WO2019065892A1 - 分離方法及び(メタ)アクリル酸エステルの製造方法 - Google Patents

分離方法及び(メタ)アクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2019065892A1
WO2019065892A1 PCT/JP2018/036064 JP2018036064W WO2019065892A1 WO 2019065892 A1 WO2019065892 A1 WO 2019065892A1 JP 2018036064 W JP2018036064 W JP 2018036064W WO 2019065892 A1 WO2019065892 A1 WO 2019065892A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
liquid
separation
light
heavy
Prior art date
Application number
PCT/JP2018/036064
Other languages
English (en)
French (fr)
Inventor
小川 寧之
匡一 加藤
幸弘 長谷川
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018178727A external-priority patent/JP7087877B2/ja
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP18861524.9A priority Critical patent/EP3689434B1/en
Priority to MYPI2020001444A priority patent/MY194707A/en
Priority to CN201880061109.2A priority patent/CN111107918B/zh
Priority to CA3076323A priority patent/CA3076323A1/en
Priority to RU2020111570A priority patent/RU2753867C1/ru
Publication of WO2019065892A1 publication Critical patent/WO2019065892A1/ja
Priority to US16/820,933 priority patent/US11097209B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to a separation method for efficiently separating a light liquid, a heavy liquid having a higher specific gravity than the light liquid, and a mixed liquid containing an emulsion of the light liquid and the heavy liquid.
  • the invention also relates to a process for the preparation of (meth) acrylic esters using this separation method.
  • a solution b In liquid-liquid extraction, in order to recover or remove valuables and impurities contained in a certain solution a, a solution b is used which forms a two-liquid layer with this solution a, and these are brought into contact in the liquid state to obtain a solution a. It is a method to transfer valuables and impurities in the solution to the solution b side.
  • Liquid-liquid extraction is a purification method widely used in chemical production processes as well as distillation.
  • a common device used for liquid-liquid extraction is the extraction tower.
  • a solution having a relatively large specific gravity (heavy liquid) is supplied from the upper part of the column, and a solution having a relatively low specific gravity (light liquid) is supplied from the lower part of the column.
  • the light liquor is mainly composed of a hydrophobic organic substance, and the heavy liquor is most commonly composed mainly of water.
  • emulsification in which droplets of one liquid are dispersed in the other liquid is likely to occur. Since the specific gravity of the emulsified liquid is between the light liquid and the heavy liquid, it is not discharged from either the top or the bottom of the extraction column, and accumulates in the vicinity of the interface to form an emulsified layer.
  • the emulsion layer makes it difficult to detect the interface, and along with its accumulation, it causes adverse effects such as mixing of the emulsion in a later step. For this reason, various anti-emulsification measures are taken, but even if they are insufficient, continuous or intermittent extraction of the emulsion layer is performed.
  • Patent Document 1 discloses a liquid containing (meth) acrylic acid ester obtained by subjecting (meth) acrylic acid and an alcohol to an esterification reaction in the presence of an acid catalyst. Methods of removing by-products such as neutralized salts, polymers, and sludge by removing the aqueous layer and part of the organic layer near the interface when washing and / or neutralizing the .
  • Patent Document 2 discloses a method of extracting the oil-water mixture at the interface in the stationary tank, leaving it to stand for 2 hours or more and separating oil and water, and then circulating the oil layer to the manufacturing process. It is shown.
  • the interface position in the extraction tower is automatically calculated by measurement of differential pressure or buoyancy based on the specific gravity of heavy liquid and light liquid and the difference in specific gravity between them.
  • the specific gravity of the heavy liquid and the light liquid fluctuates, the calculated interface position has an error corresponding to the fluctuation range of the specific gravity.
  • the present invention has been made in view of the above-mentioned conventional problems, and is characterized by a light liquid, a heavy liquid and an emulsion of the light liquid and the heavy liquid, such as an emulsified layer withdrawal liquid near the interface in the extraction tower.
  • An object of the present invention is to provide a separation method capable of efficiently separating light liquid and heavy liquid from a liquid mixture containing the liquid.
  • Another object of the present invention is to provide a method for producing (meth) acrylic acid ester using this separation method.
  • the present inventors separate heavy liquid and light liquid based on the specific gravity difference of the two liquids, and automatically feed the heavy liquid and the light liquid to the target location. It has been found that by using a separation tank designed to be able to be used, it is possible to significantly reduce the workload of the operator.
  • the present invention has been achieved based on such findings, and the gist of the present invention is as follows.
  • the separation tank comprises Tank body, A chamber provided by dividing the inside of the tank body by standing walls rising from the bottom surface of the tank body, wherein the mixed liquid is introduced, and an interface between the light liquid and the heavy liquid is formed in the room A chamber A, a chamber B in which the light liquid overflows from the chamber A and flows in, and a chamber C in which the heavy liquid flows in from the bottom of the chamber A via an advection tube; And an emulsion liquid extraction portion for extracting the emulsion liquid in the vertical direction in the chamber A, One end of the advection tube opens into the chamber A, and the other end opens into the chamber C, The upper end of the upstanding wall that divides the chamber A and the chamber C is
  • At least one of the chamber B and the chamber C of the separation tank consists of one or more chambers, When at least one of the chamber B and the chamber C of the separation tank is composed of a plurality of chambers, each chamber is divided by a rising wall rising from the bottom surface of the tank body, and an overflow provided on the rising wall.
  • the separation tank has an outflow portion which causes the liquid to flow out from the chamber B and the chamber C so as to maintain the liquid level in the chamber within a predetermined range.
  • the separation tank includes at least one of a heat retention unit for keeping the tank body warm and a heating unit for heating the liquid mixture supplied to the tank body.
  • the mixed liquid is a mixed liquid containing a light liquid withdrawn from the vicinity of the interface of the extraction column, a heavy liquid having a specific gravity greater than that of the light liquid, and an emulsion of the light liquid and the heavy liquid; The separation method according to any one of [8].
  • the separation method of the present invention the light solution and the heavy solution, and the mixed solution containing the light solution and the mixed solution of the light solution and the heavy solution, such as an emulsified layer withdrawal solution near the interface in the extraction tower,
  • the heavy liquor can be separated efficiently, and the separated light liquor and heavy liquor can be automatically fed to the desired location. Therefore, when carrying out the extraction of the emulsion layer deposited in the vicinity of the interface in the extraction column, the separation of the light liquid and heavy liquid accompanying the extraction, and the circulation to the manufacturing process of the drawn liquid, It can be reduced.
  • FIG. 1 is a schematic view showing a production process of (meth) acrylic acid ester.
  • FIG. 2 is a schematic view showing the withdrawal portion of the emulsion layer of the neutralization washing tower (extraction tower) which the washing unit in FIG. 1 has.
  • FIG. 3 is a schematic view showing an embodiment of the separation tank used in the present invention.
  • FIG. 4 is a schematic view showing another embodiment of the separation tank used in the present invention.
  • FIG. 5: is a schematic diagram which shows one form of the tank body with which the separation tank used by this invention is equipped.
  • FIG. 6 is a schematic view showing one form of the tank body for explaining the height of each part when the cylindrical container is installed in an inclined manner as the tank body provided in the separation tank used in the present invention.
  • vertical direction means the direction of gravity (i.e. downward) and its opposite direction (i.e. upward).
  • bottom surface means the surface located at the bottom in the vertical direction.
  • (meth) acrylic means acrylic or methacrylic.
  • a light liquid, a heavy liquid having a specific gravity greater than that of the light liquid, and a mixed liquid containing an emulsion of the light liquid and the heavy liquid are continuously introduced into the separation tank and A method for continuously separating the light liquid and the heavy liquid, characterized in that the separation tank of the present invention described later is used as the separation tank.
  • light liquid, heavy liquid having a higher specific gravity than the light liquid, and a mixed liquid containing an emulsion of the light liquid and the heavy liquid are continuously introduced into the separation tank” means “per unit time Even if there is a difference in the introduction amount of the mixed solution, the state is such that the mixed solution is introduced into a chamber A described later without stopping for one hour or more.
  • the introduction flow rate of the mixed liquid to the separation tank per unit time is 10 kg / hr or more, preferably 20 kg / hr or more, and more preferably 40 kg / hr or more.
