WO2023185784A1 - 一种激光器和激光投影设备 - Google Patents

一种激光器和激光投影设备 Download PDF

Info

Publication number
WO2023185784A1
WO2023185784A1 PCT/CN2023/084222 CN2023084222W WO2023185784A1 WO 2023185784 A1 WO2023185784 A1 WO 2023185784A1 CN 2023084222 W CN2023084222 W CN 2023084222W WO 2023185784 A1 WO2023185784 A1 WO 2023185784A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
prism
type
emitting
Prior art date
Application number
PCT/CN2023/084222
Other languages
English (en)
French (fr)
Inventor
周子楠
卢瑶
郭照师
李建军
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210344076.0A external-priority patent/CN114637161A/zh
Priority claimed from CN202221173515.8U external-priority patent/CN217522368U/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2023185784A1 publication Critical patent/WO2023185784A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02335Up-side up mountings, e.g. epi-side up mountings or junction up mountings

Definitions

  • the present application relates to the field of optoelectronic technology, and in particular to a laser and laser projection equipment.
  • laser packaging pursues the output of high-quality light beams in order to minimize the use of optical path components when applied to the optical path, minimizing and simplifying the size of laser display equipment.
  • Some embodiments of this application disclose a laser, including:
  • a tube shell includes a bottom plate and an annular side wall located above the bottom plate;
  • a sealing light-transmitting layer connected to the annular side wall; wherein the bottom plate, the annular side wall and the sealing light-transmitting layer form a sealed accommodation space;
  • a plurality of light-emitting chips are mounted on the bottom plate of the tube shell; the plurality of light-emitting chips include a first type of light-emitting chip and a second type of light-emitting chip.
  • the polarization direction of the laser emitted by the first type of light-emitting chip is consistent with
  • the laser light emitted by the second type of light-emitting chip has different polarization directions;
  • one prism corresponds to at least one of the plurality of light-emitting chips, and the prism is used to receive the laser light emitted by the corresponding plurality of light-emitting chips and reflect it in the light emitting direction of the laser;
  • a phase retarder is located in the accommodating space and arranged parallel to the bottom plate. At least part of the light beams of the plurality of light-emitting chips changes the polarization direction of the laser through the phase retarder and then radiates to the sealing light-transmitting layer. .
  • Some embodiments of this application also disclose a laser projection device, including the laser in the above technical solution, and
  • the light valve modulation component is located on the light exit side of the laser; the light valve modulation component is used to modulate the exit light of the laser;
  • the projection lens is located on the light exit side of the light valve modulation component.
  • Figure 1 is a schematic structural diagram of a laser in the related art
  • Figure 2 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • Figure 3 is a schematic side structural view of the laser shown in Figure 2;
  • Figure 4 is the second schematic side structural diagram of the laser provided by the embodiment of the present application.
  • Figure 5 is the third schematic side structural diagram of the laser provided by the embodiment of the present application.
  • Figure 6 is a schematic top structural view of the laser shown in Figure 5;
  • Figure 7 is the fourth schematic side structural diagram of the laser provided by the embodiment of the present application.
  • Figure 8 is a schematic top structural view of the laser shown in Figure 7;
  • Figure 9 is the third schematic diagram of the top structure of the laser provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of yet another laser provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • Figure 16 is a schematic structural diagram of yet another laser provided by another embodiment of the present application.
  • Figure 17 is a schematic structural diagram of yet another laser provided by another embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a laser provided by yet another embodiment of the present application.
  • Figure 19 is a schematic structural diagram of another laser provided by yet another embodiment of the present application.
  • Figure 20 is a schematic structural diagram of yet another laser provided by yet another embodiment of the present application.
  • Figure 21 is a schematic structural diagram of another laser provided by yet another embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • Figure 23 is a schematic structural diagram of another laser provided by yet another embodiment of the present application.
  • Figure 24 is a schematic structural diagram of yet another laser provided by yet another embodiment of the present application.
  • Figure 25 is a schematic structural diagram of a laser projection device provided by an embodiment of the present application.
