WO2019066515A2 - 산화철로 기능화된 산화그래핀 제조방법 - Google Patents

산화철로 기능화된 산화그래핀 제조방법 Download PDF

Info

Publication number
WO2019066515A2
WO2019066515A2 PCT/KR2018/011477 KR2018011477W WO2019066515A2 WO 2019066515 A2 WO2019066515 A2 WO 2019066515A2 KR 2018011477 W KR2018011477 W KR 2018011477W WO 2019066515 A2 WO2019066515 A2 WO 2019066515A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
oxide
fecl
functionalized
iron oxide
Prior art date
Application number
PCT/KR2018/011477
Other languages
English (en)
French (fr)
Other versions
WO2019066515A3 (ko
Inventor
양우석
윤여준
원동관
Original Assignee
전자부품연구원
해성디에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 해성디에스 주식회사 filed Critical 전자부품연구원
Publication of WO2019066515A2 publication Critical patent/WO2019066515A2/ko
Publication of WO2019066515A3 publication Critical patent/WO2019066515A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1843Concentric tube
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the present invention relates to a method of producing graphene oxide functionalized with iron oxide, and more particularly to a method of producing graphene oxide which is functionalized with iron oxide, in which a uniform and large amount of iron oxide is generated on the surface, .
  • Graphite has a structure in which graphenes, which are plate-like two-dimensional sheets in which carbon atoms are formed into hexagonal shapes, are laminated. Graphite is excellent in electrical conductivity and thermal conductivity, and has an advantage of high mechanical strength, high elasticity and high transparency. It is also useful as an energy storage material such as a secondary battery, a fuel cell, a supercapacitor, a filter film, a chemical detector, And can be used in a variety of applications.
  • Oxidized graphene is a material in which graphene is oxidized.
  • Oxidized graphite oxide can be obtained by oxidizing graphite with a strong acid and an oxidizing agent, and graphene oxide can be obtained by peeling the oxidized graphite.
  • Oxidized graphene has a property different from that of graphene because it exists in the form of binding of hydroxyl group, epoxy group and carboxyl group on the surface.
  • graphene oxide has a wide specific surface area in its form and has a strong mechanical strength, and thus many studies have been made in various application fields.
  • Graphene has a property of not being easily dispersed in water, but oxidized graphene has a large number of functional groups including oxygen, so that it is well dispersed in water and exhibits good performance for cation adsorption. Further, when the transition metal such as iron oxide is functionalized in the form of metal oxide on the surface of the graphene oxide, the adsorption performance is further improved.
  • the present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a method of manufacturing graphene oxide which is functionalized with iron oxide, in which a uniform and large amount of iron oxide is generated on the surface, .
  • a method of manufacturing oxide-graphene functionalized with iron oxide comprising the steps of: forming an outer cylinder and an inner cylinder having the same center and different radii, A first step of injecting graphene oxide, FeCl 2 .4H 2 O, and FeCl 3 .6H 2 O into a Kuett-Taylor reactor; And a second step of introducing an aqueous ammonia solution.
  • the method for preparing oxidized graphene functionalized with iron oxide according to the present invention may further include a step of ultrasonically irradiating oxidized graphene before the first step.
  • FeCl 2 .4H 2 O can be introduced in the form of a mixture with HCl.
  • FeCl 3 .6H 2 O can be added in the form of a mixture with deionized water.
  • the second step can be carried out until the pH inside the Kuett-Taylor reactor becomes 9 or more.
  • the method for producing oxidized graphene functionalized with iron oxide according to the present invention may further comprise, after the second step, filtration and washing.
  • the method for producing oxidized graphene functionalized with iron oxide according to the present invention may further include a drying step after the filtration and washing step to obtain oxidized graphene functionalized with powdered iron oxide.
  • a large amount of functionalized iron oxide can be obtained on the surface of oxidized graphene, and iron oxide layer can be uniformly formed, and high quality oxidized graphene having excellent anion adsorption performance such as heavy metals can be produced.
  • FIG. 1 is a view showing a Kuett-Taylor reactor used in a method for producing an oxide graphene according to an embodiment of the present invention.
  • Figure 2 is a schematic view of fluid flow in the Kuett-Taylor reactor of Figure 1;
  • FIG. 3 is a graph showing that the surface of oxidized graphene produced by the oxidized graphene functionalized graphene fabrication method according to an embodiment of the present invention is iron oxide-functionalized.
  • FIG. 4 is a flowchart of a method for manufacturing oxidized graphene functionalized with iron oxide according to an embodiment of the present invention.
