WO2019065049A1 - 電源ic - Google Patents

電源ic Download PDF

Info

Publication number
WO2019065049A1
WO2019065049A1 PCT/JP2018/031757 JP2018031757W WO2019065049A1 WO 2019065049 A1 WO2019065049 A1 WO 2019065049A1 JP 2018031757 W JP2018031757 W JP 2018031757W WO 2019065049 A1 WO2019065049 A1 WO 2019065049A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
feedback
output
switching power
Prior art date
Application number
PCT/JP2018/031757
Other languages
English (en)
French (fr)
Inventor
智 名手
好則 佐藤
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US16/650,639 priority Critical patent/US11509225B2/en
Priority to JP2019544446A priority patent/JP6853373B2/ja
Publication of WO2019065049A1 publication Critical patent/WO2019065049A1/ja
Priority to US17/900,027 priority patent/US11848615B2/en
Priority to US18/491,512 priority patent/US20240048052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power supply IC.
  • patent document 1 and patent document 2 can be mentioned as an example of the prior art relevant to the above.
  • a feedback resistor for dividing the output voltage or induced voltage to generate a feedback voltage is externally provided. Therefore, various problems associated with the external connection of the feedback resistor (for example, the number of parts increases, the noise tolerance deteriorates, the output voltage can not easily be variably controlled, double overvoltage protection is required, or , Open / short protection of the feedback resistor connection terminal is required).
  • the invention disclosed in the present specification provides a power supply IC capable of solving various problems associated with external attachment of a feedback resistor in view of the above problems found by the inventors of the present application. With the goal.
  • the power supply IC disclosed in the present specification is a semiconductor integrated circuit device serving as a control subject of a switching power supply, and is a feedback that generates a feedback voltage by dividing an output voltage of the switching power supply or a voltage corresponding thereto.
  • a resistor and an output feedback control unit that performs output feedback control of the switching power supply according to the feedback voltage are integrated on a single semiconductor substrate, and the feedback resistor is a polysilicon resistor having a withstand voltage of 100 V or more. It is considered to have a configuration.
  • FIG. 1 is a block diagram showing an entire configuration of an electronic device provided with a non-insulated switching power supply.
  • the electronic device X of this configuration example includes a switching power supply 1x and a load 2 that operates by receiving power supply from the switching power supply 1x.
  • the switching power supply 1x is means for converting the AC input voltage Vac (for example, AC 85 to 265 V) supplied from the commercial AC power supply PW into a desired DC output voltage Vo (for example, DC 400 V) and supplying the load 2 to the load 2. And a DC / DC converter 20x.
  • AC input voltage Vac for example, AC 85 to 265 V
  • Vo for example, DC 400 V
  • the rectifying unit 10x is a circuit block that generates a DC input voltage Vi (for example, DC 120 to 375 V) from the AC input voltage Vac and supplies the DC / DC converter 20x with the filter 11, the diode bridge 12, the capacitor 13, and And 14).
  • the filter 11 removes noise and surge from the AC input voltage Vac.
  • the diode bridge 12 full-wave rectifies the AC input voltage Vac to generate a DC input voltage Vi.
  • Capacitor 13 removes harmonic noise of AC input voltage Vac.
  • Capacitor 14 smoothes DC input voltage Vi.
  • a protective element such as a fuse may be provided in the front stage of the rectifying unit 10x.
  • the DC / DC conversion unit 20x is a circuit block that generates a desired DC output voltage Vo from the DC input voltage Vi and supplies it to the load 2.
  • the power supply IC 100x is a semiconductor integrated circuit device that controls the switching power supply 1x (in particular, the DC / DC conversion unit 20x), and uses external terminals T1 to T8 as means for establishing electrical connection with the outside of the device. Have. Of course, external terminals other than these may be provided in the power supply IC 100x.
  • the power supply IC 100x is characterized in that it incorporates a feedback resistor for dividing the DC output voltage Vo. This point will be described in detail later.
  • the second end of the resistor R6 is connected to the first end of the capacitor C3.
  • the second ends of the capacitors C2 and C3 are both connected to the ground end.
  • the capacitors C2 and C3 and the resistor R6 thus connected function as phase compensation means of an output feedback control unit (details will be described later) integrated in the power supply IC 100x.
  • the external terminal T3 (clock control terminal) is connected to the first end of the resistor R7.
  • the second end of the resistor R7 is connected to the ground end.
  • the resistor R7 functions as frequency adjusting means of an oscillator (details will be described later) integrated in the power supply IC 100x.
  • a resistor R5 is connected between the gate and the source of the transistor N1.
  • the source and back gate of the transistor N1 are both connected to the ground terminal.
  • the second end of the coil L1 is connected to the drain of the transistor N1 and the anode of the diode D1.
  • the cathode of the diode D1 and the first end of the capacitor C1 are both connected to the output end of the DC output voltage Vo.
  • the second end of the capacitor C1 is connected to the ground end.
  • the transistor N1, the coil L1, the diode D1 and the capacitor C1 connected in this manner function as a step-up switching output stage that generates a DC output voltage Vo from the DC input voltage Vi.
  • the transistor N1 is on / off controlled according to the gate signal GO input from the external terminal T7. More specifically, the transistor N1 turns on when the gate signal GO is at high level, and turns off when the gate signal GO is at low level.
  • the transistor N1 when the transistor N1 is turned off, the back electromotive force generated in the coil L1 releases the electrical energy stored therein as a current.
  • the diode D1 since the diode D1 is in a forward bias state, the coil current IL flowing through the diode D1 flows from the output end of the DC output voltage Vo to the load 2 as the DC output current Io and is grounded via the capacitor C1. It also flows to the end and the capacitor C1 is charged.
  • the load 2 is supplied with a DC output voltage Vo obtained by boosting the DC input voltage Vi.
  • FIG. 2 is a block diagram showing one configuration example of the power supply IC 100x.
  • the power supply IC 100x of this configuration example includes a resistance voltage division unit 101, an error amplifier 102, an oscillator 103, a comparator 104, a filter 105, a comparator 106, a signal delay unit 107, a timer 108, and an AND operator. 109, RS flip-flop 110, comparators 111 and 112, inverters 113 and 114, AND operator 115, predriver 116, P channel type MOS field effect transistor 117, N channel type MOS field effect transistor 118 and a clamper 119 are integrated.
  • the feedback resistors Ra and Rb As described above, by incorporating the feedback resistors Ra and Rb, it is possible to realize the reduction of the number of parts and the improvement of the noise resistance. Further, by setting the feedback resistors Ra and Rb as variable resistors, it is possible to easily variably control the target value of the DC output voltage Vo. Furthermore, since the external feedback resistor is not connected to the external terminal T1, the open / short protection thereof is also unnecessary. The integrated structure of the feedback resistors Ra and Rb will be described in detail later.
  • the error amplifier 102 generates an error signal Veo according to the difference between the feedback voltage Vfb input to the inverting input terminal (-) and the reference voltage Vref (for example, 2.5 V) input to the non-inverting input terminal (+). Generate More specifically, the error amplifier 102 pulls down the error signal Veo when the feedback voltage Vfb is higher than the reference voltage Vref, and pulls up the error signal Veo when the feedback voltage Vfb is lower than the reference voltage Vref.
  • the oscillator 103 generates pulses of the clock signal CK and the slope signal Vslp at a predetermined oscillation frequency fosc.
  • the oscillation frequency fosc can be arbitrarily adjusted in accordance with the resistance value of the resistor R7 (see FIG. 1) externally attached to the external terminal T3.
  • the comparator 104 compares the error signal Vfb input to the inverting input terminal (-) with the slope signal Vslp input to the non-inverting input terminal (+) to generate the off signal S2.
  • the off signal S2 is low when the error signal Vfb is higher than the slope signal Vslp, and is high when the error voltage Vfb is lower than the slope signal Vslp.
  • the filter 105 removes noise of the sense voltage VIS input to the external terminal T5.
  • the comparator 106 compares the filtered sense voltage VIS input to the non-inverting input terminal (+) with the threshold voltage Vth ( ⁇ 0 V) input to the inverting input terminal ( ⁇ ) to generate the zero cross detection signal Sz. Do.
  • the signal delay unit 107 gives a predetermined delay to the zero cross detection signal Sz to generate a delayed zero cross detection signal SzD.
  • the timer 108 generates the mask signal Smsk in response to the delay zero cross detection signal SzD.
  • the AND operator 109 generates the ON signal S1 by performing an AND operation of the clock signal CK and the mask signal Smsk.
  • the ON signal S1 is high when both the clock signal CK and the mask signal Smsk are high, and is low when at least one of the clock signal CK and the mask signal Smsk is low.
  • the pulse frequency of the on signal S1 (and the switching frequency of the DC / DC converter 20x) is variably controlled according to the mask signal Smsk.
  • the filter 105, the comparator 106, the signal delay unit 107, the timer 108, and the logical product operator 109 described above are the phase of the DC input voltage Vi and the phase of the DC input current Ii (and thus the phase of the AC input voltage Vac).
  • the comparator 111 compares the feedback voltage Vfb input to the non-inverting input terminal (+) with the threshold voltage Vth1 input to the inverting input terminal (-) to generate an overvoltage protection signal S4.
  • the threshold voltage Vth1 have hysteresis characteristics. For example, when the overvoltage protection signal S4 is at low level, the threshold voltage Vth1 is set to the upper threshold voltage Vth1H (for example, 2.7 V), and when the overvoltage protection signal S4 is at high level, the threshold voltage Vth1 is set to the lower threshold voltage Vth1L ( For example, it may be switched to 2.6 V).
  • the comparator 112 compares the divided voltage Vdet input to the non-inverting input terminal (+) with the threshold voltage Vth2 input to the inverting input terminal ( ⁇ ) to generate an overvoltage protection signal S5.
  • the threshold voltage Vth2 have hysteresis characteristics. For example, when the overvoltage protection signal S5 is low, the threshold voltage Vth2 is set to the upper threshold voltage Vth2H (eg, 2.7 V), and when the overvoltage protection signal S5 is high, the threshold voltage Vth2 is reduced to the lower threshold voltage Vth2L ( For example, it may be switched to 2.6 V).
  • the AND operator 115 generates a switching control signal S6 by performing an AND operation of the pulse width modulation signal S3 and the inversion overvoltage protection signals S4B and S5B.
  • the switching control signal S6 is at high level when all of the pulse width modulation signal S3 and the inversion overvoltage protection signals S4B and S5B are at high level, and at least one of the pulse width modulation signal S3 and the inversion overvoltage protection signals S4B and S5B. Goes low when one is low.
  • the safety of the power supply IC 100x can be enhanced.
  • power supply IC 100x of this configuration example can receive direct input of DC output voltage Vo with the integration of resistance voltage dividing portion 101, unlike the conventional configuration in which feedback resistors Ra and Rb are externally attached. , There is no need to worry about its open / short anomaly.
  • the unnecessary external terminal T4 may be disposed, for example, as an unused terminal (NC pin) next to the external terminal T1. With such a configuration, a sufficient creeping distance can be provided between the external terminal T1 to which a high voltage is applied and the other external terminals, so insulation between the both terminals can be secured. It becomes.
  • the predriver 116 generates gate signals G1 and G2 in response to the switching control signal S6. More specifically, the pre-driver 116 basically lowers both gate signals G1 and G2 when the switching control signal S6 is high to turn on / off the transistors 117 and 118 complementarily. When the switching control signal S6 is at low level, the gate signals G1 and G2 are both at high level.
  • the gate signal G1 is set to high level and the gate signal G2 is set to low level at the same time (so-called dead time). ) Is provided.