  • the time for continuously introducing the mixed solution into the separation tank of the present invention at such an introduction flow rate is at least 12 hours or more, preferably 24 hours or more, and more preferably 36 hours or more.
  • “continuously separate the light and heavy liquids from the mixed liquid” means, from the mixed liquid continuously introduced into the separation tank of the present invention, a chamber A described later according to the amount introduced. It means that the light liquid and heavy liquid flow into the chamber B and the chamber C which will be described later continuously.
  • Emulsification liquid extraction is preferably performed less than once every six hours, preferably less than once a day, and less than once a week from the viewpoint of work load reduction. It is preferred to be done on a frequency basis.
  • the method for producing a (meth) acrylic acid ester of the present invention is characterized by using the separation method of the present invention, and otherwise known steps, that is, for example, the steps shown in FIG. 1 can be adopted.
  • FIG. 1 is a schematic view showing a production process of (meth) acrylic acid ester using (meth) acrylic acid and alcohol as raw materials.
  • the raw material (meth) acrylic acid, raw material alcohol, and acid catalyst are supplied to a reactive distillation section having a reactor and a distillation column, and the reaction product water is discharged from the top of the column to obtain crude (meth) acrylic acid ester from the reactor. (Reactive distillation step U1).
  • the acid catalyst contained in the crude (meth) acrylic acid ester is recovered by a solvent recovery unit having an extraction device, and is recycled to the reactive distillation unit (solvent recovery step U2).
  • the crude (meth) acrylic acid ester from which the acid catalyst has been recovered is sent to a washing section having a neutralization washing tower (extraction tower), and washed with water and, if necessary, an alkaline solution (washing step U3).
  • low-boiling compounds such as alcohol are separated from the top in a low-boiling separation part having a distillation column (light-boiling separation step U4), and the bottom liquid is purified with a distillation column Sent to part (purification step U5).
  • the high boiling point compounds are separated from the bottom of the purification section, and the purified (meth) acrylic acid ester is obtained from the top of the column.
  • the separated high-boiling compounds are sent to the thermal decomposition section, where valuables are decomposed and recovered (thermal decomposition step U6).
  • FIG. 2 is a schematic view showing the withdrawal part of the emulsion layer of the neutralization washing tower (extraction tower) which the washing part in FIG. 1 has, and shows the tower upper part of the neutralization washing tower (extraction tower).
  • a (meth) acrylic acid ester layer U31 is formed on the upper side sandwiching the interface U33, and an aqueous layer U32 is formed on the lower side.
  • U36 is a nozzle for extracting the emulsified layer U37 formed in the vicinity of the interface U33.
  • the crude (meth) acrylic acid ester from the solvent recovery section is introduced into the neutralization washing tower from the bottom of the tower, washed with water U34a and optionally with an aqueous alkaline solution U34b, and then washed roughly from the top of the tower ( Meta) acrylic acid ester U35 is discharged and transferred to the next light boiling separation section.
  • an emulsion layer extracted from a neutralization washing tower or the like which is an extraction tower in the process of producing such (meth) acrylic acid ester, that is, a heavy liquid (meth) acrylate and a heavy liquid In order to continuously separate the (meth) acrylic acid ester as the light liquid and the water as the heavy liquid from the liquid mixture containing the water as the liquid and the emulsion of the light liquid and the heavy liquid Used.
  • FIG. 3 is a schematic view showing an embodiment of a separation tank (hereinafter referred to as “the separation tank of the present invention”) used in the separation method of the present invention.
  • the separation tank is partitioned by standing walls (partitions) W1 and W2 in which the inside of the tank body T stands from the bottom surface of the tank body T, and chambers A to C are formed.
  • a light liquid, a heavy liquid, and a mixed liquid containing an emulsion of the light liquid and the heavy liquid are continuously introduced from the supply pipe N 1, and are allowed to stand in the chamber A, It is separated into the upper layer light liquid and the lower layer heavy liquid, and an interface F between the light liquid and the heavy liquid is formed.
  • This mixed solution is used as a mixed solution of an emulsion layer, an aqueous layer and a (meth) acrylic acid ester layer extracted from an extraction tower (for example, the neutralization washing tower in FIG. 2) in the production of (meth) acrylic acid ester. Applicable
  • the tip end opening portion of the mixed liquid supply pipe N1 be located in the vicinity of the interface F formed in the chamber A.
  • the tip of the supply pipe N1 extending downward from the upper portion of the chamber A of the tank body T is bent in the horizontal direction or the opening is expanded. It is preferable to do.
  • the upper end of the upstanding wall W1 is an overflow portion Wa, and the light liquid in the chamber A overflows the overflow portion Wa and flows into the adjacent chamber B via the upstanding wall W1.
  • the height of the overflow portion Wa is the height of h 1 from the bottom of the tank body T.
  • a withdrawal pipe N2 having a liquid feed pump P2 and a flow rate adjustment valve V2 and a liquid level gauge L2 are provided.
  • the light liquid that has flowed into the chamber B is automatically controlled by the control system (not shown) that adjusts the flow rate adjustment valve V2 according to the measurement value of the liquid level meter L2, and the surplus is automatically maintained while keeping the liquid level in the chamber B constant. Extracted and sent to another process.
  • An advection tube N4 is provided at the bottom of the chamber A, and the tip end side of the advection tube N4 is open to the chamber C side.
  • the heavy fluid in the chamber A flows into the chamber C adjacent to the chamber A via the upstanding wall W2 via the advection tube N4.
  • the height of the tip opening Na advection tube N4 is the height from the bottom of the tank body T of h 2.
  • the heavy liquid flowing into the chamber C is automatically discharged by overflow while keeping the liquid level height in the chamber C constant by the U-shaped extraction pipe N3.
  • Maximum height h 3 of the withdrawal piping N3 becomes overflow portion is the height h less than 2 of the tip opening Na advection tube N4 in the chamber C.
  • the upper end of the upright wall W2 partitioning the chamber A and the chamber C is positioned higher than the upper end of the upright wall W1 partitioning the chamber A and the chamber B, which are the overflow portions Wa.
  • the upper end of the upstanding wall W2 is separated from the upper surface of the tank body T.
  • the upper end of the upright wall W2 may be positioned higher than the upper end of the upright wall W1, and even if the upper end of the upright wall W2 abuts on the inner upper surface of the tank body T and is integrated with the tank body T Good.
  • the rising wall W1 may be formed with an overflowing portion, and the upper end of the rising wall W1 itself may be in contact with the inner upper surface of the tank body T, and an opening serving as the overflowing portion may be provided. .
  • the emulsified layer in the vicinity of the interface F formed in the middle part in the vertical direction in the chamber A is discharged from the emulsified layer extraction pipe N5. That is, since the emulsion layer deposited in the middle part of the chamber A increases as the mixed solution is supplied through the supply pipe N1, the emulsion layer is prevented from flowing into the chambers B and C. The site glass S1 provided in A is confirmed, and the emulsion layer is discharged using the emulsion layer extraction pipe N5 as necessary.
  • the separation tank of the present invention is applied to the production of (meth) acrylic acid ester, light promotes the polymerization of (meth) acrylic acid and (meth) acrylic acid ester, and therefore, other than at the time of confirmation operation by sight glass S1.
  • the window can be shielded from light.
  • the interface glass in the chamber A is a sight glass S1 which is a see-through unit for visualizing the inside of the tank body as a detection unit for detecting the interface height in the chamber A and confirming the presence or absence of the emulsion.
  • a sight glass S1 which is a see-through unit for visualizing the inside of the tank body as a detection unit for detecting the interface height in the chamber A and confirming the presence or absence of the emulsion.
  • an opening is provided directly in the tank body T, and a glass window is provided in the opening (direct type), and the liquid in the tank body T is partially extracted by piping to a transparent glass tube.
  • the emulsion layer is accumulated around the interface F formed in the chamber A.
  • the position of the interface F is determined by the height h 1 of the overflow portion Wa, the height h 2 of the tip opening Na of the advection tube N 4, and the specific gravity of the heavy liquid and the light liquid.
  • the interface height h 1 ⁇ ⁇ formed in the chamber A is ,
  • the middle of the height direction of the chamber A ie, ⁇ ⁇ 0.5
  • the ratio X changes depending on the type of mixture to which the separation tank is applied. Moreover, even if it is the same liquid mixture, the composition changes with heavy liquid and light liquid with the change of operating conditions etc. Therefore, the ratio X is not a constant value, and fluctuates in a certain range (minimum value X min to maximum value X max ).
  • X min is preferably X ave ⁇ 0.90 or more, and more preferably X ave ⁇ 0.95 or more.
