.
  • the laser passes through the laser transmitting region, is collimated by the collimating assembly 6, and then steered through the relay circuit 7 and passes through the filtering color wheel 8 to be homogenized in the homogenizing assembly 9;
  • the laser is irradiated In the fluorescent region, the fluorescent region is excited by the laser to emit fluorescence, and the excited fluorescence is irradiated to the dichroic mirror 3 through the collimating assembly 4, and is reflected by the dichroic mirror 3 to the color filter wheel 8, and the filtered fluorescence is also uniform.
  • the unit 9 is homogenized and then collimated by the collimator lens 10.
  • the fluorescent wheel 5 rotates, laser light and fluorescence of the square spot are continuously obtained from the light exiting the collimator lens 10.
  • the laser and the fluorescent light emitted by the quasi-finger lens 10 are imaged on the display chip of the optical machine, and finally the image output is realized by the lens 13.
  • the display chip may be an LCD (Liquid Crystal Display) chip or a DMD (Digital).
  • the laser light source and the light machine part of the laser projection device the laser light and the fluorescent light emitted from the light source part are transmitted to the inside of the light machine, and a TIR (total internal reflection) prism group 12 inside the light machine is used.
  • the first slope 121 is totally reflected and reflected to the DMD 11, and finally the image output is achieved by the imaging lens 13.
  • Some embodiments of the present disclosure provide a laser projection apparatus including a laser array emitting at least a first blue polarized light, a reflective fluorescent wheel, a reflective member, a laser array disposed on the reflective array, and a reflective fluorescent wheel a dichroic component between the optical path, a quarter wave plate disposed between the reflective component and the dichroic component;
  • the dichroic component is disposed on an outgoing light path of the laser array for receiving the first blue polarized light from the laser array;
  • the 1/4 wave plate is configured to receive the first blue polarized light from the dichroic component, generate a second blue polarized light, and emit the second blue polarized light to the reflection a component, and also for receiving the second blue polarized light reflected by the reflective component, generating a third blue polarized light, and emitting the third blue polarized light to the dichroic component;
  • the dichroic assembly is further configured to receive the third blue polarized light from the 1/4 wave plate and the fluorescence from the reflective fluorescent wheel, and the third blue polarized light The fluorescence is output along the same light exiting direction;
  • the polarization directions of the first blue polarized light and the third blue polarized light are perpendicular, and the dichroic component transmits one of the first blue polarized light and the third blue polarized light, And the other of the first blue polarized light and the third blue polarized light may be reflected.
  • FIG. 1 is a schematic structural diagram of a projection display device provided by a related art
  • FIG. 2 is a schematic structural diagram of a laser projection apparatus according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a reflective fluorescent wheel according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a homogenizing assembly according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a homogenizing assembly according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a reflective fluorescent wheel according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a fluorescent reflective region provided by some embodiments of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a laser projection apparatus according to still another embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a projection display device according to some embodiments of the present disclosure.
  • the laser projection apparatus In the laser projection apparatus provided by the related art, after the laser light is transmitted through the laser transmission region of the fluorescent wheel 5, it needs to be steered through the relay circuit before entering the homogenizing assembly 9 through the color filter wheel 8, and the relay circuit 7 is three lenses. Consisting of three mirrors, the optical path structure is complex.
  • Some embodiments of the present disclosure provide a laser projection apparatus that solves the complicated problem of the optical path structure caused by the steering of the relay circuit after the laser light is transmitted through the fluorescent wheel.
  • transmission refers to an object through which light passes and is emitted from the object.
  • Some embodiments of the present disclosure provide a laser projection apparatus, as shown in FIG. 2, including a laser array 1, a reflective fluorescent wheel 16, and sequentially disposed between the laser array 1 and the reflective fluorescent wheel 16.
  • the dichroic component 14 is disposed obliquely to the light exiting direction of the laser array 1.
  • the angle between the plane of the dichroic component 14 and the light exiting direction of the laser array 1 may be 45°.
  • the transmission path of the laser is as follows:
  • the laser array 1 is configured to emit at least a first blue polarized light, and the first blue polarized light may be a P light or an S light.
  • the laser array 1 may be a monochromatic laser array, such as a blue laser array, which may emit a first blue polarized light or a two-color laser array, such as a blue laser array and a red laser.
  • the array provides first blue polarized light and first red polarized light, respectively.
  • the first blue polarized light emitted by the laser array 1 is incident on the dichroic component 14, and the dichroic component 14 can transmit the first blue polarized light to the quarter-wave plate 15 .
  • Transmitting the first blue polarized light to the quarter wave plate 15 by the dichroic component 14 may, for example, mean that the dichroic component 14 is transparent to the first blue polarized light that is illuminated onto the dichroic component 14.
  • the first blue polarized light passes through the dichroic component 14 and exits the dichroic component 14 to the 1/4 waveplate 15.
  • the dichroic component 14 can also reflect the first blue polarized light.
  • the 1/4 wave plate 15 receives the first blue polarized light transmitted by the dichroic component 14, and changes the first blue polarized light by a quarter phase difference and generates a second blue polarized light, that is, the first After the blue polarized light is transmitted through the 1/4 wave plate 15, its polarization direction is rotated by 45° to generate a second blue polarized light.
  • the second blue polarized light may comprise circularly polarized light.
  • the first blue polarized light is P light
  • its polarization direction is rotated by 45° to generate circularly polarized light.
  • the 1/4 wave plate 15 emits the generated second blue polarized light to the reflective fluorescent wheel 16.
  • the reflective fluorescent wheel 16 has a circular structure, and its central axis position is provided with a rotating shaft 163 which is disposed perpendicular to the incident laser beam, and the reflective fluorescent wheel 16 is disposed along the circumferential direction thereof as a reflection.
  • the laser reflection region 161 is for receiving the second blue polarized light from the 1/4 wave plate 15 and is reflected to the 1/4 wave plate 15;
  • the fluorescent reflection region 162 is for receiving the second blue from the 1/4 wave plate 15.
  • the polarized light is fluorescent and is reflected to the quarter wave plate 15.
  • the substrate of the reflective fluorescent wheel 16 can be an aluminum substrate that can reflect light in the visible range.
  • the laser reflection area 161 may directly be a part of the aluminum substrate, and the side of the reflective fluorescent wheel 16 close to the 1/4 wave plate 15 may be coated with a target color phosphor. For example, if the target color is green, the 1/4 wave is near. A partial region of one side of the sheet 15 is coated with a green phosphor as the fluorescent reflection region 162.
  • the substrate of the reflective fluorescent wheel 16 may be a transparent substrate.
  • the high reflective film of the wavelength band of the laser may be disposed on the transparent substrate as the laser reflective region 161, and away from the 1/4 wave plate 15 side on the transparent substrate.
  • a high-reflection film in which the fluorescence is located is set, and a target color phosphor is applied as a fluorescent reflection region 162 near the side of the quarter-wave plate 15.
  • the second blue polarized light When the second blue polarized light is irradiated to the high reflection film of the laser light in the laser reflection region 161, the second blue polarized light is reflected by the high reflection film onto the quarter wave plate 15, when the second blue polarized light
  • the target color phosphor When the fluorescent reflection region is irradiated, the target color phosphor is excited to emit fluorescence, and the fluorescence is also reflected to the quarter-wave plate 15 under the reflection of the high reflection film in the wavelength band of the fluorescence.
  • the reflective fluorescent wheel 16 can be driven to rotate along its rotational axis 163, and the rotational plane of the laser reflective region and the fluorescent reflective region is disposed perpendicular to the incident laser beam, with the reflective fluorescent wheel 16 Rotating, when the second blue polarized light is irradiated to the laser reflection region 161 for a period of time, the laser reflection region 161 can reflect the second blue polarized light to the quarter wave plate 15; in a period of time, when When the two blue polarized light is irradiated to the fluorescent reflecting region 162, the fluorescent reflecting region 162 can be excited to emit fluorescence, and the fluorescent light is reflected to the quarter-wave plate 15.
  • the reflective fluorescent wheel 16 rotates, the second blue polarized light and the fluorescence are continuously obtained on the side close to the quarter-wave plate 15, and the same position of the reflective fluorescent wheel 16 can be prevented from being continuously generated. Excessive heat affects its life.
  • the fluorescent reflective region 162 may be provided with a green fluorescent reflective region 1621 and a yellow fluorescent reflective region 1622, wherein the green fluorescent reflective region 1621 is provided with a green phosphor, yellow fluorescent
  • the reflective area 1622 is provided with a yellow phosphor.
  • the 1/4 wave plate 15 receives the second blue polarized light and the fluorescent light from the reflective fluorescent wheel 16, and changes the second blue polarized light by a quarter phase difference to generate a third blue polarized light, that is, the first After the two blue polarized light passes through the quarter-wave plate 15, the polarization direction thereof is rotated by 45° to generate a third blue polarized light, and the polarization direction of the third blue polarized light is perpendicular to the polarization direction of the first blue polarized light.
  • the first blue polarized light is S light
  • the third blue polarized light is P light
  • the third blue polarized light is S light.
  • the 1/4 wave plate 15 emits the generated third blue polarized light to the dichroic component 14, and the 1/4 wave plate 15 can also emit the fluorescence from the reflective fluorescent wheel 16 to the dichroic component 14. .
  • the dichroic component 14 may reflect the third blue polarized light and the fluorescent light transmitted by the quarter wave plate 15 as The display chip provides light, and as the reflective fluorescent wheel 16 rotates, the dichroic assembly 14 continuously provides laser and fluorescence to the display chip.
  • the display chip can be an LCD, a DMD, or an LCOS.
  • the dichroic component 14 includes a substrate disposed on a side of the laser array 1 with a plating layer for transmitting first blue polarized light and reflecting third blue polarized light.
  • the side of the substrate adjacent to the reflective fluorescent wheel 16 is provided with a dichroic film for transmitting blue light and reflecting the fluorescence transmitted by the quarter wave plate 15.
  • the third blue polarized light and the fluorescent light are diverted after passing through the dichroic component 14, and therefore, the dichroic component 14 also has an optical path steering effect.
  • the plating layer may be a ruthenium oxide coating or a silicon dioxide coating.
  • the yttrium oxide coating and the silica coating may have a transmittance of the first blue polarized light of 99% or more, and the third blue The transmittance of the color polarized light is within 1%; the dichroic film can also be coated with yttrium oxide or silicon dioxide.
  • the yttrium oxide coating and the silica coating can make the fluorescence transmittance of the target band at 1 Within %, more than 99% of the fluorescence is reflected when reflected by the dichroic film.
  • the first blue polarized light is P light
  • the second blue polarized light may be circularly polarized light
  • the third blue polarized light is S light.
  • the polarizing film of the dichroic component 14 near the side of the laser array 1 is for transmitting P light and reflecting S light, and the dichroic film disposed near one side of the reflective fluorescent wheel 16 reflects the fluorescence transmitted by the 1/4 wave plate 15. .
  • the P light emitted by the laser array 1 is irradiated to the dichroic component 14, and the circularly polarized light is generated after the 1/4 wave plate 15; the circularly polarized light is reflected by the laser reflection region 161 of the reflective fluorescent wheel 16 and is then reflected to 1/
  • the four-wave plate 15 generates S light through the 1/4 wave plate 15, and the S light is irradiated onto the dichroic component 14, and the S-light path is deflected by the plating of the dichroic component 14 to reflect the S-light path, thereby displaying
  • the chip provides a blue laser.
  • the laser array 1 when the laser array 1 is a two-color laser array, that is, when the laser array 1 includes the blue laser array 101 and the red laser array 102, the first red polarization of the red laser array 102 Light is incident on the dichroic component 14, which can transmit the first red polarized light together with the first blue polarized light to the quarter wave plate 15.
  • the 1/4 wave plate 15 receives the first red polarized light transmitted through the dichroic component 14, and rotates the polarization direction of the first red polarized light by 45° to generate a second red polarized light, and generates a second red polarized light. Light is emitted to the reflective fluorescent wheel 16.
  • the laser reflection region 161 reflects the second red polarized light to the quarter wave plate 15.
  • the 1/4 wave plate 15 receives the second red polarized light reflected by the laser reflection region 161, and rotates the polarization direction of the second red polarized light by 45° to generate a third red polarized light, which is emitted to the dichroic component 14.
  • the dichroic component 14 reflects the third red polarized light together with the third blue polarized light to provide a red laser to the display chip.
  • the first red polarized light may be P light or S light.
  • the third red polarized light may be S light or P light, and the second red polarized light may be red. Circularly polarized light.
  • the polarization of the first red polarized light and the polarization of the first blue polarized light must be the same, that is, when the first blue polarized light is P light, the first red polarized light is also P light.
  • the first blue polarized light is S light
  • the first red polarized light is also S light.
  • the laser projection apparatus can provide a blue laser and a red laser to the display chip, and therefore, the fluorescent reflection area 162 of the reflective fluorescent wheel 16 can include only the green fluorescent reflection area.
  • the second blue polarized light is irradiated to the green fluorescent reflecting region, green fluorescence is excited and supplied to the display chip.
  • the first blue polarized light emitted by the laser array is irradiated to the 1/4 wave plate after passing through the dichroic component, and the first blue polarized light is transmitted after the 1/4 wave plate.
