WO2019071444A1 - 一种摄像装置的转动控制方法、控制设备以及飞行器 - Google Patents

一种摄像装置的转动控制方法、控制设备以及飞行器 Download PDF

Info

Publication number
WO2019071444A1
WO2019071444A1 PCT/CN2017/105590 CN2017105590W WO2019071444A1 WO 2019071444 A1 WO2019071444 A1 WO 2019071444A1 CN 2017105590 W CN2017105590 W CN 2017105590W WO 2019071444 A1 WO2019071444 A1 WO 2019071444A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
camera device
control
distance
pan
Prior art date
Application number
PCT/CN2017/105590
Other languages
English (en)
French (fr)
Inventor
王平
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to CN202111181889.4A priority Critical patent/CN113895640A/zh
Priority to PCT/CN2017/105590 priority patent/WO2019071444A1/zh
Priority to CN201780012790.7A priority patent/CN108778931B/zh
Publication of WO2019071444A1 publication Critical patent/WO2019071444A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/004Arrangements for holding or mounting articles, not otherwise provided for characterised by position outside the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/008Adjustable or movable supports
    • B60R2011/0085Adjustable or movable supports with adjustment by rotation in their operational position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/008Adjustable or movable supports
    • B60R2011/0092Adjustable or movable supports with motorization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a rotation control method, a control device, and an aircraft of an image pickup apparatus.
  • Unmanned Aerial Vehicle can not only fly autonomously according to the set navigation path, but also complete remote flight under the control of the user's remote control.
  • the camera can also be provided with an image capturing device, and the image captured by the camera device can be transmitted back to the user on the ground end by wireless means. Therefore, for some places that are inaccessible to the user, it is possible to perform aerial photography, monitoring, and the like for these places by controlling the flight of the aircraft mounted by the camera.
  • unmanned vehicles, robots, unmanned submarines and other moving objects that can also be autonomous or remotely controlled, it is also possible to perform corresponding shooting and monitoring tasks in different scenarios and environments according to user needs.
  • the protection of moving objects can be realized by setting automatic parachutes, airbags, etc., for example, when it is detected that the drone power system stops working, when it is falling, the parachute can be automatically popped up or the airbag can be opened.
  • the way to ensure that the drones and attached equipment such as pan/tilt and camera devices are not damaged. How to better protect the camera device from damage is a hot issue in research.
  • Embodiments of the present invention disclose a rotation control method, a control device, and an aircraft of an imaging device, which can protect a lens of the imaging device.
  • an embodiment of the present invention provides a method for controlling rotation of a camera device, including:
  • the rotation control command is generated according to the moving direction and a lens orientation of the imaging device, the rotation control command is for controlling rotation of the imaging device, and a lens orientation and the motion of the imaging device after the rotation The direction is different.
  • an embodiment of the present invention further provides a method for controlling the rotation of a camera device, the camera device being mounted on an aircraft, including:
  • the rotation control command is for controlling the rotation of the image pickup device, and the lens orientation of the image pickup device is different from the movement direction when the landing command is executed after the rotation.
  • the embodiment of the present invention further provides a control device, including: a storage device and a processor;
  • the storage device is configured to store program instructions
  • the processor the program instruction is used to acquire a moving direction of the camera device; if an obstacle is detected in the moving direction, and a relationship between the camera device and the obstacle is satisfied In the event of a collision, a rotation control command is issued;
  • the rotation control command is generated according to the moving direction and the lens orientation of the imaging device, and the rotation control command is used to control the rotation of the imaging device, and the lens orientation and orientation of the imaging device after the rotation The direction of movement is different.
  • an embodiment of the present invention further provides an aircraft, wherein the aircraft is provided with a cloud platform, and the camera device is fixed on the cloud platform, the aircraft includes: a storage device and a controller;
  • the storage device is configured to store program instructions
  • the controller is configured to acquire a distance between the aircraft and a landing position area when the landing instruction is acquired; and if the acquired distance meets the collision condition, issue a rotation control instruction to the cloud platform;
  • the rotation control command is used to control the rotation of the pan/tilt, and after the camera device rotates following the pan/tilt head, the lens orientation of the camera device is different from the direction of motion when the landing command is executed.
  • the embodiment of the invention further provides a rotation control device for the camera device, comprising:
  • An acquiring module configured to acquire a moving direction of the camera device
  • a control module configured to issue a rotation control command if an obstacle is detected in the moving direction, and a relationship between the imaging device and the obstacle satisfies a collision condition;
  • the direction of motion and the lens orientation of the camera device are used to control the rotation of the camera device, and the lens orientation of the camera device is different from the direction of motion after the rotation.
  • the embodiment of the present invention further provides a rotation control device for a camera device, including:
  • An acquiring module configured to acquire a distance between the aircraft and a landing position area when the landing instruction is acquired
  • a control module configured to: if the acquired distance meets a collision condition, issue a rotation control command; the rotation control command is used to control the rotation of the camera device, and the lens of the camera device is rotated and the landing command is executed after the rotation The direction of movement is different.
  • the motion of the moving object can be evaluated, and the lens orientation of the camera device can be controlled when the collision condition is satisfied, and the lens of the camera device can be prevented from being damaged during the movement of the moving object to a certain extent, satisfying The user's automation and intelligent needs for lens package protection.
  • FIG. 1 is a schematic flow chart of a method for controlling rotation of an image pickup apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a scene for performing rotation control on an imaging device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another scene for performing rotation control on an imaging device according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of another method for controlling rotation of an image pickup apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another scene for performing rotation control on an imaging device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a rotation control device of an image pickup apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another rotation control device of an image pickup apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of an aircraft according to an embodiment of the present invention.
  • a moving system is provided in the moving object, and the purpose of controlling the movement of the moving object is achieved by controlling the power system.
  • the rotational speed or direction of rotation of the motor can be adjusted by an electronic governor to control movement of the moving object at different speeds or in different directions.
  • the unmanned vehicle by controlling the rotation of the motor to drive the rotation of the wheel, the unmanned vehicle can be controlled to move forward and backward at different speeds.
  • the rotation of the propeller is controlled to control the rotation of the propeller. To control the drone to move at different speeds in different directions.
  • the pan/tilt can be set above or below the moving object or on the side as needed, and the camera unit can be fixed to the pan/tilt.
  • the pan/tilt can be rotated in one direction, or two directions, or three directions, or more, so as to capture an environmental image in different directions while the moving object is stationary or moving.
  • the pan/tilt can be rotated on the pitch pitch axis, the roll roll axis, and the yaw yaw axis to adjust the shooting direction of the mounted camera device.
  • FIG. 1 is a schematic flowchart diagram of a rotation control method of an image pickup apparatus according to an embodiment of the present invention.
  • the rotation control method according to an embodiment of the present invention may be implemented by a controller provided in a moving object, or may be moved by The object collects relevant information data and transmits it to the remote controller of the user terminal, which is calculated by the remote controller and returned to the moving object or directly controls the pan/tilt.
  • the method of the embodiment of the invention comprises the following steps.
  • the direction of motion may be determined by acceleration sensor, gyroscope sensed data. In one embodiment, it may also be determined according to data sensed by a GPS (Global Positioning System) sensor, specifically determining a direction of motion based on a change in position, and in one embodiment, may also be based on a distance sensor. Determining the direction of motion, specifically determining the direction of motion based on the distance of the moving object from a reference or obstacle, for example, if the distance from the aircraft to the ground is detected by the distance sensor is closer, the aircraft may be determined to be in the direction Under exercise.
  • GPS Global Positioning System
  • the above sensor may be directly disposed on the imaging device for sensing motion data of the imaging device and determining a moving direction of the imaging device.
  • the pan/tilt is fixed on the moving object, and the moving object itself is provided with a corresponding sensor for moving The motion of the object is sensed, and therefore, the moving direction of the moving object can be acquired, and the moving direction of the moving object is taken as the moving direction of the imaging device.
  • a rotation control instruction is issued; the rotation control instruction is according to the movement direction And being generated by the lens orientation of the imaging device, wherein the rotation control command is used to control the rotation of the imaging device, and the lens orientation of the imaging device is different from the moving direction after the rotation.
  • obstacles may be sensed by sensors such as visual sensors, which may be ground, walls, or some protruding stones, other moving objects, and the like.
  • an object that is within a predetermined distance from the moving object can be referred to as an obstacle by a combination of the ultrasonic sensor and the camera.
