WO2019071526A1 - 零碳排放化石燃料发电方法及装置系统 - Google Patents

零碳排放化石燃料发电方法及装置系统 Download PDF

Info

Publication number
WO2019071526A1
WO2019071526A1 PCT/CN2017/105858 CN2017105858W WO2019071526A1 WO 2019071526 A1 WO2019071526 A1 WO 2019071526A1 CN 2017105858 W CN2017105858 W CN 2017105858W WO 2019071526 A1 WO2019071526 A1 WO 2019071526A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
carbon
flue gas
rich flue
fossil fuel
Prior art date
Application number
PCT/CN2017/105858
Other languages
English (en)
French (fr)
Inventor
彭斯干
Original Assignee
彭斯干
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭斯干 filed Critical 彭斯干
Priority to PCT/CN2017/105858 priority Critical patent/WO2019071526A1/zh
Publication of WO2019071526A1 publication Critical patent/WO2019071526A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention discloses a zero-carbon emission fossil fuel power generation method and device system, belonging to the field of carbon capture and storage for combating climate change, that is, CCS (Carbon Capture & Storage) technology and clean energy technology.
  • CCS Carbon Capture & Storage
  • CCS carbon capture and storage
  • the carbon capture link is used to generate flue gas from industrial facilities such as fossil fuel combustion.
  • the carbon dioxide is separated and required to be purified to a liquid concentration of 99% of the general concentration, dense phase gas or solid carbon dioxide.
  • the carbon capture generally adopts unit technologies such as chemical adsorption, membrane separation, and purification after oxyfuel combustion; It is also an essential part of the existing CCS technology, because the geographical location of the industrial facilities that implement carbon capture is determined by the existing industrial layout, and then the natural storage resources are sought. The distance between the carbon capture point and the storage site is often far away.
  • the unit technical content of the link is the construction and operation technology of high-concentration carbon dioxide transportation pipe network such as liquid or dense phase gas.
  • the design of transporting high-concentration carbon dioxide for 700-800 km has been carried out earlier. In recent years, the transportation distance requirement is shortened.
  • the report is that the high-concentration carbon dioxide transport distance, that is, the high-concentration carbon dioxide pipeline horizontal length should not be greater than 200 km;
  • Section unit technology is mainly geological storage resource exploration technology and safety assessment technology.
  • the invention overcomes the outstanding shortcomings of the current cost-effectiveness of the CCS technology route, and proposes a zero carbon emission fossil fuel power generation method and device system which can greatly reduce the cost of the whole process CCS technical solution and is economically feasible.
  • the fossil fuel of the present invention includes one or a combination of coal carbon, petroleum, natural gas, coalbed methane and combustible ice; the zero carbon emission refers to that most of the carbon dioxide generated by the fossil fuel power generation process realizes CCS.
  • a zero carbon emission fossil fuel power generation method comprising: performing a geological exploration selected carbon dioxide storage layer, A fossil fuel power plant is arranged above the selected carbon dioxide storage layer, in which the fossil fuel is subjected to oxygen-enriched oxyfuel combustion to generate electricity and carbon dioxide-rich flue gas, and the generated electric energy is externally transported.
  • the generated carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ; the method of injecting the carbon dioxide sequestration layer in situ is to make the carbon dioxide-rich flue gas generating place and the carbon dioxide sequestration layer carbon dioxide injection site, two places A method in which the horizontal distance is close.
  • the carbon dioxide-rich flue gas is injected into the carbon dioxide storage layer in situ, and the ratio of the mass of the carbon dioxide to the total mass of the flue gas is greater than 50%, and less than 95% of the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ.
  • the carbon dioxide-rich flue gas is injected into the carbon dioxide storage layer in situ, and the ratio of the mass of the carbon dioxide to the total mass of the flue gas is greater than 60%, and less than 85% of the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ.
  • the method of making the carbon dioxide-rich flue gas generating place and the carbon dioxide injection site injected into the carbon dioxide sequestration layer, and the horizontal distance between the two places approaching is a method of making the horizontal distance between the two places less than 100 km.
  • the method of making the carbon dioxide-rich flue gas generating place and the carbon dioxide injection site injected into the carbon dioxide sequestration layer, and the horizontal distance between the two places approaching, is a method of making the horizontal distance between the two places less than 50 km.
  • the method of making the carbon dioxide-rich flue gas generating place and the carbon dioxide injection site injected into the carbon dioxide sequestration layer, and the horizontal distance between the two places approaching, is a method of making the horizontal distance between the two places less than 20 km.
  • the method of making the carbon dioxide-rich flue gas generating place and the carbon dioxide injection site injected into the carbon dioxide sequestration layer, and the horizontal distance between the two places approaching is a method of making the horizontal distance between the two places less than 2 km.
  • the method for injecting the carbon dioxide-rich flue gas into the carbon dioxide sequestration layer in situ is a method for injecting the carbon dioxide-rich flue gas into the ground or the brine layer under the seabed to achieve carbon dioxide sequestration.
  • the method for injecting the carbon dioxide-rich flue gas into the carbon dioxide storage layer in situ is a method for injecting carbon dioxide-rich flue gas into the oil and gas field under the ground or under the seabed to realize carbon dioxide storage and improve oil and gas recovery.
  • the site above the carbon dioxide storage layer is the ground or the sea surface.
  • the method for injecting carbon dioxide flue gas into the carbon dioxide storage layer in situ is a method for injecting carbon dioxide-rich flue gas into a carbon dioxide sequestration layer through a corrosion-resistant facility and a pipeline, and/or feeding carbon dioxide-rich flue gas into A method of injecting a carbon dioxide sequestration layer after seawater washing to remove corrosive sulfur oxides.
  • the external energy is transmitted to the power grid including the onshore power grid, and/or the marine new energy grid, and/or to the oil and gas processing plant located near the offshore oil and gas exploration facility; the marine new energy source
  • the grid includes grids connected by ocean wind, photovoltaic or tidal power generation facilities.
  • the utility model comprises an oxyfuel combustion power unit for generating carbon-rich flue gas, and a carbon dioxide storage unit, which is coupled with: a fossil fuel input unit, a power generation unit, a power cooling unit, an oxygen generation unit, and a carbon-rich smoke.
  • a gas purifying pressurized gas storage unit the gas storage unit outlet of the carbon-rich flue gas purification pressurized gas storage unit, and the conveying of a carbon-rich flue gas conveying pipe having a horizontal length of nearly zero with 50% to 95% carbon dioxide flue gas
