WO2019062809A1 - 动态湿式气流吸附装置 - Google Patents

动态湿式气流吸附装置 Download PDF

Info

Publication number
WO2019062809A1
WO2019062809A1 PCT/CN2018/107942 CN2018107942W WO2019062809A1 WO 2019062809 A1 WO2019062809 A1 WO 2019062809A1 CN 2018107942 W CN2018107942 W CN 2018107942W WO 2019062809 A1 WO2019062809 A1 WO 2019062809A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter material
porous filter
coupled
liquid
air flow
Prior art date
Application number
PCT/CN2018/107942
Other languages
English (en)
French (fr)
Inventor
曾耕文
陈冠呈
王俊文
吴睿哲
高文岳
Original Assignee
曾耕文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曾耕文 filed Critical 曾耕文
Publication of WO2019062809A1 publication Critical patent/WO2019062809A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0035Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by wetting, e.g. using surfaces covered with oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • B01D46/0031Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid with collecting, draining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0052Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation
    • B01D46/0054Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation with translational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/69Regeneration of the filtering material or filter elements inside the filter by means acting on the cake side without movement with respect to the filter elements, e.g. fixed nozzles

Definitions

  • the invention relates to a technology for purifying a gas flow, in particular to a wet gas flow adsorption device which utilizes a liquid as a medium and a porous material as a filter material to wet a porous filter material to adsorb a pollution source.
  • air pollution refers to the pollution caused by substances harmful to human health and the surrounding environment. These substances may be gas, solid or liquid suspended matter. According to research, health problems caused by air pollution may include difficulty breathing, asthma, coughing, wheezing, and even exacerbating existing respiratory and cardiopulmonary diseases.
  • the prior art air purifiers can be roughly divided into three categories, the first type is dry filtration, which is mainly based on filtration and adsorption technology, and uses airflow to pass through the filter material. And achieve the effect of purifying the airflow. Although such a technique can purify the airflow, there is a post-blocking of the filter material, resulting in a poor airflow efficiency. In order to increase the airflow, a stronger negative pressure is required, resulting in an increase in running cost and an increase in noise pollution.
  • the use efficiency of the filter material surface is not good, that is, when the air flow passes through the filter material, it is mostly concentrated in a specific area, so that the filtering effect of the surface of the filter material in a specific area is gradually reduced, while other areas are mostly not used. Therefore, even if some of the filter material area is not used, it is necessary to replace the filter material, which invisibly increases the cost of the filter material.
  • the second type of technology is the use of high-voltage electrostatic vacuum and high-voltage ionization to generate ion purification technology. The purification effect of this technology and the distance between the airflow and the electrostatic plate are related, so the effect of the airflow purification is limited, and the ozone is easily generated to form secondary pollution.
  • the third type of purification method is to use the liquid to directly wash the air to achieve the effect of purifying the air.
  • Chinese Patent Application Publication No. CN104089339A teaches a water-washing air purification system comprising at least a primary air pollutant aeration water washing device, an air pollutant spray water washing device, a clean air blowing device or a rain-proof sound-absorbing device.
  • the static pressure box type jet outflow air device and the purifier body sterilization and disinfection device are formed, and the indoor polluted air is aerated by the first air pollutant aeration water washing device, and then sprayed by the air pollutant spray water washing device. Blowing indoors.
  • this technology can achieve the effect of purifying the air, it is limited in location and environment due to its large size and space.
  • a liquid supply device for providing a liquid
  • porous filter material capable of absorbing the liquid, the porous filter material being disposed on one side of a gas flow passage in contact with a gas flow in the gas flow passage, the normal of the surface of the porous adsorption filter material in contact with the gas flow The direction is orthogonal to the flow of the gas stream;
  • a driving unit coupled to the porous filter material for driving the porous filter material for a displacement movement.
  • the dynamic wet air flow adsorption device wherein the porous filter material is an annular belt body, and the driving unit has:
  • a second shaft body is spaced apart from the first shaft body and coupled to the inner side surface of the annular belt
  • first shaft body and the second shaft body open the interior of the annular belt body to form the air flow passage.
  • the dynamic wet air flow adsorption device wherein the first shaft body and the second shaft body are porous shaft bodies, and the first shaft body and the second shaft body respectively have a plurality of interiors of the porous shaft body
  • the liquid supply is coupled to the liquid passage.
  • the dynamic wet air flow adsorption device further includes a waste liquid release device, including:
  • a first roller coupled to the first shaft body for receiving rotation of the first shaft body for rotation, the first roller shaft being coupled to the surface of the porous filter material, capable of being pressed by rotation
  • the porous filter material
  • a second roller coupled to the second shaft body for receiving rotation of the second shaft body for rotation, the second roller shaft being coupled to the surface of the porous filter material, capable of being pressed by rotation The porous filter material.
  • the dynamic wet air flow adsorption device further comprises:
  • At least one flow guiding groove for receiving waste liquid generated by the porous filter material being pressed by the first roller and the second roller;
  • a filter device coupled to the at least one flow channel for filtering the waste liquid to form a clean liquid, the filter device being coupled to the liquid supply device for refluxing liquid passing through the filter device.
  • the dynamic wet air flow adsorption device wherein the filter device is coupled to the liquid supply device by a return line, and the return line is coupled to the liquid supply device through the first roller or the second roller .
  • the dynamic wet air flow adsorption device wherein the filter device further has a first valve body and a second valve body, and the first valve body is coupled to the return line for controlling opening and closing of the return line
  • the second valve body is coupled to a sewage discharge pipe for controlling opening and closing of the sewage discharge pipe.
  • the dynamic wet air flow adsorption device wherein: in an adsorption mode, the first valve body opens a communication state between the filter device and the return line to close the second valve body and the sewage discharge line The connected state, and in a cleaning mode, the first valve body closes a communication state between the filtering device and the return line to open a communication state between the second valve body and the sewage discharge line.
  • the dynamic wet air flow adsorption device wherein the first roller or the second roller further has:
  • a transparent hollow tube body coupled to the surface of the porous filter material to press the porous filter material by rotation;
  • a sterilizing device is embedded in the transparent hollow tube body for generating ultraviolet rays to kill bacteria, mold or microorganisms on the porous filter material.
  • the dynamic wet air flow adsorption device further includes a sterilization device for killing bacteria, mold or microorganisms on the porous filter material.
  • the dynamic wet air flow adsorption device further has a sensor for sensing an environmental parameter.
  • the dynamic wet air flow adsorption device wherein the sensor is a humidity sensor, and the liquid supply device provides a liquid amount of the porous filter material according to the environmental parameter, thereby adjusting the environmental parameter.
  • the dynamic wet air flow adsorption device wherein the sensor is a temperature sensor, and the control liquid supply device adjusts the temperature of the liquid inside the liquid supply device according to the environmental parameter, thereby adjusting the environmental parameter.
  • the dynamic wet airflow adsorption device wherein the displacement motion is a horizontal displacement motion, a vertical displacement motion, or a reciprocating displacement motion.
  • the dynamic wet air flow adsorption device wherein the porous filter material is a belt body, the drive unit further has:
  • a power unit for providing a clockwise or counterclockwise rotational power
  • a first shaft body coupled to the power unit, the first shaft body coupled to one end of the belt body;
  • the power device controls the belt body to perform a reciprocating displacement motion by means of the clockwise or reverse-time true rotational power.
  • the dynamic wet air flow adsorption device wherein: embedded in a structure, the structure has at least one air outlet above the structure, the structure has at least one air inlet under the structure, and one side of the air outlet is provided with a negative pressure And generating means for generating a negative pressure, such that the airflow enters the structure via the at least one air inlet, and is in contact with the porous filter material through the air flow passage, and is discharged through the at least one air outlet.
  • the dynamic wet air flow adsorption device wherein the structure is a door body, a cabinet or a box.
  • the dynamic wet air flow adsorption device wherein: the structure further has a first surface and a second surface opposite to the first surface, the first surface and the second surface respectively having the air inlet and the The air outlet has at least one air inlet groove, and the air outlet has at least one air outlet groove, and the air inlet groove or the air outlet groove is opened or closed by a control option.
  • the dynamic wet airflow adsorption device wherein the at least one adsorption module further comprises a plurality of first adsorption modules arranged along a first direction, and a plurality of first alignments arranged in a second direction orthogonal to the first direction Second adsorption module.
  • the dynamic wet gas flow adsorption device wherein the porous filter material further comprises at least one adsorbent material layer and a hydrophobic polymer layer, wherein the at least one adsorbent material layer is configured to form the gas flow channel in contact with the gas flow, and the The hydrophobic polymer layer is coated on the periphery of the at least one layer of adsorbent material.
  • the present invention has the following beneficial effects:
  • the invention provides a dynamic wet airflow adsorption device which uses a liquid as a medium, combined with a porous filter material, such as a porous fiber or a fluff filter material, to form a wet porous adsorption filter material, and then can be displaced by the filter material. Movement, while adsorbing the airflow through the surface of the wet filter. Since the adsorption device of the present invention passes through the surface of the adsorption filter material, that is, the flow direction of the gas flow is orthogonal to the surface of the adsorption filter material, it is not necessary to drive the negative pressure to generate the negative pressure to penetrate the filter material, thereby reducing the flow rate. Noise and increased airflow through the filter media enhance the effectiveness of the clean airflow.
  • a porous filter material such as a porous fiber or a fluff filter material
  • the wet porous adsorption filter material can also increase the dirt contained in the adsorbed gas stream, thereby enhancing the effect of gas flow adsorption. Moreover, because the filter material is displaced, the surface of the filter material can be fully contacted with the airflow, thereby achieving the effect of improving the efficiency of the filter material.
  • the present invention utilizes a dynamic wet porous filter material to construct a flow passage for the air flow, and the air flow flowing through the passage through the surface of the porous filter material having irregular hole shapes, different sizes of pore sizes, and different material densities.
  • the invention provides a dynamic wet air flow adsorption device, which has a sterilizing device for sterilizing the wet porous filter material and destroying the bacteria adsorbing on the filter material, the ability of the mold to reproduce, and the effect of suppressing the biological pollution source to avoid Bacteria, mold or microorganisms are formed on the surface of the porous filter material, causing the airflow to have an odor.
  • the invention provides a dynamic wet airflow adsorption device with a cleaning mode, which can clean the surface of the porous filter material by the control of the valve, thereby increasing the service life of the porous filter material.