  • satisfying the collision condition may mean that the distance between the imaging device and the obstacle is less than a preset distance threshold, or the distance between the imaging device and the obstacle is within a preset distance range threshold.
  • the lens orientation of the lens of the camera device may be determined at this time, if it is toward the obstacle, and the distance between the camera device and the obstacle is less than a preset distance threshold, or at a distance Within the range threshold, it is considered that the collision condition is met.
  • the rotation control command is mainly used to control the pan/tilt provided on the moving object to rotate on the pitch axis to control the rotation of the camera device, and the lens orientation and orientation of the camera device after the rotation The direction of movement is different.
  • the rotation control command is configured to control a pan/tilt on the moving object to rotate on a yaw axis to control rotation of the camera device, and the lens orientation of the camera device after the rotation The direction of movement is different.
  • FIGS. 2 and 3 are illustrations of an aircraft, and the implementation of the rotation control of the imaging device in a moving object such as a robot or a submersible that can be moved in the horizontal direction and moved in the vertical direction is the same.
  • a moving object such as a robot or a submersible that can be moved in the horizontal direction and moved in the vertical direction
  • an unmanned vehicle is taken as an example for description.
  • the rotation control of the imaging device in the moving object such as a horizontally movable robot, a horizontally moving aircraft, or a horizontally moving underwater vehicle is the same.
  • the aircraft can be based on a preset route or based on remote control control, in the horizontal Move in an upward or approximate horizontal direction.
  • the lower part of the aircraft is provided with a pan/tilt that can rotate at least on the pitch pitch axis or on the pitch pitch axis and the yaw yaw axis.
  • a pan/tilt can also be placed on the upper portion of the aircraft.
  • a control device eg, a flight controller
  • a control device provided on the aircraft 201 detects that the aircraft 201 is currently moving in the direction of motion 202, and at the point A, detects the direction of motion 202 based on data from sensors such as visual sensors.
  • the lens orientation 205 of the camera unit 204 fixed on the platform of the aircraft is also oriented toward the obstacle 203.
  • the obstacle 203 there may be some protrusions due to the obstacle 203 such as a wall, causing the lens of the image pickup device 204 to collide with the protrusion to damage the lens.
  • the control device performs the determination that the relationship between the camera device and the obstacle 203 satisfies the collision condition, and the control device can mainly sense the distance d between the camera device and the obstacle 203 through the distance sensor. Or directly, the distance between the aircraft 201 and the obstacle 203 is taken as the distance d.
  • the control device when the aircraft 201 flies to the position B, it is determined that the distance d reaches a preset distance threshold (or is less than the preset distance threshold), thereby determining between the camera device and the obstacle.
  • the control device generates a rotation control command, and sends the rotation control command to the pan/tilt to control the pan/tilt rotation.
  • the rotation control command controls the pan/tilt to rotate on the pitch axis from the position B (which can also be rotated on the yaw axis in other embodiments) so that the lens of the camera is no longer facing the obstacle 203.
  • the pan/tilt rotates on the pitch axis to a specified angle, which is a 90 degree angle with respect to the direction of motion or the lens orientation of the camera before rotation. , or any angle within an angle range of about 90 degrees (5 degrees or 10 degrees left and right).
  • the lens orientation of the imaging device is different from the moving direction.
  • the pan/tilt is placed in front of the front of the unmanned vehicle 301, and the lens orientation 303 of the imaging device 302 faces the wall as the obstacle 304, and the direction of movement of the unmanned vehicle 301 is 305.
  • the unmanned vehicle 301 determines the obstacle 304 at the position D, and determines that the distance d between the camera 302 and the obstacle 304 satisfies the collision condition at the position E, generates a rotation control command to start controlling the pan head to rotate upward, thereby
  • the imaging device 302 is driven to rotate.
  • the new lens orientation 303 of the imaging device 302 does not face the obstacle 304, but rotates through the pitch axis and faces the sky.
  • a moving object such as an aircraft can be based on a preset route or based on a remote control Control, moving in the vertical direction or in the approximate vertical direction. Especially when the landing command issued by the remote controller is executed, or the aircraft needs to automatically land due to the detection of the low battery level of the aircraft, the aircraft will fly downward in the vertical direction.
  • FIG. 4 is a schematic flowchart diagram of a rotation control method of another imaging apparatus according to an embodiment of the present invention.
  • the rotation control method of the embodiment of the present invention may be implemented by a controller provided in a moving object, or may be implemented by
  • the moving object collects relevant information data and transmits it to the remote controller of the user terminal, and the remote controller performs calculation and returns to the moving object or directly controls the pan/tilt.
  • the method of the embodiment of the invention comprises the following steps.
  • the landing command may be a command sent by the remote controller to request the aircraft to land on the ground, or may be detected when the battery of the aircraft is low or the signal is not normally transmitted and received with the ground.
  • Automatically generated landing instructions After the landing command is acquired, the distance between the aircraft and the landing position area is determined. If it is determined by the sensor such as a barometer that the altitude of the aircraft is high when the landing command is acquired, the distance between the aircraft and the landing position area may be detected after the aircraft has landed to a certain height, and the landing position area mainly refers to the ground.
  • the location area may refer to a different location, and the control device uses the area currently capable of detecting the distance as the landing. Location area.
  • the distance between the camera and the landing position area can be detected by sensors such as ultrasonic waves or radar, or the distance between the aircraft and the landing position area can be sensed directly by various sensors provided on the aircraft, and the aircraft and the landing position area can be detected.
  • the distance between the distance serves as the distance between the imaging device and the landing position area.
  • S402 if the acquired distance satisfies the collision condition, issue a rotation control instruction; the rotation control instruction is used to control the rotation of the imaging device, the lens of the imaging device after the rotation and the movement when the landing instruction is executed The direction is different.
  • the obtained distance satisfies the collision condition means that the lens of the imaging device faces the landing position region, and the acquired distance is smaller than the distance threshold or the acquired distance is within the distance threshold.
  • the camera may cause the camera to collide with the ground during the landing, or the lens of the camera may collide with the ground, which may damage the lens.
  • the aircraft is provided with a pan/tilt, the camera device is fixed on the pan/tilt; the rotation control command is used to control the pan/tilt to rotate on a pitch axis to control the camera device Rotating, the lens orientation of the camera device is different from the moving direction after the rotation.
  • the aircraft is provided with a pan/tilt, the camera device is fixed on the pan/tilt; the rotation control command is used to control the pan/tilt to rotate on a yaw axis to control the The imaging device rotates, and the lens orientation of the imaging device is different from the moving direction after the rotation.
  • the aircraft 501 is provided with a pan/tilt that can be rotated on the pitch axis, the yaw axis, and the roll axis.
  • the camera 502 is fixed on the pan/tilt, and the current shooting direction of the camera 502 is downward.
  • the aircraft 501 receives the landing control command and begins to perform the landing.
  • the control device for example, the flight controller
  • the aircraft 501 can detect the flying height in real time, and when the height d is less than a certain height threshold, start detecting the distance from the ground based on a sensor such as an ultrasonic wave.
  • the distance from the ground in real time based on sensors such as ultrasonic waves.
  • the distance data can not be acquired immediately because of the high altitude, and the distance from the ground can be detected in real time based on sensors such as ultrasonic waves until the distance from the ground is detected.
  • the control device When landing to the height Y, the control device determines that the distance d between the aircraft and the landing position region satisfies the collision condition, generates a rotation control command, and transmits the rotation control command to the pan/tilt to control the pan/tilt rotation.
  • the rotation control command controls the pan/tilt to rotate on the pitch axis from the position Y, so that the lens orientation 503 of the camera device is no longer facing the ground, for example, the pan/tilt can be controlled, so that the lens orientation of the camera device is horizontal on the pitch axis.
  • Direction parallel to the ground.
  • the pan/tilt is rotated to a specified angle on the pitch axis after the aircraft 501 has fully landed or at a small height before landing, the specified angle being relative to the direction of motion or before the rotation.
  • the angle of the lens of the camera device is 90 degrees, or any angle within an angle range of about 90 degrees (5 degrees or 10 degrees left and right). After the rotation according to the specified angle, the lens orientation of the imaging device is different from the moving direction.
  • the motion of the moving object can be evaluated, and the lens orientation of the camera device can be controlled when the collision condition is satisfied, and the lens of the camera device can be prevented from being damaged during the movement of the moving object to a certain extent, satisfying The user's automation and intelligent needs for lens package protection.
  • FIG. 6 it is a structural diagram of a rotation control device of an image pickup apparatus according to an embodiment of the present invention.
  • the device in the embodiment of the present invention may be disposed on a smart phone, a tablet computer or a smart wearable device capable of remotely controlling a mobile object such as an aircraft or a robot, or may be disposed on a flight controller of the drone.
  • the device includes the following structure.
  • the direction obtaining module 601 is configured to acquire a moving direction of the camera device.
