WO2019062204A1 - 换热器和具有其的换热系统 - Google Patents

换热器和具有其的换热系统 Download PDF

Info

Publication number
WO2019062204A1
WO2019062204A1 PCT/CN2018/090690 CN2018090690W WO2019062204A1 WO 2019062204 A1 WO2019062204 A1 WO 2019062204A1 CN 2018090690 W CN2018090690 W CN 2018090690W WO 2019062204 A1 WO2019062204 A1 WO 2019062204A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
header
heat exchange
partition
heat
Prior art date
Application number
PCT/CN2018/090690
Other languages
English (en)
French (fr)
Inventor
黄宁杰
Original Assignee
杭州三花家电热管理系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花家电热管理系统有限公司 filed Critical 杭州三花家电热管理系统有限公司
Publication of WO2019062204A1 publication Critical patent/WO2019062204A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces

Definitions

  • the invention relates to the field of heat exchange technology, and in particular to a heat exchanger and a heat exchange system therewith.
  • the heat exchanger of the related art includes a heat exchange tube and a collecting tube.
  • the main components of the heat exchanger are mostly aluminum alloy, and the aluminum alloy has a large thermal expansion coefficient, wherein the wall thickness of the heat exchange tube is generally 0.2 to 0.5 mm. Between, the wall thickness is generally smaller than other parts.
  • the temperature difference of the refrigerant in the adjacent two processes of the multi-flow heat exchanger is large, so that the heat exchange tubes close to the partition plate (the partition plate is used to divide the inner cavity of the collecting pipe into cavities corresponding to different processes) are subjected to
  • the influence of the refrigerant at different temperatures in the two adjacent processes causes the temperature of the heat exchange tubes to alternately change, resulting in temperature fatigue.
  • the heat exchange tubes are prone to cracks due to changes in thermal stress, which causes the heat exchanger to leak easily.
  • the invention proposes a heat exchanger capable of relatively reducing the probability of cracks in the heat exchange tubes, so that the probability of leakage of the heat exchanger is relatively reduced.
  • a heat exchanger includes: a first header and a second header; a first separator and a second separator, wherein the first separator and the second separator are simultaneously located
  • the inner cavity of the first header, the first partition and the second partition divide the first manifold inner cavity into a first cavity, a second cavity and a third cavity, along An axial direction of the first header, the second cavity is located between the first cavity and the third cavity; a plurality of heat exchange tubes, a plurality of the heat exchange tubes
  • the axial direction of the first header is spaced apart; at least a portion of the inner cavity of the heat exchange tube communicates with the inner cavity of the first cavity and the second header; at least part of the heat exchange An inner cavity of the tube communicates with the inner cavity of the third cavity and the second header; the second cavity is along the direction of the first header to the second header
  • a partition is not provided at the vertical projection position of the inner cavity of the second header.
  • the headers form a heat insulating chamber between adjacent processes, and the heat insulating chamber can change adjacent processes. Insulation between the heat pipes to prevent the heat exchange tubes of adjacent processes from causing temperature fatigue due to large temperature difference and stress cracks, thereby preventing the heat exchanger from leaking due to the occurrence of cracks in the heat exchange tubes, so as to improve The safety and reliability of the heat exchanger.
  • heat exchanger according to an embodiment of the present invention may further have the following additional technical features:
  • the heat exchanger further includes a third partition and the fourth partition, wherein the third partition and the fourth partition are simultaneously located in a cavity of the second header,
  • the third partition and the fourth partition divide the inner cavity of the second header into a fourth cavity, a fifth cavity and a sixth cavity along an axis of the second header In a direction, the fifth cavity is located between the fourth cavity and the sixth cavity; at least a portion of the inner cavity of the heat exchange tube communicates with the third cavity and the fourth cavity At least a portion of the inner cavity of the heat exchange tube communicates with the sixth cavity and the third cavity; the fifth cavity is oriented along the second header to the first header A partition is not provided at a vertical projection position of the inner cavity of the first header.
  • the heat exchanger further includes a fifth partition and the sixth partition, wherein the fifth partition and the sixth partition are simultaneously located in the third cavity, the fifth partition
  • the plate and the sixth partition divide the third cavity into a seventh cavity, an eighth cavity, and a ninth cavity, the eighth cavity along an axial direction of the second header
  • the body is located between the seventh cavity and the ninth cavity; at least a portion of the inner cavity of the heat exchange tube communicates with the fourth cavity and the seventh cavity, at least part of the heat exchange tube
  • the inner cavity communicates with the sixth cavity and the seventh cavity, at least a portion of the inner cavity of the heat exchange tube communicates with the sixth cavity and the ninth cavity;
  • the partition of the first header to the second header is not provided with a partition at a vertical projection position of the inner cavity of the second header.
  • the heat exchanger further comprises at least one heat insulation member, the heat insulation member is a solid heat insulation member or a hollow heat insulation member, the first end of the heat insulation member and the first set The flow tube is connected and located at the second cavity, and the second end of the heat insulation member is connected to the second header.
  • the heat insulating member is formed by the heat exchange tube, and a hole is formed in a wall of the first header corresponding to the second cavity, and the first end of the heat insulating member passes through The jack is connected to the first header.
  • fins are disposed between the adjacent heat exchange tubes.
  • the heat exchanger further includes: a first bracket on an outer side of one outermost heat exchange tube and a second bracket on an outer side of the other outermost heat exchange tube, the first bracket has a first end portion and a second end portion, the first end portion having a first curved connecting surface, the second end portion having a second curved connecting surface; the second bracket having a third end portion and a fourth end portion, the third end portion has a third curved connecting surface, the fourth end portion has a fourth curved connecting surface; the first header has a first collecting tube shaft a first connecting portion at one end in the direction of direction and a second connecting portion at the other end in the axial direction of the first header, the second header having a third end in the axial direction of the second header a connecting portion and a fourth connecting portion at the other end of the second header in the axial direction; a radius of curvature of the first curved connecting surface is not less than a radius of curvature of an outer wall surface of the first connecting portion, a first curved connecting surface is
  • a fin is disposed between the first bracket and a heat exchange tube adjacent thereto, and a fin is disposed between the second bracket and a heat exchange tube adjacent thereto.
  • the heat exchanger is a microchannel heat exchanger.
  • the present invention also proposes a heat exchange system including a compressor, a condenser, an evaporator, and a throttle mechanism, wherein at least one of the condenser and the evaporator is a change of the above embodiment Heater.
  • the heat exchange system of the embodiment of the present invention by providing at least one of the condenser and the evaporator to the heat exchanger of the above embodiment, it is possible to relatively reduce the heat exchanger tubes of the condenser and/or the evaporator.
  • FIG. 1 is a schematic structural view of an angle of a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of another angle of a heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a heat exchanger according to still another embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of a heat exchanger according to still another embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a heat exchanger 100 according to an embodiment of the present invention will be described below with reference to the accompanying drawings, and the heat exchanger 100 of the embodiment of the present invention may be a microchannel heat exchanger.
  • the heat exchanger 100 includes a first header 10, a second header 20, a heat exchange tube 30, a first partition 41, and a second partition 42. And a plurality of heat exchange tubes 30.
  • the second header 20 is disposed at a distance from the first header 10, and the plurality of heat exchange tubes 30 are disposed between the first header 10 and the second header 20, and a plurality of The heat exchange tubes 30 are disposed at a distance from each other along the axial direction of the first header 10.
  • the first end of the heat exchange tube 30 is connected to the first header 10
  • the second end of the heat exchange tube 30 is connected to the second header 20