  • the invention provides a dynamic wet air flow adsorption device.
  • a valve is used to control the flow rate, and the liquid is wetted by the gravity and capillary phenomenon to wet the traveling porous magnetic material, and is circulated to a specific position and then the sewage is pressurized by a roller. Extrusion to the sewage treatment unit, after filtering, the filtered water is poured back to the upper storage tank, and then it is repeated.
  • the invention provides a dynamic wet airflow adsorption device, which can generate natural volatilization through continuous contact with dynamic airflow of dynamic wet filter material, can gradually increase the humidity in the air, and can alleviate dry dust flying in a continental climate region with serious air pollution. Air quality; for areas with high humidity, the supply of water can be reduced, and the wet filter can reversely adjust the air above 50% relative humidity.
  • the temperature of the wet filter medium can be adjusted by changing the water temperature of the water storage tank, and the temperature of the indoor air can be slightly adjusted.
  • FIG. 1 is a schematic view showing the structure of an embodiment of a dynamic wet gas flow adsorption device of the present invention.
  • FIG. 2 is a schematic view showing the relationship between the turbulent flow simulation and the moving direction of the porous filter material according to the present invention.
  • Fig. 3 is a schematic view showing an embodiment of the waste liquid detaching device of the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a coupling relationship between a controller of the present invention and various inductors and heating or cooling elements.
  • 5A to 5C are respectively schematic views of different embodiments of the adsorption module provided in the present invention.
  • FIG. 6A is a schematic view of another embodiment of a dynamic wet gas flow adsorption device of the present invention.
  • Figure 6B is a schematic cross-sectional view of the porous filter material and the first and second shaft bodies and the roller of Figure 6A.
  • 6C is a schematic view of an embodiment of an inlet and outlet gas tank of the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a dynamic wet gas flow adsorption device of the present invention.
  • the dynamic wet gas flow adsorption device 2 includes a liquid supply device 20 and at least one adsorption module 21.
  • the liquid supply device 20 is for providing a liquid 90.
  • the liquid 90 is water, but is not limited thereto.
  • the liquid 90 may also be a cleaning liquid containing a cleaning or adsorption effect.
  • the liquid supply device 20 has a container 200 having a liquid 90 therein, and one side of the container 200 has at least one liquid outlet 201 connected to a control valve 202, respectively.
  • the control valve 202 can control the opening or closing of the liquid outlet 201 by means of the control signal. It is to be noted that the control valve 202 is not an essential component for implementing the present invention and can be selectively used depending on the design of the liquid circuit.
  • the container 200 may further be provided with an ultraviolet germicidal lamp tube 205 for sterilizing the liquid 90 in the container 200.
  • the at least one adsorption module 21 is coupled to the liquid supply device 20, and each of the adsorption modules 21 further has a porous filter material 22 and a driving unit 23.
  • the porous filter material 22 absorbs the liquid 90.
  • the porous filter material 22 is disposed on one side of a gas flow passage 3 and is in contact with the gas flow 91 in the gas flow passage 3.
  • the porous filter material 22 in this embodiment is a structure of an endless belt body, and the air flow passage 3 is a passage space formed by the inner side surface of the endless belt. Different from the prior art airflow through filter material, in a specific embodiment of the present invention, as shown in FIG.
  • the normal direction 92 of the surface 220 of the porous adsorbent filter material 22 in contact with the air flow 91 (solid arrow)
  • the flow direction 93 of the gas stream (shown as the Z direction) is orthogonal, and the dashed arrow portion represents the liquid stream 95 produced by the liquid 90 entering the porous filter material 22.
  • the porous filter material 22 is not limited by the manner of an annular strip. In still another embodiment, the porous filter material 22 may also have a planar strip structure.
  • FIG. 2 it is a schematic cross-sectional view of an embodiment of the porous adsorbent filter material 22 of the present invention.
  • the porous adsorption filter 22 further has at least one adsorbent layer 221 and a hydrophobic polymer layer 222.
  • the at least one adsorbent layer 221 is configured to form the gas flow channel 3, and the hydrophobic polymer layer 222 is coated on the periphery of the at least one adsorbent material layer 221.
  • the adsorbent layer 221 and the hydrophobic polymer layer 222 respectively have a plurality of pores 225 for the passage of the gas stream 91.
  • the hydrophobic polymer layer 222 is made of a plastic material, such as a MYLAR polyester resin material produced by DuPont, but is not limited thereto.
  • the adsorbent material layer 221 in this embodiment has two layers, but is not limited thereto. The adsorbent material layer 221 can adsorb the liquid and allow the gas stream 91 to be purified to pass, and the efficiency of the purifying gas stream of the present invention occurs in the adsorbent material layer 221.
  • the adsorbent layer 221 further includes a non-woven layer 223 and a hollow sponge layer 224 for shaping the hollow sponge layer 224 for adsorbing the downwardly flowing liquid stream 95, so that when the gas stream 91 passes through the pores 225 The dirt of the air stream 91 can be adsorbed by the liquid sucked by the hollow sponge layer 224, thereby achieving the effect of purifying the air stream 91.
  • the driving unit 23 is coupled to the porous filter material 22 for driving the porous filter material 22 for a displacement movement.
  • the displacement movement is such that the porous filter material 22 of the endless belt body is subjected to a cyclic displacement movement in the Z direction.
  • the driving unit 23, in this embodiment, includes a power unit 230, a first shaft 231, and a second shaft 232.
  • the power unit 230 is configured to provide a rotational power.
  • the power unit 230 in one embodiment, is a motor. Since the porous filter material 22 of the embodiment is an annular belt body, the first shaft body 231 is coupled to the inner side surface of the annular belt in addition to being coupled to the power unit 230.
  • the second shaft body 232 is spaced apart from the first shaft body 231 and coupled to the inner side surface of the annular belt.
  • the first shaft body 231 and the second shaft body 232 open the inside of the annular belt body to form the air flow passage 3.
  • the power unit 230 generates rotational power to drive the first shaft 231 to rotate, and the second shaft 232 can be driven by a power transmission component coupled to the power unit 230 or the first shaft 231, such as a pulley or a gear set. To rotate. Therefore, the rotation of the first shaft body 231 and the second shaft body 232 drives the porous filter material 22 to cyclically move in the direction Y.
  • the first shaft body 231 and the second shaft body 232 are porous shaft bodies, and a liquid passage 233 and 234 are respectively connected to the liquid outlet port 201 through the control valve 202 respectively.
  • the liquid 90 passes through the first and second shaft bodies 231 and 232 through the liquid passages 233 and 234. Since the first and second shaft bodies 231 and 232 are porous shaft bodies, the liquid can be oozing out through the porous pores and absorbed by the porous filter material 22, so that the porous filter material 22 forms a wet porous filter material.
  • the material constituting the porous shaft body is a ceramic material, but is not limited thereto, and those skilled in the art can select appropriate materials to form the first and second shaft bodies having internal passages according to requirements.
  • first and second shaft bodies 231 and 232 are not limited by a porous material.
  • the first shaft bodies 231 and 232 may be formed on the surface of the first shaft bodies 231 and 232.
  • a liquid atomizing device may be further provided, which is connected by a pipe and a container to atomize the liquid from the container into a water mist and spray it in a plurality. On the pore filter material, the effect of uniformity of the moisture of the porous filter material is increased.
  • a waste liquid detaching device 24 may be further disposed on one side of the porous filter material 22.
  • the waste liquid detaching device 24 has a pair of clips 240 and a clip 240. There is a gap therebetween to allow the porous silicon filter 22 to pass.
  • the clip 240 is an element of a flexible material to avoid scratching the porous filter 22.
  • the gap between the clips 240 is less than the thickness of the porous filter 22 after it has absorbed the liquid, so that when the porous filter 22 passes through the gap, the pair of clips 240 can scrape the liquid on the porous filter 22.
  • the scraped liquid can flow to the corresponding guide groove 25 below.
  • there may be a plurality of waste liquid detaching devices 24 which may be disposed at appropriate positions as needed to scrape the sewage on the porous filter material 22.
  • the flow guiding groove 25 is further coupled to a filter device 26 via a line 250.
  • the filtering device 26 receives the waste liquid conveyed by the pipeline 250, and filters the waste liquid to form a clean liquid.
  • the filtering device 26 is further coupled to the liquid supply device 20 through the pipeline 260.
  • 260 is used to reflux liquid passing through the filtration device 26.
  • a reflux pump 261 may be disposed between the line 260 and the filtering device 26 to increase the speed of the reflux, so that the filtered liquid can be smoothly returned to the liquid.
  • the container 200 of the supply device 20 is inside.
  • the filter device 26 further has a first valve body 262 at the connection with the return line 260 for controlling the opening and closing between the line 260 and the filter device 26, that is, when the first valve body 262 When the line 260 is in communication with the filtering device 26, the filtered clean liquid can be pressurized and returned to the container 200 via the reflux pump 261. Conversely, if the first valve body 262 causes the line 260 and the filtering device 26 When the lock is in between, the filtered liquid cannot be returned to the container 200.
  • the other side of the filter unit 26 has a liquid discharge line 264 that controls the opening or closing of the filter unit 26 and the liquid discharge line 264 by the second valve body 263.
  • a sterilizing device 27 may be further disposed on one side of the porous filter material 22, for example, an ultraviolet lamp for adsorbing liquid.
  • the porous filter material 22 sterilizes and destroys the bacteria adsorbing on the filter material, and the ability of the mold to reproduce, so as to avoid bacteria, mold or microorganisms on the surface of the porous filter material, thereby suppressing the source of biological pollution, and avoiding the odor of the air flow.
  • the dynamic wet air flow adsorbing device 2 further has a negative pressure generating device 28 for generating a negative pressure, and sucking the air flow from the intake groove 280 of the air inlet of one side, and then Entering the airflow channel 3 to be in contact with the moving porous filter material 22, since the porous filter material 22 has irregular hole shape, different size of aperture, and different material density, the airflow 91 is inside the airflow channel 3.
  • the air flowing out through the air flow passage 3 is also discharged through the air outlet 281 at the air outlet.
  • the dynamic wet gas flow adsorption device 2 further includes an adsorption mode and a cleaning mode.
  • the first valve body 262 opens a communication state between the filtering device 26 and the return line to close the communication state between the second valve body 263 and the sewage discharge pipe.
  • the control valve 202 is also in an open state, such that the liquid of the container 200 flows through the liquid outlet 201 to the liquid passages 233 and 234 in the first and second shaft bodies 231 and 232, and then the capillary caused by the porosity of the shaft body itself.
  • the phenomenon causes the porous filter material 22 to adsorb the oozing liquid and thereby become the wet porous filter material 22.
  • the porous filter material 22 is displaced by the driving unit 23, and the external airflow enters the air flow channel 3 formed by the porous filter material 22 through the air inlet groove 280 of the air inlet.
  • the moving porous filter 22 is in contact, wherein the wet porous filter 22 can increase the effect of adsorbing dirt contained in the gas stream, and the moving porous filter 22 can ensure each of the porous media 22 An area can be in contact with the gas stream 91 to produce the effect of utilizing the adsorption of the porous filter material.
  • the sterilizing device 27 starts the generation of the ultraviolet ray irradiation on the porous filter 22 on one side, thereby generating a sterilizing effect.