  • a rotation control module 602 configured to issue a rotation control command if an obstacle is detected in the moving direction, and a relationship between the imaging device and the obstacle satisfies a collision condition; the rotation control instruction is The rotation control command is used to control the rotation of the imaging device according to the moving direction and the lens orientation of the imaging device, and the lens orientation of the imaging device is different from the moving direction after the rotation.
  • the camera device is mounted on a moving object that is capable of autonomous movement or movement under the control of a controller, and the acquisition module is configured to acquire the movement during the movement of the moving object The direction of motion of the object; the direction of motion of the moving object is taken as the direction of motion of the camera.
  • the relationship between the imaging device and the obstacle satisfies the collision condition, that is, the distance between the imaging device and the obstacle is not greater than a distance threshold, or the imaging device and the camera The distance between the obstacles is within the distance range threshold.
  • the relationship between the imaging device and the obstacle satisfies a collision condition means that a lens of the imaging device faces the obstacle, and between the imaging device and the obstacle The distance is not greater than the distance threshold, or the distance between the camera and the obstacle is within a distance range threshold.
  • the moving object is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt to rotate on the pitch axis to control the camera.
  • the device rotates, and the lens orientation of the camera device is different from the moving direction after the rotation.
  • each module in the rotation control device of the camera device reference may be made to the description of the related content in the embodiments corresponding to FIG. 1 to FIG. 5 above.
  • the moving object is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt to rotate on a yaw axis to control the The imaging device rotates, and the lens orientation of the imaging device is different from the moving direction after the rotation.
  • FIG. 7 is a schematic structural diagram of another rotation control device of an image pickup apparatus according to an embodiment of the present invention
  • the apparatus according to the embodiment of the present invention may be disposed on a flight controller of the drone.
  • the camera device is mounted on the aircraft, and the device includes the following structure.
  • the distance obtaining module 701 is configured to acquire a distance between the aircraft and a landing position area when the landing instruction is acquired;
  • a rotation control module 702 configured to issue a rotation control command if the acquired distance satisfies the collision condition; the rotation control command is used to control the rotation of the camera device, and the lens of the camera device is oriented and executed after the rotation The direction of motion when landing commands is different.
  • the acquired distance satisfies the collision condition, that is, the lens of the imaging device faces the landing position region, and the acquired distance is smaller than the distance threshold or the acquired distance is within the distance threshold.
  • the aircraft is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt to rotate on a pitch axis to control the camera device Rotating, the lens orientation of the camera device is different from the moving direction after the rotation.
  • the aircraft is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt head to rotate on a yaw axis to control the camera
  • the device rotates, and the lens orientation of the camera device is different from the moving direction after the rotation.
  • each module in the rotation control device of the camera device reference may be made to the description of the related content in the embodiments corresponding to FIG. 1 to FIG. 5 above.
  • the motion of the moving object can be evaluated, and the lens orientation of the camera device can be controlled when the collision condition is satisfied, and the lens of the camera device can be prevented from being damaged during the movement of the moving object to a certain extent, satisfying The user's automation and intelligent needs for lens package protection.
  • FIG. 8 is a schematic structural diagram of a control device according to an embodiment of the present invention.
  • the control device in the embodiment of the present invention may be a dedicated control device, or may be a controller installed in a mobile object such as an aircraft. For example, a flight controller in an aircraft.
  • the control device of the embodiment of the invention includes a power module, a housing and the like.
  • the storage device 801, the processor 802, and the interface module 803 are further included in the embodiment of the present invention.
  • the interface module 803 is connected to the processor 802.
  • the processor 802 acquires related data of other devices and modules through the interface module 803, for example, acquiring a moving object such as an aircraft. Sensing data of various sensors disposed thereon for determining information such as a moving direction of the moving object, a distance from the obstacle, and the like; on the other hand, the processor 802 transmits the generated related instruction to the interface module 803 to A corresponding device, module, for example, the processor 802 sends the generated rotation control command to the pan/tilt through the interface module 803 to control the pan/tilt rotation.
  • the storage device 801 may include a volatile memory, such as a random-access memory (RAM); the storage device 801 may also include a non-volatile memory, such as a fast A flash memory, a solid-state drive (SSD) or the like; the storage device 801 may further include a combination of the above types of memories.
  • RAM random-access memory
  • SSD solid-state drive
  • the processor 802 may be a central processing unit (CPU), and the processor 802 may further include a hardware chip, such as a Field-Programmable Gate Array (FPGA).
  • CPU central processing unit
  • FPGA Field-Programmable Gate Array
  • a program instruction is stored in the storage device 801, and the processor 802 calls the program command to implement the rotation control method of the imaging device according to the above.
  • the processor 802 the program instruction is invoked to acquire a moving direction of the camera device; if an obstacle is detected in the moving direction, and the camera device is And the rotation control command is generated according to the moving direction and the lens orientation of the imaging device, wherein the rotation control command is used to control the rotation In the imaging device, the lens orientation of the imaging device is different from the moving direction after the rotation.
  • the camera device is mounted on a moving object that can move autonomously or under the control of a controller, and the processor 802 is configured to acquire the The moving direction of the moving object; the moving direction of the moving object is taken as the moving direction of the image pickup device.
  • the relationship between the imaging device and the obstacle satisfies the collision condition means that the distance between the imaging device and the obstacle is within a distance range threshold.
  • the relationship between the imaging device and the obstacle satisfies a collision condition means that a lens of the imaging device faces the obstacle, and between the imaging device and the obstacle The distance is within the distance range threshold.
  • the moving object is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt to rotate on the pitch axis to control the camera.
  • the device rotates, and the lens orientation of the camera device is different from the moving direction after the rotation.
  • the moving object is provided with a pan/tilt
  • the camera device is fixed on the pan/tilt
  • the rotation control command is used to control the pan/tilt to rotate on a yaw axis to control the The imaging device rotates, and the lens orientation of the imaging device is different from the moving direction after the rotation.
  • the motion of the moving object can be evaluated, and the lens orientation of the camera device can be controlled when the collision condition is satisfied, and the lens of the camera device can be prevented from being damaged during the movement of the moving object to a certain extent, satisfying The user's automation and intelligent needs for lens package protection.
  • FIG. 9 is a schematic structural diagram of an aircraft according to an embodiment of the present invention.
  • the aircraft of the embodiment of the present invention includes a power component, a power module, and the like, and the aircraft may be a quadrotor, a six-rotor, an eight-rotor, etc. Multi-rotor aircraft.
  • the aircraft is provided with a pan/tilt, and the camera device is fixed on the pan/tilt.
  • the aircraft includes: a data interface 901, a storage device 902, and a controller 903.
  • the data interface 901 is connected to the controller 903.
  • the controller 903 acquires sensing data of various sensors disposed on the aircraft through the data interface 901, and is used to determine the moving direction of the aircraft and the ground.
  • the controller 903 sends the generated phase rotation control command to the pan/tilt through the data interface 901 through the data interface 901 to control the pan/tilt rotation.
  • the storage device 902 may include a volatile memory such as a RAM; the storage device 902 may also include a non-volatile memory such as a flash memory, an SSD, etc.; Device 902 can also include a combination of the above types of memory.
  • the controller 903 may be a CPU, and the controller 903 may further include a hardware chip, such as an FPGA.
  • a program instruction is stored in the storage device 902, and the controller 903 calls the program command to implement the rotation control method of the imaging device according to the above.
  • the controller 903 is configured to acquire the a distance between the aircraft and the landing position area; if the acquired distance meets the collision condition, issuing a rotation control command to the pan/tilt; wherein the rotation control command is used to control the rotation of the pan/tilt, the camera device After following the pan-tilt rotation, the lens of the camera device is oriented differently than the direction of movement when the landing command is executed.
  • the acquired distance satisfies the collision condition means that the acquired distance is less than the distance threshold or the acquired distance is within the distance threshold.
  • the rotation control command is used to control the pan/tilt to rotate on the pitch axis to control the rotation of the camera device, and the lens orientation of the camera device is different from the direction of motion after the rotation.
  • the rotation control command is used to control the pan/tilt to rotate on the yaw axis to control the rotation of the camera device, and the lens orientation of the camera device is different from the moving direction after the rotation .
  • the motion of the moving object can be evaluated, and the lens orientation of the camera device can be controlled when the collision condition is satisfied, and the lens of the camera device can be prevented from being damaged during the movement of the moving object to a certain extent, satisfying The user's automation and intelligent needs for lens package protection.
  • the program can be stored in a computer readable storage medium, and the storage medium can include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