  • the transistors 117 and 118 function as a half bridge output stage for generating the gate signal GO.
  • a gate signal G1 is input to the gate of the transistor 117.
  • the transistor 117 is turned off when the gate signal G1 is at high level, and turned off when the gate signal G1 is at low level.
  • the gate signal G2 is input to the gate of the transistor 118.
  • the transistor 118 is turned on when the gate signal G2 is at high level, and turned off when the gate signal G2 is at low level.
  • the clamper 119 limits the power supply voltage Vcc applied to the source of the transistor 117 to a predetermined value or less.
  • the error amplifier 102, the oscillator 103, the comparator 104, the RS flip flop 110, the predriver 116, and the transistors 117 and 118 are switched power supplies 1x (DC / DC conversion according to the feedback voltage Vfb). It functions as an output feedback control unit that performs output feedback control of the unit 20x).
  • the power supply IC 100x includes a soft start circuit, a reference voltage source, various protection circuits (a temperature protection circuit, an overcurrent protection circuit, and a low voltage protection) in addition to the components described above. It is good to integrate circuits etc.).
  • FIG. 3 is a block diagram showing the entire configuration (second embodiment) of the electronic device provided with the isolated switching power supply.
  • the electronic device Y of this configuration example includes an isolated switching power supply 1y and a load 2 that operates by receiving power supply from the isolated switching power supply 1y.
  • the insulation type switching power supply 1y is an alternating current supplied from the commercial AC power supply PW to the primary circuit system 1p while electrically insulating between the primary circuit system 1p (GND1 system) and the secondary circuit system 1s (GND2 system).
  • a conversion unit 20y is an input voltage Vac (for example, AC 85 to 265 V) into a desired DC output voltage Vo (for example, DC 10 to 30 V) and supplying it to the load 2 of the secondary circuit system 1s.
  • the rectifying unit 10y is a circuit block that generates a DC input voltage Vi (for example, DC 120 to 375 V) from the AC input voltage Vac and supplies the DC / DC converter 20y with the filter 11, the diode bridge 12, the capacitor 13, and And 14).
  • the filter 11 removes noise and surge from the AC input voltage Vac.
  • the diode bridge 12 full-wave rectifies the AC input voltage Vac to generate a DC input voltage Vi.
  • Capacitor 13 removes harmonic noise of AC input voltage Vac.
  • Capacitor 14 smoothes DC input voltage Vi.
  • a protective element such as a fuse may be provided at the front stage of the rectifying unit 10y.
  • the DC / DC conversion unit 20y is a circuit block that generates a desired DC output voltage Vo from the DC input voltage Vi and supplies it to the load 2.
  • the power supply IC 100y and various discrete components transformation TR , Resistors R11 to R18, capacitors C11 to C14, diodes D11 and D12, a light emitting diode LED, a phototransistor PT, and a shunt regulator REG).
  • the transformer TR has a primary winding L11 (number of turns Np) and a secondary winding L12 (number of turns Ns) magnetically coupled to each other in reverse polarity and electrically insulating between the primary circuit system 1p and the secondary circuit system 1s. including. Also, the transformer TR includes an auxiliary winding L13 (number of turns Nd) provided in the primary circuit system 1p as a means for generating the power supply voltage Vcc of the power supply IC 100y and the feedback voltage Vfb.
  • the first end of the primary winding L11 is connected to the application end of the DC input voltage Vi.
  • the second end of the primary winding L11 is connected to an external terminal T17 (described in detail later) of the power supply IC 100y.
  • the first end of the secondary winding L12 is connected to the anode of the diode D12.
  • the second end of the secondary winding L12 is connected to the ground terminal GND2 of the secondary circuit system 1s.
  • the number of turns Np and Ns may be adjusted arbitrarily to obtain a desired DC output voltage Vo.
  • the DC output voltage Vo decreases as the number of turns Np increases or as the number of turns Ns decreases, and conversely, as the number of turns Np decreases or as the number of turns Ns increases, the DC output voltage Vo increases.
  • the power supply IC 100y is a semiconductor integrated circuit device provided in the primary circuit system 1p, and serves as a control entity of the isolated switching power supply 1y (particularly, the DC / DC conversion unit 20y).
  • the power supply IC 100y includes external terminals T11 to T17 as means for establishing electrical connection with the outside of the apparatus.
  • the power supply IC 100y may be provided with an external terminal other than the above.
  • the external terminal T11 (source terminal) is connected to the first end of the resistor R11.
  • the second end of the resistor R11 is connected to the ground terminal GND1 of the primary circuit system 1p.
  • the resistor R11 functions as a sense resistor for detecting the primary current Ip flowing through the output switch integrated in the power supply IC 100y as a voltage signal.
  • the emitter of the phototransistor PT and the second end of the capacitor C11 are both connected to the ground terminal GND1.
  • the phototransistor PT functions as a photocoupler together with the light emitting diode LED provided in the secondary circuit system 1s, and generates the feedback current Ifb according to the light signal from the light emitting diode LED.
  • the power supply IC 100y is characterized in that it incorporates a feedback resistor for dividing the induced voltage Vp. This point will be described in detail later.
  • the anode of the diode D11 is connected to the first end of the auxiliary winding L13.
  • the second end of each of the capacitor C12 and the auxiliary winding L13 is connected to the ground terminal GND1.
  • the diode D11 and the capacitor C12 connected in this manner function as a power supply voltage generation unit that rectifies and smoothes the induced voltage Vp generated in the auxiliary winding L13 to generate the power supply voltage Vcc of the power supply IC 100y.
  • the winding ratio of the primary winding L11 and the auxiliary winding L13 of the transformer TR may be appropriately set in consideration of the power supply voltage Vcc necessary for the power supply IC 100y.
  • the inter-terminal distance between the external terminal T16 and the external terminal T17 is expanded to twice the specified value by thinning out the external terminals between each other.
  • the anode of the diode D12 is connected to the first end of the secondary winding L12 as described above.
  • the cathode of the diode D12 and the first end of the capacitor C13 are both connected to the output end of the DC output voltage Vo.
  • the second end of the capacitor C13 is connected to the ground terminal GND2.
  • the diode D12 and the capacitor C13 thus connected function as a rectifying and smoothing unit that rectifies and smoothes the induced voltage generated in the secondary winding L12 to generate a DC output voltage Vo.
  • the first end of the resistor R14 is connected to the output end of the DC output voltage Vo.
  • the second end of the resistor R14 is connected to the anode of the light emitting diode LED and the first end of the resistor R15.
  • the cathode of the light emitting diode 91 and the second end of the resistor R15 are both connected to the cathode of the shunt regulator REG.
  • the anode of the shunt regulator REG is connected to the ground terminal GND2.
  • the resistor R16 and the capacitor C14 are connected in series between the gate and the cathode of the shunt regulator REG.
  • the shunt regulator REG controls the current flowing to the light emitting diode LED in accordance with the divided voltage Vdiv applied to the gate. That is, the above-mentioned circuit element group (R14 to R18, C14, LED, REG) generates an optical signal according to the DC output voltage Vo and transmits it to the photodiode PT of the primary circuit system 1p as an output feedback portion Function.
  • the transformer TR, the diode D12, and the capacitor C13 function as a flyback step-down switching output stage that generates the DC output voltage Vo from the DC input voltage Vi. .
  • the DC output voltage Vo is generated from the AC input voltage Vac while electrically insulating between the primary circuit system 1p and the secondary circuit system 1s.
  • Load 2 can be supplied.
  • FIG. 4 is a block diagram showing one configuration example of the power supply IC 100y in the second embodiment.
  • the power supply IC 100 y of this configuration example includes a resistance voltage dividing unit 121, a sample / hold unit 122, an error amplifier 123, comparators 124 and 125, a controller 126, an oscillator 127, an RS flip flop 128, and an output switch 129. And the mask processing unit 130 are integrated.
  • Vpon - ⁇ Vi ⁇ (Nd / Np ) ⁇ 50 V to ⁇ 200 V
  • Vpoff ⁇ Vo ⁇ (Nd / Ns) + 10 V to +30 V.
  • the voltage value Vpon fluctuates according to the DC input voltage Vi
  • the voltage value Vpoff fluctuates depending on the DC output voltage Vo. Therefore, for example, by monitoring the feedback voltage Vfb generated from the induced voltage Vp that appears in the auxiliary winding L13 during the off period of the output switch 129, feedback control of the DC output voltage Vo or overvoltage protection is applied. It is possible to
  • the feedback resistors Ra and Rb it is possible to reduce the number of parts and improve the noise immunity. Further, by setting the feedback resistors Ra and Rb as variable resistors, it is possible to easily variably control the target value of the DC output voltage Vo. Further, since the external terminal T15 is not connected to the external feedback resistor, the open / short protection thereof is also unnecessary.
  • the integrated structure of the feedback resistors Ra and Rb will be described in detail later.
  • the sample / hold circuit 122 samples / holds the feedback voltage Vfb to generate a hold voltage V1.
  • the error amplifier 123 generates an error voltage V2 according to the difference between the holding voltage V1 applied to the inverting input terminal (-) and the reference voltage Vref1 applied to the non-inverting input terminal (+). More specifically, the error amplifier 123 lowers the error voltage V2 when the held voltage V1 is higher than the reference voltage Vref1, and raises the error voltage V2 when the held voltage V1 is lower than the reference voltage Vref1.
  • the comparator 124 compares the error voltage V2 applied to the inverting input terminal (-) with the detection voltage V4 applied to the non-inverting input terminal (+) to generate a comparison signal Sa.
  • the comparison signal Sa is high when the detection voltage V4 is higher than the error voltage V2, and is low when the detection voltage V4 is lower than the error voltage V2.
  • the comparator 125 compares the reference voltage Vref2 applied to the inverting input terminal (-) with the detection voltage V4 applied to the non-inverting input terminal (+) to generate a comparison signal Sb.
  • the comparison signal Sb is high when the detection voltage V4 is higher than the reference voltage Vref2, and is low when the detection voltage V4 is lower than the reference voltage Vref2.
  • the controller 126 generates a pulse in the off signal S2 in response to the comparison signals Sa and Sb. More specifically, the controller 126 detects rising edges of the comparison signals Sa and Sb to generate a pulse in the off signal S2.
  • the oscillator 127 generates a pulse in the on signal S1 at a predetermined oscillation frequency fosc.
  • the RS flip flop 128 generates a gate signal G1 (corresponding to an output control signal) according to the on signal S1 input to the set terminal (S) and the off signal S2 input to the reset terminal (R). More specifically, the RS flip-flop 128 sets the gate signal G1 to high level at the rising edge of the on signal S1, and resets the gate signal G1 to low level at the rising edge of the off signal S2.
  • the output switch 129 conducts / cuts the current path from the application end of the DC input voltage Vi to the ground end GND1 via the primary winding L11 in accordance with the gate signal G1, thereby causing the primary current Ip flowing in the primary winding L11. Switch element to turn on / off.
  • an N-channel MOS (metal oxide semiconductor) field effect transistor is used as the output switch 129.
  • the drain of the output switch 129 is connected to the external terminal T17.
  • the source and back gate of the output switch 129 are both connected to the external terminal T11.
  • the gate of the output switch 129 is connected to the application terminal of the gate signal G1.
  • the output switch 129 is turned on when the gate signal G1 is at high level, and turned off when the gate signal G1 is at low level.
  • the mask processing unit 130 performs predetermined mask processing on the sense voltage V3 to generate a detection voltage V4. More specifically, the mask processing unit 130 fixes the detection voltage V4 to a zero value over a predetermined mask period after the output switch 129 is turned on. With such a configuration, it is possible to improve the stability of the switching control operation because it is not affected by the ringing noise of the sense voltage V3 generated when the output switch 129 is turned on.