  • the first valve body 262 closes the communication state between the filtering device 26 and the return line 260, and opens the communication state between the second valve body 263 and the sewage discharge line 264, and the tube Road 264 can be externally connected to an external drain or a sink or drain at home to drain the waste water.
  • the side of the container 200 further has a liquid inlet 203 which is connected by a pipe for supplying a clean liquid 94 such as water or a cleaning liquid to the container 200 to increase the amount of liquid.
  • control valve 202 can be controlled to increase the opening of its valve port so that the liquid in the container 200 can pass through the first and second shaft bodies 231 in a large amount, so that the liquid is absorbed by the porous filter material 22.
  • the cleaning mode is intended to remove dirt on the porous filter material 22 and to clean the flow guiding groove 25 to maintain the adsorption effect of the porous filter material 22, so that the water filter of the porous filter material is operated in the cleaning mode.
  • the water content is higher than that in the adsorption mode.
  • the porosity of the porous material in the adsorption mode is about 60% to 70% of the saturated water content of the porous filter 22, and in the cleaning mode.
  • the moisture content of the porous filter 22 is increased to 80% to 90%.
  • the porous filter material 22 is still in the operating state in the adsorption mode, that is, the displacement movement is still maintained, but the sewage passing through the filtering device 26 is not returned to the container 200, but is passed through The sewage line 264 is discharged.
  • the device 2 further has a humidity sensor for sensing the humidity condition of the external environment, and the moisture in the liquid is naturally generated by the continuous contact of the dynamic moisture filter with the dynamic airflow. Volatilization can gradually increase the humidity in the air. For the climatic areas with serious air pollution, the air quality of dry dust can be alleviated. Conversely, for areas with high humidity, the supply of water can be reduced. The wet filter can be adjusted in reverse. Exceeding air with a relative humidity of 50% or more. As shown in FIG. 4, a controller 29 can be electrically connected to the at least one humidity sensor 40 in a wired or wireless manner (illustrated by only one humidity sensor). The number is based on demand.
  • the controller 29 is in telecommunication connection with the control valve 202. Therefore, after the controller 29 determines the external environment humidity value sensed by the humidity sensor 40, the opening degree of the control valve 202 can be adjusted according to the humidity state of the external environment, thereby controlling The amount of liquid entering the first and second shaft bodies 231 and 232 is adjusted to adjust the humidity of the porous filter material 22, thereby achieving the above-mentioned effect of relaxing the air quality of the dry dust or adjusting the excess humidity.
  • the heating element 42 and the cooling element 43 electrically connected to the controller 29 may be further disposed in or around the container, and the controller 29 may be electrically connected in a wired or wireless manner.
  • At least one temperature sensor 41 is connected to sense the ambient temperature.
  • the number of the temperature sensors 42 may be determined according to the use requirements, and is not limited by the number shown in the drawing; the position and number of the heating elements 42 and the cooling elements 43 are determined according to the use requirements, and further, the heating elements Or the cooling element does not have to be set at the same time, and can be determined according to the needs of use.
  • the controller 29 then controls the heating element 42 to actuate the cooling element 43 according to the sensed ambient temperature to adjust the temperature of the liquid in the container 200, thereby changing the temperature of the porous filter 22, and after the gas stream is in contact with the porous filter 22, The temperature of the airflow also changes. When the airflow is discharged from the air outlet 281 of the air outlet to the space environment, the temperature in the space environment can be adjusted.
  • FIG. 5A to FIG. 5C are schematic diagrams of different embodiments of the adsorption module of the present invention.
  • the porous filter material 22a of the adsorption module 21a is a flat strip-like structure. Both ends of the porous filter 22a are connected to the first and second shafts 231 and 232, respectively. Since the porous filter material 22a is in the form of a flat strip, the displacement movement performed by it is a reciprocating displacement motion generated by the forward and reverse rotation of the first and second shaft bodies 231 and 232. For example, the first and second shaft bodies 231 and 232 rotate counterclockwise to drive the porous filter material 22a to move upward (+Z direction).
  • the first and second shaft bodies 231 and 232 rotate clockwise to drive the porous filter.
  • the material 22a moves downward (-Z direction).
  • the moving speed of the belt-shaped filter material is about 10 to 20 cm per minute in one embodiment, the ultraviolet rays can be sufficiently sterilized.
  • the air flow passage 3 is configured by a plurality of adsorption modules 21a arranged in parallel such that the porous filter material 22a is opposed to each other and maintained at a distance, and the space between them constitutes the air flow passage 3.
  • the porous filter material 22b of the adsorption module 21b of the present embodiment is also a ring-shaped strip structure as in FIG. The direction of displacement movement is different from that of FIG. 1.
  • the porous filter 22 of FIG. 1 is moving in the horizontal Y direction, and the porous filter 22b of FIG. 5B is cyclically moving toward the Z-axis.
  • the present embodiment is constituted by a plurality of adsorption modules 21c and 21d whose arrangement directions are orthogonal.
  • the plurality of adsorption modules 21c are arranged along the Y direction, and the adjacent adsorption modules 21c have a spacing to form an air flow passage, and the plurality of adsorption modules 21d are disposed above the plurality of adsorption modules 21c. They are arranged along the X direction, and there is a space between adjacent adsorption modules 21d to constitute an air flow passage.
  • adsorption devices can be fabricated according to the use environment and requirements.
  • an ultra-thin air purification and humidification system such as a door
  • the adsorption device, the window type adsorption device and the adsorption device of the recessed product for example, are embedded in a ceiling or a wall.
  • a cabinet-type or box-type air cleaning and humidifying system or a wall-mounted air cleaning and humidifying system may be fabricated.
  • FIG. 6A is a schematic view of another embodiment of the dynamic wet gas flow adsorption device of the present invention.
  • the dynamic wet air flow absorbing device is embedded in a structure.
  • the structure is a door, which includes a door body 8 having an accommodating space 80 therein for accommodating dynamics.
  • a wet gas flow adsorption device such as the dynamic wet gas flow adsorption device 2 shown in FIG.
  • the door body 8 has a door handle 81 on one side and a hinge 82 on the narrow side of the door body 8 to be coupled to the wall or the door frame.
  • a power source 83 may be disposed on the hinge 82 for supplying power required for the operation of the dynamic wet air flow adsorbing device 2.
  • the dynamic wet gas flow adsorption device in the embodiment of Fig. 6A is substantially the same as the embodiment of Fig. 1, with the difference being the design of the waste liquid release device 24a and the sterilization device 27a in this embodiment. Please refer to FIG. 6A and FIG. 6B simultaneously, wherein FIG. 6B is a schematic cross-sectional view of the porous filter material 22 and the first and second shaft bodies 231 and 232 of FIG. 6A.
  • the waste liquid disengaging device 24a is a pair of rollers, wherein one of the first rollers 240a corresponds to the first shaft 231, and the first roller 240a is disposed on the outer surface of the porous filter 22
  • the first shaft 231 is disposed on the inner surface of the porous filter 22; the other second roller 240b corresponds to the second shaft 232, and the second roller 240b is disposed on the outer surface of the porous filter 22
  • the second shaft body 232 is disposed on the inner surface of the porous filter material 22.
  • the first roller 240a and the first shaft 231 and the second roller 240b and the second shaft 232 respectively have a gap between them, and the distance of the gap is smaller than the thickness of the porous filter 22, when the liquid is adsorbed and the air flow is performed.
  • the adsorbed porous filter material 22 passes between the first roller 240a and the first shaft 231 and the second roller 240b and the second shaft 232, the porous filter 22 is replaced by the first roller 240a and The first shaft body 231 and the second roller shaft 240b are pressed against the second shaft body 232, so that the sewage can be extruded and flow downward into the flow guiding groove 25 along the gravity.
  • the power device 230 is coupled to the first shaft 231 to directly drive the first shaft 231 to rotate, and the first shaft 231 is adjacent to the end of the power unit 230.
  • the portion has a power transmitting member 235, such as a gear, that is in engagement with another power transmitting member 236 on the respective first roller 240a. Therefore, when the power device 230 generates rotational power to drive the first shaft 231 to rotate, the rotational power of the first shaft 231 is also transmitted to the first roller 240a through the power transmitting members 235 and 236, through the first roller 240a and the first
  • the rotation of a shaft 231 causes the porous filter 22 to generate a displacement motion.
  • the second shaft body 232 and the second roller shaft 240b are driven.
  • the second shaft body 232 when the porous filter material 22 moves, the second shaft body 232 is driven along with the first shaft body. 231 the same steering rotational motion, and the end of the second shaft body 232 has power transmission members 237 and 237a respectively coupled to the power transmitting members 238 and 238a at the corresponding positions of the second roller 240b, and in the second When the shaft body 232 rotates, it receives the rotational power and drives the second roller 240b to rotate.
  • the power transmitting members 235 to 238, 237a and 238a are not limited by the gear of the embodiment.
  • the pulley and the belt can be used to drive and transmit power, which is a technology in the art. People are well known and will not repeat them here.
  • the sterilizing device 27a and the second roller 240b are integrated. That is, in the present embodiment, the second roller 240b further includes a transparent hollow tube 241, and the sterilizing device 27a is a columnar ultraviolet germicidal tube which is embedded in the hollow region in the hollow tube 241. .
  • the sterilizing device 27a can also rotate synchronously, and because the hollow tubular body 241 has a transparent structure, the ultraviolet light of the sterilizing device 27a can penetrate the hollow tubular body 241.
  • the projection onto the porous filter material 22 achieves the effect of inhibiting the growth of bacteria, mold or microorganisms on the porous filter material 22.
  • the return line 260 extends through the first roller 240a and is coupled to the container 200. It is to be noted that, in another embodiment, the sterilizing device 27a may be disposed on the first roller 240a, and the return line 260 is penetrated through the second roller 240a and then connected to the container 200.
  • FIG. 6C is a schematic view of an embodiment of the inlet and outlet air tank of the present invention.
  • the intake groove 280 has a plurality of valves 282
  • the outlet groove 281 also has a plurality of valves 283.
  • valves 282 and 283 can be further electrically coupled to controller 29, which can control the opening and closing of valves 282 and 283 as desired by the control.
  • the dynamic wet air flow adsorption device 2 in the door body 8 of the present embodiment has an adsorption mode and a cleaning mode, and the circulation mode of the adsorption mode is basically the corresponding manner in FIG. 1, but in the adsorption mode of FIG. 6A,
  • the first shaft body 231 and the first first roller 240a and the second shaft body 232 and the second second roller 240b press the porous filter material 22 on the one hand to extrude the waste liquid to the flow guiding groove 25,
  • the sterilizing device 27a that rotates with the second second roller 240b starts to generate ultraviolet rays to be irradiated on the porous filter 22 on one side, thereby generating a sterilization effect.
  • the clean liquid generated by the filtering device 26 is returned to the container 200 through the first first roller 240a through the line 260 to complete the cycle.
  • the liquid inlet pipe 204 is connected to the container 200 so that clean liquid can be supplied into the container 200.
  • an outlet valve port having a liquid discharge line 265 connected to the liquid discharge line 264 to discharge the waste liquid generated in the cleaning mode.