公开了一种摄像装置的转动控制方法,该方法包括:获取摄像装置(204、302)的运动方向(202、305);如果检测到在该运动方向上存在障碍物(203、304),且该摄像装置与该障碍物之间的关系满足碰撞条件,则发出转动控制指令;所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。采用该摄像装置的转动控制方法可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏。同时还公开了一种摄像装置的转动控制装置、一种控制设备、一种飞行器、另一种摄像装置的转动控制方法及另一种摄像装置的转动控制装置。

Description

一种摄像装置的转动控制方法、控制设备以及飞行器 技术领域
本发明涉及电子技术领域,尤其涉及一种摄像装置的转动控制方法、控制设备以及飞行器。
背景技术
常用的诸如无人机(Unmanned Aerial Vehicle,UAV)等飞行器,不仅能够自主根据设定的导航路径飞行,还能够在用户遥控器的控制下完成遥控飞行。同时,飞行器上还能够设置摄像装置,并且通过无线的方式将摄像装置拍摄到的影像传回给地面端的用户。因此,对于某些对于用户来讲无法到达的地方,可以通过控制挂载由摄像装置的飞行器飞行,来执行对这些地方的航拍、监视等任务。同样,对于一些同样能够自主或者遥控运动的无人车、机器人、无人潜水艇等移动物体,也能够根据用户需要在不同场景、不同环境下完成相应的拍摄以及监视等任务。
在执行任务的过程中,需要在保证能够完成任务的情况下确保设备的安全,避免财产损失。可以通过设置自动降落伞、安全气囊等方式来实现对无人机等移动物体的保护,例如,在检测到无人机动力系统停止工作,正在掉落时,可以自动弹出降落伞或者爆开安全气囊的方式来最大限度地保证无人机以及附属的云台、摄像装置等设备不被摔坏。而如何更好地保护摄像装置不被损坏成为研究的热点问题。
发明内容
本发明实施例公开了一种摄像装置的转动控制方法、控制设备以及飞行器,可对摄像装置的镜头进行保护。
一方面,本发明实施例提供了一种摄像装置的转动控制方法,包括:
获取所述摄像装置的运动方向;
如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物 之间的关系满足碰撞条件,则发出转动控制指令;
所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
另一方面,本发明实施例还提供了一种摄像装置的转动控制方法,所述摄像装置挂载在飞行器上,包括:
当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;
如果获取到的距离满足碰撞条件,则发出转动控制指令;
所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
再一方面,本发明实施例相应地还提供了一种控制设备,包括:存储装置和处理器;
所述存储装置,用于存储程序指令;
所述处理器,调用所述程序指令,用于获取所述摄像装置的运动方向;如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;
其中,所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
再一方面,本发明实施例相应地还提供了一种飞行器,在所述飞行器上设置有云台,摄像装置固定在所述云台上,所述飞行器包括:存储装置和控制器;
所述存储装置,用于存储程序指令;
所述控制器,用于当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;如果获取到的距离满足碰撞条件,则向所述云台发出转动控制指令;其中,所述转动控制指令用于控制转动所述云台,所述摄像装置在跟随所述云台转动后,所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
再一方面,本发明实施例相应地还提供了一种摄像装置的转动控制装置,包括:
获取模块,用于获取所述摄像装置的运动方向;
控制模块,用于如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
又一方面,本发明实施例还提供了一种摄像装置的转动控制装置,包括:
获取模块,用于当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;
控制模块,用于如果获取到的距离满足碰撞条件,则发出转动控制指令;所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
采用本发明实施例,能够对移动物体的运动进行评估,并在满足碰撞条件时对摄像装置的镜头朝向进行控制,可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏,满足了用户对镜头包保护的自动化、智能化需求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的一种摄像装置的转动控制方法的流程示意图;
图2是本发明实施例的一种对摄像装置进行转动控制的场景示意图;
图3是本发明实施例的另一种对摄像装置进行转动控制的场景示意图;
图4是本发明实施例的另一种摄像装置的转动控制方法的流程示意图;
图5是本发明实施例的又一种对摄像装置进行转动控制的场景示意图;
图6是本发明实施例的一种摄像装置的转动控制装置的结构示意图;
图7是本发明实施例的另一种摄像装置的转动控制装置的结构示意图;
图8是本发明实施例的一种控制设备的结构示意图;
图9是本发明实施例的一种飞行器的结构示意图。
具体实施方式
移动物体中设置有动力系统,通过对动力系统的控制达到控制移动物体运动的目的。在一个实施例中,可以通过电子调速器对电机的转动速度或者转动方向进行调整,以控制移动物体以不同的速度或者不同的方向运动。例如,在无人车中,通过控制电机的转动来带动车轮的转动,可以控制无人车向前、向后以不同速度运动,同样对于无人机,通过控制电机的转动来带动螺旋桨的转动,从而控制无人机在不同方向上以不同的速度运动。
在移动物体上方或者下方、或者侧面均可以根据需要设置云台,摄像装置可以固定到云台上。云台可以在一个方向、或者两个方向、或者三个方向、或者更多的方向上转动,以便于在移动物体静止或运动过程中以不同方向拍摄环境影像。在一个实施例中,云台能够在俯仰pitch轴、横滚roll轴以及偏航yaw轴上转动,从而调整挂载的摄像装置的拍摄方向。
如图1所示,是本发明实施例的一种摄像装置的转动控制方法的流程示意图,本发明实施例的所述转动控制方法可以由移动物体内设置的控制器来实现,也可以由移动物体采集相关信息数据并传输给用户端的遥控器,由遥控器进行计算后返回给移动物体或者直接对云台进行控制。本发明实施例的所述方法包括如下步骤。
S101:获取所述摄像装置的运动方向。在一个实施例中,运动方向可以由加速度传感器、陀螺仪感测得到的数据来确定。在一个实施例中,也可以根据GPS(Global Positioning System,全球定位系统)传感器感测到的数据来确定,具体基于位置的变化来确定运动方向,在一个实施例中,也可以基于距离传感器来确定得到运动方向,具体可以基于移动物体距离某个参考物或者障碍物的距离大小来确定运动方向,例如,如果基于距离传感器检测到飞行器到地面的距离越来越近,则可以确定飞行器在向下运动。
上述的传感器可以直接设置在摄像装置上,用于感测摄像装置的运动数据,确定摄像装置的运动方向。在一个实施例中,由于摄像装置固定在云台上,云台则固定在移动物体上,而移动物体上本身会设置相应的传感器用于对移动 物体的运动进行感测,因此,可以获取移动物体的运动方向,并将移动物体的运动方向作为摄像装置的运动方向。
S102:如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。在一个实施例中,可以通过视觉传感器等传感器来感测障碍物,这些障碍物可以是地面、墙壁,或者是一些突出的石块、其他移动物体等。在一个实施例中,通过超声波传感器和摄像机的结合,可以将距离移动物体在预设距离范围内的物体称之为障碍物。