  • the polarization direction is rotated by 45° to generate a second blue polarized light.
  • the 1/4 wave plate is passed, and the polarization direction of the second blue polarized light is rotated by 45° to generate a third blue polarized light having a polarization direction perpendicular to a polarization direction of the first blue polarized light, the third blue polarized light being reflected by the reflection of the dichroic component; and the second blue polarized light irradiating the reflective fluorescent wheel Fluorescence is generated in the fluorescent reflection region, and the fluorescence is irradiated to the dichroic component via the 1/4 wave plate, and is reflected by the dichroic component reflection.
  • the laser projection device With the continuous rotation of the reflective fluorescent wheel, the laser projection device continuously supplies laser and fluorescence.
  • Some embodiments of the present disclosure provide a laser projection apparatus that uses a design of a dichroic component and a quarter-wave plate to share a quarter-wave plate of a laser and fluorescence reflected by a reflective fluorescent wheel and an optical path through a dichroic component. Steering, the optical path structure is simple, the optical components are small, the loss of the laser is greatly reduced, and the laser utilization rate of the light source is greatly improved.
  • the laser projection apparatus provided by other embodiments of the present disclosure is different from the embodiment shown in FIG. 2 in that, as shown in FIG. 5, the laser projection apparatus further includes a quarter-wave plate 15 and a reflection type. Homogenization assembly 9 between fluorescent wheels 16.
  • the laser projection apparatus further includes a homogenizing component 9 and a reflective type.
  • the second blue polarized light transmitted by the 1/4 wave plate 15 is homogenized by the homogenizing unit 9 to form a laser beam having a square homogenized spot.
  • the laser beam passes through the rotation of the reflective fluorescent wheel 16.
  • the straight assembly 4 is collimated and irradiated onto the laser reflection area of the reflective fluorescent wheel 16 to form a square homogenized spot.
  • the collimating assembly 4 is collimated, the homogenizing component 9 is homogenized, and the 1/4 wave plate 15 is used to generate a cross section.
  • the third blue polarized light that is squared to homogenize the spot, the third blue polarized light is reflected by the dichroic component 14 and finally imaged on the display chip.
  • the homogenizing assembly 9 can be a double-sided fly-eye lens, as shown in FIG.
  • the length and width of the single lens in the double-sided fly-eye lens and the thickness of the double-sided fly-eye lens satisfy: a/c ⁇ 0.2, b/c ⁇ 0.2 Where a is the length of the single lens, b is the width of the single lens, and c is the thickness of the double-sided fly-eye lens.
  • the convex surface of the double-sided fly-eye lens near the quarter-wave plate 15 is the first convex surface
  • the convex surface close to the collimating assembly 4 is the second convex surface
  • the quarter-wave plate 15 is emitted
  • the second convex surface passes through the second convex surface
  • the second convex surface serves as a field lens to compress the light beam
  • the collimating assembly 4 emits the second blue polarized light
  • the first convex surface serves as a field lens to compress the light beam when passing through the first convex surface.
  • the homogenizing component 9 may also be two single-faced fly-eye lenses arranged in sequence, as shown in FIG. 7 , including a first single-sided fly-eye lens 91 and a second single-sided fly-eye lens 92 arranged in sequence,
  • the convex surface of the first single-sided fly-eye lens 91 faces the quarter-wave plate 15, and the convex surface of the second single-sided fly-eye lens 92 faces the reflective fluorescent wheel 16.
  • the length and width of the single lens in the single-sided fly-eye lens and the pitch of the convex surfaces of the two single-sided fly-eye lenses satisfy :d/f ⁇ 0.2, e/f ⁇ 0.2, where d is the length of a single lens in a single-sided fly-eye lens, e is the width of a single lens in a single-sided fly-eye lens, and f is a protrusion of two single-sided fly-eye lenses The spacing of the faces.
  • the laser projection apparatus in order to match the size of the image obtained on the display chip to the size of the square homogenized spot, the laser projection apparatus further includes a first lens group 17, a second lens group 18, and a third lens group 19.
  • a first lens group 17 is disposed between the laser array 1 and the dichroic component 14 for collimating a laser beam emitted by the laser array 1; a second lens group 18 is disposed at the dichroic component 14 and Between the quarter-wave plates 15 is used to focus the first blue polarized light from the dichroic component 14.
  • the first lens group 17 and the second lens group 18 constitute a telescope zooming system that amplifies or reduces the spot of the laser beam emitted from the laser array 1 and converts the beam into near-parallel light.
  • the third lens group 19 is disposed on a side of the dichroic assembly 14 adjacent to the display chip for focusing and transmitting the third blue polarized light and fluorescent light from the dichroic assembly 14 to the display chip.
  • the second lens group 18 and the third lens group 19 constitute an illumination imaging system that can image the homogenization component onto the display chip and form a uniform image.
  • Some embodiments of the present disclosure homogenize the second blue polarized light by homogenizing the assembly between the quarter-wave plate and the collimating assembly such that the spot of the laser beam impinging on the reflective fluorescent wheel is square homogenized a spot, the square homogenizing spot is enlarged or reduced by a telescope zooming system composed of a first lens group and a second lens group, and an illumination imaging system composed of the second lens group and the third lens group obtains a uniform square spot on the display chip .
  • the laser projection apparatus provided by other embodiments of the present disclosure is different from the embodiment shown in FIG. 2 in that, as shown in FIG. 9, the laser projection apparatus further includes the laser array 1 and the dichroic component.
  • the diffusion sheet 2 is configured to convert the laser beam emitted by the laser array into a circular Gaussian beam.
  • the diffuser 2 converts the laser beam emitted by the laser array into a circular Gaussian beam and transmits it to the dichroic component 14 to obtain a nearly parallel laser beam obtained by the dichroic component 14.
  • the homogenizing assembly 9 can be a fly-eye lens or a homogenized light rod.
  • the laser projection apparatus in some embodiments of the present disclosure converts a laser beam emitted by the laser array into a circular Gaussian beam by a diffusion sheet, so that the laser beam directed to the dichroic component is near-parallel light, and the near-parallel light passes through 1 After the /4 wave plate is still near-parallel light, focusing on the reflective fluorescent wheel by the collimating component is beneficial to increase the optical power density of the reflective fluorescent wheel 16 and improve the conversion efficiency of fluorescence; in addition, by the dichroic component A homogenizing component is disposed on a side close to the display chip, so that the display chip obtains a laser beam having a square homogenized spot.
  • the homogenization assembly 9 may also be provided with a color filter wheel 8 before.
  • the color filter wheel 8 is a transparent substrate provided with a color filter film, and the color filter wheel 8 can be provided with a plurality of color filter films.
  • the target wavelength band is The laser and fluorescence can be emitted from the color filter onto the homogenizing component 9, and the laser and fluorescence outside the target wavelength are reflected or absorbed from the color filter film, and cannot reach the homogenizing component 9, thereby functioning as a laser and fluorescent color filter. effect.
  • the color filter film is a film that reflects or absorbs a wavelength band other than the target wavelength band and has an effect of enhancing the penetration of the target wavelength band.
  • the target wavelength band of green light is 470 nm to 590 nm
  • the green color filter film on the color filter wheel 8 allows green light in the range of 470 nm to 590 nm to pass, and reflects green light outside the range of 470 nm to 590 nm or absorb.
  • the color filter wheel 8 is driven to rotate, and the central axis of the rotation thereof is vertically disposed with the third blue polarized light reflected by the dichroic component 14, the color filter wheel 8 and the reflective fluorescent wheel 16 Rotate synchronously.
  • a plurality of color filter films may be disposed in the circumferential direction of the color filter wheel 8 corresponding to the reflective fluorescent wheel 16, respectively.
  • a blue color filter film, a green light color filter film, and a red color may be disposed along the circumferential direction of the color filter wheel 8.
  • the optical filter film, the color filter wheel 8 rotates synchronously with the reflective fluorescent wheel 16, and the blue laser light reflected by the dichroic component 14 is irradiated onto the blue color filter film of the color filter wheel 8, and the blue color filter film can be used for the blue laser light.
  • the color filter is filtered, and the filtered blue laser light is emitted onto the homogenizing component 9; the green fluorescent light reflected by the dichroic component 14 is irradiated onto the green color filter film of the color filter wheel 8, and the green color filter film can be green fluorescent.
  • the color filter is filtered, and the filtered green fluorescence is emitted onto the homogenizing unit 9; the yellow fluorescence reflected by the dichroic unit 14 is irradiated onto the red color filter film of the color filter wheel 8, and the red fluorescence is excited while the yellow fluorescent light is Filtered, red fluorescence is emitted onto the homogenizing assembly 9.
  • the color filter wheel in front of the homogenizing component, not only can the yellow light be converted into red light, but also the purity of the laser and green fluorescence obtained by the display chip can be effectively improved.
  • FIG. 10 Further embodiments of the present disclosure provide a laser projection apparatus that differs from the embodiment shown in FIG. 2 in that, as shown in FIG. 10, the quarter-wave plate 15 is disposed in the dichroic component 14 and reflected. Between the fluorescent tubes 16, the dichroic assembly 14 reflects the first blue polarized light emitted by the laser array 1 to the quarter wave plate 15, and transmits the third blue polarized light from the quarter wave plate 15, and Fluorescence generated when the second blue polarized light is transmitted to illuminate the fluorescent reflection region.
  • FIG. 11 Further embodiments of the present disclosure provide a laser projection apparatus, as shown in FIG. 11, including a laser array 1 that emits at least first blue polarized light and fourth blue polarized light, and a reflective fluorescent wheel 16, 1/4 A wave plate 15, a mirror 20 as a reflecting member, and a dichroic assembly 14 disposed between the laser array 1 and the reflective fluorescent wheel 16.
  • the dichroic component 14 is obliquely disposed between the laser array 1 and the reflective fluorescent wheel 16.
  • the 1/4 wave plate 15 is disposed on one side of the dichroic component 14 for receiving the first blue polarized light reflected by the dichroic component 14, and between the 1/4 waveplate 15 and the dichroic component 14
  • the optical path transmission direction and the optical path transmission direction between the laser array 1 and the reflective fluorescent wheel 16 are perpendicular to each other.
  • the mirror 20 is disposed on the side of the quarter-wave plate 15 away from the dichroic assembly 14.
  • the transmission path of the laser is as follows:
  • the laser array 1 is for emitting at least first blue polarized light and fourth blue polarized light.
  • the laser array 1 can be a blue laser array that can emit first blue polarized light and fourth blue polarized light.
  • the first blue polarized light and the fourth blue polarized light emitted by the laser array 1 are irradiated to the dichroic component 14, and the dichroic component 14 splits the first blue polarized light and the fourth blue polarized light.
  • a blue polarized light is reflected to the quarter-wave plate 15, passing the fourth blue polarized light, and transmitting the fourth blue polarized light to the reflective fluorescent wheel 16.
  • the first blue polarized light may be P light or S light.
  • the fourth blue polarized light is S light.
  • the fourth blue polarized light is P light.
  • Adjusting the angle between the plane of the dichroic component 14 and the incident direction of the first blue polarized light and the fourth blue polarized light emitted by the laser array 1 can adjust the first blue polarized light transmitted by the dichroic component 14. And the ratio of the reflected fourth blue polarized light.
  • the power of the first blue polarized light and the fourth blue polarized light emitted by the laser array 1 may be the same.
  • the angle between the plane of the dichroic component and the incident direction of the first blue polarized light can be adjusted according to requirements, for example, the plane of the dichroic component and the first blue can be The angle of incidence of the polarized light is set in the range of 45 to 70.
  • the ratio of the fourth blue polarized light obtained by the dichroic component 14 splitting to the laser beam emitted by the laser array is greater than or equal to the ratio of the first blue polarized light, and the first A blue polarized light can also meet the requirements of display brightness and color ratio.
  • 45° to 70° is a preferred range of the angle between the plane of the dichroic component 14 and the incident direction of the first blue polarized light, and the plane of the dichroic component 14 can be selected according to the actual situation.
  • the angle of incidence of a blue polarized light is an arbitrary angle, which is not specifically limited herein.
  • the angle between the plane of the dichroic component 14 and the incident direction of the first blue polarized light is 45°
  • the first blue polarized light emitted by the laser array 1 is totally reflected, and the fourth blue polarization is All light is transmitted.
  • the ratio of the first blue polarized light and the fourth blue polarized light obtained by splitting the dichroic component 14 is about 1:1, and the ratio of the laser light and the fluorescent light generated by the laser projection device can satisfy the display brightness and color matching. More than the requirements.
  • the first blue polarized light and the fourth blue obtained by the dichroic component 14 are split.
  • the ratio of polarized light is approximately 1:2, and the ratio of laser to fluorescence produced by the laser projection device provides the best display brightness and color rendering.
  • the first blue polarized light and the fourth blue obtained by the dichroic component 14 are split.
  • the ratio of polarized light is about 2:7, and the ratio of laser and fluorescence produced by the laser projection device can meet the requirements of display brightness and color ratio.
  • the angle between the plane of the dichroic component 14 and the incident direction of the first blue polarized light may be set to 55° to 65°.
  • the dichroic component 14 includes a substrate, and a substrate adjacent to the side of the laser array 1 is provided with a plating layer for transmitting the fourth blue polarized light and reflecting the first blue polarized light.
  • the substrate adjacent to the side of the reflective fluorescent wheel is provided with a dichroic film for transmitting the fourth blue polarized light and reflecting the fluorescent light. Therefore, the dichroic component 14 can transmit not only the fourth blue polarized light, The first blue polarized light is reflected, and the light and the light path are turned.
  • the dichroic component 14 reflects the first blue polarized light to the quarter wave plate 15.
  • the quarter wave plate 15 can change the first blue polarized light by a quarter phase difference and form a second blue color.