Abstract

一种动态湿式气流吸附装置,包括有一液体供应装置以及至少一吸附模块。该液体供应装置,用以提供一液体。该至少一吸附模块,其与该液体供应装置藕接,每一吸附模块更具有一多孔隙滤材以及一驱动单元。该多孔隙滤材,其吸收该液体,该多孔隙滤材设置于一气流通道的一侧,与该气流通道内的气流接触,该多孔隙吸附滤材与该气流接触的表面的法线方向与该气流的流向正交。该驱动单元,其与该多孔隙滤材藕接,用以驱动该多孔隙滤材进行一位移运动。湿式气流吸附装置凭借液体为介质,结合多孔隙材料作为滤材,通过湿润多孔隙滤材以吸附污染源。

Description

动态湿式气流吸附装置 技术领域
本发明涉及一种净化气流的技术,特别是指一种凭借液体为介质,结合多孔隙材料作为滤材,通过湿润多孔隙滤材以吸附污染源的一种湿式气流吸附装置。
背景技术
随着工业的发展带动人类文明的进步,但随之而来的是全球环境的污染,例如:水污染、土壤污染或者是空气污染。每一种污染对于人类生存的环境均产生关键性的影响,因此解决环保问题与维护环境生态以让我们下一代有好的生活环境,是身为人类的我们责无旁贷的义务。
在众多污染中,空气污染是指一些危害人体健康及周边环境的物质对大气层所造成的污染,这些物质可能是气体、固体或液体悬浮物等。根据研究,由空气污染所导致的健康问题可能包括呼吸困难、哮喘、咳嗽、气喘、甚至是加重现有的呼吸和心肺疾病。
由于对一般人而言,生活空间大多在室内,例如,居家环境或者是室内公共空间,因此如何改善居家或者是公共室内空间的空气品质是一个重要课题。为了解决室内空气品质的问题,现有技术中的空气净化器,大致可分为三类,第一类为干式过滤,这种技术主要是以过滤和吸附技术为主,利用气流穿通过滤材质,而达到净化气流的效果。此类技术虽然可以净化气流,然而会有滤材使用的后阻塞,导致气流通过效率变差,为了增加气流,需要用更强的负压,导致运转成本增加,同时也会增加噪音污染。此外,滤材表面的使用效率不佳,也即,气流通过滤材时,多半集中在特定区域,因此使得滤材的表面在特定区域的过滤效果逐渐降低,而其他区域则多半没有使用到,因此即使有部分滤材区域没有使用到,但还是必须更换滤材,无形当中增加了滤材使用的成本。而第二类的方式,则是采用高压静电吸尘和高压电离产生离子净化的技术。此技术的净化效果和气流与静电板之间的距离有关,因此气流净化的效果有限,再加上易生成臭氧,形成二次污染。
第三类的净化方式为利用液体直接来洗涤空气,达到净化空气的效果。 例如:中国专利申请公布CN104089339A教导一种水洗式空气净化系统,该系统包括至少由一级空气污染物曝气水洗涤装置、空气污染物喷淋水洗涤装置、清洁空气送风装置或防雨消音静压箱式射流出风装置以及净化器本体杀菌消毒装置构成,室内污染空气经一级空气污染物曝气水洗涤装置曝气之后,再经空气污染物喷淋水洗涤装置喷淋后由风机吹向室内。虽然此技术可以达到净化空气的效果,但由于其体积庞大占据空间,因此使用的场所与环境有限。
发明内容
综合上述,本发明的目的是提供一种动态湿式气流吸附装置,其可以一边进行吸附污染源,一边进行清洗,来解决现有技术的缺陷。
为实现上述目的,本发明采用的技术方案是:
一种动态湿式气流吸附装置,其特征是包括有:
一液体供应装置,用以提供一液体;以及
至少一吸附模块,其与该液体供应装置耦接,每一吸附模块具有:
一多孔隙滤材,其能够吸收该液体,该多孔隙滤材设置于一气流通道的一侧,与该气流通道内的气流接触,该多孔隙吸附滤材与该气流接触的表面的法线方向与该气流的流向正交;以及
一驱动单元,其与该多孔隙滤材耦接,用以驱动该多孔隙滤材进行一位移运动。
所述的动态湿式气流吸附装置,其中:该多孔隙滤材为一环状带体,该驱动单元具有:
一动力装置,用以提供一转动动力;
一第一轴体,其与该动力装置耦接,该第一轴体与该环状带体内侧面耦接;以及
一第二轴体,与该第一轴体保持一距离且与该环状带体内侧面耦接;
其中,该第一轴体与该第二轴体将该环状带体内部撑开,以形成该气流通道。
所述的动态湿式气流吸附装置,其中:该第一轴体与该第二轴体为多孔隙轴体,且该第一轴体与该第二轴体为多孔隙轴体内部分别具有一与该 液体供应装置耦接的液体通道。
所述的动态湿式气流吸附装置,其中,还具有一废液脱离装置,其包括有:
一第一滚轴,其与该第一轴体耦接,能够接收该第一轴体转动的动力而进行转动,该第一滚轴与该多孔隙滤材的表面连接,能够凭借转动挤压该多孔隙滤材;以及
一第二滚轴,其与该第二轴体耦接,能够接收该第二轴体转动的动力而进行转动,该第二滚轴与该多孔隙滤材的表面连接,能够凭借转动挤压该多孔隙滤材。
所述的动态湿式气流吸附装置,其中,还具有:
至少一导流槽,用以接收该多孔隙滤材被该第一滚轴与第二滚轴挤压所产生的废液;以及
一过滤装置,与该至少一导流槽耦接,用以过滤该废液,以形成干净的该液体,该过滤装置与该液体供应装置耦接,用以回流通过该过滤装置的液体。
所述的动态湿式气流吸附装置,其中:该过滤装置凭借一回流管路与该液体供应装置耦接,该回流管路贯穿该第一滚轴或第二滚轴而与该液体供应装置耦接。
所述的动态湿式气流吸附装置,其中:该过滤装置更具有一第一阀体以及一第二阀体,该第一阀体与该回流管路耦接用以控制该回流管路的开闭,该第二阀体与一污水排放管路耦接,用以控制该污水排放管路的开闭。
所述的动态湿式气流吸附装置,其中:在一吸附模式时,该第一阀体开启该过滤装置与该回流管路之间的连通状态,以关闭该第二阀体与该污水排放管路的连通状态,以及在一清洗模式时,该第一阀体关闭该过滤装置与该回流管路之间的连通状态,以开启该第二阀体与该污水排放管路的连通状态。
所述的动态湿式气流吸附装置,其中,该第一滚轴或第二滚轴还具有:
一透明中空管体,与该多孔隙滤材的表面连接,以凭借转动挤压该多孔隙滤材;以及
一杀菌装置,嵌入于该透明中空管体内部,该杀菌装置用以产生紫外 线以杀除该多孔隙滤材上的细菌、霉菌或微生物。
所述的动态湿式气流吸附装置,其中,还具有一杀菌装置,用以杀除该多孔隙滤材上的细菌、霉菌或微生物。
所述的动态湿式气流吸附装置,其中,还具有一感测器,用以感测一环境参数。
所述的动态湿式气流吸附装置,其中:该感测器为湿度感测器,该液体供应装置根据该环境参数提供该多孔隙滤材的液体量,进而调节该环境参数。
所述的动态湿式气流吸附装置,其中:该感测器为温度感测器,控制液体供应装置根据该环境参数调节该液体供应装置内部液体的温度,进而调节该环境参数。
所述的动态湿式气流吸附装置,其中:该位移运动为水平位移运动、垂直位移运动或往复式位移运动。
所述的动态湿式气流吸附装置,其中:该多孔隙滤材为一带体,该驱动单元还具有:
一动力装置,用以提供一顺时针或逆时针方向的转动动力;
一第一轴体,其与该动力装置耦接,该第一轴体与该带体的一端耦接;以及
一第二轴体,与该第一轴体保持一距离且与该带体的另一端耦接;
其中,该动力装置凭借该顺时针或逆时真的转动动力控制该带体进行往复式位移运动。
所述的动态湿式气流吸附装置,其中:其嵌入于一结构的内部,该结构的上方具有至少一出气口,该结构的下方具有至少一进气口,该出气口的一侧设置有一负压产生装置,用以产生负压,使得气流经由该至少一进气口进入该结构内,而通过该气流通道与该多孔隙滤材接触,再经由该至少一出气口排出。
所述的动态湿式气流吸附装置,其中:该结构为门体、柜体或箱体。
所述的动态湿式气流吸附装置,其中:该结构还具有一第一面以及与该第一面相对的一第二面,该第一面与该第二面上分别具有该进气口以及该出气口,该进气口上具有至少一进气槽,该出气口上具有至少一出气槽, 该进气槽或出气槽凭借控制选择开启或关闭。
所述的动态湿式气流吸附装置,其中:该至少一吸附模块还包括有沿一第一方向排列的复数个第一吸附模块,以及沿与该第一方向正交的第二方向排列的复数个第二吸附模块。
