JP4717794B2 - 真空装置における蒸気凝結器 - Google Patents

真空装置における蒸気凝結器 Download PDF

Info

Publication number
JP4717794B2
JP4717794B2 JP2006336865A JP2006336865A JP4717794B2 JP 4717794 B2 JP4717794 B2 JP 4717794B2 JP 2006336865 A JP2006336865 A JP 2006336865A JP 2006336865 A JP2006336865 A JP 2006336865A JP 4717794 B2 JP4717794 B2 JP 4717794B2
Authority
JP
Japan
Prior art keywords
passage
heat transfer
refrigerant
heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006336865A
Other languages
English (en)
Other versions
JP2008149210A (ja
Inventor
寛如 沢田
良二 砂間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Vacuum Engineering Co Ltd
Original Assignee
Kyowa Vacuum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Vacuum Engineering Co Ltd filed Critical Kyowa Vacuum Engineering Co Ltd
Priority to JP2006336865A priority Critical patent/JP4717794B2/ja
Publication of JP2008149210A publication Critical patent/JP2008149210A/ja
Application granted granted Critical
Publication of JP4717794B2 publication Critical patent/JP4717794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、真空装置における蒸気凝結器のうちで、特に本件出願人が先に開発している特許第1177616号、特許第3644845号として提起している真空装置における蒸気凝結器についての改良に関する。
真空装置の蒸気凝結器(トラップ)は、真空室中の被処理物から気化された水その他の溶媒の蒸気を、低温冷却面に凝結捕集し、もって、その真空室の真空圧力を所望の値に維持する目的で、真空凍結装置、真空乾燥装置、真空濃縮機、真空蒸溜機、真空冷却機、脱溶媒装置等の、真空装置に、それの要部を構成するように組込んで、広く用いられている。
この真空装置におけるトラップ(蒸気凝結器)は、真空蒸気を凝結させる冷熱量が冷凍装置の低温冷媒から供給され、伝熱工学的見地から見れば、低温媒体(冷媒)と高温媒体(真空蒸気)との熱交換器である。換熱式の熱交換器では、高温流体と低温流体とは伝熱壁で仕切られて、熱通過によって熱交換が行われる。この形式のものには、直接式(高・低温流体直接の熱交換)の第1の手段のものと、間接式(高・低温流体の間に中間流体の循環を通す間接熱交換)の第2の手段のものと三重式(三媒体間の熱交換)の第3の手段のものとの三つの手段がある。
これら第一乃至第三の三つの形式の蒸気凝結器を、乾燥処理する被乾燥物を主として医薬品とした真空凍結乾燥装置に組込まれた形態において装置全体の基本構成と共に表した概要説明図により説明する。
図1はもっとも多く用いられる通常型で、蒸気凝結器(トラップ)101は冷媒直冷型の冷媒乾式蒸発器であり、図2は一部に用いられる型で、蒸気凝結器(トラップ)102は外部熱交換器7で冷媒により既に冷却された熱媒液循環による「間接熱媒型」である。そして図3の蒸気凝結器(トラップ)103は、冷媒、熱媒液が共に内部を循環する「三媒体間熱交換器」である。
図1乃至図3において、真空乾燥室(兼凍結室)1、真空トラップ室2、これらを連結する主管3a、主弁3、真空排気系4等真空系(真空室の輪郭および機器と配管)は総て「細線」で示されている。
冷凍装置(圧縮機、油分離機、凝結器、二段圧縮の場合の中間冷却器などの一切を含む。二元冷凍の場合もある)11、副冷凍装置12、および熱交換器7の冷媒蒸発器7a、副熱交換器8の冷媒蒸発器8a、冷媒直冷型のトラップ101の冷媒蒸発器、および三媒体間熱交換器の蒸気凝結器(トラップ)103の冷媒蒸発器、そして冷媒系路、冷媒弁13、冷媒膨張弁14(三角形にて記す)などの冷凍冷媒循環系は総て「破線」で示されている。
熱板(被処理物体に乾燥に必要な潜熱を供給、図1乃至図3の例では被処理物体の予備凍結に必要な冷熱を供給するプレートを兼ねる)5、熱媒液加熱器6、前掲の熱交換器7の熱媒液系7b、副熱交換器8の熱媒液系8b、間接熱媒液型の蒸気凝結器(トラップ)102の熱媒液系路、および三媒体間熱交換器の蒸気凝結器(トラップ)103の熱媒液系路、および熱板用熱媒液体ポンプ9と蒸気凝結器(トラップ)用熱媒ポンプ10等の熱媒液系機器と系路は総て「太線」で示されている。