所述摄像装置与所述障碍物之间的关系满足碰撞条件时,则可以认为摄像装置继续在该运动方向上运动可能导致摄像装置与障碍物发生碰撞,或者说摄像装置的镜头会与障碍物碰撞,会使得镜头损坏。在一个实施例中,满足所述碰撞条件可以是指摄像装置与障碍物之间的距离小于预设的距离阈值、或者摄像装置与障碍物之间的距离在预设的距离范围阈值内。在一个实施例中,可以判断摄像装置的镜头此时的镜头朝向,如果是朝向所述障碍物,且所述摄像装置与所述障碍物之间的距离小于预设的距离阈值、或者在距离范围阈值内,则认为满足碰撞条件。
在一个实施例中,所述转动控制指令主要用于控制所述移动物体上设置的云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。在一个实施例中,所述转动控制指令用于控制所述移动物体上的云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
下面结合图2和图3对本发明实施例的对摄像装置的转动控制进行说明。图2是以飞行器为例进行说明,可以在水平方向上移动、竖直方向上移动的机器人、潜水器等移动物体中对摄像装置的转动控制的的实现方式相同。图3中则是以无人车为例进行说明,可水平运动的机器人、水平运动的飞行器、水平运动的潜水器等移动物体中对摄像装置的转动控制的实现方式相同。
在图2中,飞行器能够基于预设的航线或者基于遥控器的控制,在水平方 向上或者近似的水平方向上运动。飞行器的下部设置有云台,该云台至少可以在俯仰pitch轴上转动,也可以在俯仰pitch轴和偏航yaw轴上转动。在其他实施例中,也可以在飞行器的上部设置云台。如图2所示,飞行器201上设置的控制设备(例如飞行控制器)检测得到飞行器201当前在运动方向202上运动,并且在A位置点处,基于视觉传感器等传感器的数据检测在运动方向202上存在墙壁,该墙壁被认为是障碍物203,飞行器的云台上固定的摄像装置204的镜头朝向205同样是朝向所述障碍物203。在向所述障碍物203飞行的过程中,有可能因为墙壁等障碍物203存在一些突起物,从而导致摄像装置204的镜头撞到突起物对镜头造成损伤。
在继续飞行的过程中,控制设备实施判断摄像装置与所述障碍物203之间的关系满足碰撞条件,控制设备主要可以通过距离传感器来感测确定摄像装置与障碍物203之间的距离d,或者直接将飞行器201与所述障碍物203的距离作为所述距离d。在图2中,当飞行器201飞行至位置B点时,确定所述距离d达到预设的距离阈值(或者小于该预设的距离阈值),进而确定所述摄像装置与所述障碍物之间的关系满足碰撞条件,控制设备生成转动控制指令,并将该转动控制指令发送给云台,控制云台转动。该转动控制指令控制云台从位置B点开始在pitch轴上转动(其他实施例中也可以在yaw轴上转动),使得摄像装置的镜头不再朝向障碍物203。如图2所述,在飞行器201飞行到达位置C点后,云台在pitch轴上转动到指定的角度,该指定的角度为相对于运动方向或者是转动前摄像装置的镜头朝向的90度角度,或者在90度左右(左右5度或10度)的一个角度范围内的任意一个角度。按照该指定的角度转动后,所述摄像装置的镜头朝向和所述运动方向不相同。
在图3中,云台设置于无人车301的的车头前部,摄像装置302的镜头朝向303朝向作为障碍物304的墙壁,无人车301的运动方向为305。无人车301在位置D点时确定障碍物304,并在位置E点确定摄像装置302与所述障碍物304之间的距离d满足碰撞条件,生成转动控制指令开始控制云台向上转动,从而带动摄像装置302转动,在位置F点,摄像装置302的新的镜头朝向303不在朝向障碍物304,而是经过pitch轴转动后,朝向天空。
在一个实施例中,飞行器等移动物体能够基于预设的航线或者基于遥控器 的控制,在竖直方向上或者近似的竖直方向上运动。特别是在执行遥控器发出的降落指令、或者由于检测到飞行器电池电量低等原因使得飞行器需要自动降落时,飞行器会在竖直方向上向下飞行。如图4所示,是本发明实施例的另一种摄像装置的转动控制方法的流程示意图,本发明实施例的所述转动控制方法可以由移动物体内设置的控制器来实现,也可以由移动物体采集相关信息数据并传输给用户端的遥控器,由遥控器进行计算后返回给移动物体或者直接对云台进行控制。本发明实施例的所述方法包括如下步骤。
S401:当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离。如上所述,所述降落指令可以是接收到的由遥控器发出的要求飞行器降落到地面的指令,也可以是在检测到飞行器的电池电量低,或者无法正常与地面端收发信号等情况下,自动生成的降落指令。在获取到降落指令后,即开始确定飞行器与降落位置区域之间的距离。如果根据气压计等传感器确定飞行器在获取到降落指令时的高度较高,则可以在飞行器降落到一定高度之后,再检测飞行器与降落位置区域之间的距离,该降落位置区域主要是指地面的某个区域,在飞行器降落的过程中,由于飞行器飞行不稳定或者外界天气(例如大风天气)的原因,该位置区域可能是指不同的位置,控制设备以当前能够检测距离的区域作为所述降落位置区域。
可以通过超声波、雷达等传感器来检测摄像装置与降落位置区域之间的距离,或者直接通过飞行器上设置的各种传感器来感测飞行器与降落位置区域之间的距离,并将飞行器与降落位置区域之间的距离作为摄像装置与降落位置区域之间的距离。
S402:如果获取到的距离满足碰撞条件,则发出转动控制指令;所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。获取到的距离满足碰撞条件是指:所述摄像装置的镜头朝向所述降落位置区域,且获取到的距离小于距离阈值或者获取到的距离在距离阈值范围内。
所述获取到的距离满足碰撞条件时,则可以认为摄像装置在降落的过程中可能导致摄像装置与地面发生碰撞,或者说摄像装置的镜头会与地面碰撞,会使得镜头损坏。
在一个实施例中,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。或者在一个实施例中,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
如图5所示,是飞行器降落过程中对摄像装置的转动控制过程。飞行器501上设置有云台,该云台能够在pitch轴、yaw轴以及横滚roll轴上转动,摄像装置502固定在该云台上,摄像装置502目前的拍摄方向为向下拍摄。在飞行高度X上,飞行器501接收到降落控制指令,开始执行降落。此时,飞行器501上的控制设备(例如飞行控制器)可以实时检测飞行高度,当高度d小于某个高度阈值时,开始基于超声波等传感器来检测与地面的距离。当然,也可以直接基于超声波等传感器实时检测与地面的距离,即时由于高度较高不能获取到距离数据,也可以继续基于超声波等传感器实时检测与地面的距离,直到检测到与地面的距离位置。
在降落到高度Y处时,控制设备确定所述飞行器与降落位置区域之间的距离d满足碰撞条件,生成转动控制指令,并将该转动控制指令发送给云台,控制云台转动。该转动控制指令控制云台从位置Y开始在pitch轴上转动,使得摄像装置的镜头朝向503不再朝向地面,例如可以控制云台回中,使得在pitch轴上,摄像装置的镜头朝向为水平方向,与地面平行。如图5所述,在飞行器501完全降落后或者在降落之前的某个较小的高度上,云台在pitch轴上转动到指定的角度,该指定的角度为相对于运动方向或者是转动前摄像装置的镜头朝向的90度角度,或者在90度左右(左右5度或10度)的一个角度范围内的任意一个角度。按照该指定的角度转动后,所述摄像装置的镜头朝向和所述运动方向不相同。
采用本发明实施例,能够对移动物体的运动进行评估,并在满足碰撞条件时对摄像装置的镜头朝向进行控制,可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏,满足了用户对镜头包保护的自动化、智能化需求。
再请参见图6,是本发明实施例的一种摄像装置的转动控制装置的结构示 意图,本发明实施例所述装置可以设置在可以对飞行器、机器人等移动物体进行遥控控制的智能手机、平板电脑、智能可穿戴设备上,也可以设置在无人机的飞行控制器上。所述装置包括如下结构。
方向获取模块601,用于获取所述摄像装置的运动方向;
转动控制模块602,用于如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
在一个实施例中,所述摄像装置挂载在能够自主运动或者在控制器的控制下运动的移动物体上,所述获取模块,用于在所述移动物体运动的过程中,获取所述移动物体的运动方向;将所述移动物体的运动方向作为所述摄像装置的运动方向。