  • X max is preferably X ave ⁇ 1.10 or less, more preferably X ave ⁇ 1.05 or less.
  • the height from the bottom of the tank body T to the overflow Wa is set in the assumed specific gravity range of the light and heavy liquids in the mixture separated in the separation tank of the present invention.
  • h 1 the height from the bottom of the tank body T to the tip opening Na of the advection tube N 4 is h 2
  • the height from the bottom of the tank body T to the interface F in the chamber A is h 1 ⁇ ⁇
  • the specific gravity of the heavy liquid Assuming that the minimum value of the ratio P H / P L between P H and the specific gravity P L of light liquid is X min and the maximum value is X max ,
  • X max (h 2 ⁇ X max ⁇ h 1 ) / h 1 (X max ⁇ 1) ⁇ 0.7
  • X max (h 2 ⁇ X max ⁇ h 1 ) / h 1 (X max ⁇ 1) ⁇ 0.7 Design
  • the separation method of the present invention is Tank body, A chamber provided by dividing the inside of the tank body by standing walls rising from the bottom surface of the tank body, wherein the mixed liquid is introduced, and an interface between the light liquid and the heavy liquid is formed in the room A chamber A, a chamber B in which the light liquid overflows from the chamber A and flows in, and a chamber C in which the heavy liquid flows in from the bottom of the chamber A via an advection tube; And an emulsion liquid extraction portion for extracting the emulsion liquid in the vertical direction in the chamber A, One end of the advection tube communicates with the chamber A, and the other end is open toward the chamber C, The upper end of the upstanding wall which divides the chamber A and the chamber C is used to separate the mixture continuously using a separation tank configured to be positioned higher than the overflow portion.
  • a plurality of advection tubes N4 having different heights h 2 may be used by switching the nozzles used in accordance with the conditions.
  • the “bottom of the tank body” at the time of measuring the height h 1 and the height h 2 refers to the most light and heavy liquid among the opening surfaces on the chamber A side of the advection pipe N4. It means a place near the interface.
  • the “overflow portion” at the time of measuring the height h 1 is the opening surface In the above, it means the place closest to the interface between the light liquid and the heavy liquid.
  • the “tip opening” at the time of measuring the height h 2 means a portion of the opening surface closest to the interface between the light fluid and the heavy fluid.
  • the rate of decrease of the emulsifying layer in the chamber A accompanying the standing is accelerated by the rise in the liquid temperature, so the following (1) and (2) are preferably performed.
  • a heating unit such as a heat exchanger for heating the mixture supplied to the separation tank is provided in front of the supply pipe N1.
  • a heat retention part such as a warm water trace or a heat retention material is disposed on the outer peripheral part of the separation tank.
  • FIG. 4 is a schematic view showing another embodiment of the separation tank of the present invention, in which members having the same functions as the members shown in FIG. 3 are given the same reference numerals.
  • the inside of the tank body T is divided into a room A, a room B1, a room B2 and a room C by the upright walls W1, W3 and W2. That is, the chamber into which the light liquid flows is divided into a chamber B1 and a chamber B2.
  • a connecting pipe N6 is provided on the rising wall W1.
  • the opening lower part of the base end side (chamber A side) of the connection pipe N6 becomes the overflow part Wa.
  • the tip end side of the connection pipe N6 opens into the liquid in the chamber B1.
  • the height of the upright wall W3 is lower than the height of the upright wall W1.
  • the room B may be a single room or may be composed of two or more plural rooms.
  • the individual chambers may be connected in series by a standing wall having an overflow portion or a connecting pipe provided on the standing wall. The same applies to room C.
  • the chamber B1 is for separating and discharging the emulsion when a small amount of the emulsion flows from the chamber A through the connection pipe N6, and the sight glass S2 for confirming the presence of the emulsion and the emulsion Has an extraction pipe N7 for discharging the
  • the light liquid that overflows the rising wall W3 and flows into the chamber B2 is the liquid in the chamber B2 by the extraction pipe N2, the liquid feed pump P2, the flow rate adjustment valve V2 and the level gauge L2 as in the separation tank in FIG.
  • the surplus is sent to another process while keeping the surface height constant.
  • the heavy liquid in the chamber C is automatically drawn out from the piping N3 by repeating the operation and stop of the liquid feed pump P3 so that the detection value of the liquid level gauge L3 falls within a certain range.
  • the tip of the emulsion layer extraction pipe N5 is drawn to a plurality of locations (three locations in FIG. 4) in the height direction so that it can cope with the variation in the height of the interface F in the chamber A. It is set as having a mouth.
  • the chamber B and the chamber C have an outflow portion that allows the liquid to flow out so as to maintain the liquid level in the chamber within a predetermined range.
  • the outflow portion as in the chamber B of FIG. 3 and the chamber B2 of FIG. 4, is a control system that adjusts the valve according to the values measured by the extraction pipe, pump, flow control valve and level gauge, and level gauge. And may be composed of Further, as in the case of the chamber C of FIG. 4, the outflow portion is composed of an extraction pipe, a pump, a liquid level gauge, and a control system for adjusting the driving of the pump according to the measurement value of the liquid level gauge. It is also good.
  • the outflow portion may be an extraction pipe as in the chamber C of FIG. 3. The outlet may be a combination of these.
  • FIG. 3 and FIG. 4 show the separation tank having the tank body T of the horizontal cylindrical container
  • the tank body T may be a vertical cylindrical container as shown in FIGS. 5 (a) and 5 (b). Good.
  • the chambers A, B, and C are formed by providing the rising walls W1, W2, and W4 in the tank body T in the radial direction.
  • the separation tank shown in FIG. 5 (b) is obtained by providing the rising walls W1 and W2 in parallel in the tank body T to define the chambers A, B and C.
  • the horizontal cylindrical container is superior in terms of manufacturing load in which a plurality of upstanding walls (partition walls) are provided in the tank body, ease of entering the tank for maintenance at the time of operation shutdown, and the like.
  • the vertical cylindrical container can make the liquid depth deeper in the tank, the vertical cylindrical container is preferable in particular when the specific gravity difference between the heavy liquid and the light liquid is small, or when the specific gravity of each liquid fluctuates significantly, etc. It is.
  • the separation tank of the present invention uses the separation tank of the present invention to separate the light liquid and the heavy liquid from the liquid mixture containing the light liquid, the heavy liquid and the emulsion of the light liquid and the heavy liquid according to the separation method of the present invention
  • the theoretical minimum amount of heavy fluid to be introduced into the chamber A of the separation tank is the internal volume of the advection tube N4, but from the viewpoint of operation confirmation, the heavy fluid is such an amount that the liquid surface of the heavy fluid is above the lower end of the sight glass It is preferable to put it. If the amount of heavy liquid introduced into the room A is excessively large, the operation of the separation tank is started and the heavy liquid overflows the overflow part Wa from the room A immediately after the mixed liquid is introduced into the room A from the supply pipe N1. There is a risk of flowing into the room B. Therefore, the amount of heavy liquid introduced into the chamber A is 0.2 to 0.7 times the height h 1 of the overflow portion Wa of the liquid surface of the heavy liquid from the bottom of the tank body T. It is preferable to set the height or an amount such that the height of the end of the supply pipe N1 is a standard.
  • the mixed liquid flowing in from the supply pipe N1 needs to be allowed to stand for a predetermined time in the chamber A and separated into heavy liquid and light liquid. It is necessary to design so that the flow rate of the mixed solution introduced from the feed pipe N1 does not become excessively large.
  • the time required for separating the emulsion layer largely varies depending on the properties, but the average residence time of the feed solution in the chamber A is preferably 0.5 to 50 hours.
  • Example 1 In the commercial facility shown in FIG. 1 producing annual production of 80,000 tons of butyl acrylate, the separation tank shown in FIG. 4 is provided, and the liquid in the vicinity of the interface in the extraction tower of the washing section is continuously withdrawn at 100 kg per hour, It supplied continuously to chamber A of the separation tank. The feed rate corresponded to an average residence time in chamber A of about 12 hours.
  • the fluctuation range X min to X max of the ratio of the specific gravity P H of the heavy liquid and the specific gravity P L of the light liquid was 1.17 to 1.27.
  • the calculated ⁇ value is 0.25 to 0.49.
  • the on-site work occurs except that the emulsion layer deposited on the interface of the room A is extracted weekly from the emulsion layer and extracted from the piping N5 every week, and the daily interface position and the lamination condition of the emulsion layer. I did not. In addition, no problems occurred in the separation tank including the cleaning unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、抽出塔内の界面近傍の乳化層抜き出し液のような、軽液、重液及び該軽液と該重液との乳化液を含有する混合液から軽液と重液を効率的に分離できる分離方法の提供を目的とする。本発明は、軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を連続的に分離槽に導入して該混合液から該軽液と該重液とを連続的に分離する方法であって、該分離槽として、特定の分離層を用いる分離方法に関する。

