WO2019069664A1 - 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 - Google Patents
蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 Download PDFInfo
- Publication number
- WO2019069664A1 WO2019069664A1 PCT/JP2018/034196 JP2018034196W WO2019069664A1 WO 2019069664 A1 WO2019069664 A1 WO 2019069664A1 JP 2018034196 W JP2018034196 W JP 2018034196W WO 2019069664 A1 WO2019069664 A1 WO 2019069664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- storage device
- current collector
- collector plate
- lead
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a storage device electrode, a storage device, and a method of manufacturing the storage device electrode.
- Patent Document 1 includes, as a positive electrode active material, a carbonaceous material formed on a positive electrode current collector plate having a through hole and having a layered structure capable of inserting and desorbing anions.
- Cell preparation process for injecting electricity, charge / discharge process for charging / discharging between positive electrode and lithium ion source, and electrochemical contact between negative electrode and lithium ion source Method for manufacturing a power storage device, characterized in that it comprises a and a storage step of occluding lithium ions in the negative electrode is disclosed.
- metallic lithium is used as a lithium ion supply source. Charge and discharge is performed between the positive electrode and the lithium ion supply source using such a lithium ion supply source, and electrochemical contact is made between the negative electrode and the lithium ion supply source, and lithium ion is absorbed in the negative electrode. I am doing it.
- metal lithium which is a lithium ion supply source
- Lithium metal contained in the lithium ion source is a material which is easily ignited and is dangerous. Therefore, it is desirable that metal lithium does not remain in the storage device.
- Patent Document 2 describes the use of a carbonaceous material pre-doped with lithium ions as such a lithium ion source. That is, it is described that a carbonaceous material is fixed to a current collector plate, lithium ions are absorbed between layers of the carbonaceous material by intercalation, and this is used as a lithium-containing electrode. By using such a lithium ion-containing electrode, charging and discharging can be performed between the positive electrode and the lithium ion source without using lithium metal, and further, electrochemistry can be performed between the negative electrode and the lithium ion source. Contact can be made to occlude lithium ions in the negative electrode.
- Silicon is known as a material capable of alloying with lithium ions and capable of absorbing lithium ions.
- lithium ions When lithium is stored using silicon, it is theoretically said that lithium ions of 4000 mAh / g or more can be stored. That is, when lithium is stored using silicon, the storage and release amount of lithium ion per unit volume is large, and the capacity of the power storage device can be increased.
- expansion and contraction of the active material itself become large when lithium ions are absorbed and released. Therefore, when silicon is fixed to a current collecting plate and used as an electrode, large distortion occurs in the current collecting plate, and there is a problem that the current collecting plate is warped or wrinkled. Because of these problems, when silicon is used as an active material, there is a problem that the current collector is deformed in the storage device or the connection reliability is lowered.
- An object of the present invention is to provide a storage device in which the storage device electrode is used.
- the electrode for a storage battery device of the present invention is A current collector consisting of a main body portion and a lead portion; An electrode portion disposed in the main portion of the current collector plate; An electrode for a storage device comprising a lead wire connected to the lead-out portion of the current collector plate, The lead-out portion and the body portion are formed of the same stainless steel,
- the above stainless steel is an austenitic stainless steel containing a martensitic structure,
- the electrode unit is characterized in that it contains silicon as an active material.
- the current collector plate is formed of an austenitic stainless steel including a martensitic structure.
- the martensitic structure is high in hardness. Therefore, when the current collector is made of an austenitic stainless steel containing a martensitic structure, the current collector can be made hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate. Therefore, even if metal ions are occluded in the active material of the electrode part or metal ions occluded in the active material of the electrode part are released and the volume of the active material changes, the current collector plate is warped or wrinkled. It will be easier to prevent.
- the lead-out portion connected to the lead wire and the main body portion are formed of the same stainless steel. That is, when connecting the lead wire and the current collector plate, the current collector plate is connected by a method which does not deteriorate the heat without applying heat. Therefore, the strength of the lead-out portion connected to the lead wire becomes sufficiently strong, and the function of the current collector plate also becomes difficult to deteriorate.
- the electrode for a storage device of the present invention be in the following mode.
- the martensitic structure be interspersed in an austenite structure in the cross section obtained by cutting the current collector plate along the thickness direction.
- the fact that the martensitic structure is scattered like islands in the austenite structure means that the austenitic structure content (mass) is larger than the martensite structure content (mass). Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
- the lead wire has a smaller elastic modulus than the current collector plate. If the lead wire has a smaller elastic modulus than the current collector plate, the lead wire absorbs external force or vibration when subjected to external force or vibration. Therefore, it becomes difficult to apply strong force to the connection part of a lead wire and a current collection board, and the connection part of a lead wire and a current collection board becomes difficult to be damaged.
- the lead wire is preferably made of at least one selected from the group consisting of nickel, copper, aluminum and brass. These materials have high electric conductivity and are excellent as lead wire materials. In addition, these substances can be firmly connected to stainless steel by ultrasonic welding. Therefore, the connection strength between the lead wire and the current collector plate can be sufficiently high.
- the lead wire may be plated with at least one selected from the group consisting of nickel, gold, silver, zinc and chromium. These materials can be rigidly connected to stainless steel by ultrasonic welding. Therefore, the connection strength between the lead wire on which these substances are plated and the current collector plate can be sufficiently high. Moreover, a material with a low elastic modulus can be used as a core material of a lead wire, and the elastic modulus of the whole lead wire can be made low.
- the active material be made of only silicon. Silicon can occlude metal ions by alloying with the metal ions. Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more. Therefore, the electrical capacity becomes sufficiently large.
- silicon occludes a large amount of metal ions or when a large amount of metal ions are released from silicon, the volume of silicon which is an active material largely changes. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate.
- the current collector plate is formed of austenitic stainless steel including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
- the electrode for a storage battery device of the present invention may be used as a metal ion supply electrode for supplying metal ions to an electrolytic solution.
- the storage device electrode of the present invention can be used not only as the positive electrode or the negative electrode of the storage device but also as a metal ion supply electrode.
- the electricity storage device of the present invention is characterized by comprising the electrode for an electricity storage device of the present invention. Therefore, in the electricity storage device of the present invention, wrinkles and warpage are less likely to occur in the current collector plate of the electrode for electricity storage device.
- the method for producing an electrode for a storage battery device of the present invention A current collector consisting of a main body portion and a lead portion; An electrode portion disposed in the main portion of the current collector plate; A method of manufacturing an electrode for a storage battery device, comprising: a lead wire connected to the lead-out portion of the current collector plate, Including an ultrasonic connection step of connecting the lead portion and the lead portion by ultrasonic welding;
- the current collector plate is formed of an austenitic stainless steel containing a martensitic structure,
- the electrode unit is characterized in that it contains silicon as an active material.
- the current collector plate and the lead wire are connected by ultrasonic welding.
- the stainless steel forming the current collector plate is degraded by the heat.
- ultrasonic welding is a method by which metals can be connected without generating heat. Therefore, if ultrasonic welding is used, the current collector plate and the lead wire can be connected without deteriorating the current collector plate. Therefore, the strength of the lead-out portion connected to the lead wire is sufficiently strong, and the function of the current collector plate is also less likely to be deteriorated.
- the lead-out portion connected to the lead wire and the main body portion are formed of the same stainless steel. That is, when connecting the lead wire and the current collector plate, the current collector plate is not deteriorated. Therefore, partial thermal distortion hardly occurs, the strength of the lead-out portion connected to the lead wire becomes sufficiently strong, and the function of the current collector plate also becomes difficult to deteriorate.
- FIG. 1 is a cross-sectional view schematically showing an example of an electrode for a storage device of the present invention.
- FIG. 2 is sectional drawing which shows typically an example of the cross section which cut
- FIG. 1 is a cross-sectional view schematically showing an example of an electrode for a storage device of the present invention.
- the storage device electrode 10 includes a current collector plate 20, an electrode portion 30 formed on both sides of the current collector plate 20, and a lead wire 40 connected to an end of the current collector plate 20. It consists of
- the lead-out portion 21 and the main body portion 22 are formed of the same quality stainless steel.
- the stainless steel forming the current collector plate 20 is an austenitic stainless steel containing a martensitic structure.
- the electrode unit 30 contains silicon as an active material.
- the current collector plate 20 is formed of austenitic stainless steel including a martensitic structure.
- the martensitic structure is high in hardness. Therefore, when the current collector plate 20 is formed of an austenitic stainless steel including a martensitic structure, the current collector plate 20 can be hard and have high strength. Therefore, it is easy to prevent the occurrence of warpage or wrinkles in the current collector plate 20. Therefore, even if metal ions are absorbed in the active material of the electrode unit 30 or metal ions absorbed in the active material of the electrode unit are released and the volume of the active material changes, the current collector plate 20 is warped or wrinkled. Is more likely to be prevented.
- the lead-out portion 21 and the main body portion 22 are formed of the same stainless steel. Although mentioned later in detail, when connecting the lead wire 40 and the current collector plate 20, the current collector plate 20 is not deteriorated. Therefore, partial thermal distortion hardly occurs, and the main body portion 22 has sufficient strength.
- the martensitic structure be scattered in the form of islands in the austenite structure in the cross section in which the current collector plate 20 is cut along the thickness direction.
- the state in which the martensitic structure is scattered in the form of islands in the austenitic structure will be described below with reference to the drawings.
- FIG. 2 is sectional drawing which shows typically an example of the cross section which cut
- reference numeral 26 denotes a martensitic structure
- reference numeral 27 denotes an austenitic structure.
- “the state in which the martensitic structure is scattered in the form of islands in the austenite structure” means that the martensitic structure 26 is not unevenly distributed in one place, as shown in FIG. Means to be present in the macula.
- the fact that the martensitic structure is scattered like islands in the austenite structure means that the austenitic structure content (mass) is larger than the martensite structure content (mass). Since the austenite structure is chemically stable, the collector plate of such a configuration is resistant to corrosion and elution.
- the presence of martensitic structure and austenitic structure can be analyzed by the electron backscattering diffraction pattern measurement method (EBSD method) under the following conditions.