  • the polarization directions of the lasers emitted by the current blue laser chips and green laser chips are different from the polarization directions of the lasers emitted by the red laser chips.
  • the polarization directions of the blue laser and the green laser are the same and are perpendicular to the polarization directions of the red laser.
  • This inconsistent polarization direction of lasers of different colors will cause some problems when used as a light source for lighting applications. For example, the most prominent point is that on the projection screen of the whole machine, there will be multiple areas of inconsistent colors, "color blocks" or local deviations. Color phenomenon affects the final viewing effect of the projected image.
  • the current solution is to add system components that change the polarization state in the optical path when designing the optical path system, so that the polarization directions of the three-color laser to the screen end are consistent.
  • this will inevitably lead to an increase in system costs, structural complexity and assembly processes, and is not conducive to miniaturization of the entire equipment.
  • Figure 1 is a schematic structural diagram of a laser in the related art.
  • a laser generally includes a tube 100 , a plurality of light-emitting chip assemblies 200 disposed in the tube 100 , and a prism 300 located on the light-emitting side of the plurality of light-emitting chip assemblies 200 .
  • a plurality of light-emitting chip assemblies 200 are disposed in the tube casing 100, and a prism is disposed on the light-emitting side of each of the plurality of light-emitting chip assemblies 200 for reflecting light.
  • a plurality of light-emitting chip components 200 and the prisms 300 on the light-emitting side form a unit, and the plurality of units are arranged in an array in the tube shell 100 .
  • the plurality of light-emitting chip components 200 include a red laser chip component, a green laser chip component, and a blue laser chip component. Due to the inherent properties of the laser chip, the polarization direction of the laser emitted by the red laser chip component is usually the TM mode, while the polarization direction of the laser emitted by the blue laser chip component and the green laser chip component is usually the TE mode.
  • the two are perpendicular and orthogonal, based on Considering the light efficiency of the optical system, usually the polarization direction of the red laser, that is, the TM mode inside the laser, corresponds to the light in the second polarization direction of the light incident surface of the screen at the end of the imaging screen, usually called P light, then the blue laser and the green laser The polarization direction corresponds to the light in the first polarization direction of the light incident surface of the screen at the end of the imaging screen, usually called S light.
  • S light the blue laser and the green laser
  • the three-color laser emitted by the laser will appear color spots on the screen after passing through the subsequent optical path. Problems such as color blocks and color casts.
  • embodiments of the present application provide a laser that adjusts the polarization state of the laser light emitted from the laser chip when the laser is packaged, so that the polarization direction of the laser light emitted by the laser is the same.
  • FIG. 2 is a schematic structural diagram of a laser provided by an embodiment of the present application
  • FIG. 3 is a schematic side structural diagram of the laser shown in FIG. 2 .
  • the laser includes: a tube housing 100 , a plurality of light-emitting chip assemblies 200 , a prism 300 and a phase retarder 400 .
  • the tube shell 100 is used to accommodate a plurality of light-emitting chip assemblies 200 and package the plurality of light-emitting chip assemblies 200 .
  • the tube shell 100 includes a bottom plate 101 and an annular side wall 102 located above the bottom plate.
  • the bottom plate 101 and the annular side wall 102 form an accommodation space.
  • the material of the tube shell 100 can be metal or ceramic, the metal can be stainless steel, and the ceramic can be alumina.
  • the bottom plate 101 is preferably made of metal with relatively good heat dissipation performance, such as oxygen-free copper.
  • a plurality of light-emitting chip assemblies 200 are fixed on the bottom plate 101 of the package.
  • the plurality of light emitting chip assemblies 200 include laser chips and heat sinks.
  • the laser chip and heat sink are welded using a high-precision eutectic welding machine to form the laser chip assembly.
  • the heat sink is used to dissipate heat from the laser chip. It can usually be made of materials such as ALN and iC in the first polarization direction, and is not limited here.
  • the laser provided by the embodiment of the present application includes at least one prism 300, which is located in the accommodation space of the tube casing 100. Specifically, it can be fixed on the bottom plate 101 of the tube casing.