  • the sample / hold unit 122, the error amplifier 123, the comparators 124 and 125, the controller 126, the oscillator 127, and the RS flip flop 128 are each configured as an isolated switching power supply 1y (DC Functions as an output feedback control unit that performs output feedback control of the / DC conversion unit 20y).
  • the power supply IC 100y includes a soft start circuit, a reference voltage source, various protection circuits (a temperature protection circuit, an overcurrent protection circuit, and a low voltage protection) in addition to the components described above. It is good to integrate circuits etc.).
  • FIG. 5 is a longitudinal sectional view schematically showing formation regions of the feedback resistors Ra and Rb in the power supply IC 100x or 100y (hereinafter collectively referred to as the power supply IC 100). As shown in the figure, the power supply IC 100 is formed by integrating the feedback resistor 201 and the output feedback control unit 202 in a single semiconductor substrate 200.
  • the feedback resistor 201 is a means for dividing the DC output voltage Vo of the switching power supply 1x or the induced voltage Vp appearing in the auxiliary winding L13 of the isolated switching power supply 1y to generate a feedback voltage Vfb.
  • the feedback resistors Ra and Rb correspond to this.
  • the output feedback control unit 202 is means for performing output feedback control of the switching power supply 1x or the isolated switching power supply 1y according to the feedback voltage Vfb.
  • the error amplifier 102, the oscillator 103, the comparator 104, the RS flip flop 110, the predriver 116, and the transistors 117 and 118 correspond to this.
  • the sample / hold unit 122, the error amplifier 123, the comparators 124 and 125, the controller 126, the oscillator 127, the RS flip flop 128, and the like correspond to this.
  • the feedback resistor 201 it is desirable to use a polysilicon resistor having a withstand voltage of 100 V or more (400 V or more in this configuration example).
  • the feedback resistor 201 when integrating the feedback resistor 201, it is necessary not only to increase the withstand voltage of the path (horizontal direction) via the feedback resistor 201 but also to increase the withstand voltage between the feedback resistor 201 and the substrate potential end (vertical direction). Become. Therefore, in the semiconductor substrate 200, a high breakdown voltage region 203 having a breakdown voltage higher in the substrate thickness direction (vertical direction) than the other regions is formed, and the feedback resistor 201 is formed on the high breakdown voltage region 203. .
  • an LDMOSFET lateral double diffused metal oxide semiconductor field effect transistor
  • ⁇ High-voltage area (LDMOSFET area)> 6 and 7 are a longitudinal sectional view and a top view showing one structural example of the power supply IC 100 (in particular, around the central portion of the high breakdown voltage region 203).
  • the longitudinal sectional view of FIG. 6 schematically shows an ⁇ 1- ⁇ 2 cross section of FIG.
  • a high concentration n-type semiconductor region 304 is formed in the low concentration n-type semiconductor region 302, and a high concentration n-type semiconductor region 305 is formed in the high concentration p-type semiconductor region 303.
  • the high concentration n-type semiconductor regions 304 and 305 correspond to the drain region (D) and the source region (S) of the LDMOSFET, respectively.
  • a plurality of concentric annular drain regions (D) and source regions (S) are alternately formed in a plan view.
  • a field oxide film 306 is formed on the outer surface layer of the low concentration n-type semiconductor region 302 so as to surround the high concentration n-type semiconductor region 304. Further, in the surface layer of the p-type semiconductor substrate 301, a gate oxide film 307 is formed between the high concentration n-type semiconductor region 305 and the field oxide film 306. A gate region (G) made of polysilicon is formed on the gate oxide film 307.
  • a low concentration p-type semiconductor region 310 is formed immediately below the field oxide film 306 as a means for forming a parasitic capacitance between the field oxide film 306 and the low concentration n-type semiconductor region 302.
  • the aforementioned feedback resistor 201 is formed on the field oxide film 311.
  • the feedback resistor 201 may be formed using the same polysilicon layer as the gate region 308 and the field plate 309. In the example of this figure, both ends of the feedback resistor 201 are respectively connected to the first metal layer 1M through the vias, and further, the first metal layer 1M is connected to the second metal layer 2M through the vias. It is connected.
  • the number of laminated metal layers is not limited to this, and may be only one layer or three or more layers.
  • the feedback resistor 201 may be formed by combining a plurality of unit resistors 201 (1) to 201 (m) (where m ⁇ 2).
  • the resistance value per unit resistor is 1 M ⁇
  • 10 unit resistors may be connected in series.
  • the connection form (serial / parallel) of unit resistors 201 (1) to 201 (m) and the output end of feedback voltage Vfb can be arbitrarily switched, the voltage division ratio of DC output voltage Vo is adjusted. Therefore, the target value of the DC output voltage Vo can be easily variably controlled.
  • LDMOSFET region for example, 600V breakdown voltage
  • the high breakdown voltage area 203 a high breakdown voltage between the feedback resistor 201 and the p-type semiconductor substrate 301 can be realized.
  • ⁇ Pin arrangement> 8 to 11 are plan views showing first to fourth examples of pin arrangement in the power supply IC 100, respectively.
  • n total (2 ⁇ n)
  • external terminals are derived in two directions from the long side of the package.
  • SOP small outline package
  • DIP dual in-line package
  • the hatched external terminal TA is a high withstand voltage terminal (external terminal T1 in FIG. 1 or FIG. 2 or FIG. 3) for receiving an input of the DC output voltage Vo (for example, DC 400 V). Or equivalent to the external terminal T15 of FIG.
  • white external terminals TB are low breakdown voltage terminals to which a high voltage as high as the DC output voltage Vo is not applied.
  • the inter-terminal distance between the external terminal TA and the external terminal TB adjacent thereto is d1
  • I will give a description of the pin arrangement.
  • the external terminals TA at the long side end of the package as shown in FIGS. 8 to 10.
  • a package of 8 pins or less as shown in FIGS. 8 and 9, it is essential to provide the external terminal TA at the long side end of the package.
  • a package with a larger number of pins for example, a 16-pin package
  • the power supply IC disclosed in the present specification is a semiconductor integrated circuit device serving as a control main body of a switching power supply, comprising: a feedback resistor that divides an output voltage of the switching power supply to generate a feedback voltage; An output feedback control unit for performing output feedback control of the switching power supply according to a single semiconductor substrate, wherein the feedback resistor is a polysilicon resistor having a withstand voltage of 100 V or more (first Configuration).
  • a high breakdown voltage region having a breakdown voltage higher in the substrate thickness direction than the other regions is formed in the semiconductor substrate, and the feedback resistor is the high breakdown voltage region. It is good to make it the structure (2nd structure) currently formed on it.
  • the high breakdown voltage region may be configured as an LDMOSFET region (third configuration).
  • a plurality of concentric annular drain regions and source regions are alternately formed in a plan view in the LDMOSFET region, and the feedback resistance is a drain on the innermost periphery
  • the structure (fourth structure) is preferably formed on the field oxide film surrounded by the region.
  • the feedback resistor may have a configuration (fifth configuration) formed by combining a plurality of unit resistors.
  • the distance between the first external terminal for receiving the input of the output voltage and the other second external terminal is the second external terminal.
  • the configuration (sixth configuration) may be equal to or greater than the distance between the terminals.
  • the first external terminal for receiving the input of the output voltage is provided at the end of the package (seventh configuration). It is good to do.
  • the switching power supply disclosed in the present specification includes a power supply IC having any one of the first to seventh configurations and a switching output stage controlled by the power supply IC (eighth Configuration).
  • the switching output stage preferably has a configuration (ninth configuration) functioning as a component of a DC / DC conversion unit that generates a DC output voltage from a DC input voltage.
  • the switching power supply having the ninth configuration preferably has a configuration (tenth configuration) further including a rectifying unit that generates the DC input voltage from an AC input voltage.
  • the power supply IC may have a power factor improvement function (11th configuration) for aligning the phase of the AC input voltage with the phase of the AC input current. .
  • the electronic device disclosed in the present specification has a configuration including the switching power supply having any one of the eighth to eleventh configurations, and a load that operates by receiving power supply from the switching power supply (a It is considered as 12 composition).
  • the power supply IC disclosed in the present specification is a power supply IC serving as a control main body of the isolated switching power supply, and the auxiliary winding provided on the primary side of the transformer included in the isolated switching power supply
  • a feedback resistor that divides the induced voltage to generate a feedback voltage, and an output feedback control unit that performs output feedback control of the isolated switching power supply according to the feedback voltage are integrated on a single semiconductor substrate.
  • the feedback resistor is configured to be a polysilicon resistor having a withstand voltage of 100 V or more (a thirteenth configuration).
  • a high breakdown voltage region having a breakdown voltage higher in the substrate thickness direction than the other regions is formed in the semiconductor substrate, and the feedback resistor is the high breakdown voltage region. It is good to make it the structure (14th structure) currently formed on it.
  • the high breakdown voltage region may be configured as an LDMOSFET region (fifteenth configuration).
  • a plurality of concentric annular drain regions and source regions are alternately formed in a plan view in the LDMOSFET region, and the feedback resistance is a drain on the innermost periphery
  • a configuration (sixteenth configuration) may be formed on the field oxide film surrounded by the region.
  • the feedback resistor may have a configuration (a seventeenth configuration) in which a plurality of unit resistors are combined.
  • the inter-terminal distance between the first external terminal for receiving the input of the induced voltage and the other second external terminal is the second external terminal.
  • a configuration (18th configuration) equal to or greater than the distance between the terminals may be employed.
  • the first external terminal for receiving the input of the induced voltage is provided at an end portion of the package (a nineteenth configuration). It is good to do.
  • the isolated switching power supply disclosed in the present specification includes a power supply IC having any one of the thirteenth to nineteenth configurations and a switching output stage controlled by the power supply IC Configuration).
  • the switching output stage is a direct current supplied to the primary circuit system while electrically insulating the primary circuit system and the secondary circuit system using a transformer.
  • the configuration may be such that it functions as a component of a DC / DC conversion unit that generates a DC output voltage from an input voltage and supplies the DC output voltage to the load of the secondary circuit system (a 21st configuration).
  • the insulated switching power supply having the twenty-first configuration preferably has a configuration (a twenty-second configuration) further including a rectifying unit that generates the DC input voltage from an AC input voltage.
  • an electronic device disclosed in the present specification includes: an isolated switching power supply having the configuration of any of the twentieth to twenty-second embodiments; and a load which operates by receiving power supply from the isolated switching power supply. It is set as the composition (the 23rd composition) which it has.
  • the invention disclosed in the present specification can be used for non-insulated or insulated switching power supplies used in all fields (home appliance field, automobile field, industrial machine field, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