  • the polarized light is transmitted to the mirror 20, that is, after the first blue polarized light passes through the quarter-wave plate 15, the polarization direction thereof is rotated by 45°, and the second blue polarized light is generated and transmitted to the mirror 20.
  • the mirror 20 reflects the obtained second blue polarized light to the quarter wave plate 15 again, and the quarter wave plate 15 can change the phase difference of the second blue polarized light by a quarter and generate a third blue color.
  • the polarized light that is, the second blue polarized light is rotated by 45° after the quarter-wave plate 15 is rotated, and generates a third blue polarized light that is perpendicular to the polarization direction of the first blue polarized light, and the third blue polarized light It is transmitted to the dichroic component 14.
  • the second blue polarized light includes circularly polarized light, and the third blue polarized light has a polarization direction that is the same as a polarization direction of the fourth blue polarized light emitted by the laser array 1.
  • the first blue polarized light is P light
  • the P light passes through the 1/4 wave plate 15
  • a quarter phase difference change occurs and blue circularly polarized light is generated; the blue The circularly polarized light is again reflected by the mirror 20 to the quarter-wave plate 15, and after the quarter-wave plate 15, a quarter-phase difference is changed to generate the S-light.
  • the third blue polarized light emitted from the 1/4 wave plate 15 is irradiated onto the dichroic component 14, and since the dichroic component transmits the fourth blue polarized light, the polarization direction of the fourth blue polarized light and the third blue The polarization directions of the polarized light are the same, and therefore, the third blue polarized light is directly transmitted through the dichroic component 14 and received by the display chip, thereby providing a blue laser light to the display chip.
  • the fourth blue polarized light obtained by splitting the dichroic component 14 is transmitted to the reflective fluorescent wheel 16.
  • the reflective fluorescent wheel 16 may have a circular structure, and its central axis position is provided with a rotating shaft 163 whose rotational plane is perpendicular to the incident second blue polarized light beam along the reflective fluorescent wheel 16.
  • a fluorescent reflection region 162 is provided in the circumferential direction. The fluorescent reflective region 162 receives the fourth blue polarized light transmitted by the dichroic component 14, excites the fluorescent light and reflects it to the dichroic component 14.
  • the fluorescent reflective region 162 can be entirely coated with a yellow and green mixed phosphor, and when the third blue polarized light is irradiated to the yellow and green mixed phosphor, it can excite yellow and green fluorescent light and reflect it to Dichroic component 14.
  • the ratio of the yellow phosphor to the green phosphor in the yellow and green mixed phosphor needs to be greater than 1:1.
  • a yellow and green mixed phosphor having a ratio of yellow phosphor to green phosphor of 3:1 or 5:1, that is, a mixture of 3 parts of yellow phosphor and 1 part of green phosphor may be selected.
  • 3:1 or 5:1 is the preferred ratio of yellow phosphor and green phosphor in the yellow and green mixed phosphor. Users can set the yellow phosphor and green in the yellow and green mixed phosphor according to actual needs.
  • the ratio of the phosphor is any ratio greater than 1:1 but less than 100:1, which is not specifically limited herein.
  • yellow fluorescent and green fluorescent light can be excited when the fourth blue polarized light is irradiated to the fluorescent reflecting regions. Since the first blue polarized light split by the dichroic component provides a blue laser for the display chip, the fourth blue polarized light excites the yellow fluorescent light and the green fluorescent light to be supplied to the display chip, so the laser projection device can simultaneously
  • the display chip provides laser and fluorescence, which provides time-free laser and fluorescence for the display chip.
  • the fluorescent reflective region 162 of the reflective fluorescent wheel 16 includes a green fluorescent reflective region 1621 and a yellow fluorescent reflective region 1622, wherein the green fluorescent reflective region 1621 is provided with a green phosphor.
  • the yellow fluorescent reflective region 1622 is provided with a yellow phosphor.
  • the fourth blue polarized light when the fourth blue polarized light is irradiated to the green fluorescent reflecting area 1621, the fourth blue polarized light can excite the green fluorescent powder to emit green fluorescence; when the fourth blue polarized light is irradiated to the yellow At the fluorescent emission region 1622, the fourth blue polarized light can excite the yellow phosphor to emit yellow fluorescence.
  • yellow and green fluorescence are continuously generated and diverted by the dichroic assembly and supplied to the display chip.
  • Some embodiments of the present disclosure provide a laser projection apparatus in which a first blue polarized light and a fourth blue polarized light emitted by a laser array are split at a dichroic component, wherein the first blue polarized light is dichroic component Reflected to the 1/4 wave plate, after the 1/4 wave plate, the polarization direction is rotated by 45° to generate a second blue polarized light, and the second blue polarized light is reflected by the mirror to the 1/4 wave plate, and is subjected to 1/1.
  • the polarization direction is rotated by 45°, and a third blue polarized light whose polarization direction is perpendicular to the polarization direction of the first blue polarized light is generated, and the third blue polarized light is transmitted from the dichroic component to the display chip, thereby being displayed.
  • the chip provides a blue laser; the fourth blue polarized light obtained by splitting the dichroic component is transmitted to the fluorescent reflective region on the reflective fluorescent wheel, exciting the phosphor, generating fluorescence and reflecting to the dichroic component. Fluorescence is reflected by the dichroic component to the display chip to provide fluorescence to the display chip.
  • Some embodiments of the present disclosure provide a laser projection apparatus that splits a first blue polarized light and a fourth blue polarized light emitted by a laser array, and a fourth blue polarized light excites a reflective fluorescent wheel to generate Fluorescence, the first blue polarized light is emitted from the quarter-wave plate to the mirror, which in turn reflects it to the quarter-wave plate, which is sequentially transmitted to the display chip via the quarter-wave plate and the dichroic component.
  • the laser projection apparatus further includes a diffusion sheet 2 and a collimation assembly 4, wherein the diffusion sheet 2 is disposed between the laser array 1 and the dichroic assembly 14, the collimation assembly 4 It is disposed between the dichroic component 14 and the reflective fluorescent wheel 16.
  • the laser beam emitted from the laser array 1 including the first blue polarized light and the fourth blue polarized light is irradiated onto the diffusion sheet 2, and the diffusion sheet 2 can convert the laser beam emitted from the laser array 1 into a circular Gaussian beam, the circle The shaped Gaussian beam is near parallel light.
  • the diffuser 2 transmits the circular Gaussian beam to the obliquely disposed dichroic assembly 14.
  • the laser projection apparatus further includes a homogenizing assembly 9 disposed on a side of the dichroic assembly 14 remote from the quarter-wave plate 15.
  • the homogenizing assembly 9 is used to homogenize the third blue polarized light from the quarter wave plate 15 transmitted by the dichroic component 14, and is also used to homogenize the fluorescence reflected by the dichroic component 14.
  • the homogenizing assembly 9 can be a fly-eye lens or a homogenized light rod.
  • the laser projection apparatus provided by other embodiments of the present disclosure is different from the embodiment shown in FIG. 11 in that the laser array 1 can also emit first red polarized light.
  • the laser array 1 includes not only the laser array 1 but also A blue laser array 101 that emits a first blue polarized light and a fourth blue polarized light further includes a red laser array 102 that can emit a first red polarized light.
  • the first red polarized light emitted by the red laser array 102 is incident on the dichroic component 14, the dichroic component 14 reflects the first red polarized light to the quarter wave plate 15; the quarter wave plate 15 receives the first red color Polarizing the light, and rotating the polarization direction of the first red polarized light by 45° to generate a second red polarized light to be emitted to the mirror 20; the mirror 20 reflects the obtained second red polarized light to the quarter wave plate 15 again.
  • the 1/4 wave plate 15 rotates the polarization direction of the second red polarized light by 45°, and generates a third red polarized light perpendicular to the polarization direction of the first red polarized light to be emitted to the dichroic component 14; since the dichroic component 14 The third red polarized light is transmitted, and therefore, the third red polarized light is transmitted directly through the dichroic component 14 and received by the display chip to provide a red laser to the display chip.
  • the incident angle of the first red polarized light emitted by the red laser array and the plane of the dichroic component 14 can only be set to about 45°, so that the first red polarized light is all dichroic.
  • the component 14 is reflected to the 1/4 wave plate 15, and is similar to the first blue polarized light. After two quarter-wave plates, the polarization direction is rotated by 90°, and the red laser (the third red polarized light) passes through. The dichroic component exits.
  • the first red polarized light may be P light or S light.
  • the third red polarized light is S light, when the first red color When the polarized light is S light, the third red polarized light is P light.
  • the polarization of the first blue polarized light and the first red polarized light must be the same, that is, when the first blue polarized light is P light, the first red polarized light must be P light; when the first blue When the color polarized light is S light, the first red polarized light must be S light.
  • the laser projection apparatus provided by some embodiments of the present disclosure is different from the embodiment shown in FIG. 11 in that all of the fluorescent phosphors 162 of the reflective fluorescent wheel of the laser projection apparatus are provided with green phosphors.
  • green fluorescence can be excited and reflected to the dichroic assembly 14. Due to the reflection of the dichroic film of the dichroic component 14 on the fluorescence, all of the incident fluorescence is reflected to the display chip, thereby providing green fluorescence to the display chip.
  • Some embodiments of the present disclosure provide a laser projection apparatus in which a first blue polarized light and a fourth blue polarized light emitted by a laser array are split at a dichroic component, wherein the first blue polarized light is dichroic component Reflected to the 1/4 wave plate, after the 1/4 wave plate, the polarization direction is rotated by 45° to generate a second blue polarized light, and the second blue polarized light is reflected by the mirror to the 1/4 wave plate, and is subjected to 1/1.
  • the polarization direction is rotated by 45°, and a third blue polarized light whose polarization direction is perpendicular to the polarization direction of the first blue polarized light is generated, and the third blue polarized light is transmitted from the dichroic component to the display chip, thereby being displayed.
  • the chip provides a blue laser; the fourth blue polarized light obtained by splitting the dichroic component is transmitted to the fluorescent reflective region on the reflective fluorescent wheel, exciting the green phosphor, producing green fluorescence and reflecting to the dichroic component.
  • the green fluorescent light is reflected by the dichroic component to the display chip to provide green fluorescence to the display chip; the first red polarized light emitted by the laser array is reflected by the dichroic component to the 1/4 wave plate, and is polarized by the 1/4 wave plate.
  • the direction is rotated by 45° to generate a second red polarized light, and the second red polarized light is reflected by the mirror to the 1/4 wave plate.
  • the polarization direction is rotated by 45° to generate a polarization direction and a first red polarization.
  • a third red polarized light whose light polarization direction is perpendicular, and a third red polarized light is transmitted from the dichroic component to the display chip, thereby providing a red laser to the display chip.
  • Still further embodiments of the present disclosure provide a laser projection apparatus that differs from the embodiment illustrated in FIG. 14 in that, as shown in FIG. 16, the dichroic component 14 emits a first blue color from the laser array 1. The polarized light is transmitted to the quarter-wave plate 15, the fourth blue polarized light emitted from the laser array 1 is reflected to the reflective fluorescent wheel 16, and the third blue polarized light from the quarter-wave plate 15 is reflected, and the two directions are The color component 14 transmits the generated fluorescence.
  • some embodiments of the present disclosure provide a projection display device, as shown in FIG. 17, including a light source 1001, a light machine 1002, a lens 13, and a projection screen 1004.
  • the light source includes the laser array 1, the dichroic element 14, the 1/4 fragment 15, the reflective fluorescent wheel 16, and the like summarized in any of the above embodiments, and the optical machine includes an imaging chip.
  • the light source is mixed to form white light and output laser and fluorescence in a time series, and the output laser and fluorescence enter the optical machine 1002.
  • the DMD chip can be regarded as composed of a plurality of micro mirrors, which are micro The mirror can be reversed over a range of angles under current drive to adjust the amount of light entering the lens such that different colors are present on the projection screen 1004.
  • the laser and fluorescence outputted by the laser projection device are modulated by the DMD chip, and after multiple refractions, are concentrated to reach the imaging lens 13 and finally imaged on the projection screen 1004.
  • the optical machine 1002 may also be an optical machine composed of an LCD chip or an LCOS chip.
  • the user may select any of the above optical machines according to actual conditions, and is not specifically limited herein.
  • Some embodiments of the present disclosure provide a projection display apparatus in which a laser projection apparatus adopts a design of a dichroic component, a quarter-wave plate, and a reflective component, and a dichroic component disposed on a light path of the laser array receives the laser from the laser.
  • the 1/4 wave plate receiving the first blue polarized light from the dichroic component, and rotating the polarization direction of the first blue polarized light by 45° to generate a second blue polarized light, And emitting a second blue polarized light to the reflective member, the reflective member receiving the second blue polarized light from the 1/4 wave plate and reflecting it to the 1/4 wave plate, and the 1/4 wave plate receiving the light
  • the second blue polarized light reflected by the reflective member rotates the polarization direction of the second blue polarized light by 45° to generate a third blue polarized light, and emits the third blue polarized light to the dichroic component.
  • the color component receives the third blue polarized light from the 1/4 wave plate and the fluorescence from the reflective fluorescent wheel, and outputs the third blue polarized light and the fluorescent light in the same light exiting direction, wherein the dichroic component transmits the first blue color One of color polarized light and third blue polarized light And may reflect the first polarized light and the other blue third blue polarized light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