在一个实施例中,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置与所述障碍物之间的距离不大于距离阈值、或者所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
在一个实施例中,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置的镜头朝向所述障碍物,且所述摄像装置与所述障碍物之间的距离不大于距离阈值、或者所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
在一个实施例中,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
所述的摄像装置的转动控制装置中各个模块的具体实现可参考上述图1至图5所对应实施例中相关内容的描述。
在一个实施例中,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
再请参见图7,是本发明实施例的另一种摄像装置的转动控制装置的结构示意图,本发明实施例所述装置可以设置在无人机的飞行控制器上。所述摄像装置挂载在所述飞行器上,所述装置包括如下结构。
距离获取模块701,用于当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;
转动控制模块702,用于如果获取到的距离满足碰撞条件,则发出转动控制指令;所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
在一个实施例中,获取到的距离满足碰撞条件是指:所述摄像装置的镜头朝向所述降落位置区域,且获取到的距离小于距离阈值或者获取到的距离在距离阈值范围内。
在一个实施例中,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
在一个实施例中,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
所述的摄像装置的转动控制装置中各个模块的具体实现可参考上述图1至图5所对应实施例中相关内容的描述。
采用本发明实施例,能够对移动物体的运动进行评估,并在满足碰撞条件时对摄像装置的镜头朝向进行控制,可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏,满足了用户对镜头包保护的自动化、智能化需求。
再请参见图8,是本发明实施例的一种控制设备的结构示意图,本发明实施例的所述控制设备可以为一个专用的控制设备,也可以为在飞行器等移动物体中设置的控制器,例如飞行器中的飞行控制器。本发明实施例的所述控制设备包括电源模块、壳体等结构。在本发明实施例中还包括:存储装置801、处理器802以及接口模块803。
所述接口模块803与所述处理器802相连,一方面,所述处理器802通过所述接口模块803获取其他装置、模块的相关数据,例如获取飞行器等移动物体 上设置的各种传感器的感测数据,用于确定移动物体的运动方向、与障碍物的距离等信息;另一方面,所述处理器802通过所述接口模块803将生成的相关指令发送给相应的装置、模块,例如所述处理器802将生成的转动控制指令通过所述接口模块803发送给云台,以控制云台转动。
所述存储装置801可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储装置801也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储装置801还可以包括上述种类的存储器的组合。
所述处理器802可以是中央处理器802(central processing unit,CPU),所述处理器802还可以进一步包括硬件芯片,例如现场可编程门阵列(Field-Programmable Gate Array,FPGA)。
所述存储装置801中存储有程序指令,所述处理器802调用所述程序指令,用于实现上述涉及的摄像装置的转动控制方法。
在一个实施例中,所述处理器802,调用所述程序指令,用于获取所述摄像装置的运动方向;如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;其中,所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
在一个实施例中,所述摄像装置挂载在能够自主运动或者在控制器的控制下运动的移动物体上,所述处理器802,用于在所述移动物体运动的过程中,获取所述移动物体的运动方向;将所述移动物体的运动方向作为所述摄像装置的运动方向。
在一个实施例中,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
在一个实施例中,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置的镜头朝向所述障碍物,且所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
在一个实施例中,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
在一个实施例中,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
上述的处理器802的具体实现可参考上述图1至图5所对应实施例中相关内容的描述。
采用本发明实施例,能够对移动物体的运动进行评估,并在满足碰撞条件时对摄像装置的镜头朝向进行控制,可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏,满足了用户对镜头包保护的自动化、智能化需求。
再请参见图9,是本发明实施例的一种飞行器的结构示意图,本发明实施例的所述飞行器包括动力组件、电源模块等结构,所述飞行器可以是四旋翼、六旋翼、八旋翼等多旋翼飞行器。在一个实施例中,所述飞行器上设置有云台,摄像装置固定在所述云台上,所述飞行器包括:数据接口901、存储装置902和控制器903。
所述数据接口901与所述控制器903相连,一方面,所述控制器903通过所述数据接口901获取飞行器上设置的各种传感器的感测数据,用于确定飞行器的运动方向、与地面的距离等信息;另一方面,所述控制器903通过所述数据接口901将生成的相转动控制指令通过所述数据接口901发送给云台,以控制云台转动。
所述存储装置902可以包括易失性存储器(volatile memory),例如RAM;存储装置902也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),SSD等;存储装置902还可以包括上述种类的存储器的组合。
所述控制器903可以是CPU,所述控制器903还可以进一步包括硬件芯片,例如FPGA。所述存储装置902中存储有程序指令,所述控制器903调用所述程序指令,用于实现上述涉及的摄像装置的转动控制方法。
在一个实施例中,所述控制器903,用于当获取到降落指令时,获取所述 飞行器与降落位置区域之间的距离;如果获取到的距离满足碰撞条件,则向所述云台发出转动控制指令;其中,所述转动控制指令用于控制转动所述云台,所述摄像装置在跟随所述云台转动后,所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
在一个实施例中,获取到的距离满足碰撞条件是指:获取到的距离小于距离阈值或者获取到的距离在距离阈值范围内。
在一个实施例中,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
在一个实施例中,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
上述的处理器的具体实现可参考上述图1至图5所对应实施例中相关内容的描述。
采用本发明实施例,能够对移动物体的运动进行评估,并在满足碰撞条件时对摄像装置的镜头朝向进行控制,可以在一定程度上避免摄像装置的镜头在移动物体运动过程中被损坏,满足了用户对镜头包保护的自动化、智能化需求。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种摄像装置的转动控制方法、控制设备以及飞行器进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (22)