電源IC100は、スイッチング電源の制御主体となる半導体集積回路装置であり、スイッチング電源の出力電圧(または絶縁型スイッチング電源に含まれるトランスの一次側に設けられた補助巻線に現れる誘起電圧)を分圧して帰還電圧を生成する帰還抵抗201と、帰還電圧に応じてスイッチング電源の出力帰還制御を行う出力帰還制御部202と、を単一の半導体基板200に集積化して成る。帰還抵抗201は、100V以上の耐圧を持つポリシリコン抵抗である。半導体基板200には、その他の領域よりも基板厚さ方向の耐圧が高い高耐圧領域203が形成されており、帰還抵抗201は、高耐圧領域203上に形成されている。高耐圧領域203は、例えば、LDMOSFET領域である。

Description

電源IC
 本発明は、電源ICに関する。
 スイッチング電源の制御主体となる電源ICは、一般的に、出力電圧に応じた帰還電圧(=出力電圧の分圧電圧)の入力を受け付けて出力帰還制御を行う。
 また、絶縁型スイッチング電源の制御主体となる電源ICには、トランスの一次側に設けられた補助巻線の誘起電圧に応じた帰還電圧(=誘起電圧の分圧電圧)の入力を受け付けて出力帰還制御を行うものがある。
 なお、上記に関連する従来技術の一例としては、特許文献1や特許文献2を挙げることができる。
特開2014-027751号公報 特開2014-112996号公報
 しかしながら、従来の電源ICでは、出力電圧ないしは誘起電圧を分圧して帰還電圧を生成するための帰還抵抗が外付けとされていた。そのため、帰還抵抗の外付けに伴う種々の課題(例えば、部品点数が増大する、ノイズ耐量が悪化する、簡単に出力電圧を可変制御することができない、二重の過電圧保護が必要となる、若しくは、帰還抵抗接続端子のオープン/ショート保護が必要となる)があった。
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、帰還抵抗の外付けに伴う種々の課題を解消することのできる電源ICを提供することを目的とする。
 本明細書中に開示されている電源ICは、スイッチング電源の制御主体となる半導体集積回路装置であって、前記スイッチング電源の出力電圧またはこれに応じた電圧を分圧して帰還電圧を生成する帰還抵抗と、前記帰還電圧に応じて前記スイッチング電源の出力帰還制御を行う出力帰還制御部とを単一の半導体基板に集積化して成り、前記帰還抵抗は、100V以上の耐圧を持つポリシリコン抵抗である構成とされている。
 なお、本発明のその他の特徴、要素、ステップ、利点、及び、特性については、以下に続く最良の形態の詳細な説明やこれに関する添付の図面によって、さらに明らかとなる。
 本明細書中に開示されている発明によれば、帰還抵抗の外付けに伴う種々の課題を解消することのできる電源ICを提供することが可能となる。
スイッチング電源を備えた電子機器の全体構成(第1実施形態)を示すブロック図 第1実施形態における電源ICの一構成例を示すブロック図 絶縁型スイッチング電源を備えた電子機器の全体構成(第2実施形態)を示すブロック図 第2実施形態における電源ICの一構成例を示すブロック図 帰還抵抗の形成領域を模式的に示す縦断面図 高耐圧領域の一構造例を示す縦断面図 高耐圧領域の一構造例を示す上面図 ピン配置の第1例を示す平面図 ピン配置の第2例を示す平面図 ピン配置の第3例を示す平面図 ピン配置の第4例を示す平面図
<スイッチング電源(第1実施形態)>
 図1は、非絶縁型のスイッチング電源を備えた電子機器の全体構成を示すブロック図である。本構成例の電子機器Xは、スイッチング電源1xと、スイッチング電源1xから電力供給を受けて動作する負荷2と、を有する。
 スイッチング電源1xは、商用交流電源PWから供給される交流入力電圧Vac(例えばAC85~265V)を所望の直流出力電圧Vo(例えばDC400V)に変換して負荷2に供給する手段であり、整流部10xと、DC/DC変換部20xを含む。
 整流部10xは、交流入力電圧Vacから直流入力電圧Vi(例えばDC120~375V)を生成してDC/DC変換部20xに供給する回路ブロックであり、フィルタ11と、ダイオードブリッジ12と、キャパシタ13及び14と、を含む。フィルタ11は、交流入力電圧Vacからノイズやサージを除去する。ダイオードブリッジ12は、交流入力電圧Vacを全波整流して直流入力電圧Viを生成する。キャパシタ13は、交流入力電圧Vacの高調波ノイズを除去する。キャパシタ14は、直流入力電圧Viを平滑化する。なお、整流部10xの前段には、フューズなどの保護素子を設けてもよい。
 DC/DC変換部20xは、直流入力電圧Viから所望の直流出力電圧Voを生成して負荷2に供給する回路ブロックであり、電源IC100xと、これに外付けされる種々のディスクリート部品(Nチャネル型MOS電界効果トランジスタN1、コイルL1、ダイオードD1、抵抗R1~R7、及び、キャパシタC1~C3)と、を含む。
 電源IC100xは、スイッチング電源1x(特にDC/DC変換部20x)の制御主体となる半導体集積回路装置であり、装置外部との電気的な接続を確立するための手段として、外部端子T1~T8を備えている。もちろん、電源IC100xには、これら以外の外部端子を設けても構わない。
 外部端子T1(=出力帰還端子)は、直流出力電圧Voの出力端に接続されている。なお、電源IC100xは、直流出力電圧Voを分圧するための帰還抵抗を内蔵した点に特徴を有しているが、この点については後ほど詳述する。
 外部端子T2(=位相補償端子)は、キャパシタC2と抵抗R6それぞれの第1端に接続されている。抵抗R6の第2端は、キャパシタC3の第1端に接続されている。キャパシタC2及びC3それぞれの第2端は、いずれも接地端に接続されている。このように接続されたキャパシタC2及びC3と抵抗R6は、電源IC100xに集積化された出力帰還制御部(詳細は後述)の位相補償手段として機能する。
 外部端子T3(クロック制御端子)は、抵抗R7の第1端に接続されている。抵抗R7の第2端は、接地端に接続されている。なお、抵抗R7は、電源IC100xに集積化されたオシレータ(詳細は後述)の周波数調整手段として機能する。
 外部端子T4(=過電圧検出端子)は、直流出力電圧Voの出力端と接地端との間に直列接続された抵抗R1及びR2相互間の接続ノードに接続されている。なお、抵抗R1及びR2は、相互間の接続ノードから直流出力電圧Voに応じた検出電圧Vdet(=Vo×R2/(R1+R2))を出力する分圧手段として機能する。
 外部端子T5(=電流検出端子)は、抵抗R3の第1端とダイオードブリッジ12の負側出力端との接続ノードに接続されている。なお、抵抗R3の第2端は、接地端に接続されている。すなわち、外部端子T5には、接地端から抵抗R3を介してダイオードブリッジ12の負側出力端に流れる直流入力電流Ii(<0)に応じたセンス電圧VIS(=Ii×R3)が印加される。
 外部端子T6(=接地端子)は、接地端に接続されている。
 外部端子T7(=出力端子)は、抵抗R4を介してトランジスタN1のゲートに接続されている。トランジスタN1のゲートとソースとの間には、抵抗R5が接続されている。トランジスタN1のソースとバックゲートは、いずれも接地端に接続されている。コイルL1の第1端は、ダイオードブリッジ12の正側出力端(=直流入力電圧Viの出力端に相当)に接続されている。コイルL1の第2端は、トランジスタN1のドレインとダイオードD1のアノードに接続されている。ダイオードD1のカソードとキャパシタC1の第1端は、いずれも直流出力電圧Voの出力端に接続されている。キャパシタC1の第2端は、接地端に接続されている。
 このように接続されたトランジスタN1、コイルL1、ダイオードD1、及び、キャパシタC1は、直流入力電圧Viから直流出力電圧Voを生成する昇圧型のスイッチング出力段として機能する。なお、トランジスタN1は、外部端子T7から入力されるゲート信号GOに応じてオン/オフ制御される。より具体的に述べると、トランジスタN1は、ゲート信号GOがハイレベルであるときにオンし、ゲート信号GOがローレベルであるときにオフする。
 上記スイッチング出力段の昇圧動作について簡単に説明する。トランジスタN1がオンされると、コイルL1にはトランジスタN1を介して接地端に向けたコイル電流ILが流れ、その電気エネルギが蓄えられる。このとき、ダイオードD1のアノードに現れるスイッチ電圧Vswは、トランジスタN1を介してほぼ接地電位まで低下する。従って、ダイオードD1が逆バイアス状態となるので、キャパシタC1からトランジスタN1に向けて電流が流れ込むことはない。
 一方、トランジスタN1がオフされると、コイルL1に生じた逆起電力により、そこに蓄積されていた電気エネルギが電流として放出される。このとき、ダイオードD1は、順バイアス状態となるため、ダイオードD1を介して流れるコイル電流ILは、直流出力電流Ioとして直流出力電圧Voの出力端から負荷2に流れ込むとともに、キャパシタC1を介して接地端にも流れ込み、キャパシタC1が充電される。上記の動作が繰り返されることにより、負荷2には、直流入力電圧Viを昇圧した直流出力電圧Voが供給される。
 外部端子T8(=電源端子)は、電源電圧Vccの印加端に接続されている。
<電源IC(第1実施形態)>
 図2は、電源IC100xの一構成例を示すブロック図である。本構成例の電源IC100xは、抵抗分圧部101と、エラーアンプ102と、オシレータ103と、コンパレータ104と、フィルタ105と、コンパレータ106と、信号遅延部107と、タイマ108と、論理積演算器109と、RSフリップフロップ110と、コンパレータ111及び112と、インバータ113及び114と、論理積演算器115と、プリドライバ116と、Pチャネル型MOS電界効果トランジスタ117と、Nチャネル型MOS電界効果トランジスタ118と、クランパ119と、を集積化して成る。
 抵抗分圧部101は、外部端子T1(=直流出力電圧Voの印加端)と接地端との間に直列接続された帰還抵抗Ra及びRbを含み、相互間の接続ノードから直流出力電圧Voに応じた帰還電圧Vfb(=Vo×Rb/(Ra+Rb))を生成する。なお、電源IC100xの待機電力を低減するためには、帰還抵抗Ra及びRbの抵抗値をMΩオーダーとすることが望ましい。
 このように、帰還抵抗Ra及びRbを内蔵することにより、部品点数の削減やノイズ耐量の向上を実現することが可能となる。また、帰還抵抗Ra及びRbを可変抵抗とすることにより、直流出力電圧Voの目標値を簡単に可変制御することが可能となる。さらに、外部端子T1には、外付けの帰還抵抗が接続されないので、そのオープン/ショート保護も不要となる。なお、帰還抵抗Ra及びRbの集積化構造については後ほど詳述する。
 エラーアンプ102は、反転入力端(-)に入力される帰還電圧Vfbと、非反転入力端(+)に入力される基準電圧Vref(例えば2.5V)との差分に応じた誤差信号Veoを生成する。より具体的に述べると、エラーアンプ102は、帰還電圧Vfbが基準電圧Vrefよりも高いときに誤差信号Veoを引き下げ、帰還電圧Vfbが基準電圧Vrefよりも低いときに誤差信号Veoを引き上げる。なお、エラーアンプ102の出力端(=誤差信号Veoの出力端)は、外部端子T2に接続されている。
 オシレータ103は、所定の発振周波数foscでクロック信号CKとスロープ信号Vslpのパルス生成を行う。なお、発振周波数foscは、外部端子T3に外付けされる抵抗R7(図1を参照)の抵抗値に応じて、任意に調整することが可能である。
 コンパレータ104は、反転入力端(-)に入力される誤差信号Vfbと、非反転入力端(+)に入力されるスロープ信号Vslpを比較してオフ信号S2を生成する。オフ信号S2は、誤差信号Vfbがスロープ信号Vslpよりも高いときにローレベルとなり、誤差電圧Vfbがスロープ信号Vslpよりも低いときにハイレベルとなる。
 フィルタ105は、外部端子T5に入力されるセンス電圧VISのノイズを除去する。
 コンパレータ106は、非反転入力端(+)に入力されるフィルタ済みのセンス電圧VISと反転入力端(-)に入力される閾値電圧Vth(≒0V)とを比較してゼロクロス検出信号Szを生成する。ゼロクロス検出信号Szは、センス電圧VISが閾値電圧Vthよりも低いときにローレベル(=ゼロクロス未検出時の論理レベル)となり、センス電圧VISが閾値電圧Vthよりも高いときにハイレベル(=ゼロクロス検出時の論理レベル)となる。
 信号遅延部107は、ゼロクロス検出信号Szに所定の遅延を与えて遅延ゼロクロス検出信号SzDを生成する。
 タイマ108は、遅延ゼロクロス検出信号SzDに応じてマスク信号Smskを生成する。なお、マスク信号Smskは、クロック信号CKのマスク(=無効化)を行うときにローレベルとなり、クロック信号CKのマスクを解除するときにハイレベルとなる。
 論理積演算器109は、クロック信号CKとマスク信号Smskとの論理積演算を行うことによりオン信号S1を生成する。なお、オン信号S1は、クロック信号CKとマスク信号Smskの両方がハイレベルであるときにハイレベルとなり、クロック信号CKとマスク信号Smskの少なくとも一方がローレベルであるときにローレベルとなる。
 すなわち、マスク信号Smskのハイレベル期間(=マスク解除期間)には、クロック信号CKがオン信号S1としてスルー出力される一方、マスク信号Smskのローレベル期間(=マスク期間)には、オン信号S1がローレベルに固定される。従って、オン信号S1のパルス周波数(延いてはDC/DC変換部20xのスイッチング周波数)は、マスク信号Smskに応じて可変制御される。