提供了一种激光投影设备。二向色组件设置在激光器阵列的出光光路上,用于接收来自激光器阵列的第一蓝色偏振光。1/4波片设置在反射部件和二向色组件之间,用于接收来自二向色组件的第一蓝色偏振光,生成第二蓝色偏振光,并将第二蓝色偏振光出射至反射部件,以及还用于接收经反射部件反射的第二蓝色偏振光,生成第三蓝色偏振光,并将第三蓝色偏振光出射至二向色组件。二向色组件还用于接收来自1/4波片的第三蓝色偏振光和来自反射式荧光轮的荧光,并将第三蓝色偏振光和荧光沿同一出光方向输出。

Description

一种激光投影设备
本申请要求于2017年10月10日提交中国专利局、申请号为201710933580.3、发明名称为“一种激光光源及投影显示设备”的中国专利申请和于2017年10月10日提交中国专利局、申请号为201710933835.6、发明名称为“一种激光光源及投影显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及激光显示技术领域,尤其涉及一种激光投影设备。
背景技术
随着市场需求的不断提高,高亮度、大尺寸、高分辨率的投影机越来越多的受到市场关注。激光光源由于其单位面积发光功率高、使用寿命长、色彩好等优点开始应用在投影机技术中。但是由于绿色激光器阵列技术上不成熟、效率低等特点,通常在激光光源中使用荧光粉,利用激光激发荧光粉的方式发出绿色等颜色的荧光,从而为投影机提供红光(R光)、绿光(G光)、蓝光(B光)。
目前,常用的激光投影设备,如图1所示,包括激光器阵列1;设置在激光器阵列1出光方向上的扩散片2;设置在扩散片2出光方向且与扩散片2的出光方向成45°角的二向色镜3;设置在二向色镜3出光方向的荧光轮5,荧光轮5设置有激光透射区和涂有荧光粉的荧光区;设置在荧光轮5周围的中继回路7,其中,中继回路7为三个透镜与三个反射镜组成的光路转换系统;以及设置在二向色镜3一侧、且与激光器阵列1出光方向平行设置的滤色轮8和设置在滤色轮8出光方向的匀化组件9;另外,还包括两个准直组件,其中,二向色镜3和荧光轮5之间设置准直组件4,荧光轮5与中继回路7之间设置准直组件6。使用时,激光器阵列1发射出的激光经扩散片2后形成圆形高斯光束,透过二向色镜3,经准直组件4准直后照射到旋转的荧光轮5上。当激光照射到激光透射区时,激光透过激光透射区,经过准直组件6准直后,通过中继回路7转向,经过滤色轮8进入匀化组件9中匀化;当激光照射到荧光区时,荧光区受激光激发发出荧光,激发的荧光经准直组件4后照射到二向色镜3,经二向色镜3反射至滤色轮8过滤,过滤后的荧光也进入匀化组件9进行匀化,然后通过准直透镜10准直,随着荧光轮5的旋转,不断从准直透镜10出光处获得方形光斑的激光和荧光。该准指透镜10发出的激光和荧光在光机的显示芯片上成像,最后通过镜头13实现图像输出,其中,所述显示芯片可以是LCD(Liquid Crystal Display,液晶显示屏)芯片、DMD(Digital Micromirror Device,数字微镜器件)芯片或LCOS(Liquid Crystal on Silicon,液晶附硅)芯片中的一种。以DMD芯片组成的光机为例,激光投影设备光源部分和光机部分,光源部分发出的激光和荧光透射到光机内部,在光机内部的TIR(total internal reflection,全内反射)棱镜组12的第一斜面121发生全反射并反射到DMD11,最后通过成像镜头13实现图像输出。
发明内容
本公开的一些实施例提供了一种激光投影设备,该激光投影设备包括至少发出第一蓝色偏振光的激光器阵列、反射式荧光轮、反射部件、设置在所述激光器阵列和反射式荧光轮之间的光路上的二向色组件、设置在所述反射部件和所述二向色组件之间的1/4波片;
所述二向色组件设置在所述激光器阵列的出光光路上,用于接收来自所述激光器阵列的所述第一蓝色偏振光;
所述1/4波片用于接收来自所述二向色组件的所述第一蓝色偏振光,生成第二蓝色偏振光,并将所述第二蓝色偏振光出射至所述反射部件,以及还用于接收经所述反射部件反射的所述第二蓝色偏振光,生成第三蓝色偏振光,并将所述第三蓝色偏振光出射至所述二向色组件;
所述二向色组件还用于接收来自所述1/4波片的所述第三蓝色偏振光和来自所述反射式荧光轮的荧光,并将所述第三蓝色偏振光和所述荧光沿同一出光方向输出;
其中,所述第一蓝色偏振光和所述第三蓝色偏振光的偏振方向相垂直,所述二向色组件透射第一蓝色偏振光和第三蓝色偏振光中的一种,并可以反射第一蓝色偏振光和第三蓝色偏振光中的另一种。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术提供的一种投影显示设备的结构示意图;
图2为本公开的一些实施例提供的激光投影设备的结构示意图;
图3为本公开的一些实施例提供的反射式荧光轮的结构示意图;
图4为本公开的另一些实施例提供的激光投影设备的结构示意图;
图5为本公开的另一些实施例提供的激光投影设备的结构示意图;
图6为本公开的一些实施例提供的匀化组件的结构示意图;
图7为本公开的另一些实施例提供的激光投影设备的结构示意图;
图8为本公开的另一些实施例提供的匀化组件的结构示意图;
图9为本公开的另一些实施例提供的激光投影设备的结构示意图;
图10为本公开的另一些实施例提供的激光投影设备的结构示意图;
图11为本公开的另一些实施例提供的激光投影设备的结构示意图;
图12为本公开的另一些实施例提供的反射式荧光轮的结构示意图;
图13为本公开的一些实施例提供的荧光反射区的结构示意图;
图14为本公开的另一些实施例提供的激光投影设备的结构示意图;
图15为本公开的另一些实施例提供的激光投影设备的结构示意图;
图16为本公开的又一些实施例提供的激光投影设备的结构示意图;
图17为本公开的一些实施例提供的一种投影显示设备的结构示意图。
具体实施方式
在相关技术提供的激光投影设备中,激光透射过荧光轮5的激光透射区后还需要经过中继回路进行转向后才能通过滤色轮8进入匀化组件9,中继回路7为三个透镜与三个反射镜组成,光路结构复杂。
本公开的一些实施例提供了一种激光投影设备,解决相关技术中激光透射过荧光轮后还需要经过中继回路转向导致的光路结构复杂问题。
需要说明的是,在本公开中,“透射”是指光经过对其而言透明的物体,并从该物体射出。
本公开的一些实施例提供了一种激光投影设备,如图2所示,包括激光器阵列1、反射式荧光轮16和在所述激光器阵列1和所述反射式荧光轮16之间依次设置的二向色组件14和1/4波片15。在一些实施例中,二向色组件14与激光器阵列1的出光方向倾斜设置。在一些实施例中,二向色组件14所在平面与激光器阵列1的出光方向的夹角可以为45°。
上述激光投影设备中,激光的传输路径如下所述:
激光器阵列1用于至少发出第一蓝色偏振光,第一蓝色偏振光可以为P光,也可以为S光。在一些实施例中,激光器阵列1可以为单色激光器阵列,如蓝色激光器阵列,蓝色激光器阵列可以发出第一蓝色偏振光,也可以为双色激光器阵列,如蓝色激光器阵列和红色激光器阵列,分别提供第一蓝色偏振光和第一红色偏振光。
在本公开的一些实施例中,激光器阵列1发出的第一蓝色偏振光照射到二向色组件14上,二向色组件14可以将第一蓝色偏振光透射给1/4波片15。二向色组件14将第一蓝色偏振光透射给1/4波片15例如可以是指二向色组件14对于照射到二向色组件14上的第一蓝色偏振光而言是透明的,第一蓝色偏振光经过二向色组件14并从二向色组件14射出到1/4波片15。在本公开的一些实施例中,二向色组件14也可以反射第一蓝色偏振光。
1/4波片15接收二向色组件14透射的第一蓝色偏振光,并将第一蓝色偏振光发生四分之一相位差的改变并生成第二蓝色偏振光,即第一蓝色偏振光透射经过1/4波片15后,其偏振方向旋转45°,生成第二蓝色偏振光。其中,所述第二蓝色偏振光可包括圆偏振光。在一些实施例中,若第一蓝色偏振光为P光,当P光经过1/4波片15时,其偏振方向旋转45°,生成圆偏振光。
1/4波片15将生成的第二蓝色偏振光出射至反射式荧光轮16。如图3所示,反射式荧光轮16为圆形结构,其中心轴位置设置有转动轴163,转动平面与入射的激光光束垂直设置,反射式荧光轮16上沿其圆周方向设置有作为反射部件的激光反射区161和荧光反射区162。激光反射区161用于接收来自1/4波片15的第二蓝色偏振光并反射给1/4波片15;荧光反射区162用于接收来自1/4波片15的第二蓝色偏振光,产生荧光并反射给1/4波片15。
在一些实施例中,反射式荧光轮16的基板可以为铝基板,铝基板可以反射可见光 波段的光线。激光反射区161可以直接为铝基板的一部分区域,反射式荧光轮16靠近1/4波片15的一侧可以涂覆目标颜色荧光粉,例如,目标颜色为绿色,则在靠近1/4波片15的一侧的部分区域涂覆绿色荧光粉作为荧光反射区162。
在一些实施例中,反射式荧光轮16的基板可以为透明基板,可以在透明基板上设置激光所在波段的高反膜作为激光反射区161,在透明基板上远离1/4波片15一侧设置荧光所在波段的高反膜,靠近1/4波片15一侧涂覆目标颜色荧光粉作为荧光反射区162。当第二蓝色偏振光照射到激光反射区161的激光所在波段高反膜时,第二蓝色偏振光被该高反膜反射到1/4波片15上,当第二蓝色偏振光照射到荧光反射区时,目标颜色荧光粉被激发出荧光,在荧光所在波段高反膜的反射作用下,荧光也被反射到1/4波片15。