また、図2および図3において、15は熱媒液の循環系に設けた仕切弁であるが、実際の各系の配管系路と各種弁および系路内の機器配列の順の実際は必ずしも図の通りではなく、図は先行技術として開示した特許第1177616号、及び先先行技術として開示した特許第3644845号の説明のために単純化されたものである。
図4および図5は、前記図3に示す三媒体間熱交換器の真空凍結乾燥機の真空トラップ室2と蒸気凝結器(トラップ)103の縦断面(図5のA−A断面)と横断面(図4のC−C断面)で、図4の蒸気凝結プレートa内部の「細かい破線」が冷媒Rの流路[図6の符号26で示す冷媒管に当たる]で、「荒い破線」は蒸気凝結プレートa内の熱媒液の流路(通路w)を冷媒管26の軸方向と直交する方向に区画する境界[図6で冷媒管26と平行する符号27に示す仕切壁に当たる]で、図6はこの蒸気凝結プレートaの一部の断面図である。
三媒体間熱交換型(三重式)の気凝結器(トラップ)103の蒸気凝結プレートaは、図4に示す状態の他に、真空トラップ室2の内壁面を図7の如く円筒状に形成して、そこに取り付けるなど適宜に真空トラップ室2内に設けてよいが、いずれの場合も、冷媒管26は、三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートに対し、熔接、圧着その他により密接状態にあり、この三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートaは、冷媒Rの伝熱フインの役割を果たす。冷媒Rと熱媒液体Bは、冷媒管26の管壁およびフインプレートとしての蒸気凝結器(トラップ)103を介して熱交換し、熱媒液体Bと真空蒸気V(水蒸気)は、熱媒液壁である蒸気凝結器(トラップ)103の蒸気凝結プレートaを介して熱交換し、そして冷媒Rと真空蒸気Vとは、冷媒管26の伝熱フインである蒸気凝結器(トラップ)103の蒸気凝結プレートaを介して熱交換する。かくして三媒体(冷媒R、熱媒液B、真空蒸気V)のいずれの二媒体間の熱交換も境界金属壁ないし同フインプレートによって行われる。28は真空トラップ室2の外壁である。
この図1乃至図3にあるよう真空装置の蒸気凝結器(トラップ)は、従来にあっては、冷凍装置の冷媒蒸発器を、真空トラップ室に設け、これに図1の如く「冷媒直冷型蒸気凝結器101」を用いるか、図2の如く、冷媒蒸発器7aを冷却源とする熱交換器7(以下冷却器7と記す)およびトラップ系熱媒循環ポンプ10を含むトラップ系熱媒中間流体循環回路により、真空トラップ室2外の外部冷却器で冷却された熱媒液体を、真空トラップ室2内の「間接熱媒型蒸気凝結器102」に循環させるか、または、図3にあるよう冷媒と熱媒とが共に内部を循環する「三媒体間熱交換器」を用いるかしている。
「冷媒直冷型」の蒸気凝結器(トラップ)101を用いる第一の形態のものは、運転の安定性に欠け、保守困難、かつ、温度制御困難であり、かつ、加熱系には、追加的に、副冷凍装置と副熱交換器を要する等の不利がある。「間接熱媒型」の蒸気凝結器(トラップ)102を用いる第二の形態のものにあっては、前述の第一の形態のものの不利を改善する反面に、冷却源冷媒とトラップ凝結面との直接熱交換がなく、中間流体熱媒からトラップ凝結面までの熱伝達が間接となるための第一の損失、および、外部熱交換器7における、冷媒蒸発器7aから熱媒液体への熱交換の向上、熱媒側の境膜熱伝達係数を増大するため、および、該外部熱交換器7で冷却された熱媒液体を間接熱媒液型の蒸気凝結器(トラップ)102に運ぶことから、その蒸気凝結器(トラップ)102の出入り温度差を小さく保つために大容量の熱媒循環ポンプ10を必要とするための第二の熱損失があり、さらに、真空トラップ室2の他に大型の熱交換器7、熱媒循環ポンプ10を含む外部熱媒体諸機器と仕切弁15などを具備さす配管を設けるための、外界から侵入熱のために装置の諸設備、占有面積、運転エネルギーの増大の不利をもつのであった。
「三媒体間熱交換器」である三重式の蒸気凝結器(トラップ)103を用いる第三の形態のものは、本出願人が先に開発した前述の特許第1177616号の発明(以下先先行発明という)および特許第3644845号の発明(以下先行発明という)であって、図3に示す如く、前述した第二の形態のものと同じく、トラップ系熱媒液体循環回路を設けることによって、前記の冷媒直冷型のトラップ101の不利を改善し、かつ、冷媒蒸発器と熱媒液体との熱交換器を真空トラップ室2内に設置して、これに水蒸気をいずれの側からも、相手方の媒体を経由せずに冷却される三重熱交換型蒸気凝結器(トラップ)103によって、第二の形態のものの「間接熱媒型」の蒸気凝結器(トラップ)の諸欠陥を改善したものであり、既に医薬品真空凍結乾燥装置に普及し、特に日本では、前述した在来の冷媒直冷型と間接熱媒型の二方式にかわる主流の位置を占めている。
この第三の形態のものである先先行発明及び先行発明の三重式の蒸気凝結器(トラップ)103は、冷媒と熱媒液と真空蒸気(水蒸気)との三媒体中で、いずれの二媒体間にも、境界金属壁ないし境界金属壁と密接する金属板を介する直接の熱交換が存在する三媒体間熱交換器であるが、真空蒸気を凝結させる時、凝結の必要な冷熱量は、一部が冷媒蒸発円管(冷媒管26)から直接膨張により蒸気凝結器(トラップ)103の凝結面の真空蒸気と熱交換し、一部が冷媒から循環熱媒体を経由して蒸気凝結器(トラップ)の凝結面の真空蒸気へ伝わる。それで、蒸気凝結器(トラップ)の真空蒸気の凝結能力は、冷媒蒸発円管(冷媒管26)から直接に真空蒸気との伝熱量および循環熱媒体を経て真空蒸気との熱交換量に関与していて、かつ、その循環熱媒体を経由する伝熱量は、熱媒液の境膜熱伝達率に関係している。