Description

分離方法及び(メタ)アクリル酸エステルの製造方法
 本発明は、軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を効率的に分離するための分離方法に関する。本発明はまた、この分離方法を用いる(メタ)アクリル酸エステルの製造方法に関する。
 液々抽出とは、ある溶液aに含まれる有価物や不純物を回収又は除去するために、この溶液aと二液層を形成する溶液bを用い、これらを液体の状態で接触させ、溶液a中の有価物や不純物を溶液b側に移行させる手法である。液々抽出は、蒸留と並んで化学品の製造工程で広く用いられる精製方法である。
 液々抽出に用いられる一般的な装置は抽出塔である。抽出塔では、塔上部から相対的に比重の大きな溶液(重液)が、塔下部から相対的に比重の小さな溶液(軽液)が各々供給される。抽出塔では、抽出塔内を下降する重液と抽出塔内を上昇する軽液が向流接触する工程で、有価物回収や不純物除去が行われる。軽液は疎水性の有機物を主成分とし、重液は水を主成分とする場合が最も一般的である。
 上記向流接触工程において、重液の液滴が軽液中を下降する場合、言い換えると重液が分散相で軽液が連続相の場合、抽出塔下部に軽液層と重液層の境界域である界面が形成される。逆に、軽液が分散相で重液が連続相の場合は、抽出塔上部に軽液層と重液層との界面が形成される。連続的に抽出操作を行う抽出塔の場合、該界面の制御は安定運転に不可欠である。
 抽出塔の取扱流体中に界面活性作用を有する成分が含まれる場合、一方の液が微細化した液滴が他方の液中に分散した状態である乳化が生じ易くなる。乳化した液の比重は軽液と重液の間にあるため、抽出塔の塔頂、塔底の何れからも排出されず、界面近傍に蓄積して乳化層を形成する。該乳化層は界面の検出を困難とし、またその蓄積に伴い、後工程で該乳化液が混入するなどの弊害を生じる。このため、様々な乳化防止策が講じられるが、それらでも不充分な場合には、該乳化層の連続的又は間欠的な抜き出しが行われる。
 また、(メタ)アクリル酸とアルコールをエステル化反応させて(メタ)アクリル酸エステルを製造する工程では、副生物として微量の(メタ)アクリル酸ポリマーや(メタ)アクリル酸エステルポリマー、及びその共重合ポリマーが生成する。これら副生ポリマー、特に親水性の(メタ)アクリル酸基と疎水性の(メタ)アクリル酸エステル基を有する共重合ポリマーは、高い界面活性作用を有するため、抽出塔内における乳化層の形成を助長する。
 このような副生ポリマーを除去する方法としては、例えば、特許文献1には、(メタ)アクリル酸とアルコールを酸触媒存在下にエステル化反応させ、得られた(メタ)アクリル酸エステル含有液を抽出塔で洗浄及び/又は中和処理する際、界面近傍の水層と有機層の一部を抜き出すことで、中和塩やポリマー、スラッジ等の副生物を除去する方法が示されている。
 また、特許文献2には(メタ)アクリル酸エステルの製造工程において、静置槽内の界面における油水混合物を抜き出し、2時間以上静置して油水分離した後、油層を製造工程に循環する方法が示されている。
日本国特開2003-226672号公報 日本国特開2014-162764号公報
 抽出塔内の界面近傍の乳化層抜き出しは、製造設備を安定運転する上で重要であるが、乳化層抜き出しには運転員による少なくない作業負荷が発生していた。通常、抽出塔における界面位置は、重液と軽液の比重及びそれらの比重差に基づき、差圧や浮力の測定により自動的に算出される。しかしながら、該重液及び該軽液の比重が変動する場合には、該算出された界面位置は、比重の変動幅に応じた誤差を有することとなる。
 電波や光で界面位置を直接計測する手法もあるが、形成された乳化層が該測定を阻害するのみならず、易重合性化合物である(メタ)アクリル酸エステルの場合には、装置検出部の重合物による汚染が生じるため、安定した測定結果を得るのは難しい。
 故に、作業員が直接当該製造設備に赴き、目視で界面位置を確認しつつ、乳化層を抜き出すという作業が必要であった。また、抜き出した乳化層を分離槽内に静置した後、軽液層や重液層の分離状況を確認しつつ、その一方ないし双方を抽出塔又はその他の工程に循環すること、及び残存する乳化層の廃棄も、運転員の作業負荷となっていた。
 乳化層だけでなく、その上下に位置する軽液層と重液層の一部も纏めて抜き出すならば、正確な界面位置の把握は不要となるが、抜き出す液量が増えるため、抜き出した液を他の工程に循環する作業の頻度が上がることとなる。分離槽の大型化により作業頻度を下げることが可能だが、作業毎の循環液量が増えるので、作業時間自体は変化しないか、あるいは長くなってしまう。
 本発明は、上記従来の問題点に鑑みてなされたものであって、抽出塔内の界面近傍の乳化層抜き出し液のような、軽液、重液及び該軽液と該重液との乳化液を含有する混合液から軽液と重液を効率的に分離できる分離方法の提供を目的とする。
 本発明はまた、この分離方法を用いた(メタ)アクリル酸エステルの製造方法の提供を目的とする。
 本発明者らは、上記課題を解決すべく検討を重ねた結果、重液と軽液を双液の比重差に基づいて分離し、且つ該重液と該軽液を目的箇所に自動で送液できるように設計された分離槽を用いることにより、運転員の作業負荷の大幅な低減が可能となることを見出した。
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1]軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を連続的に分離槽に導入して該混合液から該軽液と該重液とを連続的に分離する方法であって、該分離槽として、
 槽体と、
 該槽体の底面から起立する起立壁によって該槽体内を区画することによりそれぞれ設けられた室であって、前記混合液が導入され、室内に前記軽液と前記重液との界面が形成される室A、該室Aから前記軽液が溢流部を溢流して流入する室B、及び該室Aの底部から前記重液が移流管を介して流入する室Cと、
 該室A内の上下方向の途中から前記乳化液を抜き出す乳化液抜き出し部と
を備え、
 前記移流管は、一端が前記室A内に開口し、他端が前記室C内に開口しており、
 前記室Aと前記室Cとを区画する前記起立壁の上端は、前記溢流部よりも高位に位置するように構成された分離槽であって、
 前記槽体底部から前記溢流部までの高さをh
 前記槽体底部から前記移流管の前記室C内の開口までの高さをh
 前記槽体底部から前記室A内の前記界面までの高さをh・α、
 前記重液の比重Pと前記軽液の比重Pとの比P/PをXとした場合、
 α=(h×X-h)/h(X-1)の関係が成り立ち、
 前記Xが最小値Xminのときα≧0.2であり、
 前記Xが最大値Xmaxのときα≦0.7である、分離方法。
[2]前記分離槽は、前記槽体底部から前記室A内の前記界面までの高さを検知し、前記乳化液の有無を確認する検知部を有する、[1]に記載の分離方法。
[3]前記検知部は、前記槽体に設けられた、該槽体内部視認用の透視部である、[2]に記載の分離方法。
[4]前記分離槽は、前記槽体内を照明する照明部を有する、[1]~[3]のいずれか1つに記載の分離方法。
[5]前記分離槽の前記室B及び前記室Cの少なくとも一方は、一室又は複数室からなり、
 前記分離槽の前記室B及び前記室Cの少なくとも一方が、複数室からなる場合、個々の室は、前記槽体の底面から起立する起立壁によって区画され、該起立壁に設けられた溢流部又は連結管により直列に繋がれている、[1]~[4]のいずれか1つに記載の分離方法。
[6]前記槽体は、横型円筒容器又は縦型円筒容器である[1]~[5]のいずれか1つに記載の分離方法。
[7]前記分離槽は、前記室B及び前記室Cから、それぞれ、室内の液面高さを所定範囲に保つように液を流出させる流出部を有する、[1]~[6]のいずれか1つに記載の分離方法。
[8]前記分離槽は、前記槽体を保温する保温部及び該槽体に供給される前記混合液を加熱する加熱部の少なくとも一方を備える、[1]~[7]のいずれか1つに記載の分離方法。
[9]前記混合液は、抽出塔の界面近傍から抜き出した軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液である、[1]~[8]のいずれか1つに記載の分離方法。
[10]前記分離槽の運転開始前に予め前記室A内に前記重液を入れておく、[1]~[9]のいずれか1つに記載の分離方法。
[11](メタ)アクリル酸エステルの製造において、[1]~[10]のいずれか1つに記載の分離方法を用いる、(メタ)アクリル酸エステルの製造方法。
 本発明の分離方法によれば、抽出塔内の界面近傍の乳化層抜き出し液のような、軽液、重液及び該軽液と該重液との乳化液を含有する混合液から軽液と重液を効率的に分離すると共に、分離した軽液と重液を目的箇所に自動的に送液することができる。そのため、抽出塔内の界面近傍に堆積する乳化層の抜き出しと、該抜き出しに同伴する軽液及び重液の分離と、抜き出し液の製造工程への循環を実施するに際し、運転員の作業負荷を低減することができる。
 本発明の分離方法を、(メタ)アクリル酸エステルの製造工程に適用することで、(メタ)アクリル酸とアルコールを酸触媒存在下にエステル化反応させて得られた(メタ)アクリル酸エステル含有液を抽出塔で洗浄及び/又は中和処理する際に、抽出塔内に形成される界面近傍液の抜き出しを容易に行うことが可能となる。また、抜き出し液から目的物の(メタ)アクリル酸エステル層と水層とを自動的に分離してそれぞれ回収することが可能となり、作業効率、生産効率の大幅な改善を図ることが可能となる。
図1は、(メタ)アクリル酸エステルの製造工程を示す模式図である。 図2は、図1における洗浄部が有する中和洗浄塔(抽出塔)の乳化層の抜き出し部を示す模式図である。 図3は、本発明で用いる分離槽の一形態を示す模式図である。 図4は、本発明で用いる分離槽の異なる形態を示す模式図である。 図5は、本発明で用いる分離槽が備える槽体の一形態を示す模式図である。 図6は、本発明で用いる分離槽が備える槽体として円筒容器を傾斜させて設置した場合の各部の高さを説明するための、槽体の一形態を示す模式図である。
 以下、本発明について、図面を参照して詳細に説明するが、本発明は何ら以下の説明に限定されるものではなく、本発明の要旨の範囲内で種々変更して実施することが出来る。
 本発明において、「上下方向」とは、重力向き(すなわち下向き)及びその反対向き(すなわち上向き)を意味する。
