WO2019062055A1 - 激光器阵列、激光光源及激光投影设备 - Google Patents

激光器阵列、激光光源及激光投影设备 Download PDF

Info

Publication number
WO2019062055A1
WO2019062055A1 PCT/CN2018/081119 CN2018081119W WO2019062055A1 WO 2019062055 A1 WO2019062055 A1 WO 2019062055A1 CN 2018081119 W CN2018081119 W CN 2018081119W WO 2019062055 A1 WO2019062055 A1 WO 2019062055A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
lasers
light
row
wavelength
Prior art date
Application number
PCT/CN2018/081119
Other languages
English (en)
French (fr)
Inventor
田有良
贾昌明
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710879671.3A external-priority patent/CN109560455A/zh
Priority claimed from CN201710879672.8A external-priority patent/CN109560452A/zh
Priority claimed from CN201710879799.XA external-priority patent/CN109560461A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2019062055A1 publication Critical patent/WO2019062055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • H01S5/405Two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present disclosure relates to the field of laser display technologies, and in particular, to a laser array, a laser light source, and a laser projection device.
  • lasers include solid-state lasers, gas lasers, liquid lasers, and semiconductor lasers.
  • Semiconductor lasers also known as semiconductor diodes, have the advantages of small size, high efficiency, and long life, and are therefore commonly used in optical communication, information storage and processing, laser printing, and the like.
  • Some embodiments of the present disclosure provide a laser array including at least one row of lasers, the at least one row of lasers including adjacent first and second lasers;
  • the first laser emitted by the first laser and the second laser emitted by the second laser are both in a first color, and the wavelength of the first laser is smaller than the wavelength of the second laser.
  • Some embodiments of the present disclosure provide a laser light source, including:
  • the laser array includes at least one row of lasers, wherein the at least one row of lasers includes adjacent first lasers and second lasers, and the first laser emitted by the first laser and the second laser emitted by the second laser are both first a color, and a wavelength of the first laser light is smaller than a wavelength of the second laser light;
  • At least one collimating mirror configured to collimate a laser exiting the laser array
  • At least one converging mirror set configured to align with a straight laser.
  • Some embodiments of the present disclosure provide a laser projection apparatus, including:
  • An imaging element configured to receive laser light emitted by the laser light source and generate a projection light beam according to the received video signal
  • a projection lens configured to project the projection beam onto a display surface to display an image
  • the laser light source comprises:
  • the laser array includes at least one row of lasers, wherein the at least one row of lasers includes adjacent first lasers and second lasers, and the first laser emitted by the first laser and the second laser emitted by the second laser are both first a color, and a wavelength of the first laser light is smaller than a wavelength of the second laser light;
  • At least one collimating mirror configured to collimate a laser exiting the laser array
  • At least one converging mirror set configured to align with a straight laser.
  • FIG. 1 is a schematic diagram of a laser array according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of still another laser array according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram showing a spectral width of a laser emitted by a laser according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of a monochromatic illumination laser array provided in some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a two-color illuminating laser array according to some embodiments of the present disclosure
  • FIG. 6 is a schematic diagram of still another two-color illuminating laser array according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of still another two-color illuminating laser array according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of still another two-color illuminating laser array according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a three-color illuminating laser array according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of still another three-color illuminating laser array according to some embodiments of the present disclosure.
  • FIG. 11 is a structural diagram of a packaging method of a laser array
  • FIG. 12 is a schematic structural diagram of a laser array according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another laser array according to some embodiments of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another laser array according to some embodiments of the present disclosure.
  • 15 is a cross-sectional view of a laser array according to some embodiments of the present disclosure.
  • 16 is a schematic structural diagram of still another laser array according to some embodiments of the present disclosure.
  • FIG. 17 is a schematic structural diagram of still another laser array according to some embodiments of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a laser light source according to some embodiments of the present disclosure.
  • FIG. 19 is a schematic diagram of an arrangement manner of a collimating lens group according to some embodiments of the present disclosure.
  • FIG. 20 is a schematic diagram of another arrangement of collimating mirror groups according to some embodiments of the present disclosure.
  • FIG. 21 is a schematic structural diagram of still another laser light source according to some embodiments of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a laser projection apparatus according to some embodiments of the present disclosure.
  • speckle means that when the coherent light source illuminates a rough object, the scattered light has a constant phase due to the same wavelength, thereby causing interference in space. Some parts of the space interfere with the constructive phase, and some parts undergo interference cancellation. Eventually, there are granular bright and dark spots on the display end, resulting in a decrease in the quality of the projected image.
  • a rotating diffusing sheet or a vibrating diffusing sheet is used in the laser transmitting optical path, or a spatial phase of the laser is increased by providing a diffusing member to destroy the phase constant.
  • the interference condition is used to attenuate the speckle effect.
  • Still other methods are to weaken the speckle effect by vibrating the fiber, vibrating the screen, and the like.
  • all of the above methods can only reduce the spatial coherence of the laser, and then average the time, and the laser itself has an ultra-high temporal coherence.
  • the speckle reduction measures for the laser space coherence are limited, To a certain extent, it restricts the solution of the speckle problem of laser display.
  • some embodiments of the present disclosure provide a laser array.
  • the laser array includes at least one row of lasers, and the at least one row of lasers includes adjacent first lasers 11 and second lasers 12.
  • the first laser emitted by the first laser 11 and the second laser emitted by the second laser 12 are both in a first color.
  • the wavelength of the first laser is smaller than the wavelength of the second laser.
  • the wavelength of the laser light mentioned in the embodiment of the present disclosure and compared with another wavelength is the dominant wavelength of the laser light.
  • the laser described above is selected from the group consisting of a solid state laser, a gas laser, a liquid laser, and a semiconductor laser. In other embodiments, the laser described above is applied to other lasers in the light source.
  • the adjacent two lasers By setting the adjacent two lasers to have different emission wavelengths, the temporal coherence of the laser light emitted by two adjacent lasers can be reduced. Further, by setting the adjacent two lasers to have different emission wavelengths, it is possible to space the two lasers having the same emission wavelength, thereby reducing the spatial coherence of the laser light emitted from the two lasers. In summary, the speckle effect of the laser beam can be reduced, and the quality of the display picture can be improved.
  • a row refers to a row in the form of a straight line, and in other embodiments, a row refers to a row of disjoint curves, such as an S-shaped curve or a circular curve.
  • the laser array comprises at least one group, at least one group comprising lasers positioned adjacent to each other, and lasers exiting the same color and emitting lasers of the same color in the same group have different wavelengths of laser light.
  • the laser array comprises at least two adjacent groups of positions, and in the two groups adjacent in position, the lasers exiting the laser of the same color and having different wavelengths have different wavelengths of laser light.
  • the laser array includes a row of lasers.
  • the row of lasers includes adjacent first lasers 11 and second lasers 12.
  • the laser array includes at least two rows of lasers.
  • the at least two rows of lasers include adjacent first lasers 11 and second lasers 12.
  • the first laser 11 and the second laser 12 are in the same row.
  • the first laser 11 and the second laser 12 are in the same column.
  • the first laser 11 and the second laser 12 are included in a row of lasers in at least one row of lasers.
  • the row of lasers includes at least one first laser 11 and at least one second laser 12.
  • the at least one first laser 11 and the at least one second laser 12 are spaced apart, that is, the first laser 11 and the second laser 12 are respectively disposed at different positions adjacent to each other, thereby realizing Different lasers are provided between the same lasers.
  • the row of lasers includes a plurality of first lasers 11 and a plurality of second lasers 12, at least a portion of the plurality of first lasers 11 and at least a portion of the plurality of second lasers 12 being spaced apart arrangement.
  • the first color comprises one of blue, red or green. In other embodiments, the first color is another color that enables the laser to be applied to the laser source. As shown in FIG. 4, the color of the laser light emitted from the first laser 11 and the second laser 12 is blue.
  • the wavelength of the first laser is at least 1 mm less than the wavelength of the second laser. Since the spectral width of the laser emitted by the semiconductor laser is about 2 nm (as shown in FIG. 3), the center spectral spacing of the adjacent two lasers (ie, the first laser and the second laser) is designed to be 1 nm or more, and the phase can be lowered. The temporal coherence of the adjacent two lasers can further reduce the speckle effect of the laser beam. In other embodiments, the wavelength of the first laser is at least 2 mm less than the wavelength of the second laser. Thereby, the temporal coherence of the adjacent two laser beams can be further reduced, thereby further reducing the speckle effect of the laser beam.
  • the row of lasers further includes at least one third laser 13.
  • the third laser light emitted by the third laser 13 is the same color as the first laser light and the second laser light, and the wavelength of the third laser light is greater than the wavelength of the second laser light.
  • At least one first laser 11, at least one second laser 12, and at least one third laser 13 are spaced apart.
  • the first laser 11, the second laser 12, and the third laser 13 may be spaced apart such that the first laser 11, the second laser 12, and the third laser 13 are each disposed at a different position from the laser. As shown in FIG. 2, two first lasers 11, two second lasers 12 and two third lasers 13 are located in the same row, wherein a first laser 11 is adjacent to a second laser 12, the second laser 12 is adjacent to the first third laser 13, and the third laser 13 is adjacent to the other first laser 11.
  • the third laser has a wavelength that is at least 1 nm greater than the wavelength of the second laser.
  • the wavelengths of the adjacent two laser beams can be made different, thereby reducing the temporal coherence of the adjacent two laser beams, thereby reducing the speckle effect of the laser beam.
  • the third laser has a wavelength that is at least 2 nm greater than the wavelength of the second laser.
  • the width of the laser spectrum of the same color output by the different wavelength lasers is no more than half of the color spectrum such that the different colors of the final output can form a higher color gamut.
  • the at least one row of lasers further includes adjacent fourth lasers 14 and fifth lasers 15.
  • the fourth laser emitted by the fourth laser 14 and the fifth laser emitted by the fifth laser 15 are both in a second color, and the second color is different from the first color.
  • the wavelength of the fourth laser is smaller than the wavelength of the fifth laser.
  • the laser array includes a row of lasers.
  • the laser row includes adjacent first lasers 11 and second lasers 12, and adjacent fourth lasers 14 and fifth lasers 15.
  • the laser array includes at least two rows of lasers including adjacent first lasers 11 and second lasers, and adjacent fourth lasers 14 and fifth lasers 15.
  • the laser array includes four rows of lasers, the first laser 11 and the second laser 12 are disposed in the upper two rows, and the fourth laser 14 and the fifth laser 15 are disposed in the lower two rows.
  • the first laser 11 is adjacent to the second laser 12
  • the second laser 12 is adjacent to the fourth laser 14, and the fourth laser 14 and the fifth laser 15 are Adjacent.
  • the first laser 11 and the second laser 12 are spaced apart, or the fourth laser 14 is spaced apart from the fifth laser 15.
  • the first laser 11 is adjacent to the fourth laser 14
  • the fourth laser 14 is adjacent to the second laser 12
  • the second laser 12 and the fifth laser 15 are Adjacent.