しかし、この先先行発明の三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートaは、冷媒蒸発器の冷媒管26と金属板である蒸気凝結プレートaとの密着面が過小で、冷媒Rの直膨蒸発により真空蒸気Vとの熱交換量は少なく、冷媒冷熱量の多量は循環する熱媒液体Bを経て蒸気凝結器(トラップ)103の蒸気凝結プレートaの凝結面の真空蒸気Vと伝熱する。
ところで、近年来、特に医薬品を被処理物とする真空凍結乾燥装置では、循環熱媒液体Bにはシリコーンオイルが用いられている。そのシリコーンオイルの熱媒液体Bは低温で粘度が高くなり、その熱媒液体Bの境膜熱伝達係数は低下している。そのため、蒸気凝結プレートaは、図8に示しているよう、熱媒液体Bの通路w内にその通路wを上下に区画するように冷媒管26と直交する方向の押さえ棒29を間隔をおいて配設しておき、それの上方と下方とにそれぞれ冷媒管26を各2本ずつ配位して、押さえ棒29により支承させ、合計倍量の4本の冷媒管26を用い、通路w内の熱媒液体Bとの熱交換面積の不足を補うようにしている。このことから、循環熱媒体を経由する熱交換は2回の境膜伝熱を経る温度差損失が増大する不利があり、かつ、冷凍装置の冷媒フロン規制強化に伴って、二段圧縮式の冷凍装置の冷凍最低蒸発温度は、高くなり、直接冷却の伝熱量の過小、循環する熱媒液体Bの境膜熱伝達率の低下と新規冷媒の制限のために、数℃伝熱温度差損失が生じ、真空凍結乾燥装置に特に要求される−70℃以下の低温トラップに対し、困難である。
また、この三重式の蒸気凝結器(トラップ)103は、熱媒体循環回路に熱媒液体Bを循環させる推進力として循環ポンプ9を使用している。もちろんこの手段においては、必要な循環ポンプ9の容量は、従来の間接熱媒型蒸気凝結器(トラップ)102の必要な循環ポンプに比べて小型ではあるが、循環ポンプの発生熱による入熱損失もしていた。しかし、先先行発明で製作している三重式の蒸気凝結器(トラップ)103では、熱媒側の流路面積が過大で、必要な境膜熱伝達係数を確保するため、特にシリコーンを熱媒液体Bとして用いるものは、循環ポンプの容量の増大が必要となる。そのため、循環ポンプによる入熱損失により、冷媒の有効冷熱量が減少され、蒸気凝結器(トラップ)の凝結能力と到達温度に不利であった。
先行発明は、先先行発明におけるトラップ103の冷媒管26の直接接触伝熱低下を改善して、金属材よりなる円筒チューブ状の冷媒管26を、凝結捕集面に対し楕円長軸が平行する形状の扁平な楕円管16に変形加工し、その変形加工により形成される一対の扁平面の一方または両方を、熱媒液体Bの通路wの内壁面の天井壁17または底壁18に密着する状態として前記通路w内に装入することより、この楕円管16とした冷媒管26と蒸気凝結プレートa内の熱媒液体Bの通路wの内壁面との密着面積を増大させ伝熱性能の向上、冷媒と凝結面の真空蒸気との伝達温度差損失の低減、同時に循環熱媒体の境膜伝熱係数の増大が達成できている。
しかし、この先行発明のトラップでは、冷媒管26は、軸方向視において、左右方向が長軸で上下方向が短軸となる扁平な楕円管16に成形しているが、周壁面が平滑な平滑管であり、その冷媒管26内で冷媒Rが蒸発した時、核沸騰の熱伝達が低下し、また、冷媒管26外の熱媒液体Bの通路w内に、循環熱媒体は楕円管16の外表面に沿って平行に流れ、流動状態は層流である。冷媒管26の表面に形成される熱媒液体Bの速度境界層と温度境界層は厚く、対流熱伝達係数は小さくなり、冷媒管26内の冷媒と冷媒管26外の熱媒液体Bとの総括熱伝達係数は減少し、熱交換性能は低下している。そのため、予備凍結時に棚冷却器として、冷却速度が遅く、伝熱温度差の増大により棚到達温度も高くなる。昇華時に蒸気凝結器として、熱媒温度は高く、トラップ凝結能力が低下し、到達温度も高くなっている問題が生じている。
特許第1177616号 特許第3644845号
本発明において解決しようとする問題点は、上述の冷媒管26内の冷媒と冷媒管26外の熱媒液体との総括熱伝達係数が減少し、熱交換性能が低下していて改善すべき点にあり、冷媒管26内の冷媒核沸騰の熱伝達も管外の熱媒液体の境膜熱伝達も大幅に増大させ、伝熱を促進する方法を探求する点にある。そして、このことから、トラップ103の蒸気凝結プレートaの製作を難しくしないように、先行発明におけるトラップ103の冷媒管26の冷媒核沸騰の熱伝達を倍増させ、冷媒管26外の熱媒液体Bの層流境界層を擾乱して乱流を起こし熱媒液体Bの対流熱伝達も倍増させ、伝熱性能の向上、冷媒と凝結面の真空蒸気との伝達温度差損失の低減、良い伝熱性能と高効率蒸気凝結能力を持つ真空乾燥装置における蒸気凝結器を提供することを目的とするものである。
本発明には、上述の問題を解決するための手段として、冷凍装置11から導く冷媒Rを蒸発させる金属材よりなる円筒チューブ状の冷媒管26を、金属材よりなる蒸気凝結プレートa内に形成した熱媒液体Bの通路w内に嵌通せしめて冷媒Rと熱媒液体Bとの間の熱交換を行わす熱交換器103を構成し、その熱交換器103を、真空室1の内部または内壁面に、該熱交換器103の真空空間側外表面の全部または一部が真空空間に面するように設けて、その真空空間側外表面が冷媒R・熱媒液体Bの何れの側からも、直接にあるいは直接の金属接触により冷却される構造とし、その熱交換器103の真空空間側外表面を真空蒸気Vの凝結捕集面として、冷媒Rと熱媒液体Bと真空蒸気Vとの三媒体のうちの、何れの二媒体の間にも境界金属壁乃至境界金属壁と密接する金属板を介しての直接の熱交換が存在する三媒体間熱交換器の形態とし、真空装置の蒸気凝結器において、冷媒管26を嵌通させる蒸気凝結プレートa内の通路wに、その通路w内を流れる熱媒液体Bに乱流を生ぜしめる乱流発生体zを、通路wを横切る桟状に形成して、通路wの長手方向に狭い間隔をおいて多数本並列させて通路wの左右または上下の隔壁間面に渡架装着したことを特徴とする真空装置における蒸気凝結器を提起するものである。