在本公开的一些实施例中,反射式荧光轮16可以受驱沿其转动轴163转动,激光反射区和荧光反射区所在转动平面与入射的激光光束垂直设置,随着反射式荧光轮16的转动,在一段时间内当第二蓝色偏振光照射到激光反射区161时,激光反射区161可以将第二蓝色偏振光反射给1/4波片15;在又一段时间内,当第二蓝色偏振光照射到荧光反射区162时,荧光反射区162可以受激发出荧光,并将荧光反射给1/4波片15。因此,随着反射式荧光轮16的转动,在靠近1/4波片15的一侧不断获得第二蓝色偏振光和荧光,并且,可以避免持续照射反射式荧光轮16的同一位置导致产生过多热量影响其寿命。
在一些实施例中,当激光器阵列1为蓝色激光器阵列时,荧光反射区162可以设置绿色荧光反射区1621和黄色荧光反射区1622,其中,绿色荧光反射区1621设置有绿色荧光粉,黄色荧光反射区1622设置有黄色荧光粉。当第二蓝色偏振光照射到绿色荧光反射区1621时,能够激发绿色荧光粉发出绿色荧光并反射给1/4波片15;当第二蓝色偏振光照射到黄色荧光反射区1622时,能够激发黄色荧光粉发出黄色荧光并反射给1/4波片15。随着反射式荧光轮16的旋转,不断有蓝色激光、绿色荧光和黄色荧光反射给1/4波片15。
1/4波片15接收来自反射式荧光轮16的第二蓝色偏振光和荧光,将第二蓝色偏振光发生四分之一相位差的改变并生成第三蓝色偏振光,即第二蓝色偏振光经过1/4波片15后,其偏振方向旋转45°,生成第三蓝色偏振光,第三蓝色偏振光的偏振方向与第一蓝色偏振光的偏振方向垂直。其中,当第一蓝色偏振光为S光时,第三蓝色偏振光为P光,当第一蓝色偏振光为P光时,第三蓝色偏振光为S光。
1/4波片15将生成的第三蓝色偏振光出射至二向色组件14,同时,1/4波片15也可以将来自反射式荧光轮16的荧光也出射至二向色组件14。
在本公开的一些实施例中,虽然二向色组件14透射第一蓝色偏振光,但是二向色组件14可以将1/4波片15透射的第三蓝色偏振光和荧光反射出去以为显示芯片提供光线,随着反射式荧光轮16的转动,二向色组件14不断为显示芯片提供激光和荧光。其中,显示芯片可以是LCD、DMD、LCOS。
在一些实施例中,二向色组件14包括基板,所述基板靠近激光器阵列1的一侧设置有镀层,所述镀层用于透射第一蓝色偏振光、反射第三蓝色偏振光,所述基板靠近反射式荧光轮16的一侧设置有二向色膜,二向色膜用于透射蓝光并反射1/4波片15 透射的荧光。第三蓝色偏振光和荧光经过二向色组件14后光路转向,因此,二向色组件14还有光路转向作用。
在一些实施例中,镀层可以采用氧化铪镀层或二氧化硅镀层,通过合理设计,氧化铪镀层和二氧化硅镀层可以使第一蓝色偏振光的透射率在99%以上,而第三蓝色偏振光的透射率在1%以内;二向色膜也可以采用氧化铪镀层或二氧化硅镀层,通过合理设计,氧化铪镀层和二氧化硅镀层可以使目标波段的荧光的透射率在1%以内,99%以上的荧光被二向色膜反射时都反射出去。
在一些实施例中,若第一蓝色偏振光为P光,则第二蓝色偏振光可以为圆偏振光,第三蓝色偏振光为S光。二向色组件14靠近激光器阵列1一侧的偏振膜用于透射P光、反射S光,而靠近反射式荧光轮16的一侧设置的二向色膜反射1/4波片15透射的荧光。激光器阵列1发出的P光照射到二向色组件14,经1/4波片15后生成圆偏振光;圆偏振光经反射式荧光轮16的激光反射区161后,又被反射给1/4波片15,经1/4波片15生成S光,S光照射到二向色组件14上,利用二向色组件14的镀层反射S光的作用,将S光光路转向,从而为显示芯片提供蓝色激光。
在一些实施例中,如图4所示,当激光器阵列1为双色激光器阵列时,即当激光器阵列1包括蓝色激光器阵列101和红色激光器阵列102时,红色激光器阵列102发出的第一红色偏振光照射到二向色组件14上,二向色组件14可以将第一红色偏振光与第一蓝色偏振光一起透射给1/4波片15。
1/4波片15接收经二向色组件14透射的第一红色偏振光,并将第一红色偏振光的偏振方向旋转45°,生成第二红色偏振光,并将生成的第二红色偏振光出射至反射式荧光轮16。
当第二红色偏振光照射到反射式荧光轮16的激光反射区161时,激光反射区161将第二红色偏振光反射给1/4波片15。
1/4波片15接收经激光反射区161反射的第二红色偏振光,并将第二红色偏振光的偏振方向旋转45°,生成第三红色偏振光,出射至二向色组件14。
二向色组件14将第三红色偏振光与第三蓝色偏振光一起反射出去,从而为显示芯片提供红色激光。
在一些实施例中,第一红色偏振光可以为P光,也可以为S光,相对应的,第三红色偏振光可以为S光,也可以为P光,第二红色偏振光可以为红色圆偏振光。但是,需要注意的是,第一红色偏振光的偏振性与第一蓝色偏振光的偏振性必须相同,即当第一蓝色偏振光为P光时,第一红色偏振光也为P光,当第一蓝色偏振光为S光时,第一红色偏振光也为S光。
由于激光器阵列1为双色激光器阵列时,该激光投影设备可以为显示芯片提供蓝色激光和红色激光,因此,反射式荧光轮16的荧光反射区162可以只包括绿色荧光反射区。当第二蓝色偏振光照射到绿色荧光反射区时,激发出绿色荧光,提供给显示芯片。
本公开的一些实施例提供的激光投影设备,激光器阵列发出的第一蓝色偏振光经过二向色组件后照射到1/4波片,经1/4波片后第一蓝色偏振光的偏振方向旋转45°生成第二蓝色偏振光。当第二蓝色偏振光照射到反射式荧光轮的作为反射部件的激光 反射区时,经激光反射区反射后经过1/4波片,第二蓝色偏振光的偏振方向旋转45°,生成偏振方向与第一蓝色偏振光偏振方向垂直的第三蓝色偏振光,第三蓝色偏振光在二向色组件的反射作用下反射出去;当第二蓝色偏振光照射反射式荧光轮的荧光反射区时产生荧光,荧光经1/4波片照射到二向色组件,在二向色组件反射作用下反射出去。随着反射式荧光轮的不断旋转,本激光投影设备不断提供激光和荧光。本公开的一些实施例提供的激光投影设备,通过二向色组件和1/4波片的设计,使反射式荧光轮反射的激光和荧光共用1/4波片以及通过二向色组件进行光路转向,光路结构简单,光学组件少,激光的损失大大减少,使本光源激光利用率大大提高。
本公开的另一些实施例提供的激光投影设备,与图2所示的实施例的不同之处在于,如图5所示,该激光投影设备还包括设置在1/4波片15和反射式荧光轮16之间的匀化组件9。
在激光传输的光路中,往往存在较多的光学镜片,用于准直、聚焦等,在一些实施例中,如图5所示,该激光投影设备还包括设置在匀化组件9和反射式荧光轮16之间的准直组件4。
1/4波片15透射的第二蓝色偏振光经过匀化组件9后进行匀化,形成截面为方形匀化光斑的激光光束,随着反射式荧光轮16的旋转,该激光光束经过准直组件4准直后照射到反射式荧光轮16的激光反射区上成一方形匀化光斑,反射后经准直组件4准直、匀化组件9匀光,经1/4波片15生成截面为方形匀化光斑的第三蓝色偏振光,第三蓝色偏振光经二向色组件14反射,最后成像于显示芯片上。当该激光光束经过准直组件4准直后照射到反射式荧光轮16的荧光反射区时,在荧光反射区上成一方形匀化光斑,并激发出荧光,荧光反射后经准直组件4准直、匀化组件9匀光,透射通过1/4波片后,经二向色组件14反射,最后也成像于显示芯片上。
在一些实施例中,匀化组件9可以为双面复眼透镜,如图6所示。为了使显示芯片上成的像的大小与显示芯片的长宽比例匹配,双面复眼透镜中单个透镜的长度、宽度与双面复眼透镜的厚度满足:a/c<0.2,b/c<0.2,其中,a为所述单个透镜的长度,b为所述单个透镜的宽度,c为双面复眼透镜的厚度。若双面复眼透镜中靠近1/4波片15的凸起面为第一凸起面,靠近准直组件4的凸起面为第二凸起面,当1/4波片15出射的第二蓝色偏振光经过复眼透镜的第一凸起面时聚焦,经过第二凸起面时,第二凸起面作为场镜压缩光束;而当准直组件4出射的第二蓝色偏振光经过双面复眼透镜的第二凸起面时聚焦,经过第一凸起面时,第一凸起面作为场镜压缩光束。
在另一些实施例中,匀化组件9也可以为依次设置的两个单面复眼透镜,如图7所示,包括依次设置的第一单面复眼透镜91和第二单面复眼透镜92,其中,第一单面复眼透镜91的凸起面朝向1/4波片15,第二单面复眼透镜92的凸起面朝向反射式荧光轮16。
为了使显示芯片上成的像的大小与显示芯片的长宽比例匹配,如图8所示,单面复眼透镜中单个透镜的长度、宽度与两个单面复眼透镜的凸起面的间距满足:d/f<0.2,e/f<0.2,其中,d为单面复眼透镜中单个透镜的长度,e为单面复眼透镜中单个透镜的宽度,f为两个单面复眼透镜的凸起面的间距。
在一些实施例中,为了使显示芯片上获得的像的大小与方形匀化光斑的大小一致, 激光投影设备还包括第一透镜组17、第二透镜组18和第三透镜组19。
第一透镜组17设置在所述激光器阵列1和二向色组件14之间,用于将所述激光器阵列1发出的激光光束进行准直;第二透镜组18设置在二向色组件14和1/4波片15之间,用于将来自二向色组件14的第一蓝色偏振光进行聚焦。第一透镜组17和第二透镜组18组成望远镜缩放系统,将激光器阵列1发射出的激光光束的光斑放大或者缩小,并且将光束转换为近平行光。
第三透镜组19设置在二向色组件14靠近显示芯片的一侧,用于将来自二向色组件14的第三蓝色偏振光和荧光聚焦并发送给所述显示芯片。第二透镜组18和第三透镜组19组成照明成像系统,可以将匀化组件的像成到显示芯片上、并且成一均匀的像。