  • the first laser 11 and the fifth laser 15 are spaced apart, or the second laser 12 is spaced apart from the fourth laser 14.
  • the present disclosure does not limit the arrangement of the first laser 11, the second laser 12, the fourth laser 14, and the fifth laser 15.
  • the second color comprises one of blue, red or green and is different from the first color.
  • the first color is blue, that is, the first laser 11 and the second laser 12 emit blue light
  • the second color is red, that is, the fourth laser 14 and The fifth laser 15 emits a red laser light.
  • the laser array emits two-color light.
  • the second color is another color that is capable of applying the laser to the laser source that is different from the first color.
  • the wavelength of the fourth laser is at least 1 mm less than the wavelength of the fifth laser. Since the spectral width of the laser emitted by the semiconductor laser is about 2 nm (as shown in FIG. 3), the center spectral pitch of the adjacent two lasers (ie, the fourth laser and the fifth laser) is designed to be 1 nm or more, and the phase can be lowered. The temporal coherence of the adjacent two lasers can further reduce the speckle effect of the laser beam. In other embodiments, the wavelength of the fourth laser is at least 2 mm less than the wavelength of the fifth laser. Thereby, the temporal coherence of the adjacent two laser beams can be further reduced, thereby further reducing the speckle effect of the laser beam.
  • the fourth laser 14 and the fifth laser 15 are located in a row of lasers of the at least one row of lasers, the row of lasers including at least one fourth laser 14 and at least one fifth laser 15 .
  • the at least one fourth laser 14 and the at least one fifth laser 15 are spaced apart, that is, the fourth laser 14 and the fifth laser 15 are respectively disposed at different positions adjacent to each other, thereby achieving Different lasers are provided between the same lasers.
  • the row of lasers includes a plurality of fourth lasers 14 and a plurality of fifth lasers 15, at least a portion of the plurality of fourth lasers 14 and at least a portion of the plurality of fifth lasers 15 being spaced apart arrangement.
  • the row of lasers further includes at least one sixth laser 16.
  • the sixth laser emitted by the sixth laser 16 is a second color, and the wavelength of the sixth laser is greater than the wavelength of the fifth laser.
  • At least one sixth laser 16 is spaced apart from at least one fourth laser 14 and at least one fifth laser 15.
  • the at least one sixth laser 16 is spaced apart from the at least one fourth laser 14 and the at least one fifth laser 15 may be arranged such that the sixth laser 16, the fourth laser, and the fifth laser 15 are disposed at different positions adjacent to each other. .
  • two fourth lasers 14, two fifth lasers 15, and two sixth lasers 16 are located in the same row, one of the fourth lasers 14 is adjacent to the fifth laser 15, and the fifth laser 15 is adjacent to the sixth laser 16, and the sixth laser 16 is adjacent to the other fourth laser 14.
  • the sixth laser has a wavelength that is at least 1 nm greater than the wavelength of the fifth laser.
  • the wavelengths of the adjacent two laser beams can be made different, thereby reducing the temporal coherence of the adjacent two laser beams, thereby reducing the speckle effect of the laser beam.
  • the sixth laser has a wavelength that is at least 2 nm greater than the wavelength of the fifth laser.
  • the sixth laser 16 is adjacent to the first laser 11, the second laser 12, the third laser 13, the fourth laser 14, or the fifth laser 15.
  • the at least one row of lasers further includes adjacent seventh lasers 17 and eighth lasers 18.
  • the seventh laser emitted by the seventh laser 17 and the eighth laser emitted by the eighth laser 18 are both in a third color, and the third color is different from the first color and the second color.
  • the wavelength of the seventh laser is smaller than the wavelength of the eighth laser.
  • at least one row of lasers includes at least one first laser 11, at least one second laser 12, at least one fourth laser 14, at least one fifth laser 15, at least one seventh laser 17, and at least one eighth laser 18.
  • the laser array includes a row of lasers.
  • the laser row includes adjacent first lasers 11 and second lasers 12, adjacent fourth lasers 14 and fifth lasers 15, and adjacent seventh lasers 17 and eighth lasers 18.
  • the laser array includes at least two rows of lasers.
  • the at least two rows of lasers include adjacent first lasers 11 and second lasers 12, adjacent fourth lasers 14 and fifth lasers 15, and adjacent seventh lasers 17 and eighth lasers 18.
  • the laser array includes four rows of lasers, and the first laser 11 and the second laser 12 are disposed in the upper two rows and are spaced apart.
  • the fourth laser 14 and the fifth laser 15 are disposed in the third row and are arranged at intervals.
  • the seventh laser 17 and the eighth laser 18 are disposed in the fourth row and are arranged at intervals.
  • the present disclosure does not limit the arrangement of the first laser 11, the second laser 12, the fourth laser 14, the fifth laser 15, the seventh laser 17, and the eighth laser 18.
  • the third color comprises one of blue, red or green and is different from the first color and the second color.
  • the first color is blue, that is, the first laser 11 and the second laser 12 emit blue laser light
  • the second color is red, that is, the fourth laser 14 and the fifth laser. 15 red laser light
  • the third color is green, that is, the seventh laser 17 and the eighth laser 18 emit green laser light.
  • the laser array emits three colors of light.
  • the third color is another color that is capable of applying the laser to the laser source that is different from the first color and the second color.
  • the wavelength of the seventh laser is at least 1 mm less than the wavelength of the eighth laser. Since the spectral width of the laser emitted by the semiconductor laser is about 2 nm (as shown in FIG. 3), the center spectral pitch of the adjacent two lasers (ie, the seventh laser and the eighth laser) is designed to be 1 nm or more, and the phase can be lowered. The temporal coherence of the adjacent two lasers can further reduce the speckle effect of the laser beam. In other embodiments, the wavelength of the seventh laser is at least 2 mm less than the wavelength of the eighth laser. Thereby, the temporal coherence of the adjacent two laser beams can be further reduced, thereby further reducing the speckle effect of the laser beam.
  • the seventh laser 17 and the eighth laser 18 are located in a row of lasers of the at least one row of lasers, the row of lasers including at least one seventh laser 17 and at least one eighth laser 18 .
  • at least one of the seventh lasers 17 and the at least one eighth laser 18 are spaced apart, that is, the seventh laser 17 and the eighth laser 18 are each disposed at a different position from the laser, thereby achieving Different lasers are provided between the same lasers.
  • the row of lasers includes a plurality of seventh lasers 17 and a plurality of eighth lasers 18, at least a portion of the plurality of seventh lasers 17 and at least a portion of the plurality of eighth lasers 18 being spaced apart arrangement.
  • the row of lasers further includes at least one ninth laser 19.
  • the ninth laser emitted by the ninth laser is a third color, and the wavelength of the ninth laser is greater than the wavelength of the eighth laser.
  • At least one ninth laser 19 is spaced apart from at least one of the seventh laser 17 and the at least one eighth laser 18.
  • the at least one ninth laser 19 is spaced apart from the at least one seventh laser 17 and the at least one eighth laser 18, and the ninth laser 19 and the seventh laser 17 and the eighth laser 18 are respectively disposed at different positions different from each other.
  • Laser For example, as shown in FIG. 9, two seventh lasers 17, two eighth lasers 18, and two ninth lasers 19 are located in the same row, wherein a seventh laser 17 is adjacent to the eighth laser 18, and the eighth laser 18 is adjacent to the ninth laser 19, and the ninth laser 19 is adjacent to the other of the seventh lasers 17.
  • the wavelength of the ninth laser is at least 1 nm greater than the wavelength of the eighth laser.
  • the wavelengths of the adjacent two laser beams can be made different, thereby reducing the temporal coherence of the adjacent two laser beams, thereby reducing the speckle effect of the laser beam.
  • the ninth laser has a wavelength that is at least 2 nm greater than the wavelength of the eighth laser.
  • the ninth laser 16 is associated with the first laser 11, the second laser 12, the third laser 13, the fourth laser 14, the fifth laser 15, the sixth laser, the seventh laser 17, or the eighth laser 18. adjacent.
  • the at least one row of lasers comprises at least two rows of lasers, the spacing between adjacent two rows of lasers being between 3 mm and 10 mm.
  • the at least one row of lasers includes six rows of lasers, and the interval between adjacent two rows of lasers is from 3 mm to 10 mm. This arrangement avoids the coherence of the laser beam generated between the adjacent two rows of lasers and ensures that the size of the laser array is small.
  • the laser in the laser array is a semiconductor laser and the semiconductor laser includes a light emitting chip.
  • the light emitting chip emits laser light.
  • the laser array of the embodiment of the present disclosure will be further described by taking a laser as a semiconductor laser as an example.
  • Semiconductor lasers also known as semiconductor diodes, have the advantages of small size, high efficiency, and long life. Semiconductor lasers can be adjusted by simple injection of current, and are widely used in optical communications, information storage and processing, military applications, medical applications, laser printing, measurement, and survey radar.
  • a semiconductor laser is packaged using a TO socket.
  • TO Transistor Outline
  • the earliest definition of TO (Transistor Outline) is the transistor case, which has gradually evolved into a concept of package form, namely the fully enclosed package technology, which is the packaging method of commonly used microelectronic devices.
  • the TO header used by a semiconductor laser usually consists of a tube case, a tongue, and a pin.
  • the tongue is usually placed on the top of the tube, the light-emitting chip is bonded to the tongue, and the cap is sealed on the tongue.
  • This package can guide the heat in the laser chip to the TO socket through the TO tongue, and then the TO socket to the special heat sink.
  • Fig. 11 shows a TO laser array in the related art.
  • the TO laser array includes a TO laser and a bracket.
  • the bracket 01 is provided with a plurality of mounting slots 011 for mounting a TO laser, and a through hole is formed in the bottom surface of the mounting slot 011.
  • the TO laser 02 includes a housing 021 and a pin 022 through which the pin 022 can pass.
  • the tin ring 03 is placed between the mounting groove 011 and the TO laser 02, and the tin ring 03 is melted by heating, and the TO laser 02 and the bottom surface of the mounting groove 011 are welded and fixed. In this way, the heat of the TO socket can be further exported to the bracket 01 for heat dissipation, and can serve to fix the TO.
  • the laser array includes a metal substrate 201, a reflective bump 202, and at least one laser, and the at least one laser includes at least six light emitting chips 203.
  • the reflective bump 202 and the at least six light emitting chips 203 are fixedly connected to the metal substrate 201.
  • the spacing between adjacent two light-emitting chips 203 is set to be between 1 mm and 10 mm.
  • Each of the light emitting chips 203 is configured to emit light toward the reflective protrusions 202, and the reflective protrusions 202 are configured to reflect the light beams emitted from each of the light emitting chips 203, and to cause the reflected light beams to face away from the metal substrate 201.
  • the embodiment of the present disclosure describes the laser array by taking a semiconductor laser including a light-emitting chip as an example, the laser having the light-emitting device included in the laser array is not limited to the semiconductor laser, and the light-emitting device is not limited to the light-emitting chip.
  • the laser included in the laser array is a laser different from the semiconductor laser having the light-emitting chip 103 or other light-emitting device having the same function as the light-emitting chip.
  • the number of light-emitting chips is not particularly limited and may be increased or decreased depending on the demand for luminance.
  • the manner of fixing the light-emitting chip 203 to the metal substrate 201 is not particularly limited as long as the connection mode is ensured that the heat transfer is not greatly affected.
  • the light emitting chip 203 and the metal substrate 201 are fixed by soldering.
  • the light-emitting chip 203 and the metal substrate 201 are fixed by means of a thermally conductive adhesive bond.
  • the metal substrate is a copper substrate having a thickness in the range of 1 mm to 3 mm.
  • the light-emitting chip 203 By directly connecting the light-emitting chip 203 to the metal substrate 201 having high-efficiency heat-dissipating performance, and setting the spacing between the adjacent two light-emitting chips 203 to 1 mm to 10 mm, the light-emitting chip can be generated on the basis of ensuring the brightness of the laser light.
  • the heat can be quickly dissipated. It also simplifies the laser array production process, thereby reducing production costs.
  • the reflective bumps 202 in the laser array have various reflection modes, and at the same time, the arrangement of the light-emitting chips differs depending on the manner in which the reflective bumps 202 are reflected.
  • the reflective bump 202 has two reflective surfaces, and the light emitting chip 203 is disposed on both sides of the reflective bump 202 corresponding to the two reflective surfaces, respectively.