  • One prism 300 may correspond to at least one plurality of light-emitting chip components 200. Specifically, the prism 300 is located on the light exit side of the corresponding plurality of light-emitting chip components 200. The prism 300 is used to receive the laser light emitted by the corresponding plurality of light-emitting chip components 200 toward the laser. Reflection in the direction of light emission.
  • the prism 300 and the plurality of light-emitting chip assemblies 200 are sintered with gold paste or sintered silver paste, and the temperature is controlled between 200°C and 250°C to complete the bonding of the heat sink and the prism relative to the tube shell.
  • the prism 300 can be one-to-one corresponding to each light-emitting chip in the plurality of light-emitting chip assemblies 200, so that there are multiple prisms 300, or the prism 300 can be arranged to correspond to at least two light-emitting chips.
  • multiple light-emitting chip assemblies 200 include: a first type of light-emitting chip 201 and a second type of light-emitting chip 202, wherein the laser emitted by the first type of light-emitting chip 201 is The polarization direction is different from the polarization direction of the laser light emitted by the second type light-emitting chip 202 .
  • the laser of this embodiment also includes a sealed light-transmitting layer 600 connected to the annular side wall 102; wherein the bottom plate 101, the annular side wall 102 and the sealed light-transmitting layer 600 form a sealed accommodation space, and a plurality of first type The light-emitting chip 201 and the second type of light-emitting chip 202 are located in the sealed accommodation space.
  • a phase retardation plate is located in the accommodation space and parallel to the bottom plate 101. Specifically, the phase retardation plate is a half-wave plate. The light beam from at least part of the light-emitting chips disposed on the base plate 101 changes the polarization direction of the laser through the phase retarder, and then is directed to the sealing light-transmitting layer 600 and finally emitted from the laser.
  • the phase retarder is disposed corresponding to one of the first type of light-emitting chip and the second type of light-emitting chip, thereby changing the polarization direction of one type of light-emitting chip so that it is consistent with the polarization direction of the other type of light-emitting chip.
  • the polarization directions are consistent to achieve the same polarization direction of the three-color laser emitted by the laser.
  • the phase retarder may be provided for some of the first type of light-emitting chips and the second type of light-emitting chips.
  • the phase retardation plate can be set for some but not all of the first-type light-emitting chips. In this way, the phase retardation plate is a half-wave plate corresponding to the first-type light-emitting chips, and only changes the laser beam emitted by a part of the first-type light-emitting chips.
  • the half-wave plate is set corresponding to half the number of first-type light-emitting chips, thereby only changing the polarization direction of the laser beam emitted by half of the first-type light-emitting chips, while the other half of the first-type light-emitting chips
  • the laser beam emitted by the light-emitting chip does not pass through the half-wave plate, thus maintaining the original polarization direction.
  • the phase retarder can also correspond to a part of the first type of light-emitting chips and a part of the second type of light-emitting chips respectively, and the ratio of both is specifically selected to be 50%. Therefore, in each of the plurality of first-type light-emitting chips and the plurality of second-type light-emitting chips, the polarization direction of half of the laser beams is changed, and the polarization direction of the remaining half of the laser beams maintains the original polarization direction.
  • both the first type of light-emitting chip and the second type of light-emitting chip have two different polarization directions, and the degree of difference in polarization directions is also improved, and for the same type of light-emitting chip, there are two different polarization directions.
  • Laser beams also help reduce coherence.
  • the following example first takes the phase retarder being arranged in the optical path of a laser beam with one polarization direction as an example.
  • the phase retarder part is arranged corresponding to a certain type of light-emitting chip, the same can be seen in the following example.
  • phase retardation film 400 is provided on the reflective prism 300.
  • the phase retardation film 400 can be provided on the prism on the light exit side of the first type of light-emitting chip 201 or the second type of light-emitting chip 202. ;
  • the phase retarder 400 is used to receive the reflected laser light from the corresponding prism 300 and change the polarization direction of the laser light emitted by the corresponding light-emitting chip, so that the polarization direction of the laser light emitted by the laser is the same.