本公开的一些实施例通过在1/4波片和准直组件之间的匀化组件,将第二蓝色偏振光匀化,使照射到反射式荧光轮的激光光束的光斑为方形匀化光斑,通过第一透镜组和第二透镜组组成的望远镜缩放系统将该方形匀化光斑放大或者缩小,通过第二透镜组和第三透镜组组成的照明成像系统使显示芯片上获得均匀方形光斑。
本公开的另一些实施例提供的激光投影设备,与图2所示的实施例的不同之处在于,如图9所示,激光投影设备还包括设置在所述激光器阵列1和二向色组件14之间的扩散片2,以及设置在二向色组件14的出光方向上的匀化组件9。
扩散片2,用于将激光器阵列发出的激光光束转换为圆形高斯光束。扩散片2将激光器阵列发出的激光光束转换为圆形高斯光束后透射给二向色组件14,使二向色组件14获得的近平行的激光光束。
匀化组件9,用于将二向色组件14反射的所述第三蓝色偏振光和荧光匀化,并将匀化后的第三蓝色偏振光和荧光出射至显示芯片,使显示芯片获得截面为方形匀化光斑的激光和荧光。
在一些实施例中,匀化组件9可以为复眼透镜或者匀化光棒。
本公开的一些实施例中的激光投影设备,通过扩散片将激光器阵列发出的激光光束转换为圆形高斯光束,使射向二向色组件的激光光束为近平行光,该近平行光经过1/4波片后仍然为近平行光,经准直组件聚焦到反射式荧光轮上,有利于增加反射式荧光轮16的光功率密度,提高荧光的转换效率;另外,通过在二向色组件靠近显示芯片的一侧设置匀化组件,使显示芯片获得截面为方形匀化光斑的激光光束。
在一些实施例中,所述匀化组件9之前还可以设置有滤色轮8。
在一些实施例中,滤色轮8为设置有滤色膜的透明基板,滤色轮8上可以设置多个波段的滤色膜,当激光和荧光照射到滤色轮8时,目标波段的激光和荧光可以从滤色膜上出射至匀化组件9上,而目标波段以外的激光和荧光从滤色膜上反射或吸收,无法到达匀化组件9,从而起到对激光和荧光滤色作用。其中,所述滤色膜是对目标波段以外的波段起反射或吸收作用,而对目标波段起增透效果的膜。例如,绿光的目标波段为470nm~590nm,滤色轮8上的绿光滤色膜允许在470nm~590nm波段范围内的绿光通过,而对470nm~590nm波段范围以外的绿光进行反射或吸收。
在本公开的一些实施例中,滤色轮8受驱动旋转,其转动的中心轴与二向色组件14反射的第三蓝色偏振光可以垂直设置,滤色轮8与反射式荧光轮16同步转动。在一些实施例中,与反射式荧光轮16相对应的,沿滤色轮8的圆周方向,可以分别设置 多个波段的滤色膜。
在一些实施例中,当二向色组件14反射的光包括蓝色激光、绿色荧光和黄色荧光时,沿滤色轮8的圆周方向,可以设置蓝光滤色膜、绿光滤色膜和红光滤色膜,滤色轮8与反射式荧光轮16同步转动,二向色组件14反射的蓝色激光照射到滤色轮8的蓝光滤色膜上,蓝光滤色膜可以对蓝色激光进行滤色,滤色后的蓝光激光出射至匀化组件9上;二向色组件14反射的绿色荧光照射到滤色轮8的绿光滤色膜上,绿光滤色膜可以对绿色荧光进行滤色,滤色后的绿色荧光出射至匀化组件9上;二向色组件14反射的黄色荧光照射到滤色轮8的红光滤色膜上,红色荧光被激发的同时黄色荧光被滤除,红色荧光出射至匀化组件9上。
通过在匀化组件前设置滤色轮,不仅可以将黄光转换为红光,还可以有效提高显示芯片获得的激光和绿色荧光的纯度。
本公开的另一些实施例提供了一种激光投影设备,与图2所示的实施例的不同之处在于,如图10所示,1/4波片15设置在二向色组件14和反射式荧光轮16之间,二向色组件14将激光器阵列1发出的第一蓝色偏振光反射到1/4波片15,透射来自1/4波片15的第三蓝色偏振光,并透射第二蓝色偏振光照射荧光反射区时所产生的荧光。
本公开的另一些实施例提供一种激光投影设备,如图11所示,包括至少发出第一蓝色偏振光和第四蓝色偏振光的激光器阵列1、反射式荧光轮16、1/4波片15、作为反射部件的反射镜20和设置在所述激光器阵列1和所述反射式荧光轮16之间的二向色组件14。其中,二向色组件14倾斜设置在激光器阵列1和反射式荧光轮16之间。
1/4波片15设置在二向色组件14的一侧,用于接收二向色组件14反射的第一蓝色偏振光,且1/4波片15和二向色组件14之间的光路传输方向与激光器阵列1和反射式荧光轮16之间的光路传输方向相互垂直。
反射镜20,设置在1/4波片15远离二向色组件14的一侧。
上述激光投影设备中,激光的传输路径如下所述:
激光器阵列1用于至少发出第一蓝色偏振光和第四蓝色偏振光。在一些实施方式中,激光器阵列1可以为蓝色激光器阵列,蓝色激光器阵列可以发出第一蓝色偏振光和第四蓝色偏振光。
激光器阵列1发出的第一蓝色偏振光和第四蓝色偏振光照射到二向色组件14,二向色组件14将第一蓝色偏振光和第四蓝色偏振光分束,将第一蓝色偏振光反射给1/4波片15,使第四蓝色偏振光经过,并将第四蓝色偏振光透射给反射式荧光轮16。
在一些实施方式中,第一蓝色偏振光可以为P光,也可以为S光,相对应的,当第一蓝色偏振光为P光时,第四蓝色偏振光为S光,当第一蓝色偏振光为S光时,第四蓝色偏振光为P光。
调整二向色组件14所在平面与激光器阵列1发出的第一蓝色偏振光和第四蓝色偏振光的入射方向的夹角,即可调整二向色组件14透射的第一蓝色偏振光和反射的第四蓝色偏振光的比例。
在一些实施方式中,激光器阵列1发出的第一蓝色偏振光和第四蓝色偏振光的功率可以相同。为了适应不同的投影显示亮度和色彩要求,可以根据需求调整二向色组件所在平面与第一蓝色偏振光的入射方向的夹角,比如,可以将二向色组件所在平面 与第一蓝色偏振光的入射方向的夹角设置在45°~70°范围内。当夹角在45°~70°范围时,二向色组件14分束获得的第四蓝色偏振光在激光器阵列发射的激光光束的比例大于或等于第一蓝色偏振光的比例,且第一蓝色偏振光也能满足显示亮度和色彩配比的要求。
在一些实施方式中,45°~70°为二向色组件14所在平面与第一蓝色偏振光的入射方向的夹角的优选范围,可以根据实际情况选取二向色组件14所在平面与第一蓝色偏振光的入射方向的夹角为任意角度,在此不做具体限定。
在一些实施例中,二向色组件14所在平面与第一蓝色偏振光的入射方向的夹角为45°时,激光器阵列1发射的第一蓝色偏振光全部反射,第四蓝色偏振光全部透射。此时,二向色组件14分束获得的第一蓝色偏振光和第四蓝色偏振光的比例大约为1:1,激光投影设备产生的激光和荧光的比例可以满足显示亮度和色彩配比的要求。
在另一些实施例中,二向色组件14所在平面与接收的激光光束的入射方向的夹角为60°时,二向色组件14分束获得的第一蓝色偏振光和第四蓝色偏振光的比例大约为1:2,激光投影设备产生的激光和荧光的比例能带来最佳的显示亮度和色彩呈现。
在又一些实施例中,二向色组件14所在平面与接收的激光光束的入射方向的夹角为70°时,二向色组件14分束获得的第一蓝色偏振光和第四蓝色偏振光的比例大约为2:7,激光投影设备产生的激光和荧光的比例可以满足显示亮度和色彩配比的要求。
在一些实施方式中,为了满足显示亮度和色彩配比的要求,可以将二向色组件14所在平面与第一蓝色偏振光的入射方向的夹角设置为55°~65°。
在一些实施例中,二向色组件14包括基板,靠近激光器阵列1一侧的基板上设置有镀层,所述镀层用于透射第四蓝色偏振光,并可以反射第一蓝色偏振光,靠近反射式荧光轮一侧的基板设置有二向色膜,二向色膜用于透射第四蓝色偏振光、反射荧光,因此,二向色组件14不仅能透射第四蓝色偏振光、反射第一蓝色偏振光,对荧光还有光路转向作用。
二向色组件14将第一蓝色偏振光反射给1/4波片15。1/4波片15可以将第一蓝色偏振光发生四分之一相位差的改变并形成第二蓝色偏振光透射给反射镜20,即第一蓝色偏振光经过1/4波片15后,其偏振方向旋转45°,生成第二蓝色偏振光透射给反射镜20。反射镜20将获得的第二蓝色偏振光又反射给1/4波片15,1/4波片15可以将第二蓝色偏振光发生四分之相位差的改变并生成第三蓝色偏振光,即第二蓝色偏振光经1/4波片15后偏振方向旋转45°,生成与第一蓝色偏振光的偏振方向垂直的第三蓝色偏振光,第三蓝色偏振光透射到二向色组件14上。其中,所述第二蓝色偏振光包括圆偏振光,所述第三蓝色偏振光的偏振方向与激光器阵列1发出的第四蓝色偏振光的偏振方向相同。
在一些实施方式中,若第一蓝色偏振光为P光,当P光经过1/4波片15时,将发生四分之一相位差的改变并生成蓝色圆偏振光;该蓝色圆偏振光经反射镜20又反射给1/4波片15,经1/4波片15后发生四分之一相位差的改变生成S光。
1/4波片15出射的第三蓝色偏振光照射到二向色组件14上,由于二向色组件透射第四蓝色偏振光,第四蓝色偏振光的偏振方向与第三蓝色偏振光的偏振方向相同,因此,第三蓝色偏振光直接通过二向色组件14透射出去,被显示芯片接收,从而为显示 芯片提供蓝色激光。
激光器阵列1与反射式荧光轮16的光路传输方向上,二向色组件14分束获得的第四蓝色偏振光透射到反射式荧光轮16上。如图12所示,反射式荧光轮16可以为圆形结构,其中心轴位置设置有转动轴163,其转动平面与入射的第二蓝色偏振光的光束垂直设置,沿反射式荧光轮16的圆周方向设置荧光反射区162。荧光反射区162接收二向色组件14透射的第四蓝色偏振光,激发出荧光并反射给二向色组件14。
在一些实施例中,荧光反射区162可以全部涂覆黄色和绿色混合荧光粉,当第三蓝色偏振光照射到黄色和绿色混合荧光粉时,能够激发出黄色荧光和绿色荧光,并反射给二向色组件14。