  • FIG. 5 is a TEM image of oxidized graphene produced by a method of manufacturing oxidized graphene functionalized with iron oxide according to an embodiment of the present invention
  • FIG. 6 is a TEM image of oxidized graphene produced by a conventional batch method .
  • FIG. 7 is a view showing an XRD pattern of the graphene oxide produced by the method of manufacturing oxidized graphene functionalized with iron oxide according to an embodiment of the present invention.
  • FIG. 1 is a view showing a Kuett-Taylor reactor used in a method of manufacturing an oxide graphene according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a fluid flow in the Kuett- FIG.
  • graphene, FeCl 2 .4H 2 O, and FeCl 3 are added to a Kuett-Taylor reactor, which includes an outer cylinder and an inner cylinder having the same center and different radii, 6H 2 O;
  • a second step of introducing an aqueous ammonia solution wherein the oxidized graphene functionalized graphene oxide is prepared according to the method of manufacturing oxidized graphene functionalized with iron oxide.
  • FIG. 1 is a cross-sectional view of an internal combustion engine according to the present invention.
  • FIG. 1 is a cross-sectional view of an internal combustion engine according to the present invention.
  • the Et-Taylor reactor 100 is shown.
  • the Couette-Taylor reactor 100 is a device using a spiral vortex called the Taylor vortex 116.
  • This spiral vortex imparts shear stress to the two-dimensional material having a layered structure such as oxidized graphene, which stresses parallel to each layer of the two-dimensional material having the layered structure, It makes it.
  • Each layer of the two-dimensional material having a layered structure can easily react because the reactive material can easily permeate through the gap of the oxide graphene.
  • FIG. 3 is a graph showing that the surface of oxidized graphene produced by the oxidized graphene functionalized graphene fabrication method according to an embodiment of the present invention is iron oxide-functionalized.
  • functional groups such as a hydroxyl group, an epoxy group and a carboxyl group are present, and iron oxide (Fe 3 O 4 ) is formed according to the following reaction formula due to the addition of an aqueous ammonia solution.
  • FIG. 4 is a flowchart of a method for manufacturing oxidized graphene functionalized with iron oxide according to an embodiment of the present invention.
  • graphene oxide and FeCl 2 .4H 2 O and FeCl 3 .6H 2 O are first added to the CuTe-Taylor reactor, and the oxidized graphene can be put in the state of ultrasonic irradiation have. That is, graphene oxide and deionized water may be added to the flask and mixed, irradiated with ultrasonic waves for a predetermined time, stirred, and then introduced into a Cu-Taylor reactor.
  • FeCl 2 .4H 2 O may be introduced in the form of a mixture with HCl
  • FeCl 3 .6H 2 O may be introduced in the form of a mixture with deionized water (S210).
  • S210 deionized water
  • the aqueous ammonia solution is not immediately added but stirred for a predetermined period of time for uniform mixing.
  • an aqueous ammonia solution (S220) is Ku eth- the pH inside the Taylor reactor is more than 9 can be carried out until the iron oxide (Fe 3 O 4) is formed.
  • the aqueous ammonia solution is added, it is likewise stirred for a predetermined time, and then filtered and washed (S230). Washing can be carried out using deionized water or a washing solution such as ethanol.
  • a further drying step for example in vacuum, may be performed to obtain oxidized graphene functionalized with iron oxide in powder form.
  • test examples of the present invention will be described. However, the following test examples do not limit the present invention.
  • oxidized graphene and 100 ml of deionized water are added to the flask, and ultrasonic irradiation is performed for 60 minutes.
  • 0.2 g of FeCl 2 .4H 2 O is mixed with 5 ml of 0.5 M HCl and 0.8437 ml of HCl (36%) is dissolved in deionized water to prepare 10 ml.
  • 0.54 g of FeCl 3 .6H 2 O is mixed with 10 ml of deionized water and put into a Kuett-Taylor reactor. The Kuett-Taylor reactor was stirred for 15 minutes.
  • FIG. 5 is a TEM image of oxidized graphene functionalized with iron oxide obtained by the embodiment
  • FIG. 6 is a TEM image of oxidized graphene produced by the method of the comparative example. Referring to FIG. 5, it can be seen that the iron oxide formed on the surface of the graphene oxide is uniformly distributed. Referring to FIG. 6, it can be seen that the iron oxide generated by the conventional batch method partially obscures the surface of the oxide graphene.
  • FIG. 7 is a view showing an XRD pattern of the graphene oxide produced by the method of manufacturing oxidized graphene functionalized with iron oxide according to an embodiment of the present invention. Referring to FIG. 5, it is confirmed that Fe 3 O 4 , which is a metal oxide, adheres to the surface of the graphene oxide, and the analysis results of the components of FIG. 7 support this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Iron (AREA)