  • the top surface of the prism 300 is usually a flat surface, so the phase retarder 400 can be disposed at the edge of the top surface and extend a certain distance toward the reflective surface of the prism, so that the laser chip assembly can emit light The laser light is reflected by the prism 300 and then incident on the phase retarder 400 .
  • the multiple light-emitting chip assemblies 200 and the prism 300 are usually bonded to the tube shell 100 by means of sintered gold paste or sintered silver paste, a gold plating layer can be provided on the contact surface of the phase retarder 400 and the prism 300, so that a gold plating layer can be provided.
  • the phase retarder 400 is attached to the prism 300 in the same process.
  • the phase retarder can also be pasted on the prism using high-temperature resistant glue that does not contain organic matter, which is not limited here.
  • the phase retarder 400 only needs to be disposed on the prism on the light exit side of one of the laser chip components of the first type of light-emitting chip 201 and the second type of light-emitting chip 202, so that the laser light emitted by the laser chip component passes through the phase retarder 400. Then the polarization direction of the laser is the same as the polarization direction of the laser emitted by another laser chip assembly, thereby avoiding color problems caused by different polarization states.
  • lasers usually include red laser chip components, green laser chip components and blue laser chip components.
  • the red laser emitted by the red laser chip component is the same as the green laser emitted by the green laser chip component, and the green laser emitted by the blue laser chip component.
  • the polarization directions of the blue laser are orthogonal.
  • the first type of light-emitting chip 201 in the embodiment of the present application may include a red laser chip component
  • the second type of light-emitting chip 202 may include a green laser chip component and a blue laser chip component; or, the first type of light-emitting chip 201 may include a green laser chip component.
  • Laser chip assembly and blue laser chip assembly, the second type of light-emitting chip 202 may include a red laser chip assembly, which is not limited here.
  • the phase retarder 400 can be a half-wave plate.
  • the first type of light-emitting chip 201 is a red laser chip component
  • the second type of light-emitting chip 202 includes a green laser chip component and a blue laser chip component.
  • a half-wave plate can be set on the prism on the light-emitting side of the first type of light-emitting chip 201, that is, the red laser chip component, so as to convert the light of the second polarization direction emitted by the red laser chip component into the light of the first polarization direction. , consistent with the polarization direction of the light in the first polarization direction emitted by the green laser chip component and the blue laser chip component.
  • a half-wave plate can also be provided on the prism on the light exit side of the second type of light-emitting chip 202, that is, the green laser chip assembly and the blue laser chip assembly, so that the green laser chip assembly and the blue laser chip assembly can emit light.
  • the light in the first polarization direction is converted into the light in the second polarization direction, which is consistent with the polarization direction of the second polarization direction emitted from the red laser chip assembly.
  • the red laser chip component, the green laser chip component and the blue laser chip can be The layout of the component determines which type of laser chip component the phase retarder is placed on the prism on the light exit side.
  • the arrangement is based on the principle of simple structure and easy assembly, and is not limited here.
  • FIG. 4 is the second schematic side structural diagram of the laser provided by the embodiment of the present application.
  • the laser also includes: a collimating lens 500 and a sealing glass 600.
  • the collimating lens 500 is located in the accommodation space formed by the tube shell 100, and specifically can be fixed on the bottom plate 101 of the tube shell.
  • one collimating lens 500 corresponds to one plurality of light-emitting chip assemblies 200
  • the collimating lens 500 is located between the corresponding plurality of light-emitting chip assemblies 200 and the corresponding prism 300 .
  • the collimating lens is used to collimate the laser light emitted from the multiple light-emitting chip assemblies 200, so that when setting up the phase retarder, there is no need to consider the effect of incident on the phase retarder at different angles, thus simplifying the design.
  • the collimating lens 500 can be a single lens or a lens group, and specifically can be an aspheric lens, a cylindrical lens, a free-form lens or a Fresnel lens, which is not limited here.
  • the reflective surface of the prism 300 can also be set as a curved surface to simultaneously reflect light and collimate the light. In this case, the reflective surface of the prism 300 is preferably an aspherical curved surface, which is not limited here.