  • the reflecting protrusion 202 has, for example, two opposite reflecting surfaces, and the light-emitting chips 203 on both sides emit a light beam parallel to the metal substrate 201 to the inclined reflecting surface, and the light beam is reflected by the inclined reflecting surface and is changed in the outgoing direction.
  • the oblique reflecting surface causes the light beam to exit in a direction away from and perpendicular to the metal substrate 201.
  • the reflective bump 202 has only one reflective surface, and the light emitting chip 203 is disposed on a side of the reflective bump 202 corresponding to the reflective surface.
  • the reflective projection 202 has a sloped reflective surface.
  • the light emitting chip 203 emits, for example, a light beam parallel to the metal substrate 201 to the inclined reflecting surface, which is reflected by the inclined reflecting surface and is changed in the outgoing direction.
  • the oblique reflecting surface causes the light beam to exit in a direction away from and perpendicular to the metal substrate 201.
  • FIG. 13 shows that the reflective bump 202 has only one reflective surface
  • the light emitting chip 203 is disposed on a side of the reflective bump 202 corresponding to the reflective surface.
  • the reflective projection 202 has a sloped reflective surface.
  • the light emitting chip 203 emits, for example, a light beam parallel to the metal
  • the reflective bump 202 includes four reflective surfaces, and the light emitting chip 203 is disposed on four sides of the reflective bump 202 corresponding to the respective four reflective surfaces.
  • the reflective protrusion 202 has four oblique reflecting surfaces.
  • the four-sided light-emitting chip 203 emits, for example, a light beam parallel to the metal substrate 201 to the inclined reflecting surface, which is reflected by the inclined reflecting surface and is changed in the outgoing direction.
  • the oblique reflecting surface causes the light beam to exit in a direction away from and perpendicular to the metal substrate 201.
  • the laser array further includes a heat sink 204, and the light emitting chip 203 is fixedly coupled to the metal substrate 201 by a heat sink 204.
  • the light-emitting chip 203 is first fixedly connected to one side of the heat sink 204 by soldering or thermal paste bonding, and the other side of the heat sink 204 is fixedly connected to the metal substrate 201 by soldering or thermal paste bonding.
  • the light emitting direction of the light emitting chip 203 is aligned with the reflecting surface of the reflective bump 202.
  • the heat sink material is, for example, aluminum nitride (AlN) or silicon carbide (SiC) or the like.
  • the light-emitting chip Since the light-emitting chip generates a large amount of heat in the working state, the light-emitting chip itself may be thermally expanded. Therefore, if the light-emitting chip is directly connected to the metal substrate, the light-emitting chip and the metal substrate may be caused by frequent expansion and contraction of the light-emitting chip. The connection is loose, and even the case where the light-emitting chip falls off occurs.
  • the light-emitting chip is fixedly connected to the metal substrate through the heat sink, and the expansion coefficient of the heat sink when heated is close to the expansion coefficient of the light-emitting chip, so that the fixed connection between the light-emitting chip and the metal substrate is more stable and does not easily become loose.
  • the light emitting chips are connected in series by electrical connection.
  • each of the light-emitting chips is connected with a gold wire, which is finally connected to a pin (Pin) to energize each of the light-emitting chips.
  • the gold wire is fixed to the metal substrate by gluing.
  • the laser array further includes a light transmissive protective layer, and the light transmissive portion of the transparent protective layer is disposed on the light emitting side of the light emitting chip 203 and covers the light emitting chip 203.
  • the edge portion of the light-transmissive protective layer is fixed to the metal substrate by soldering or gluing, for example, to form a sealed space, and the above-mentioned light-emitting chips are all included in the sealed space to protect the light-emitting chip.
  • the sealed space is filled with nitrogen gas to further protect the light emitting chip.
  • the relative positional relationship between the metal substrate, the reflective bumps, and the laser is not limited by the wavelength of the laser.
  • the laser array includes a metal substrate 301, at least one metal strip 302 fixed on the metal substrate 301, and at least one light emitting chip 303.
  • the light emitting chip 303 is fixedly connected to the at least one metal strip 302 to emit light.
  • the light outgoing direction of the chip 303 faces away from the metal substrate 301.
  • the light emitting chip 303 is fixed to one side of the metal strip 302, and the other side of the metal strip 302 opposite to the surface is fixed to the metal substrate 301.
  • At least one light emitting chip 303 includes at least six light emitting chips 303
  • at least one metal strip 302 includes at least two metal strips 302. At least three light emitting chips 303 are fixedly connected to each of the metal strips 302, and a distance between two adjacent ones of the at least three light emitting chips 303 is 1 mm to 10 mm.
  • the metal strip 302 to which the light emitting chip 303 is fixed is fixedly attached to the metal substrate 301.
  • the light outgoing direction of each of the light emitting chips 303 faces away from the metal substrate 301.
  • the at least two metal strips 302 can be tightly fixed.
  • the heat generated by the light-emitting chip can be quickly transmitted and discharged, and the laser array production process is simplified, and the production cost is reduced.
  • the number of the light-emitting chips 303 and the number of the metal strips 302 are not particularly limited and may be increased or decreased depending on the demand for the light-emitting luminance.
  • the at least one metal strip 302 includes four metal strips 302, and each of the metal strips 302 is fixedly connected to five light emitting chips 303.
  • the fixed connection manner of the light-emitting chip 303 and the metal strip 302 and the fixed connection manner of the metal strip 302 and the metal substrate 301 are not particularly limited as long as the connection mode is ensured that the heat conduction is not greatly affected.
  • the light emitting chip 303 and the metal strip 302 are fixedly attached by soldering.
  • the light-emitting chip 303 and the metal strip 302 are fixedly attached by means of a thermally conductive adhesive bond.
  • the metal strip 302 is a copper strip.
  • the shape of the copper strip is not limited as long as it can be firmly fixed to the metal substrate, and the light-emitting chip can be firmly fixed.
  • the copper strip is a rectangular copper strip.
  • the metal substrate 301 is a copper substrate.
  • the thickness of the copper substrate is in the range of 1 mm to 3 mm.
  • the arrangement of the copper strips on the copper substrate is parallel to each other with the spacing between adjacent copper strips ranging from 3 mm to 10 mm.
  • the light emitting chip 303 is fixedly coupled to the metal strip 302 by a heat sink 304.
  • the light-emitting chip 303 is first fixedly connected to one side of the heat sink 304 by soldering or thermal paste bonding, and the other side of the heat sink 304 is fixedly connected to the metal strip 302 by soldering or thermal adhesive bonding.
  • the fixed connection manner of the light-emitting chip 303 and the heat sink 304 and the fixed connection manner of the heat sink 304 and the metal strip 302 are not particularly limited as long as the connection mode is ensured that the heat conduction is not greatly affected.
  • the connection is fixed by soldering.
  • the connection is fixed by means of a thermally conductive adhesive bond.
  • the material of the heat sink is, for example, aluminum nitride (AlN) or silicon carbide (SiC). Since the light-emitting chip generates a large amount of heat in the working state, the light-emitting chip itself may be thermally expanded.
  • the light-emitting chip may be caused by frequent expansion and contraction of the light-emitting chip.
  • the connection is loose, and even the case where the light-emitting chip falls off occurs.
  • the light-emitting chip is fixedly connected to the metal strip through the heat sink, and the expansion coefficient of the heat sink when heated is close to the expansion coefficient of the light-emitting chip, so that the fixed connection between the light-emitting chip and the metal strip is more stable and does not easily become loose.
  • each of the light emitting chips 303 are connected in series by electrical connection.
  • each of the light-emitting chips 303 is connected with a gold wire which is finally connected to a pin (Pin) to effect energization of each of the light-emitting chips.
  • the gold wire is fixed to the metal substrate by gluing.
  • the laser array further includes a light transmissive protective layer, and the light transmissive portion of the light transmissive protective layer is disposed on the light emitting side of the light emitting chip and covers the light emitting chip.
  • the edge portion of the light-transmitting protective layer is fixed to the metal substrate, for example, by soldering or gluing, to form a sealed space.
  • the above-mentioned light-emitting chips are all included in the sealed space to protect the light-emitting chip.
  • the sealed space is filled with nitrogen gas to further protect the light emitting chip.
  • the relative positional relationship between the metal substrate, the metal strip, and the laser is not limited by the wavelength of the laser.
  • the laser light source includes the laser array 4, the at least one collimating mirror group 5, and the at least one converging mirror group 6 described in the above embodiments.
  • the at least one collimating mirror group 5 is configured to collimate the laser light emitted from the laser array 4 and exit to the converging mirror group 6.
  • the at least one converging mirror group 6 is configured to align with a straight laser beam for convergence.
  • the arrangement of the at least one collimating mirror group 5 is various.
  • the number of the at least one collimating lens group 5 coincides with the number of the light emitting chips 203, and the light beam emitted from the light emitting chip 203 is collimated.
  • each collimating mirror group 5 corresponds to one light emitting chip 203.
  • the collimating lens group 5 is disposed on the light emitting side of the light emitting chip 203 (ie, between the light emitting chip 203 and the reflective protrusion 202). In other examples, the collimating lens group 5 is disposed on the light exiting side of the reflective protrusion 202.
  • the collimating mirror group 5 is integrally formed as a whole so as to cover the light emitting side of the light emitting chip 203 or the light emitting side of the reflecting protrusion 202. In other examples, each of the above-described collimating mirror groups 5 is separately provided separately, covering the light-emitting side of the light-emitting chip 203 or the light-emitting side of the reflective protrusion 202 independently.
  • the number of collimating lens groups 5 is the same as the number of the light emitting chips 303, and each of the collimating lens groups 5 corresponds to one light emitting chip 303 and is disposed on the light emitting chip. On the side, the light beam emitted from the light-emitting chip 303 is collimated.
  • the collimating mirror group 5 described above is integrally formed into a single body and disposed on the light emitting side of the light emitting chip.
  • each of the collimating mirror groups 401 described above is separately provided separately and disposed independently on the light exiting side of the light emitting chip 5. This case corresponds, for example, to the case where the laser array comprises a metal strip 302.
  • the laser source further includes a diffusing member 7.
  • the diffusing member 7 is provided on the outgoing light path of the condensing mirror group 6, and diffuses the laser light emitted from the condensing mirror group 6, and the diffusing member 7 is driven to vibrate to further increase the diffusion effect.
  • the laser beam emitted by the laser array 4 passes through the time averaging of the motion diffusion component, and more random speckle patterns can be generated in the viewing time of the human eye, and more superposition of the speckle pattern can obtain better dissipating effect. .
  • the laser projection apparatus includes a laser light source 1000, an imaging element 2000, and a projection lens 3000.
  • the imaging element 2000 is configured to receive laser light emitted by the laser light source 1000 and generate a projected light beam based on the received video signal.
  • Projection lens 3000 is configured to project a projected beam onto display surface 4000 to display an image.
  • the laser source 1000 comprises a laser array 4, at least one collimating mirror group 5 and at least one converging mirror group 6.
  • the laser array 4 includes at least one row of lasers, the at least one row of lasers including adjacent first and second lasers.
  • the first laser emitted by the first laser and the second laser emitted by the second laser are both in a first color, and the wavelength of the first laser is smaller than the wavelength of the second laser.
  • the at least one collimating mirror group 6 is configured to collimate the laser light exiting the laser array 4.
  • the at least one converging mirror is configured to align with a straight laser.
  • the at least one collimating mirror group 5 and the at least one converging mirror group 6, please refer to the above related description, and details are not described herein again.
  • the imaging element 2000 may be a DMD (digital micromirror device) component or an LCOS (Liquid Crystal on Silicon) component.
  • DMD digital micromirror device
  • LCOS Liquid Crystal on Silicon