  1. 一种摄像装置的转动控制方法,其特征在于,包括:
    获取所述摄像装置的运动方向;
    如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;
    所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  2. 如权利要求1所述的方法,其特征在于,所述摄像装置挂载在能够自主运动或者在控制器的控制下运动的移动物体上,所述获取所述摄像装置的运动方向,包括:
    在所述移动物体运动的过程中,获取所述移动物体的运动方向;
    将所述移动物体的运动方向作为所述摄像装置的运动方向。
  3. 如权利要求1或2所述的方法,其特征在于,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置与所述障碍物之间的距离不大于距离阈值、或者所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
  4. 如权利要求1或2所述的方法,其特征在于,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置的镜头朝向所述障碍物,且所述摄像装置与所述障碍物之间的距离不大于距离阈值、或者所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  7. 一种摄像装置的转动控制方法,其特征在于,所述摄像装置挂载在飞行器上,包括:
    当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;
    如果获取到的距离满足碰撞条件,则发出转动控制指令;
    所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
  8. 如权利要求7所述的方法,其特征在于,获取到的距离满足碰撞条件是指:所述摄像装置的镜头朝向所述降落位置区域,且获取到的距离小于距离阈值或者获取到的距离在距离阈值范围内。
  9. 如权利要求7或8所述的方法,其特征在于,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  10. 如权利要求7或8所述的方法,其特征在于,所述飞行器设置有云台,所述摄像装置固定在所述云台上;所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  11. 一种控制设备,其特征在于,包括:存储装置和处理器;
    所述存储装置,用于存储程序指令;
    所述处理器,调用所述程序指令,用于获取所述摄像装置的运动方向;如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;
    其中,所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  12. 如权利要求11所述的控制设备,其特征在于,所述摄像装置挂载在能够自主运动或者在控制器的控制下运动的移动物体上,所述处理器,用于在所述移动物体运动的过程中,获取所述移动物体的运动方向;将所述移动物体的运动方向作为所述摄像装置的运动方向。
  13. 如权利要求11或12所述的控制设备,其特征在于,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
  14. 如权利要求11或12所述的控制设备,其特征在于,所述摄像装置与所述障碍物之间的关系满足碰撞条件是指:所述摄像装置的镜头朝向所述障碍物,且所述摄像装置与所述障碍物之间的距离在距离范围阈值内。
  15. 如权利要求11-14任一项所述的控制设备,其特征在于,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  16. 如权利要求11-14任一项所述的控制设备,其特征在于,所述移动物体设置有云台,所述摄像装置固定在所述云台上,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  17. 一种飞行器,其特征在于,在所述飞行器上设置有云台,摄像装置固定在所述云台上,所述飞行器包括:存储装置和控制器;
    所述存储装置,用于存储程序指令;
    所述控制器,用于当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;如果获取到的距离满足碰撞条件,则向所述云台发出转动控制指令;其中,所述转动控制指令用于控制转动所述云台,所述摄像装置在跟随所述云台转动后,所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
  18. 如权利要求17所述的飞行器,其特征在于,获取到的距离满足碰撞条件是指:获取到的距离小于距离阈值或者获取到的距离在距离阈值范围内。
  19. 如权利要求17或18所述的飞行器,其特征在于,所述转动控制指令用于控制所述云台在俯仰轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  20. 如权利要求17或18所述的飞行器,其特征在于,所述转动控制指令用于控制所述云台在偏航轴上转动,以控制所述摄像装置转动,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  21. 一种摄像装置的转动控制装置,其特征在于,包括:
    获取模块,用于获取所述摄像装置的运动方向;
    控制模块,用于如果检测到在所述运动方向上存在障碍物,且所述摄像装置与所述障碍物之间的关系满足碰撞条件,则发出转动控制指令;所述转动控制指令是根据所述运动方向和所述摄像装置的镜头朝向生成的,所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和所述运动方向不相同。
  22. 一种摄像装置的转动控制装置,其特征在于,包括:
    获取模块,用于当获取到降落指令时,获取所述飞行器与降落位置区域之间的距离;
    控制模块,用于如果获取到的距离满足碰撞条件,则发出转动控制指令;所述转动控制指令用于控制转动所述摄像装置,在转动后所述摄像装置的镜头朝向和执行所述降落指令时的运动方向不相同。
PCT/CN2017/105590 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器 WO2019071444A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111181889.4A CN113895640A (zh) 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器
PCT/CN2017/105590 WO2019071444A1 (zh) 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器
CN201780012790.7A CN108778931B (zh) 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105590 WO2019071444A1 (zh) 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器