Abstract

표면에 균일하고 다량의 산화철이 생성되어 우수한 특성의 산화그래핀을 얻을 수 있는 산화철로 기능화된 산화그래핀 제조방법이 제안된다. 본 산화철로 기능화된 산화그래핀 제조방법은 중심이 동일하고 반경은 상이한 외부원통 및 내부원통을 포함하여, 내부원통의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기에, 산화그래핀, FeCl2·4H2O 및 FeCl3·6H2O를 투입하는 제1단계; 및 암모니아 수용액을 투입하는 제2단계;를 포함한다.

Description

산화철로 기능화된 산화그래핀 제조방법
본 발명은 산화철로 기능화된 산화그래핀 제조방법에 관한 것으로, 보다 상세하게는 표면에 균일하고 다량의 산화철이 생성되어 우수한 특성의 산화그래핀을 얻을 수 있는 산화철로 기능화된 산화그래핀 제조방법에 관한 것이다.
그라파이트(graphite)는 탄소 원자가 6각형 모양으로 형성된 판상의 2차원 시트인 그래핀이 적층된 구조를 갖는다. 그라파이트는 전기 전도성 및 열전도성이 매우 뛰어나 기계적 강도가 우수하고 탄성이 높으며 투명도가 높다는 장점 등이 있는 바, 2차 전지, 연료 전지, 슈퍼 캐패시터와 같은 에너지 저장소재, 여과막, 화학검출기, 투명전극 등과 같은 다양한 응용분야에서 사용될 수 있다.
산화그래핀은 그래핀을 산화시킨 물질로서, 그라파이트를 강산과 산화제로 산화시켜 산화 그라파이트(graphite oxide)를 얻을 수 있고, 산화그라파이트를 박리시켜 산화그래핀(graphene oxide)을 얻을 수 있다.
산화그래핀은 표면에 수산기와 에폭시기, 카르복시기가 결합한 형태로 존재하기 때문에 그래핀 고유의 성질과는 다른 성질을 가지게 된다. 또한, 산화그래핀은 그 형태로도 넓은 비표면적을 가지고 강한 기계적 강도를 가지기 때문에 다양한 응용 분야에서 많은 연구가 되고 있다. 그래핀은 물에 쉽게 분산되지 않는 성질을 가졌으나 산화그래핀은 산소가 포함된 작용기가 많아 물에 잘 분산될 뿐만 아니라 양이온 흡착에 대해 좋은 성능을 보인다. 아울러, 산화그래핀의 표면에 산화철과 같이 전이금속을 금속산화물 형태로 기능화하면 더욱 흡착성능이 우수해진다.
산화그래핀의 표면에 산화철과 같은 기능기를 부착시키는 방법으로는 기존 수열합성법 등을 이용할 수 있었는데, 반응기가 회분식이고 반응기 내 완벽한 균일 혼합이 어려워, 대량 생산 및 균일한 기능화가 어려운 문제가 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 표면에 균일하고 다량의 산화철이 생성되어 우수한 특성의 산화그래핀을 얻을 수 있는 산화철로 기능화된 산화그래핀 제조방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 산화철로 기능화된 산화그래핀 제조방법은 중심이 동일하고 반경은 상이한 외부원통 및 내부원통을 포함하여, 내부원통의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기에, 산화그래핀, FeCl2·4H2O 및 FeCl3·6H2O를 투입하는 제1단계; 및 암모니아 수용액을 투입하는 제2단계;를 포함한다.
본 발명에 따른 산화철로 기능화된 산화그래핀 제조방법은 제1단계 전에, 산화그래핀에 초음파 조사하는 단계;를 더 포함할 수 있다.
FeCl2·4H2O는 HCl과의 혼합물의 형태로 투입될 수 있다.
FeCl3·6H2O는 탈이온화수와의 혼합물의 형태로 투입될 수 있다.
제2단계는, 쿠에트-테일러 반응기 내부의 pH가 9이상 될 때까지 수행될 수 있다.
본 발명에 따른 산화철로 기능화된 산화그래핀 제조방법은 제2단계 후에, 여과 및 세척단계;를 더 포함할 수 있다.
또한, 본 발명에 따른 산화철로 기능화된 산화그래핀 제조방법은 여과 및 세척단계 후에, 건조단계;를 더 포함하여, 분말형태의 산화철로 기능화된 산화그래핀을 획득할 수 있다.
본 발명의 다른 측면에 따르면, 중심이 동일하고 반경은 상이한 외부원통 및 내부원통을 포함하여, 내부원통의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기에, 산화그래핀, FeCl2·4H2O 및 FeCl3·6H2O를 투입하는 제1단계; 암모니아 수용액을 투입하는 제2단계;를 수행하여 제조된 산화철로 기능화된 산화그래핀이 제공된다.
본 발명의 실시예들에 따르면, 산화그래핀 표면에 다량의 기능화된 산화철을 얻을 수 있고, 산화철 층이 균일하게 형성되어 중금속 등의 음이온 흡착성능이 우수한 고품질 산화그래핀 제조가 가능한 효과가 있다.