所述的动态湿式气流吸附装置,其中:该多孔隙滤材还包括有至少一吸附材料层以及疏水高分子层,该至少一吸附材料层用以构成与该气流接触的该气流通道,而该疏水高分子层则包覆在该至少一吸附材料层的外围。
与现有技术相比较,本发明具有的有益效果是:
本发明提供一种动态湿式气流吸附装置,其系以液体为介质,结合多孔隙滤材,例如:多孔纤维或绒毛滤材,构成湿式的多孔隙吸附滤材,再通过使滤材可以进行位移运动,而对通过湿式滤材表面的气流进行吸附。本发明的吸附装置由于气流通过吸附滤材表面,也即,气流的流动方向和吸附滤材的表面正交,因此不需要靠强力的气流驱动形成负压来使气流穿过滤材,进而可以降低噪音与提高通过滤材的气流流量增进清洁气流的效果。湿式的多孔隙吸附滤材,除了可以增加和气流接触的面积之外,也可以提高吸附气流内所含脏污物质,进而提升气流吸附的效果。又因为滤材进行位移运动,使得滤材表面可以充分的与气流接触,进而达到提升滤材使用效率的效果。特别是本发明利用动态湿式多孔隙滤材建构出气流的流动通道,通过多孔隙滤材表面具有不规则孔形、大小不一的孔径以及材质密度不一的特点,使得在通道内流动的气流与多孔隙滤材的表面接触时,形成强大的粘滞力,使得高速通过气流通道的气流形成无数的湍流(turbulence)或扰流,增加了湿式多孔隙滤材充分接触气流的机会,进而使多孔隙滤材表面可以捕捉气流中悬浮粒子,达到吸附净化气流的效果。
本发明提供一种动态湿式气流吸附装置,其具有一杀菌装置,用以对湿式多孔隙滤材进行杀菌与破坏吸附在滤材上的细菌,霉菌的繁殖能力,达到抑制生物污染源效果,以避免在多孔隙滤材表面孳生细菌、霉菌或微生物,而使得气流带有异味。
本发明提供一种动态湿式气流吸附装置,其具有清洗的模式,可以通过阀门的控制,清洗多孔隙滤材表面的脏污,进而增加多孔隙滤材的使用寿命。
本发明提供一种动态湿式气流吸附装置,其在加湿方式中,系以阀门控制流速,利用重力及毛细现象使液体沾湿行进的多孔隙滤材,循环至特定位置再以加压滚筒将污水挤出至污水处理器,经过滤处理后将滤净后的水倒回上方的储水槽,然后周而复始。
本发明提供一种动态湿式气流吸附装置,通过动态湿性滤材不断的与动态气流的接触,产生自然挥发,可以逐步增加空气中的湿度,对于空气污染严重的大陆型气候地区可以缓和干尘飞扬的空气品质;对于湿度较高的区域,可以减少水量的供给,湿性滤材可以反过来调节超过相对湿度在50%以上的空气。此外,本发明的吸附装置,更可以通过改变储水槽的水温高低,可以调节湿性滤材的温度,进而可以略为调整室内空气的温度。
附图说明
图1为本发明的动态湿式气流吸附装置实施例架构示意图。
图2为本发明的湍流模拟与多孔隙滤材移动方向关系示意图。
图3为本发明的废液脱离装置的一实施例示意图。
图4为本发明的控制器与各种感应器以及加热或致冷元件耦接关系的一实施例示意图。
图5A~图5C分别为本发明的吸附模块设置的不同实施例示意图。
图6A为本发明的动态湿式气流吸附装置另一实施例示意图。
图6B为图6A中的多孔隙滤材和第一与第二轴体与滚轴之间的断面示意图。
图6C为本发明的进出气槽实施例示意图。
附图标记说明:2-动态湿式气流吸附装置;20-液体供应装置;200-容器;201-出液口;202-控制阀门;203-入液口;204-进液管路;205-紫外线杀菌灯管;21、21a、21b、21c、21d-吸附模块;22、22a、22b-多孔隙滤材;220-表面;221-吸附材料层;222-疏水高分子层;223-不织布层;224-中空海绵层;225-孔隙;23-驱动单元;230-动力装置;231-第一轴体;232-第二轴体;233、234-液体通道;235、236、237、238、237a、238a-动力传递件;24、24a-废液脱离装置;240-夹件;240a-第一滚轴;240b-第二滚轴;241-透明中空管体;25-导流槽;250-管路;26-过滤装置;260-管路;261- 回流泵浦;262-第一阀体;263-第二阀体;264-液体排放管路;265-出液管路;27、27a-杀菌装置;28-负压产生装置;280-进气槽;281-出气槽;282、283-阀门;29-控制器;3-气流通道;40-湿度感测器;41-温度感测器;42-加热元件;43-致冷元件;8-门体;80-容置空间;81-门把;82-铰链;83-电源;90-液体;91-气流;92-法线方向;93-流向;94-干净液体;95-液体流。
具体实施方式
在下文将参考随附图式,可更充分地描述各种例示性实施例,在随附图式中展示一些例示性实施例。然而,本发明概念可能以许多不同形式来体现,且不应解释为限于本文中所阐述的例示性实施例。确切而言,提供此等例示性实施例使得本发明将为详尽且完整,且将向熟习此项技术者充分传达本发明概念的范畴。类似数字始终指示类似元件。以下将以多种实施例配合图式来说明所述动态湿式气流吸附装置,然而,下述实施例并非用以限制本发明。
请参阅图1所示,该图为本发明的动态湿式气流吸附装置实施例架构示意图。在本实施例中,该动态湿式气流吸附装置2包括有一液体供应装置20以及至少一吸附模块21。该液体供应装置20,用以提供一液体90。在一实施例中,该液体90为水,但不以此为限制,例如:在另一实施例中,该液体90也可以为含有清洁或吸附效果的清洁液体。该液体供应装置20具有一容器200,内有液体90,容器200的一侧具有至少一出液口201,其分别与一控制阀门202相连接。该控制阀门202可以凭借控制信号,控制出液口201的开或关。要说明的是,控制阀门202并非为实施本发明的必要元件,其可以根据液体回路的设计选择性使用。在一实施例中,该容器200更可以设置有一紫外线杀菌灯管205,以对容器200内的液体90进行杀菌作用。
该至少一吸附模块21,其与该液体供应装置20耦接,每一吸附模块21更具有一多孔隙滤材22以及一驱动单元23。该多孔隙滤材22,其吸收该液体90,该多孔隙滤材22设置于一气流通道3的一侧,与该气流通道3内的气流91接触。本实施例中的多孔隙滤材22,其是环状带体的结构, 而气流通道3为环状带体内侧面所构成的通道空间。有别于现有技术的气流穿过滤材,本发明的具体实施方式,如图2所示,该多孔隙吸附滤材22与该气流91(实线箭头)接触的表面220的法线方向92与该气流的流向93(图示为Z方向)正交,而虚线箭头部份代表液体90进入多孔隙滤材22所产生的液体流95。要说明的是,该多孔隙滤材22并不以环状带体的方式为限制,再另一实施例中,该多孔隙滤材22也可以为平面的带状结构。
在图2之中,其是本发明的多孔隙吸附滤材22的一实施例断面示意图。该多孔隙吸附滤材22更具有至少一吸附材料层221以及疏水高分子层222。该至少一吸附材料层221用以构成该气流通道3,而该疏水高分子层222则包覆在该至少一吸附材料层221的外围。吸附材料层221以及疏水高分子层222上分别具有多个孔隙225,以供气流91通过。在一实施例中,该疏水高分子层222为塑胶材料所构成,例如:杜邦(Dupont)公司所生产的MYLAR聚酯树脂材料,但不以此为限制。在本实施例中的吸附材料层221有两层,但不以此为限制。该吸附材料层221可以吸附液体以及让待净化的气流91通过,本发明的净化气流的功效在此吸附材料层221中发生。该吸附材料层221更包括有一不织布层223以及一中空海绵层224,不织布层223用以定型,中空海绵层224则用以吸附往下流动的液体流95,因此当气流91通过多孔隙225时,气流91的脏污物质可以被中空海绵层224所吸取的液体吸附,进而达到净化气流91的效果。