  • the inlet of the tube is connected, and the outlet of the conveying pipe of the carbon-rich flue gas conveying pipe is connected with the carbon dioxide sealing layer, and the horizontal length is near zero is the center line of the oxygen-rich combustion power unit to the center of the conveying pipe outlet of the carbon-rich flue gas conveying pipe
  • the horizontal size is near zero.
  • the horizontal length is near zero, which is the maximum horizontal dimension of the center line of the oxyfuel combustion power unit to the center of the plurality of duct outlets of the carbon-rich flue gas duct.
  • the carbon-rich flue gas conveying pipe with the horizontal length near zero is a carbon-rich flue gas conveying pipe with a horizontal size of less than 100 km from the center line of the oxygen-rich combustion power unit to the center of the conveying pipe of the carbon-rich flue gas conveying pipe.
  • the carbon-rich flue gas conveying pipe with a horizontal length of near zero is a carbon-rich flue gas conveying pipe with a horizontal size of less than 50 km from the center line of the oxygen-rich combustion power unit to the center of the conveying pipe of the carbon-rich flue gas conveying pipe.
  • the carbon-rich flue gas conveying pipe with a horizontal length of near zero is a carbon-rich flue gas conveying pipe with a horizontal size of less than 20 km from the center line of the oxygen-rich combustion power unit to the center of the conveying pipe of the carbon-rich flue gas conveying pipe.
  • the carbon-rich flue gas conveying pipe with a horizontal length of near zero is a carbon-rich flue gas conveying pipe with a horizontal size of less than 2 km from the center line of the oxygen-rich combustion power unit to the center of the conveying pipe of the carbon-rich flue gas conveying pipe.
  • the power cooling unit includes a cooling water pump and/or a cooling fan.
  • the solution of the invention mainly adopts the technical principle of "economic concentration”: the solution of the invention realizes zero-carbon emission fossil fuel power generation in an economically feasible manner, and the economic feasibility is due to the use of the first carbon dioxide storage layer for geological exploration, and then The steps of constructing a fossil fuel power plant at a site above the selected carbon dioxide sequestration layer, thereby enabling the production of carbon dioxide-rich flue gas, and the injection site of the carbon sequestration site, the horizontal distance between the two sites compared with the prior art Near zero method; the result of using this method is that the prior art carbon is omitted
  • the long-distance transportation link between the capture link and the carbon sequestration link, while omitting the transportation link can not only omit the transportation cost, but more importantly, can directly inject carbon-rich flue gas containing 50% to 95% carbon dioxide into the carbon dioxide.
  • the storage layer without being subject to the commercial technical requirements of the transportation link, must provide 99% high-purity carbon dioxide finished products in the carbon dioxide capture process.
  • the purity of the finished product is closer to 100%, the exponential relationship of the faster rise of the cost curve, the high concentration of carbon dioxide capture is high, and the capture of the "economic concentration” route of the present invention is greatly reduced, and the carbon capture link
  • the cost accounts for more than half of the CCS full process cost. Therefore, the "economic concentration" principle of the technical solution of the present invention produces a technical effect of achieving zero carbon emission fossil fuel power generation in an economically viable manner.
  • FIG. 1 is a schematic flow chart of an embodiment of a zero carbon emission fossil fuel power generation method according to the present invention.
  • the method steps of the present embodiment are: performing a geological exploration selected carbon dioxide storage layer, and arranging fossil fuel oxygen enrichment at a site above the selected carbon dioxide storage layer.
  • the carbon dioxide-rich flue gas produced is injected into the carbon dioxide storage layer in situ.
  • FIG. 2 is a schematic illustration of one embodiment of a zero carbon emission fossil fuel power plant system of the present invention.
  • the carbon-rich flue gas purification pressurized gas storage unit of the embodiment is connected with the inlet of the conveying pipe of the carbon-rich flue gas conveying pipe with a horizontal length of nearly zero containing 50% to 95% of carbon dioxide flue gas, and the carbon-rich flue gas conveying
  • the duct outlet of the tube is in communication with the carbon dioxide sequestration layer.
  • Figure 3 shows a conventional CCS technology for oxy-combustion power generation.
  • the carbon capture carbon dioxide liquid has a purity of 99% and a transport distance of about 300km.
  • Figure 4 shows a conventional CCS technical scheme for coal-fired power generation.
  • the carbon capture is carried out by common amine chemical adsorption, and the finished carbon dioxide liquid has a purity of 99% and a transport distance of about 700 km.
  • 1 Oxygen-enriched combustion power unit
  • 2 fossil fuel input unit
  • 3-to-electricity unit 4-power cooling unit
  • 5-oxygen unit 6
  • carbon-rich flue gas purification pressurized gas storage unit 6.1
  • gas storage unit outlet 7
  • carbon-rich flue gas conveying pipe 7.1
  • transport pipe inlet 7.2
  • transport pipe outlet 7.3
  • horizontal length 8-carbon dioxide storage layer.
  • Embodiment 1 It is a basic embodiment of the zero carbon emission fossil fuel power generation method of the present invention.
  • the steps of the zero carbon emission fossil fuel power generation method include: performing a geological exploration selected carbon dioxide storage layer, selected A fossil fuel power plant is arranged above the carbon dioxide storage layer, in which the fossil fuel is subjected to oxygen-enriched oxyfuel combustion to generate electricity and carbon dioxide-rich flue gas, and the generated electric energy is externally transported, resulting in a rich
  • the carbon dioxide-containing flue gas is injected into the carbon dioxide sequestration layer in situ; the method of injecting the carbon dioxide sequestration layer in situ is to make the carbon dioxide-rich flue gas generating place and the carbon dioxide encapsulating layer carbon dioxide injection place, and the horizontal distance between the two places is close to Methods.
  • the selected carbon dioxide storage layer for geological exploration is a selected carbon dioxide storage layer for geological exploration according to the prior art and specifications.
  • the fossil fuel oxyfuel combustion power generation is also prior art.
  • Embodiment 2 It is a further embodiment based on Embodiment 1, wherein the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ, and is rich in carbon dioxide having a ratio of carbon dioxide mass to total flue gas content of about 50%. The flue gas is injected into the carbon dioxide storage layer.
  • the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ, and the carbon dioxide-rich flue gas having a carbon dioxide mass to the total mass of the flue gas is injected into the carbon dioxide sequestration layer in situ.
  • the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ, and the carbon dioxide-rich flue gas having a mass ratio of carbon dioxide to total flue gas of about 85% is injected into the carbon dioxide sequestration layer in situ.
  • the carbon dioxide-rich flue gas is injected into the carbon dioxide sequestration layer in situ, and the carbon dioxide-rich flue gas having a mass ratio of carbon dioxide to total flue gas of about 95% is injected into the carbon dioxide sequestration layer in situ.