  • the sealing glass 600 is located at the upper opening of the tube 100, and the sealing glass 600 is welded to the edge of the tube 100, thereby encapsulating the laser.
  • the sealing glass 600 can be made of sapphire, quartz, Bk7 and other materials.
  • the tube shell 100 and the sealing glass 600 can be welded by resistance welding or n direct welding in the Au first polarization direction. Among them, the resistance welding method requires welding the sealing glass 600 and the metal together through low-temperature glass glue before performing resistance welding.
  • the laser chip components in the laser provided by the embodiments of the present application can be arranged using a variety of arrangement rules. Accordingly, the prism 300 can be deformed and designed, and then the phase retarder can be set at a reasonable position to achieve polarization of the laser light emitted by the laser. Same direction and purpose.
  • the plurality of light-emitting chip assemblies 200 and the prisms 300 can still be arranged in a one-to-one relationship, and a phase retarder can be provided on the prism on the light exit side of each first-type light-emitting chip. ; Alternatively, a phase retarder can be provided on the prism on the light exit side of each second type light-emitting chip.
  • This arrangement method does not need to consider the arrangement rules of different types of laser chip components. It only needs to set a phase retarder on the prism on the light exit side of the laser chip component that needs to convert the polarization state.
  • each laser chip component is arranged in multiple rows along a set direction.
  • the laser usually includes two rows of red laser chip components and one row of green laser chips. components and a row of blue laser chip components, and the row of red laser chip components is alternately arranged with the row of green laser chip components and the row of blue laser chip components.
  • the polarization direction of the laser light emitted by the two rows of red laser chip assemblies can be changed, or the polarization direction of the laser light emitted by one row of green laser chips and one row of blue laser chips can be changed.
  • a phase retardation film can be set on each prism on the light-emitting side of the two red laser chip components; or a phase retardation film can be set on each prism on the light-emitting side of the green laser chip component.
  • Laser chip components on each side of the light output side A phase retarder is placed on the prism. This can reduce the number of phase retarders and increase the size of the phase retarder, which is beneficial to enhancing the stability between the phase retarder and the prism.
  • each laser chip assembly is arranged in multiple rows along a set direction, so the prism 300 can also be configured as a strip prism extending along the row direction of the laser chip assembly, so that one prism 300 Corresponding to at least one row of multiple light-emitting chip assemblies 200, the number of prisms can be reduced.
  • the first type of light-emitting chip 201 is a red laser chip component
  • the second type of light-emitting chip 202 is a green laser chip component and a blue laser chip component; or, the first type of light-emitting chip 201 is a green laser chip component.
  • Laser chip components and blue laser chip components, the second type of light-emitting chip 202 is a red laser chip component.
  • Two first-type light-emitting chip rows and two second-type light-emitting chip rows are arranged alternately, and a strip prism is provided on the light exit side of each row of laser chip components.
  • a strip-shaped phase retardation film is provided on the strip-shaped prism on the light-emitting side of each row of first-type light-emitting chips; or, a strip-shaped phase retardation film is arranged on the strip-shaped prism on the light-emitting side of the first row of second-type light-emitting chips. , so that the polarization state of the laser light finally emitted by the two laser chip components is the same.
  • each row of laser chip components is connected in series with each other, and a pin is provided on the annular side wall 102 of the tube shell on both sides of each row of laser chip components for connecting the corresponding
  • a pin is provided on the annular side wall 102 of the tube shell on both sides of each row of laser chip components for connecting the corresponding
  • one of the pins on both sides applies a positive signal and the other pins apply a negative signal, thereby driving the row of laser chip components to emit laser light.
  • FIG. 5 is the third schematic side structural diagram of the laser provided by the embodiment of the present application
  • FIG. 6 is a schematic top structural diagram of the laser shown in FIG. 5 .
  • each first-type light-emitting chip 201 in the laser is arranged into a first-type light-emitting chip row L1; each second-type light-emitting chip 202 is arranged into a second-type light-emitting chip row L1.