再回到图1所示,该驱动单元23,其与该多孔隙滤材22耦接,用以驱动该多孔隙滤材22进行一位移运动。在本实施例中,该位移运动为使环状带体的多孔隙滤材22进行Z方向输送带式的循环位移运动。该驱动单元23,在本实施例中,包括有一动力装置230、一第一轴体231以及一第二轴体232。该动力装置230,用以提供一转动动力。该动力装置230,在一实施例中,为一马达。由于本实施例的多孔隙滤材22为环状带体,因此该第一轴体231,除了与该动力装置230耦接之外,更与该环状带体内侧面耦接。该第二轴体232,与该第一轴体231保持一距离且与该环状带体内侧面耦接。其中,该第一轴体231与该第二轴体232将该环状带体内部撑开,以形成该气流通道3。动力装置230产生转动动力带动第一轴体231转动,而该第二轴体232可以凭借与该动力装置230或第一轴体231耦接 的动力传输元件,例如:皮带轮或者是齿轮组的带动以进行转动。因此凭借第一轴体231与第二轴体232的转动带动多孔隙滤材22沿方向Y循环位移运动。
在一实施例中,该第一轴体231与该第二轴体232为多孔隙轴体,且其内部分别具有一液体通道233与234分别通过控制阀门202与该出液口201连接,使得液体90经由该液体通道通233与234过该第一与第二轴体231与232。由于第一与第二轴体231与232为多孔隙轴体,因此液体可以通过多孔隙渗出,而被多孔隙滤材22所吸收,使得多孔隙滤材22形成湿式的多孔隙滤材。在本实施例中,构成该多孔隙轴体的材料为陶瓷材料,但不以此为限制,本领域技术的人可以根据需求选择适当的材料来构成具有内部通道的第一与第二轴体231与232。此外,要说明的是,该第一与第二轴体231与232并不以多孔隙材料为限制,例如,在另一实施例中,也可以在第一轴体231与232表面上加工形成复数个与内部液体通道233与234相通的贯孔。在另一实施例中,为了增加多孔隙滤材22的湿度效果,更可以设置一液体雾化装置,其系以管路和容器连接,以将来自容器的液体雾化成水雾,喷洒在多孔隙滤材上,增加多孔隙滤材湿度均匀的效果。
此外,如图1与3所示,在该多孔隙滤材22的一侧更可以设置一废液脱离装置24,本实施例中,废液脱离装置24具有一对夹件240,夹件240之间具有间隙,以让该多孔硅滤材22通过。夹件240为可挠性材料所构成的元件,以避免刮伤多孔隙滤材22。夹件240之间之间隙系小于多孔隙滤材22吸收液体的后的厚度,因此当多孔隙滤材22通过该间隙时,该对夹件240可以刮除多孔隙滤材22上的液体。刮除后的液体可以流至下方对应的导流槽25。要说明的是,废液脱离装置24可以有复数个,其可以根据需求设置于适当的位置,以刮除多孔隙滤材22上的污水。
在图1之中,导流槽25更具通过管路250与一过滤装置26耦接。该过滤装置26接收由该管路250所输送的废液,并对该废液进行过滤,以形成干净的液体,该过滤装置26更通过管路260与该液体供应装置20耦接,管路260用以回流通过该过滤装置26的液体。为了加强回流的效果,在一实施例中,更可以在管路260与该过滤装置26之间设置一回流泵浦261以增加回流的速度,使得过滤的后的净液可以顺利的回流到液体供应装置 20的容器200内。而过滤装置26在与回流管路260连接的处更具有第一阀体262,用以控制该管路260与过滤装置26之间的开通与闭锁,也即当该第一阀体262将该管路260与该过滤装置26连通时,过滤的后的干净液体可以经由回流泵浦261加压回流至容器200,反之,如果该第一阀体262使该管路260与该过滤装置26之间闭锁时,过滤的后的液体就无法回流至容器200。此外,该过滤装置26的另一侧更具有一液体排放管路264,其系通过第二阀体263来控制过滤装置26与液体排放管路264的开启或关闭。
此外,为了避免多孔隙滤材22孳生细菌、霉菌、微生物或病毒,在一实施例中,在多孔隙滤材22的一侧更可以设置一个杀菌装置27,例如:紫外线灯,对吸附液体的多孔隙滤材22进行杀菌与破坏吸附在滤材上的细菌,霉菌的繁殖能力,以避免在多孔隙滤材表面孳生细菌、霉菌或微生物,达到抑制生物污染源,而避免气流带有异味。在引导气流的部分,在一实施例中,该动态湿式气流吸附装置2更具有一负压产生装置28用以产生负压,将气流由一侧的进气口的进气槽280吸入,再进入气流通道3而与移动中的多孔隙滤材22接触,由于多孔隙滤材22具有不规则孔形、大小不一的孔径以及材质密度不一的特点,因此气流91在气流通道3里面时与多孔隙滤材22的不规则粗糙的表面接触,形成强大的粘滞力,令气流通道3内高速通过的气流91形成无数的湍流,使得湿性的多孔隙滤材22能充分接触气流91并达到捕捉气流91中悬浮粒子的效果。经由气流通道3流出的气流也会经由在出气口的出气槽281排出。
如图1所示,该动态湿式气流吸附装置2在操作上更包括有一吸附模式以及一清洗模式。当处于该吸附模式时,该第一阀体262开启该过滤装置26与该回流管路之间的连通状态,以其关闭该第二阀体263与该污水排放管路的连通状态,此时控制阀门202也位于开通状态,使得容器200的液体经由出液口201流到第一与第二轴体231与232内的液体通道233与234,再经由轴体本身的多孔隙所造成的毛细管现象,使得多孔隙滤材22吸附渗出的液体,进而变成湿式的多孔隙滤材22。在此同时,多孔隙滤材22受到驱动单元23的带动而进行位移运动,又外部的气流经由进气口的进气槽280进入到由多孔隙滤材22所构成的气流通道3,而与移动中的多 孔隙滤材22接触,其中湿式的多孔隙滤材22可以增加吸附气流中所含的脏污物质的效果,而移动的多孔隙滤材22可以确保多孔隙滤材22上的每一个区域都可以和气流91接触,而产生充分利用多孔隙滤材吸附的效果。要说明的是,为了避免液体与多孔隙滤材产生异味,在吸附模式的下,杀菌装置27启动产生紫外线照射在一侧的多孔隙滤材22上,进而产生杀菌的效果。
当处于清洗模式时,该第一阀体262关闭该过滤装置26与该回流管路260之间的连通状态,以及开启该第二阀体263与该污水排放管路264的连通状态,而管路264则可以外接至外部的排水道或者是居家的水槽或排水口,而将废水排出。同时,容器200一侧更具有入液口203,其系管路连接,用以供应干净液体94,例如水或清洁液等,进入至容器200,以增加液体量。又控制阀门202可以通过控制,而增加其阀口的开度,使得容器200内的液体可以大量的通过第一与第二轴体231,使得液体被多孔隙滤材22所吸收。要说明的是,清洗模式目的在于可以清除多孔隙滤材22上的污垢以及清洁导流槽25,以维持多孔隙滤材22的吸附效果,因此在清洗模式运作时多孔隙滤材的含水滤会比吸附模式时的含水率高,例如:在一实施例中,吸附模式时的多孔隙率材含水率约在多孔隙滤材22饱和含水量的60%~70%左右,而在清洗模式时,多孔隙滤材22的含水率则提高至80%~90%。此外,在清洗模式之中,多孔隙滤材22还是如同在吸附模式下的操作状态,也即仍然维持进行位移运动,只是经过过滤装置26的污水,不再回流至容器200内,而是经过污水管路264排出。
此外,在另一实施例中,该装置2更具有湿度感测器,用以感测外部环境的湿度状况,通过动态湿性滤材不断的与动态气流的接触,使得液体中的水气产生自然挥发,可以逐步增加空气中的湿度,对于空气污染严重的大陆型气候地区可以缓和干尘飞扬的空气品质;反之,对于湿度较高的区域,可以减少水量的供给,湿性滤材可以反过来调节超过相对湿度在50%以上的空气。至于控制水量供给的方式,如图4所示,可以通过一控制器29,其与至少一湿度感测器40以有线或无线的方式电性连接(图示仅以一个湿度感测器示意),其数量系根据需求而定。又控制器29与控制阀门202电讯连接,因此当控制器29根据湿度感测器40所感测到的外部环境湿度 值之后,可以根据外部环境的湿度状态,调节控制阀门202的开度,进而控制进入第一与第二轴体231与232的液体量,而调节多孔隙滤材22的湿度,进而达到前述缓和干尘飞扬的空气品质或者是调节超过相对湿度的效果。