 本発明において、「底面」とは、上下方向において最も下に位置する面を意味する。
 本発明において、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
 本発明の分離方法は、軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を連続的に分離槽に導入して該混合液から該軽液と該重液とを連続的に分離する方法であって、該分離槽として、後述の本発明の分離槽を用いることを特徴とするものである。
 ここで、「軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を連続的に分離槽に導入する」とは、単位時間当たりの該混合液の導入量に差異があったとしても、一時間以上停止することなく、該混合液が後述の室Aに導入されている状態をさす。
 通常、分離槽への単位時間当たりの混合液の導入流量は、10kg/hr以上であり、好ましくは20kg/hr以上であり、より好ましくは40kg/hr以上である。また、このような導入流量で本発明の分離槽に混合液を連続的に導入する時間は、少なくとも12時間以上であり、好ましくは24時間以上であり、より好ましくは36時間以上である。
 同様に、「混合液から軽液と重液とを連続的に分離する」とは、本発明の分離槽に連続的に導入された混合液から、その導入量に応じて、後述の室Aから後述の室Bと室Cに軽液と重液がそれぞれ連続的に流入することをさす。
 尚、乳化液は、定期的に混合液から抜き出される必要がある。乳化液の抜き出しは、作業負荷低減の観点から、6時間に一回より低い頻度で行われることが好ましく、1日に一回より低い頻度で行われることが好ましく、1週間に一回より低い頻度で行われることが好ましい。
 また、本発明の(メタ)アクリル酸エステルの製造方法は、本発明の分離方法を用いることを特徴とし、それ以外は公知の工程、すなわち、例えば図1に示す工程を採用することができる。
 図1は、(メタ)アクリル酸及びアルコールを原料とする、(メタ)アクリル酸エステルの製造工程を示す模式図である。
 反応器及び蒸留塔を有する反応蒸留部に原料(メタ)アクリル酸、原料アルコール、及び酸触媒が供給され、反応生成水は塔頂より排出され、反応器より粗(メタ)アクリル酸エステルが得られる(反応蒸留工程U1)。
 該粗(メタ)アクリル酸エステルに含まれる酸触媒は、抽出装置を有する溶媒回収部で回収され、反応蒸留部に循環される(溶媒回収工程U2)。
 酸触媒が回収された粗(メタ)アクリル酸エステルは、中和洗浄塔(抽出塔)を有する洗浄部に送られ、水や必要に応じてアルカリ溶液で洗浄が行われる(洗浄工程U3)。
 洗浄された粗(メタ)アクリル酸エステルは、蒸留塔を有する軽沸分離部でアルコール等の低沸点化合物が塔頂より分離され(軽沸分離工程U4)、塔底液は蒸留塔を有する精製部に送られる(精製工程U5)。
 精製部の塔底より高沸点化合物が分離され、塔頂より精製(メタ)アクリル酸エステルが得られる。
 分離された高沸点化合物は、熱分解部に送られ、有価物の分解と回収が行われる(熱分解工程U6)。
 図2は図1における洗浄部が有する中和洗浄塔(抽出塔)の乳化層の抜き出し部を示す模式図であり、中和洗浄塔(抽出塔)の塔上部を示す。
 この塔上部に界面U33を挟んで上側に(メタ)アクリル酸エステル層U31、下側に水層U32が形成される。U36は、界面U33近傍に形成される乳化層U37を抜き出すためのノズルである。
 中和洗浄塔には、溶媒回収部からの粗(メタ)アクリル酸エステルが塔下部から導入され、水U34aや必要に応じてアルカリ水溶液U34bで洗浄された後、塔上部から洗浄された粗(メタ)アクリル酸エステルU35が排出され、次の軽沸分離部に移送される。
 本発明の分離方法は、このような(メタ)アクリル酸エステルの製造工程において、抽出塔である中和洗浄塔等から抜き出した乳化層、即ち、軽液である(メタ)アクリル酸エステルと重液である水とこれら軽液と重液との乳化液とを含有する混合液から、軽液である(メタ)アクリル酸エステルと重液である水とを連続的に分離するために好適に用いられる。
 図3は本発明の分離方法で用いられる分離槽(以下、「本発明の分離槽」と称す。)の一形態を示す模式図である。
 この分離槽は、槽体T内が槽体Tの底面から起立する起立壁(隔壁)W1、W2によって区画され、室A~Cが形成されている。室Aには、軽液、重液及び該軽液と該重液との乳化液を含有する混合液が、供給配管N1より連続的に導入され、室A内に静置されることにより、上層の軽液と下層の重液とに分離され、軽液と重液との界面Fが形成される。この混合液は、(メタ)アクリル酸エステルの製造においては、抽出塔(例えば図2の中和洗浄塔)から抜き出された乳化層と水層と(メタ)アクリル酸エステル層の混合液に該当する。
 混合液の供給配管N1の先端開口部の高さ方向の位置が過度に低いと、供給配管N1から流入した混合液が重液の移流管N4から室Cに流入するおそれがある。逆に、該高さ方向の位置が過度に高位にあると、該混合液が溢流部Waを溢流して室Bに流入する軽液と共に室Bに流入してしまうおそれがある。このため、混合液の供給配管N1の先端開口部は、室A内に形成される界面Fの近傍に位置することが好ましい。
 また、室A内の液による対流を低減する為、槽体Tの室Aの上部から下方に延設された供給配管N1の先端部を水平方向に曲げたり、あるいは該開口部を拡管したりすることが好ましい。
 起立壁W1の上端が溢流部Waとなっており、溢流部Waを溢流して室A内の軽液が起立壁W1を介して隣接する室B内に流入する。溢流部Waの高さは、槽体Tの底部からhの高さである。
 室Bの下部には、送液ポンプP2及び流量調整バルブV2を有する抜き出し配管N2と液面計L2が設けられている。室Bに流入した軽液は、液面計L2の計測値に応じて流量調整バルブV2を調整する図示しない制御システムにより、室B内の液面高さを一定に保ちつつ余剰分が自動的に抜き出されて別工程へ送液される。
 室Aの底部に移流管N4が設けられ、この移流管N4の先端側は室C側に開口している。室A内の重液は、この移流管N4を経て、起立壁W2を介して室Aに隣接する室Cに流入する。移流管N4の先端開口Naの高さは、槽体Tの底部からhの高さである。室Cに流入した重液は、U字形状の抜き出し配管N3により、室C内の液面高さを一定に保ちつつ、余剰分は溢流により自動的に排出される。溢流部となる抜き出し配管N3の最大高さhは、室Cにおける移流管N4の先端開口Naの高さh未満である。
 室Aと室Cとを区画する起立壁W2の上端は、溢流部Waである室Aと室Bを区画する起立壁W1の上端よりも高位に位置している。図3において、起立壁W2は、その上端が槽体Tの上面から離隔している。しかしながら、起立壁W2の上端は、起立壁W1の上端より高位に位置していればよく、起立壁W2の上端が槽体Tの内側上面に当接して槽体Tと一体化されていてもよい。また、起立壁W1についても、溢流部が形成されていればよく、起立壁W1自体はその上端が槽体Tの内側上面に当接し、溢流部となる開口が設けられていてもよい。
 室A内の上下方向の途中部分(高さ方向の中間部分)に形成された界面F近傍の乳化層は、乳化層抜き出し配管N5より排出される。即ち、供給配管N1を通じて混合液が供給されるに伴い、室Aの中間部に堆積する乳化層は増加していくため、乳化層の室Bや室Cへの流入を防止するために、室Aに設けられたサイトグラスS1を確認し、必要に応じて乳化層抜き出し配管N5を用いて乳化層の排出を行う。
 サイトグラスS1による確認を容易とするために、槽体T内に照明部として光源を導入するための窓を別に設けることが好ましい。本発明の分離槽を(メタ)アクリル酸エステルの製造に適用する場合、光は(メタ)アクリル酸や(メタ)アクリル酸エステルの重合を促進するため、サイトグラスS1による確認作業時以外には、該窓は遮光出来る構造とすることが好ましい。
 なお、図3では、室A内の界面高さを検知し、乳化液の有無を確認する検知部として、槽体内部視認用の透視部であるサイトグラスS1を槽体Tの室A部壁面に設けている。サイトグラスには、槽体Tに直接開孔部を設け、該開孔部にガラス窓を設けたもの(直接型)と、槽体T内の液を配管で一部抜き出して透明ガラス管に導入し、該ガラス管で確認するもの(間接型)がある。該ガラス管内で層内と同じ乳化層の位置や堆積量を再現することは難しく、前者(直接型)が好ましい。
 上記の通り、室Aに混合液を導入することで、室A内で形成される界面Fを中心として乳化層は蓄積してゆく。界面Fの位置は、溢流部Waの高さhと移流管N4の先端開口Naの高さh、及び重液と軽液の比重により定まる。
 重液の比重Pと軽液の比重Pの比率P/PをXとし、室A内で形成される界面Fまでの高さをh・αとすると、α=(h×X-h)/h(X-1)の関係が成り立つ。
 室A内に蓄積した乳化層の室Bや室Cへの流入防止、及び室Aからの乳化層抜き出し作業頻度の低減という点から、室A内に形成される界面高さh・αは、室Aの高さ方向の中間辺り(即ち、α≒0.5)が好ましい。但し、分離槽を適用する混合液の種類によって比率Xは変化する。また、同じ混合液であっても運転条件の変更等に伴って重液及び軽液共にその組成が変化する。そのため、比率Xは一定値とはならず、一定範囲(最小値Xmin~最大値Xmax)で変動する。
 故に、比率Xの変動幅内で、常に界面Fが室A内に形成される必要があり、乳化層の蓄積に伴う該乳化層の隣室への流入防止の点から、α=0.2~0.7であることが好ましく、α=0.25~0.6であることがより好ましい。
 なお、最小値Xmin及び最大値Xmaxの平均値をXaveとすると、Xminは、Xave×0.90以上であることが好ましく、Xave×0.95以上であることがより好ましい。また、Xmaxは、Xave×1.10以下であることが好ましく、Xave×1.05以下であることがより好ましい。
 従って、本発明の分離方法では、本発明の分離槽において分離する混合液中の軽液と重液の想定される比重の範囲において、槽体Tの底部から溢流部Waまでの高さをh、槽体Tの底部から移流管N4の先端開口Naまでの高さをh、槽体Tの底部から室A内の界面Fまでの高さをh・α、重液の比重Pと軽液の比重Pとの比率P/Pの最小値をXmin、最大値をXmaxとした場合、
  上記比率X=Xminのとき、α=(h×Xmin-h)/h(Xmin-1)≧0.2