- EBSD method electron backscattering diffraction pattern measurement method
- the lead-out portion and the main body portion are formed of the same quality stainless steel
- the tissues constituting the lead-out portion and the main body portion are continuous, and the EBSD is It means that the measurement by the method is performed and the following results are obtained.
- the lead-out portion and the main body portion are formed of the same quality stainless steel
- the area of the structure is 5 to 20% of the entire cross section, and the area of the martensitic structure is 5 to 20% of the entire cross section when the main body 22 is cut along the thickness direction.
- the area of the martensitic structure is preferably 5 to 20% of the entire cross section. Further, in the cross section in which the main body 22 is cut along the thickness direction, the area of the martensitic structure is preferably 5 to 20% of the entire cross section. If the area of the martensitic structure of the cross section which cuts the lead-out portion 21 along the thickness direction and the area of the martensitic structure of the cross section which cuts the main body 22 along the thickness direction are within the above range The plate is less susceptible to corrosion and also has high strength.
- the thickness of the current collector plate 20 is preferably 5 to 50 ⁇ m. If the thickness of the current collector plate is less than 5 ⁇ m, the current collector plate is easily broken because it is too thin. If the thickness of the current collector plate is more than 50 ⁇ m, it is too thick, and the size of the power storage device using the electrode for a power storage device including the current collector plate with such a thickness tends to be large.
- the tensile strength of the current collector plate 20 is not particularly limited, but is preferably 300 to 1,500 MPa.
- the lead wire 40 has a smaller elastic modulus than the current collector plate 20.
- the lead wire 40 absorbs external force or vibration when it receives an external force or vibration. Therefore, it becomes difficult to apply strong force to the connection part of lead wire 40 and current collection board 20, and the connection part of lead wire 40 and current collection board 20 becomes difficult to be damaged.
- the elastic modulus of the lead wire 40 is preferably 50 to 150 GPa.
- the elastic modulus of the current collector plate 20 is preferably 150 to 250 GPa.
- the Vickers hardness of the current collector plate 20 is desirably 300 to 500.
- the lead wire 40 is preferably made of at least one selected from the group consisting of nickel, copper, aluminum and brass. These materials have high electric conductivity and are excellent as lead wire materials. In addition, these substances can be firmly connected to stainless steel by ultrasonic welding. Therefore, the connection strength between the lead wire and the current collector plate can be sufficiently high.
- the lead wire 40 may be plated with at least one selected from the group consisting of nickel, gold, silver, zinc and chromium. These materials can be rigidly connected to stainless steel by ultrasonic welding. Therefore, the connection strength between the lead wire on which these substances are plated and the current collector plate can be sufficiently high. Moreover, a material with a low elastic modulus can be used as a core material of a lead wire, and the elastic modulus of the whole lead wire can be made low. Furthermore, the cross-sectional shape of the lead wire is not particularly limited. Any shape such as a circle, a rectangle, or a plate can be used.
- the electrode unit 30 be made of an active material and a binder.
- the active material may further contain carbon or the like, as long as it contains silicon.
- the average particle size of the active material is not particularly limited, but is preferably 1 to 10 ⁇ m. When the average particle size of the active material is 1 ⁇ m or more, the average particle size of the active material can be easily adjusted. If the average particle size of the active material is 10 ⁇ m or less, the specific surface area is sufficiently large, so that the time required for doping can be shortened.
- the active material of the electrode unit 30 be made of only silicon. Silicon can occlude metal ions by alloying with the metal ions. Therefore, for example, it is possible to occlude more metal ions than a substance such as carbon which occludes metal ions by intercalation. In particular, lithium ions can store 4000 mAh / g or more. Therefore, when the active material is made only of silicon, the electric capacity is sufficiently large. As described above, when silicon stores a large amount of metal ions or when a large amount of metal ions are released from silicon, the volume of silicon which is an active material changes significantly. When the volume of silicon changes in this manner, wrinkles and warpage easily occur on the current collector plate. However, in the storage device electrode of the present invention, the current collector plate is formed of austenitic stainless steel including a martensitic structure. Therefore, even if the volume of silicon changes, warpage or wrinkles are less likely to occur in the current collector plate.
- the material of the binder of the electrode part 30 is not specifically limited, A polyimide resin, a polyamide imide resin, etc. can be mentioned. Among these, polyimide resins are preferable.
- the polyimide resin is a compound which is heat resistant and strong. Therefore, when the active material is bound by a binder made of polyimide resin, the electrode portion 30 can be hardly peeled off from the current collector plate 20 even if the volume of the active material changes due to the storage and release of metal ions.
- weight ratio of the active material to the binder in the electrode unit 30 be 70:30 to 90:10.
- the binder of the electrode unit 30 may contain a conductive aid.
- the material of the conductive aid is not particularly limited, and carbon black, carbon fibers, carbon nanotubes and the like can be mentioned. Among these, carbon black is desirable.
- the binder contains a conductive additive, the conductivity of the electrode 10 for a storage battery can be increased. Therefore, current can be collected efficiently.
- carbon black can ensure conductivity with a small amount. Therefore, when the carbon black is a conductive additive, the conductivity of the storage device electrode 10 can be further improved.
- the average particle size is preferably 3 to 500 nm.
- the weight ratio of the conductive additive to the binder is preferably 20 to 50%.
- the thickness of the electrode portion 30 is not particularly limited, but is preferably 5 to 50 ⁇ m.
- the thickness of the electrode portion is less than 5 ⁇ m, the amount of the active material is smaller than that of the current collector plate, so that the electric capacity is easily reduced.
- the thickness of the electrode portion exceeds 50 ⁇ m, the size of the electricity storage device manufactured using the electrode for electricity storage device becomes large. In addition, the distance for the metal ions to move in the electrode portion becomes long, and it takes time for charging and discharging.
- the areal density of the electrode unit 30 on one side is not particularly limited, but is preferably 0.1 to 10 mg / cm 2 .
- the storage device electrode of the present invention can be used as a positive electrode or a negative electrode of a storage device or as a metal ion supply electrode for doping metal ions in an electrolyte.
- a method of manufacturing an electrode for a storage battery device is a storage battery device including a current collector plate including a main body portion and a lead-out portion, an electrode portion disposed on the current collector plate, and a lead wire connected to the current collector plate. It is a manufacturing method of an electrode, and the ultrasonic connection process which connects a current collection board and a lead wire by ultrasonic welding is included.
- the current collector plate is formed of an austenitic stainless steel including a martensitic structure, and the electrode portion is characterized by containing silicon as an active material.
- the weight ratio of the active material to the binder is not particularly limited, but it is desirable that the weight ratio of the active material to the binder is 70:30 to 90:10.
- the binder is not particularly limited, and examples thereof include a polyimide resin precursor and a polyamideimide resin precursor. Among these, a polyimide resin precursor is desirable.
- the viscosity of the active material slurry is desirably 1 to 10 Pa ⁇ s.
- the viscosity of the slurry is measured using a B-type viscometer under conditions of 1 to 10 rpm.
- the viscosity of the active material slurry can be adjusted by adjusting the ratio of the active material to the binder. Moreover, you may adjust a viscosity with a thickener etc. as needed.
- the active material slurry is coated on a current collector plate.
- the amount of the active material slurry to be coated is not particularly limited, it is desirable that the amount is 0.1 to 10 mg / cm 2 after heat drying.
- the current collector plate coated with the active material slurry is pressed.
- the pressure of the press processing is not particularly limited, but it is sufficient if it can be held down so that the active material becomes flat.
- the current collector plate coated with the active material slurry is heated to cure the binder contained in the active material slurry. It is desirable to determine the heating conditions in accordance with the type of binder used.
- the heating temperature is desirably 250 to 350 ° C.
- the atmosphere at the time of heating is desirably an inert atmosphere such as a nitrogen gas atmosphere.
- the time of connecting a current collection board and a lead wire by ultrasonic welding may be before arrange
- ultrasonic welding uses, for example, an ultrasonic welding machine (2000 Xea 40: 0.8 type manufactured by Nippon Emerson Co., Ltd. Branson Division), output: 100 to 500 W, welding time: 50 to 500 milliseconds, ultrasonic horn Pressure of 5 to 25 MPa.
- an ultrasonic welding machine 2000 Xea 40: 0.8 type manufactured by Nippon Emerson Co., Ltd. Branson Division
- output 100 to 500 W
- welding time 50 to 500 milliseconds
- ultrasonic horn Pressure of 5 to 25 MPa.
- a storage device using the storage device electrode of the present invention is also a storage device of the present invention.
- the electricity storage device of the present invention is Positive electrode, A negative electrode, A separator for separating the positive electrode and the negative electrode; An electricity storage package that accommodates the positive electrode, the negative electrode, and the separator; And the electrolytic solution enclosed in the above-mentioned storage package,
- the positive electrode or the negative electrode may be the electrode for a storage device of the present invention.
- the lead wire of the storage device electrode of the present invention may be used to connect to another electrode, or may be used to connect to another electrical component. .
- the negative electrode is preferably the electrode for the electricity storage device of the present invention.
- the electricity storage device of the present invention in which the negative electrode is an electrode for a electricity storage device of the present invention will be described.
- the negative electrode is the electrode for a storage device of the present invention.
- the negative electrode is a current collector plate including a main body portion and a lead portion; An electrode portion disposed on a main portion of the current collector plate, An electrode for a storage device comprising a lead wire connected to the lead-out portion of the current collector plate,
- the lead-out portion and the main body portion are formed of the same stainless steel, Stainless steel is an austenitic stainless steel containing a martensitic structure,
- the electrode portion contains silicon as an active material.
- the current collection board and silicon of the electrode for electrical storage devices of this invention are each described also as a negative electrode current collection board and a negative electrode active material.
- the positive electrode is preferably composed of a positive electrode current collector and a positive electrode active material provided on the positive electrode current collector.
- the positive electrode current collector is preferably made of aluminum, nickel, copper, silver and alloys thereof, although not particularly limited.
- the positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
- these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc.
- Material substituted may also be used.
- the positive electrode active material may be used alone or in combination of two or more.