本発明は、蒸気凝結プレートa内の熱媒液体Bの境膜熱伝達係数を大きく増大して伝熱を促進するため、蒸気凝結プレートa内の通路w中に、その通路wを横切る桟状に形成した乱流発生体zを、通路wの長手方向に狭い間隔をおいて多数本並列させて設けておき、この乱流発生体zにより冷媒管26外の通路wを流れる熱媒液体の層流境界層を擾乱し、乱流を起こし熱媒液体Bの速度境界層と温度境界層の厚さを薄くして境膜熱伝達係数を増大させていることから、伝熱促進の効果が著しく向上する。この効果は、蒸気凝結プレートaの冷却性能試験と昇華時の水蒸気凝結性能試験から確認できた。
本発明の冷媒管26の内周面に、軸方向視において多数の溝または多数のフィンが軸方向に連続する凹凸部yを形設した手段による蒸気凝結プレートaの伝熱促進の効果を評価するため、2m2 小型凍結乾燥機用の蒸気凝結プレートaを2枚試作して冷却性能を測定し、冷媒管26内の冷媒から冷媒管26外の通路内熱媒液体の総括熱伝達係数を求めて、内周面を平滑面とした冷媒管26を組込んだ先行発明の蒸気凝結プレートaの伝熱性能と比較した。同じ2m2 装置で同様な冷凍機で先行発明の蒸気凝結プレートaを3枚設置して冷媒管26の伝熱面積を6.1m2 としたものでも、内周面が平滑な冷媒管26内の冷媒核沸騰熱伝達の低下と管外の熱媒液境膜熱伝達の低下により総括熱伝達係数は小さくなり、冷却器として熱交換性能が低下したため、棚を20℃から−40℃まで冷却時間は約38minかかり、棚到達温度は−58℃となった。これに対して、本発明の内周面に凹凸部yを形設した冷媒管26を嵌通させた蒸気凝結プレートaは2枚として冷媒管26の伝熱面積を3.1m2 に減少させても、内面凹凸部y付き冷媒管26内の冷媒核沸騰熱伝達と冷媒管26外の熱媒液体境膜熱伝達が共に増大して熱交換の効率が向上したため、棚を20℃から−40℃まで冷却時間は28min、−50℃まで約49min、棚温は約−60℃に到達した。本発明手段の蒸気凝結プレートaと冷媒蒸発楕円管16の伝熱面積が先行発明のそれの半分で、熱媒と冷媒との温度差が同じとして、本発明の蒸気凝結プレートaの熱交換量は先行発明のトラップより多かったというこの実測結果から、本発明手段のトラップの総括熱伝達係数は先行発明の2倍以上となることを示した。また、本発明の蒸気凝結プレートa2枚で冷却性能の試験データから総括熱伝達係数を解析しても、冷媒側の核沸騰熱伝達と熱媒液体の対流境膜熱伝達係数ともに2倍以上増大した。
本発明手段は、真空装置が、乾燥処理する被処理物を医薬品とする真空凍結乾燥装置である場合にあっては、その装置の全体の構成は、図3にある従前の「三媒体間熱交換器」を蒸気凝結器(トラップ)103に用いる真空凍結乾燥装置Wと同様に構成してよい。
また、用いる蒸気凝結器(トラップ103)は、金属材によりプレート状の蒸気凝結プレートaを形成し、それの内部に形設する熱媒液体の通路w内に、冷媒管26を嵌通して、冷媒と熱媒液体と真空蒸気との三つの媒体の中のいずれの二媒体間にも、境界金属壁ないし境界金属壁と密接する金属板を介する直接の熱交換が存在する「三媒体間熱交換器型」に構成することについても、前述の図3にある従来手段における蒸気凝結器(トラップ)103と同様である。
しかし、この蒸気凝結器(トラップ)103の主体を構成する金属材よりなる蒸気凝結プレートaの内部に形成せる熱媒液体の通路wの中に、その通路wに沿い嵌通するように配設する冷媒管26は、それを形成する金属材よりなるチューブ状の円筒管を、それの筒壁に対し垂直な方向に沿いプレス加工を行って、筒壁の一対に対向する壁面が扁平円筒管の軸心線と直交する扁平面となるように押し潰し、軸方向視において長軸側が短軸側に対し略1.5倍程度となる略楕円形をなす楕円管16に成形しておくことが望ましい。
そして、冷媒管26を、断面において扁平な楕円管16に形成したときは、その冷媒管26を、蒸気凝結プレートaの内部に形成した熱媒液体の通路w内に、扁平面が蒸気凝結プレートaの真空蒸気の凝結捕集面に対し平行ないし略平行する姿勢として嵌挿し、それの一対の扁平面の一方または両方を、通路wの内壁面の天井壁17・底壁18に密接状態に接合し、熔接または圧着により密着させる。
このとき、蒸気凝結プレートa内に形成しておく熱媒液体Bの通路wは、図7にあるよう従前手段の蒸気凝結プレートa内に形設していた通路wと同様に、円管を圧縮した寸法に対応させて断面積を縮小させた寸法形状のものに形成しておいてもよい。
通路wがそれの内に冷媒管26が巾方向にダブルに並列する形状に形成されて、4本の冷媒管26が装入される場合は、通路w内のその通路wの長手方向における中間の適宜の個所に、押さえ棒29を図8に示しているように通路wを上下に2分するように配設して、これにより通路w内に嵌通させた冷媒管26の軸方向の中間部位を支承させて、冷媒管26の通路w内壁面に対する密着度を高めることができる。また、通路wの断面積を圧縮し得るようになることからその通路w内に循環させる熱媒液体Bの流速を早くでき、それの循環用のポンプを容量の小さいものでも良いようになる。