  上記比率X=Xmaxのとき、α=(h×Xmax-h)/h(Xmax-1)≦0.7
の関係が成り立つように設計する。
 より好ましくは
  上記比率X=Xminのとき、α=(h×Xmin-h)/h(Xmin-1)≧0.25
  上記比率X=Xmaxのとき、α=(h×Xmax-h)/h(Xmax-1)≦0.6
である。
 即ち、本発明の分離方法は、
 槽体と、
 該槽体の底面から起立する起立壁によって該槽体内を区画することによりそれぞれ設けられた室であって、前記混合液が導入され、室内に前記軽液と前記重液との界面が形成される室A、該室Aから前記軽液が溢流部を溢流して流入する室B、及び該室Aの底部から前記重液が移流管を介して流入する室Cと、
 該室A内の上下方向の途中から前記乳化液を抜き出す乳化液抜き出し部と
を備え、
 前記移流管は、一端が前記室Aに連通し、他端が前記室C内に向って開放しており、
 前記室Aと前記室Cとを区画する前記起立壁の上端は、前記溢流部よりも高位に位置するように構成された分離槽
 を用いて混合液の分離を連続的に行うに当たり、軽液と重液の比重変動があっても、αが上記の通り適度な範囲内におさまるように、溢流部の高さhと移流管N4の先端開口Naの高さhを適度な高さに設計しておくことに大きな特徴がある。
 このため、例えば、室C内に、高さhの異なる複数の移流管N4を設け、条件に応じて使用するノズルを切り替えて用いるようにしてもよい。このように、高さhや高さhを可変に設計することで運転条件の適用範囲を広げることができる。
 なお、本発明において、高さh、高さhを測定する際の「槽体の底部」とは、移流管N4の室A側の開口面のうち、最も軽液と重液との界面に近い箇所を意味する。
 高さhを測定する際の「溢流部」とは、図3のように起立壁W1の上端が溢流部である場合は、該上端を意味する。また、図4のように連結配管N6の基端側(室A側)の開口下部が溢流部である場合、高さhを測定する際の「溢流部」とは、該開口面のうち、最も軽液と重液との界面に近い箇所を意味する。
 高さhを測定する際の「先端開口」とは、該開口面のうち、最も軽液と重液との界面に近い箇所を意味する。
 例えば、図6に示すように、槽体Tとして円筒容器をその軸芯方向が水平方向ではなく、傾斜方向となるように設置した場合、各部の高さh、hは、図6に示す通りである。なお、図6において、図3に示す部材と同一機能を奏する部材には同一符号を付してある。
 室Aにおける静置に伴う乳化層の減少速度は、液温の上昇により加速するため、下記(1)及び(2)等を行うことが好ましい。
(1) 分離槽に供給する混合液を加熱するための熱交換器等の加熱部を供給配管N1の手前に設ける。
(2) 放熱による液温の低下を避けるため、分離槽の外周部に温水トレースや保温材等の保温部を配する。
 但し、分離槽内で場所による液温の温度差が生じると液の対流が発生し、静置による各層の分離を阻害するため、分離槽の槽体外周部からの過度な加熱は好ましくない。やむを得ず槽内液の外部循環による加温を行う場合には、該循環液量を極力少なくするように工夫することが好ましい。
 図4は本発明の分離槽の別形態を示す模式図であり、図3に示す部材と同一機能を奏する部材には同一符号を付してある。
 この分離槽は、槽体T内が起立壁W1、W3、W2により、室A、室B1、室B2及び室Cに区画されている。即ち、軽液が流入する室が室B1と室B2とに区画されている。起立壁W1には連結配管N6が設けられている。この連結配管N6の基端側(室A側)の開口下部が溢流部Waとなる。連結配管N6の先端側は、室B1の液中に開口している。起立壁W3の高さは起立壁W1の高さよりも低い。
 このように、室Bは一室であってもよく、2以上の複数の室からなってもよい。室Bが複数の室からなる場合は、個々の室は、溢流部を有する起立壁又は起立壁に設けられた連結管で直列に繋がっていればよい。室Cについても同様である。
 室B1は、室Aから微量の乳化液が連結配管N6を通じて流入した際、該乳化液の分離と排出を行うためのものであり、乳化液の存在を確認するためのサイトグラスS2及び乳化液を排出するための抜き出し配管N7を有する。
 起立壁W3を溢流して室B2に流入した軽液は、図3における分離槽と同様に、抜き出し配管N2、送液ポンプP2、流量調整バルブV2及び液面計L2により、室B2内の液面高さを一定に保ちつつ余剰分が別工程へ送液される。
 一方、室C内の重液は、液面計L3の検出値が一定範囲となるよう、送液ポンプP3の稼働と停止が繰り返されることで抜き出し配管N3より自動的に抜き出される。
 なお、図4の分離槽では、乳化層抜き出し配管N5の先端が、室A内の界面Fの高さの変動に対応できるように、高さ方向の複数個所(図4では3ヶ所)に吸い込み口を有する構成とされている。
 室B、室Cは、室内の液面高さを所定範囲に保つように液を流出させる流出部を有することが好ましい。該流出部は、図3の室B、及び図4の室B2におけるように、抜き出し配管、ポンプ、流量調整バルブ及び液面計と、液面計の計測値に応じてバルブを調整する制御システムとからなるものであってもよい。また、該流出部は、図4の室Cにおけるように、抜き出し配管、ポンプ及び液面計と、液面計の計測値に応じてポンプの駆動を調整する制御システムとからなるものであってもよい。また、該流出部は、図3の室Cにおけるように、抜き出し配管からなるものであってもよい。該流出部は、これらの組み合わせてあってもよい。
 図3及び図4では、横型円筒容器の槽体Tを有する分離槽を示したが、槽体Tは図5(a)、図5(b)に示すような縦型円筒容器であってもよい。
 図5(a)の分離槽は、槽体T内に起立壁W1、W2、W4を放射方向に設けることにより、室A、B、Cを区画形成したものである。図5(b)の分離槽は、槽体T内に起立壁W1、W2を平行に設けて室A、B、Cを区画形成したものである。
 槽体内に複数の起立壁(隔壁)を設ける製作上の負荷や、運転停止時における保全を目的とした入槽作業の容易さ等においては、横型円筒容器の方が優れる。しかしながら、縦型円筒容器の方が槽内液深を深くできるため、縦型円筒容器は特に重液と軽液の比重差が小さい場合や、各液の比重が大きく変動する場合などに好ましい仕様である。
 このような本発明の分離槽を用いて、本発明の分離方法に従って軽液、重液及び該軽液と該重液との乳化液を含有する混合液から軽液と重液の分離を行う際には、予め分離槽の室Aに重液を入れておくことが好ましい。室Aに予め重液を入れておくことで、移流管N4を通じての軽液や乳化液の室Cへの流入を防止することができる。
 分離槽の室Aに入れる重液の理論的な最低量は移流管N4の内容積だが、作業確認の観点から、重液の液面がサイトグラスの下端以上に来るような量の重液を入れることが好ましい。室Aへ入れる重液の量が過度に多いと、分離槽の運転を開始して供給配管N1から混合液を室Aに導入した直後から重液が室Aから溢流部Waを溢流して室Bに流入してしまうおそれがある。そのため、室Aへ入れる重液の量は、槽体Tの底面からの重液の液面の高さが、溢流部Waの高さhに対して0.2~0.7倍の高さ、あるいは供給配管N1の先端を目安とした高さになるような量とすることが好ましい。
 また、本発明の分離槽では、供給配管N1から流入する混合液が室A内で所定の時間静置され、重液と軽液とに分離される必要があるため、室Aの容量に対して供給配管N1から導入する混合液の流量が過度に大きくならないように設計する必要がある。乳化層の分離に必要な時間はその性状により大きく異なるが、室Aにおける供給液の平均滞留時間として0.5~50時間とすることが好ましい。
 以下に参考例及び実施例を挙げて本発明をより具体的に説明する。
[参考例1]
 年産7万tのアクリル酸ブチルを製造する図1に示した商業設備において、洗浄部の抽出塔内の界面近傍液を、毎時60kgで連続的に抜き出し、タンクコンテナに供給した。抽出塔内の界面近傍液の供給を約24時間継続した後、供給先を別のタンクコンテナに変更した。供給を停止したタンクコンテナは、6時間静置した後、液性状を確認しつつ、水層、次いで乳化層を該タンクコンテナ下部より抜き出し、次いで残ったアクリル酸エステル層を洗浄部の供給液ラインに循環した。該設備の稼働中は同様の作業を毎日継続した。作業毎に形成される水層や乳化層、アクリル酸エステル層の割合が同一でなく、該タンクコンテナからの抜き出し流量を固定値とする自動化は行えなかった。
[実施例1]
 年産8万tのアクリル酸ブチルを製造する図1に示した商業設備において、図4に示す分離槽を設け、洗浄部の抽出塔内の界面近傍液を、毎時100kgで連続的に抜き出し、該分離槽の室Aに連続供給した。該供給量は室Aにおける平均滞留時間が約12時間になるような量に相当した。
 この分離槽の運転開始に先立ち、分離槽の室Aに予め水を槽体Tの底部から約500mmの高さまで入れた。室Aで分離され、室Aから室Bに流入したアクリル酸ブチル層は、自動的に洗浄部の供給液ラインに循環するように抜き出し配管の流路を設定した。また、室Aで分離され、室Cに流入した水層は自動的に廃水用タンクに供給するように抜き出し配管の流路を設定した。
 想定した重液の比重Pと軽液の比重Pの比率の変動幅Xmin~Xmaxは1.17~1.27であった。該分離槽は、h=1,150mm、h=1,025mm、混合液の供給配管N1の開口の槽体T底部からの高さは520mmとなるように製作した。α算出値は0.25~0.49となる。
 2週間の運転期間において、1週間毎に室Aの界面に堆積した乳化層を乳化層抜き出し配管N5より抜き出したこと、並びに日々の界面位置及び乳化層の積層具合の確認以外、現場作業は発生しなかった。また、洗浄部を含め、当該分離槽に不具合も生じなかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年9月29日出願の日本特許出願(特願2017-191140)及び2018年9月25日出願の日本特許出願(特願2018-178727)に基づくものであり、その内容はここに参照として取り込まれる。
 U1 反応蒸留工程
 U2 溶媒回収工程
 U3 洗浄工程
 U4 軽沸分離工程
 U5 精製工程
 U6 熱分解工程
 U31 (メタ)アクリル酸エステル層
 U32 水層
 U33 界面
 U36 抜き出しノズル
 W1、W2、W3、W4 起立壁
 S1、S2 サイトグラス
 P2、P3 送液ポンプ
 L2、L3 液面計
 V2 流量調整バルブ
 A、B、C、B1、B2 室