- the separator is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated
- the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent as an electrolyte can be used.
- a solvent such as an electrolyte
- cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-
- the metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
- the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
- One of these may be used alone, or two or more may be mixed and used.
- the concentration of the electrolyte in the electrolyte is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution. When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
- a negative electrode current collector plate on which a negative electrode active material is disposed is prepared, a positive electrode current collector plate on which a positive electrode active material is disposed is prepared, and a separator is prepared.
- each negative electrode current collector plate and the positive electrode current collector plate are laminated with the separator interposed between the negative electrode current collector plate and the positive electrode current collector plate so that the negative electrode current collector plate and the positive electrode current collector plate are not in contact. I assume. At this time, the lead-out portion of each negative electrode current collector plate is arranged to protrude from the laminate.
- the lead-out portion of the negative electrode current collector plate is connected to the lead wire by ultrasonic welding. Since the connection is made by ultrasonic welding, the lead-out portion does not deteriorate due to heat and remains uniform.
- the negative electrode current collector plate is made of austenitic stainless steel having a martensitic structure, and can be connected by ultrasonic welding without deteriorating the portion connected to the lead wire.
- the positive electrode current collector plate is also electrically connected to the lead wire.
- the method of electrically connecting the positive electrode current collector plate and the lead wire is not particularly limited, and may be connected by, for example, resistance welding or ultrasonic welding.
- the stacked body is housed in a storage package, and sealed together with an electrolytic solution in which the electrolyte is dissolved, whereby the storage device of the present invention can be manufactured.
- the electricity storage device of the present invention is Positive electrode, A negative electrode, A separator for separating the positive electrode and the negative electrode; A metal ion supply electrode for doping metal ions into the positive electrode and / or the negative electrode; An electricity storage package that accommodates the positive electrode, the negative electrode, the separator, and the metal ion supply electrode; And the electrolytic solution enclosed in the above-mentioned storage package,
- the positive electrode, the negative electrode or the metal ion supply electrode may be the electrode for a storage device of the present invention.
- the electrode for a storage device of the present invention When the electrode for a storage device of the present invention is used as a metal ion supply electrode, it is necessary to dope the electrode for a storage device of the present invention with metal ions. First, a method of doping metal ions to the electrode for a storage device of the present invention will be described.
- an organic electrolyte solution is applied to the electrode portion of the current collector plate in the electrode for a storage battery device of the present invention.
- the organic electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in an organic solvent as an electrolyte can be used.
- cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (Linear carbonates such as EMC), dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxy Linear ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylpho Lumamide, acetonitrile, propyl nitrile, nitromethane,
- PC propy
- the organic electrolyte may be used alone, or two or more may be mixed and used.
- the metal ion source it is desirable that the organic electrolyte have lithium ion conductivity.
- the metal ion source is not particularly limited, and examples thereof include lithium, sodium, magnesium and calcium. Among these, lithium is desirable.
- the heating conditions are not particularly limited, but heating at 250 to 300 ° C. for 10 to 120 minutes is desirable.
- the method of doping is not limited to the method of contacting such a metal ion source, Other methods can also be utilized.
- the metal ion source and the electrode for a storage device can be connected to an external circuit and electrically doped.
- the storage device electrode of the present invention is manufactured by connecting the lead portion of the current collector plate and the lead wire by ultrasonic welding, the doping may be performed before ultrasonic welding, It may be performed after ultrasonic welding.
- the positive electrode in the storage device of the present invention preferably has the following configuration. That is, it is desirable that the positive electrode be composed of a positive electrode current collector plate and a positive electrode active material provided on the positive electrode current collector plate.
- the positive electrode current collector is preferably made of aluminum, nickel, copper, silver and alloys thereof, although not particularly limited.
- the positive electrode active material is not particularly limited, but LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure such as lithium manganate or spinel structure; LiCoO 2 , LiNiO 2 or some of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which specific transition metals such as 1/3 O 2 do not exceed half; Li in excess of the stoichiometric composition in these lithium transition metal oxides; and olivine structures such as LiFePO 4 Those that have are listed.
- these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc.
- Material substituted may also be used.
- the positive electrode active material may be used alone or in combination of two or more.
- the negative electrode in the storage device of the present invention preferably has the following configuration. That is, the negative electrode preferably includes a negative electrode current collector plate and an electrode portion provided on the negative electrode current collector plate, and the electrode portion preferably contains a negative electrode active material.
- the negative electrode current collector plate is not particularly limited, but is preferably made of aluminum, nickel, copper, silver, an alloy thereof, or the like.
- the negative electrode active material is not particularly limited, but is preferably made of silicon, silicon monoxide, silicon dioxide, carbon or the like.