Abstract

一种激光器阵列,包括至少一排激光器,所述至少一排激光器包括相邻的第一激光器(11)和第二激光器(12),第一激光器(11)发出的第一激光与第二激光器(12)发出的第二激光均为第一颜色,所述第一激光的波长小于所述第二激光的波长。

Description

激光器阵列、激光光源及激光投影设备
本申请要求于2017年9月26日提交中国专利局、申请号为201710879672.8、发明名称为“一种激光器阵列及激光光源”、2017年9月26日提交中国专利局、申请号为201710879671.3、发明名称为“一种激光器阵列”以及2017年9月26日提交中国专利局、申请号为201710879799.X、发明名称为“一种激光器阵列”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及激光显示技术领域,尤其涉及一种激光器阵列、激光光源及激光投影设备。
背景技术
通常,激光器包括固体激光器、气体激光器、液体激光器和半导体激光器等。半导体激光器又称为半导体二极管(Laser Diode),其具有体积小、效率高且寿命长的优点,因而通常应用于光通信、信息存储与处理、激光打印等中。
发明内容
本公开的一些实施例提供了一种激光器阵列,包括至少一排激光器,所述至少一排激光器包括相邻的第一激光器和第二激光器;
第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,所述第一激光的波长小于所述第二激光的波长。
本公开的一些实施例提供了一种一种激光光源,包括:
激光器阵列,包括至少一排激光器,其中,所述至少一排激光器包括相邻的第一激光器和第二激光器,第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,且所述第一激光的波长小于所述第二激光的波长;
至少一个准直镜组,配置为对激光器阵列出射的激光进行准直;以及
至少一个会聚镜组,配置为对准直后的激光进行会聚。
本公开一些实施例提供了一种激光投影设备,包括:
激光光源;
成像元件,配置为接收所述激光光源发出的激光,并根据接收的视频信号生成投影光束;
投影镜头,配置为将所述投影光束投影在显示面上,以显示图像,
其中,所述激光光源包括:
激光器阵列,包括至少一排激光器,其中,所述至少一排激光器包括相邻的第一激光器和第二激光器,第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,且所述第一激光的波长小于所述第二激光的波长;
至少一个准直镜组,配置为对激光器阵列出射的激光进行准直;以及
至少一个会聚镜组,配置为对准直后的激光进行会聚。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的一种激光器阵列的示意图;
图2为本公开一些实施例提供的再一种激光器阵列的示意图;
图3为本公开一些实施例提供的激光器所发出激光的谱宽示意图;
图4为本公开一些实施例中提供的一种单色发光的激光器阵列的示意图;
图5为本公开一些实施例提供的一种双色发光的激光器阵列的示意图;
图6为本公开一些实施例提供的再一种双色发光的激光器阵列的示意图;
图7为本公开一些实施例提供的又一种双色发光的激光器阵列的示意图;
图8为本公开一些实施例提供的又一种双色发光的激光器阵列的示意图;
图9为本公开一些实施例提供的一种三色发光的激光器阵列示意图;
图10为本公开一些实施例提供的再一种三色发光的激光器阵列的示意图;
图11为一种激光器阵列的封装方式的结构图;
图12为本公开一些实施例提供的一种激光器阵列的结构示意图;
图13为本公开一些实施例提供的再一种激光器阵列的结构示意图;
图14为本公开一些实施例提供的另一种激光器阵列的结构示意图;
图15为本公开一些实施例提供的激光器阵列的剖面示意图;
图16为本公开一些实施例提供的又一种激光器阵列的结构示意图;
图17为本公开一些实施例提供的又一种激光器阵列的结构示意图;
图18为本公开一些实施例提供的一种激光光源的架构示意图;
图19为本公开一些实施例提供的一种准直镜组的排布方式的示意图;
图20为本公开一些实施例提供的另一种准直镜组的排布方式的示意图;
图21为本公开一些实施例提供的再一种激光光源的架构示意 图;以及
图22为本公开一些实施例提供的激光投影设备的架构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应当理解的是,除非本文另有规定的具体含义,否则本文使用的术语和表达具有与其对应的相应研究和研究领域相一致的通常含义。相关术语例如第一和第二,以及相似的术语,可仅用于从一个实体或功能中区分另一个,而不必要求或暗示这样的实体或功能之间的任何实际的这种关系或顺序。术语“包括”、“包含”或其任何其它变体均旨在覆盖非排他性的包括,使得包括元素列表的过程、方法、物品或装置不仅包括那些元素,而是可以包括这种过程,方法,物品或装置中未明确列出的或固有的其它要素。
在没有进一步限制的情况下,以“一(a)”或“一(an)”开始的元素不排除在包括该要素的过程、方法、物品或装置中存在另外的相同要素。在本文的描述中,除非另有说明,“多个”的含义是两个或两个以上。
近年来激光器被逐渐作为光源应用于投影显示技术领域。但是由于激光的高相干性,因而可能产生散斑效应。所谓散斑是指相干光源在照射粗糙的物体时,散射光由于波长相同,相位恒定,从而在空间上产生干涉。空间中有的部分发生干涉相长,有的部分发生干涉相消,最终在显示端出现颗粒状的明暗相间的斑点,造成投影图像质量的下降。
相关技术中,为减小激光由于本身特性带来的散斑效应,在激光传输光路中使用旋转的散射片或振动的扩散片,或者是通过设置 扩散部件增加激光的空间相位,以破坏相位恒定的干涉条件进行减弱散斑效应。还有一些方法是通过振动光纤、振动屏幕等方法来削弱散斑效应。但是上述这些方法均只能降低激光的空间相干性,然后进行时间的平均,而激光本身具有超高的时间相干性,相关技术中只针对激光空间相干的消散斑措施有较大局限,很大程度上制约着激光显示的散斑问题的解决。
针对上述问题,本公开的一些实施例提供了一种激光器阵列。如图1所示,该激光器阵列包括至少一排激光器,所述至少一排激光器包括相邻的第一激光器11和第二激光器12。第一激光器11发出的第一激光与第二激光器12发出的第二激光均为第一颜色。第一激光的波长小于第二激光的波长。
需要说明的是,在本公开的实施例中所提及的、且与另一波长相比较的激光的波长均为激光的主波长。
在一些实施例中,上述激光器选自固体激光器、气体激光器、液体激光器和半导体激光器组成的群组。在另一些实施例中,上述激光器为应用于光源中的其他激光器。
通过将相邻的两个激光器设置为出射波长不同,可降低相邻两个激光器出射的激光的时间相干性。并且,通过将相邻的两个激光器设置为出射波长不同,能够将出射波长相同的两个激光器间隔开,从而可降低这两个激光器出射的激光的空间相干性。综上,可降低激光光束的散斑效应,提升显示画面质量。
在一些实施例中,一排是指直线形式的排,在另一些实施例中,一排是指呈不相交的曲线所构成的排,该曲线例如是S型的曲线或环形的曲线。
在一些实施例中,激光器阵列包含至少一个群组,至少一个群组中包含位置相邻的的激光器,同一群组中的位置相邻并出射同一种颜色激光的激光器出射的激光的波长不同。
在一些实施例中,激光器阵列包含至少两个位置相邻的群组,位置相邻的两个群组中,位置相邻并出射同一颜色激光的激光器出射 的激光的波长不同。
在一些实施例中,如图1所示,激光器阵列包括一排激光器。该一排激光器包括相邻的第一激光器11和第二激光器12。在另一些实施例中,如图4所示,激光器阵列包括至少两排激光器。该至少两排激光器包括相邻的第一激光器11和第二激光器12。在一些示例中,第一激光器11和第二激光器12位于同一行中。在另一些示例中,第一激光器11和第二激光器12位于同一列中。
在一些实施例中,如图4所示,第一激光器11和第二激光器12被包括在至少一排激光器中的一排激光器中。该一排激光器包括至少一个第一激光器11和至少一个第二激光器12。在一些示例中,至少一个第一激光器11和至少一个第二激光器12间隔排列,也即,第一激光器11和第二激光器12各自的相邻位置上均设置不同于自己的激光器,因而可实现相同的激光器之间设置有不同的激光器。在另一些示例中,该一排激光器包括多个第一激光器11和多个第二激光器12,所述多个第一激光器11中至少一部分和所述多个第二激光器12中的至少一部分间隔排列。
在一些实施例中,第一颜色包括蓝色、红色或绿色中的一个。在另一些实施例中,第一颜色为能够使激光器应用于激光光源的其他颜色。如图4所示,第一激光器11和第二激光器12发出的激光的颜色为蓝色。
在一些实施例中,第一激光的波长比第二激光的波长小至少1mm。由于半导体激光器所发出激光的谱宽为2nm左右(如图3所示),因此,将相邻两束激光(即第一激光和第二激光)的中心光谱间距设计在1nm以上,可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第一激光的波长比第二激光的波长小至少2mm。从而可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在本公开的一些实施例中,如图2所示,该排激光器还包括至少一个第三激光器13。第三激光器13发出的第三激光与第一激光和 第二激光的颜色相同,且第三激光的波长大于第二激光的波长。至少一个第一激光器11、至少一个第二激光器12和至少一个第三激光器13间隔排列。
第一激光器11、第二激光器12和第三激光器13间隔排列可以是,第一激光器11、第二激光器12和第三激光器13各自的相邻位置上均设置不同于自己的激光器。如图2所示,两个第一激光器11、两个第二激光器12和两个第三激光器13位于同一行中,其中一个第一激光器11与一个第二激光器12相邻,该第二激光器12与第一第三激光器13相邻,且该第三激光器13与另一个第一激光器11相邻。
在一些实施例中,第三激光的波长比第二激光的波长大至少1nm。如此设置,可使相邻两束激光的波长不同,从而可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第三激光的波长比第二激光的波长大至少2nm。如此设置,可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在一些实施例中,不同波长激光器输出的同一种颜色的激光频谱的宽度不大于该颜色频谱的一半,以使得最终输出的不同颜色可以形成较高的色域。
在本公开的一些实施例中,所述至少一排激光器还包括相邻的第四激光器14和第五激光器15。第四激光器14发出的第四激光与第五激光器15发出的第五激光均为第二颜色,第二颜色与第一颜色不同。第四激光的波长小于第五激光的波长。