  • Chip row L2 the first type of light-emitting chip row L1 includes only red laser chip components, and the second type of light-emitting chip row L2 includes green laser chip components and blue laser chip components; or the first type of light-emitting chip row L1 includes green laser chips. Chip components and blue laser chip components, the second type of light-emitting chip row L2 only includes red laser chip components.
  • the prism 300 includes: 0 in the first polarization direction on the top surface, and 1 in the first polarization direction of the first reflective surface and 2 in the first polarization direction of the second reflective surface that are symmetrically arranged with respect to the top surface.
  • the first type of light-emitting chip row L1 is located on one side of the first polarization direction 1 of the first reflective surface of the prism, and the first polarization direction 1 of the first reflective surface is used to receive each of the first type light-emitting chips in the row L1.
  • the laser light emitted by the first type of light-emitting chip 201 is reflected in the light emitting direction of the laser; the second type of light-emitting chip row L2 is located on the side of the second reflective surface of the prism with the first polarization direction 2, and the second reflective surface with the first polarization direction of 2 is used.
  • the laser light emitted by each second-type light-emitting chip 202 in the row L2 of receiving second-type light-emitting chips is reflected toward the light emitting direction of the laser.
  • the laser chip components with the same polarization direction of the emitted laser are arranged in a row, so the phase retarder 400 can be disposed on the edge of the first polarization direction 0 of the top surface of the prism close to the 1 of the first polarization direction of the first reflective surface; or, the phase retardation plate 400
  • the sheet 400 can also be disposed on the top surface of the prism at 0 in the first polarization direction and close to 2 in the first polarization direction of the second reflective surface. edge, that is, the polarization directions of the lasers finally emitted by the two laser chip components are the same.
  • the width of 0 in the first polarization direction on the top surface of the prism 300 is greater than or equal to 4 mm, so that there is a sufficient sticking distance between the phase retarder 400 and 0 in the first polarization direction on the top surface.
  • the height of the prism 300 is usually greater than 4 mm, and the specific size can be designed according to the optical path.
  • the laser chip components included in the first type of light-emitting chip row L1 are red laser chip components
  • the laser chip components included in the second type of light-emitting chip row L2 are green laser chip components and blue laser chip components
  • the laser is also provided with a ceramic insulator 700 on the side wall of the tube shell.
  • Three colors of laser chip components can be set with three ceramic insulators. Among them, the red laser chip components are connected in series. One of the two red laser chip components located on both sides is connected to the positive end of the corresponding ceramic insulator 700, and the other is connected to the negative end of the corresponding ceramic insulator 700.
  • the green laser chip components are arranged adjacently and are connected in series.
  • One of the two green laser chip components on both sides is connected to the positive end of the corresponding ceramic insulator 700 , and the other is connected to the negative end of the ceramic insulator 700 .
  • the blue laser chip components are arranged adjacently and the blue laser chip components are connected in series.
  • One of the two blue laser chip components located on both sides is connected to the positive end of the corresponding ceramic insulator 700, and the other is connected to the negative end of the ceramic insulator 700.
  • the laser chip component and the ceramic insulator can be connected by gold wires. The diameter and number of the gold wires can be selected according to the current of the laser. Through the above connection relationship, the connected laser chip assembly can be driven to emit laser light by applying electrical signals to the positive and negative electrodes of the ceramic insulator.
  • FIG. 7 is the fourth schematic side structural view of the laser provided by the embodiment of the present application;
  • FIG. 8 is a schematic top structural view of the laser shown in FIG. 7 .
  • each first-type light-emitting chip 201 in the laser is arranged into two first-type light-emitting chip rows L1; each second-type light-emitting chip 202 is arranged into two second-type light-emitting chips.
  • the two first-type light-emitting chip rows L1 only include red laser chip components
  • one of the two second-type light-emitting chip rows L2 includes green laser chip components, and the other includes blue laser chip components
  • both One of the first-type light-emitting chip rows L1 includes green laser chip components, the other includes blue laser chip components
  • the two second-type light-emitting chip rows L2 only include red laser chip components.