- the separator in the storage device of the present invention is not particularly limited, but a porous film such as polypropylene or polyethylene or a non-woven fabric can be used. Moreover, what laminated
- the electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved in a solvent can be used.
- a solvent such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC ), Linear carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), linear ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydro
- the metal salt is not particularly limited, and lithium salt, sodium salt, calcium salt, magnesium salt and the like can be used.
- the lithium salt may be LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
- One of these may be used alone, or two or more may be mixed and used.
- the concentration of the electrolyte in the electrolyte is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to achieve sufficient conductivity of the electrolytic solution. When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
- a positive electrode, a negative electrode and a separator are prepared.
- a separator is sandwiched between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in contact, and the positive electrode and the negative electrode are stacked to form a laminate.
- an electrode for a storage device of the present invention doped with metal ions that is, a metal ion supply electrode is prepared.
- the lead-out portion of the metal ion supply electrode is connected in advance to a lead wire made of nickel plated copper by ultrasonic welding.
- the metal ion supply electrode is disposed on the outer side of the laminate, these are housed in a storage package, and sealed together with an electrolytic solution in which the electrolyte is dissolved, whereby the storage device of the present invention can be manufactured. Further, by connecting the metal ion supply electrode and the positive electrode or the negative electrode with an external circuit, metal ions necessary for charge and discharge can be supplied to the positive electrode or the negative electrode.
- the storage device electrode of the present invention can be suitably used as a positive electrode or a negative electrode of a storage device, or as a metal ion supply electrode for doping metal ions.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
活物質としてシリコンを含む電極部が配置された集電板を用いても、高い接続信頼性が確保された、強度の高い蓄電デバイス用電極を提供する。 本発明の蓄電デバイス用電極は、本体部と引出部とからなる集電板と、上記集電板の本体部に配置された電極部と、上記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、上記引出部及び上記本体部は、同質のステンレス鋼により形成されており、上記ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、上記電極部は、活物質としてシリコンを含むことを特徴とする。
Description
本発明は、蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法に関する。
リチウムなどイオン化傾向の大きな金属を用いた蓄電デバイスは、大容量のエネルギーを蓄えられるため、多くの分野で利用されている。
このような蓄電デバイスの製造方法として、特許文献1には、貫通孔を有する正極集電板上に形成された、アニオンを挿入、脱離し得る層状構造を有する炭素質材料を正極活物質として含む正極と、貫通孔を有する負極集電板上に形成された、リチウムイオンを挿入、脱離し得る層状構造を有する炭素質材料を負極活物質として含む負極と、リチウム塩を含む非水電解液と、を有する蓄電デバイスの製造方法であって、蓄電デバイス用セル内に、セパレータを介して前記正極および負極を積層してなる積層体とリチウムイオン供給源とを配置すると共に、前記非水電解液を注入する蓄電デバイス用セル作製工程と、正極とリチウムイオン供給源との間で充放電を行う充放電工程と、負極とリチウムイオン供給源との間で電気化学的接触を行い、負極にリチウムイオンを吸蔵させる吸蔵工程と、を含むことを特徴とする蓄電デバイスの製造方法が開示されている。
このような蓄電デバイスの製造方法として、特許文献1には、貫通孔を有する正極集電板上に形成された、アニオンを挿入、脱離し得る層状構造を有する炭素質材料を正極活物質として含む正極と、貫通孔を有する負極集電板上に形成された、リチウムイオンを挿入、脱離し得る層状構造を有する炭素質材料を負極活物質として含む負極と、リチウム塩を含む非水電解液と、を有する蓄電デバイスの製造方法であって、蓄電デバイス用セル内に、セパレータを介して前記正極および負極を積層してなる積層体とリチウムイオン供給源とを配置すると共に、前記非水電解液を注入する蓄電デバイス用セル作製工程と、正極とリチウムイオン供給源との間で充放電を行う充放電工程と、負極とリチウムイオン供給源との間で電気化学的接触を行い、負極にリチウムイオンを吸蔵させる吸蔵工程と、を含むことを特徴とする蓄電デバイスの製造方法が開示されている。
特許文献1に記載の蓄電デバイスの製造方法では、リチウムイオン供給源として、金属リチウムが用いられている。このようなリチウムイオン供給源を用いて、正極とリチウムイオン供給源との間で充放電を行い、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させている。
このような特許文献1に記載された方法で蓄電デバイスを製造すると、蓄電デバイス内にリチウムイオン供給源である金属リチウムが残ることになる。
リチウムイオン供給源に含まれる金属リチウムは、発火しやすく危険な素材である。そのため、金属リチウムは、蓄電デバイス内に残らないことが望ましい。
リチウムイオン供給源に含まれる金属リチウムは、発火しやすく危険な素材である。そのため、金属リチウムは、蓄電デバイス内に残らないことが望ましい。
特許文献2には、このようなリチウムイオン供給源として、リチウムイオンのプレドープが施された炭素質材料を用いることが記載されている。
すなわち、集電板に炭素質材料を固定し、インターカレーションにより炭素質材料の層間にリチウムイオンを吸蔵し、これをリチウム含有極として用いることが記載されている。
このようなリチウムイオン含有極を用いることにより、リチウム金属を用いることなく正極とリチウムイオン供給源との間で充放電を行うことができ、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させることができる。
すなわち、集電板に炭素質材料を固定し、インターカレーションにより炭素質材料の層間にリチウムイオンを吸蔵し、これをリチウム含有極として用いることが記載されている。
このようなリチウムイオン含有極を用いることにより、リチウム金属を用いることなく正極とリチウムイオン供給源との間で充放電を行うことができ、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させることができる。
しかしながら、インターカレーションによりリチウムイオンを炭素質材料に吸蔵する場合、リチウムイオンの吸蔵量には372mAh/gという理論的な上限値があり、これを超えることができない。このため、炭素質材料よりも多くのリチウムイオンを吸蔵できる材料の検討が行われていた。
シリコンは、リチウムイオンと合金化し、リチウムイオンを吸蔵することができる物質として知られている。シリコンを用いてリチウムイオンを吸蔵する場合、理論的に4000mAh/g以上のリチウムイオンを吸蔵できるといわれている。
つまり、シリコンを用いてリチウムイオンを吸蔵する場合、単位体積あたりのリチウムイオンの吸蔵放出量が多く、蓄電デバイスを高容量にすることができる。
しかし、リチウムイオンが吸蔵放出される際に活物質自体の膨張収縮が大きくなるという問題があった。
そのため、シリコンを集電板に固定し、電極として用いた場合、集電板に大きな歪が発生し、集電板に反りやシワが発生するという問題があった。このような問題があるので、シリコンを活物質として使用した場合、集電板が蓄電デバイス内で変形したり、接続信頼性が低下するという問題があった。
つまり、シリコンを用いてリチウムイオンを吸蔵する場合、単位体積あたりのリチウムイオンの吸蔵放出量が多く、蓄電デバイスを高容量にすることができる。
しかし、リチウムイオンが吸蔵放出される際に活物質自体の膨張収縮が大きくなるという問題があった。
そのため、シリコンを集電板に固定し、電極として用いた場合、集電板に大きな歪が発生し、集電板に反りやシワが発生するという問題があった。このような問題があるので、シリコンを活物質として使用した場合、集電板が蓄電デバイス内で変形したり、接続信頼性が低下するという問題があった。
本発明では、活物質としてシリコンを含む電極部が配置された集電板を用いても、高い接続信頼性が確保された、強度の高い蓄電デバイス用電極及びその製造方法を提供すること、並びに、当該蓄電デバイス用電極が用いられた蓄電デバイスを提供することを目的とする。
(1)本発明の蓄電デバイス用電極は、
本体部と引出部とからなる集電板と、
上記集電板の本体部に配置された電極部と、
上記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、
上記引出部及び上記本体部は、同質のステンレス鋼により形成されており、
上記ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、
上記電極部は、活物質としてシリコンを含むことを特徴とする。
本体部と引出部とからなる集電板と、
上記集電板の本体部に配置された電極部と、
上記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、
上記引出部及び上記本体部は、同質のステンレス鋼により形成されており、
上記ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、
上記電極部は、活物質としてシリコンを含むことを特徴とする。
本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。
マルテンサイト組織は硬度が高い。そのため、集電板が、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されていると、集電板を硬く高強度にすることができる。そのため、集電板に、反りやシワが発生することを防止しやすくなる。
従って、電極部の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板に反りやシワが発生することを防止しやすくなる。
マルテンサイト組織は硬度が高い。そのため、集電板が、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されていると、集電板を硬く高強度にすることができる。そのため、集電板に、反りやシワが発生することを防止しやすくなる。
従って、電極部の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板に反りやシワが発生することを防止しやすくなる。
本発明の蓄電デバイス用電極では、リード線と接続している引出部、及び、本体部は、同質のステンレス鋼により形成されている。
すなわち、リード線と、集電板とを接続する際に、熱を加えず集電板は変質しない方法で接続されている。
そのため、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
すなわち、リード線と、集電板とを接続する際に、熱を加えず集電板は変質しない方法で接続されている。
そのため、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
また本発明の蓄電デバイス用電極は、次の態様であることが望ましい。
(2)本発明の蓄電デバイス用電極では、上記集電板を厚さ方向に沿って切断する断面において、マルテンサイト組織が、オーステナイト組織の中に島状に点在していることが望ましい。
マルテンサイト組織がオーステナイト組織の中に島状に点在しているということは、マルテンサイト組織の含有量(質量)よりもオーステナイト組織の含有量(質量)の方が多いといえる。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
マルテンサイト組織がオーステナイト組織の中に島状に点在しているということは、マルテンサイト組織の含有量(質量)よりもオーステナイト組織の含有量(質量)の方が多いといえる。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