본 발명에 따라 쿠에트-테일러 반응기를 이용하여 산화철로 기능화된 산화그래핀을 제조하는 경우, 대량생산공정 수행이 가능하고, 공정비용의 절감효과가 있고, 공정시간단축으로 인하여 반응물질 및 하-폐수 생산량이 최소화될 수 있어 비용적인 절감 뿐 아니라 환경적으로도 유리한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 산화그래핀 제조방법에 사용되는 쿠에트-테일러 반응기를 도시한 도면이다.
도 2는 도 1의 쿠에트-테일러 반응기에서의 유체흐름을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법에 의해 제조된 산화그래핀의 표면이 산화철 기능화된 것을 도시한 도면이다.
도 4는 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법의 흐름도이다.
도 5는 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법에 의해 제조된 산화그래핀의 TEM 이미지이고, 도 6은 종래의 회분식방법에 의하여 제조된 산화그래핀의 TEM이미지이다.
도 7은 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법에 의해 제조된 산화그래핀의 XRD 패턴을 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 산화그래핀 제조방법에 사용되는 쿠에트-테일러 반응기를 도시한 도면이고, 도 2는 도 1의 쿠에트-테일러 반응기에서의 유체흐름을 개략적으로 도시한 도면이다. 본 발명에서는 중심이 동일하고 반경은 상이한 외부원통 및 내부원통을 포함하여, 내부원통의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기에, 산화그래핀, FeCl2·4H2O 및 FeCl3·6H2O를 투입하는 제1단계; 및 암모니아 수용액을 투입하는 제2단계;를 포함하는 산화철로 기능화된 산화그래핀 제조방법에 따라 산화철로 기능화된 산화그래핀을 제조한다.
도 1에는 본 발명에 따른 산화그래핀 제조방법에 사용되는 중심이 동일하고 반경은 상이한 외부원통(115) 및 내부원통(114)을 포함하여, 내부원통(114) 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기(100)가 도시되어 있다. 쿠에트-테일러(Couette-Taylor) 반응기(100)는 테일러 와류(Taylor vortex)(116)라는 나선형 와류를 사용하는 장비이다.
쿠에트-테일러 반응기(100)에는 중심이 같은 두 개의 원통 사이에 유체가 흐를 때 내부원통(114)이 회전을 하면서 유체에 회전방향으로 흐름이 생기게 된다. 이 때, 원심력과 코리올리힘(Coriolis force)에 의해 내부원통(114) 쪽에 존재하는 유체들이 외부원통(115) 방향으로 나가려는 힘이 생기고, 회전속도가 올라갈수록 점점 불안정하게 되어 축 방향에 따라 규칙적이며 서로 반대 방향으로 회전하는 고리쌍 배열의 와류(116-1, 116-2)가 형성하게 된다(도 2).
이 나선형 와류는 산화그래핀과 같은 층상구조를 갖는 2차원 물질에 전단응력을 주게 되는데, 이 힘은 층상구조를 갖는 2차원 물질의 각 층에 평행하게 응력을 주기 때문에 각 층이 좀더 쉽게 벌어지게 만들어 준다. 산화그래핀의 벌어진 틈 사이로 반응물질이 쉽게 침투할 수 있기 때문에 층상구조를 갖는 2차원 물질의 각 층이 쉽게 반응을 일으킬 수 있게 된다.
쿠에트-테일러 반응기(100)의 입구(111)에 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O가 투입되면, 반응기(100) 내에서 균일한 혼합이 가능하다. 즉, 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O가 투입되면, 내부원통(114)의 회전에 따라 제1와류(116-1)와 상이한 방향으로 흐르는 제2와류(116-2)가 형성되어 테일러 와류(116)가 산화그래핀의 전단에 응력을 부여하게 된다. 이에 따라 산화그래핀의 반응성이 증가되고, 층상구조가 붕괴될 수 있으며, FeCl2·4H2O 및 FeCl3·6H2O과의 균일혼합이 가능해진다.
산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O가 투입의 균일혼합 후에는 암모니아 수용액을 반응기(100)에 투입하여 산화그래핀 표면에 산화철이 부착되도록 한다. 도 3은 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법에 의해 제조된 산화그래핀의 표면이 산화철 기능화된 것을 도시한 도면이다. 도 3을 참조하면, 산화그래핀의 표면에는 수산기와 에폭시기 및 카르복시기 등의 관능기가 존재하고, 이외에 암모니아 수용액의 투입으로 인하여 다음과 같은 반응식에 따라 산화철(Fe3O4)이 생성된다.