此外,通过改变容器200的液体温高低,可以调节湿性滤材的温度,进而可以略为调整室内空气的温度。要达到前述的目的,如图4所示,可以进一步设置与控制器29电性连接的加热元件42与致冷元件43在容器内或外围,以及设置与控制器29以有线或无线的方式电性连接的至少一温度感测器41,用以感测环境温度。温度感测器42的数量可以根据使用需求而定,并不以图中所示的数目为限制;加热元件42与致冷元件43的设置位置与数量系根据使用需求而定,此外,加热元件或致冷元件也不一定要同时设置,可以根据使用需求而定。控制器29则根据感测的环境温度控制加热元件42获致冷元件43作动以调节容器200内的液体温度,进而改变多孔隙滤材22的温度,又气流与多孔隙滤材22接触之后,气流的温度也会变化,当气流由出气口的出气槽281排出至空间环境时,就可以调节空间环境内的温度。
请参阅图5A~图5C所示,该图为本发明的吸附模块的不同实施例示意图。在图5A中,吸附模块21a的多孔隙滤材22a是平面带状的结构。多孔隙滤材22a的两端分别与第一与第二轴体231与232相连接。由于多孔隙滤材22a是平面带状,因此其所进行的位移运动是通过第一与第二轴体231与232的正反转动,产生的往复式位移运动。例如:第一与第二轴体231与232逆时针转动,带动多孔隙滤材22a向上移动(+Z方向),反之,第一与第二轴体231与232顺时针转动则带动多孔隙滤材22a向下移动(-Z方向)。要说明的是,有别于传统的紫外线杀菌模式,由于带状滤材移动速度,在一实施例中约每分钟10~20公分,因此可以让紫外线有充足的时间杀菌。而图5A的实施例中,气流通道3的构成,是通过复数个吸附模块21a平行排列,使得多孔隙滤材22a相对且保持一距离,其中间的空间即构成气流通道3。
如图5B所示,本实施例的有别于图1的方式,本实施例中的吸附模块21b所具有的多孔隙滤材22b同样也与图1一样是环状的带体结构,所 差异的是,其位移运动的方向与图1的方式不同,图1的多孔隙滤材22是朝向水平Y方向的移动,而图5B的多孔隙滤材22b则是朝向Z轴方向的循环式移动。另外,如图5C所示,本实施例为复数个排列方向正交的吸附模块21c与21d所构成。在本实施例中,复数个吸附模块21c是沿着Y方向排列,相邻吸附模块21c之间具有间距以构成气流通道,而复数个吸附模块21d是设置在复数个吸附模块21c的上方,其系沿着X方向排列,相邻吸附模块21d之间具有间距以构成气流通道。
利用前述本发明的动态湿式气流吸附装置的架构,可以根据使用环境与需求制作成不同型态的吸附装置,例如,在一实施例中,可以制作成超薄型空气清净及加湿系统,例如门形吸附装置、窗型吸附装置及嵌壁式产品的吸附装置,例如:嵌入在天花板或墙壁等。此外,在另一实施例中,也可以制作成柜形或箱型的空气清净及加湿系统或壁挂式的空气清净及加湿系统。
请参阅图6A所示,该图为本发明的动态湿式气流吸附装置另一实施例示意图。在本实施例中,该动态湿式气流吸附装置系嵌入于一结构的内部,该结构在本实施例中为门,其包括有一门体8,内部具有一容置空间80,用以容置动态湿式气流吸附装置,例如图1所示的动态湿式气流吸附装置2。门体8的一侧面上具有门把81,在门体8的窄侧面上具有铰链82以和墙壁或门框相耦接。本实施例的供电方式可以在铰链82上设置电源83,用以供应动态湿式气流吸附装置2运作所需的电力。在图6A实施例中的动态湿式气流吸附装置基本上与图1的实施例相同,差异的是,本实施例中的废液脱离装置24a与杀菌装置27a的设计。请同时参阅图6A与图6B所示,其中图6B为图6A中的多孔隙滤材22和第一与第二轴体231与232的断面示意图。在本实施例中,该废液脱离装置24a为一对滚轴,其中之一第一滚轴240a与第一轴体231相对应,第一滚轴240a设置在多孔隙滤材22的外表面,而第一轴体231则设置在多孔隙滤材22的内表面;另一第二滚轴240b与第二轴体232相对应,第二滚轴240b设置在多孔隙滤材22的外表面,而第二轴体232则设置在多孔隙滤材22的内表面。
第一滚轴240a与第一轴体231以及第二滚轴240b与第二轴体232之间分别具有间隙,该间隙的距离系小于多孔隙滤材22的厚度,当吸附液体 并对气流进行吸附的后的多孔隙滤材22通过第一滚轴240a与第一轴体231以及第二滚轴240b与第二轴体232之间时,多孔隙滤材22会被第一滚轴240a与第一轴体231以及第二滚轴240b与第二轴体232挤压,进而污水可以被挤出,而顺着重力往下流动至导流槽25内。
为了让多孔隙滤材22可以顺利移动,本实施例中,动力装置230与第一轴体231耦接,直接驱动第一轴体231转动,又在第一轴体231靠近动力装置230的端部具有动力传递件235,例如齿轮,其与相应第一滚轴240a上的另一动力传递件236齿接。因此当动力装置230产生转动动力带动第一轴体231转动时,第一轴体231的转动动力也会通过动力传递件235与236传递至第一滚轴240a,通过第一滚轴240a与第一轴体231的转动,挟持多孔隙滤材22产生位移运动。第二轴体232与第二滚轴240b为从动的设计,在一实施例中,当多孔隙滤材22移动时,第二轴体232顺势被带动,因此也会进行与第一轴体231相同转向的转动运动,又第二轴体232的端部具有动力传递件237与237a,其分别与第二滚轴240b对应位置上的动力传递件238与238a相齿接,并于第二轴体232转动时接收转动动力,带动第二滚轴240b转动。要说明的是动力传递件235~238、237a与238a并不以本实施例的齿轮为限制,例如:在另一实施例中,可以采用皮带轮与皮带方式驱动与传递动力,其为本领域技术的人所熟知,在此不做赘述。
此外,在本实施例中,如图6A所示,为了在有限的空间内,除了能够让多孔隙滤材22移动,产生气流通道之外,还可以兼顾杀菌效果,以避免异味产生,本实施例中,将杀菌装置27a与第二滚轴240b整合在一起。也即在本实施例中,第二滚轴240b更进一步包括有一透明中空管体241,而杀菌装置27a为一柱状的紫外线杀菌灯管,其系嵌入在中空管体241内的中空区域。因此当该第二滚轴240b进行转的动时候,杀菌装置27a也可以跟着同步转动,又因为中空管体241为透明的结构,因此杀菌装置27a的紫外光可以穿透中空管体241而投射至多孔隙滤材22上,达到抑制多孔隙滤材22上的细菌、霉菌或微生物孳生的效果。此外,由于空间有限,因此回流的管路260贯穿第一滚轴240a,再连接到容器200。要说明的是,在另一实施例中,该杀菌装置27a可以设置在第一滚轴240a,而回流的管路260则是贯穿第二滚轴240a,再连接到容器200。
请参阅图6C所示,该图为本发明的进出气槽实施例示意图。在本实施例中,在门体8的下方具有一进气口,其上具有进气槽280,而在门体8的上方具有出气口,其上具有出气槽281。在本实施例中,进气槽280上具有复数个阀门282,而在出气槽281上也具有复数个阀门283。在一实施例中,如图4所示,阀门282与283可以进一步与控制器29电性连接,控制器29可以根据控制的需求,控制阀门282与283的开度与关闭。同样地,本实施例的门体8内的动态湿式气流吸附装置2具有吸附模式与清洗模式,吸附模式的循环方式基本上如图1所相应的方式,但在图6A的吸附模式的下,第一轴体231与第一第一滚轴240a以及第二轴体232与第二第二滚轴240b一方面挤压多孔隙滤材22,以将废液挤出流至导流槽25,另一方面随着第二第二滚轴240b转动的杀菌装置27a启动产生紫外线照射在一侧的多孔隙滤材22上,进而产生杀菌的效果。而经过过滤装置26所产生的干净液体,再经过管路260通过第一第一滚轴240a再回到容器200内,完成循环。而在清洗模式中,通过在门框的侧面上具有一进液阀口,其内具有进液管路204与容器200连接使得干净的液体可以供应至容器200内。同样在门框侧面上具有一出液阀口,其内具有出液管路265与液体排放管路264连接,以排放清洗模式下所产生的废液。至于清洗模式的运作方式,如前所述,在此不做赘述。
以上说明对本发明而言只是说明性的,而非限制性的,本领域普通技术人员理解,在不脱离权利要求所限定的精神和范围的情况下,可作出许多修改、变化或等效,但都将落入本发明的保护范围之内。