在一些实施例中,激光器阵列包括一排激光器。该激光器排包括相邻的第一激光器11和第二激光器12,以及相邻的第四激光器14和第五激光器15。在另一些实施例中,激光器阵列包括至少两排激光器,该至少两排激光器包括相邻的第一激光器11和第二激光器,以及相邻的第四激光器14和第五激光器15。如图5所示,激光器阵列包括四排激光器,第一激光器11和第二激光器12设置在上部两行,第四激光器14和第五激光器15设置在下部两行。在一些实施例 中,如图6所示,在一行中,第一激光器11与第二激光器12相邻,第二激光器12与第四激光器14相邻,且第四激光器14与第五激光器15相邻。在一列中,第一激光器11与第二激光器12间隔排布,或者,第四激光器14与第五激光器15间隔排布。在一些实施例中,如图7所示,在一行中,第一激光器11与第四激光器14相邻,第四激光器14与第二激光器12相邻,且第二激光器12与第五激光器15相邻。在一列中,第一激光器11与第五激光器15间隔排布,或者,第二激光器12与第四激光器14间隔排布。本公开不限制第一激光器11、第二激光器12、第四激光器14和第五激光器15的排布方式。
在一些实施例中,第二颜色包括蓝色、红色或绿色中的一个且与第一颜色不同。例如,如图5-图7所示,第一颜色为蓝色,也即,第一激光器11和第二激光器12发蓝色的激光,第二颜色为红色,也即,第四激光器14和第五激光器15发红色的激光。此时激光器阵列出射双色光。在另一些实施例中,第二颜色为能够使激光器应用于激光光源的与第一颜色不同的其他颜色。
在一些实施例中,第四激光的波长比第五激光的波长小至少1mm。由于半导体激光器所发出激光的谱宽为2nm左右(如图3所示),因此,将相邻两束激光(即第四激光和第五激光)的中心光谱间距设计在1nm以上,可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第四激光的波长比第五激光的波长小至少2mm。从而可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在本公开的一些实施例中,第四激光器14和第五激光器15位于所述至少一排激光器中的一排激光器中,该一排激光器包括至少一个第四激光器14和至少一个第五激光器15。在一些示例中,至少一个第四激光器14和至少一个第五激光器15间隔排列,也即,第四激光器14和第五激光器15各自的相邻位置上均设置不同于自己的激光器,因而可实现相同的激光器之间设置有不同的激光器。在另一些示例中,该一排激光器包括多个第四激光器14和多个第五激光器 15,所述多个第四激光器14中至少一部分和所述多个第五激光器15中的至少一部分间隔排列。在本公开的一些实施例中,如图8所示,该排激光器还包括至少一个第六激光器16。该第六激光器16发出的第六激光为第二颜色,第六激光的波长大于第五激光的波长。至少一个第六激光器16与至少一个第四激光器14、至少一个第五激光器15间隔排列。
至少一个第六激光器16与至少一个第四激光器14、至少一个第五激光器15间隔排列可以是,第六激光器16、第四激光器和第五激光器15各自的相邻位置上设置不同于自己的激光器。例如,如图8所示,两个第四激光器14、两个第五激光器15和两个第六激光器16位于同一行中,其中一个第四激光器14与第五激光器15相邻,第五激光器15与第六激光器16相邻,且第六激光器16与另一个第四激光器14相邻。
在一些实施例中,第六激光的波长比第五激光的波长大至少1nm。如此设置,可使相邻两束激光的波长不同,从而可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第六激光的波长比第五激光的波长大至少2nm。如此设置,可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在一些实施例中,第六激光器16与第一激光器11、第二激光器12、第三激光器13、第四激光器14或第五激光器15相邻。
在本公开的一些实施例中,所述至少一排激光器还包括相邻的第七激光器17和第八激光器18。第七激光器17发出的第七激光与第八激光器18发出的第八激光均为第三颜色,第三颜色与第一颜色和第二颜色不同。第七激光的波长小于第八激光的波长。在一些示例中,至少一排激光器包括至少一个第一激光器11、至少一个第二激光器12、至少一个第四激光器14、至少一个第五激光器15、至少一个第七激光器17和至少一个第八激光器18。
在一些实施例中,激光器阵列包括一排激光器。例如,该激光 器排包括相邻的第一激光器11和第二激光器12、相邻的第四激光器14和第五激光器15、以及相邻的第七激光器17和第八激光器18。在另一些实施例中,激光器阵列包括至少两排激光器。例如,该至少两排激光器包括相邻的第一激光器11和第二激光器12、相邻的第四激光器14和第五激光器15、以及相邻的第七激光器17和第八激光器18。例如,如图9所示,激光器阵列包括四排激光器,第一激光器11和第二激光器12设置在上部两行,且间隔排列。第四激光器14和第五激光器15设置在第三行且间隔排列。第七激光器17和第八激光器18设置在第四行,且间隔排列。本公开不限制第一激光器11、第二激光器12、第四激光器14、第五激光器15、第七激光器17和第八激光器18的排布方式。
在一些实施例中,第三颜色包括蓝色、红色或绿色中的一个且与第一颜色和第二颜色不同。例如,如图9所示,第一颜色为蓝色,也即,第一激光器11和第二激光器12发蓝色的激光,第二颜色为红色,也即,第四激光器14和第五激光器15发红色的激光,第三颜色为绿色,也即,第七激光器17和第八激光器18发绿色的激光。此时,激光器阵列出射三色光。在另一些实施例中,第三颜色为能够使激光器应用于激光光源的与第一颜色和第二颜色不同的其他颜色。
在一些实施例中,第七激光的波长比第八激光的波长小至少1mm。由于半导体激光器所发出激光的谱宽为2nm左右(如图3所示),因此,将相邻两束激光(即第七激光和第八激光)的中心光谱间距设计在1nm以上,可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第七激光的波长比第八激光的波长小至少2mm。从而可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在本公开的一些实施例中,第七激光器17和第八激光器18位于所述至少一排激光器中的一排激光器中,该一排激光器包括至少一个第七激光器17和至少一个第八激光器18。在一些示例中,至少 一个第七激光器17和至少一个第八激光器18间隔排列,也即,第七激光器17和第八激光器18各自的相邻位置上均设置不同于自己的激光器,因而可实现相同的激光器之间设置有不同的激光器。在另一些示例中,该一排激光器包括多个第七激光器17和多个第八激光器18,所述多个第七激光器17中至少一部分和所述多个第八激光器18中的至少一部分间隔排列。在本公开的一些实施例中,如图10所示,该排激光器还包括至少一个第九激光器19。该第九激光器发出的第九激光为第三颜色,第九激光的波长大于第八激光的波长。至少一个第九激光器19与至少一个第七激光器17和至少一个第八激光器18间隔排列。
至少一个第九激光器19与至少一个第七激光器17和至少一个第八激光器18间隔排列可以是,第九激光器19与第七激光器17和第八激光器18各自的相邻位置上设置不同于自己的激光器。例如,如图9所示,两个第七激光器17、两个第八激光器18和两个第九激光器19位于同一行中,其中一个第七激光器17与第八激光器18相邻,第八激光器18与第九激光器19相邻,且第九激光器19与其中另一个第七激光器17相邻。
在一些实施例中,第九激光的波长比第八激光的波长大至少1nm。如此设置,可使相邻两束激光的波长不同,从而可降低相邻两束激光的时间相干性,进而可降低激光光束的散斑效应。在另一些实施例中,第九激光的波长比第八激光的波长大至少2nm。如此设置,可进一步降低相邻两束激光的时间相干性,进而可进一步降低激光光束的散斑效应。
在一些实施例中,第九激光器16与第一激光器11、第二激光器12、第三激光器13、第四激光器14、第五激光器15、第六激光器、第七激光器17或第八激光器18相邻。
在一些实施例中,所述至少一排激光器包括至少两排激光器,相邻两排激光器之间的间隔为3mm至10mm。例如,如图10所示,所述至少一排激光器包括六行激光器,相邻两行激光器之间的间隔 为3mm至10mm。如此设置,可避免相邻两排激光器之间产生激光光束的相干,且可保证激光器阵列的体积较小。
在本公开的一些实施例中,激光器阵列中的激光器为半导体激光器,且该半导体激光器包括发光芯片。该发光芯片发出激光。
以下以激光器为半导体激光器为例,对本公开实施例的激光器阵列做进一步说明。
半导体激光器又称为半导体二极管(Laser Diode),其具有体积小、效率高和寿命长的优点。半导体激光器可以通过简单的注入电流的方式进行调节,因而广泛应用于光通信、信息存储与处理、军事应用、医学应用、激光打印、测量以及勘测雷达等中。
相关技术中,半导体激光器利用TO管座进行封装。TO(Transistor Outline,晶体管轮廓)最早的定义是晶体管外壳,后来逐步演化为一种封装形式的概念,即全封闭式封装技术,其是目前常用的微电子器件的封装方式。半导体激光器所利用的TO管座通常由管壳、管舌、管脚组成。管舌通常设在管壳的上面,管舌上粘结发光芯片,在管舌上封装封帽。这种封装形式能通过TO管舌把激光器芯片中的热量导向TO管座,然后再由TO管座导向专门的散热支架。
图11示出了相关技术中的一种TO激光器阵列。该TO激光器阵列包括TO激光器和支架。支架01上设有多个可安装TO激光器的安装槽011,安装槽011底面设有通孔。TO激光器02包括壳体021和管脚022,管脚022可穿过通孔。在固定TO激光器02时,通过在安装槽011与TO激光器02之间设置锡环03,经过加热使锡环03熔化,进而将TO激光器02与安装槽011底面焊接固定。这样,可将TO管座的热量进一步导出至支架01,以进行散热,并且可以起到对TO的固定作用。
然而,相关技术中为了实现对激光器中发光芯片的散热,需要专门设计TO及对应的支架,从而使散热路径复杂且工艺繁琐,导致散热效率低。
为了提高散热效率,在本公开的一些实施例中,如图12所示, 激光器阵列包括金属基板201、反射凸起202和至少一个激光器,该至少一个激光器包括至少6个发光芯片203。反射凸起202和所述至少6个发光芯片203固定连接于金属基板201上。相邻两个发光芯片203之间的间距设置为1mm至10mm之间。每个发光芯片203配置为朝向反射凸起202出射光线,反射凸起202配置为对每个发光芯片203发射来的光束均进行反射,并且使得反射后的光束背离于金属基板201。
需要说明的是,虽然本公开的实施例以包括发光芯片的半导体激光器为例对激光器阵列进行说明,但是激光器阵列所包括的具有发光器件的激光器不限于半导体激光器,且发光器件不限于发光芯片。例如,激光器阵列所包括的激光器为具有发光芯片103或具有与发光芯片功能相同的其他发光器件的、与半导体激光器不同的激光器。
发光芯片的数量不作特定限制,可以根据发光亮度的需求增加或减少。发光芯片203与金属基板201的固定连接方式不作特定限制,只要保证该连接方式不会大幅影响热量的传导即可。在一些示例中,采用焊接的方式固定发光芯片203和金属基板201。在另一些示例中,采用导热胶粘接的方式固定发光芯片203和金属基板201。在本公开的一些实施例中,金属基板为铜基板,厚度在1mm至3mm范围内。