(3)本発明の蓄電デバイス用電極では、上記リード線は、上記集電板より弾性率が小さいことが望ましい。
リード線が集電板より弾性率が小さいと、外力や、振動を受けた場合にリード線が外力や振動を吸収する。そのため、リード線と集電板との接続部分に強い力が加わりにくくなり、リード線と集電板との接続部分が破損しにくくなる。
リード線が集電板より弾性率が小さいと、外力や、振動を受けた場合にリード線が外力や振動を吸収する。そのため、リード線と集電板との接続部分に強い力が加わりにくくなり、リード線と集電板との接続部分が破損しにくくなる。
(4)本発明の蓄電デバイス用電極では、上記リード線は、ニッケル、銅、アルミニウム及び黄銅からなる群から選択される少なくとも1種からなることが望ましい。
これら物質は電気伝導率が高く、リード線の材料として優れた物質である。
また、これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、リード線と集電板との接続強度を充分に高くすることができる。
これら物質は電気伝導率が高く、リード線の材料として優れた物質である。
また、これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、リード線と集電板との接続強度を充分に高くすることができる。
(5)本発明の蓄電デバイス用電極では、上記リード線は、ニッケル、金、銀、亜鉛及びクロムからなる群から選択される少なくとも1種によりめっきされていてもよい。
これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、これら物質がめっきされたリード線と集電板との接続強度を充分に高くすることができる。
また、リード線の芯材として弾性率が低い材料を使用することができ、リード線全体の弾性率を低くすることができる。
これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、これら物質がめっきされたリード線と集電板との接続強度を充分に高くすることができる。
また、リード線の芯材として弾性率が低い材料を使用することができ、リード線全体の弾性率を低くすることができる。
(6)本発明の蓄電デバイス用電極では、上記活物質は、シリコンのみからなることが望ましい。
シリコンは、金属イオンと合金化することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、電気容量が充分に大きくなる。
このように、シリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
シリコンは、金属イオンと合金化することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、電気容量が充分に大きくなる。
このように、シリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
(7)本発明の蓄電デバイス用電極は、電解液に金属イオンを供給する金属イオン供給極として使用されてもよい。
本発明の蓄電デバイス用電極は、蓄電デバイスの正極又は負極のみならず、金属イオン供給極としても使用することができる。
本発明の蓄電デバイス用電極は、蓄電デバイスの正極又は負極のみならず、金属イオン供給極としても使用することができる。
(8)本発明の蓄電デバイスは、上記本発明の蓄電デバイス用電極を備えることを特徴とする。
そのため、本発明の蓄電デバイスでは、蓄電デバイス用電極の集電板にシワや反りが発生しにくい。
そのため、本発明の蓄電デバイスでは、蓄電デバイス用電極の集電板にシワや反りが発生しにくい。
(9)本発明の蓄電デバイス用電極の製造方法は、
本体部と引出部とからなる集電板と、
上記集電板の本体部に配置された電極部と、
上記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極の製造方法であって、
上記引出部と上記リード線とを超音波溶接により接続する超音波接続工程を含み、
上記集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されており、
上記電極部は、活物質としてシリコンを含むことを特徴とする。
本体部と引出部とからなる集電板と、
上記集電板の本体部に配置された電極部と、
上記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極の製造方法であって、
上記引出部と上記リード線とを超音波溶接により接続する超音波接続工程を含み、
上記集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されており、
上記電極部は、活物質としてシリコンを含むことを特徴とする。
本発明の蓄電デバイス用電極の製造方法では、集電板とリード線とを超音波溶接により接続する。
抵抗溶接等、熱により集電板の一部やリード線の一部を溶融させて集電板とリード線とを接続すると、集電板を形成するステンレス鋼が熱により変質してしまう。このような変質が生じると、部分的な熱歪みが生じ集電板の機能が低下するという問題がある。
一方、超音波溶接は、熱を発生させずに金属同士を接続することができる方法である。そのため、超音波溶接を用いると、集電板を変質させずに、集電板とリード線とを接続することができる。従って、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
抵抗溶接等、熱により集電板の一部やリード線の一部を溶融させて集電板とリード線とを接続すると、集電板を形成するステンレス鋼が熱により変質してしまう。このような変質が生じると、部分的な熱歪みが生じ集電板の機能が低下するという問題がある。
一方、超音波溶接は、熱を発生させずに金属同士を接続することができる方法である。そのため、超音波溶接を用いると、集電板を変質させずに、集電板とリード線とを接続することができる。従って、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
本発明の蓄電デバイス用電極では、リード線と接続している引出部、及び、本体部は、同質のステンレス鋼により形成されている。
すなわち、リード線と、集電板とを接続する際に、集電板は変質していない。
そのため、部分的な熱歪みが生じにくく、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
すなわち、リード線と、集電板とを接続する際に、集電板は変質していない。
そのため、部分的な熱歪みが生じにくく、リード線と接続している引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
(発明の詳細な説明)
以下、本発明の蓄電デバイス用電極について図面を用いながら説明するが、本発明の蓄電デバイス用電極は以下の記載に限定されない。
以下、本発明の蓄電デバイス用電極について図面を用いながら説明するが、本発明の蓄電デバイス用電極は以下の記載に限定されない。
図1は、本発明の蓄電デバイス用電極の一例を模式的に示す断面図である。
図1に示すように、蓄電デバイス用電極10は、集電板20と、集電板20の両面に形成された電極部30と、集電板20の端部に接続されたリード線40とからなる。
図1に示すように、蓄電デバイス用電極10は、集電板20と、集電板20の両面に形成された電極部30と、集電板20の端部に接続されたリード線40とからなる。
また、引出部21、及び、本体部22は、同質のステンレス鋼により形成されている。
また、集電板20を形成するステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼である。
また、電極部30は、活物質としてシリコンを含む。
また、電極部30は、活物質としてシリコンを含む。
蓄電デバイス用電極10では、集電板20は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。
マルテンサイト組織は硬度が高い。そのため、集電板20が、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されていると、集電板20を硬く高強度にすることができる。そのため、集電板20に、反りやシワが発生することを防止しやすくなる。
従って、電極部30の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板20に反りやシワが発生することを防止しやすくなる。
マルテンサイト組織は硬度が高い。そのため、集電板20が、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されていると、集電板20を硬く高強度にすることができる。そのため、集電板20に、反りやシワが発生することを防止しやすくなる。
従って、電極部30の活物質に金属イオンが吸蔵されたり、電極部の活物質に吸蔵されていた金属イオンが放出され、活物質の体積が変化したとしても、集電板20に反りやシワが発生することを防止しやすくなる。
蓄電デバイス用電極10では、引出部21、及び、本体部22は、同質のステンレス鋼により形成されている。
詳しくは後述するが、リード線40と、集電板20とを接続する際に集電板20は変質していない。
そのため、部分的な熱歪みが生じにくく、本体部22は充分な強度を有する。
詳しくは後述するが、リード線40と、集電板20とを接続する際に集電板20は変質していない。
そのため、部分的な熱歪みが生じにくく、本体部22は充分な強度を有する。
蓄電デバイス用電極10では、集電板20を厚さ方向に沿って切断する断面において、マルテンサイト組織が、オーステナイト組織の中に島状に点在していることが望ましい。
マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態を以下に図面を用いて説明する。
マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態を以下に図面を用いて説明する。
図2は、本発明の蓄電デバイス用電極における集電板を厚さ方向に沿って切断する断面の一例を模式的に示す断面図である。
図2において、符号26はマルテンサイト組織を示し、符号27はオーステナイト組織を示している。
本明細書において「マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態」とは、図2に示すように、マルテンサイト組織26が一箇所に偏在せず、オーステナイト組織内に斑に存在することを意味する。
図2において、符号26はマルテンサイト組織を示し、符号27はオーステナイト組織を示している。
本明細書において「マルテンサイト組織が、オーステナイト組織の中に島状に点在している状態」とは、図2に示すように、マルテンサイト組織26が一箇所に偏在せず、オーステナイト組織内に斑に存在することを意味する。
マルテンサイト組織がオーステナイト組織の中に島状に点在しているということは、マルテンサイト組織の含有量(質量)よりもオーステナイト組織の含有量(質量)の方が多いといえる。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
オーステナイト組織は化学的に安定であるので、このような構成の集電板は、腐食や溶出されにくい。
なお、マルテンサイト組織及びオーステナイト組織の存在は、以下の条件の電子後方散乱回折図測定法(EBSD法)により分析することができる。
(EBSD法の条件)
<分析装置>
EF-SEM:日本電子株式会社製JSM-7000F/EBSDD:TSL Solution
<分析条件>
範囲 :14×36μm
ステップ :0.05μm/step
測定ポイント :233376
倍率 :5000倍
phase :γ-鉄、α-鉄
<分析装置>
EF-SEM:日本電子株式会社製JSM-7000F/EBSDD:TSL Solution
<分析条件>
範囲 :14×36μm
ステップ :0.05μm/step
測定ポイント :233376
倍率 :5000倍
phase :γ-鉄、α-鉄
なお、本明細書において、「引出部、及び、本体部は、同質のステンレス鋼により形成されている」とは、引出部と本体部とを構成する組織が連続した組織であって、上記EBSD法による測定を行い、以下のような結果になる場合を意味する。
すなわち、「引出部及び本体部は、同質のステンレス鋼により形成されている」とは、
引出部21と本体部22とを構成する組織が連続した組織であって、これらの間に界面は存在しておらず、かつ、引出部21を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積が断面全体の5~20%となり、かつ、本体部22を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積が断面全体の5~20%となる場合を意味する。
すなわち、「引出部及び本体部は、同質のステンレス鋼により形成されている」とは、
引出部21と本体部22とを構成する組織が連続した組織であって、これらの間に界面は存在しておらず、かつ、引出部21を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積が断面全体の5~20%となり、かつ、本体部22を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積が断面全体の5~20%となる場合を意味する。
また、引出部21を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積は、断面全体の5~20%であることが望ましい。
また、本体部22を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積は、断面全体の5~20%であることが望ましい。
引出部21を厚さ方向に沿って切断する断面のマルテンサイト組織の面積、及び、本体部22を厚さ方向に沿って切断する断面のマルテンサイト組織の面積が上記範囲であると、集電板は腐食しにくくなり、また、高強度になる。
また、上記断面において、マルテンサイト組織が占める面積が5%未満であると、マルテンサイト組織を含有することによる集電板の強度向上効果が得られにくくなる。
また上記断面において、マルテンサイト組織が占める面積が20%を超えると、マルテンサイト組織が表面に露出しやすくなる上に、内部に存在するマルテンサイト組織まで連続的につながり、集電板全体が腐食しやすくなる。また、マルテンサイト組織の割合が大きくなるので、集電板の靱性が低下しやすくなる、その結果、集電板が折れやすくなる。
また、本体部22を厚さ方向に沿って切断する断面においてマルテンサイト組織の面積は、断面全体の5~20%であることが望ましい。
引出部21を厚さ方向に沿って切断する断面のマルテンサイト組織の面積、及び、本体部22を厚さ方向に沿って切断する断面のマルテンサイト組織の面積が上記範囲であると、集電板は腐食しにくくなり、また、高強度になる。
また、上記断面において、マルテンサイト組織が占める面積が5%未満であると、マルテンサイト組織を含有することによる集電板の強度向上効果が得られにくくなる。
また上記断面において、マルテンサイト組織が占める面積が20%を超えると、マルテンサイト組織が表面に露出しやすくなる上に、内部に存在するマルテンサイト組織まで連続的につながり、集電板全体が腐食しやすくなる。また、マルテンサイト組織の割合が大きくなるので、集電板の靱性が低下しやすくなる、その結果、集電板が折れやすくなる。