  • the heat exchange tube 30 is connected to the inner chamber of the first header 10. And the inner cavity of the second header 20.
  • the first header 10 and the second header 20 are separated by a certain distance, and the first end of the heat exchange tube 30 is connected to the first header 10, and the heat exchange tube 30 is connected.
  • the second end is connected to the second header 20, and the heat exchange tube 30 communicates with the inner cavity of the first header 10 and the inner cavity of the second header 20, and the refrigerant can be in the heat exchange tube 30, first The inside of the header 10 and the second header 20 flows.
  • the first baffle 41 and the second baffle 42 are simultaneously located in the inner cavity of the first header 10, and the first baffle 41 and the second baffle 42 divide the inner cavity of the first header 10 into the first cavity 11
  • the second cavity 12 and the third cavity 13 are located along the axial direction of the first header 10, and the second cavity 12 is located between the first cavity 11 and the third cavity 13.
  • the first cavity 11 and the third cavity 13 are blocked by the second cavity 12, and the second cavity 12 does not flow between the first cavity 11 and the third cavity 13.
  • the refrigerant may flow from the first cavity 11 through the heat exchange tube 30 to the second header 20, and then flow through the heat exchange tube 30 to the third cavity 13.
  • the first separator is provided. 41 and the second baffle 42, compared with the related art, only one partition is disposed between adjacent processes, which can prevent a temperature difference between the two sides of the baffle when a baffle is prevented, thereby avoiding a temperature difference between the two sides of the baffle.
  • the heat exchange tubes 30 that cause the adjacent separators are alternately temperature-induced to cause temperature fatigue. Thereby, the temperature difference between the heat exchange tubes 30 of adjacent processes is reduced to relatively reduce the possibility of cracks in the heat exchange tubes 30 of adjacent flows.
  • a part of the plurality of heat exchange tubes 30 communicates with the first chamber 11 and the second header 20, and a portion of the plurality of heat exchange tubes 30 communicates with the third chamber 13 to communicate with the third chamber 13 and the second header 20.
  • the refrigerant flows in the first header 10 and the second header 20 and the plurality of heat exchange tubes 30, whereby the refrigerant flow path in the heat exchange tube 30 can be divided into two processes, that is, the first flow 31 and second flow 32.
  • the refrigerant flow path in the heat exchange tube 30 that communicates the inner cavity of the first cavity 11 and the second header 20 constitutes a first flow 31, which communicates the inner cavity of the second header 20 and the third cavity 13
  • the refrigerant flow path in the heat exchange tubes 30 constitutes a second flow 32 in which the refrigerant flows in the first flow 31 and the second flow 32 in opposite directions.
  • the refrigerant in the first cavity 11 is heat exchanged through the first flow 31 and the second flow 32, and then flows to the third cavity 13, and the refrigerant flows in the adjacent flow, because the refrigerant in the adjacent flow passes.
  • the degree of heat exchange is different, so that the temperatures of the refrigerants of adjacent processes are different, thereby causing a temperature difference between adjacent heat exchange tubes 30 of adjacent processes.
  • the first baffle 41 and the second baffle 42 are disposed in the first header 10 to separate the lumen of the header in the axial direction to form three separate chambers, thereby The temperature of the refrigerant is different, and the temperatures of the chambers on both sides of the second chamber 12 are different.
  • a high temperature chamber of a refrigerant communicating with one of the adjacent flows may be formed.
  • the low temperature zone chamber of the refrigerant communicating with another process of the adjacent process separates the high temperature zone from the low temperature zone through the second cavity 12, thereby reducing the temperature difference between the heat exchange tubes 30 and avoiding thermal stress, The probability of cracking in the heat exchange tubes 30 is reduced.
  • the first partition 41 and the second partition 42 are disposed in the first header 10 to divide the inner cavity of the first header 10 into the first The cavity 11, the second cavity 12 and the third cavity 13 can prevent the temperature fluctuation of the heat exchange tube 30 of the adjacent flow due to the alternating temperature change, and the stress crack occurs, thereby being relatively reduced due to the heat exchange tube
  • the probability that the heat exchanger 100 is leaked by the crack is generated to relatively increase the reliability of the heat exchanger 100.
  • the refrigerant inlet 14 and the refrigerant outlet 15 are provided in the first header 10, and the first separator 41 and the second separator 42 are both located at the refrigerant inlet 14 and are cooled. Between the agent inlets 14, the refrigerant can enter the first chamber 11 through the refrigerant inlet 14, then flow to the first process 31, and to the second header 20, then to the second process 32, and finally from the refrigerant inlet 14 Flow out.
  • the heat exchanger may further include a third partition 43 and a fourth partition 44, and the third partition 43 and the fourth partition 44 are simultaneously located in the inner cavity of the second header 20.
  • the third partition 43 and the fourth partition 44 divide the inner cavity of the second header 20 into the fourth cavity 21, the fifth cavity 22, and the sixth cavity 23 along the axis of the second header 20.
  • the fifth cavity 22 is located between the fourth cavity 21 and the sixth cavity 23, and in the second header 20, the fourth cavity 21, the fifth cavity 22 and the sixth cavity 23 are not Connected.
  • At least part of the inner cavity of the heat exchange tube 30 communicates with the third cavity 13 and the fourth cavity 21, at least part of the inner cavity of the heat exchange tube 30 communicates with the sixth cavity 23 and the third cavity 13, and the fifth cavity 22
  • the second header 20 is not provided with a partition at a vertical projection position of the inner cavity of the first header 10 in the direction of the first header 10.
  • the refrigerant flows through the heat exchange tubes 30 between the first header 10 and the second header 20, and the flow of the refrigerant can be divided into three, that is, the first flow 31, the third flow 33, and
  • the refrigerant flow path in the heat exchange tubes 30 passing through the first cavity 11 and the fourth cavity 21 constitutes a first flow 31, and the heat exchange tubes connecting the fourth cavity 21 and the third cavity 13
  • the refrigerant flow path in 30 constitutes a third flow 33
  • the refrigerant flow path in the heat exchange tube 30 connecting the third cavity 13 and the sixth cavity 23 constitutes a fourth flow 34, and the refrigerant is in the first flow 31,
  • the flow direction of the fourth flow 34 is opposite to the flow direction of the third flow 33.
  • the first cavity 11 and the third cavity 13 are respectively disposed at two sides of the second cavity 12, and the first cavity 11 and the third cavity 13 are passed through the second cavity 12.
  • the fourth cavity 21 and the sixth cavity 23 are respectively located on both sides of the fifth cavity 22, and the fourth cavity 21 and the sixth cavity 23 are spaced apart by the fifth cavity 22 so as to be insulated. Insulation is performed, the heat exchange tubes 30 of the first process 31 are connected to the first cavity 11 and the fourth cavity 21, and the heat exchange tubes 30 of the third flow 33 are connected to the fourth cavity 21 and the third cavity 13, fourth The heat exchange tubes 30 of the flow 34 communicate with the third chamber 13 and the sixth chamber 23.
  • the refrigerant flows from the first cavity 11 through the heat exchange tube 30 of the first flow 31 to the fourth cavity 21, and then flows to the third cavity 13 through the heat exchange tube 30 of the third flow 33, and the refrigerant is in the third cavity 13 flows through the heat exchange tubes 30 of the third flow 33 to the sixth chamber 23.
  • the refrigerant in the first cavity 11 is exchanged with the heat exchange tubes 30 of the first flow 31 and the third flow 33, and then flows to the third cavity 13, whereby the refrigerant in the first cavity 11 and the third
  • the refrigerant of the cavity 13 has a temperature difference
  • the second cavity 12 is located between the first cavity 11 and the third cavity 13, so that the temperature difference of the heat exchange tubes 30 of the first flow 31 and the third flow 33 can be reduced.
  • the refrigerant of the third cavity 13 flows to the sixth cavity 23 through the heat exchange tube 30 of the fourth flow 34, such that the refrigerant in the fourth cavity 21 passes through the heat transfer tubes of the third flow 33 and the fourth flow 34.
  • the flow proceeds to the sixth cavity 23, whereby the refrigerant in the fourth cavity 21 and the refrigerant in the sixth cavity 23 have a temperature difference, and the fifth cavity 22 is located in the fourth cavity 21 and the sixth cavity.
  • the temperature difference of the heat exchange tubes 30 of the fourth flow 34 and the third flow 33 can be reduced. Further, the probability of cracks occurring in the heat transfer tubes 30 of the three processes due to changes in thermal stress can be relatively reduced.