この蒸気凝結プレートaの内部に形成する通路w内には、乱流発生体zを配設する。この乱流発生体zは、通路w内を流れる熱媒液体Bに乱流を発生せしめて、その流れに撹乱を与えることにより通路w内における冷媒管26の外表面の熱媒液体Bの層流を撹乱することで、冷媒管26内の核沸騰熱伝達の低下と冷媒管26外の熱媒液体Bの境膜熱伝達の低下とを改善して伝熱性能を向上させるためのものであり、熱媒液体Bの流れの中に位置してそれに乱流を生ぜしめるようになれば良いもので、その形状は適宜に形成してよい。
この通路wを流れる熱媒液体Bの流れに乱流を起こす乱流発生体zを並列させて設置するときの設置間隔は蒸気凝結プレートa内の熱媒液体Bの境膜熱伝達係数にも通路内の熱媒液体Bの流動圧力損失にも影響を与えている。間隔が大であると、熱媒液体Bの流動圧力損失が減少できるが、冷媒管26外の熱媒液体Bの流動の擾乱は低下し熱伝達促進の効果はあまり出ていない。間隔が小であると、熱媒液体Bの流動圧力損失が大きく増大し、熱媒ポンプ10による熱媒液体Bの循環流量が低減して熱媒液体Bの流速が小さくなり、冷媒管26外の熱媒液体Bの流動境界層を擾乱しても流速の低下により熱媒液体Bの熱伝達を促進しなくなって逆効果となる。適切な間隔で乱流発生体zを設置することが必要となる。本発明の蒸気凝結プレートaの伝熱促進の効果を評価する同時に熱媒液体Bの流動圧力損失と乱流発生体zの設置間隔との関係を、本発明手段の実施例の蒸気凝結プレートaの通路と同等な流路面積の熱媒液体の圧力損失測定用装置を製作して、圧力損失と熱媒液体Bの流量、乱流発生体zの設置間隔との関係を測定することでテストしたところ、その測定結果は、30℃で熱媒液体の粘度50csの場合に、棒間隔40mmの圧力損失は間隔80mmより約20%増大し、棒間隔120mmの圧力損失は間隔80mmより約30%減少し、棒間隔160mmの圧力損失は間隔120mmとほぼ同等となった。30℃で熱媒液体の粘度2csの場合に、棒間隔40mmの圧力損失は間隔80mmより約28%増大し、棒間隔120mmの圧力損失は間隔80mmより約20%減少し、棒間隔160mmの圧力損失は間隔80mm約40%減少した。このことから、熱媒液体の熱伝達の促進効果と流動圧力損失低減の両方を考えると、押さえ棒の適切な間隔は80mmを基準としてそれの前後に10mmの巾を設けた70mm〜90mmの範囲が適当である。
このことから、この乱流発生体zは、熱媒液体Bの流れに対して大きな抵抗を生ぜしめない棒状に形成し、これを80mm程度の狭い間隔をおいて多数本、通路wの長手方向に並列させて、通路w内を横切る桟状に配設することが有効である。
このとき、並列させて配設する各乱流発生体zは、図13にあるように、蒸気凝結プレートa内の通路wの天井壁17と底壁18とに渡架するように取り付けてよく、また、蒸気凝結プレートaが、図12にあるように複数枚を多段に重ねた形態のものの場合にあっては、これらを上下に串通するように棒状の乱流発生体zを組付けるようにしてよい。
また、この乱流発生体zは、それを棒状に形成して、蒸気凝結プレートa内の通路w中に、その通路wを上下に区画するよう左右方向に沿う姿勢に配設するときは、並列する多数の乱流発生体zのうちの、適宜に選択したものを、通路w内に嵌通させた冷媒管26に接触させて、それを支承する押さえ棒29を兼ねたものとすることが可能である。
さらに、蒸気凝結プレートa内の通路wに嵌通させる冷媒管26は、それの内周面の略全面に図15にあるように軸方向視において、多数の溝ないし多数のフィンよりなる凹凸部yが、軸方向に連続して形設された形状に形成しておくことが、冷媒蒸発楕円管16内における冷媒Rの核沸騰熱伝達の低下を改善する上において有効である。
蒸気凝結プレートa内の通路w中に配設する乱流発生体zは、通路w内を流れる熱媒液体Bの流れに撹乱を与えて伝熱促進を図るためのものであるが、熱媒液体Bの流速の阻害となってその熱媒液体Bの対流熱媒液体伝達に対し逆効果を招くようになることから、抵抗の少ない丸棒状に形成して、多数本を狭い間隔において並列設置するようにする。その間隔は、80mm内外の70mm〜90mm程度に設定することが適切である。
そして、この乱流発生体zは、通路w中の冷媒管26には接触しない近接位置に配位して、通路wの天井壁17と底壁18との間に渡架するように設け、冷媒管26の外周面に形成される熱媒液体Bの層流を乱して、対流熱媒液体伝達を向上させるようにすることが有効である。
また、この乱流発生体zは、それを棒状に成形して、図14にあるように通路w内にその通路wの内壁面の左右の壁面間に渡架するように設けるときは、通路w内に嵌通させる冷媒管26を支承する押さえ棒29の役割を兼ねさせることが可能になるので、狭い間隔をおいて並列させて設ける乱流発生体zの中から適宜選択したものを、通路w内の冷媒管26に接触させて支承させ、押さえ棒29は省略した形態としてよい。
冷媒管26の内周面に設ける上述の凹凸部yは、冷媒管26内の冷媒Rの核沸騰熱伝達を向上させるためのもので、冷媒管26の内周面の略全面に、軸方向視において多数のV溝状の溝が周方向に並列し、それら溝が軸方向に連続する形態に形設するか、軸方向視において多数のフィンが周方向に並列し、それらフィンが軸方向に連続する形態に形成することが望ましい。
次に実施例を図面に従い詳述する。なお、図面符号は、従前手段のものと同様の構成部材については同一の符号を用いるものとする。
図9は、先行発明を実施せる真空装置に設置した蒸気凝結器(トラップ)103の部分を構成している蒸気凝結プレートaの縦断面図で、同図において、aは金属材でプレート状に形成した蒸気凝結プレート、wはその蒸気凝結器プレートaの内部に形成した通路、Bはその通路w内に循環させる熱媒液体、26は通路w内に挿通して装着した冷媒管、Rはその冷媒管26内に循環させる冷媒を示す。なお、この冷媒管26は楕円管16に変形加工してあり、また、その内周面には、多数の溝またはフィンを設けた凹凸部y付きのものとしている。