通过将发光芯片203直接与具备高效散热性能的金属基板201连接,并将相邻两个发光芯片203之间的间距设置为1mm至10mm,可在保证激光器发光亮度的基础上,使发光芯片产生的热量可以快速传导散发出去。并且可简化激光器阵列生产工艺,从而可降低生产成本。
该激光器阵列中的反射凸起202具有多种反射方式,同时,发光芯片的排列方式随着反射凸起202反射方式的不同而不同。在一些示例中,如图12所示,反射凸起202具有两个反射面,发光芯片203设置在反射凸起202的分别与这两个反射面相对应的两侧。反射凸起202例如具有相对的两个倾斜反射面,两侧的发光芯片203发射平行于金属基板201的光束至该倾斜反射面上,该光束被倾斜反射面反射 并被改变出射方向。例如,该倾斜反射面使该光束沿着背离且垂直于金属基板201的方向出射。在另一些示例中,如图13所示,反射凸起202仅具有一个反射面,发光芯片203设置在反射凸起202的与该反射面相对应的一侧。例如,反射凸起202具有一个倾斜反射面。发光芯片203发射例如平行于金属基板201的光束至该倾斜反射面上,该光束被倾斜反射面反射并被改变出射方向。比如,该倾斜反射面使该光束沿着背离且垂直于金属基板201的方向出射。在又一些实施例中,如图14所示,反射凸起202包括四个反射面,发光芯片203设置在反射凸起202的与分别这四个反射面相对应的四侧。例如,反射凸起202具有四个倾斜反射面。四侧的发光芯片203发射例如平行于金属基板201的光束至该倾斜反射面上,该光束被倾斜反射面反射并被改变出射方向。比如,该倾斜反射面使该光束沿着背离且垂直于金属基板201的方向出射。
在本公开的一些实施例中,如图15所示,该激光器阵列还包括热沉204,发光芯片203通过热沉204固定连接到金属基板201上。例如,发光芯片203先通过焊接或导热胶粘接方式固定连接到热沉204的一面,热沉204的另一面再通过焊接或导热胶粘接的方式固定连接到金属基板201上。发光芯片203的出光方向对准反射凸起202的反射面。热沉材料例如为氮化铝(AlN)或碳化硅(SiC)等。由于发光芯片在工作状态下会产生大量的热量从而会导致发光芯片本身会受热膨胀,因此如果将发光芯片直接与金属基板固定连接,可能会因发光芯片频繁的膨胀收缩而导致发光芯片与金属基板的连接松动,甚至发生发光芯片脱落的情况。而将发光芯片通过热沉与金属基板固定连接,利用在受热时热沉的膨胀系数与发光芯片膨胀系数相近的原理,使得发光芯片与金属基板的固定连接更加稳固,不容易变得松动。
在本公开的一些实施例中,发光芯片通过电连接方式串联在一起。例如,每个发光芯片都连接有金丝,该金丝最终连接到引脚(Pin),以实现每个发光芯片的通电。在一些实施例中,该金丝通过胶粘方式固定在金属基板上。
在本公开的一些实施例中,该激光器阵列还包含有一个透光保护层,该透光保护层的透光部分设置在发光芯片203的出光侧并覆盖发光芯片203。该透光保护层的边缘部分例如通过焊接或胶粘方式固定到金属基板上,形成一个密封空间,将上述的发光芯片都包含到该密封空间内,以起到对发光芯片的保护作用。在一些实施例中,在该密封空间内充满氮气,可以进一步保护发光芯片。
在一些实施例中,金属基板、反射凸起和激光器之间的相对位置关系不受激光器波长的限制。
为了提高散热效率,在本公开的一些实施例提供了另一种结构的激光器阵列。如图16所示,该激光器阵列包括金属基板301、固定在金属基板301上的至少一个金属条302、以及至少一个发光芯片303,发光芯片303固定连接在所述至少一个金属条302上,发光芯片303的出光方向背离金属基板301。
在一些实施例中,如图16所示,发光芯片303固定到金属条302的一面,金属条302的与该面相对的另一面固定到金属基板301。
在一些实施例中,至少一个发光芯片303包括至少6个发光芯片303,至少一个金属条302包括至少两个金属条302。每个金属条302上固定连接至少3个发光芯片303,且所述至少3个发光芯片303中相邻两个发光芯片之间的间距为1mm至10mm。固定有发光芯片303的金属条302固定连接到金属基板301上。每个发光芯片303的出光方向背离金属基板301。
通过将发光芯片303直接与具备高效散热性能的金属条302连接,并将相邻两个发光芯片303之间的间距设置为1mm至10mm,再将上述至少2个金属条302紧密固定在可大面积散热的金属基板301上,在保证了激光器发光亮度的基础上,实现了发光芯片产生的热量可以快速传导散发出去,而且简化了激光器阵列生产工艺,降低了生产成本。
发光芯片303的数量和金属条302的数量均不作特定限制,可以根据发光亮度的需求增加或减少。例如,所述至少一个金属条302 包括4个金属条302,每个金属条302上固定连接5个发光芯片303。
发光芯片303与金属条302的固定连接方式以及金属条302与金属基板301的固定连接方式均不作特定限制,只要保证该连接方式不会大幅影响热量的传导即可。在一些示例中,采用焊接的方式固定连接发光芯片303与金属条302。在另一些示例中,采用导热胶粘接的方式固定连接发光芯片303与金属条302。
在本公开的一些实施例中,金属条302为铜条。铜条的形状不限,只要可以牢固地固定在金属基板上,并且可以牢固固定有发光芯片即可。例如,铜条为矩形铜条。在本公开的一些实施例中,金属基板301为铜基板。在一些示例中,铜基板的厚度在1mm至3mm范围内。在一些实施例中,铜条在铜基板上的排布为相互平行排列,相邻铜条之间的间隔在3mm至10mm范围内。
在本公开的一些实施例中,如图17所示,发光芯片303通过热沉304固定连接到金属条302上。例如,发光芯片303先通过焊接或导热胶粘接的方式固定连接到热沉304的一面,热沉304的另一面再通过焊接或导热胶粘接的方式固定连接到金属条302上。
发光芯片303与热沉304的固定连接方式以及热沉304与金属条302的固定连接方式均不作特定限制,只要保证该连接方式不会大幅影响热量的传导即可。例如,采用焊接的方式固定连接。替代地,采用导热胶粘接的方式固定连接。热沉的材料例如为氮化铝(AlN)或碳化硅(SiC)等。由于发光芯片在工作状态下会产生大量的热量从而会导致发光芯片本身会受热膨胀,因此如果将发光芯片直接与金属条固定连接,可能会因发光芯片频繁的膨胀收缩而导致发光芯片与金属条的连接松动,甚至发生发光芯片脱落的情况。而将发光芯片通过热沉与金属条固定连接,利用在受热时热沉的膨胀系数与发光芯片膨胀系数相近的原理,使得发光芯片与金属条的固定连接更加稳固,不容易变得松动。
在本公开的一些实施例中,每个发光芯片303通过电连接方式串联在一起。例如,每个发光芯片303都连接有金丝,该金丝最终连 接到引脚(Pin),以实现每个发光芯片的通电。在一些实施例中,该金丝通过胶粘方式固定在金属基板上。
在本公开的一些实施例中,该激光器阵列还包含有一个透光保护层,该透光保护层的透光部分设置在发光芯片的出光侧并覆盖发光芯片。该透光保护层的边缘部分例如通过焊接或胶粘方式固定到金属基板上,形成一个密封空间。将上述的发光芯片都包含到该密封空间内,以起到对发光芯片的保护作用。在一些实施例中,在该密封空间内充满氮气,可以进一步保护发光芯片。
在一些实施例中,金属基板、金属条和激光器之间的相对位置关系不受激光器波长的限制。
本公开的一些实施例还提供了一种激光光源。如图18所示,激光光源包括以上实施例所述的激光器阵列4、至少一个准直镜组5和至少一个会聚镜组6。该激光器阵列4请参见上述实施例的描述,此处不再赘述。所述至少一个准直镜组5配置为对激光器阵列4出射的激光进行准直,并出射至会聚镜组6。所述至少一个会聚镜组6配置为对准直后的激光进行会聚。
由于激光器阵列4的结构不同,所以所述至少一个准直镜组5的排布方式有多种。在本公开的一些实施例中,如图19所示,所述至少一个准直镜组5的数量与发光芯片203的数量一致,对发光芯片203发出的光束进行准直。在一些示例中,每一个准直镜组5对应一个发光芯片203。该准直镜组5设置在该发光芯片203的出光侧(即发光芯片203与反射凸起202之间)。在另一些示例中,该准直镜组5设置在反射凸起202的出光侧。在一些示例中,上述准直镜组5一体成型制作成一个整体,从而覆盖到发光芯片203的出光方侧或反射凸起202的出光侧。在另一些示例中,上述准直镜组5中的每一个单独分离设置,独立覆盖在发光芯片203的出光侧上或反射凸起202的出光侧。
在本公开的一些实施例中,如图20所示,准直镜组5的数量与发光芯片303的数量一致,每一个准直镜组5对应一个发光芯片303 并设置在该发光芯片的出光侧,对发光芯片303发出的光束进行准直。在一些示例中,上述准直镜组5一体成型制作成一个整体,并设置在发光芯片的出光侧。在另一些示例中,上述准直镜组401中的每个单独分离设置,独立设置在发光芯片5的出光侧。该情况例如对应于激光器阵列包括金属条302的情况。
在本公开的一些实施例中,如图21所示,激光光源还包括扩散部件7。该扩散部件7设置在会聚镜组6的出射光路上,对上述会聚镜组6出射的激光进行扩散,同时,该扩散部件7受驱进行振动,进一步增加扩散效果。由激光器阵列4出射的激光光束再经过运动扩散部件的时间平均,在人眼的观看时间内可以产生更多的随机散斑图样,更多散斑图样的叠加可以获得更好的消散斑的效果。
本公开的一些实施例中提供了一种激光投影设备。如图21和图22所示,该激光投影设备包括激光光源1000、成像元件2000和投影镜头3000。成像元件2000配置为接收激光光源1000发出的激光,并根据接收的视频信号生成投影光束。投影镜头3000配置为将投影光束投影在显示面4000上,以显示图像。激光光源1000包括激光器阵列4、至少一个准直镜组5和至少一个会聚镜组6。激光器阵列4包括至少一排激光器,所述至少一排激光器包括相邻的第一激光器和第二激光器。第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,且第一激光的波长小于第二激光的波长。所述至少一个准直镜组6配置为对激光器阵列4出射的激光进行准直。所述至少一个会聚镜,配置为对准直后的激光进行会聚。激光器阵列4、所述至少一个准直镜组5和所述至少一个会聚镜组6请参见以上相关描述,此处不再赘述。
其中,成像元件2000可以是DMD(digital micromirror device)元件或LCOS(Liquid Crystal on Silicon)元件。
在以上描述中,具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本公开的摘要被提供以允许读者快速确定本技术公开的本质。 提交时应理解,其不用于解释或限制权利要求的范围或含义。此外,在前面的详细描述中,可以看出,出于简化本公开的目的,各种特征在各种实施例中被分组在一起。这种公开方法不应被解释为反映以下意图:权利要求要求比每个实施例中明确记载的特征更多的特征。相反,如所附权利要求所反映的,发明主题在于减少单个公开实施例的所有特征。因此,所附权利要求被并入到详细说明中,每个权利要求自身作为单独要求保护的主题。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (20)