  • Embodiment 3 It is another embodiment based on Embodiment 1, the method of making the carbon dioxide-rich gas generating place and the carbon dioxide injection site injected into the carbon dioxide storage layer, and the horizontal distance between the two places approaching A method of horizontal distance between two locations of approximately 100 km.
  • Another embodiment is to create a carbon dioxide-rich flue gas location with a carbon dioxide injection site injected into the carbon dioxide sequestration layer with a horizontal distance of approximately 50 km between the two locations.
  • These embodiments are rich in the location (source) of carbon dioxide flue gas, and the carbon dioxide injection site (sink) injected into the carbon sequestration layer.
  • the horizontal distance between the two locations, ie, source and sink, is significantly smaller than the existing CCS technical solution source.
  • the sink is usually more than 200 kilometers away, and the carbon-rich flue gas generated by power generation can be directly pressurized into the carbon sequestration layer, thereby omitting the high-concentration carbon dioxide transportation link necessary for the existing CCS technology.
  • Embodiment 4 It is a further embodiment based on Embodiment 1.
  • the produced carbon dioxide-rich flue gas The method of injecting a carbon dioxide sequestration layer in situ is a method of injecting carbon dioxide-rich flue gas into the subsurface brine layer to achieve carbon dioxide sequestration.
  • Another embodiment is a method for injecting the carbon dioxide-rich flue gas into the carbon dioxide storage layer in situ, which is a method for injecting carbon dioxide-rich flue gas into the seawater layer under the seabed to realize carbon dioxide sequestration;
  • the plant is placed on an offshore engineering platform above sea level above the brine layer.
  • Embodiment 5 is a further embodiment based on Embodiment 1.
  • the method for injecting the carbon dioxide-rich flue gas into the carbon dioxide storage layer in situ is a method for injecting carbon dioxide-rich flue gas into the subsurface oil and gas field to realize carbon dioxide sequestration and improving oil and gas recovery.
  • Another embodiment is the method for injecting the carbon dioxide enriched layer into the carbon dioxide storage layer in situ, which is a method for injecting carbon dioxide-rich flue gas into the oil and gas field under the seabed to realize carbon dioxide storage and improve oil and gas recovery.
  • the carbon dioxide storage layer of this embodiment is an oil and gas field under the seabed, and the site above the carbon dioxide storage layer is the sea surface, and the device for generating carbon-rich flue gas is arranged on the offshore engineering platform on the sea surface.
  • Embodiment 6 is a further embodiment based on Embodiment 1.
  • the method for injecting the carbon dioxide-rich flue gas into the carbon dioxide sequestration layer in situ is a method of injecting carbon dioxide-rich flue gas into the carbon dioxide sequestration layer through a corrosion-resistant facility and a pipeline. This is because the fossil fuel flue gas contains corrosive gases such as carbon dioxide and sulfur dioxide, and the pipeline facilities for supercharging and injecting flue gas require the use of qualified corrosion-resistant process materials with reliability and safety.
  • the carbon dioxide-rich flue gas is subjected to seawater washing to remove corrosive sulfur oxides and then injected into the carbon dioxide sequestration layer.
  • Embodiment 7 is a further embodiment based on Embodiment 1.
  • the emitted electrical energy is externally transmitted, and the power plant outputs electric power to the external power grid, including outputting power to the national grid, the international power grid, the intercontinental power grid through the power cable, and/or outputting power to the factory near the power plant.
  • the carbon dioxide produced by the plant can be combined with the carbonaceous flue gas generated by the combustion and then injected into the carbon sequestration layer.
  • Example 8 A basic embodiment of a zero carbon emission fossil fuel power plant system for use in the process of the present invention.
  • the duct outlet 7.2 is in communication with the carbon dioxide sequestration layer 8, and the horizontal length 7.3 is near zero.
  • oxy-combustion is used to make the total thermal energy efficiency of small and medium-sized units generate electricity equivalent to ordinary large units.
  • this configuration will increase some transportation facilities for fuel transportation, but in general, it is more mature, safe and low-cost to transport and transport fossil fuels such as coal, oil and natural gas than carbon dioxide for transporting high-pressure supercritical water.
  • the low-cost carbon capture advantages of oxy-combustion to obtain carbon-rich flue gas are maintained.
  • the horizontal length near zero is the maximum horizontal dimension of the centerline of the oxyfuel combustion power unit to the center of the plurality of duct outlets of the carbon-rich flue gas duct.
  • Embodiment 9 It is a further embodiment based on Embodiment 8, wherein the carbon-rich flue gas delivery pipe 7 having a horizontal length of 7.3 near zero is the center line of the oxyfuel combustion power unit 1 to the carbon-rich flue gas delivery pipe 7
  • the duct outlet 7.2 is a carbon-rich flue gas duct 7 having a horizontal dimension of about 100 km in the center.
  • the vertical length of the carbon-rich flue gas duct 7 is designed to be about 3000 m according to the geological structure.
  • Another embodiment is the carbon-rich flue gas delivery pipe 7 having a horizontal length of 7.3 near zero, which is a horizontal dimension of the center of the oxyfuel combustion power unit 1 to the center of the delivery pipe outlet 7.2 of the carbon-rich flue gas delivery pipe 7 of about 50 km.
  • Yet another embodiment is the carbon-rich flue gas delivery pipe 7 having a horizontal length of 7.3 near zero, which is a horizontal dimension of the center of the oxyfuel combustion power unit 1 to the center of the delivery pipe outlet 7.2 of the carbon-rich flue gas delivery pipe 7 of about 20 km.
  • Still another embodiment is the carbon-rich flue gas delivery pipe 7 having a horizontal length of 7.3 near zero, which is a horizontal dimension of the center of the oxyfuel combustion power unit 1 to the center of the delivery pipe outlet 7.2 of the carbon-rich flue gas delivery pipe 7 of about 2 km.
  • Still another embodiment is the carbon-rich flue gas delivery pipe 7 having a horizontal length of 7.3 near zero, which is a horizontal dimension of the center line of the oxyfuel combustion power unit 1 to the center of the delivery pipe outlet 7.2 of the carbon-rich flue gas delivery pipe 7
  • the carbon-rich flue gas delivery pipe 7 of the present embodiment, the oxy-combustion power unit 1 of the present embodiment is installed on the offshore platform above the marine oil and gas field, and is located directly above the outlet 7.2 of the conveying pipe of the carbon-rich flue gas conveying pipe 7.
  • Embodiment 10 A further embodiment based on Embodiment 8, said zero carbon emission fossil fuel power generation system, wherein the power cooling unit 4 comprises a cooling water pump.
  • the power cooling unit 4 of another embodiment includes a cooling fan.
  • Still another embodiment of the cooling unit 4 employs a circulating cooling water plus air cooling device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)