在本公开的一些实施例中,由于蓝色激光激发绿色荧光的效率大于激发黄色荧光的效率,因此,黄色和绿色混合荧光粉中黄色荧光粉和绿色荧光粉的比例需要大于1:1。在一些实施方式中,可选取黄色荧光粉和绿色荧光粉的比例为3:1或者5:1的黄色和绿色混合荧光粉,即3份的黄色荧光粉和1份的绿色荧光粉混合产生的黄色和绿色混合荧光粉,或者5份的黄色荧光粉和1份的绿色荧光粉混合产生的黄色和绿色混合荧光粉。当然,3:1或者5:1为黄色和绿色混合荧光粉中黄色荧光粉和绿色荧光粉的优选配比,用户可根据实际需要,设定黄色和绿色混合荧光粉中黄色荧光粉和绿色荧光粉的配比为任意大于1:1但小于100:1的配比,在此不做具体限定。
在本公开的一些实施例中,当荧光反射区全部涂覆黄色和绿色混合荧光粉时,当第四蓝色偏振光照射到荧光反射区时,能够激发出黄色荧光和绿色荧光。由于二向色组件分束的第一蓝色偏振光为显示芯片提供蓝色激光,第四蓝色偏振光激发出黄色荧光和绿色荧光,提供给显示芯片,因此,该激光投影设备可以同时为显示芯片提供激光和荧光,即为显示芯片提供无时序的激光和荧光。
在另一些实施例中,如图13所示,反射式荧光轮16的荧光反射区162包括绿色荧光反射区1621和黄色荧光反射区1622,其中,所述绿色荧光反射区1621设置有绿色荧光粉,所述黄色荧光反射区1622设置有黄色荧光粉。
反射式荧光轮16转动过程中,当第四蓝色偏振光照射到绿色荧光反射区1621时,第四蓝色偏振光可以激发绿色荧光粉发出绿色荧光;当第四蓝色偏振光照射到黄色荧光发射区1622时,第四蓝色偏振光可以激发黄色荧光粉发出黄色荧光。随着反射式荧光轮16的不断旋转,不断有黄色荧光和绿色荧光产生并通过二向色组件转向,并提供给显示芯片。
本公开的一些实施例提供的激光投影设备,激光器阵列发出的第一蓝色偏振光和第四蓝色偏振光在二向色组件处分束,其中,第一蓝色偏振光被二向色组件反射至1/4波片,经1/4波片后偏振方向旋转45°,生成第二蓝色偏振光,第二蓝色偏振光经反射镜又反射到1/4波片,经1/4波片后偏振方向旋转45°,生成偏振方向与第一蓝色偏振光偏振方向垂直的第三蓝色偏振光,第三蓝色偏振光从二向色组件透射给显示芯片,从而为显示芯片提供蓝色激光;在二向色组件分束获得的第四蓝色偏振光透射到反射式荧光轮上的荧光反射区,激发荧光粉,产生荧光并反射到二向色组件。荧光经二向色组件反射给显示芯片,从而为显示芯片提供荧光。本公开的一些实施例提供的激光投影设备,二向色组件将激光器阵列发射的第一蓝色偏振光和第四蓝色偏振光进 行分束,第四蓝色偏振光激发反射式荧光轮产生荧光,第一蓝色偏振光从1/4波片出射至反射镜,反射镜又将其反射给1/4波片,依次经1/4波片和二向色组件透射给显示芯片。
在一些实施例中,如图14所示,该激光投影设备还包括扩散片2和准直组件4,其中,扩散片2设置在激光器阵列1和二向色组件14之间,准直组件4设置在二向色组件14和反射式荧光轮16之间。
激光器阵列1发出的包括第一蓝色偏振光和第四蓝色偏振光的激光光束照射到扩散片2上,扩散片2可以将激光器阵列1发出的激光光束转换为圆形高斯光束,该圆形高斯光束为近平行光。扩散片2将该圆形高斯光束透射给倾斜设置的二向色组件14。
在一些实施例中,该激光投影设备还包括匀化组件9,匀化组件9设置在二向色组件14远离1/4波片15的一侧。匀化组件9用于将二向色组件14透射的来自1/4波片15的第三蓝色偏振光匀化,还用于将二向色组件14反射的荧光匀化。在一些实施方式中,匀化组件9可以为复眼透镜或匀化光棒。
本公开的另一些实施例提供的激光投影设备,与图11所示的实施例的不同之处在于,激光器阵列1还可以发出第一红色偏振光,如图15所示,激光器阵列1不仅包括发出第一蓝色偏振光和第四蓝色偏振光的蓝色激光器阵列101,还包括红色激光器阵列102,红色激光器阵列102可以发出第一红色偏振光。
红色激光器阵列102发出的第一红色偏振光照射到二向色组件14上,二向色组件14将第一红色偏振光反射给1/4波片15;1/4波片15接收第一红色偏振光,并将第一红色偏振光的偏振方向旋转45°,生成第二红色偏振光出射至反射镜20;反射镜20将获得的第二红色偏振光又反射给1/4波片15,1/4波片15将第二红色偏振光的偏振方向旋转45°,生成与第一红色偏振光的偏振方向垂直的第三红色偏振光出射至二向色组件14;由于二向色组件14透射第三红色偏振光,因此,第三红色偏振光直接通过二向色组件14透射出去,被显示芯片接收,从而为显示芯片提供红色激光。
在一些实施方式中,红色激光器阵列发出的第一红色偏振光的入射方向与二向色组件14所在平面的夹角只能设置为45°左右,以使第一红色偏振光全部被二向色组件14反射到1/4波片15,然后与第一蓝色偏振光类似,两次经过1/4波片后偏振方向旋转90°,此时的红色激光(第三红色偏振光)透过二向色组件出射出去。
在一些实施方式中,第一红色偏振光可以为P光,也可以为S光,相对应的,当第一红色偏振光为P光时,第三红色偏振光为S光,当第一红色偏振光为S光时,第三红色偏振光为P光。需要注意的是,第一蓝色偏振光和第一红色偏振光的偏振性必须相同,即当第一蓝色偏振光为P光时,第一红色偏振光必须为P光;当第一蓝色偏振光为S光时,第一红色偏振光必须为S光。
本公开的一些实施例提供的激光投影设备,与图11所示的实施例的不同之处还在于,该激光投影设备的反射式荧光轮的荧光反射区162上全部设置绿色荧光粉。当第四蓝色偏振光照射到荧光反射区162上的绿色荧光粉时,能够激发出绿色荧光并反射给二向色组件14。由于二向色组件14的二向色膜对荧光的反射作用,将入射的荧光全部反射给显示芯片,从而为显示芯片提供绿色荧光。
本公开的一些实施例与图11所示的实施例的相同之处,请参考图11所示的实施 例,在此不再赘述。
本公开的一些实施例提供的激光投影设备,激光器阵列发出的第一蓝色偏振光和第四蓝色偏振光在二向色组件处分束,其中,第一蓝色偏振光被二向色组件反射至1/4波片,经1/4波片后偏振方向旋转45°,生成第二蓝色偏振光,第二蓝色偏振光经反射镜又反射到1/4波片,经1/4波片后偏振方向旋转45°,生成偏振方向与第一蓝色偏振光偏振方向垂直的第三蓝色偏振光,第三蓝色偏振光从二向色组件透射给显示芯片,从而为显示芯片提供蓝色激光;在二向色组件分束获得的第四蓝色偏振光透射到反射式荧光轮上的荧光反射区,激发绿色荧光粉,产生绿色荧光并反射到二向色组件。绿色荧光经二向色组件反射给显示芯片,从而为显示芯片提供绿色荧光;激光器阵列发出的第一红色偏振光被二向色组件反射至1/4波片,经1/4波片后偏振方向旋转45°,生成第二红色偏振光,第二红色偏振光经反射镜又反射到1/4波片,经1/4波片后偏振方向旋转45°,生成偏振方向与第一红色偏振光偏振方向垂直的第三红色偏振光,第三红色偏振光从二向色组件透射给显示芯片,从而为显示芯片提供红色激光。
本公开的又一些实施例提供了一种激光投影设备,与图14所示的实施例的不同之处在于,如图16所示,二向色组件14将激光器阵列1发出的第一蓝色偏振光透射到1/4波片15,将激光器阵列1发出的第四蓝色偏振光反射到反射式荧光轮16,反射来自1/4波片15的第三蓝色偏振光,并且二向色组件14透射产生的荧光。
基于上述技术方案,本公开的一些实施例提供了一种投影显示设备,如图17所示,包括光源1001、光机1002、镜头13以及投影屏幕1004。
光源包括上述任意实施例汇总的激光器阵列1、二向色元件14、1/4破片15、反射式荧光轮16等,光机包括成像芯片。光源混合形成白光并时序性地输出激光和荧光,输出的激光和荧光进入光机1002,以DMD芯片组成的光机为例,DMD芯片可看作由多极多个微小反射镜组成,这些微反射镜能够在电流驱动下在一定角度范围内进行反转,以调节进入镜头的光量,从而使投影屏幕1004上呈现不同的色彩。激光投影设备输出的激光和荧光经DMD芯片的调制,经多次折射,汇聚到达成像镜头13,最终在投影屏幕1004上成像。
在一些实施例中,光机1002也可以采用LCD芯片或LCOS芯片组成的光机,用户可根据实际情况选取上述任一光机,在此不做具体限定。
本公开的一些实施例提供的投影显示设备,其中的激光投影设备采用二向色组件、1/4波片和反射部件的设计,设置在激光器阵列的出光光路上的二向色组件接收来自激光器阵列的第一蓝色偏振光,1/4波片接收来自二向色组件的第一蓝色偏振光,将第一蓝色偏振光的偏振方向旋转45°以生成第二蓝色偏振光,并将第二蓝色偏振光出射至所述反射部件,反射部件接收来自1/4波片的第二蓝色偏振光,并将其反射到1/4波片,1/4波片接收经反射部件反射的第二蓝色偏振光,将第二蓝色偏振光的偏振方向旋转45°以生成第三蓝色偏振光,并将第三蓝色偏振光出射至二向色组件,二向色组件接收来自1/4波片的第三蓝色偏振光和来自反射式荧光轮的荧光,并将第三蓝色偏振光和荧光沿同一出光方向输出,其中二向色组件透射第一蓝色偏振光和第三蓝色偏振光中的一种,并可以反射第一蓝色偏振光和第三蓝色偏振光中的另一种。
本说明书中各个实施例之间相同相似的部分互相参见即可。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
以上所述的本公开的实施方式并不构成对本公开的保护范围的限定。