この例における真空装置は、図3に示している主として医薬品の乾燥処理を対象とする真空凍結乾燥装置であり、これに組込む蒸気凝結器(トラップ)は、図3において符号103で示している「三媒体間熱交換器型」の蒸気凝結器(トラップ)であって、この真空装置および蒸気凝結器(トラップ)103の基本的な構成は、図3乃至図7にて説明した従前手段のものと変わりがない。
また、蒸気凝結プレートaの内部に形成せる熱媒体Bの通路wは、図6に示している従前の円筒管とした冷媒管26を2本挿通して装着するように形成された通路wよりも、円筒形の冷媒管26を楕円管16に圧縮した分だけ、略60〜70%断面積を圧縮して作られている。
この通路w内に挿通して装着せる冷媒管26は、従前手段に用いていた円筒形のチューブ状の冷媒管26をプレス加工により断面が扁平な楕円管16に成形したもので、長軸に対し短軸が略5分の3となるように成形してある。
次に図10は別の実施例を示している。この例は、冷媒管26を楕円管16に変形加工して通路w内に嵌挿し、その通路w内に一定間隔で熱媒液体Bの伝熱促進と冷媒管26の支承を兼ねた乱流発生体zを装設し、それの上面側と下面側とにより2本ずつの内面に凹凸部y付きの冷媒管16を挿通した例であり、通路wは、従前手段の通路に対し上下の高さ(蒸気凝結プレートaの厚さ方向の寸法)は略5分の3に形成してある。
そして、これら通路wの区画内に挿通する内面凹凸部y付きの楕円管16とした冷媒管26…は、上位側の区画内に挿通するものにあっては、扁平面16aの一方を通路wの天井壁17に対し密着させ、下位側の区画内に挿通するものにあっては通路wの底壁18に一方の扁平面16aを密着させた状態としてある。
次に図11は、上述の蒸気凝結プレートaが水蒸気を凝結する時の熱流の概念図である。その蒸気凝結プレートaの蒸気凝結面(氷層表面)からプレート幅Lを横切る熱流のうち、一部は直接伝導(接触抵抗経由)で冷媒管26へ流入する熱流Q1の幅L1、一部は蒸気凝結プレートaから通路wを循環する熱媒液体Bの境膜熱伝達を経て冷媒管26に達する熱流Q2の幅L、冷媒管26と蒸気凝結プレートaとの接触面幅をεとする。
一方、直接伝導で内面溝付き冷媒管26へ流入する熱流Q1は以下の熱抵抗に関与している。すなわち、凝結氷層の熱抵抗R13、蒸気凝結プレートaのプレート板厚を貫通して接触面幅εへの熱抵抗R12、接触熱抵抗R11、冷媒管26内の冷媒の伝熱抵抗R10である。その中で、接触熱抵抗R11は、冷媒管26と蒸気凝結プレートaとの接触面幅εおよび等価接触間隙δに大きく影響される。冷媒の伝熱抵抗R10は管内の核沸騰伝熱係数に関与している。
本発明手段の蒸気凝結器(トラップ)103では、扁平な内面凹凸部y付きの楕円管16とした冷媒管26の接触面幅が、円筒管とした冷媒管26よりかなり増大するため、接触熱抵抗は小さくなり、かつ、内面凹凸部y付きの冷媒管26で冷媒の核沸騰熱伝達係数は2.3倍となり、冷媒の伝熱抵抗R10も半分以下に減少し、直接伝導で冷媒蒸発管へ伝わる熱流Q1は増大する。
他方、循環する熱媒液体Bを経由して内面凹凸部y付きの冷媒管26に達する熱流Q2の熱抵抗は、凝結氷層の熱抵抗R24、プレート板厚を貫通する熱抵抗R23、プレート内面(含間仕切)と熱媒液体Bとの界面の境膜伝熱抵抗R22と内面凹凸部y付きの冷媒管26の周囲(密着面幅εを除く)の境膜伝熱抵抗R21、冷媒管26内の冷媒の伝熱抵抗R20とにより構成している。そのうち、循環する熱媒液体Bの境膜熱伝達係数は熱抵抗R22とR21に大きい影響を与える。境膜熱伝達率の促進は、循環熱媒体を経由する熱流を増大する。トラップ103である蒸気凝結プレートaの伝熱性能の理論解析と試験評価の結果、この実施例のトラップ103は、乱流発生体zの適切間隔の配置により熱媒液体Bの境膜熱伝達係数は先行発明の2.7倍となり、大幅に改善した。先行発明トラップでは、通路w内の熱媒液体が冷媒管26の表面に沿って平行に流れ、境界層が厚くて熱伝達は低下し、本発明は境界層を擾乱する乱れ促進棒を配設して冷媒管26の表面に直交流と平行流の両方も生じ、熱媒液体の境膜熱伝達は大きく促進された。冷媒管26内の冷媒からトラップ凝結氷層表面までの総括伝熱係数は、先行発明のトラップより増大し、凍結乾燥初期で伝熱性能は約1.5倍増え、乾燥中期(氷層厚10mm)でも、総括伝熱係数は約100%増加した。
また、この本発明の実施例では、内面凹凸部y付きの冷媒管26でトラップ103を製作し、先行発明トラップと同様に蒸気凝結プレートaの内腔の通路wを薄く製作することで、熱媒側の流路面積は減少し、熱媒体側の流動は促進され、乱流発生体zの配設を加え、境膜熱伝達性能もさらに向上している。乱流発生体zの配設により通路w内の熱媒圧力は増大しているが、熱媒循環量を減少して、先行発明トラップの熱媒圧力損失と同等にしても、熱媒境膜熱伝達係数は増大する。従って、熱媒液体の循環ポンプ10容量は低減でき、ポンプ発生熱により入熱損失も少なくなる。
また、トラップ伝熱と凝結性能が先行発明トラップより倍以上増大するので、トラップ枚数を減少でき、製作費用は低減できる。
このように、この本発明の実施例は、冷媒蒸発器の蒸気凝結プレートa内の通路wに挿通する冷媒管26を、周面が平滑な平滑管から内面凹凸部y付きの楕円管16に加工し、その扁平面を通路wの内壁面に密着させているのだから、冷媒管26と金属材の蒸気凝結プレートとの接触面は十分に増大され、接触熱抵抗は大きく減少できる。しかも、楕円管の冷媒管26は、内面凹凸部y付きの円筒管の冷媒管を作って、それをプレスして、扁平に加工することで、最適な長短軸の冷媒管が簡単に得られ、このときそれの断面積が円筒管のそれと殆ど変わらないから、トラップの製作が容易となる。