 なお、上記したフィルタ105、コンパレータ106、信号遅延部107、タイマ108、並びに、論理積演算器109は、直流入力電圧Viの位相と直流入力電流Iiの位相(延いては交流入力電圧Vacの位相と交流入力電流Iacの位相)を揃えるための力率改善機能部(PFC[power factor correction]機能部)として機能する。
 RSフリップフロップ110は、セット端(S)に入力されるオン信号S1と、リセット端(R)に入力されるオフ信号S2に応じて、パルス幅変調信号S3を生成する。より具体的に述べると、RSフリップフロップ110は、オン信号S1の立上りエッジでパルス幅変調信号S3をハイレベル(=トランジスタN1をオンするときの論理レベル)にセットし、オフ信号S2の立上りエッジでパルス幅変調信号S3をローレベル(=トランジスタN1をオフするための論理レベル)にリセットする。
 コンパレータ111は、非反転入力端(+)に入力される帰還電圧Vfbと、反転入力端(-)に入力される閾値電圧Vth1を比較して過電圧保護信号S4を生成する。過電圧保護信号S4は、帰還電圧Vfbが閾値電圧Vth1よりも高いときにハイレベル(=過電圧検出時の論理レベル)となり、帰還電圧Vfbが閾値電圧Vth1よりも低いときにローレベル(=過電圧未検出時の論理レベル)となる。
 なお、閾値電圧Vth1には、ヒステリシス特性を持たせておくことが望ましい。例えば、過電圧保護信号S4がローレベルであるときには、閾値電圧Vth1を上側閾値電圧Vth1H(例えば2.7V)とし、過電圧保護信号S4がハイレベルであるときには、閾値電圧Vth1を下側閾値電圧Vth1L(例えば2.6V)に切り替えるとよい。
 コンパレータ112は、非反転入力端(+)に入力される分圧電圧Vdetと、反転入力端(-)に入力される閾値電圧Vth2とを比較して過電圧保護信号S5を生成する。過電圧保護信号S5は、分圧電圧Vdetが閾値電圧Vth2よりも高いときにハイレベル(=過電圧検出時の論理レベル)となり、分圧電圧Vdetが閾値電圧Vth2よりも低いときにローレベル(=過電圧未検出時の論理レベル)となる。
 なお、閾値電圧Vth2には、ヒステリシス特性を持たせておくことが望ましい。例えば、過電圧保護信号S5がローレベルであるときには、閾値電圧Vth2を上側閾値電圧Vth2H(例えば2.7V)とし、過電圧保護信号S5がハイレベルであるときには、閾値電圧Vth2を下側閾値電圧Vth2L(例えば2.6V)に切り替えるとよい。
 インバータ113は、過電圧保護信号S4を論理反転することにより反転過電圧保護信号S4Bを生成する。従って、反転過電圧保護信号S4Bは、過電圧保護信号S4がハイレベルであるときにローレベル(=過電圧検出時の論理レベル)となり、過電圧保護信号S4がローレベルであるときにハイレベル(=過電圧未検出時の論理レベル)となる。
 インバータ114は、過電圧保護信号S5を論理反転することにより反転過電圧保護信号S5Bを生成する。従って、反転過電圧保護信号S5Bは、過電圧保護信号S5がハイレベルであるときにローレベル(=過電圧検出時の論理レベル)となり、過電圧保護信号S5がローレベルであるときにハイレベル(=過電圧未検出時の論理レベル)となる。
 論理積演算器115は、パルス幅変調信号S3と反転過電圧保護信号S4B及びS5Bとの論理積演算を行うことによりスイッチング制御信号S6を生成する。なお、スイッチング制御信号S6は、パルス幅変調信号S3と反転過電圧保護信号S4B及びS5Bの全てがハイレベルであるときにハイレベルとなり、パルス幅変調信号S3と反転過電圧保護信号S4B及びS5Bの少なくとも一つがローレベルであるときにローレベルとなる。すなわち、反転過電圧保護信号S4B及びS5Bの双方がハイレベル(=過電圧未検出時の論理レベル)であるときには、パルス幅変調信号S3がスイッチング制御信号S6としてスルー出力される一方、反転過電圧保護信号S4B及びS5Bの少なくとも一方がローレベル(=過電圧検出時の論理レベル)であるときには、スイッチング制御信号S6がローレベルに固定される。
 このように、帰還電圧Vfbと分圧電圧Vdetの双方を監視して二重の過電圧保護を掛けることにより、電源IC100xの安全性を高めることが可能となる。
 ただし、本構成例の電源IC100xは、抵抗分圧部101の集積化に伴い、直流出力電圧Voの直接入力を受け付けることができるので、帰還抵抗Ra及びRbを外付けしていた従来構成と異なり、そのオープン/ショート異常を懸念する必要はない。
 これを鑑みると、帰還電圧Vfbに基づく過電圧保護の信頼性は十分に高いと考えられるので、部品点数の削減やチップ面積の縮小を優先して、二重の過電圧保護(抵抗R1及びR2、コンパレータ112、及び、インバータ114)を省略することも可能である。
 なお、不要となる外部端子T4については、例えば、不使用端子(N.C.ピン)として外部端子T1の隣に配設するとよい。このような構成とすることにより、高電圧が印加される外部端子T1とその他の外部端子との間に十分な沿面距離を設けることができるので、両端子間の絶縁性を確保することが可能となる。
 プリドライバ116は、スイッチング制御信号S6に応じてゲート信号G1及びG2を生成する。より具体的に述べると、プリドライバ116は、基本的に、トランジスタ117及び118を相補的にオン/オフすべく、スイッチング制御信号S6がハイレベルであるときにゲート信号G1及びG2をいずれもローレベルとし、スイッチング制御信号S6がローレベルであるときにゲート信号G1及びG2をいずれもハイレベルとする。
 ただし、トランジスタ117及び118に過大な貫通電流が流れないように、それぞれのオン/オフ状態を切り替えるタイミングでは、ゲート信号G1をハイレベルとしてゲート信号G2をローレベルとする同時オフ時間(いわゆるデッドタイム)が設けられる。
 トランジスタ117及び118は、ゲート信号GOを生成するためのハーフブリッジ出力段として機能する。トランジスタ117のソースとバックゲートは、いずれも、クランパ119を介して外部端子T8(=電源端子)に接続されている。トランジスタ117及び118それぞれのドレインは、ゲート信号GOの出力端として外部端子T7(=出力端子)に接続されている。トランジスタ118のソースとバックゲートは、いずれも外部端子T6(=接地端子)に接続されている。
 なお、トランジスタ117のゲートには、ゲート信号G1が入力されている。トランジスタ117は、ゲート信号G1がハイレベルであるときにオフし、ゲート信号G1がローレベルであるときにオフする。
 一方、トランジスタ118のゲートには、ゲート信号G2が入力されている。トランジスタ118は、ゲート信号G2がハイレベルであるときにオンし、ゲート信号G2がローレベルであるときにオフする。
 クランパ119は、トランジスタ117のソースに印加される電源電圧Vccを所定値以下に制限する。
 なお、上記した構成要素のうち、エラーアンプ102、オシレータ103、コンパレータ104、RSフリップフロップ110、プリドライバ116、並びに、トランジスタ117及び118は、帰還電圧Vfbに応じてスイッチング電源1x(DC/DC変換部20x)の出力帰還制御を行う出力帰還制御部として機能する。
 また、本図では明示されていないが、電源IC100xには、上記した構成要素以外にも、ソフトスタート回路、基準電圧源、各種保護回路(温度保護回路、過電流保護回路、及び、減電圧保護回路など)を集積化するとよい。
<絶縁型スイッチング電源(第2実施形態)>
 図3は、絶縁型スイッチング電源を備えた電子機器の全体構成(第2実施形態)を示したブロック図である。本構成例の電子機器Yは、絶縁型スイッチング電源1yと、絶縁型スイッチング電源1yから電力供給を受けて動作する負荷2と、を有する。
 絶縁型スイッチング電源1yは、一次回路系1p(GND1系)と二次回路系1s(GND2系)との間を電気的に絶縁しつつ、商用交流電源PWから一次回路系1pに供給される交流入力電圧Vac(例えばAC85~265V)を所望の直流出力電圧Vo(例えばDC10~30V)に変換して、二次回路系1sの負荷2に供給する手段であり、整流部10yと、DC/DC変換部20yと、を含む。
 整流部10yは、交流入力電圧Vacから直流入力電圧Vi(例えばDC120~375V)を生成してDC/DC変換部20yに供給する回路ブロックであり、フィルタ11と、ダイオードブリッジ12と、キャパシタ13及び14と、を含む。フィルタ11は、交流入力電圧Vacからノイズやサージを除去する。ダイオードブリッジ12は、交流入力電圧Vacを全波整流して直流入力電圧Viを生成する。キャパシタ13は、交流入力電圧Vacの高調波ノイズを除去する。キャパシタ14は、直流入力電圧Viを平滑化する。なお、整流部10yの前段には、フューズなどの保護素子を設けてもよい。
 DC/DC変換部20yは、直流入力電圧Viから所望の直流出力電圧Voを生成して負荷2に供給する回路ブロックであり、電源IC100yと、これに外付けされる種々のディスクリート部品(トランスTR、抵抗R11~R18、キャパシタC11~C14、ダイオードD11及びD12、発光ダイオードLED、フォトトランジスタPT、並びにシャントレギュレータREG)と、を含む。
 トランスTRは、一次回路系1pと二次回路系1sとの間を電気的に絶縁しつつ互いに逆極性で磁気結合された一次巻線L11(巻数Np)及び二次巻線L12(巻数Ns)を含む。また、トランスTRは、電源IC100yの電源電圧Vccや帰還電圧Vfbを生成する手段として、一次回路系1pに設けられた補助巻線L13(巻数Nd)を含む。
 一次巻線L11の第1端は、直流入力電圧Viの印加端に接続されている。一次巻線L11の第2端は、電源IC100yの外部端子T17(詳細は後述)に接続されている。二次巻線L12の第1端は、ダイオードD12のアノードに接続されている。二次巻線L12の第2端は、二次回路系1sの接地端GND2に接続されている。
 なお、巻数Np及びNsについては、所望の直流出力電圧Voが得られるように任意に調整すればよい。例えば、巻数Npが多いほど又は巻数Nsが少ないほど直流出力電圧Voは低くなり、逆に、巻数Npが少ないほど又は巻数Nsが多いほど直流出力電圧Voは高くなる。
 電源IC100yは、一次回路系1pに設けられた半導体集積回路装置であり、絶縁型スイッチング電源1y(特にDC/DC変換部20y)の制御主体となる。なお、電源IC100yは、装置外部との電気的な接続を確立するための手段として、外部端子T11~T17を備えている。もちろん、電源IC100yには、上記以外の外部端子を設けても構わない。
 外部端子T11(ソース端子)は、抵抗R11の第1端に接続されている。抵抗R11の第2端は、一次回路系1pの接地端GND1に接続されている。なお、抵抗R11は、電源IC100yに集積化された出力スイッチに流れる一次電流Ipを電圧信号として検出するためのセンス抵抗として機能する。
 外部端子T12(=ブラウンアウト端子)は、直流入力電圧Viの印加端と接地端GND1の間に直列接続された抵抗R12及びR13相互間の接続ノードに接続されている。なお、抵抗R12及びR13は、相互間の接続ノードから直流入力電圧Viに応じた検出電圧VBR(=Vi×R13/(R12+R13))を出力する分圧部として機能する。
 外部端子T13(=接地端子)は、接地端GND1に接続されている。
 外部端子T14(=帰還電流入力端子)は、フォトトランジスタPTのコレクタとキャパシタC11の第1端に接続されている。フォトトランジスタPTのエミッタとキャパシタC11の第2端は、いずれも接地端GND1に接続されている。なお、フォトトランジスタPTは、二次回路系1sに設けられた発光ダイオードLEDと共にフォトカプラとして機能し、発光ダイオードLEDからの光信号に応じた帰還電流Ifbを生成する。
 外部端子T15(=誘起電圧入力端子)は、補助巻線L13の第1端(=誘起電圧Vpの印加端に相当)に接続されている。なお、電源IC100yは、誘起電圧Vpを分圧するための帰還抵抗を内蔵した点に特徴を有するが、この点については後ほど詳述する。
 外部端子T16(=電源端子)は、ダイオードD11のカソードとキャパシタC12の第1端との接続ノード(=電源電圧Vccの印加端相当)に接続されている。ダイオードD11のアノードは、補助巻線L13の第1端に接続されている。キャパシタC12及び補助巻線L13それぞれの第2端は、いずれも接地端GND1に接続されている。
 このように接続されたダイオードD11とキャパシタC12は、補助巻線L13に生じる誘起電圧Vpを整流及び平滑して電源IC100yの電源電圧Vccを生成する電源電圧生成部として機能する。なお、トランスTRの一次巻線L11と補助巻線L13の巻線比については、電源IC100yに必要な電源電圧Vccを鑑みて適宜設定すればよい。
 外部端子T17(=ドレイン端子)は、先にも述べたように、一次巻線L11の第2端(=スイッチ電圧Vswの印加端に相当)に接続されている。なお、外部端子T16と外部端子T17との端子間距離は、相互間の外部端子を間引くことにより、規定値の2倍に広げられている。
 次に、二次回路系1sに設けられた回路要素の接続関係について述べる。