  1. 一种激光器阵列,包括至少一排激光器,所述至少一排激光器包括相邻的第一激光器和第二激光器,其中
    所述第一激光器发出的第一激光与所述第二激光器发出的第二激光均为第一颜色,所述第一激光的波长小于所述第二激光的波长。
  2. 根据权利要求1所述的激光器阵列,其中,所述第一激光器和所述第二激光器设置在所述至少一排激光器中的一排激光器中。
  3. 根据权利要求1所述的激光器阵列,其中,
    所述至少一排激光器还包括第三激光器;
    所述第三激光器发出的第三激光为所述第一颜色,且所述第三激光的波长大于所述第二激光的波长;且
    所述第三激光器与所述第一激光器和/或所述第二激光器相邻。
  4. 根据权利要求1-3任一项所述的激光器阵列,其中,所述至少一排激光器还包括相邻的第四激光器和第五激光器;
    所述第四激光器发出的第四激光与所述第五激光器发出的第五激光均为第二颜色,所述第二颜色与所述第一颜色不同;
    所述第四激光的波长小于所述第五激光的波长。
  5. 根据权利要求4所述的激光器阵列,其中,所述第四激光器和第五激光器位于所述至少一排激光器中的一排激光器中。
  6. 根据权利要求4所述的激光器阵列,其中,所述至少一排激光器还包括第六激光器;
    所述第六激光器发出的第六激光为所述第二颜色;
    所述第六激光的波长大于所述第五激光的波长;
    第六激光器与第四激光器和/或所述第五激光器相邻。
  7. 根据权利要求4-6任一项所述的激光器阵列,其中,至少一排激光器还包括相邻的第七激光器和第八激光器;
    所述第七激光器发出的第七激光和所述第八激光器发出的第八激光均为第三颜色,其中,所述第三颜色与所述第一颜色和所述第二颜色不同;
    所述第七激光的波长小于所述第八激光的波长。
  8. 根据权利要求7所述的激光器阵列,其中,所述第七激光器和所述第八激光器位于所述至少一排激光器中的一排激光器中。
  9. 根据根据权利要求7所述的激光器阵列,其中,所述至少一排激光器还包括第九激光器;
    所述第九激光器发出的第九激光为所述第三颜色,所述第九激光的波长大于所述第八激光的波长,所述第九激光器与所述第七激光器和/或所述第八激光器相邻。
  10. 根据权利要求1所述的激光器阵列,所述至少一排激光器中的每个激光器包括发光芯片。
  11. 根据权利要求10所述的激光器阵列,还包括金属基板和反射凸起,其中,所述至少一排激光器包括至少6个发光芯片,且其中,
    所述反射凸起和所述至少6个发光芯片分别固定连接在所述金属基板上;
    每个发光芯片配置为朝向所述反射凸起出射光线;
    所述反射凸起配置为能够朝向背离所述金属基板的方向反射所述光线。
  12. 根据权利要求11所述的激光器阵列,其中,所述反射凸起的远离所述金属基板的顶面的面积小于所述反射凸起的与所述金属基板相接的底面的面积。
  13. 根据权利要求11所述的激光器阵列,所述至少一排激光器包括多排发光芯片,所述反射凸起包括多个侧面,每排发光芯片对应所述多个侧面中相应一个侧面。
  14. 根据权利要求10所述的激光器阵列,还包括金属基板和固定在所述金属基板上的至少一个金属条,所述发光芯片固定连接在所述至少一个金属条上,所述发光芯片配置为沿背离所述金属基板的方向出射光线。
  15. 根据权利要求14所述的激光器阵列,其中,所述至少一排激光器包括至少6个发光芯片,所述至少一个金属条包括至少两个金属 条;
    每个金属条上固定连接至少3个发光芯片,且每个发光芯片配置为沿背离所述金属基板的方向出射光线。
  16. 一种激光光源,包括:
    激光器阵列,包括至少一排激光器,其中,所述至少一排激光器包括相邻的第一激光器和第二激光器,第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,且所述第一激光的波长小于所述第二激光的波长;
    至少一个准直镜组,配置为对激光器阵列出射的激光进行准直;以及
    至少一个会聚镜组,配置为对准直后的激光进行会聚。
  17. 根据权利要求16所述的激光光源,其中,所述至少一排激光器中的每个激光器均包括发光芯片;
    每个准直镜组对应设置在每个发光芯片的出光侧。
  18. 根据权利要求17所述的激光光源,其中,所述激光器阵列还包括金属基板和金属条,所述发光芯片固定连接在所述金属条上,所述发光芯片配置为沿背离所述金属基板的方向出射光线。
  19. 根据权利要求16所述的激光光源,其中,所述至少一排激光器中的每个激光器均包括发光芯片;
    所述激光器阵列还包括金属基板和反射凸起,所述反射凸起和所述发光芯片分别固定连接在所述金属基板上,所述发光芯片配置为所述反射凸起出射光线,所述反射凸起配置为能够朝向背离所述金属基板的方向反射所述光线,每个准直镜组对应设置在所述反射凸起反射后的光线的光路上。
  20. 一种激光投影设备,包括:
    激光光源;
    成像元件,配置为接收所述激光光源发出的激光,并根据接收的视频信号生成投影光束;
    投影镜头,配置为将所述投影光束投影在显示面上,以显示图像,
    其中,所述激光光源包括:
    激光器阵列,包括至少一排激光器,其中,所述至少一排激光器包括相邻的第一激光器和第二激光器,第一激光器发出的第一激光与第二激光器发出的第二激光均为第一颜色,且所述第一激光的波长小于所述第二激光的波长;
    至少一个准直镜组,配置为对激光器阵列出射的激光进行准直;以及
    至少一个会聚镜组,配置为对准直后的激光进行会聚。
PCT/CN2018/081119 2017-09-26 2018-03-29 激光器阵列、激光光源及激光投影设备 WO2019062055A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710879672.8 2017-09-26
CN201710879671.3A CN109560455A (zh) 2017-09-26 2017-09-26 一种激光器阵列
CN201710879672.8A CN109560452A (zh) 2017-09-26 2017-09-26 一种激光器阵列及激光光源
CN201710879799.X 2017-09-26
CN201710879671.3 2017-09-26
CN201710879799.XA CN109560461A (zh) 2017-09-26 2017-09-26 一种激光器阵列