また、熱媒液体Bの通路w内に装入した冷媒管26に沿って等間隔に並列配設した乱流発生体zは、冷媒管26外表面の層流を擾乱して熱媒液体Bの対流境膜伝熱を促進して、冷媒側の核沸騰熱伝達と熱媒液体の対流境膜熱伝達係数ともに2倍以上増大させるので、良い伝熱性能と高効率蒸気凝結能力をもって真空装置における新型蒸気凝結器が得られるようになる。
トラップに冷媒直冷型トラップを用いた従前の真空装置の概要説明図である。 トラップに間接熱媒型トラップを用いた従前の真空装置の概要説明図である。 トラップに三媒体間熱交換器を用いた従前の真空装置の概要説明図である。 同上真空装置のトラップ室およびトラップの縦断した正面図である。 同上真空装置のトラップ室およびトラップの縦断した側面図である。 同上のトラップの部分の縦断面図である。 同上真空装置の別の形態のトラップ室の縦断面図である。 同上真空装置の別の形態のトラップの部分の縦断面図である。 先発明による真空装置におけるトラップの部分の縦断面図である。 先発明におけるトラップの別の実施例の部分の縦断面図である。 先発明におけるトラップの凝結時の熱流説明図である。 本発明によるトラップの別の実施例の平面図である。 本発明によるトラップの部分縦断面図 本発明によるトラップの部分平面図 本発明による別の実施例のトラップの部分縦断面図
符号の説明
B…熱媒液体、R…冷媒、V…真空蒸気、W…真空凍結乾燥装置、a…蒸気凝結プレート、b…蒸気捕集面、w…通路、y…凹凸部、z…乱流発生体、1…真空乾燥室、10…熱媒循環ポンプ、101…冷媒直冷型トラップ、102…間接熱媒型トラップ、103…熱交換器を兼ねるトラップ、11…冷凍装置、12…副冷凍装置、13…冷媒弁、14…冷媒膨張弁、15…仕切弁、16…冷媒蒸発楕円管、16a…扁平面、17…天井壁、18…底壁、2…真空トラップ室、26…冷媒管、27…仕切壁、28…外壁、29…押さえ棒、3…主弁、3a…主管、4…真空排気系、5…熱板、6…熱媒液加熱器、7…熱交換器、7a…冷媒蒸発器、7b…熱媒液系、8…副熱交換器、8a…冷媒蒸発器、8b…熱媒液系、9…熱媒液体循環ポンプ。

Claims (3)

  1. 冷凍装置11から導く冷媒Rを蒸発させる金属材よりなる円筒チューブ状の冷媒管26を、金属材よりなる蒸気凝結プレートa内に形成した熱媒液体Bの通路w内に嵌通せしめて冷媒Rと熱媒液体Bとの間の熱交換を行わす熱交換器103を構成し、その熱交換器103を、真空室1の内部または内壁面に、該熱交換器103の真空空間側外表面の全部または一部が真空空間に面するように設けて、その真空空間側外表面が冷媒R・熱媒液体Bの何れの側からも、直接にあるいは直接の金属接触により冷却される構造とし、その熱交換器103の真空空間側外表面を真空蒸気Vの凝結捕集面として、冷媒Rと熱媒液体Bと真空蒸気Vとの三媒体のうちの、何れの二媒体の間にも境界金属壁乃至境界金属壁と密接する金属板を介しての直接の熱交換が存在する三媒体間熱交換器の形態とし、真空装置の蒸気凝結器において、冷媒管26を嵌通させる蒸気凝結プレートa内部の通路w内には、その通路wを横切る桟状に形成した乱流発生体zを、通路w内を流れる熱媒液体Bの層流中に位置するよう配位して、通路wの長手方向に80±10mの間隔をおいて多数本前記通路wの長手方向に並列させて配置し、その並列する乱流発生体zを通路wの左右または上下の隔壁間に渡架装着せしめ、該並列する多数本の乱流発生体zにより通路wを流れる熱媒液体Bの層流に乱流を起こし熱媒液体Bの伝熱性能を向上させるようにしたことを特徴とする真空装置における蒸気凝結器。
  2. 前記蒸気凝結プレートa内部の通路w中にその通路wの長手方向に多数本並列させて設ける前記乱流発生体zの並列間隔を、80mmの前後10mmの範囲となる70mm〜90mmの範囲の間隔に設定することを特徴とする請求項1記載の真空装置における蒸気凝結器。
  3. 前記蒸気凝結プレートa内部の通路w内に、その通路wの長手方向に間隔をおいて多数本並列させて配設する乱流発生体zを、通路wを横切る棒状に形成し、その棒状の乱流発生体zを、通路w中の冷媒管26には接触しないで近接する位置において、通路wの長手方向に80±10mの間隔をおいて多数本前記通路wの長手方向に並列させて配置し、その並列する乱流発生体zを通路wの左右の隔壁間に渡架して装着し、これら乱流発生体zの中から適宜選択した乱流発生体zを、通路w中の冷媒管26に接触させて、冷媒管26を支承する押さえ棒29とすることを特徴とする請求項1記載の真空装置における蒸気凝結器。
JP2006336865A 2006-12-14 2006-12-14 真空装置における蒸気凝結器 Active JP4717794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336865A JP4717794B2 (ja) 2006-12-14 2006-12-14 真空装置における蒸気凝結器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336865A JP4717794B2 (ja) 2006-12-14 2006-12-14 真空装置における蒸気凝結器

Publications (2)

Publication Number Publication Date