 ダイオードD12のアノードは、先述のように、二次巻線L12の第1端に接続されている。ダイオードD12のカソードとキャパシタC13の第1端は、いずれも直流出力電圧Voの出力端に接続されている。キャパシタC13の第2端は、接地端GND2に接続されている。このように接続されたダイオードD12とキャパシタC13は、二次巻線L12に生じる誘起電圧を整流及び平滑して直流出力電圧Voを生成する整流平滑部として機能する。
 抵抗R14の第1端は、直流出力電圧Voの出力端に接続されている。抵抗R14の第2端は、発光ダイオードLEDのアノードと抵抗R15の第1端に接続されている。発光ダイオード91のカソードと抵抗R15の第2端は、いずれもシャントレギュレータREGのカソードに接続されている。シャントレギュレータREGのアノードは、接地端GND2に接続されている。シャントレギュレータREGのゲート(=制御端子に相当)は、直流出力電圧Voの出力端と接地端GND2との間に直列接続された抵抗R17及びR18相互間の接続ノード(=分圧電圧Vdiv(=Vo×R18/(R17+R18))の印加端に相当)に接続されている。抵抗R16とキャパシタC14は、シャントレギュレータREGのゲートとカソードとの間に直列接続されている。
 なお、シャントレギュレータREGは、ゲートに印加される分圧電圧Vdivに応じて発光ダイオードLEDに流れる電流を制御する。すなわち、上記の回路要素群(R14~R18、C14、LED、REG)は、直流出力電圧Voに応じた光信号を生成し、これを一次回路系1pのフォトダイオードPTに伝達する出力帰還部として機能する。
 また、上記構成から成るDC/DC変換部20yにおいて、トランスTR、ダイオードD12、及び、キャパシタC13は、直流入力電圧Viから直流出力電圧Voを生成するフライバック方式の降圧型スイッチング出力段として機能する。
 当該スイッチング出力段の降圧動作について簡単に説明する。電源IC100yの外部端子T11と外部端子T17との間に集積化された出力スイッチ(詳細は後述)がオンしているときには、直流入力電圧Viの印加端から一次巻線L11、出力スイッチ、及び、抵抗R11を介して接地端GND1に向けた一次電流Ipが流れるので、一次巻線L11に電気エネルギが蓄えられる。
 その後、出力スイッチがオフされると、一次巻線L11と磁気結合された二次巻線L12に誘起電圧が発生し、二次巻線L12からダイオードD12を介して接地端GND2に向けた二次電流Isが流れる。このとき、負荷2には、二次巻線L12の誘起電圧を整流及び平滑した直流出力電圧Voが供給される。
 以降も、出力スイッチがオン/オフされることにより、上記と同様のスイッチング動作が繰り返される。
 このように、本構成例の絶縁型スイッチング電源1yによれば、一次回路系1pと二次回路系1sとの間を電気的に絶縁しつつ、交流入力電圧Vacから直流出力電圧Voを生成して負荷2に供給することができる。
<電源IC(第2実施形態)>
 図4は、第2実施形態における電源IC100yの一構成例を示すブロック図である。本構成例の電源IC100yは、抵抗分圧部121と、サンプル/ホールド部122と、エラーアンプ123と、コンパレータ124及び125と、コントローラ126と、オシレータ127と、RSフリップフロップ128と、出力スイッチ129と、マスク処理部130を集積化して成る。
 抵抗分圧部121は、外部端子T15(=誘起電圧Vpの印加端)と接地端GND1との間に直列接続された帰還抵抗Ra及びRbを含み、相互間の接続ノードから誘起電圧Vpに応じた帰還電圧Vfb(=Vp×Rb/(Ra+Rb))を生成する。なお、電源IC100yの待機電力を低減するためには、帰還抵抗Ra及びRbの抵抗値をMΩオーダーとすることが望ましい。
 ここで、出力スイッチ129のオン期間中における誘起電圧Vpの電圧値をVponとし、出力スイッチ129のオフ期間中における誘起電圧Vpの電圧値をVpoffとした場合、Vpon≒-Vi×(Nd/Np)=-50V~-200Vとなり、Vpoff≒Vo×(Nd/Ns)=+10V~+30Vとなる。
 つまり、電圧値Vponは、直流入力電圧Viに応じて変動し、電圧値Vpoffは、直流出力電圧Voに依存して変動する。従って、例えば、出力スイッチ129のオフ期間中において、補助巻線L13に現れる誘起電圧Vpから生成された帰還電圧Vfbを監視することにより、直流出力電圧Voの帰還制御を行ったり過電圧保護を掛けたりすることが可能となる。
 また、帰還抵抗Ra及びRbを内蔵することにより、部品点数の削減やノイズ耐量の向上を実現することが可能となる。また、帰還抵抗Ra及びRbを可変抵抗とすることにより、直流出力電圧Voの目標値を簡単に可変制御することが可能となる。さらに、外部端子T15には、外付けの帰還抵抗が接続されないので、そのオープン/ショート保護も不要となる。なお、帰還抵抗Ra及びRbの集積化構造については、後ほど詳述する。
 サンプル/ホールド回路122は、帰還電圧Vfbをサンプル/ホールドして保持電圧V1を生成する。
 エラーアンプ123は、反転入力端(-)に印加される保持電圧V1と、非反転入力端(+)に印加される基準電圧Vref1との差分に応じた誤差電圧V2を生成する。より具体的に述べると、エラーアンプ123は、保持電圧V1が基準電圧Vref1よりも高いときには誤差電圧V2を引き下げ、保持電圧V1が基準電圧Vref1よりも低いときには誤差電圧V2を引き上げる。
 コンパレータ124は、反転入力端(-)に印加される誤差電圧V2と、非反転入力端(+)に印加される検出電圧V4を比較して比較信号Saを生成する。比較信号Saは、検出電圧V4が誤差電圧V2よりも高いときにハイレベルとなり、検出電圧V4が誤差電圧V2よりも低いときにローレベルとなる。
 コンパレータ125は、反転入力端(-)に印加される基準電圧Vref2と、非反転入力端(+)に印加される検出電圧V4を比較して比較信号Sbを生成する。比較信号Sbは、検出電圧V4が基準電圧Vref2よりも高いときにハイレベルとなり、検出電圧V4が基準電圧Vref2よりも低いときにローレベルとなる。
 コントローラ126は、比較信号Sa及びSbに応じてオフ信号S2にパルスを生成する。より具体的に述べると、コントローラ126は、比較信号Sa及びSbの立上りエッジを検出してオフ信号S2にパルスを生成する。
 オシレータ127は、所定の発振周波数foscでオン信号S1にパルスを生成する。
 RSフリップフロップ128は、セット端(S)に入力されるオン信号S1と、リセット端(R)に入力されるオフ信号S2に応じて、ゲート信号G1(出力制御信号に相当)を生成する。より具体的に述べると、RSフリップフロップ128は、オン信号S1の立上りエッジでゲート信号G1をハイレベルにセットし、オフ信号S2の立上りエッジでゲート信号G1をローレベルにリセットする。
 出力スイッチ129は、直流入力電圧Viの印加端から一次巻線L11を介して接地端GND1に至る電流経路をゲート信号G1に応じて導通/遮断することにより、一次巻線L11に流れる一次電流Ipをオン/オフするスイッチ素子である。本構成例では、出力スイッチ129として、Nチャネル型MOS[metal oxide semiconductor]電界効果トランジスタが用いられている。接続関係について述べると、出力スイッチ129のドレインは、外部端子T17に接続されている。出力スイッチ129のソース及びバックゲートは、いずれも外部端子T11に接続されている。出力スイッチ129のゲートは、ゲート信号G1の印加端に接続されている。出力スイッチ129は、ゲート信号G1がハイレベルであるときにオンとなり、ゲート信号G1がローレベルであるときにオフとなる。
 なお、先出の図3で示したように、外部端子T11と接地端GND1との間には、センス抵抗として、抵抗R11が外付けされている。従って、外部端子T11には、一次電流Ipに応じたセンス電圧V3(=Ip×R11)が生成される。
 マスク処理部130は、センス電圧V3に所定のマスク処理を施して検出電圧V4を生成する。より具体的に述べると、マスク処理部130は、出力スイッチ129がオンされてから所定のマスク期間に亘って検出電圧V4をゼロ値に固定する。このような構成とすることにより、出力スイッチ129のオン時に生じるセンス電圧V3のリンギングノイズの影響を受けずに済むので、スイッチング制御動作の安定性を高めることが可能となる。
 なお、上記構成要素のうち、サンプル/ホールド部122、エラーアンプ123、コンパレータ124及び125、コントローラ126、オシレータ127、並びに、RSフリップフロップ128は、帰還電圧Vfbに応じて絶縁型スイッチング電源1y(DC/DC変換部20y)の出力帰還制御を行う出力帰還制御部として機能する。
 また、本図では明示されていないが、電源IC100yには、上記した構成要素以外にも、ソフトスタート回路、基準電圧源、各種保護回路(温度保護回路、過電流保護回路、及び、減電圧保護回路など)を集積化するとよい。
<帰還抵抗>
 図5は、電源IC100xまたは100y(以下では、これらをまとめて電源IC100と呼ぶ)における帰還抵抗Ra及びRbの形成領域を模式的に示す縦断面図である。本図で示したように、電源IC100は、帰還抵抗201と出力帰還制御部202を単一の半導体基板200に集積化して成る。
 帰還抵抗201は、スイッチング電源1xの直流出力電圧Vo、または、絶縁型スイッチング電源1yの補助巻線L13に現れる誘起電圧Vpを分圧して帰還電圧Vfbを生成するための手段であり、先出の帰還抵抗Ra及びRbがこれに相当する。なお、帰還抵抗201の第1端には、外部端子T1(=出力帰還端子)または外部端子T15(誘起電圧入力端子)に至るメタル配線204がビアを介して接続されている。また、帰還抵抗201の第2端には、外部端子T6またはT13(=接地端子)に至るメタル配線205がビアを介して接続されている。また、本図では明示されていないが、帰還抵抗201には、帰還電圧Vfbの出力端(=帰還抵抗Ra及びRb相互間の接続ノードに相当)も設けられている。
 出力帰還制御部202は、帰還電圧Vfbに応じてスイッチング電源1xまたは絶縁型スイッチング電源1yの出力帰還制御を行うための手段である。なお、第1実施形態(図2)においては、エラーアンプ102、オシレータ103、コンパレータ104、RSフリップフロップ110、プリドライバ116、並びに、トランジスタ117及び118などがこれに相当する。また、第2実施形態(図4)においては、サンプル/ホールド部122、エラーアンプ123、コンパレータ124及び125、コントローラ126、オシレータ127、並びに、RSフリップフロップ128などがこれに相当する。
 ここで、帰還抵抗201としては、100V以上(本構成例では400V以上)の耐圧を持つポリシリコン抵抗を用いることが望ましい。
 また、帰還抵抗201の集積化に際しては、帰還抵抗201を介する経路(横方向)の高耐圧化だけでなく、帰還抵抗201と基板電位端との間(縦方向)の高耐圧化も必要となる。そこで、半導体基板200には、その他の領域よりも基板厚さ方向(縦方向)の耐圧が高い高耐圧領域203が形成されており、帰還抵抗201は、高耐圧領域203上に形成されている。
 このような構成とすることにより、帰還抵抗201を高耐圧化することができるので、直流出力電圧Vo(例えばDC400V)、若しくは、正負双方に大きく変動する誘起電圧Vp(例えば-200V~+30V)の直接入力を受け付けることが可能となる。
 なお、上記した高耐圧領域203としては、高耐圧化の実績が豊富なLDMOSFET[lateral double diffused metal oxide semiconductor field effect transistor]領域を流用することができる。以下では、LDMOSFET領域の構造について、具体的に説明する。
<高耐圧領域(LDMOSFET領域)>
 図6及び図7は、それぞれ、電源IC100(特に、高耐圧領域203の中央部周辺)の一構造例を示す縦断面図及び上面図である。なお、図6の縦断面図は、図7のα1-α2断面を模式的に示したものである。
 本図の電源IC100は、p型半導体基板301(先出の半導体基板200に相当)を有し、これに高耐圧領域203(=LDMOSFET領域)が形成されている。より具体的に述べると、p型半導体基板301には、高耐圧領域203の中央部において、低濃度n型半導体領域302とこれを取り囲む高濃度p型半導体領域303が形成されている。なお、高耐圧領域203における基板厚み方向の耐圧は、低濃度n型半導体領域302の不純物濃度を下げたり厚みを増すほど高くなる。
 低濃度n型半導体領域302には、高濃度n型半導体領域304が形成されており、高濃度p型半導体領域303には、高濃度n型半導体領域305が形成されている。これらの高濃度n型半導体領域304及び305は、それぞれ、LDMOSFETのドレイン領域(D)及びソース領域(S)に相当する。なお、図7で示したように、高耐圧領域203には、その平面視において同心環状のドレイン領域(D)とソース領域(S)が交互に複数形成されている。
 また、低濃度n型半導体領域302の外縁表層には、高濃度n型半導体領域304を取り囲むように、フィールド酸化膜306が形成されている。また、p型半導体基板301の表層には、高濃度n型半導体領域305とフィールド酸化膜306との間に亘り、ゲート酸化膜307が形成されている。なお、ゲート酸化膜上307には、ポリシリコンを素材とするゲート領域(G)が形成されている。