Claims (11)

  1.  軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液を連続的に分離槽に導入して該混合液から該軽液と該重液とを連続的に分離する方法であって、該分離槽として、
     槽体と、
     該槽体の底面から起立する起立壁によって該槽体内を区画することによりそれぞれ設けられた室であって、前記混合液が導入され、室内に前記軽液と前記重液との界面が形成される室A、該室Aから前記軽液が溢流部を溢流して流入する室B、及び該室Aの底部から前記重液が移流管を介して流入する室Cと、
     該室A内の上下方向の途中から前記乳化液を抜き出す乳化液抜き出し部と
    を備え、
     前記移流管は、一端が前記室A内に開口し、他端が前記室C内に開口しており、
     前記室Aと前記室Cとを区画する前記起立壁の上端は、前記溢流部よりも高位に位置するように構成された分離槽であって、
     前記槽体底部から前記溢流部までの高さをh
     前記槽体底部から前記移流管の前記室C内の開口までの高さをh
     前記槽体底部から前記室A内の前記界面までの高さをh・α、
     前記重液の比重Pと前記軽液の比重Pとの比P/PをXとした場合、
     α=(h×X-h)/h(X-1)の関係が成り立ち、
     前記Xが最小値Xminのときα≧0.2であり、
     前記Xが最大値Xmaxのときα≦0.7である、分離方法。
  2.  前記分離槽は、前記槽体底部から前記室A内の前記界面までの高さを検知し、前記乳化液の有無を確認する検知部を有する、請求項1に記載の分離方法。
  3.  前記検知部は、前記槽体に設けられた、該槽体内部視認用の透視部である、請求項2に記載の分離方法。
  4.  前記分離槽は、前記槽体内を照明する照明部を有する、請求項1~3のいずれか1項に記載の分離方法。
  5.  前記分離槽の前記室B及び前記室Cの少なくとも一方は、一室又は複数室からなり、
     前記分離槽の前記室B及び前記室Cの少なくとも一方が、複数室からなる場合、個々の室は、前記槽体の底面から起立する起立壁によって区画され、該起立壁に設けられた溢流部又は連結管により直列に繋がれている、請求項1~4のいずれか1項に記載の分離方法。
  6.  前記槽体は、横型円筒容器又は縦型円筒容器である請求項1~5のいずれか1項に記載の分離方法。
  7.  前記分離槽は、前記室B及び前記室Cから、それぞれ、室内の液面高さを所定範囲に保つように液を流出させる流出部を有する、請求項1~6のいずれか1項に記載の分離方法。
  8.  前記分離槽は、前記槽体を保温する保温部及び該槽体に供給される前記混合液を加熱する加熱部の少なくとも一方を備える、請求項1~7のいずれか1項に記載の分離方法。
  9.  前記混合液は、抽出塔の界面近傍から抜き出した軽液、該軽液より比重が大きい重液及び該軽液と該重液との乳化液を含有する混合液である、請求項1~8のいずれか1項に記載の分離方法。
  10.  前記分離槽の運転開始前に予め前記室A内に前記重液を入れておく、請求項1~9のいずれか1項に記載の分離方法。
  11.  (メタ)アクリル酸エステルの製造において、請求項1~10のいずれか1項に記載の分離方法を用いる、(メタ)アクリル酸エステルの製造方法。
PCT/JP2018/036064 2017-09-29 2018-09-27 分離方法及び(メタ)アクリル酸エステルの製造方法 WO2019065892A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18861524.9A EP3689434B1 (en) 2017-09-29 2018-09-27 Separation method and production method for (meth)acrylate
MYPI2020001444A MY194707A (en) 2017-09-29 2018-09-27 Separation method, and production method for (meth) acrylate
CN201880061109.2A CN111107918B (zh) 2017-09-29 2018-09-27 分离方法和(甲基)丙烯酸酯的制造方法
CA3076323A CA3076323A1 (en) 2017-09-29 2018-09-27 Separation method, and production method for (meth)acrylate
RU2020111570A RU2753867C1 (ru) 2017-09-29 2018-09-27 Способ разделения и способ получения (мет)акрилата
US16/820,933 US11097209B2 (en) 2017-09-29 2020-03-17 Separation method, and production method for (meth)acrylate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-191140 2017-09-29
JP2017191140 2017-09-29
JP2018178727A JP7087877B2 (ja) 2017-09-29 2018-09-25 分離方法及び(メタ)アクリル酸エステルの製造方法
JP2018-178727 2018-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/820,933 Continuation US11097209B2 (en) 2017-09-29 2020-03-17 Separation method, and production method for (meth)acrylate