Abstract

零碳排放化石燃料发电方法及装置系统,方法的步骤包括进行地质勘探选定二氧化碳封存层,在选定的二氧化碳封存层上方场地建设化石燃料发电厂,在该发电厂中对化石燃料进行鼓入氧气的富氧燃烧发电,所产生的电能对外输送,所产生的富含二氧化碳烟气就地注入二氧化碳封存层;使富含二氧化碳烟气的产生地点,与二氧化碳封存层的注入地点,两个地点之间水平距离接近,并将含有50%~95%二氧化碳的富碳烟气直接注入碳封存层,从而省略碳捕集环节和碳封存环节之间的远距离运输环节,可使碳捕集成本及全流程CCS成本大幅下降,从而经济可行地实现零碳排放化石燃料发电。

Description

零碳排放化石燃料发电方法及装置系统 技术领域
本发明零碳排放化石燃料发电方法及装置系统,属于应对气候变化的碳捕集与封存即CCS(Carbon Capture & Storage)技术领域和清洁能源技术领域。
背景技术
应对气候变化,实现气候目标,需要大量应用碳捕集与封存(CCS),特别需要在能源领域实现大量商业规模的CCS项目。现有多种CCS技术路线,如图3、图4所示,包含有碳的捕集、运输和封存三个环节;其中的碳捕集环节,是将化石燃料燃烧等工业设施产生烟气中的二氧化碳分离出来,并要求提纯为一般浓度99%的液体、密相气体或固体二氧化碳,碳捕集一般采用化学吸附、膜分离,以及富氧燃烧后再提纯等单元技术;其中的运输环节,也是现有CCS技术的必须环节,因为实施碳捕集的工业设施地理位置是由现有工业布局先行决定,然后再去寻找自然界的封存资源,碳捕集点与封存点距离往往很遥远,运输环节的单元技术内容是液体或密相气体等高浓度二氧化碳运输管网建设和运营技术,早前有将高浓度二氧化碳运输700~800公里的设计,近年有运输距离要求缩短的趋势,较近的报道是认为高浓度二氧化碳运输距离即高浓度二氧化碳管道水平长度不宜大于200公里;封存环节单元技术主要是地质封存资源勘探技术和安全评估技术。
然而,目前商业规模的CCS项目几乎为零。人们普遍认为:应对气候变化剩下的时间已经不多,现有CCS技术路线成本过高,发展过慢的局面亟需改变。
发明内容
本发明为克服当前CCS技术路线成本效益差的突出缺点,提出一种可以大幅降低全流程CCS技术方案成本,经济可行的零碳排放化石燃料发电方法及装置系统。本发明所述的化石燃料包括煤碳、石油、天然气、煤层气以及可燃冰中的一种或组合;所述的零碳排放,是指化石燃料发电过程产生的二氧化碳大部份实现CCS。
本发明零碳排放化石燃料发电方法的技术方案是:
一种零碳排放化石燃料发电方法,步骤包括:进行地质勘探选定二氧化碳封存层, 在选定的二氧化碳封存层上方场地布置化石燃料发电厂,在该发电厂中对化石燃料进行鼓入氧气的富氧燃烧发电,产生电能和富含二氧化碳烟气,所产生的电能对外输送,所产生的富含二氧化碳烟气就地注入二氧化碳封存层;所述的就地注入二氧化碳封存层的方法,是使富含二氧化碳烟气的产生地点,与二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法。
进一步的技术方案是:
所述的富含二氧化碳烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比大于50%,小于95%的富含二氧化碳的烟气就地注入二氧化碳封存层。
所述的富含二氧化碳烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比大于60%,小于85%的富含二氧化碳的烟气就地注入二氧化碳封存层。
所述使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离小于100km的方法。
所述使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离小于50km的方法。
所述使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离小于20km的方法。
所述使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离小于2km的方法。
所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下或海床下盐水层中实现二氧化碳封存的方法。
所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下或海床下的油气田中实现二氧化碳封存,并提高油气采收率的方法。
所述的二氧化碳封存层上方场地,是地面或海面。
所述的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是将富含二氧化碳烟气经由抗腐蚀性设施和管道注入二氧化碳封存层的方法,和/或将富含二氧化碳烟气进 行海水洗涤脱除腐蚀性硫氧化物后注入二氧化碳封存层的方法。
所述的将电能对外输送,是通过电力电缆向包括岸上电网,和/或海洋新能源电网输送电能,和/或向位于海洋油气开采设施近旁的油气加工厂输送电能;所述的海洋新能源电网包括海洋风电、光电或潮汐发电设施连接的电网。
一种用于本发明方法的零碳排放化石燃料发电装置系统的技术方案是:
它包括产生富碳烟气的富氧燃烧动力单元,和二氧化碳封存层,该富氧燃烧动力单元联接有:化石燃料输入单元,发变电单元,动力冷却单元,制氧单元,以及富碳烟气净化增压储气单元;该富碳烟气净化增压储气单元的储气单元出口,与流通含有50%~95%二氧化碳烟气的水平长度近零的富碳烟气输送管的输送管入口相联通,富碳烟气输送管的输送管出口与二氧化碳封存层相联通,所述的水平长度近零是富氧燃烧动力单元的中心线到富碳烟气输送管的输送管出口中心的水平尺寸近零。