Claims (20)

  1. 一种动态湿式气流吸附装置,其特征是包括有:
    一液体供应装置,用以提供一液体;以及
    至少一吸附模块,其与该液体供应装置耦接,每一吸附模块具有:
    一多孔隙滤材,其能够吸收该液体,该多孔隙滤材设置于一气流通道的一侧,与该气流通道内的气流接触,该多孔隙吸附滤材与该气流接触的表面的法线方向与该气流的流向正交;以及
    一驱动单元,其与该多孔隙滤材耦接,用以驱动该多孔隙滤材进行一位移运动。
  2. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于:该多孔隙滤材为一环状带体,该驱动单元具有:
    一动力装置,用以提供一转动动力;
    一第一轴体,其与该动力装置耦接,该第一轴体与该环状带体内侧面耦接;以及
    一第二轴体,与该第一轴体保持一距离且与该环状带体内侧面耦接;
    其中,该第一轴体与该第二轴体将该环状带体内部撑开,以形成该气流通道。
  3. 根据权利要求2所述的动态湿式气流吸附装置,其特征在于:该第一轴体与该第二轴体为多孔隙轴体,且该第一轴体与该第二轴体为多孔隙轴体内部分别具有一与该液体供应装置耦接的液体通道。
  4. 根据权利要求2所述的动态湿式气流吸附装置,其特征在于,还具有一废液脱离装置,其包括有:
    一第一滚轴,其与该第一轴体耦接,能够接收该第一轴体转动的动力而进行转动,该第一滚轴与该多孔隙滤材的表面连接,能够凭借转动挤压该多孔隙滤材;以及
    一第二滚轴,其与该第二轴体耦接,能够接收该第二轴体转动的动力而进行转动,该第二滚轴与该多孔隙滤材的表面连接,能够凭借转动挤压该多孔隙滤材。
  5. 根据权利要求4所述的动态湿式气流吸附装置,其特征在于,还具有:
    至少一导流槽,用以接收该多孔隙滤材被该第一滚轴与第二滚轴挤压 所产生的废液;以及
    一过滤装置,与该至少一导流槽耦接,用以过滤该废液,以形成干净的该液体,该过滤装置与该液体供应装置耦接,用以回流通过该过滤装置的液体。
  6. 根据权利要求5所述的动态湿式气流吸附装置,其特征在于:该过滤装置凭借一回流管路与该液体供应装置耦接,该回流管路贯穿该第一滚轴或第二滚轴而与该液体供应装置耦接。
  7. 根据权利要求6所述的动态湿式气流吸附装置,其特征在于:该过滤装置更具有一第一阀体以及一第二阀体,该第一阀体与该回流管路耦接用以控制该回流管路的开闭,该第二阀体与一污水排放管路耦接,用以控制该污水排放管路的开闭。
  8. 根据权利要求7所述的动态湿式气流吸附装置,其特征在于:在一吸附模式时,该第一阀体开启该过滤装置与该回流管路之间的连通状态,以关闭该第二阀体与该污水排放管路的连通状态,以及在一清洗模式时,该第一阀体关闭该过滤装置与该回流管路之间的连通状态,以开启该第二阀体与该污水排放管路的连通状态。
  9. 根据权利要求4所述的动态湿式气流吸附装置,其特征在于,该第一滚轴或第二滚轴还具有:
    一透明中空管体,与该多孔隙滤材的表面连接,以凭借转动挤压该多孔隙滤材;以及
    一杀菌装置,嵌入于该透明中空管体内部,该杀菌装置用以产生紫外线以杀除该多孔隙滤材上的细菌、霉菌或微生物。
  10. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于,还具有一杀菌装置,用以杀除该多孔隙滤材上的细菌、霉菌或微生物。
  11. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于,还具有一感测器,用以感测一环境参数。
  12. 根据权利要求11所述的动态湿式气流吸附装置,其特征在于:该感测器为湿度感测器,该液体供应装置根据该环境参数提供该多孔隙滤材的液体量,进而调节该环境参数。
  13. 根据权利要求11所述的动态湿式气流吸附装置,其特征在于:该感测器为温度感测器,控制液体供应装置根据该环境参数调节该液体供应 装置内部液体的温度,进而调节该环境参数。
  14. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于:该位移运动为水平位移运动、垂直位移运动或往复式位移运动。
  15. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于:该多孔隙滤材为一带体,该驱动单元还具有:
    一动力装置,用以提供一顺时针或逆时针方向的转动动力;
    一第一轴体,其与该动力装置耦接,该第一轴体与该带体的一端耦接;以及
    一第二轴体,与该第一轴体保持一距离且与该带体的另一端耦接;
    其中,该动力装置凭借该顺时针或逆时真的转动动力控制该带体进行往复式位移运动。
  16. 根据权利要求1至15中任一项所述的动态湿式气流吸附装置,其特征在于:其嵌入于一结构的内部,该结构的上方具有至少一出气口,该结构的下方具有至少一进气口,该出气口的一侧设置有一负压产生装置,用以产生负压,使得气流经由该至少一进气口进入该结构内,而通过该气流通道与该多孔隙滤材接触,再经由该至少一出气口排出。
  17. 根据权利要求16所述的动态湿式气流吸附装置,其特征在于:该结构为门体、柜体或箱体。
  18. 根据权利要求16所述的动态湿式气流吸附装置,其特征在于:该结构还具有一第一面以及与该第一面相对的一第二面,该第一面与该第二面上分别具有该进气口以及该出气口,该进气口上具有至少一进气槽,该出气口上具有至少一出气槽,该进气槽或出气槽凭借控制选择开启或关闭。
  19. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于:该至少一吸附模块还包括有沿一第一方向排列的复数个第一吸附模块,以及沿与该第一方向正交的第二方向排列的复数个第二吸附模块。
  20. 根据权利要求1所述的动态湿式气流吸附装置,其特征在于:该多孔隙滤材还包括有至少一吸附材料层以及疏水高分子层,该至少一吸附材料层用以构成与该气流接触的该气流通道,而该疏水高分子层则包覆在该至少一吸附材料层的外围。
PCT/CN2018/107942 2017-09-28 2018-09-27 动态湿式气流吸附装置 WO2019062809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710897892.3 2017-09-28
CN201710897892.3A CN109569104A (zh) 2017-09-28 2017-09-28 动态湿式气流吸附装置

Publications (1)

Publication Number Publication Date
WO2019062809A1 true WO2019062809A1 (zh) 2019-04-04

Family

ID=65900852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107942 WO2019062809A1 (zh) 2017-09-28 2018-09-27 动态湿式气流吸附装置

Country Status (3)

Country Link
CN (1) CN109569104A (zh)
TW (1) TW201914683A (zh)
WO (1) WO2019062809A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546250A2 (de) * 1991-12-10 1993-06-16 Firma Carl Freudenberg Vorrichtung zur Abgasreinigung
CN1225715A (zh) * 1996-04-08 1999-08-11 环球水公司 便携式可饮用水回收和供给装置
CN104923017A (zh) * 2015-06-05 2015-09-23 珠海格力电器股份有限公司 气体处理装置及该装置的控制方法
CN105013274A (zh) * 2014-04-30 2015-11-04 董荆山 一种抗霾增氧过滤窗
CN106823631A (zh) * 2017-03-15 2017-06-13 雾霾狗(深圳)环保科技有限公司 雾霾水洗净化器
CN207462839U (zh) * 2017-09-28 2018-06-08 首例国际股份有限公司 废液脱离与杀菌装置及其动态湿式气流吸附装置
CN207462840U (zh) * 2017-09-28 2018-06-08 首例国际股份有限公司 动态湿式气流吸附装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222755A (en) * 1978-11-17 1980-09-16 Grotto Lavon P Air filter arrangement to permit cleaning without removing element
US4759782A (en) * 1985-07-05 1988-07-26 Pall Corporation Coalescing filter for removal of liquid aerosols from gaseous streams
CN2109243U (zh) * 1991-12-20 1992-07-08 孟禹 动旋环筛板填充床式尾气脱硫装置
CN102580410B (zh) * 2012-03-06 2014-04-09 无锡市天兴净化空调设备有限公司 卷烟厂用自清式过滤器
CN202844781U (zh) * 2012-07-25 2013-04-03 中国人民解放军军事医学科学院卫生装备研究所 过滤器滤芯及过滤器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546250A2 (de) * 1991-12-10 1993-06-16 Firma Carl Freudenberg Vorrichtung zur Abgasreinigung
CN1225715A (zh) * 1996-04-08 1999-08-11 环球水公司 便携式可饮用水回收和供给装置
CN105013274A (zh) * 2014-04-30 2015-11-04 董荆山 一种抗霾增氧过滤窗
CN104923017A (zh) * 2015-06-05 2015-09-23 珠海格力电器股份有限公司 气体处理装置及该装置的控制方法
CN106823631A (zh) * 2017-03-15 2017-06-13 雾霾狗(深圳)环保科技有限公司 雾霾水洗净化器
CN207462839U (zh) * 2017-09-28 2018-06-08 首例国际股份有限公司 废液脱离与杀菌装置及其动态湿式气流吸附装置
CN207462840U (zh) * 2017-09-28 2018-06-08 首例国际股份有限公司 动态湿式气流吸附装置

Also Published As

Publication number Publication date
TW201914683A (zh) 2019-04-16
CN109569104A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN205536268U (zh) 一种适用于教室的空气净化系统
CN204593637U (zh) 室内空气消毒净化器
KR100719788B1 (ko) 물세척법과 흡착여과법을 연계한 복합기능 공기정화기
CN104728945B (zh) 一种层叠式智能空气处理系统
CN201129810Y (zh) 室内空气净化系统
CN102481384A (zh) 消毒和除臭卫生间系统的方法和装置
US7722708B2 (en) Air purification apparatus and method
CN103499125A (zh) 一种医用空气净化消毒器及其运行模式
CN101839534B (zh) 一种壁挂式多功能层流杀菌机
CN203478448U (zh) 一种医用空气净化消毒器
KR102026933B1 (ko) 교실 환기시스템
KR102194452B1 (ko) 다기능성의 공기 청정기 및 이를 포함하는 공기 정화시스템
JP2002286250A (ja) デシカント空調システム
CN207462840U (zh) 动态湿式气流吸附装置
CN101590270A (zh) 立式室内空气光催化净化调湿器
CN101590258A (zh) 带有调湿功能的卧式室内空气高效净化器
CN101590264A (zh) 立式紫外线室内空气消毒净化器
WO2019062809A1 (zh) 动态湿式气流吸附装置
CN207462839U (zh) 废液脱离与杀菌装置及其动态湿式气流吸附装置
CN101590257A (zh) 立式室内空气臭氧氧化净化调湿器
CN217817304U (zh) 一种多功能空气净化装置
CN203355520U (zh) 一种空气清洗机
CN201885317U (zh) 一种壁挂式多功能层流杀菌机
CN107327954A (zh) 带有调湿功能的卧式室内空气高效净化器
CN107198941A (zh) 立式紫外线室内空气消毒净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18862693

Country of ref document: EP

Kind code of ref document: A1