  • the refrigerant inlet 14 is disposed in the first header 10, the refrigerant outlet 15 is disposed in the second header 20, and the refrigerant enters the first chamber 11 from the refrigerant inlet 14 and then passes through the first process 31 in sequence.
  • the heat pipe 30, the fourth cavity 21, the heat exchange tubes 30 of the third flow 33, the third chamber 13, the heat exchange tubes 30 and the sixth chamber 23 of the fourth flow 34 finally flow out from the refrigerant outlet 15.
  • the heat exchanger further includes a fifth partition 45 and a sixth partition 46, and the fifth partition 45 and the sixth partition 46 are simultaneously located in the third cavity 13, the fifth partition 45 and sixth partition 46 divide the third cavity 13 into a seventh cavity 131, an eighth cavity 132, and a ninth cavity 133, along the axial direction of the second header 20, the eighth cavity 132 Located between the seventh cavity 131 and the ninth cavity 133, in the third cavity 13, the eighth cavity 132, the seventh cavity 131 and the ninth cavity 133 are not in communication.
  • At least a portion of the inner cavity of the heat exchange tube 30 communicates with the fourth cavity 21 and the seventh cavity 131, and at least a portion of the inner cavity of the heat exchange tube 30 communicates with the sixth cavity 23 and the seventh cavity 131, at least part of the heat exchange tube
  • the inner cavity of 30 communicates with the sixth cavity 23 and the ninth cavity 133, and the eighth cavity 132 is perpendicular to the inner cavity of the second header 20 along the direction of the first header 10 to the second header 20.
  • a partition is not provided at the projection position.
  • the refrigerant flows through the heat exchange tubes 30 between the first header 10 and the second header 20, and the flow of the refrigerant can be divided into four, that is, the first flow 31, the fifth flow 35, In the sixth flow 36 and the seventh flow 37, the refrigerant flow path in the heat exchange tubes 30 passing through the first cavity 11 and the fourth cavity 21 constitutes a first flow 31, which communicates the fourth cavity 21 and the seventh cavity
  • the refrigerant flow path in the heat exchange tube 30 of 131 constitutes a fifth flow 35
  • the refrigerant flow path in the heat exchange tube 30 communicating the seventh cavity 131 and the sixth cavity 23 constitutes a sixth flow 36, which is connected to the ninth
  • the refrigerant flow path in the heat exchange tubes 30 of the cavity 133 and the sixth cavity 23 constitutes a seventh flow 37, the refrigerant is in the same direction in the first flow 31 and the sixth flow 36, and the refrigerant is in the fifth flow 35 and
  • the direction of the seventh flow 37 is the same and is opposite to the flow direction of
  • the first cavity 11 and the seventh cavity 131 are respectively disposed at two sides of the second cavity 12, and the first cavity 11 and the seventh cavity 131 are passed through the second cavity 12.
  • the fourth cavity 21 and the sixth cavity 23 are respectively located on both sides of the fifth cavity 22, and the fourth cavity 21 and the sixth cavity 23 are spaced apart by the fifth cavity 22 to Insulation is performed, and the seventh cavity 131 and the ninth cavity 133 are respectively located at two sides of the eighth cavity 132, and the seventh cavity 131 and the ninth cavity 133 are spaced apart by the eighth cavity 132 for heat insulation.
  • the heat exchange tube 30 of the first flow 31 communicates with the first cavity 11 and the fourth cavity 21, and the heat exchange tube 30 of the fifth flow 35 communicates with the fourth cavity 21 and the seventh cavity 131, the sixth process 36
  • the heat exchange tubes 30 communicate with the seventh chamber 131 and the sixth chamber 23, and the heat exchange tubes 30 of the seventh flow 37 communicate with the ninth chamber 133 and the sixth chamber 23.
  • the refrigerant flows from the first cavity 11 through the heat exchange tube 30 of the first flow 31 to the fourth cavity 21, and then flows to the seventh cavity 131 through the heat exchange tube 30 of the fifth flow 35, and the refrigerant is in the seventh cavity 131 flows through the heat exchange tubes 30 of the sixth flow 36 to the sixth chamber 23, and flows to the ninth chamber 133 through the heat exchange tubes 30 of the seventh flow 37.
  • the refrigerant in the first cavity 11 is exchanged with the heat exchange tubes 30 of the first flow 31 and the fifth flow 35, and then flows to the seventh cavity 131, whereby the refrigerant in the first cavity 11 and the seventh
  • the refrigerant of the cavity 131 has a temperature difference
  • the second cavity 12 is located between the first cavity 11 and the seventh cavity 131, so that the temperature difference of the heat exchange tubes 30 of the first flow 31 and the fifth flow 35 can be reduced.
  • the refrigerant of the seventh cavity 131 flows to the sixth cavity 23 through the heat exchange tube 30 of the sixth flow 36, so that the refrigerant in the fourth cavity 21 passes through the heat exchange tubes of the fifth flow 35 and the sixth flow 36.
  • the flow proceeds to the sixth cavity 23, whereby the refrigerant in the fourth cavity 21 and the refrigerant in the sixth cavity 23 have a temperature difference, and the fifth cavity 22 is located in the fourth cavity 21 and the sixth cavity.
  • the temperature difference of the heat exchange tubes 30 of the fourth flow 34 and the fifth flow 35 can be reduced.
  • the eighth cavity 132 is located between the seventh cavity 131 and the ninth cavity 133, and the refrigerant of the seventh cavity 131 flows to the ninth cavity 133 through the heat exchange tubes 30 of the sixth flow and the seventh flow 37, thereby The temperature difference of the heat exchange tubes 30 of the fifth flow 35 and the sixth flow 36 is reduced. Further, the probability of occurrence of cracks due to thermal stress changes of the heat transfer tubes 30 of the four processes can be relatively reduced, and the reliability of the heat exchanger 100 can be further ensured.
  • the partitions can be arranged in pairs and can also be three or more pairs, and a plurality of pairs of partitions can be disposed in the first header 10 and the second header 20 to heat the tubes.
  • the refrigerant flow path within 30 is divided into a plurality of processes.
  • the first header 10 and the second header 20 are respectively divided into a plurality of cavities by a plurality of partitions, and the plurality of cavities are connected to each other through the heat exchange tubes 30 to allow the refrigerant to circulate, thereby improving the exchange.
  • the safety of the heater 100 is provided.
  • the heat exchanger 100 may include at least one heat insulation member 70.
  • the heat insulation member 70 may be a solid heat insulation member or a hollow heat insulation member.
  • the first end of the heat insulation member 70 and the first header 10 Connected and located at the second cavity, the second end of the heat insulating member 70 is connected to the second header 20 so that the heat exchange tubes 30 of adjacent processes can be separated.
  • the heat insulating member 70 is disposed between the adjacent heat exchange tubes 30 of the adjacent flow, and the adjacent heat exchange tubes 30 of the adjacent flow can be separated by the heat insulating member 70, and the heat insulating member 70 can further The temperature difference of the adjacent heat exchange tubes 30 of the adjacent flow is reduced to reduce the possibility of cracks in the heat exchange tubes 30.
  • the heat insulating member 70 may be disposed adjacent to the partition 40, and the number of the heat insulating members 70 may coincide with the number of the separators 40, so that the reliability of the heat exchanger 100 can be further ensured.
  • the first end of the heat insulating member 70 may be connected to the first header 10 and located between the first partition 41 and the second partition 42, the heat insulating member The second end of the 70 is connected to the second header 20, wherein the other end of the heat insulator 70 can be connected to the second cavity 12 in the direction of the first header 10 to the second header 20 at the second Further, the heat insulating member 70 may be disposed perpendicular to the first header 10 and the second header 20 at a vertical projection position of the header 20.
  • both ends of the heat insulating member 70 may be connected to the first header 10 and the second header 20, respectively, wherein one end of the heat insulating member 70 may be connected to the first At the fifth cavity 22 of the second header 20, the other end of the heat insulator 70 may be connected to the first cavity 11 or the third cavity 13 at a corresponding position of the first header 10.
  • the other end of the insulating chamber 70 may be connected to the fifth cavity 22 at a vertical projection position of the first header 10 in a direction from the second header 20 to the first header 10, further The heat insulating member 70 may be vertically connected between the corresponding portion of the fifth cavity 22 of the second header 20 and the first header 10.