所述的水平长度近零是富氧燃烧动力单元的中心线到富碳烟气输送管的多个输送管出口中心的最大水平尺寸近零。
进一步的技术方案是:
所述水平长度近零的富碳烟气输送管,是富氧燃烧动力单元的中心线到富碳烟气输送管的输送管出口中心的水平尺寸小于100km的富碳烟气输送管。
所述水平长度近零的富碳烟气输送管,是富氧燃烧动力单元的中心线到富碳烟气输送管的输送管出口中心的水平尺寸小于50km的富碳烟气输送管。
所述水平长度近零的富碳烟气输送管,是富氧燃烧动力单元的中心线到富碳烟气输送管的输送管出口中心的水平尺寸小于20km的富碳烟气输送管。
所述水平长度近零的富碳烟气输送管,是富氧燃烧动力单元的中心线到富碳烟气输送管的输送管出口中心的水平尺寸小于2km的富碳烟气输送管。
所述的动力冷却单元包括冷却水泵和/或冷却风机。
本发明技术原理和技术效果
本发明方案主要采用“经济浓度”技术原理:本发明方案以经济可行的方式实现零碳排放化石燃料发电,而经济可行的原因,是由于采用了先进行地质勘探选定二氧化碳封存层,然后在选定的二氧化碳封存层上方场地建设化石燃料发电厂的步骤,因而可实现富含二氧化碳烟气的产生地点,与注入碳封存场地的注入地点,两个地点之间水平距离与现有技术相比接近零的方法;采用该方法的结果是,省略了现有技术碳 捕集环节和碳封存环节之间的远距离运输环节,而省略运输环节,不仅可以省略运输成本,更为重要的是,可以将含有50%~95%二氧化碳的富碳烟气,直接注入二氧化碳封存层,而不必受制于运输环节商业技术要求,使二氧化碳捕集环节必须提供99%高纯度二氧化碳成品。由于成品纯度越接近100%,成本曲线上升越快的指数关系,高浓度二氧化碳捕集成本居高不下,而本发明采用“经济浓度”路线的捕集成本则大幅下降,又由于碳捕集环节成本占CCS全流程成本的一大半,因而本发明技术方案的“经济浓度”原理,产生了以经济可行方式实现零碳排放化石燃料发电的技术效果。
附图说明
图1是本发明零碳排放化石燃料发电方法的一个实施例的流程示意图,本实施例方法步骤为:进行地质勘探选定二氧化碳封存层,在选定的二氧化碳封存层上方场地布置化石燃料富氧燃烧发电厂,所产生的富含二氧化碳烟气就地注入二氧化碳封存层。
图2是本发明零碳排放化石燃料发电装置系统一个实施例的示意图。本实施例的富碳烟气净化增压储气单元,与流通含有50%~95%二氧化碳烟气的水平长度近零的富碳烟气输送管的输送管入口相联通,富碳烟气输送管的输送管出口与二氧化碳封存层相联通。
图3所示是一种现有富氧燃烧发电CCS技术方案,其碳捕集二氧化碳液体成品纯度99%,运输距离约300km。
图4所示是一种现有燃煤发电CCS技术方案,其碳捕集采用常见的胺剂化学吸附,制成的二氧化碳液体成品纯度99%,运输距离约700km。
附图中:1—富氧燃烧动力单元,2—化石燃料输入单元,3—发变电单元,4—动力冷却单元,5—制氧单元,6—富碳烟气净化增压储气单元,6.1—储气单元出口,7—富碳烟气输送管,7.1—输送管入口,7.2—输送管出口,7.3—水平长度,8—二氧化碳封存层。
具体实施方式
结合附图和实施例对本发明零碳排放化石燃料发电方法及装置系统作进一步说明如下:
实施例1:是本发明零碳排放化石燃料发电方法的基本实施例。如附图1所示,零碳排放化石燃料发电方法的步骤包括:进行地质勘探选定二氧化碳封存层,在选定 的二氧化碳封存层上方场地布置化石燃料发电厂,在该发电厂中对化石燃料进行鼓入氧气的富氧燃烧发电,产生电能和富含二氧化碳烟气,所产生的电能对外输送,所产生的富含二氧化碳烟气就地注入二氧化碳封存层;所述就地注入二氧化碳封存层的方法,是使富含二氧化碳烟气的产生地点,与二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法。
所述的进行地质勘探选定二氧化碳封存层,是按现有技术和规范进行地质勘探选定二氧化碳封存层。所述的化石燃料富氧燃烧发电也是现有技术。
实施例2:是在实施例1基础上的进一步实施例,所述的富含二氧化碳的烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比约50%的富含二氧化碳的烟气就地注入二氧化碳封存层。
另一实施例是所述的富含二氧化碳的烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比约60%的富含二氧化碳的烟气就地注入二氧化碳封存层。
又一实施例是所述的富含二氧化碳的烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比约85%的富含二氧化碳的烟气就地注入二氧化碳封存层。
还有一实施例是所述的富含二氧化碳的烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比约95%的富含二氧化碳的烟气就地注入二氧化碳封存层。
实施例3:是在实施例1基础上的又一实施例,使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离约100km的方法。
另一实施例是使产生富含二氧化碳烟气的地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离约50km。