 また、フィールド酸化膜306上には、電界分布(=等電位線の間隔)を均等化して耐圧破壊を防止するための手段として、ポリシリコンを素材とするフィールドプレート309が形成されている。
 また、フィールド酸化膜306の直下には、フィールド酸化膜306と低濃度n型半導体領域302との間に寄生容量を形成するための手段として、低濃度p型半導体領域310が形成されている。このような構成とすることにより、寄生容量の保持電圧分だけ、基板厚み方向の耐圧を高めることができる。
 さらに、高濃度n型半導体領域305(=最内周のドレイン領域(D)に相当)に囲まれた低濃度n型半導体領域302の中央部表層には、フィールド酸化膜311が形成されており、先述の帰還抵抗201は、このフィールド酸化膜311上に形成されている。なお、帰還抵抗201は、ゲート領域308やフィールドプレート309と同一のポリシリコン層を用いて形成すればよい。なお、本図の例では、帰還抵抗201の両端部がそれぞれビアを介して第1メタル層1Mに接続されており、さらには、第1メタル層1Mがビアを介して第2メタル層2Mに接続されている。ただし、メタル層の積層数については、これに限定されるものではなく、1層のみであってもよいし3層以上であってもよい。
 また、帰還抵抗201は、図7で示したように、複数本の単位抵抗201(1)~201(m)(ただしm≧2)を組み合わせて形成するとよい。例えば、単位抵抗1本当たりの抵抗値が1MΩである場合において、帰還抵抗201の合成抵抗(=Ra+Rb)を10MΩとしたければ、10本の単位抵抗を直列に接続すればよい。また、単位抵抗201(1)~201(m)の接続形態(直列/並列)や帰還電圧Vfbの出力端を任意に切り替えることのできる構成としておけば、直流出力電圧Voの分圧比を調整することができるので、直流出力電圧Voの目標値を容易に可変制御することが可能となる。
 このように、高耐圧領域203としてLDMOSFET領域(例えば600V耐圧)を流用を流用することにより、帰還抵抗201とp型半導体基板301との間の高耐圧化を実現することができる。
<ピン配置>
 図8~図11は、それぞれ、電源IC100におけるピン配置の第1例~第4例を示す平面図である。各図の電源IC100では、パッケージの長辺から2方向にn本ずつ(合計(2×n)本)の外部端子が導出されている。このようなパッケージの一例としては、SOP[small outline package]やDIP[dual in-line package]などを挙げることができる。なお、図8及び図9では、8ピンパッケージ(n=4)が示されており、図10及び図11では、16ピンパッケージ(n=8)が示されている。
 また、各図中において、ハッチングが付されている外部端子TAは、直流出力電圧Vo(例えばDC400V)の入力を受け付けるための高耐圧端子(図1または図2の外部端子T1、ないしは、図3または図4の外部端子T15に相当)である。一方、白抜きの外部端子TB(符号が付されていないものについても同様)は、直流出力電圧Voほどの高電圧が印加されない低耐圧端子である。以下では、外部端子TAとこれに隣接する外部端子TBとの端子間距離をd1とし、互いに隣接する外部端子TB同士の端子間距離(=パッケージに規定されているピン間隔に相当)をd2として、ピン配置に関する説明を行うことにする。
 高電圧が印加される外部端子TAとこれに隣接する外部端子TBとの絶縁性を確保するためには、十分な沿面距離dxを隔てて両端子を配置しなければならない。ここで、d2>dxである場合には、図8で示したように、d1=d2(>dx)とすることができるので、外部端子TAと外部端子TBを同等に取り扱うことが可能となる。
 一方、dx>d2である場合には、d1>dx>d2という関係を成立させるべく、図9~図11で示したように、外部端子TAと外部端子TBとの間に本来設けられるべき外部端子を間引いたり、或いは、当該外部端子を不使用としたりすればよい。
 また、高耐圧端子に隣接する低耐圧端子の本数削減を鑑みると、外部端子TAは、図8~図10で示したように、パッケージの長辺端部に設けておくことが望ましい。特に、8ピン以下のパッケージでは、図8及び図9で示したように、外部端子TAをパッケージの長辺端部に設けることが必須となる。一方、よりピン数の多いパッケージ(例えば16ピンパッケージ)であれば、図11で示したように、外部端子TAをパッケージの長辺端部以外に設けることも任意となる。
<総括>
 以下では、本明細書中に開示されている種々の実施形態について総括的に述べる。
 本明細書中に開示されている電源ICは、スイッチング電源の制御主体となる半導体集積回路装置であって、前記スイッチング電源の出力電圧を分圧して帰還電圧を生成する帰還抵抗と、前記帰還電圧に応じて前記スイッチング電源の出力帰還制御を行う出力帰還制御部と、を単一の半導体基板に集積化して成り、前記帰還抵抗は、100V以上の耐圧を持つポリシリコン抵抗である構成(第1の構成)とされている。
 なお、上記第1の構成から成る電源ICにおいて、前記半導体基板には、その他の領域よりも基板厚さ方向の耐圧が高い高耐圧領域が形成されており、前記帰還抵抗は、前記高耐圧領域上に形成されている構成(第2の構成)にするとよい。
 また、上記第2の構成から成る電源ICにおいて、前記高耐圧領域は、LDMOSFET領域である構成(第3の構成)にするとよい。
 また、上記第3の構成から成る電源ICにおいて、前記LDMOSFET領域には、その平面視において同心環状のドレイン領域とソース領域が交互に複数形成されており、前記帰還抵抗は、最内周のドレイン領域に囲まれたフィールド酸化膜上に形成されている構成(第4の構成)にするとよい。
 また、上記第4の構成から成る電源ICにおいて、前記帰還抵抗は、複数の単位抵抗を組み合わせて成る構成(第5の構成)にするとよい。
 また、上記第1~第5いずれかの構成から成る電源ICにおいて、前記出力電圧の入力を受け付けるための第1外部端子とそれ以外の第2外部端子との端子間距離は、前記第2外部端子同士の端子間距離以上である構成(第6の構成)にするとよい。
 また、上記第1~第6いずれかの構成から成る電源ICにおいて、前記出力電圧の入力を受け付けるための第1外部端子は、パッケージの端部に設けられている構成(第7の構成)にするとよい。
 また、本明細書中に開示されているスイッチング電源は、上記第1~第7いずれかの構成から成る電源ICと、前記電源ICにより制御されるスイッチング出力段と、を有する構成(第8の構成)とされている。
 また、上記第8の構成から成るスイッチング電源において、前記スイッチング出力段は直流入力電圧から直流出力電圧を生成するDC/DC変換部の構成要素として機能する構成(第9の構成)にするとよい。
 また、上記第9の構成から成るスイッチング電源は、交流入力電圧から前記直流入力電圧を生成する整流部をさらに有する構成(第10の構成)にするとよい。
 また、上記第10の構成から成るスイッチング電源において、前記電源ICは、前記交流入力電圧の位相と交流入力電流の位相を揃えるための力率改善機能を備える構成(第11の構成)にするとよい。
 また、本明細書中に開示されている電子機器は、上記第8~第11いずれかの構成から成るスイッチング電源と、前記スイッチング電源から電力供給を受けて動作する負荷と、を有する構成(第12の構成)とされている。
 また、本明細書中に開示されている電源ICは、絶縁型スイッチング電源の制御主体となる電源ICであって、前記絶縁型スイッチング電源に含まれるトランスの一次側に設けられた補助巻線に現れる誘起電圧を分圧して帰還電圧を生成する帰還抵抗と、前記帰還電圧に応じて前記絶縁型スイッチング電源の出力帰還制御を行う出力帰還制御部と、を単一の半導体基板に集積化して成り、前記帰還抵抗は、100V以上の耐圧を持つポリシリコン抵抗である構成(第13の構成)とされている。
 なお、上記第13の構成から成る電源ICにおいて、前記半導体基板には、その他の領域よりも基板厚さ方向の耐圧が高い高耐圧領域が形成されており、前記帰還抵抗は、前記高耐圧領域上に形成されている構成(第14の構成)にするとよい。
 また、上記第14の構成から成る電源ICにおいて、前記高耐圧領域は、LDMOSFET領域である構成(第15の構成)にするとよい。
 また、上記第15の構成から成る電源ICにおいて、前記LDMOSFET領域には、その平面視において同心環状のドレイン領域とソース領域が交互に複数形成されており、前記帰還抵抗は、最内周のドレイン領域に囲まれたフィールド酸化膜上に形成されている構成(第16の構成)にするとよい。
 また、上記第16の構成から成る電源ICにおいて、前記帰還抵抗は、複数の単位抵抗を組み合わせて成る構成(第17の構成)にするとよい。
 また、上記第13~第17いずれかの構成から成る電源ICにおいて、前記誘起電圧の入力を受け付けるための第1外部端子とそれ以外の第2外部端子との端子間距離は、前記第2外部端子同士の端子間距離以上である構成(第18の構成)にするとよい。
 また、上記第13~第18いずれかの構成から成る電源ICにおいて、前記誘起電圧の入力を受け付けるための第1外部端子は、パッケージの端部に設けられている構成(第19の構成)にするとよい。
 また、本明細書中に開示されている絶縁型スイッチング電源は、上記第13~第19いずれかの構成から成る電源ICと、前記電源ICにより制御されるスイッチング出力段とを有する構成(第20の構成)とされている。
 また、上記第20の構成から成る絶縁型スイッチング電源において、前記スイッチング出力段は、トランスを用いて一次回路系と二次回路系を電気的に絶縁しつつ、前記一次回路系に供給される直流入力電圧から直流出力電圧を生成して前記二次回路系の負荷に供給するDC/DC変換部の構成要素として機能する構成(第21の構成)にするとよい。
 また、上記第21の構成から成る絶縁型スイッチング電源は、交流入力電圧から前記直流入力電圧を生成する整流部を更に有する構成(第22の構成)にするとよい。
 また、本明細書中に開示されている電子機器は、上記第20~第22いずれかの構成から成る絶縁型スイッチング電源と、前記絶縁型スイッチング電源から電力供給を受けて動作する負荷と、を有する構成(第23の構成)とされている。
<その他の変形例>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本明細書中に開示されている発明は、あらゆる分野(家電分野、自動車分野、産業機械分野など)で用いられる非絶縁型ないしは絶縁型のスイッチング電源に利用することが可能である。
   1M  第1メタル層
   2M  第2メタル層
   1p  一次回路系(GND1系)
   1s  二次回路系(GND2系)
   1x  スイッチング電源
   1y  絶縁型スイッチング電源
   2  負荷
   10x、10y  整流部
   11  フィルタ
   12  ダイオードブリッジ
   13、14  キャパシタ
   20x、20y  DC/DC変換部
   100(100x、100y)  電源IC
   101  抵抗分圧部
   102  エラーアンプ
   103  オシレータ
   104  コンパレータ
   105  フィルタ
   106  コンパレータ
   107  信号遅延部
   108  タイマ
   109  論理積演算器
   110  RSフリップフロップ
   111、112  コンパレータ
   113、114  インバータ
   115  論理積演算器
   116  プリドライバ
   117  Pチャネル型MOS電界効果トランジスタ
   118  Nチャネル型MOS電界効果トランジスタ
   119  クランパ
   121  抵抗分圧部
   122  サンプル/ホールド部
   123  エラーアンプ
   124、125  コンパレータ
   126  コントローラ
   127  オシレータ
   128  RSフリップフロップ
   129  出力スイッチ
   130  マスク処理部
   200  半導体基板
   201  帰還抵抗(ポリシリコン抵抗)
   201(1)~201(m)  単位抵抗
   202  出力帰還制御部
   203  高耐圧領域(LDMOSFET領域)
   204、205  メタル配線
   301  p型半導体基板
   302  低濃度n型半導体領域
   303  高濃度p型半導体領域
   304、305  高濃度n型半導体領域
   306  フィールド酸化膜
   307  ゲート酸化膜
   308  ゲート領域
   309  フィールドプレート
   310  低濃度p型半導体領域
   311  フィールド酸化膜
   C1~C3、C11~C14  キャパシタ
   D1、D11、D12  ダイオード
   L1  コイル
   L11  一次巻線
   L12  二次巻線
   L13  補助巻線
   LED  発光ダイオード
   N1  Nチャネル型MOS電界効果トランジスタ
   PT  フォトトランジスタ
   PW  商用交流電源
   R1~R7、R11~R18  抵抗
   Ra、Rb  帰還抵抗
   REG  シャントレギュレータ
   T1~T8、T11~T17  外部端子
   TA  第1外部端子(高耐圧端子)
   TB  第2外部端子(低耐圧端子)
   TR  トランス
   X、Y  電子機器