  • the bottom plate of the tube shell 100 has a stepped structure.
  • the bottom plate of the tube shell includes a first step surface T1 and a second step surface T2 respectively located on both sides of the first step surface. ;
  • the height of the second step surface T2 is greater than the height of the first step surface T1.
  • the prism 300 includes: 0 in the first polarization direction of the top surface, and 1 in the first polarization direction of the first reflective surface and 2 in the first polarization direction of the second reflective surface that are symmetrically arranged relative to 0 in the first polarization direction of the top surface.
  • the prism 300 is located on the first step surface T1.
  • the two first-type light-emitting chip rows L1 are located on the side of the first polarization direction 1 of the first reflective surface of the prism, and one of the first-type light-emitting chip rows L1 is located on the first On the step surface T1, another A first-type light-emitting chip row is located on the second step surface T2; the first polarization direction 1 of the first reflective surface is used to receive the laser light emitted by each first-type light-emitting chip 201 in the two first-type light-emitting chip rows L1. Reflection in the direction of light emission from the laser.
  • the two second-type light-emitting chip rows L2 are located on one side of the first polarization direction 2 of the second reflective surface of the prism.
  • One of the second-type light-emitting chip rows L2 is located on the first step surface T1, and the other second-type light-emitting chip row L2 is located on the first step surface T1.
  • the light-emitting chip row L2 is located on the second step surface T2; the second reflective surface 2 in the first polarization direction is used to receive the laser light emitted by each second-type light-emitting chip 202 in the two second-type light-emitting chip rows L2 towards the laser.
  • Directional reflection is used to receive the laser light emitted by each second-type light-emitting chip 202 in the two second-type light-emitting chip rows L2 towards the laser.
  • the laser chip components that emit laser light with the same polarization direction are located on the same side of the prism, so the phase retarder 400 can be disposed on the edge of the first polarization direction 0 of the top surface of the prism close to the 1 edge of the first polarization direction of the first reflective surface; or, The phase retarder 400 may also be disposed on the edge of the top surface of the prism where 0 in the first polarization direction is close to 2 in the first polarization direction of the second reflective surface.
  • the bottom plate of the tube shell is set into a stepped structure in the embodiment of the present application, so that the front row laser chip components that are closer to the prism can be placed together with the prism.
  • the rear laser chip components that are far away from the prism are arranged on the second step surface with a higher height.
  • the size of the prism shown in Figure 7 is relatively larger than the prism shown in Figure 5.
  • the specific size can be selected according to the optical path. Here No restrictions.
  • FIG. 9 is the third schematic diagram of the top structure of the laser provided by the embodiment of the present application.
  • At least one laser chip assembly row in each laser chip assembly row includes both a first type of light-emitting chip 201 and a second type of light-emitting chip 202 .
  • the phase retarder 400 no longer covers the entire surface of the prism, but is disposed on the area of the prism corresponding to the first type of light-emitting chip 201 or the area corresponding to the second type of light-emitting chip 202.
  • each laser chip component is arranged in a row of laser chip components.
  • the first type of light-emitting chip 201 includes a red laser chip component
  • the second type of light-emitting chip 202 includes a green laser chip component and a blue laser chip component.
  • Laser chip components Laser chip components with the same polarization direction of the emitted laser light are arranged adjacently.
  • the prism 300 includes a top surface with a first polarization direction 0 and a reflective surface with a first polarization direction.
  • the phase retarder is disposed on the surface of the prism on the light exit side of the second type light-emitting chip 202 .
  • the laser may include three ceramic insulators 700. Among them, the red laser chip components are arranged adjacently and the red laser chip components are connected in series. One of the two red laser chip components located on both sides is connected to the positive end of the corresponding ceramic insulator 700, and the other is connected to the negative end of the corresponding ceramic insulator 700. One end.
  • the green laser chip components are arranged adjacently and are connected in series. One of the two green laser chip components on both sides is connected to the positive end of the corresponding ceramic insulator 700 , and the other is connected to the negative end of the ceramic insulator 700 .