[반응식 1]
FeCl2·4H2O + 2FeCl3·6H2O + 8NH4OH = Fe3O4 + 8NH4Cl + 20H2O
도 4는 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법의 흐름도이다. 산화철로 기능화된 산화그래핀 제조방법에서는 먼저 쿠에트-테일러 반응기에 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O를 투입하는데, 산화그래핀은 초음파 조사된 상태로 투입될 수 있다. 즉, 플라스크에 산화그래핀 및 탈이온화수를 투입하여 혼합하고, 소정시간 초음파 조사하고, 교반한 후에 쿠에트-테일러 반응기에 투입할 수 있다.
FeCl2·4H2O는 HCl과의 혼합물의 형태로 투입될 수 있고, FeCl3·6H2O는 탈이온화수와의 혼합물의 형태로 투입될 수 있다(S210). 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O가 투입된 쿠에트-테일러 반응기에는 바로 암모니아 수용액이 투입되는 것이 아니라 균일한 혼합을 위하여 소정시간동안 교반되는 것이 바람직하다. 만약, 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O가 투입된 쿠에트-테일러 반응기에 교반공정없이 바로 암모니아 수용액이 투입된다면 산화그래핀과 FeCl2·4H2O 및 FeCl3·6H2O이 균일하게 혼합되지 않아 산화그래핀 표면에 균일한 산화철 형성이 어렵다.
암모니아 수용액을 투입(S220)하는 단계는 쿠에트-테일러 반응기 내부의 pH가 9이상 되어 산화철(Fe3O4)이 형성될 때까지 수행될 수 있다. 암모니아 수용액이 투입된 후에는 마찬가지로 소정시간동안 교반되고, 이후, 여과 및 세척될 수 있다(S230). 세척은 탈이온화수 또는 에탄올 등의 세척액을 사용하여 수행될 수 있다.
마지막으로 여과 및 세척단계 후에, 예를 들어 진공상태에서의 건조 단계를 더 수행하여 분말형태의 산화철로 기능화된 산화그래핀을 획득할 수 있다.
이하에서는 본 발명의 구체적인 시험예에 대하여 설명하도록 한다. 다만, 하기의 시험예는 본 발명을 한정하지 않는다.
[실시예]
플라스크에 산화그래핀 100mg, 탈이온화수 100 ml를 투입하고 60분간 초음파조사를 수행한다. FeCl2·4H2O 0.2g을 0.5M의 HCl 5ml와 혼합하고, HCl(36%) 0.8437ml를 탈이온화수에 녹여 10ml를 제조하고 투입한다. FeCl3·6H2O 0.54g을 탈이온화수 10ml와 혼합하고 쿠에트-테일러 반응기에 투입한다. 쿠에트-테일러 반응기는 15분간 교반하였다.
이후, 암모니아 수용액 16ml를 투입하여 쿠에트-테일러 반응기 내부의 pH를 9로 조절하고 30분간 교반하였다. 쿠에트-테일러 반응기 내의 용액은 여과되고 탈이온화수 및 에탄올로 세척된 후, 70℃에서 진공건조시켰다.
[비교예]
플라스크에 산화그래핀 100mg, 탈이온화수 100 ml를 투입하고 60분간 초음파조사를 수행하고 교반하였다. FeCl2·4H2O 0.2g을 0.5M의 HCl 5ml와 혼합하고, HCl(36%) 0.8437ml를 탈이온화수에 녹여 10ml를 제조하고 투입한다. FeCl3·6H2O 0.54g을 탈이온화수 10ml와 혼합하고 회분식 반응기 내에 천천히 투입하였다. 질소 분위기에서 15분간 교반하였다.
이후, 암모니아 수용액 16ml를 투입하여 반응기 내부의 pH를 9로 조절하고 45분간 교반하였다. 쿠에트-테일러 반응기 내의 용액은 여과되고 탈이온화수 및 에탄올로 세척된 후, 70℃에서 진공건조시켰다.
도 5는 실시예에 의해 얻은 산화철로 기능화된 산화그래핀의 TEM 이미지이고, 도 6은 비교예의 방법에 의하여 제조된 산화그래핀의 TEM이미지이다. 도 5를 참조하면, 산화그래핀의 표면에 형성된 산화철이 균일하게 분포하고 있음을 알 수 있다. 도 6을 참조하면 종래의 회분식 방식에 의하여 생성된 산화철은 부분적으로 뭉침을 관찰할 수 있어 산화그래핀의 표면을 전체적으로 덮지 않는 것을 알 수 있다.
도 7은 본 발명의 일실시예에 따른 산화철로 기능화된 산화그래핀 제조방법에 의해 제조된 산화그래핀의 XRD 패턴을 도시한 도면이다. 도 5을 참조하면, 산화그래핀의 표면에 금속산화물인 Fe3O4가 부착되어 있음이 확인되고, 도 7의 성분분석결과는 이를 뒷받침하고 있다.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (8)