  • one end of the heat insulating member 70 can be connected to the position of the first header 10 forming the eighth cavity 132, that is, the heat insulating member 70 can be connected to the fifth partition 45 and the sixth partition. 46, the other end of the heat insulating member 70 is connected to the eighth cavity 132 in the direction of the first header 10 to the second header 20 at the vertical projection position of the second header 20, further, The heat insulating member 70 may be vertically disposed between the first header 10 and the second header 20 at a position where the first header 10 is formed.
  • the heat insulating member 70 may be a heat insulating tube.
  • the heat insulating member 70 may be formed as a heat insulating tube having at least one end open.
  • both ends of the heat insulating member 70 may be open and separated.
  • the first end of the heat member 70 can communicate with the heat insulating chamber 41, and the second end of the heat insulating member 70 can communicate with the second header 20, since the heat insulating chamber 41 is a closed chamber, thereby, the refrigerant
  • the utility model can flow into the heat insulating pipe and store in the heat insulating pipe, that is, the heat insulating pipe can be provided with the refrigerant stored therein and the refrigerant does not flow, thereby facilitating further heat insulation.
  • the heat exchange tube 30 may be a solid heat insulating tube or a hollow heat insulating tube formed at both ends, so that when the heat insulating member 70 is cracked, the heat exchanger 100 does not leak, so as to further improve the heat exchange tube 30. The reliability of the heater 100. Moreover, when the insulated pipe is cracked, the refrigerant can be prevented from leaking.
  • the thermal insulation 70 may be a thermal insulation panel such that the ends of the thermal insulation panel are connected to the first header 10 and the second header 20, respectively.
  • the heat insulating member 70 can also facilitate the separation of the adjacent two heat exchange tubes 30 between the first header 10 and the second header 20. Heat can also ensure the insulation effect of the heat insulating member 70.
  • the heat insulating member 70 may be formed by the heat exchange tube 30, and the first cavity 12 of the second cavity 12 is provided with a socket at the wall of the first header 10, and the first end of the heat insulating member 70 passes through the socket and Connected to the first header 10, thereby connecting one end of the heat insulating member 70 to the first header 10 and to the second chamber 12, achieving the first flow 31 and the second flow 32 The heat insulation of the heat exchange tubes 30.
  • one end of the heat insulating tube is in communication with the second cavity 12, so that the refrigerant in the second cavity 12 and the refrigerant in the heat insulating tube can perform temperature transfer and heat exchange with the outside, thereby not only being adjacent to each other
  • the heat exchange tube 30 of the process is further insulated, and the heat exchange effect of the heat exchanger can also be ensured.
  • the heat insulating tube is composed of the heat exchange tubes 30, so that the overall appearance of the heat exchanger 100 can be not affected, and the assembly and assembly can be facilitated, and the heat exchange tubes 30 of the adjacent processes can be completely separated to improve the heat insulating effect.
  • the communication between the open end of the heat insulating tube and the cavity between the partition plates may be determined according to actual conditions.
  • the heat insulating tube may also communicate with the fifth cavity. 22 and the first header 10 may also communicate with the eighth cavity 132 and the sixth cavity 23.
  • the heat insulating members 70 between adjacent processes may be single or multiple, and the plurality of heat insulating members 70 may be arranged side by side, depending on the temperature difference. That is to say, the thermal insulation 70 between every two adjacent processes can be set according to the temperature difference of the heat exchange tubes 30 of the adjacent flow.
  • the heat shield is identical in shape and size to the heat exchange tubes 30. Therefore, the heat insulation board is disposed between the two heat exchange tubes 30, so that two adjacent heat exchange tubes 30 can be completely spaced apart to improve the heat insulation effect, and the waste of the heat insulation board material can be avoided, and at the same time, The overall appearance of the heat exchanger 100 is ensured to facilitate the installation and manufacture of the heat exchanger 100.
  • the spacing between the heat insulating member 70 and the heat exchange tubes 30 and the distance between the adjacent heat exchange tubes 30 may be the same.
  • the heat insulating member 70 is disposed between the heat exchange tubes 30 of the adjacent flow, and the distance between the heat insulating plate and the two adjacent heat exchange tubes 30 is between the adjacent heat exchange tubes 30 of each flow. The distance is the same, thereby further improving the insulation effect of the insulation board.
  • fins 60 may be disposed between the adjacent heat exchange tubes 30, and the heat exchange effect of the heat exchange tubes 30 may be improved by providing the fins 60.
  • the fins 60 may be formed in a wave shape so that the heat exchange area of the fins 60 may be increased to further improve the heat exchange effect of the heat exchanger 100.
  • fins 60 may be disposed between at least one side of the heat insulating member 70 and the heat exchange tubes 30. Thereby, the heat exchange effect of the heat exchanger 100 can be further improved by the fins 60.
  • both sides of the heat insulating member 70 and the heat exchange tubes 30 on both sides can be provided. Fin 60.
  • the heat exchanger 100 may further include: a first bracket 50 located outside the outermost heat exchange tube 30 and a second bracket 51 located outside the other outermost heat exchange tube 30
  • the first end of the first bracket 50 is connected to the first end of the first header 10
  • the second end of the first bracket 50 is connected to the first end of the second header 20, and the second bracket 51
  • the first end is connected to the second end of the first header 10
  • the second end of the second bracket 51 is connected to the second end of the second header 20.
  • the first header 50 and the second header 20 are supported by the first bracket 50 and the second bracket 51
  • the heat exchange tube 30 is disposed between the first bracket 50 and the second bracket 51
  • the heat exchange tubes 30 can also be protected by the first bracket 50 and the second bracket 51.
  • the first bracket 50 and the second bracket 51 are respectively located on both sides of the entire heat exchange tubes 30 (ie, the upper side and the lower side as shown in FIG. 1), that is, The heat exchange tubes 30 are located between the first bracket 50 and the second bracket 51.
  • the two ends of the first bracket 50 are respectively connected to the first header 10 and the second header 20, and the second bracket 51 is connected.
  • the two ends are respectively connected to the first header 10 and the second header 20, and the first bracket 50 and the second bracket 51 are supported between the first header 10 and the second header 20, respectively.
  • the structural strength and stability of the entire heat exchanger 100 can be improved by the first bracket 50 and the second bracket 51.
  • the first bracket 50 has a first end portion 501 having a first curved connecting surface (not labeled) and a second end portion 502 having a second curved connecting surface ( Not shown);
  • the second bracket 51 has a third end 511 and a fourth end 512, the third end 511 has a third curved connecting surface (not labeled), and the fourth end 512 has a fourth curved connection a surface (not shown)
  • the first header 10 has a first connection portion (not shown) at one end in the axial direction of the first header 10 and a second connection at the other end in the axial direction of the first header 10 (not shown)
  • the second header 20 has a third connection portion (not shown) at one end in the axial direction of the second header 20 and a fourth connection portion at the other end in the axial direction of the second header 20 (not shown);
  • the radius of curvature of the first curved connecting surface is not less than the radius of curvature of the outer wall surface of the first connecting portion, and the first curved connecting surface
  • a fin 60 is disposed between the first bracket 50 and the heat exchange tube 30 adjacent thereto, and the fin 60 is disposed between the second bracket 51 and the heat exchange tube 30 adjacent thereto.
  • the heat exchange tubes 30 adjacent to the first bracket 5 can be exchanged by the fins 60 between the first bracket 50 and the heat exchange tubes 30, and the heat exchange tubes 30 adjacent to the second brackets 51 can pass through the second The fins 60 between the bracket 51 and the heat exchange tubes 30 exchange heat, thereby increasing the heat exchange area of the heat exchanger 100 and improving the heat exchange effect.
  • the present invention also provides a heat exchange system including a compressor, a condenser, an evaporator, and a throttle mechanism, wherein at least one of the condenser and the evaporator is the heat exchanger 100.
  • a heat exchange system including a compressor, a condenser, an evaporator, and a throttle mechanism, wherein at least one of the condenser and the evaporator is the heat exchanger 100.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种换热器(100)和具有其的换热系统,换热器(100)包括:第一集流管(10)、第二集流管(20)、第一隔板(41)、第二隔板(42)和多个换热管(30),第一隔板(41)和第二隔板(42)将第一集流管(10)内腔分割成第一腔体(11)、第二腔体(12)和第三腔体(13),沿第一集流管(10)的轴向方向,第二腔体(12)位于第一腔体(11)与第三腔体(13)之间。