Publications (1)

Publication Number Publication Date
WO2019062055A1 true WO2019062055A1 (zh) 2019-04-04

Family

ID=61868294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081119 WO2019062055A1 (zh) 2017-09-26 2018-03-29 激光器阵列、激光光源及激光投影设备

Country Status (3)

Country Link
US (2) US10416544B2 (zh)
EP (1) EP3460927B1 (zh)
WO (1) WO2019062055A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062055A1 (zh) * 2017-09-26 2019-04-04 青岛海信激光显示股份有限公司 激光器阵列、激光光源及激光投影设备
JP6939690B2 (ja) * 2018-04-23 2021-09-22 セイコーエプソン株式会社 光源装置およびプロジェクター
JP7371522B2 (ja) 2020-02-19 2023-10-31 ウシオ電機株式会社 半導体レーザ装置
JP2023023799A (ja) * 2021-08-06 2023-02-16 ヌヴォトンテクノロジージャパン株式会社 多波長光源モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071034A (zh) * 1991-12-05 1993-04-14 吉林大学 混合集成二维面发射激光器列阵
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
CN1249528C (zh) * 2002-07-10 2006-04-05 富士胶片株式会社 复合波激光光源及曝光装置
CN101144876A (zh) * 2006-09-13 2008-03-19 中国科学院光电研究院 一种用于激光显示的激光匀化耦合装置
CN103311806A (zh) * 2012-03-15 2013-09-18 索尼公司 激光二极管阵列和激光二极管单元

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2684237B1 (fr) * 1991-11-22 1993-12-24 Thomson Hybrides Circuit integre de lasers semiconducteurs et procede de realisation de ce circuit.
CN1189000A (zh) 1997-01-09 1998-07-29 日本电气株式会社 半导体激光组件
WO2003096387A2 (en) * 2002-05-08 2003-11-20 Phoseon Technology, Inc. High efficiency solid-state light source and methods of use and manufacture
US6947459B2 (en) * 2002-11-25 2005-09-20 Eastman Kodak Company Organic vertical cavity laser and imaging system
US6950454B2 (en) * 2003-03-24 2005-09-27 Eastman Kodak Company Electronic imaging system using organic laser array illuminating an area light valve
US8730306B2 (en) * 2006-04-25 2014-05-20 Corporation For Laser Optics Research 3-D projection full color multimedia display
US7394841B1 (en) * 2007-01-18 2008-07-01 Epicrystals Oy Light emitting device for visual applications
JP2009152330A (ja) 2007-12-20 2009-07-09 Panasonic Corp 半導体装置、半導体装置の製造方法、半導体装置の製造装置および光ピックアップ装置ならびに光ディスクドライブ装置
WO2010006275A1 (en) * 2008-07-10 2010-01-14 Corporation For Laser Optics Research Blue laser pumped green light source for displays
JP2011049338A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 発光装置および光装置
JP2011066028A (ja) * 2009-09-15 2011-03-31 Hitachi Ltd 多波長光源装置
JP5966363B2 (ja) * 2011-06-20 2016-08-10 株式会社リコー 光源装置及び画像投射装置
US9449323B2 (en) * 2011-07-22 2016-09-20 At&T Intellectual Property I, Lp Method and apparatus for monitoring usage of items
CN102591114A (zh) 2012-03-31 2012-07-18 海信集团有限公司 壁挂式投影装置
CN202676983U (zh) 2012-06-29 2013-01-16 深圳市绎立锐光科技开发有限公司 激光光源及相关发光装置
US9466941B2 (en) * 2012-07-31 2016-10-11 Barco Nv Patterned retarder and optical engine for laser projection apparatus
JP2014127543A (ja) * 2012-12-26 2014-07-07 Sony Corp 冷却装置および半導体レーザ装置
US9209605B1 (en) * 2015-01-23 2015-12-08 Lumentum Operations Llc Laser diode subassembly and method of generating light
CN105186283A (zh) 2015-09-29 2015-12-23 北京为世联合科技有限公司 Cos半导体激光器阵列
CN105137610A (zh) 2015-10-22 2015-12-09 海信集团有限公司 一种激光消散斑光路及双色、三色激光光源
CN205880392U (zh) 2016-07-01 2017-01-11 中国科学院光电研究院 一种抑制激光散斑的装置及激光投影装置
WO2019062055A1 (zh) * 2017-09-26 2019-04-04 青岛海信激光显示股份有限公司 激光器阵列、激光光源及激光投影设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071034A (zh) * 1991-12-05 1993-04-14 吉林大学 混合集成二维面发射激光器列阵
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
CN1249528C (zh) * 2002-07-10 2006-04-05 富士胶片株式会社 复合波激光光源及曝光装置
CN101144876A (zh) * 2006-09-13 2008-03-19 中国科学院光电研究院 一种用于激光显示的激光匀化耦合装置
CN103311806A (zh) * 2012-03-15 2013-09-18 索尼公司 激光二极管阵列和激光二极管单元

Also Published As

Publication number Publication date
US10642138B2 (en) 2020-05-05
EP3460927A1 (en) 2019-03-27
EP3460927B1 (en) 2020-09-23
US10416544B2 (en) 2019-09-17
US20190094673A1 (en) 2019-03-28
US20190354000A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US10642138B2 (en) Laser array, laser light source and laser projection device
US9142936B2 (en) Laser light source device and method for manufacturing laser light source device
US10775687B2 (en) Light converter and light source unit, and projector
US9285096B2 (en) Illumination unit, projection display unit, and direct-view display unit
JP2005227339A (ja) 光源装置、光源装置製造方法、及びプロジェクタ
US10824060B2 (en) Light source module, method of manufacturing light source module, and projection-type display unit
JP2007003914A (ja) 発光モジュールとこれを用いた投映型表示装置用光源ユニット
CN115428282A (zh) 激光器和投影设备
JP2018010944A (ja) 光モジュール
CN110955102B (zh) 投影仪
US20080123343A1 (en) Light source device, image display device, optical element and manufacturing method thereof
JP2001230451A (ja) 発光ダイオード
US20220333757A1 (en) Hybrid led/laser light source for smart headlight applications
JP5076447B2 (ja) 光源装置及び画像表示装置
JP6822452B2 (ja) 光源装置およびプロジェクター
JP2017212363A (ja) 光源装置及びプロジェクター
JP6870215B2 (ja) 光源装置及びプロジェクター
JP2005260211A (ja) 光源装置用基台、光源装置用基台の製造方法、光源装置及びプロジェクタ
JP2020139976A (ja) 照明装置およびプロジェクター
JP6759714B2 (ja) 光源装置およびプロジェクター
US20230305376A1 (en) Light source apparatus and projector
JP7306538B2 (ja) プロジェクター
WO2023185784A1 (zh) 一种激光器和激光投影设备
WO2024002283A1 (zh) 光源装置及投影系统
JP4449352B2 (ja) 照明装置および投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863170

Country of ref document: EP

Kind code of ref document: A1