蓄電デバイス用電極10では、集電板20の厚さは、5~50μmであることが望ましい。
集電板の厚さが5μm未満であると、薄すぎるので集電板が破れやすくなる。
集電板の厚さが50μmを超えると、厚すぎるので、このような厚さの集電板を含む蓄電デバイス用電極が用いられた蓄電デバイスのサイズが大きくなりやすくなる。
集電板の厚さが5μm未満であると、薄すぎるので集電板が破れやすくなる。
集電板の厚さが50μmを超えると、厚すぎるので、このような厚さの集電板を含む蓄電デバイス用電極が用いられた蓄電デバイスのサイズが大きくなりやすくなる。
集電板20の引張強度は特に限定されないが、300~1500MPaであることが望ましい。
蓄電デバイス用電極10では、リード線40は、集電板20より弾性率が小さいことが望ましい。
リード線40が集電板20より弾性率が小さいと、外力や、振動を受けた場合にリード線40が外力や振動を吸収する。そのため、リード線40と集電板20との接続部分に強い力が加わりにくくなり、リード線40と集電板20との接続部分が破損しにくくなる。
リード線40が集電板20より弾性率が小さいと、外力や、振動を受けた場合にリード線40が外力や振動を吸収する。そのため、リード線40と集電板20との接続部分に強い力が加わりにくくなり、リード線40と集電板20との接続部分が破損しにくくなる。
蓄電デバイス用電極10では、リード線40の弾性率は、50~150GPaであることが望ましい。
蓄電デバイス用電極10では、集電板20の弾性率は、150~250GPaであることが望ましい。
また、蓄電デバイス用電極10では、集電板20のビッカース硬度は300~500であることが望ましい。
蓄電デバイス用電極10では、集電板20の弾性率は、150~250GPaであることが望ましい。
また、蓄電デバイス用電極10では、集電板20のビッカース硬度は300~500であることが望ましい。
蓄電デバイス用電極10では、リード線40は、ニッケル、銅、アルミニウム及び黄銅からなる群から選択される少なくとも1種からなることが望ましい。
これら物質は電気伝導率が高く、リード線の材料として優れた物質である。
また、これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、リード線と集電板との接続強度を充分に高くすることができる。
これら物質は電気伝導率が高く、リード線の材料として優れた物質である。
また、これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、リード線と集電板との接続強度を充分に高くすることができる。
蓄電デバイス用電極10では、リード線40は、ニッケル、金、銀、亜鉛及びクロムからなる群から選択される少なくとも1種によりめっきされていてもよい。
これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、これら物質がめっきされたリード線と集電板との接続強度を充分に高くすることができる。
また、リード線の芯材として弾性率が低い材料を使用することができ、リード線全体の弾性率を低くすることができる。
さらに、リード線の断面形状は特に限定されない。円形、長方形、板状などどのような形状でも利用することができる。
これら物質は、超音波溶接によりステンレス鋼と強固に接続させることができる。そのため、これら物質がめっきされたリード線と集電板との接続強度を充分に高くすることができる。
また、リード線の芯材として弾性率が低い材料を使用することができ、リード線全体の弾性率を低くすることができる。
さらに、リード線の断面形状は特に限定されない。円形、長方形、板状などどのような形状でも利用することができる。
蓄電デバイス用電極10において、電極部30は、活物質及びバインダからなることが望ましい。
活物質は、シリコンを含めば、他にカーボン等を含んでいてもよい。
活物質の平均粒子径は、特に限定されないが1~10μmであることが望ましい。
活物質の平均粒子径が1μm以上であれば、活物質の平均粒子径を容易に調整することができる。
活物質の平均粒子径が10μm以下であれば、比表面積が充分に大きくなるので、ドープに要する時間を短くすることができる。
活物質の平均粒子径が1μm以上であれば、活物質の平均粒子径を容易に調整することができる。
活物質の平均粒子径が10μm以下であれば、比表面積が充分に大きくなるので、ドープに要する時間を短くすることができる。
蓄電デバイス用電極10において、電極部30の活物質は、シリコンのみからなることが望ましい。
シリコンは、金属イオンと合金化することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、活物質がシリコンのみからなると、電気容量が充分に大きくなる。
このようにシリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
シリコンは、金属イオンと合金化することにより金属イオンを吸蔵することができる。
そのため、例えば、炭素のように金属イオンをインターカレーションにより吸蔵する物質に比べ、多くの金属イオンを吸蔵することができる。特に、リチウムイオンであれば、4000mAh/g以上を吸蔵することができる。
そのため、活物質がシリコンのみからなると、電気容量が充分に大きくなる。
このようにシリコンが大量の金属イオンを吸蔵したり、シリコンから大量の金属イオンが放出されたりすると、活物質であるシリコンの体積が大きく変化する。このようにシリコンの体積が変化した場合、集電板にシワや反りが発生しやすくなる。
しかし、本発明の蓄電デバイス用電極では、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されている。そのため、シリコンの体積が変化した場合であっても、集電板に反りやシワが発生しにくい。
電極部30のバインダの材料は、特に限定されないが、ポリイミド樹脂、ポリアミドイミド樹脂等を挙げることができる。これらの中では、ポリイミド樹脂であることが望ましい。
ポリイミド樹脂は、耐熱性があり、強度がある化合物である。そのため、活物質がポリイミド樹脂からなるバインダで結合されていると、金属イオンの吸蔵放出により活物質の体積が変化したとしても、電極部30を集電板20から剥離しにくくすることができる。
ポリイミド樹脂は、耐熱性があり、強度がある化合物である。そのため、活物質がポリイミド樹脂からなるバインダで結合されていると、金属イオンの吸蔵放出により活物質の体積が変化したとしても、電極部30を集電板20から剥離しにくくすることができる。
電極部30における活物質と、バインダとの重量割合は、活物質:バインダ=70:30~90:10であることが望ましい。
また、電極部30のバインダには、導電助剤が含まれていてもよい。
導電助剤の材料は、特に限定されないが、カーボンブラック、炭素繊維、カーボンナノチューブ等を挙げることができる。これらの中では、カーボンブラックからなることが望ましい。
バインダが導電助剤を含有していると、蓄電デバイス用電極10の導電性を高くすることができる。そのため、効率よく集電することができる。
特に、カーボンブラックは、少量で導電性を確保することができる。そのため、カーボンブラックが導電助剤であると、蓄電デバイス用電極10の導電性をより向上させることができる。
導電助剤の材料は、特に限定されないが、カーボンブラック、炭素繊維、カーボンナノチューブ等を挙げることができる。これらの中では、カーボンブラックからなることが望ましい。
バインダが導電助剤を含有していると、蓄電デバイス用電極10の導電性を高くすることができる。そのため、効率よく集電することができる。
特に、カーボンブラックは、少量で導電性を確保することができる。そのため、カーボンブラックが導電助剤であると、蓄電デバイス用電極10の導電性をより向上させることができる。
導電助剤がカーボンブラックからなる場合、その平均粒子径は、3~500nmであることが望ましい。
電極部30において、バインダに占める導電助剤の重量割合は、20~50%であることが望ましい。
電極部30において、バインダに占める導電助剤の重量割合は、20~50%であることが望ましい。
蓄電デバイス用電極10において、電極部30の厚さは、特に限定されないが、5~50μmであることが望ましい。
電極部の厚さが5μm未満であると、集電板に比べて活物質の量が少なくなるので電気容量が低下しやすくなる。
電極部の厚さが50μmを超えると、蓄電デバイス用電極を用いて製造された蓄電デバイスのサイズが大きくなる。また、金属イオンが電極部を移動する距離が長くなり、充放電に時間がかかる。
電極部の厚さが5μm未満であると、集電板に比べて活物質の量が少なくなるので電気容量が低下しやすくなる。
電極部の厚さが50μmを超えると、蓄電デバイス用電極を用いて製造された蓄電デバイスのサイズが大きくなる。また、金属イオンが電極部を移動する距離が長くなり、充放電に時間がかかる。
片面の電極部30の面密度は、特に限定されないが、0.1~10mg/cm2であることが望ましい。
本発明の蓄電デバイス用電極は、蓄電デバイスの正極、負極又は電解液に金属イオンをドープするための金属イオン供給極として使用することができる。
次に、本発明の蓄電デバイス用電極の製造方法について説明する。
本発明の蓄電デバイス用電極の製造方法は、本体部と引出部とからなる集電板と、集電板に配置された電極部と、集電板に接続されたリード線とからなる蓄電デバイス用電極の製造方法であって、集電板とリード線とを超音波溶接により接続する超音波接続工程を含む。
また、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されており、電極部は、活物質としてシリコンを含むことを特徴とする。
本発明の蓄電デバイス用電極の製造方法は、本体部と引出部とからなる集電板と、集電板に配置された電極部と、集電板に接続されたリード線とからなる蓄電デバイス用電極の製造方法であって、集電板とリード線とを超音波溶接により接続する超音波接続工程を含む。
また、集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されており、電極部は、活物質としてシリコンを含むことを特徴とする。
このような本発明の蓄電デバイス用電極の製造方法の一例について以下に詳述する。
(1)集電板の作製工程
まず、オーステナイト系ステンレス鋼から形成された金属板を準備する。
次に、金属板を延展加工することにより集電板を作製する。この延展加工により、オーステナイト組織の一部がマルテンサイト組織に変質する。
延展加工は、厚さが元の厚さの60~80%となるよう冷間加工することが望ましい。
このようにして、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成された集電板を作製することができる。
まず、オーステナイト系ステンレス鋼から形成された金属板を準備する。
次に、金属板を延展加工することにより集電板を作製する。この延展加工により、オーステナイト組織の一部がマルテンサイト組織に変質する。
延展加工は、厚さが元の厚さの60~80%となるよう冷間加工することが望ましい。
このようにして、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成された集電板を作製することができる。
(2)活物質スラリーの作製工程
シリコンとバインダとを混合し、活物質スラリーを作製する。
活物質とバインダとの重量割合は、特に限定されないが、活物質:バインダ=70:30~90:10となるように調製することが望ましい。
シリコンとバインダとを混合し、活物質スラリーを作製する。
活物質とバインダとの重量割合は、特に限定されないが、活物質:バインダ=70:30~90:10となるように調製することが望ましい。
バインダとしては、特に限定されず、ポリイミド樹脂前駆体、ポリアミドイミド樹脂前駆体等があげられる。これらの中では、ポリイミド樹脂前駆体が望ましい。
塗工性の観点から、活物質スラリーの粘度は、1~10Pa・sであることが望ましい。なお、スラリーの粘度はB型粘度計を用い、1~10rpmとなる条件で測定する。
活物質とバインダの割合を調整することにより活物質スラリーの粘度を調整することができる。また、必要に応じて増粘剤等により粘度を調整してもよい。
活物質とバインダの割合を調整することにより活物質スラリーの粘度を調整することができる。また、必要に応じて増粘剤等により粘度を調整してもよい。
(3)活物質スラリーの塗工工程
集電板に活物質スラリーを塗工する。
塗工する活物質スラリーの量は、特に限定されないが、加熱乾燥後に0.1~10mg/cm2であることが望ましい。
集電板に活物質スラリーを塗工する。
塗工する活物質スラリーの量は、特に限定されないが、加熱乾燥後に0.1~10mg/cm2であることが望ましい。
(4)プレス加工工程
次に、活物質スラリーが塗工された集電板をプレス加工する。
プレス加工の圧力は、特に限定されないが、活物質が平坦になるように押さえることができれば充分である。
次に、活物質スラリーが塗工された集電板をプレス加工する。
プレス加工の圧力は、特に限定されないが、活物質が平坦になるように押さえることができれば充分である。
(5)加熱工程
次に、活物質スラリーが塗工された集電板を加熱し、活物質スラリーに含まれるバインダを硬化させる。
加熱条件は、使用するバインダの種類に応じて決定することが望ましい。
バインダがポリイミド樹脂前駆体を含む場合、加熱温度は、250~350℃であることが望ましい。また、加熱時の雰囲気は、窒素ガス雰囲気等の不活性雰囲気であることが望ましい。
次に、活物質スラリーが塗工された集電板を加熱し、活物質スラリーに含まれるバインダを硬化させる。
加熱条件は、使用するバインダの種類に応じて決定することが望ましい。
バインダがポリイミド樹脂前駆体を含む場合、加熱温度は、250~350℃であることが望ましい。また、加熱時の雰囲気は、窒素ガス雰囲気等の不活性雰囲気であることが望ましい。
(6)超音波溶接工程
次に、集電板とリード線とを超音波溶接により接続する。
抵抗溶接等、熱により集電板の一部やリード線の一部を溶融させて集電板とリード線とを接続すると、集電板を形成するステンレス鋼が熱により変質してしまう。このような変質が生じると、集電板の機能が低下するという問題がある。
一方、超音波溶接は、熱を発生させずに金属同士を接続することができる方法である。そのため、超音波溶接を用いると、集電板を変質させずに、集電板とリード線とを接続することができる。従って、熱歪みが発生せず引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
なお、集電板とリード線とを超音波溶接により接続する時期は、集電板に活物質を配置する前であってもよい。
次に、集電板とリード線とを超音波溶接により接続する。
抵抗溶接等、熱により集電板の一部やリード線の一部を溶融させて集電板とリード線とを接続すると、集電板を形成するステンレス鋼が熱により変質してしまう。このような変質が生じると、集電板の機能が低下するという問題がある。
一方、超音波溶接は、熱を発生させずに金属同士を接続することができる方法である。そのため、超音波溶接を用いると、集電板を変質させずに、集電板とリード線とを接続することができる。従って、熱歪みが発生せず引出部の強度が充分に強くなり、集電板の機能も低下しにくくなる。
なお、集電板とリード線とを超音波溶接により接続する時期は、集電板に活物質を配置する前であってもよい。