还有一个实施例是使产生富含二氧化碳烟气的地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离约20km。又一实施例是使产生富含二氧化碳烟气的地点,与注入二氧化碳封存层的注入地点,两个地点之间水平距离约2km。
这些实施例富含二氧化碳烟气的产生地点(源),与注入碳封存层的二氧化碳注入地点(汇),两个地点即源、汇之间的水平距离,都显著小于现有CCS技术方案源汇通常大于200公里的距离,可将发电产生的富碳烟气直接增压注入碳封存层,从而省略了现有CCS技术必须的高浓度二氧化碳运输环节。
实施例4:是在实施例1基础上的进一步实施例。所述产生的富含二氧化碳烟气 就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下盐水层中实现二氧化碳封存的方法。
另一实施例是所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入海床下盐水层中实现二氧化碳封存的方法;本实施例的发电厂装置布置在盐水层上方海平面以上的海洋工程平台。
实施例5:是在实施例1基础上的进一步实施例。所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下油气田中实现二氧化碳封存,并提高油气采收率的方法。
另一实施例是所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入海床下油气田中实现二氧化碳封存,并提高油气采收率的方法;本实施例的二氧化碳封存层是海床下的油气田,二氧化碳封存层上方场地是海面,产生富碳烟气的装置布置于海面上的海洋工程平台。
实施例6:是在实施例1基础上的进一步实施例。所述的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是将富含二氧化碳烟气经由抗腐蚀性设施和管道注入二氧化碳封存层的方法。这是由于化石燃料烟气中含有二氧化碳、二氧化硫等腐蚀性气体,增压注入烟气的管道设施,需要采用可靠性、安全性有保证的合格抗腐蚀性工艺材料。另一实施例是将富含二氧化碳烟气进行海水洗涤脱除腐蚀性硫氧化物后注入二氧化碳封存层。
实施例7:是在实施例1基础上的进一步实施例。所发出的电能对外输送,是发电厂对外部电网输出电力,包括通过电力电缆向所在国家电网、国际电网、洲际电网输出电力,和/或向发电厂近旁的工厂输出电力。
只向近旁工厂输送电能也是一种实施例。这样,工厂产生的二氧化碳就可与燃烧发电产生的含碳烟气汇合后就地注入碳封存层。
实施例8:是用于本发明方法的零碳排放化石燃料发电装置系统的基本实施例。如图2所示零碳排放化石燃料发电装置系统,它包括产生富碳烟气的富氧燃烧动力单元1,和二氧化碳封存层8,该富氧燃烧动力单元1联接有:化石燃料输入单元2,发变电单元3,动力冷却单元4,制氧单元5,以及富碳烟气净化增压储气单元6;该富碳烟气净化增压储气单元6的储气单元出口6.1,与流通含有50%~95%二氧化碳烟气的水平长度7.3近零的富碳烟气输送管7的输送管入口7.1相联通,富碳烟气输送管7 的输送管出口7.2与二氧化碳封存层8相联通,所述的水平长度7.3近零是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸近零。
本实施例采用富氧燃烧,使中小型机组发电的总热能效率可以相当于普通大型机组。另一方面,这样配置会增加一些输送燃料的交通设施,但总体来说,与输送转运高压超临界的二氧化碳相比,输送转运煤炭、石油、天然气等化石燃料更为成熟、安全、低成本,特别是使得富氧燃烧获取富碳烟气的低成本碳捕集优势得以保持。
还有一个实施例是所述的水平长度近零是富氧燃烧动力单元的中心线到富碳烟气输送管的多个输送管出口中心的最大水平尺寸近零。
实施例9:是在实施例8基础上的进一步实施例,所述水平长度7.3近零的富碳烟气输送管7,是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸约100km的富碳烟气输送管7。富碳烟气输送管7的垂直长度根据地质构造设计为约3000m。
另一实施例是所述水平长度7.3近零的富碳烟气输送管7,是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸约50km的富碳烟气输送管7。
又一实施例是所述水平长度7.3近零的富碳烟气输送管7,是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸约20km的富碳烟气输送管7。
还有一实施例是所述水平长度7.3近零的富碳烟气输送管7,是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸约2km的富碳烟气输送管7。
再一实施例是所述水平长度7.3近零的富碳烟气输送管7,是富氧燃烧动力单元1的中心线到富碳烟气输送管7的输送管出口7.2中心的水平尺寸约为0的富碳烟气输送管7,本实施例富氧燃烧动力单元1,安装布置在海洋油气田上方的海洋平台上,位于富碳烟气输送管7的输送管出口7.2的正上方。
实施例10:是在实施例8基础上的进一步实施例,所述的零碳排放化石燃料发电装置系统,其动力冷却单元4包括冷却水泵。另一实施例的动力冷却单元4包括冷却风机。还有一个实施例的冷却单元4,采用循环冷却水加空气式冷却装置。
本发明的权利要求保护范围不限于上述实施例。