  1. 중심이 동일하고 반경은 상이한 외부원통 및 내부원통을 포함하여, 상기 내부원통의 회전에 따라 유체를 흐르게 하는 쿠에트-테일러 반응기에, 산화그래핀, FeCl2·4H2O 및 FeCl3·6H2O를 투입하는 제1단계; 및
    암모니아 수용액을 투입하는 제2단계;를 포함하는 산화철로 기능화된 산화그래핀 제조방법.
  2. 청구항 1에 있어서,
    상기 제1단계 전에,
    상기 산화그래핀에 초음파 조사하는 단계;를 더 포함하는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  3. 청구항 1에 있어서,
    상기 FeCl2·4H2O는 HCl과의 혼합물로 투입되는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  4. 청구항 1에 있어서,
    상기 FeCl3·6H2O는 탈이온화수와의 혼합물로 투입되는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  5. 청구항 1에 있어서,
    상기 제2단계는,
    상기 쿠에트-테일러 반응기 내부의 pH가 9이상 될 때까지 수행되는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  6. 청구항 1에 있어서,
    상기 제2단계 후에, 여과 및 세척단계;를 더 포함하는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  7. 청구항 6에 있어서,
    상기 여과 및 세척단계 후에, 건조단계;를 더 포함하여, 분말형태의 산화철로 기능화된 산화그래핀을 획득하는 것을 특징으로 하는 산화철로 기능화된 산화그래핀 제조방법.
  8. 청구항 1의 방법에 따라 제조된 산화철로 기능화된 산화그래핀.
PCT/KR2018/011477 2017-09-28 2018-09-28 산화철로 기능화된 산화그래핀 제조방법 WO2019066515A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0126079 2017-09-28
KR1020170126079A KR20190036774A (ko) 2017-09-28 2017-09-28 산화철로 기능화된 산화그래핀 제조방법