なお、超音波溶接は、例えば、超音波溶接機(日本エマソン株式会社ブランソン事業本部製2000Xea40:0.8型)を用い、出力:100~500W、溶接時間:50~500ミリ秒、超音波ホーンの圧力:5~25MPaの条件で行うことができる。
なお、リード線の望ましい構成は、既に説明しているのでここでの説明は省略する。
次に、本発明の蓄電デバイス用電極を用いた蓄電デバイスについて説明する。
なお、本発明の蓄電デバイス用電極が用いられた蓄電デバイスは、本発明の蓄電デバイスでもある。
なお、本発明の蓄電デバイス用電極が用いられた蓄電デバイスは、本発明の蓄電デバイスでもある。
本発明の蓄電デバイスは、
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極、上記負極及び上記セパレータを収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極又は負極が、上記本発明の蓄電デバイス用電極であってもよい。
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極、上記負極及び上記セパレータを収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極又は負極が、上記本発明の蓄電デバイス用電極であってもよい。
本発明の蓄電デバイスにおいて、上記本発明の蓄電デバイス用電極のリード線は、他の電極と接続する為に用いられていてもよく、他の電気部品と接続する為に用いられていてもよい。
なお、上記本発明の蓄電デバイスでは、負極が本発明の蓄電デバイス用電極であることが望ましい。
以下、負極が本発明の蓄電デバイス用電極である本発明の蓄電デバイスについて説明する。
負極は、上記本発明の蓄電デバイス用電極である。
すなわち、負極は、本体部と引出部とからなる集電板と、
集電板の本体部に配置された電極部と、
集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、
引出部及び本体部は、同質のステンレス鋼により形成されており、
ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、
電極部は、活物質としてシリコンを含む。
なお、以下の説明において、本発明の蓄電デバイス用電極の集電板及びシリコンを、ぞれぞれ、負極集電板及び負極活物質とも記載する。
以下、負極が本発明の蓄電デバイス用電極である本発明の蓄電デバイスについて説明する。
負極は、上記本発明の蓄電デバイス用電極である。
すなわち、負極は、本体部と引出部とからなる集電板と、
集電板の本体部に配置された電極部と、
集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、
引出部及び本体部は、同質のステンレス鋼により形成されており、
ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、
電極部は、活物質としてシリコンを含む。
なお、以下の説明において、本発明の蓄電デバイス用電極の集電板及びシリコンを、ぞれぞれ、負極集電板及び負極活物質とも記載する。
本発明の蓄電デバイス用電極では、正極は、正極集電板と、正極集電板に備えられた正極活物質とから構成されていることが望ましい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが望ましい。
正極活物質は、特に限定されないが、LiMnO2、LixMn2O4(0<x<2)、Li2MnO3、LixMn1.5Ni0.5O4(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO2、LiNiO2又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3O2などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO4等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδO2(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδO2(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が望ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが望ましい。
正極活物質は、特に限定されないが、LiMnO2、LixMn2O4(0<x<2)、Li2MnO3、LixMn1.5Ni0.5O4(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO2、LiNiO2又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3O2などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO4等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδO2(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδO2(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が望ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記本発明の蓄電デバイスにおいて、セパレータは、特に限定されないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることもできる。
上記本発明の蓄電デバイスにおいて、電解液は、特に限定されないが、溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
金属塩としては、特に限定されないが、リチウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等を用いることができる。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9CO3、LiC(CF3SO2)2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9CO3、LiC(CF3SO2)2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
電解液の電解質濃度は、特に限定されないが、0.5~1.5mol/Lであることが望ましい。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
このような態様の本発明の蓄電デバイスを製造する方法の一例について説明する。
まず、負極活物質が配置された負極集電板を準備し、正極活物質が配置された正極集電板を準備し、セパレータを準備する。
まず、負極活物質が配置された負極集電板を準備し、正極活物質が配置された正極集電板を準備し、セパレータを準備する。
そして、負極集電板と正極集電板とが接触しないように、負極集電板と正極集電板との間にセパレータを挟んで負極集電板と正極集電板とを積層し積層体とする。この際、各負極集電板の引出部が積層体からはみ出るよう配置する。
次に、負極集電板の引出部を、超音波溶接によりリード線と接続する。超音波溶接で接続するので、引出部は熱により変質せず、一様な組織のままである。
負極集電板は、マルテンサイト組織を有するオーステナイト系ステンレス鋼からなり、超音波溶接により、リード線と接続する部分を変質させることなく互いを接続することができる。
また、正極集電板もリード線と電気的に接続されるようにする。正極集電板とリード線とを電気的に接続する方法は特に限定されず、例えば、抵抗溶接、超音波溶接により接続させてもよい。
負極集電板は、マルテンサイト組織を有するオーステナイト系ステンレス鋼からなり、超音波溶接により、リード線と接続する部分を変質させることなく互いを接続することができる。
また、正極集電板もリード線と電気的に接続されるようにする。正極集電板とリード線とを電気的に接続する方法は特に限定されず、例えば、抵抗溶接、超音波溶接により接続させてもよい。
次に、積層体を蓄電パッケージに収納して、電解質を溶解した電解液とともに封入することで本発明の蓄電デバイスを製造することができる。
次に、本発明の蓄電デバイスの別の態様について説明する。
本発明の蓄電デバイスは、
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極及び/又は上記負極に金属イオンをドープするための金属イオン供給極と、
上記正極、上記負極、上記セパレータ及び上記金属イオン供給極を収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極、負極又は金属イオン供給極が、上記本発明の蓄電デバイス用電極であってもよい。
正極と、
負極と、
上記正極と上記負極とを分離するセパレータと、
上記正極及び/又は上記負極に金属イオンをドープするための金属イオン供給極と、
上記正極、上記負極、上記セパレータ及び上記金属イオン供給極を収容する蓄電パッケージと、
上記蓄電パッケージに封入された電解液とから構成されており、
正極、負極又は金属イオン供給極が、上記本発明の蓄電デバイス用電極であってもよい。
以下、本発明の蓄電デバイス用電極が、金属イオン供給極として用いられる場合について説明する。
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイス用電極に金属イオンをドープする必要がある。
まず、本発明の蓄電デバイス用電極に金属イオンをドープする方法について説明する。
まず、本発明の蓄電デバイス用電極に金属イオンをドープする方法について説明する。
(1)有機電解液塗布工程
まず、本発明の蓄電デバイス用電極における集電板の電極部に有機電解液を塗布する。
有機電解液は、特に限定されないが、有機溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
なお、金属イオン源としてリチウムを用いる場合、有機電解液は、リチウムイオン導電性を有することが望ましい。
(2)加熱工程
次に、有機電解液が塗布された、電極部と金属イオン源とを接触させて、加熱することにより金属イオンをドープする。
金属イオン源としては、特に限定されないが、リチウム、ナトリウム、マグネシウム、カルシウム等があげられる。これらの中では、リチウムであることが望ましい。
加熱の条件は、特に限定されないが、250~300℃、10~120分間加熱することが望ましい。
まず、本発明の蓄電デバイス用電極における集電板の電極部に有機電解液を塗布する。
有機電解液は、特に限定されないが、有機溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
なお、金属イオン源としてリチウムを用いる場合、有機電解液は、リチウムイオン導電性を有することが望ましい。
(2)加熱工程
次に、有機電解液が塗布された、電極部と金属イオン源とを接触させて、加熱することにより金属イオンをドープする。
金属イオン源としては、特に限定されないが、リチウム、ナトリウム、マグネシウム、カルシウム等があげられる。これらの中では、リチウムであることが望ましい。
加熱の条件は、特に限定されないが、250~300℃、10~120分間加熱することが望ましい。
(3)乾燥工程
ドープ後の蓄電デバイス用電極を溶媒で洗浄し自然乾燥させることによりドープが完了する。溶媒としてはDMC(ジメチルカーボネート)などが好適に利用できる。
ドープ後の蓄電デバイス用電極を溶媒で洗浄し自然乾燥させることによりドープが完了する。溶媒としてはDMC(ジメチルカーボネート)などが好適に利用できる。
なお、ドープの方法はこのような金属イオン源に接触させる方法に限定されず、他の方法も利用できる。例えば、金属イオン源と蓄電デバイス用電極とをそれぞれ外部回路につなぎ、電気的にドープすることもできる。
また、本発明の蓄電デバイス用電極は、集電板の引出部とリード線とが超音波溶接により接続されることにより製造されるが、ドープは、超音波溶接の前に行ってもよく、超音波溶接の後に行ってもよい。
また、本発明の蓄電デバイス用電極は、集電板の引出部とリード線とが超音波溶接により接続されることにより製造されるが、ドープは、超音波溶接の前に行ってもよく、超音波溶接の後に行ってもよい。
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイスにおける正極は、以下の構成であることが望ましい。
すなわち、正極は、正極集電板と、正極集電板に備えられた正極活物質とから構成されていることが望ましい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが望ましい。
正極活物質は、特に限定されないが、LiMnO2、LixMn2O4(0<x<2)、Li2MnO3、LixMn1.5Ni0.5O4(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO2、LiNiO2又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3O2などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO4等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδO2(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδO2(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が望ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
すなわち、正極は、正極集電板と、正極集電板に備えられた正極活物質とから構成されていることが望ましい。
正極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが望ましい。
正極活物質は、特に限定されないが、LiMnO2、LixMn2O4(0<x<2)、Li2MnO3、LixMn1.5Ni0.5O4(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO2、LiNiO2又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3O2などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO4等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδO2(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδO2(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が望ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、本発明の蓄電デバイスにおける負極は、以下の構成であることが望ましい。
すなわち、負極は、負極集電板と、負極集電板に備えられた電極部とからなり、電極部には負極活物質が含まれていることが望ましい。
負極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金等からなることが望ましい。