Publications (1)

Publication Number Publication Date
WO2019065892A1 true WO2019065892A1 (ja) 2019-04-04

Family

ID=65903583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036064 WO2019065892A1 (ja) 2017-09-29 2018-09-27 分離方法及び(メタ)アクリル酸エステルの製造方法

Country Status (2)

Country Link
MY (1) MY194707A (ja)
WO (1) WO2019065892A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167812U (ja) * 1984-10-08 1986-05-09
JPH0645602U (ja) * 1992-12-04 1994-06-21 三菱マテリアル株式会社 ミキサセトラーの液面レベル調整装置
JP2003226672A (ja) 2001-11-27 2003-08-12 Mitsubishi Chemicals Corp (メタ)アクリル酸エステルの製造方法
JP2005145880A (ja) * 2003-11-14 2005-06-09 Mitsubishi Chemicals Corp ビニル芳香族化合物の製造方法及び製造装置
JP2014162764A (ja) 2013-02-26 2014-09-08 Mitsubishi Chemicals Corp (メタ)アクリル酸エステルの製造方法
JP2017191140A (ja) 2016-04-11 2017-10-19 キヤノン株式会社 撮像装置、及びその制御方法
JP2018178727A (ja) 2017-04-03 2018-11-15 いすゞ自動車株式会社 タービンハウジングおよびターボチャージャー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167812U (ja) * 1984-10-08 1986-05-09
JPH0645602U (ja) * 1992-12-04 1994-06-21 三菱マテリアル株式会社 ミキサセトラーの液面レベル調整装置
JP2003226672A (ja) 2001-11-27 2003-08-12 Mitsubishi Chemicals Corp (メタ)アクリル酸エステルの製造方法
JP2005145880A (ja) * 2003-11-14 2005-06-09 Mitsubishi Chemicals Corp ビニル芳香族化合物の製造方法及び製造装置
JP2014162764A (ja) 2013-02-26 2014-09-08 Mitsubishi Chemicals Corp (メタ)アクリル酸エステルの製造方法
JP2017191140A (ja) 2016-04-11 2017-10-19 キヤノン株式会社 撮像装置、及びその制御方法
JP2018178727A (ja) 2017-04-03 2018-11-15 いすゞ自動車株式会社 タービンハウジングおよびターボチャージャー

Also Published As

Publication number Publication date
MY194707A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
DK170761B1 (da) Fremgangsmåde og apparat til gasflotationsbehandling af en produceret vandblanding indeholdende olie og vand
CN104667579B (zh) 一种强化冷低压分离器中油水分离及耦合除盐功能的方法及装置
CN1867539A (zh) 含亚乙基胺的混合物的蒸馏分离
CN104673367A (zh) 一种耦合油气洗涤的混合油水分步分离方法
GB1601567A (en) Effecting liquid-liquid contact
JP2019063788A (ja) 分離方法及び(メタ)アクリル酸エステルの製造方法
EA020768B1 (ru) Устройство и способ удаления примесей с помощью жидкостной экстракции меди
CA1063041A (en) Solvent extraction process and mixer-settler unit therefor
CN204447409U (zh) 一种强化冷低压分离器中油水分离及耦合除盐装置
CN105567300B (zh) 一种溶剂脱沥青抽提塔和溶剂脱沥青的方法
CA2940561C (en) Semi-continuous treatment of produced water with boiler flue gas
WO2019065892A1 (ja) 分離方法及び(メタ)アクリル酸エステルの製造方法
EA010077B1 (ru) Способ и устройство для очистки органического раствора, малорастворимого в воде, от водных включений
CN101935081B (zh) 一种压力式气浮分离装置
KR20110048587A (ko) 카프로락탐을 포함하는 유기 상의 세척
CN205011671U (zh) 丁辛醇生产装置工业废料综合利用装置
CN206089115U (zh) 一种油水分离塔
US3661260A (en) Continuous slurry separation
US9181498B2 (en) Apparatus and process for removal of sulfur-containing compounds from a hydrocarbon stream
CN219058856U (zh) 用于苯乙酸生产中的连续分离设备
SU1761192A1 (ru) Устройство дл разделени высокопенистых нефтей с повышенным содержанием механических примесей
CN203855446U (zh) 含油污水旋流反应及双向分离净化装置
RU47765U1 (ru) Гравитационный сепаратор
SU1367997A1 (ru) Нефтегазовый сепаратор
US20140332466A1 (en) Liquid-Liquid Contacting Tray With Concentric Inlet And Outlet Weirs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3076323

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861524

Country of ref document: EP

Effective date: 20200429

WWE Wipo information: entry into national phase

Ref document number: 520411641

Country of ref document: SA