Description

换热器和具有其的换热系统 技术领域
本发明涉及换热技术领域,尤其涉及一种换热器和具有其的换热系统。
背景技术
相关技术的换热器包括换热管和集流管等,换热器的主要零部件大多为铝合金,铝合金具有热膨胀系数大的特点,其中换热管的壁厚一般为0.2~0.5mm之间,壁厚一般小于其他零部件。在换热系统中,多流程换热器的相邻两流程的制冷剂温差大,使得靠近隔板(隔板用于将集流管内腔分割为对应不同流程的腔体)的换热管受相邻两流程的不同温度的制冷剂的影响,使换热管温度发生交替变化,产生温度疲劳,换热管由于受热应力变化容易出现裂痕,从而导致换热器容易出现泄漏。
发明内容
本发明提出一种换热器,所述换热器能够相对减少换热管产生裂痕的概率,使换热器出现泄漏的概率相对降低。
根据本发明实施例的换热器,包括:第一集流管和第二集流管;第一隔板和第二隔板,所述第一隔板和所述第二隔板同时位于所述第一集流管的内腔,所述第一隔板和所述第二隔板将所述第一集流管内腔分割成第一腔体、第二腔体和第三腔体,沿所述第一集流管的轴向方向,所述第二腔体位于所述第一腔体与所述第三腔体之间;多个换热管,多个所述换热管沿所述第一集流管的轴向方向相隔开布置;至少部分所述换热管的内腔连通所述第一腔体与所述第二集流管的内腔;至少部分所述换热管的内腔连通所述第三腔体与所述第二集流管的内腔;所述第二腔体沿所述第一集流管向所述第二集流管的方向在所述第二集流管的内腔的垂直投影位置处未设置有隔板。
由此,根据本发明实施例的换热器,通过在集流管内成对地设置隔板,使集流管在相邻流程之间形成隔热腔,隔热腔可对相邻流程的换热管之间进行隔热,以防止相邻流程的换热管由于温差较大导致产生温度疲劳而出现应力裂痕,从而可相对防止由于换热管出现裂痕而使得换热器发生泄露,以提高换热器的安全性和可靠性。
另外,根据本发明实施例的换热器还可以具有如下附加的技术特征:
可选地,所述换热器还包括第三隔板和所述第四隔板,所述第三隔板和所述第四隔板同时位于所述第二集流管的内腔,所述第三隔板和所述第四隔板将所述第二集流管的内腔分割成第四腔体、第五腔体和第六腔体,沿所述第二集流管的轴向方向,所述第五腔体位于所述 第四腔体与所述第六腔体之间;至少部分所述换热管的内腔连通所述第三腔体和所述第四腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第三腔体;所述第五腔体沿所述第二集流管向所述第一集流管的方向在所述第一集流管内腔的垂直投影位置处未设置有隔板。
可选地,所述换热器还包括第五隔板和所述第六隔板,所述第五隔板和所述第六隔板同时位于所述第三腔体,所述第五隔板和所述第六隔板将所述第三腔体分割成第七腔体、第八腔体和第九腔体,沿所述第二集流管的轴向方向,所述第八腔体位于所述第七腔体与所述第九腔体之间;至少部分所述换热管的内腔连通所述第四腔体和所述第七腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第七腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第九腔体;所述第八腔体沿所述第一集流管向所述第二集流管的方向在所述第二集流管的内腔的垂直投影位置处未设置有隔板。
可选地,所述换热器还包括至少一个隔热件,所述隔热件为实心的隔热件或空心的隔热件,所述隔热件的第一端与所述第一集流管相连且位于第二腔体处,所述隔热件的第二端与所述第二集流管相连。
可选地,隔热件由所述换热管构成,所述第二腔体对应的所述第一集流管的管壁处设有插孔,所述隔热件的第一端穿过所述插孔并与所述第一集流管相连接。
可选地,相邻所述换热管之间设有翅片。
可选地,所述换热器还包括:位于一个最外侧换热管的外侧的第一托架和位于另一个最外侧换热管的外侧的第二托架,所述第一托架具有第一端部和第二端部,所述第一端部具有第一弧形连接面,所述第二端部具有第二弧形连接面;所述第二托架具有第三端部和第四端部,所述第三端部具有第三弧形连接面,所述第四端部具有第四弧形连接面;所述第一集流管具有位于所述第一集流管轴向方向一端的第一连接部和位于所述第一集流管轴向方向另一端的第二连接部,所述第二集流管具有位于所述第二集流管轴向方向一端第三连接部和位于所述第二集流管轴向方向另一端的第四连接部;所述第一弧形连接面的曲率半径不小于所述第一连接部的外壁面的曲率半径,所述第一弧形连接面与所述第一连接部的外壁面相配合连接,所述第二弧形连接面的曲率半径不小于所述第三连接部的外壁面的曲率半径,所述第二弧形连接面与所述第三连接部的外壁面相配合连接,所述第三弧形连接面的曲率半径不小于所述第二连接部的外壁面的曲率半径,所述第三弧形连接面与所述第二连接部的外壁面相配合连接,所述第四弧形连接面的曲率半径不小于所述第四连接部的外壁面的曲率半径,所述第四弧形连接面与所述第四连接部的外壁面相配合连接。
可选地,所述第一托架与与其相邻的换热管之间设置有翅片,所述第二托架与与其相邻的换热管之间设置有翅片。
可选地,所述换热器为微通道换热器。
本发明还提出了一种换热系统,所述换热系统包括压缩机、冷凝器、蒸发器和节流机构,其中所述冷凝器和所述蒸发器中的至少一个为上述实施例的换热器。
由此,根据本发明实施例的换热系统,通过将冷凝器和蒸发器中的至少一个设置为上述实施例的换热器,从而能够相对降低冷凝器和/或蒸发器的换热管产生裂痕的概率,相对提高冷凝器和/或蒸发器的可靠性,使冷凝器和/或蒸发器出现泄露情况的概率相对降低。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的换热器的一个角度的结构示意图;
图2是根据本发明实施例的换热器的另一个角度的结构示意图;
图3是根据本发明一个实施例的换热器的结构示意图;
图4是根据本发明又一个实施例的换热器的结构示意图;
图5是根据本发明又一个实施例的换热器的结构示意图。
附图标记:
100:换热器;
10:第一集流管,11:第一腔体,12:第二腔体,13:第三腔体,131:第七腔体,132:第八腔体,133:第九腔体,14:制冷剂进口,15:制冷剂出口,;
20:第二集流管,21:第四腔体,22:第五腔体,23:第六腔体,;
30:换热管,31:第一流程,32:第二流程,33:第三流程,34:第四流程,35:第五流程,36:第六流程,37:第七流程;
41:第一隔板,42:第二隔板,43:第三隔板,44:第四隔板,45:第五隔板,46:第六隔板;
50:第一托架,501:第一端部,502:第二端部,51:第二托架,511:第三端部,512:第四端部;
60:翅片;
70:隔热件。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“上”、“下”、“前”、 “后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考附图描述根据本发明实施例的换热器100,本发明实施例的换热器100可以为微通道换热器。
如图1-图5所示,根据本发明实施例的换热器100包括第一集流管10、第二集流管20、换热管30、第一隔板41、第二隔板42和多个换热管30。
具体地,第二集流管20与第一集流管10相隔开一定距离设置,多个换热管30设在第一集流管10和第二集流管20之间,且多个所述换热管30沿所述第一集流管10的轴向方向相隔开一定距离设置。换热管30的第一端与第一集流管10连接,换热管30的第二端与第二集流管20连接,换热管30连通所述第一集流管10的内腔与所述第二集流管20的内腔。
如图1-图5所示,第一集流管10和第二集流管20相隔开一定距离,换热管30的第一端与第一集流管10相连接,换热管30的第二端与第二集流管20相连,且换热管30连通第一集流管10的内腔和第二集流管20的内腔,制冷剂可在换热管30、第一集流管10和第二集流管20内流动。
第一隔板41和第二隔板42同时位于第一集流管10的内腔,第一隔板41和第二隔板42将第一集流管10内腔分割成第一腔体11、第二腔体12和第三腔体13,沿第一集流管10的轴向方向,第二腔体12位于第一腔体11与第三腔体13之间。第一腔体11和第三腔体13通过第二腔体12阻隔开,第二腔体12与第一腔体11和第三腔体13之间不流通。
如图3所示,制冷剂可从第一腔体11通过换热管30流向第二集流管20,然后通过换热管30流向第三腔体13,本实施例通过设置第一隔板41和第二隔板42,相比相关技术中仅在相邻流程之间设置一个隔板,可防止一个隔板时导致隔板两侧温差较大,进而可避免一 个隔板两侧温差较大导致邻近隔板的换热管30产生温度交替变化而产生温度疲劳。从而减小了相邻流程的换热管30之间的温差,以相对降低相邻流程的换热管30产生裂痕的可能性。
多个换热管30中的一部分连通第一腔体11和第二集流管20,多个换热管30的一部分连通第三腔体13连通第三腔体13和第二集流管20,制冷剂在第一集流管10和第二集流管20以及多个换热管30内流动,由此可将换热管30内的制冷剂流路分成两个流程,即第一流程31和第二流程32。连通第一腔体11和第二集流管20的内腔的换热管30内的制冷剂流路构成第一流程31,连通第二集流管20的内腔和第三腔体13的换热管30内的制冷剂流路构成第二流程32,制冷剂在第一流程31和第二流程32的流动方向相反。
这样,第一腔体11内的制冷剂通过第一流程31和第二流程32换热后流向第三腔体13,制冷剂在相邻流程内流动,由于相邻流程内的制冷剂经过的换热程度不同,使得相邻流程的制冷剂的温度不同,由此导致相邻流程的相邻换热管30之间容易产生温差。第一隔板41和第二隔板42设在第一集流管10内可将集流管的内腔沿轴向方向分隔开以形成三个单独的腔室,由此由于相邻流程的制冷剂的温度不同,第二腔体12的两侧的腔室的温度不同,在第一集流管10内可形成有与相邻流程中一个流程连通的制冷剂的高温区腔室、与相邻流程的另一个流程连通的制冷剂的低温区腔室,通过第二腔体12将高温区和低温区间隔开,从而使得换热管30承受的温差减少,避免了热应力,相对降低换热管30产生裂痕的概率。