JP2008149210A JP2008149210A (ja) 2008-07-03
JP4717794B2 true JP4717794B2 (ja) 2011-07-06

Family

ID=39652003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336865A Active JP4717794B2 (ja) 2006-12-14 2006-12-14 真空装置における蒸気凝結器

Country Status (1)

Country Link
JP (1) JP4717794B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559088B2 (ja) * 2010-05-18 2014-07-23 株式会社ワイ・ジェー・エス. 熱交換器
JP6289557B2 (ja) * 2016-07-22 2018-03-07 新洋技研工業株式会社 蒸煮穀物冷却装置
CN108668508B (zh) * 2018-06-08 2024-03-26 浙江大学山东工业技术研究院 机柜的冷却装置及机柜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185891A (ja) * 1992-03-05 1994-07-08 Phillips Petroleum Co 管形熱交換器の棒バッフル
JPH0665759U (ja) * 1993-01-19 1994-09-16 石川島播磨重工業株式会社 バヨネット型熱交換器
JP2000018850A (ja) * 1998-07-01 2000-01-18 Kyocera Corp 熱交換器用伝熱管
JP2003294380A (ja) * 2002-03-29 2003-10-15 Hisaka Works Ltd 熱交換器
JP2005221118A (ja) * 2004-02-04 2005-08-18 Japan Steel Works Ltd:The 多管式熱交換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185891A (ja) * 1992-03-05 1994-07-08 Phillips Petroleum Co 管形熱交換器の棒バッフル
JPH0665759U (ja) * 1993-01-19 1994-09-16 石川島播磨重工業株式会社 バヨネット型熱交換器
JP2000018850A (ja) * 1998-07-01 2000-01-18 Kyocera Corp 熱交換器用伝熱管
JP2003294380A (ja) * 2002-03-29 2003-10-15 Hisaka Works Ltd 熱交換器
JP2005221118A (ja) * 2004-02-04 2005-08-18 Japan Steel Works Ltd:The 多管式熱交換器

Also Published As

Publication number Publication date
JP2008149210A (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
JP6851492B2 (ja) 管支持構造を有する凝縮器
JP3049445B2 (ja) 分割型蛇行状ヒートパイプ式熱交換装置、その製造法およびその用途
BRPI1007042B1 (pt) Trocador de calor
WO2017107490A1 (zh) 换热器和空调系统
JP6894520B2 (ja) 凝縮器
CN106196755B (zh) 壳管式冷凝器和空调系统
BRPI1102318A2 (pt) conjunto de trocador de calor
Chen et al. Performances of a split-type air conditioner employing a condenser with liquid–vapor separation baffles
US10655894B2 (en) Refrigeration cycle of refrigerator
US9689594B2 (en) Evaporator, and method of conditioning air
KR100338913B1 (ko) 냉장고
WO2016192653A1 (zh) 换热器系统
JP3644845B2 (ja) 真空装置における高効率蒸気凝結器
JP4717794B2 (ja) 真空装置における蒸気凝結器
EP3255362B1 (en) Semiconductor cooling refrigerator
JP6678235B2 (ja) 熱交換器
CN106482549A (zh) 一种满液式壳管换热器及具有其的空调器
US20110024083A1 (en) Heat exchanger
KR101110049B1 (ko) 방해판을 공유하는 냉각식 제습장치의 열교환기의 구조
JP2018179325A (ja) 熱交換器、および、それを用いたヒートポンプシステム
JP7140552B2 (ja) エアクーラ、冷凍システム及びエアクーラの除霜方法
CN101498533B (zh) 真空装置的蒸汽冷凝器
JP2570310Y2 (ja) 熱交換器
KR100709421B1 (ko) 열교환기
JPH0268494A (ja) 熱交換器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250