Publications (2)

Publication Number Publication Date
WO2019066515A2 true WO2019066515A2 (ko) 2019-04-04
WO2019066515A3 WO2019066515A3 (ko) 2019-05-31

Family

ID=65902145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011477 WO2019066515A2 (ko) 2017-09-28 2018-09-28 산화철로 기능화된 산화그래핀 제조방법

Country Status (2)

Country Link
KR (1) KR20190036774A (ko)
WO (1) WO2019066515A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850691A (zh) * 2021-01-07 2021-05-28 焦作大学 一种石墨烯改性材料及制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102567757B1 (ko) * 2021-04-19 2023-08-16 공주대학교 산학협력단 면상발열체 제조방법 및 이에 의해 제조된 면상발열체

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437592B1 (ko) * 2012-12-28 2014-09-04 전자부품연구원 수처리용 복합체 멤브레인 및 그 제조방법
KR101437442B1 (ko) * 2013-01-23 2014-09-11 전자부품연구원 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법 및 이를 이용한 멤브레인 제조방법
JP6353075B2 (ja) * 2013-12-31 2018-07-04 カーボン ナノ エンジニアリング システムズ コーポレイション 無煙炭によるグラフェン及び酸化グラフェンの製造方法
KR102310352B1 (ko) * 2015-02-23 2021-10-08 한국전기연구원 쿠에트-테일러 반응기를 이용한 은입자와 탄소나노소재 복합체 제조방법
KR20160127885A (ko) * 2015-04-27 2016-11-07 전자부품연구원 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850691A (zh) * 2021-01-07 2021-05-28 焦作大学 一种石墨烯改性材料及制备方法和应用

Also Published As

Publication number Publication date
WO2019066515A3 (ko) 2019-05-31
KR20190036774A (ko) 2019-04-05

Similar Documents

Publication Publication Date Title
Zhan et al. Facile solvothermal preparation of Fe 3 O 4–Ag nanocomposite with excellent catalytic performance
CN108483613B (zh) 亲水材料掺杂共混膜载纳米零价铁复合材料及其制备方法和应用
Fu et al. Preparation and characterization of Fe 3 O 4@ SiO 2@ TiO 2–Co/rGO magnetic visible light photocatalyst for water treatment
CN104001474A (zh) 一种碳包覆四氧化三铁核壳纳米粒子及其制备方法
WO2019066515A2 (ko) 산화철로 기능화된 산화그래핀 제조방법
CN105457662B (zh) 一种3D花球结构BiOCl-ZnFe2O4复合光催化材料及其制备方法
CN114832784B (zh) 一种磷酸修饰的二氧化硅微球及其制备方法和应用
Feng et al. Novel dual-heterojunction photocatalytic membrane reactor based on Ag2S/NH2-MIL-88B (Fe)/poly (aryl ether nitrile) composite with enhanced photocatalytic performance for wastewater purification
CN104874398A (zh) 一种可回收循环利用的二氧化钛(p25)/石墨烯/四氧化三铁三元光催化材料的制备方法
CN104826600A (zh) 一种磁性高岭土的制备方法
CN105502373A (zh) 一种石墨烯的绿色制备方法
CN110452379B (zh) 一种四氧化三铁/聚苯胺复合材料及制备方法
CN101136278A (zh) 一种磁性流体的制备方法
CN103599806B (zh) 一种用于合成芳香醛化学品的光催化剂及其制备方法
CN103450475A (zh) 核壳结构导电聚苯胺/Co3O4粉末的制备方法
CN111229154A (zh) 一种MgFe2O4/Fe2O3复合物及其制备方法和应用
CN109603760A (zh) 一种吸附盐酸四环素的磁性纳米材料NiFe2O4@ N–C的制备方法
WO2015190888A1 (ko) 중공 금속 나노입자의 제조방법 및 이에 의해 제조된 중공 금속 나노입자
CN106984335B (zh) 一种CdS/GE/Fe2O3复合光催化剂的制备方法
CN111437882A (zh) 一种硅基杂多酸掺杂的磁性复合膜材料的制备方法
CN112138624A (zh) 一种速效水体磁性纳米除磷剂及其制备方法与应用
CN109781807B (zh) 一种用于检测铜离子的生物基离子印迹传感器及其制备方法
CN114984926B (zh) 一种高抗团聚rgo基磁性锂离子印迹聚合物的制备方法
CN107855129B (zh) 一种高性能二硫化钼/氧化石墨烯/氧化铁黄复合催化剂的制备方法及其应用
CN111632595B (zh) 一种柔性氧化石墨烯/AuNRs复合纤维催化剂的制备方法及使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861913

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861913

Country of ref document: EP

Kind code of ref document: A2