Claims (10)

  1. 一种零碳排放化石燃料发电方法,其特征在于,步骤包括:进行地质勘探选定二氧化碳封存层,在选定的二氧化碳封存层上方场地布置化石燃料发电厂,在该发电厂中对化石燃料进行鼓入氧气的富氧燃烧发电,产生电能和富含二氧化碳烟气,所产生的电能对外输送,所产生的富含二氧化碳烟气就地注入二氧化碳封存层;所述就地注入二氧化碳封存层的方法,是使富含二氧化碳烟气的产生地点,与二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法。
  2. 根据权利要求1所述的零碳排放化石燃料发电方法,其特征在于,所产生的富含二氧化碳烟气就地注入二氧化碳封存层,是二氧化碳的质量与烟气总质量之比大于50%,小于95%的富含二氧化碳的烟气就地注入二氧化碳封存层。
  3. 根据权利要求1所述的零碳排放化石燃料发电方法,其特征在于,使富含二氧化碳烟气的产生地点,与注入二氧化碳封存层的二氧化碳注入地点,两个地点之间水平距离接近的方法,是使两个地点之间水平距离小于100km的方法。
  4. 根据权利要求1所述的零碳排放化石燃料发电方法,其特征在于,所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下或海床下盐水层中实现二氧化碳封存的方法。
  5. 根据权利要求1所述的零碳排放化石燃料发电方法,其特征在于,所述产生的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是产生的富含二氧化碳烟气就地注入地面下或海床下的油气田中实现二氧化碳封存,并提高油气采收率的方法。
  6. 根据权利要求1所述的零碳排放化石燃料发电方法,其特征在于,所述的富含二氧化碳烟气就地注入二氧化碳封存层的方法,是将富含二氧化碳烟气经由抗腐蚀性设施和管道注入二氧化碳封存层的方法,和/或将富含二氧化碳烟气进行海水洗涤脱除腐蚀性硫氧化物后注入二氧化碳封存层的方法。
  7. 一种用于权利要求1所述方法的零碳排放化石燃料发电装置系统,其特征在于,它包括产生富碳烟气的富氧燃烧动力单元(1),和二氧化碳封存层(8),该富氧燃烧动力单元(1)联接有:化石燃料输入单元(2),发变电单元(3),动力冷却单元(4),制氧单元(5),以及富碳烟气净化增压储气单元(6);该富碳烟气净化增压储气单元(6)的储气单元出口(6.1),与流通含有50%~95%二氧化碳烟气的水平长度(7.3)近零的富碳烟气输送管(7)的输送管入口(7.1)相联通,富碳烟气输送管(7)的输送管出口(7.2)与二氧化碳封存层(8)相联通,所述的水平长度(7.3) 近零是富氧燃烧动力单元(1)的中心线到富碳烟气输送管(7)的输送管出口(7.2)中心的水平尺寸近零。
  8. 根据权利要求7所述的零碳排放化石燃料发电装置系统,其特征在于,所述水平长度(7.3)近零的富碳烟气输送管(7),是富氧燃烧动力单元(1)的中心线到富碳烟气输送管(7)的输送管出口(7.2)中心的水平尺寸小于50km的富碳烟气输送管(7)。
  9. 根据权利要求7所述的零碳排放化石燃料发电装置系统,其特征在于,所述水平长度(7.3)近零的富碳烟气输送管(7),是富氧燃烧动力单元(1)的中心线到富碳烟气输送管(7)的输送管出口(7.2)中心的水平尺寸小于2km的富碳烟气输送管(7)。
  10. 根据权利要求7所述的零碳排放化石燃料发电装备,其特征在于,所述的动力冷却单元(4)包括冷却水泵和/或冷却风机。
PCT/CN2017/105858 2017-10-12 2017-10-12 零碳排放化石燃料发电方法及装置系统 WO2019071526A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105858 WO2019071526A1 (zh) 2017-10-12 2017-10-12 零碳排放化石燃料发电方法及装置系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105858 WO2019071526A1 (zh) 2017-10-12 2017-10-12 零碳排放化石燃料发电方法及装置系统