負極活物質は、特に限定されないが、シリコン、一酸化ケイ素、二酸化ケイ素、炭素等からなることが望ましい。
すなわち、負極は、負極集電板と、負極集電板に備えられた電極部とからなり、電極部には負極活物質が含まれていることが望ましい。
負極集電板は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金等からなることが望ましい。
負極活物質は、特に限定されないが、シリコン、一酸化ケイ素、二酸化ケイ素、炭素等からなることが望ましい。
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、上記本発明の蓄電デバイスにおいて、セパレータは、特に限定されないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることもできる。
本発明の蓄電デバイス用電極を金属イオン供給極として用いる場合、上記本発明の蓄電デバイスにおいて、電解液は、特に限定されないが、溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
金属塩としては、特に限定されないが、リチウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等を用いることができる。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9CO3、LiC(CF3SO2)2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9CO3、LiC(CF3SO2)2、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
電解液の電解質濃度は、特に限定されないが、0.5~1.5mol/Lであることが望ましい。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
電解質濃度が0.5mol/L未満であれば、電解液の電気伝導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
このような態様の本発明の蓄電デバイスを製造する方法の一例について説明する。
まず、正極、負極及びセパレータを準備する。
次に、正極と負極とが接触しないように正極と負極との間にセパレータを挟み、正極と負極とを積層し積層体とする。
これとは別に、金属イオンがドープされた本発明の蓄電デバイス用電極、すなわち金属イオン供給極を準備する。金属イオン供給極の引出部は、あらかじめニッケルメッキ銅からなるリード線と超音波溶接により接続されている。
まず、正極、負極及びセパレータを準備する。
次に、正極と負極とが接触しないように正極と負極との間にセパレータを挟み、正極と負極とを積層し積層体とする。
これとは別に、金属イオンがドープされた本発明の蓄電デバイス用電極、すなわち金属イオン供給極を準備する。金属イオン供給極の引出部は、あらかじめニッケルメッキ銅からなるリード線と超音波溶接により接続されている。
次に、金属イオン供給極を積層体の外側に配置し、これらを、蓄電パッケージに収納し、電解質を溶解した電解液とともに封入することで本発明の蓄電デバイスを製造することができる。
また、金属イオン供給極と正極又は負極とを外部回路でつなぐことにより、充放電に必要な金属イオンを正極又は負極に供給することができる。
また、金属イオン供給極と正極又は負極とを外部回路でつなぐことにより、充放電に必要な金属イオンを正極又は負極に供給することができる。
本発明の蓄電デバイス用電極は、蓄電デバイスの正極、負極、又は、金属イオンをドープするため金属イオン供給極として好適に用いることができる。
10 蓄電デバイス用電極
20 集電板
21 引出部
22 本体部
26 マルテンサイト組織
27 オーステナイト組織
30 電極部
40 リード線
20 集電板
21 引出部
22 本体部
26 マルテンサイト組織
27 オーステナイト組織
30 電極部
40 リード線
Claims (9)
- 本体部と引出部とからなる集電板と、
前記集電板の本体部に配置された電極部と、
前記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極であって、
前記引出部及び前記本体部は、同質のステンレス鋼により形成されており、
前記ステンレス鋼は、マルテンサイト組織を含むオーステナイト系ステンレス鋼であり、
前記電極部は、活物質としてシリコンを含むことを特徴とする蓄電デバイス用電極。 - 前記集電板を厚さ方向に沿って切断する断面において、マルテンサイト組織が、オーステナイト組織の中に島状に点在している請求項1に記載の蓄電デバイス用電極。
- 前記リード線は、前記集電板より弾性率が小さい請求項1又は2に記載の蓄電デバイス用電極。
- 前記リード線は、ニッケル、銅、アルミニウム及び黄銅からなる群から選択される少なくとも1種からなる請求項1~3のいずれかに記載の蓄電デバイス用電極。
- 前記リード線は、ニッケル、金、銀、亜鉛及びクロムからなる群から選択される少なくとも1種によりめっきされている請求項1~4のいずれかに記載の蓄電デバイス用電極。
- 前記活物質は、シリコンのみからなる請求項1~5のいずれかに記載の蓄電デバイス用電極。
- 前記蓄電デバイス用電極は、電解液に金属イオンを供給する金属イオン供給極である請求項1~6のいずれかに記載の蓄電デバイス用電極。
- 請求項1~7のいずれかに記載の蓄電デバイス用電極を備えることを特徴とする蓄電デバイス。
- 本体部と引出部とからなる集電板と、
前記集電板の本体部に配置された電極部と、
前記集電板の引出部に接続されたリード線とからなる蓄電デバイス用電極の製造方法であって、
前記引出部と前記リード線とを超音波溶接により接続する超音波接続工程を含み、
前記集電板は、マルテンサイト組織を含むオーステナイト系ステンレス鋼から形成されており、
前記電極部は、活物質としてシリコンを含むことを特徴とする蓄電デバイス用電極の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880061165.6A CN111133612B (zh) | 2017-10-05 | 2018-09-14 | 蓄电器件用电极、蓄电器件和蓄电器件用电极的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-195156 | 2017-10-05 | ||
JP2017195156A JP6982454B2 (ja) | 2017-10-05 | 2017-10-05 | 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019069664A1 true WO2019069664A1 (ja) | 2019-04-11 |
Family
ID=65994894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/034196 WO2019069664A1 (ja) | 2017-10-05 | 2018-09-14 | 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6982454B2 (ja) |
CN (1) | CN111133612B (ja) |
WO (1) | WO2019069664A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102449028B1 (ko) * | 2022-05-31 | 2022-09-29 | 에이에프더블류 주식회사 | 퓨징 리드탭 제조방법 및 이에 의해 제조된 퓨징 리드탭 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255814A (ja) * | 1992-03-13 | 1993-10-05 | Nippon Steel Corp | 制振性に優れたステンレス鋼薄板とその製造方法 |
JP2008034356A (ja) * | 2006-07-06 | 2008-02-14 | Enax Inc | シート状二次電池及びその製造方法 |
JP2013051113A (ja) * | 2011-08-31 | 2013-03-14 | Nisshin Steel Co Ltd | 銅被覆鋼箔集合体および通電部材 |
JP2013101919A (ja) * | 2011-10-14 | 2013-05-23 | National Institute Of Advanced Industrial & Technology | 蓄電デバイス用集電体材料およびその製造方法、蓄電デバイス用電極、ならびに、蓄電デバイス |
JP2015222419A (ja) * | 2014-04-28 | 2015-12-10 | キヤノン株式会社 | 金属基材、定着部材及び熱定着装置 |
WO2017082153A1 (ja) * | 2015-11-13 | 2017-05-18 | 日立オートモティブシステムズ株式会社 | リチウムイオン二次電池 |
WO2017104028A1 (ja) * | 2015-12-16 | 2017-06-22 | 株式会社 東芝 | 非水電解質電池及び電池パック |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4844550B2 (ja) * | 2007-12-07 | 2011-12-28 | 宇部興産株式会社 | 非水二次電池 |
JP5091732B2 (ja) * | 2008-03-17 | 2012-12-05 | 日新製鋼株式会社 | 耐へたり性および曲げ性に優れた低Niばね用ステンレス鋼 |
JP2014212029A (ja) * | 2013-04-18 | 2014-11-13 | Jsr株式会社 | 蓄電デバイス用電極および蓄電デバイス |
-
2017
- 2017-10-05 JP JP2017195156A patent/JP6982454B2/ja active Active
-
2018
- 2018-09-14 WO PCT/JP2018/034196 patent/WO2019069664A1/ja active Application Filing
- 2018-09-14 CN CN201880061165.6A patent/CN111133612B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255814A (ja) * | 1992-03-13 | 1993-10-05 | Nippon Steel Corp | 制振性に優れたステンレス鋼薄板とその製造方法 |
JP2008034356A (ja) * | 2006-07-06 | 2008-02-14 | Enax Inc | シート状二次電池及びその製造方法 |
JP2013051113A (ja) * | 2011-08-31 | 2013-03-14 | Nisshin Steel Co Ltd | 銅被覆鋼箔集合体および通電部材 |
JP2013101919A (ja) * | 2011-10-14 | 2013-05-23 | National Institute Of Advanced Industrial & Technology | 蓄電デバイス用集電体材料およびその製造方法、蓄電デバイス用電極、ならびに、蓄電デバイス |
JP2015222419A (ja) * | 2014-04-28 | 2015-12-10 | キヤノン株式会社 | 金属基材、定着部材及び熱定着装置 |
WO2017082153A1 (ja) * | 2015-11-13 | 2017-05-18 | 日立オートモティブシステムズ株式会社 | リチウムイオン二次電池 |
WO2017104028A1 (ja) * | 2015-12-16 | 2017-06-22 | 株式会社 東芝 | 非水電解質電池及び電池パック |
Also Published As
Publication number | Publication date |
---|---|
CN111133612A (zh) | 2020-05-08 |
JP2019067730A (ja) | 2019-04-25 |
CN111133612B (zh) | 2023-05-09 |
JP6982454B2 (ja) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5954674B2 (ja) | 電池および電池の製造方法 | |
JP5512057B2 (ja) | 円筒型電池 | |
US11769883B2 (en) | Electrode plate and electrochemical device | |
CN111108634B (zh) | 蓄电器件用电极和蓄电器件 | |
JP6773069B2 (ja) | 二次電池及びその製造方法 | |
JP6768398B2 (ja) | 蓄電デバイス用電極、蓄電デバイス、空気電池及び全固体電池 | |
US20140020242A1 (en) | Method for fabricating a nonaqueous electrolyte secondary battery | |
JP5207282B2 (ja) | リチウム二次電池 | |
US9559362B2 (en) | Nonaqueous electrolyte secondary battery and method for manufacturing the same | |
JP6744216B2 (ja) | リチウムイオン電池の負極の製造方法、並びにリチウムイオン電池の製造方法 | |
WO2019069664A1 (ja) | 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 | |
JP6982447B2 (ja) | 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法 | |
JP2019160724A (ja) | 負極及びリチウムイオン二次電池 | |
JP7332418B2 (ja) | リチウムイオン二次電池、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池の容量回復方法 | |
CN111146444B (zh) | 蓄电器件用电极、蓄电器件、空气电池和全固态电池 | |
JP2007165293A (ja) | リチウムイオン二次電池負極およびその製造方法ならびにリチウムイオン二次電池 | |
JP6961939B2 (ja) | 非水電解質二次電池用負極剤、非水電解質二次電池用負極及び非水電解質二次電池 | |
JP6128228B2 (ja) | 負極活物質、それを用いた負極、及びリチウムイオン二次電池 | |
WO2011070710A1 (ja) | 非水電解質二次電池 | |
JP2017183047A (ja) | リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864922 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18864922 Country of ref document: EP Kind code of ref document: A1 |