Claims (14)

  1.  スイッチング電源の制御主体となる電源ICであって、
     前記スイッチング電源の出力電圧またはこれに応じた電圧を分圧して帰還電圧を生成する帰還抵抗と、
     前記帰還電圧に応じて前記スイッチング電源の出力帰還制御を行う出力帰還制御部と、
     を単一の半導体基板に集積化して成り、
     前記帰還抵抗は、100V以上の耐圧を持つポリシリコン抵抗であることを特徴とする電源IC。
  2.  前記帰還抵抗は、絶縁型の前記スイッチング電源に含まれるトランスの一次側に設けられた補助巻線に現れる誘起電圧を分圧して前記帰還電圧を生成することを特徴とする請求項1に記載の電源IC。
  3.  前記半導体基板には、その他の領域よりも基板厚さ方向の耐圧が高い高耐圧領域が形成されており、前記帰還抵抗は、前記高耐圧領域上に形成されていることを特徴とする請求項1または請求項2に記載の電源IC。
  4.  前記高耐圧領域は、LDMOSFET領域であることを特徴とする請求項3に記載の電源IC。
  5.  前記LDMOSFET領域には、その平面視において同心環状のドレイン領域とソース領域が交互に複数形成されており、前記帰還抵抗は、最内周のドレイン領域に囲まれたフィールド酸化膜上に形成されていることを特徴とする請求項4に記載の電源IC。
  6.  前記帰還抵抗は、複数の単位抵抗を組み合わせて成ることを特徴とする請求項5に記載の電源IC。
  7.  前記出力電圧の入力を受け付けるための第1外部端子とそれ以外の第2外部端子との端子間距離は、前記第2外部端子同士の端子間距離以上であることを特徴とする請求項1~請求項6のいずれか一項に記載の電源IC。
  8.  前記出力電圧の入力を受け付けるための第1外部端子は、パッケージの端部に設けられていることを特徴とする請求項1~請求項7のいずれか一項に記載の電源IC。
  9.  請求項1~請求項8のいずれか一項に記載の電源ICと、
     前記電源ICにより制御されるスイッチング出力段と、
     を有することを特徴とするスイッチング電源。
  10.  前記スイッチング出力段は、直流入力電圧から直流出力電圧を生成するDC/DC変換部の構成要素として機能することを特徴とする請求項9に記載のスイッチング電源。
  11.  前記DC/DC変換部は、トランスを用いて一次回路系と二次回路系を電気的に絶縁しつつ、前記一次回路系に供給される前記直流入力電圧から前記直流出力電圧を生成して前記二次回路系の負荷に供給することを特徴とする請求項10に記載のスイッチング電源。
  12.  交流入力電圧から前記直流入力電圧を生成する整流部をさらに有することを特徴とする請求項10または請求項11に記載のスイッチング電源。
  13.  前記電源ICは、前記交流入力電圧の位相と交流入力電流の位相を揃えるための力率改善機能を備えることを特徴とする請求項12に記載のスイッチング電源。
  14.  請求項9~請求項13のいずれか一項に記載のスイッチング電源と、
     前記スイッチング電源から電力供給を受けて動作する負荷と、
     を有することを特徴とする電子機器。
PCT/JP2018/031757 2017-09-28 2018-08-28 電源ic WO2019065049A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/650,639 US11509225B2 (en) 2017-09-28 2018-08-28 Power IC including a feedback resistor, and a switching power supply and electronic appliance including the power IC
JP2019544446A JP6853373B2 (ja) 2017-09-28 2018-08-28 電源ic
US17/900,027 US11848615B2 (en) 2017-09-28 2022-08-31 Power IC including a feedback resistor, and a switching power supply and electronic appliance including the power IC
US18/491,512 US20240048052A1 (en) 2017-09-28 2023-10-20 Power ic

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017188181 2017-09-28
JP2017-188181 2017-09-28
JP2017-188171 2017-09-28
JP2017188171 2017-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/650,639 A-371-Of-International US11509225B2 (en) 2017-09-28 2018-08-28 Power IC including a feedback resistor, and a switching power supply and electronic appliance including the power IC
US17/900,027 Division US11848615B2 (en) 2017-09-28 2022-08-31 Power IC including a feedback resistor, and a switching power supply and electronic appliance including the power IC

Publications (1)

Publication Number Publication Date
WO2019065049A1 true WO2019065049A1 (ja) 2019-04-04

Family

ID=65901586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031757 WO2019065049A1 (ja) 2017-09-28 2018-08-28 電源ic

Country Status (3)

Country Link
US (3) US11509225B2 (ja)
JP (1) JP6853373B2 (ja)
WO (1) WO2019065049A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065049A1 (ja) 2017-09-28 2019-04-04 ローム株式会社 電源ic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153636A (ja) * 2006-11-20 2008-07-03 Fuji Electric Device Technology Co Ltd 半導体装置、半導体集積回路、スイッチング電源用制御icおよびスイッチング電源装置
JP2009295783A (ja) * 2008-06-05 2009-12-17 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2012034557A (ja) * 2010-08-02 2012-02-16 Masaaki Mihara スイッチング電源用起動回路
JP2012069759A (ja) * 2010-09-24 2012-04-05 Renesas Electronics Corp 半導体装置
JP2015091206A (ja) * 2013-11-07 2015-05-11 ローム株式会社 絶縁型スイッチング電源装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024990B2 (ja) * 2000-04-28 2007-12-19 株式会社ルネサステクノロジ 半導体装置
JP5070693B2 (ja) * 2005-11-11 2012-11-14 サンケン電気株式会社 半導体装置
US8269312B2 (en) * 2008-06-05 2012-09-18 Rohm Co., Ltd. Semiconductor device with resistive element
JP4797203B2 (ja) * 2008-12-17 2011-10-19 三菱電機株式会社 半導体装置
US8045348B2 (en) * 2009-04-09 2011-10-25 Bcd Semiconductor Manufacturing Limited Switching mode power supply controller with high voltage startup circuits
JP2011159903A (ja) * 2010-02-03 2011-08-18 Rohm Co Ltd 半導体装置
JP2014027751A (ja) 2012-07-25 2014-02-06 Xacti Corp 電源処理装置
JP2014112996A (ja) 2012-12-05 2014-06-19 Ricoh Co Ltd 軽負荷検出回路、スイッチングレギュレータとその制御方法
CN103023298B (zh) * 2013-01-04 2014-11-05 无锡硅动力微电子股份有限公司 应用于ac-dc开关模式电源变换器中的自供电电路
CN103296876B (zh) * 2013-05-31 2015-06-17 广州金升阳科技有限公司 一种降压式pfc的控制方法
US9590511B2 (en) * 2013-10-08 2017-03-07 Rohm Co., Ltd. Insulation type switching power source apparatus
WO2019065049A1 (ja) 2017-09-28 2019-04-04 ローム株式会社 電源ic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153636A (ja) * 2006-11-20 2008-07-03 Fuji Electric Device Technology Co Ltd 半導体装置、半導体集積回路、スイッチング電源用制御icおよびスイッチング電源装置
JP2009295783A (ja) * 2008-06-05 2009-12-17 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP2012034557A (ja) * 2010-08-02 2012-02-16 Masaaki Mihara スイッチング電源用起動回路
JP2012069759A (ja) * 2010-09-24 2012-04-05 Renesas Electronics Corp 半導体装置
JP2015091206A (ja) * 2013-11-07 2015-05-11 ローム株式会社 絶縁型スイッチング電源装置

Also Published As

Publication number Publication date
US20240048052A1 (en) 2024-02-08
US20200251991A1 (en) 2020-08-06
JP6853373B2 (ja) 2021-03-31
US11509225B2 (en) 2022-11-22
US11848615B2 (en) 2023-12-19
US20220416668A1 (en) 2022-12-29
JPWO2019065049A1 (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
CN108206634B (zh) 绝缘同步整流dc/dc转换器及控制器、适配器、设备
US8400789B2 (en) Power supply with input filter-controlled switch clamp circuit
JP7123712B2 (ja) 電源制御装置
CN105814786A (zh) 整流装置、交流发电机以及电力转换装置
KR20170120592A (ko) 전원 제어용 반도체 장치
US20200106436A1 (en) Transformer Based Gate Drive Circuit
JP2017184598A (ja) スイッチング電源装置
US20240048052A1 (en) Power ic
JP6356545B2 (ja) スイッチング電源装置
JP2022015506A (ja) 電源制御装置
JP7123733B2 (ja) 電源制御装置
JP6393962B2 (ja) スイッチング電源装置
US9397575B2 (en) Switching power supply device
US11404964B2 (en) Rectifier circuit and power supply unit
US20200266711A1 (en) Rectifier circuit and power supply unit
US11329566B2 (en) DC power supply circuit that enhances stability of output voltage
JP6455180B2 (ja) 電源制御用半導体装置
US11303206B2 (en) Semiconductor device and load control system
JP7386737B2 (ja) 整流回路及びこれを用いたスイッチング電源
TWI669586B (zh) Primary side integrated circuit module of power supply
WO2021059585A1 (ja) 電力変換回路、パワーモジュール、コンバータ、及びインバータ
US20210028711A1 (en) Rectifier circuit and power supply unit
JP2018153037A (ja) 直流変換装置
JPH114578A (ja) 電圧変換装置
US20220271670A1 (en) Converter with hold-up circuit and inrush-control circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544446

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860590

Country of ref document: EP

Kind code of ref document: A1