Claims (20)

  1. 一种激光投影设备,其特征在于,包括至少发出第一蓝色偏振光的激光器阵列、反射式荧光轮、反射部件、设置在所述激光器阵列和反射式荧光轮之间的光路上的二向色组件、设置在所述反射部件和所述二向色组件之间的1/4波片;
    所述二向色组件设置在所述激光器阵列的出光光路上,用于接收来自所述激光器阵列的所述第一蓝色偏振光;
    所述1/4波片用于接收来自所述二向色组件的所述第一蓝色偏振光,生成第二蓝色偏振光,并将所述第二蓝色偏振光出射至所述反射部件,以及还用于接收经所述反射部件反射的所述第二蓝色偏振光,生成第三蓝色偏振光,并将所述第三蓝色偏振光出射至所述二向色组件;
    所述二向色组件还用于接收来自所述1/4波片的所述第三蓝色偏振光和来自所述反射式荧光轮的荧光,并将所述第三蓝色偏振光和所述荧光沿同一出光方向输出;
    其中,所述第一蓝色偏振光和所述第三蓝色偏振光的偏振方向相垂直,所述二向色组件透射所述第一蓝色偏振光和第三蓝色偏振光中的一种,并反射所述第一蓝色偏振光和第三蓝色偏振光中的另一种。
  2. 如权利要求1所述的激光投影设备,其特征在于,所述激光器阵列还发出第四蓝色偏振光,所述第四蓝色偏振光的偏振方向与所述第三蓝色偏振光的偏振方向相同,所述反射部件为反射镜,所述反射式荧光轮设置有荧光反射区;
    所述1/4波片用于接收经所述二向色组件反射的所述第一蓝色偏振光;
    所述反射式荧光轮被所述二向色组件透射的所述第四蓝色偏振光激发生成所述荧光,并且
    所述二向色组件还用于透射来自所述1/4波片的所述第三蓝色偏振光,并反射所述荧光。
  3. 如权利要求2所述的激光投影设备,其特征在于,所述二向色组件包括基板,靠近所述激光器阵列一侧的所述基板上设置有镀层,靠近所述反射式荧光轮一侧的所述基板上设置有二向色膜,其中,
    所述镀层用于透射来自所述1/4波片的所述第三蓝色偏振光和来自激光器阵列的所述第四蓝色偏振光,并反射所述第一蓝色偏振光;
    所述二向色膜用于透射来自所述1/4波片的所述第三蓝色偏振光和来自激光器阵列的所述第四蓝色偏振光,并反射来自荧光反射区的荧光。
  4. 如权利要求3所述的激光投影设备,其特征在于,所述二向色组件所在平面与所述第一蓝色偏振光的入射方向的夹角为45°~70°。
  5. 如权利要求4所述的激光投影设备,其特征在于,所述二向色组件所在平面与所述第一蓝色偏振光的入射方向的夹角为60°。
  6. 如权利要求2所述的激光投影设备,其特征在于,所述激光器阵列还发出第一红色偏振光;
    所述1/4波片还用于接收经所述二向色组件反射的所述第一红色偏振光,生成第二红色偏振光,并将所述第二红色偏振光出射至所述反射部件,以及用于接收经所述反射镜反射的所述第二红色偏振光,生成第三红色偏振光,并将第三红色偏振光所述出射至所述二向色组件;
    所述二向色组件用于透射所述第三红色偏振光。
  7. 如权利要求6所述的激光投影设备,其特征在于,所述二向色组件所在平面与所述第一红色偏振光的入射方向的夹角为45°。
  8. 如权利要求1所述的激光投影设备,其特征在于,所述激光器阵列还发出第四蓝色偏振光,所述第四蓝色偏振光的偏振方向与所述第三蓝色偏振光的偏振方向相同,所述反射部件为反射镜,所述反射式荧光轮设置有荧光反射区;
    所述1/4波片用于接收经所述二向色组件透射的所述第一蓝色偏振光;
    所述反射式荧光轮被所述二向色组件反射的来自所述激光器阵列的所述第四蓝色偏振光激发生成所述荧光,并且
    所述二向色组件还用于反射来自所述1/4波片的所述第三蓝色偏振光,并透射所述荧光。
  9. 如权利要求8所述的激光投影设备,其特征在于,所述激光器阵列还发出第一红色偏振光;
    所述1/4波片还用于接收经所述二向色组件透射的所述第一红色偏振光,生成第二红色偏振光,并将所述第二红色偏振光出射至所述反射部件,以及用于接收经所述反射镜反射的所述第二红色偏振光,生成第三红色偏振光,并将所述第三红色偏振光出射至所述二向色组件;
    所述二向色组件用于反射所述第三红色偏振光。
  10. 如权利要求1所述的激光投影设备,其特征在于,所述反射部件为所述反射式荧光轮上的激光反射区,所述反射式荧光轮还包括荧光反射区,所述二向色组件和所述1/4波片依次设置在所述激光器阵列和反射式荧光轮之间的光路上;
    所述1/4波片用于接收经所述二向色组件透射的所述第一蓝色偏振光,并生成所述第二蓝色偏振光;
    所述激光反射区用于接收来自所述1/4波片的所述第二蓝色偏振光并将所述第二蓝色偏振光反射至所述1/4波片;
    所述荧光反射区用于接收来自所述1/4波片的所述第二蓝色偏振光,并被所述第二蓝色偏振光激发生成所述荧光;
    所述1/4波片还用于接收所述激光反射区反射的第二蓝色偏振光并生成所述第三蓝色偏振光,以及接收并透射所述荧光;
    所述二向色组件用于反射来自所述1/4波片的所述第三蓝色偏振光,并反射所述荧光。
  11. 如权利要求10所述的激光投影设备,其特征在于,所述激光投影设备还包括设置在所述1/4波片和反射式荧光轮之间的匀化组件,所述匀化组件用于匀化所述第二蓝色偏振光,以及来自所述荧光反射区的所述荧光。
  12. 如权利要求11所述的激光投影设备,其特征在于,所述匀化组件包括双面复眼透镜。
  13. 如权利要求13所述的激光投影设备,其特征在于,所述双面复眼透镜中单个透镜的长度、宽度与双面复眼透镜的厚度满足:a/c<0.2,b/c<0.2,其中,a为所述单个透镜的长度,b为所述单个透镜的宽度,c为双面复眼透镜的厚度。
  14. 如权利要求12所述的激光投影设备,其特征在于,所述匀化组件包括依次设置的两个单面复眼透镜,其中一个所述单面复眼透镜的凸起面朝向所述1/4波片,另一个所述单面复眼透镜的凸起面朝向所述反射式荧光轮。
  15. 如权利要求14所述的激光投影设备,其特征在于,所述单面复眼透镜中单个透镜的长度、宽度与两个单面复眼透镜的凸起面的间距满足:d/f<0.2,e/f<0.2,其中,d为所述单面复眼透镜单个透镜的长度,e为所述单面复眼透镜单个透镜的宽度,f为两个所述单面复眼透镜的凸起面的间距。
  16. 如权利要求11所述的激光投影设备,其特征在于,所述激光投影设备还包括设置在所述激光器阵列和二向色组件之间的第一透镜组、设置在所述二向色组件和1/4波片之间的第二透镜组,以及设置在所述二向色组件的出光方向上的第三透镜组。
  17. 如权利要求11所述的激光投影设备,其特征在于,所述激光器阵列还发出第一红色偏振光;
    所述1/4波片还用于接收经所述二向色组件透射的所述第一红色偏振光,生成第二红色偏振光,并将所述第二红色偏振光出射至所述反射部件,以及用于接收经所述激光反射区反射的所述第二红色偏振光,生成第三红色偏振光,并将所述第三红色偏振光出射至所述二向色组件;
    所述二向色组件用于反射所述第三红色偏振光。
  18. 如权利要求1所述的激光投影设备,其特征在于,所述反射部件为所述反射式荧光轮上的激光反射区,所述反射式荧光轮还包括荧光反射区,所述1/4波片设置在所述二向色组件和反射式荧光轮之间的光路上;
    所述1/4波片用于接收经所述二向色组件反射的所述第一蓝色偏振光,并生成所 述第二蓝色偏振光;
    所述激光反射区用于接收来自所述1/4波片的所述第二蓝色偏振光并将所述第二蓝色偏振光反射至所述1/4波片;
    所述荧光反射区用于接收来自所述1/4波片的所述第二蓝色偏振光,并被所述第二蓝色偏振光激发生成所述荧光;
    所述1/4波片还用于接收所述激光反射区反射的第二蓝色偏振光并生成所述第三蓝色偏振光,以及接收并透射所述荧光;
    所述二向色组件用于透射来自所述1/4波片的所述第三蓝色偏振光,并透射所述荧光。
  19. 如权利要求18所述的激光投影设备,其特征在于,所述激光器阵列还发出第一红色偏振光;
    所述1/4波片还用于接收经所述二向色组件反射的所述第一红色偏振光,生成第二红色偏振光,并将所述第二红色偏振光出射至所述反射部件,以及用于接收经所述激光反射区反射的所述第二红色偏振光,生成第三红色偏振光,并将所述第三红色偏振光出射至所述二向色组件;
    所述二向色组件用于透射所述第三红色偏振光。
  20. 如权利要求1所述的激光投影设备,其特征在于,所述荧光反射区设置有黄色和绿色混合荧光粉。
PCT/CN2018/090435 2017-10-10 2018-06-08 一种激光投影设备 WO2019071971A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710933835.6 2017-10-10
CN201710933580.3A CN107505807A (zh) 2017-10-10 2017-10-10 一种激光光源及投影显示设备
CN201710933580.3 2017-10-10
CN201710933835.6A CN107544202A (zh) 2017-10-10 2017-10-10 一种激光光源及投影显示设备

Publications (1)

Publication Number Publication Date
WO2019071971A1 true WO2019071971A1 (zh) 2019-04-18

Family

ID=65993902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090435 WO2019071971A1 (zh) 2017-10-10 2018-06-08 一种激光投影设备

Country Status (2)

Country Link
US (1) US10509303B2 (zh)
WO (1) WO2019071971A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835289A (zh) * 2019-07-15 2021-12-24 青岛海信激光显示股份有限公司 激光投影系统及光源装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133950A (zh) * 2018-02-09 2019-08-16 中强光电股份有限公司 照明系统与投影装置
JP7106349B2 (ja) * 2018-05-15 2022-07-26 キヤノン株式会社 光源装置および画像投射装置
JP7341740B2 (ja) * 2019-06-12 2023-09-11 キヤノン株式会社 光源装置および画像投射装置
CN113534588B (zh) * 2020-04-21 2022-06-28 青岛海信激光显示股份有限公司 激光器和投影设备
JP7494674B2 (ja) 2020-09-16 2024-06-04 セイコーエプソン株式会社 光源装置およびプロジェクター
CN114911119A (zh) * 2021-02-09 2022-08-16 苏州佳世达光电有限公司 光源模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078488A (ja) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
CN103207507A (zh) * 2012-01-11 2013-07-17 中强光电股份有限公司 光源模组与投影装置
JP2014021223A (ja) * 2012-07-17 2014-02-03 Panasonic Corp 映像表示装置
CN106647126A (zh) * 2016-12-27 2017-05-10 苏州佳世达光电有限公司 光源装置以及投影装置
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN107544202A (zh) * 2017-10-10 2018-01-05 青岛海信电器股份有限公司 一种激光光源及投影显示设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108486A (ja) * 2010-10-21 2012-06-07 Panasonic Corp 光源装置および画像表示装置
JP5699568B2 (ja) * 2010-11-29 2015-04-15 セイコーエプソン株式会社 光源装置、プロジェクター
JP5895226B2 (ja) * 2010-11-30 2016-03-30 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP5874058B2 (ja) * 2010-12-06 2016-03-01 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
JP5979416B2 (ja) * 2011-04-20 2016-08-24 パナソニックIpマネジメント株式会社 光源装置および画像表示装置
JP5906416B2 (ja) * 2011-06-30 2016-04-20 パナソニックIpマネジメント株式会社 照明装置および投写型表示装置
CN103631075B (zh) * 2012-08-24 2016-08-03 扬明光学股份有限公司 照明系统、投影装置及照明方法
US20140168971A1 (en) * 2012-12-19 2014-06-19 Casio Computer Co., Ltd. Light source unit able to emit light which is less influenced by interference fringes
JP6383937B2 (ja) * 2013-03-27 2018-09-05 パナソニックIpマネジメント株式会社 光源装置および投写型映像表示装置
WO2014171135A1 (ja) * 2013-04-18 2014-10-23 パナソニック株式会社 投写型映像表示装置
JP6578631B2 (ja) * 2014-07-09 2019-09-25 セイコーエプソン株式会社 照明装置およびプロジェクター
JP6413498B2 (ja) * 2014-08-29 2018-10-31 セイコーエプソン株式会社 照明装置およびプロジェクター
US9759991B2 (en) * 2014-09-16 2017-09-12 Texas Instruments Incorporated Laser illumination on phosphor for projection display
US9645481B2 (en) * 2015-02-12 2017-05-09 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
JP6582487B2 (ja) * 2015-03-27 2019-10-02 セイコーエプソン株式会社 光源装置、照明装置、およびプロジェクター
JP6604110B2 (ja) * 2015-09-18 2019-11-13 株式会社Jvcケンウッド 光学装置および投射装置
US10203593B2 (en) * 2017-01-27 2019-02-12 Panasonic Intellectual Property Management Co., Ltd. Light source device having a retardation plate and projection display apparatus including the light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078488A (ja) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
CN103207507A (zh) * 2012-01-11 2013-07-17 中强光电股份有限公司 光源模组与投影装置
JP2014021223A (ja) * 2012-07-17 2014-02-03 Panasonic Corp 映像表示装置
CN106647126A (zh) * 2016-12-27 2017-05-10 苏州佳世达光电有限公司 光源装置以及投影装置
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN107544202A (zh) * 2017-10-10 2018-01-05 青岛海信电器股份有限公司 一种激光光源及投影显示设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835289A (zh) * 2019-07-15 2021-12-24 青岛海信激光显示股份有限公司 激光投影系统及光源装置
CN113835289B (zh) * 2019-07-15 2022-07-01 青岛海信激光显示股份有限公司 激光投影系统及光源装置

Also Published As

Publication number Publication date
US10509303B2 (en) 2019-12-17
US20190107771A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
WO2019071971A1 (zh) 一种激光投影设备
CN107608166B (zh) 光源装置以及投射型显示装置
JP6383937B2 (ja) 光源装置および投写型映像表示装置
JP6056001B2 (ja) 光源装置および投写型表示装置
US10474022B2 (en) Illuminator and projector
JP7482351B2 (ja) 光源装置および投写型映像表示装置
CN107544202A (zh) 一种激光光源及投影显示设备
CN113495413B (zh) 照明系统与投影装置
WO2020259615A1 (zh) 一种光源系统及显示设备
JP2010204333A (ja) プロジェクター
JP2018124538A (ja) 光源装置および投写型表示装置
US20190391471A1 (en) Illuminating system and projecting apparatus
CN109324467B (zh) 光源装置以及投影型显示装置
US11336873B2 (en) Illumination system and projection apparatus
JP3646597B2 (ja) 投写型画像表示装置
US10705417B2 (en) Wavelength conversion element, light source apparatus and image projection apparatus
JP2018194819A (ja) 光源装置および投写型映像表示装置
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
US8861078B2 (en) Light source adjusting device and projection system comprising the same
JP2019028442A (ja) 光源装置および投写型表示装置
CN111983878B (zh) 光学旋转装置、照明系统以及投影装置
WO2011103807A1 (zh) 图像投影系统及其光路合成器
CN218413176U (zh) 一种投影设备
JP7106349B2 (ja) 光源装置および画像投射装置
WO2022048324A1 (zh) 一种混合光源系统及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866775

Country of ref document: EP

Kind code of ref document: A1