由此,根据本发明实施例的换热器100,通过在第一集流管10内设置第一隔板41和第二隔板42以将第一集流管10的内腔分割为第一腔体11、第二腔体12和第三腔体13,从而可防止相邻流程的换热管30的由于温度产生交替变化导致产生温度疲劳而出现应力裂痕,进而可相对降低由于换热管30产生裂痕而使得换热器100发生泄露的概率,以相对提高换热器100的可靠性。
在如图1-图3所示的示例中,制冷剂进口14和制冷剂出口15设在第一集流管10,第一隔板41和第二隔板42均位于制冷剂进口14和制冷剂进口14之间,制冷剂可通过制冷剂进口14进入第一腔体11,然后流向第一流程31,并流向第二集流管20,之后流向第二流程32,最后从制冷剂进口14流出。
在本发明的一些实施例中,换热器还可以包括第三隔板43和第四隔板44,第三隔板43和第四隔板44同时位于第二集流管20的内腔,第三隔板43和第四隔板44将第二集流管20的内腔分割成第四腔体21、第五腔体22和第六腔体23,沿第二集流管20的轴向方向,第五腔体22位于第四腔体21与第六腔体23之间,在第二集流管20内,第四腔体21、第五腔体22和第六腔体23不连通。
至少部分换热管30的内腔连通第三腔体13和第四腔体21,至少部分换热管30的内腔连通第六腔体23和第三腔体13,第五腔体22沿第二集流管20向第一集流管10的方向在 第一集流管10内腔的垂直投影位置处未设置有隔板。
由此,制冷剂在第一集流管10和第二集流管20之间通过换热管30流通,可将制冷剂的流程分为三个,即第一流程31、第三流程33和第四流程34,通第一腔体11和第四腔体21的换热管30内的制冷剂流路构成第一流程31,连通第四腔体21和第三腔体13的换热管30内的制冷剂流路构成第三流程33,连通第三腔体13和第六腔体23的换热管30内的制冷剂流路构成第四流程34,制冷剂在第一流程31、第四流程34的流动方向与第三流程33的流动方向相反。
具体地,如图4所示,第一腔体11和第三腔体13分别设在第二腔体12的两侧,通过第二腔体12将第一腔体11和第三腔体13间隔开以进行隔热,第四腔体21和第六腔体23分别位于第五腔体22的两侧,通过第五腔体22将第四腔体21和第六腔体23间隔开以进行隔热,第一流程31的换热管30连通第一腔体11和第四腔体21,第三流程33的换热管30连通第四腔体21和第三腔体13,第四流程34的换热管30连通第三腔体13和第六腔体23。
制冷剂从第一腔体11通过第一流程31的换热管30流向第四腔体21,然后通过第三流程33的换热管30流向第三腔体13,制冷剂在第三腔体13通过第三流程33的换热管30流向第六腔体23。
这样,第一腔体11内的制冷剂经过第一流程31和第三流程33的换热管30换热后流向第三腔体13,由此第一腔体11内的制冷剂和第三腔体13的制冷剂存在温差,第二腔体12位于第一腔体11和第三腔体13之间,从而可减小第一流程31和第三流程33的换热管30的温差。第三腔体13的制冷剂通过第四流程34的换热管30流向第六腔体23,这样,第四腔体21内的制冷剂通过第三流程33和第四流程34的换热管30换热后流向第六腔体23,由此,第四腔体21内的制冷剂和第六腔体23的制冷剂存在温差,第五腔体22位于第四腔体21和第六腔体23之间,从而可减小第四流程34和第三流程33的换热管30的温差。进而可相对降低三个流程的换热管30由于热应力变化而产生裂痕的概率。
其中制冷剂进口14设在第一集流管10,制冷剂出口15设在第二集流管20,制冷剂从制冷剂进口14进入第一腔体11,之后依次经过第一流程31的换热管30、第四腔体21、第三流程33的换热管30、第三腔体13、第四流程34的换热管30和第六腔体23,最后从制冷剂出口15流出。
在本发明的另一些实施例中,换热器还包括第五隔板45和第六隔板46,第五隔板45和第六隔板46同时位于第三腔体13,第五隔板45和第六隔板46将第三腔体13分割成第七腔体131、第八腔体132和第九腔体133,沿第二集流管20的轴向方向,第八腔体132位于第七腔体131与第九腔体133之间,在第三腔体13内,第八腔体132、第七腔体131与第九腔体133之间不连通。
其中至少部分换热管30的内腔连通第四腔体21和第七腔体131,至少部分换热管30的内腔连通第六腔体23和第七腔体131,至少部分换热管30的内腔连通第六腔体23和第九腔体133,第八腔体132沿第一集流管10向第二集流管20的方向在第二集流管20的内腔的垂直投影位置处未设置有隔板。
由此,制冷剂在第一集流管10和第二集流管20之间通过换热管30流通,可将制冷剂的流程分为四个,即第一流程31、第五流程35、第六流程36和第七流程37,通第一腔体11和第四腔体21的换热管30内的制冷剂流路构成第一流程31,连通第四腔体21和第七腔体131的换热管30内的制冷剂流路构成第五流程35,连通第七腔体131和第六腔体23的换热管30内的制冷剂流路构成第六流程36,连通第九腔体133和第六腔体23的换热管30内的制冷剂流路构成第七流程37,制冷剂在第一流程31和第六流程36的方向相同,制冷剂在第五流程35和第七流程37的方向相同且与第一流程31的流动方向相反。
具体地,如图5所示,第一腔体11和第七腔体131分别设在第二腔体12的两侧,通过第二腔体12将第一腔体11和第七腔体131隔开以进行隔热,第四腔体21和第六腔体23分别位于第五腔体22的两侧,通过第五腔体22将第四腔体21和第六腔体23间隔开以进行隔热,第七腔体131和第九腔体133分别位于第八腔体132的两侧,通过第八腔体132将第七腔体131和第九腔体133间隔开以进行隔热,第一流程31的换热管30连通第一腔体11和第四腔体21,第五流程35的换热管30连通第四腔体21和第七腔体131,第六流程36的换热管30连通第七腔体131和第六腔体23,第七流程37的换热管30连通第九腔体133和第六腔体23。
制冷剂从第一腔体11通过第一流程31的换热管30流向第四腔体21,然后通过第五流程35的换热管30流向第七腔体131,制冷剂在第七腔体131通过第六流程36的换热管30流向第六腔体23,并通过第七流程37的换热管30流向第九腔体133。
这样,第一腔体11内的制冷剂经过第一流程31和第五流程35的换热管30换热后流向第七腔体131,由此第一腔体11内的制冷剂和第七腔体131的制冷剂存在温差,第二腔体12位于第一腔体11和第七腔体131之间,从而可减小第一流程31和第五流程35的换热管30的温差。第七腔体131的制冷剂通过第六流程36的换热管30流向第六腔体23,这样,第四腔体21内的制冷剂通过第五流程35和第六流程36的换热管30换热后流向第六腔体23,由此,第四腔体21内的制冷剂和第六腔体23的制冷剂存在温差,第五腔体22位于第四腔体21和第六腔体23之间,从而可减小第四流程34和第五流程35的换热管30的温差。第八腔体132位于第七腔体131和第九腔体133之间,第七腔体131的制冷剂通过六流程和第七流程37的换热管30流向第九腔体133,从而可减小第五流程35和第六流程36的换热管30的温差。进而可相对降低四个流程的换热管30由于热应力变化而产生裂痕的概率,可 进一步保证换热器100的可靠性。
由此以此推断,隔板可以成对设置且也可为三对或者三对以上,多对隔板可设在第一集流管10内和第二集流管20内以将换热管30内的制冷剂流路分为多个流程。通过多个隔板将第一集流管10和第二集流管20分别分割为多个腔体,多个腔体之间通过换热管30对应连通以允许制冷剂流通,从而可提高换热器100的安全性。
可选地,换热器100可以包括至少一个隔热件70,隔热件70可以为实心的隔热件或者空心的隔热件,隔热件70的第一端与第一集流管10相连且位于第二腔体处,隔热件70的第二端与第二集流管20相连,从而可将相邻流程的换热管30相隔开。
具体地,隔热件70设在相邻流程的相邻换热管30之间,通过隔热件70可将相邻流程的相邻换热管30隔开,通过隔热件70从而可进一步地减小相邻流程的相邻换热管30的温差以降低换热管30产生裂痕的可能性。进一步地,隔热件70可以邻近隔板40设置,隔热件70的个数可以与隔板40的对数一致,从而可进一步地保证换热器100的可靠性。
在本发明的一些示例中,如图3所示,隔热件70的第一端可与第一集流管10相连且位于第一隔板41和第二隔板42之间,隔热件70的第二端与第二集流管20相连,其中,隔热件70的另一端可以连接至第二腔体12沿第一集流管10至第二集流管20的方向在第二集流管20的垂直投影位置处,进一步地,隔热件70可垂直第一集流管10和第二集流管20设置。
在本发明的另一些示例中,如图4所示,隔热件70两端可分别与第一集流管10和第二集流管20相连,其中隔热件70的一端可连接至第二集流管20的第五腔体22处,隔热件70的另一端可连接至第一腔体11或者第三腔体13在第一集流管10的对应位置处。可选地,隔热腔70的另一端可以连接至第五腔体22沿从第二集流管20到第一集流管10的方向在第一集流管10的垂直投影位置处,进一步地,隔热件70可垂直连接在第二集流管20的第五腔体22的对应处上和第一集流管10之间。
如图5所示,隔热件70的一端可连接至第一集流管10的形成第八腔体132的位置处,即隔热件70可连接在第五隔板45和第六隔板46之间,隔热件70的另一端连接至第八腔体132沿第一集流管10到第二集流管20的方向在第二集流管20的垂直投影位置处,进一步地,隔热件70可垂直设在第一集流管10形成第八腔体132的位置处和第二集流管20之间。
在本发明的一些示例中,隔热件70可以为隔热管,具体地,隔热件70可以形成为至少一端敞开的隔热管,例如,隔热件70的两端均可敞开,隔热件70的第一端可与隔热腔41相连通,隔热件70的第二端可与第二集流管20连通,由于隔热腔41为封闭的腔室,由此,制冷剂可流向隔热管内且储存在隔热管内,即隔热管内可设有存储有制冷剂且制冷剂不流通,从而有利于实现进一步地隔热。或者,换热管30可以为实心隔热管或者形成为两端封闭的空心隔热管,由此当隔热件70出现裂痕时,换热器100也不会发生泄露,以进一步地提高 换热器100的可靠性。而且当隔热管出现裂痕时,也可防止制冷剂发生泄漏。
在本发明的另一些示例中,隔热件70可以为隔热板,这样隔热板的两端分别与第一集流管10和第二集流管20相连。由此,不仅方便隔热件70的安装装配,而且隔热件70在第一集流管10和第二集流管20之间能够也有利于对相邻的两个换热管30进行隔热,也能够保证隔热件70的隔热效果。