Publications (1)

Publication Number Publication Date
WO2019071444A1 true WO2019071444A1 (zh) 2019-04-18

Family

ID=64034049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105590 WO2019071444A1 (zh) 2017-10-10 2017-10-10 一种摄像装置的转动控制方法、控制设备以及飞行器

Country Status (2)

Country Link
CN (2) CN113895640A (zh)
WO (1) WO2019071444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673618A (zh) * 2019-10-09 2020-01-10 郑宏远 一种基于声波信号的自动导航方法及导航系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084361A (zh) * 2020-08-24 2022-02-25 瞰景科技发展(上海)有限公司 一种单镜头倾斜摄影航测装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749927A (zh) * 2012-07-20 2012-10-24 常州大学 无人飞机自动规避障碍物的系统及其规避方法
CN203785666U (zh) * 2014-01-23 2014-08-20 徐鹏 具有保护结构的多镜头航空摄影稳定平台
US20150163381A1 (en) * 2013-12-10 2015-06-11 Korea Institute Of Geoscience And Mineral Resources Aerial survey plane having cover for protecting lens of infrared camera for aerial survey
CN105717933A (zh) * 2016-03-31 2016-06-29 深圳奥比中光科技有限公司 无人机以及无人机防撞方法
CN106081141A (zh) * 2016-06-08 2016-11-09 朱新科 多旋翼无人机
CN205971884U (zh) * 2016-08-30 2017-02-22 北方天途航空技术发展(北京)有限公司 能够保护挂载设备的轻质固定翼无人机
WO2017081898A1 (ja) * 2015-11-09 2017-05-18 Necソリューションイノベータ株式会社 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
WO2017132290A1 (en) * 2016-01-27 2017-08-03 Amazon Technologies, Inc. Light adjustment control for cameras of an aerial vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176265B (zh) * 2014-07-09 2016-05-11 中国人民解放军理工大学 一种无人机全景相机使用的可翻转支架系统
US9981741B2 (en) * 2014-12-24 2018-05-29 Qualcomm Incorporated Unmanned aerial vehicle
CN205854525U (zh) * 2016-03-31 2017-01-04 翔升(上海)电子技术有限公司 旋转镜头和无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749927A (zh) * 2012-07-20 2012-10-24 常州大学 无人飞机自动规避障碍物的系统及其规避方法
US20150163381A1 (en) * 2013-12-10 2015-06-11 Korea Institute Of Geoscience And Mineral Resources Aerial survey plane having cover for protecting lens of infrared camera for aerial survey
CN203785666U (zh) * 2014-01-23 2014-08-20 徐鹏 具有保护结构的多镜头航空摄影稳定平台
WO2017081898A1 (ja) * 2015-11-09 2017-05-18 Necソリューションイノベータ株式会社 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
WO2017132290A1 (en) * 2016-01-27 2017-08-03 Amazon Technologies, Inc. Light adjustment control for cameras of an aerial vehicle
CN105717933A (zh) * 2016-03-31 2016-06-29 深圳奥比中光科技有限公司 无人机以及无人机防撞方法
CN106081141A (zh) * 2016-06-08 2016-11-09 朱新科 多旋翼无人机
CN205971884U (zh) * 2016-08-30 2017-02-22 北方天途航空技术发展(北京)有限公司 能够保护挂载设备的轻质固定翼无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673618A (zh) * 2019-10-09 2020-01-10 郑宏远 一种基于声波信号的自动导航方法及导航系统

Also Published As

Publication number Publication date
CN108778931B (zh) 2021-10-29
CN113895640A (zh) 2022-01-07
CN108778931A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
CN110262568B (zh) 一种基于目标跟踪的无人机避障方法、装置及无人机
US11604479B2 (en) Methods and system for vision-based landing
US10156854B2 (en) UAV and UAV landing control device and method
JP6852672B2 (ja) 飛行体制御装置、飛行体制御方法、及びプログラム
US20200346753A1 (en) Uav control method, device and uav
WO2018209702A1 (zh) 无人机的控制方法、无人机以及机器可读存储介质
WO2020143576A1 (zh) 调整机载雷达的主探测方向的方法、装置和无人机
WO2018098784A1 (zh) 无人机的控制方法、装置、设备和无人机的控制系统
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
CN112650267B (zh) 一种飞行器的飞行控制方法、装置及飞行器
WO2018098704A1 (zh) 控制方法、设备、系统、无人机和可移动平台
WO2021078167A1 (zh) 一种飞行器返航控制方法、装置、飞行器和存储介质
JP2017065467A (ja) 無人機およびその制御方法
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
JP6957304B2 (ja) 架線撮影システム及び架線撮影方法
WO2019128275A1 (zh) 一种拍摄控制方法、装置及飞行器
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
WO2023044897A1 (zh) 无人机的控制方法、装置、无人机及存储介质
CN108778931B (zh) 一种摄像装置的转动控制方法、控制设备以及飞行器
CN111665870A (zh) 一种轨迹跟踪方法及无人机
JP6265576B1 (ja) 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
US20240051689A1 (en) Fishing system
US20210229810A1 (en) Information processing device, flight control method, and flight control system
US20200410219A1 (en) Moving object detection device, control device, movable body, moving object detection method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928173

Country of ref document: EP

Kind code of ref document: A1