Publications (1)

Publication Number Publication Date
WO2019071526A1 true WO2019071526A1 (zh) 2019-04-18

Family

ID=66100300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105858 WO2019071526A1 (zh) 2017-10-12 2017-10-12 零碳排放化石燃料发电方法及装置系统

Country Status (1)

Country Link
WO (1) WO2019071526A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040003592A1 (en) * 1995-06-07 2004-01-08 Fermin Viteri Hydrocarbon combustion power generation system with CO2 sequestration
CN101427408A (zh) * 2004-06-03 2009-05-06 燃料电池能有限公司 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
CN103590795A (zh) * 2013-10-16 2014-02-19 大连理工大学 回注co2废气提高天然气采收率和co2地质封存一体化的方法
CN104785073A (zh) * 2015-04-30 2015-07-22 中国华能集团清洁能源技术研究院有限公司 一种利用地热的二氧化碳捕集、发电与封存系统
CN105484705A (zh) * 2015-12-22 2016-04-13 彭斯干 无碳排放联合油气发电方法及装备
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040003592A1 (en) * 1995-06-07 2004-01-08 Fermin Viteri Hydrocarbon combustion power generation system with CO2 sequestration
CN101427408A (zh) * 2004-06-03 2009-05-06 燃料电池能有限公司 具有减少co2排放的联合高效化石燃料发电设备/燃料电池系统
CN103590795A (zh) * 2013-10-16 2014-02-19 大连理工大学 回注co2废气提高天然气采收率和co2地质封存一体化的方法
CN104785073A (zh) * 2015-04-30 2015-07-22 中国华能集团清洁能源技术研究院有限公司 一种利用地热的二氧化碳捕集、发电与封存系统
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统
CN105484705A (zh) * 2015-12-22 2016-04-13 彭斯干 无碳排放联合油气发电方法及装备

Similar Documents

Publication Publication Date Title
CN113871653A (zh) 零碳排放化石燃料发电方法及装置系统
US8728423B2 (en) Method and apparatus for flue gas treatment
CN102704894B (zh) 原位开采海底天然气水合物的装置及其方法
WO2017211312A1 (zh) 海水式碳捕集封存方法及装置
WO2017107240A1 (zh) 无碳排放联合油气发电方法及装备
CN103590795A (zh) 回注co2废气提高天然气采收率和co2地质封存一体化的方法
WO2016183974A1 (zh) 一种无损治理煤田火区的液氮系统及方法
WO2017143652A1 (zh) 零碳排放化石燃料发电方法及装备
CN105819445A (zh) 一种深海封存二氧化碳的方法
WO2020000121A1 (zh) 低碳排放化石能源产生方法及装置
KR20200060349A (ko) 해양 탄소 사이클을 사용하는 플로팅 오프쇼어 탄소 중립 발전 시스템
向勇 et al. Research progress and development prospect of CCUS-EOR technologies in China
CN103835747B (zh) 一种低浓瓦斯综合利用的系统及方法
WO2019071526A1 (zh) 零碳排放化石燃料发电方法及装置系统
CN116411997B (zh) 一种co2封存利用源汇匹配全流程评价装置
DE102013017914A1 (de) Nutzung des "Power to Gas" Prinzips zur Anbindung von Offshore-Windparks
US11484827B2 (en) Carbon dioxide sequestration in natural gas pipelines
WO2017088346A1 (zh) 无碳排放海洋油气能源的生产方法及装备
JP3208501U (ja) Co2回収液化装置及びそれを搭載したシステム船
CN203773842U (zh) 在海岛上利用太阳能光伏电力的可燃冰加工厂的建筑模型
CN104132246A (zh) 二氧化碳置换天然气水合物的调峰方法与装置
CN113088990A (zh) 一种天然气管道掺氢输运与氢气提取供应系统及运行方法
Chichilnisky et al. Carbon negative power plants
CN103824501A (zh) 在海岛上利用太阳能光伏电力的可燃冰加工厂的建筑模型
US20230349632A1 (en) Greenhouse Gas Capture and Sequestration System and Method with Collection Service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928489

Country of ref document: EP

Kind code of ref document: A1