进一步地,隔热件70可以由换热管30构成,第二腔体12对应的第一集流管10的管壁处设有插孔,隔热件70的第一端穿过插孔并与第一集流管10相连接,由此可将隔热件70的一端连接至第一集流管10且连接至第二腔体12处,实现对第一流程31和第二流程32的换热管30的隔热。
例如,隔热管的一端与第二腔体12连通,这样第二腔体12内的制冷剂以及隔热管内的制冷剂可以与外界进行温度传递与换热,由此,不仅能够对相邻流程的换热管30进一步地隔热,也能够保证换热器的换热效果。而且隔热管由换热管30构成,从而可不影响换热器100的整体外观,也方便安装装配,同时也能够将相邻流程的换热管30完全隔开以提高隔热效果。需要说明的是,例如隔热管为多个时,隔热管的敞开的一端与隔板之间的腔体的连通可以根据实际情况而定,例如,隔热管也可以连通第五腔体22和第一集流管10,也可以连通第八腔体132和第六腔体23。
可以理解的是,相邻流程之间的隔热件70可以为单根或者多根,多个隔热件70可以并列设置,具体可以根据温度差而定。也就是说,每两个相邻流程之间的隔热件70可以根据相邻流程的换热管30的温差设定。其中优选地隔热板的外形和尺寸可与换热管30相同。由此,隔热板设在两个换热管30之间,从而可将两个相邻换热管30完全间隔开以提高隔热效果,而且可避免隔热板材料的浪费,同时,可保证换热器100的整体外观,以方便换热器100的安装和制造。
可选地,隔热件70与换热管30之间的间距和相邻换热管30之间的距离可相同。换言之,隔热件70设在相邻流程的换热管30之间,而且隔热板与两个相邻换热管30之间的间距,与每个流程的相邻换热管30之间的距离是相同的,从而进一步地提高隔热板的隔热效果。
可选地,相邻换热管30之间可设有翅片60,通过设置翅片60从而可提高换热管30的换热效果。在如图1和2所示的示例中,翅片60可形成为波浪状,从而可增加翅片60的换热面积,进一步地提高换热器100的换热效果。进一步地,隔热件70的至少一侧与换热管30之间可设有翅片60。由此,通过翅片60可进一步地提高换热器100的换热效果,在如图所示的示例中,隔热件70的两侧与两侧的换热管30之间可均设有翅片60。
在本发明的一些实施例中,换热器100还可以包括:位于最外侧换热管30的外侧的第 一托架50和位于另一个最外侧换热管30的外侧的第二托架51,第一托架50的第一端与第一集流管10的第一端相连,第一托架50的第二端与第二集流管20的第一端相连,第二托架51第一端与第一集流管10的第二端相连,第二托架51的第二端与第二集流管20的第二端相连。通过第一托架50和第二托架51从而可支撑第一集流管10和第二集流管20,而且换热管30设在第一托架50和第二托架51之间,通过第一托架50和第二托架51也可保护换热管30。
在如图1所示的示例中,第一托架50和第二托架51分别位于多个换热管30整体的两侧(即如图1所示的上侧和下侧),即多个换热管30位于第一托架50和第二托架51之间,第一托架50的两端分别与第一集流管10和第二集流管20相连,第二托架51的两端分别与第一集流管10和第二集流管20的相连,第一托架50和第二托架51分别支撑在第一集流管10和第二集流管20之间,通过第一托架50和第二托架51能够提高换热器100整体的结构强度和稳定性。
具体地,第一托架50具有第一端部501和第二端部502,第一端部具有第一弧形连接面(未标示),第二端部502具有第二弧形连接面(未标示);第二托架51具有第三端部511和第四端部512,第三端部511具有第三弧形连接面(未标示),第四端部512具有第四弧形连接面(未标示),第一集流管10具有位于第一集流管10轴向方向一端的第一连接部(未标示)和位于第一集流管10轴向方向另一端的第二连接部(未标示),第二集流管20具有位于第二集流管20轴向方向一端第三连接部(未标示)和位于第二集流管20轴向方向另一端的第四连接部(未标示);第一弧形连接面的曲率半径不小于第一连接部的外壁面的曲率半径,第一弧形连接面与第一连接部的外壁面相配合连接,第二弧形连接面的曲率半径不小于第三连接部的外壁面的曲率半径,第二弧形连接面与第三连接部的外壁面相配合连接,第三弧形连接面的曲率半径不小于第二连接部的外壁面的曲率半径,第三弧形连接面与第二连接部的外壁面相配合连接,第四弧形连接面的曲率半径不小于第四连接部的外壁面的曲率半径,第四弧形连接面与第四连接部的外壁面相配合连接。
可选地,第一托架50与与其相邻的换热管30之间设置有翅片60,第二托架51与与其相邻的换热管30之间设置有翅片60。由此,邻近第一托架5的换热管30可通过第一托架50和换热管30之间的翅片60换热,邻近第二托架51的换热管30可通过第二托架51和换热管30之间的翅片60换热,从而可增加换热器100的换热面积,提高换热效果。
本发明还提了一种换热系统,包括压缩机、冷凝器、蒸发器和节流机构,其中冷凝器和蒸发器中的至少一个为换热器100。由此,根据本发明实施例的换热系统,通过将冷凝器和蒸发器中的至少一个设置为上述实施例的换热器100,从而能够相对降低冷凝器和蒸发器出现裂痕的可能性,相对提高换热器以及换热系统的可靠性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种换热器,其特征在于,包括:
    第一集流管和第二集流管;
    第一隔板和第二隔板,所述第一隔板和所述第二隔板同时位于所述第一集流管的内腔,所述第一隔板和所述第二隔板将所述第一集流管内腔分割成第一腔体、第二腔体和第三腔体,沿所述第一集流管的轴向方向,所述第二腔体位于所述第一腔体与所述第三腔体之间;
    多个换热管,多个所述换热管沿所述第一集流管的轴向方向相隔开布置;至少部分所述换热管的内腔连通所述第一腔体与所述第二集流管的内腔;至少部分所述换热管的内腔连通所述第三腔体与所述第二集流管的内腔;
    所述第二腔体沿所述第一集流管向所述第二集流管的方向在所述第二集流管的内腔的垂直投影位置处未设置有隔板。
  2. 根据权利要求1所述换热器,其特征在于,所述换热器还包括第三隔板和所述第四隔板,所述第三隔板和所述第四隔板同时位于所述第二集流管的内腔,所述第三隔板和所述第四隔板将所述第二集流管的内腔分割成第四腔体、第五腔体和第六腔体,沿所述第二集流管的轴向方向,所述第五腔体位于所述第四腔体与所述第六腔体之间;
    至少部分所述换热管的内腔连通所述第三腔体和所述第四腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第三腔体;
    所述第五腔体沿所述第二集流管向所述第一集流管的方向在所述第一集流管内腔的垂直投影位置处未设置有隔板。
  3. 根据权利要求1所述换热器,其特征在于,所述换热器还包括第五隔板和所述第六隔板,所述第五隔板和所述第六隔板同时位于所述第三腔体,所述第五隔板和所述第六隔板将所述第三腔体分割成第七腔体、第八腔体和第九腔体,沿所述第二集流管的轴向方向,所述第八腔体位于所述第七腔体与所述第九腔体之间;
    至少部分所述换热管的内腔连通所述第四腔体和所述第七腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第七腔体,至少部分所述换热管的内腔连通所述第六腔体和所述第九腔体;
    所述第八腔体沿所述第一集流管向所述第二集流管的方向在所述第二集流管的内腔的垂直投影位置处未设置有隔板。
  4. 根据权利要求1所述的换热器,其特征在于,还包括至少一个隔热件,所述隔热件为实心的隔热件或空心的隔热件,所述隔热件的第一端与所述第一集流管相连且位于第二腔体处,所述隔热件的第二端与所述第二集流管相连。
  5. 根据权利要求4所述的换热器,其特征在于,所述隔热件由所述换热管构成,所述 第二腔体对应的所述第一集流管的管壁处设有插孔,所述隔热件的第一端穿过所述插孔并与所述第一集流管相连接。
  6. 根据权利要求1-5中任一项所述的换热器,其特征在于,相邻所述换热管之间设有翅片。
  7. 根据权利要求1所述的换热器,其特征在于,还包括:位于一个最外侧换热管的外侧的第一托架和位于另一个最外侧换热管的外侧的第二托架;所述第一托架具有第一端部和第二端部,所述第一端部具有第一弧形连接面,所述第二端部具有第二弧形连接面;所述第二托架具有第三端部和第四端部,所述第三端部具有第三弧形连接面,所述第四端部具有第四弧形连接面;所述第一集流管具有位于所述第一集流管轴向方向一端的第一连接部和位于所述第一集流管轴向方向另一端的第二连接部,所述第二集流管具有位于所述第二集流管轴向方向一端第三连接部和位于所述第二集流管轴向方向另一端的第四连接部;所述第一弧形连接面的曲率半径不小于所述第一连接部的外壁面的曲率半径,所述第一弧形连接面与所述第一连接部的外壁面相配合连接,所述第二弧形连接面的曲率半径不小于所述第三连接部的外壁面的曲率半径,所述第二弧形连接面与所述第三连接部的外壁面相配合连接,所述第三弧形连接面的曲率半径不小于所述第二连接部的外壁面的曲率半径,所述第三弧形连接面与所述第二连接部的外壁面相配合连接,所述第四弧形连接面的曲率半径不小于所述第四连接部的外壁面的曲率半径,所述第四弧形连接面与所述第四连接部的外壁面相配合连接。
  8. 根据权利要求7所述的换热器,其特征在于,所述第一托架与与其相邻的换热管之间设置有翅片,所述第二托架与与其相邻的换热管之间设置有翅片。
  9. 根据权利要求1所述的换热器,其特征在于,所述换热器为微通道换热器。
  10. 一种换热系统,包括压缩机、冷凝器、蒸发器和节流机构,其中所述冷凝器和所述蒸发器中的至少一个为根据权利要求1-9中任一项所述的换热器。
PCT/CN2018/090690 2017-09-30 2018-06-11 换热器和具有其的换热系统 WO2019062204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710920233.7 2017-09-30
CN201710920233.7A CN109595953A (zh) 2017-09-30 2017-09-30 换热器和具有其的热泵系统

Publications (1)

Publication Number Publication Date
WO2019062204A1 true WO2019062204A1 (zh) 2019-04-04

Family

ID=65900724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090690 WO2019062204A1 (zh) 2017-09-30 2018-06-11 换热器和具有其的换热系统

Country Status (2)

Country Link
CN (1) CN109595953A (zh)
WO (1) WO2019062204A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302190A (ja) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd コルゲートフィン型熱交換器
JP2004218983A (ja) * 2003-01-16 2004-08-05 Japan Climate Systems Corp 熱交換器
CN203744611U (zh) * 2014-02-20 2014-07-30 奇瑞汽车股份有限公司 冷凝器
CN105783345A (zh) * 2016-04-20 2016-07-20 重庆超力高科技股份有限公司 冷凝器
KR20170047050A (ko) * 2015-10-22 2017-05-04 한온시스템 주식회사 응축기

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600929B (zh) * 2006-11-22 2012-05-09 约翰逊控制技术公司 具有不同管道间隔的多通路热交换器
CN102735092B (zh) * 2012-06-27 2013-11-06 浙江金宸三普换热器有限公司 一种新型分流结构的平行流换热器
CN204141900U (zh) * 2014-09-24 2015-02-04 杭州三花微通道换热器有限公司 多系统换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302190A (ja) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd コルゲートフィン型熱交換器
JP2004218983A (ja) * 2003-01-16 2004-08-05 Japan Climate Systems Corp 熱交換器
CN203744611U (zh) * 2014-02-20 2014-07-30 奇瑞汽车股份有限公司 冷凝器
KR20170047050A (ko) * 2015-10-22 2017-05-04 한온시스템 주식회사 응축기
CN105783345A (zh) * 2016-04-20 2016-07-20 重庆超力高科技股份有限公司 冷凝器

Also Published As

Publication number Publication date
CN109595953A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
BRPI1102318A2 (pt) conjunto de trocador de calor
US10612856B2 (en) Heat exchanger and air conditioning system
EP2896923B1 (en) Heat exchanger
WO2015107882A1 (ja) インタークーラ
JPH0315117B2 (zh)
GB2501413A (en) Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle device with the heat exchanger
JP7125344B2 (ja) 熱交換器
CN104735988A (zh) 热风烘炉
CN105737453B (zh) 冷却装置及其使用方法
WO2019111849A1 (ja) 熱交換器
CN207132764U (zh) 扁管、微通道换热器及制冷设备
WO2021103827A1 (zh) 换热器组件和具有其的空调室内机
WO2019062204A1 (zh) 换热器和具有其的换热系统
KR20130065173A (ko) 차량용 열교환기
EP3137836B1 (en) Improved heat exchanger
CN208606619U (zh) 管壳式换热器
JP2011196620A (ja) 沸騰冷却式熱交換器
JP4717794B2 (ja) 真空装置における蒸気凝結器
CN104075497B (zh) 热交换器
WO2020063972A1 (zh) 换热器
CN219265060U (zh) 一种采用h型翅片管的冷阱
CN215723628U (zh) 一种蒸发器及空调室内机
CN219624531U (zh) 用于散热产品的口琴管
CN217109794U (zh) 一种换热器及空调
KR100925097B1 (ko) 수랭식 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860390

Country of ref document: EP

Kind code of ref document: A1