  • the blue laser chip components are arranged adjacent to each other and the blue laser chip components are connected in series.
  • the two blue laser chip components located on both sides One is connected to the positive end of the ceramic insulator 700 , and the other is connected to the negative end of the ceramic insulator 700 .
  • the laser chip component and the ceramic insulator can be connected by gold wires. The diameter and number of the gold wires can be selected according to the current of the laser. Through the above connection relationship, the connected laser chip assembly can be driven to emit laser light by applying electrical signals to the positive and negative electrodes of the ceramic insulator.
  • Figure 9 only takes one row of laser chip components as an example.
  • the laser can be provided with two rows of laser chip components as shown in Figure 9, so that the prism is set into a symmetrical structure as shown in Figure 5; or it can also be It includes more than two rows of laser chip components, and each row of laser chip components is designed using the same design ideas as shown in Figure 9, which is not limited here.
  • FIG 10 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • the laser 10 may include a base plate 101, a tubular side wall 102, a plurality of light-emitting chip components 200, a plurality of reflective prisms 300, a sealing light-transmitting layer 600 and the base plate 101, and the side walls 102 enclose to form a sealed accommodation space.
  • the phase retarder 400 is arranged away from the base plate 101, the light-emitting chip 200, and the reflective prism 300. Specifically, it can be fixed through a bracket or by being connected to the side wall of the tube casing.
  • the material of the side wall 102 may include ceramics, such as aluminum oxide (chemical formula: Al2O3).
  • the phase retarder 400 can be fixed to the side wall 102, and the light-transmitting sealing layer 600 can also be fixed to the side wall 102. Since ceramic materials are easier to fix or combine with the phase retarder 400 and the light-transmitting sealing layer 600, the laser 10 provided by the embodiment of the present application has more processing advantages than the laser with metal side walls in the related art, and can ensure the phase retarder. 400 and the light-transmitting sealing layer 600 and the side wall 102 are firmly fixed to ensure high reliability of the laser 10 .
  • each reflective prism 300 can correspond to at least one light-emitting chip 200. Different reflective prisms 300 correspond to different light-emitting chips 200.
  • the laser light emitted by each light-emitting chip 200 can be directed to the reflective surface of the corresponding reflective prism 300.
  • the reflective surface can reflect the incident laser in a direction away from the base plate 101 (z direction in FIG. 10 ).
  • the surface of the reflective prism 300 opposite to the light-emitting chip 200 may be coated with a reflective film to form the reflective surface.
  • the plurality of light-emitting chip assemblies 200 in the laser 10 may include a first type of light-emitting chip and a second type of light-emitting chip.
  • the polarization direction of the laser emitted by the first type of light-emitting chip is perpendicular to the second type of light-emitting chip.
  • the polarization direction of the laser light emitted by the chip is perpendicular to the second type of light-emitting chip.
  • the polarization direction of the laser light emitted by the chip The laser light emitted by the first type of light-emitting chip and the laser light emitted by the second type light-emitting chip also have different colors.
  • the laser light emitted by the first type of light-emitting chip is polarized light in the first polarization direction
  • the laser light emitted by the second type light-emitting chip is polarized light in the second polarization direction.
  • the polarized light in the first polarization direction may include green laser and blue laser
  • the polarized light in the second polarization direction may include red laser.
  • the laser light emitted by the first type of light-emitting chip may be polarized light in the second polarization direction
  • the laser light emitted by the second type light-emitting chip may be polarized light in the first polarization direction.
  • the laser 10 may have multiple first-type light-emitting chips and multiple second-type light-emitting chips.
  • the plurality of Some of the first-type light-emitting chips in the first-type light-emitting chips are green light-emitting chips, used to emit green laser light; the remaining part of the first-type light-emitting chips are blue light chips, used to emit blue laser light.
  • the plurality of second-type light-emitting chips are all red light chips and are used to emit red laser light.
  • the plurality of first-type light-emitting chips may all emit green laser light or all emit blue laser light, which is not limited by the embodiments of this application.
  • the plurality of first-type light-emitting chips in the laser 10 may all be red light-emitting chips, and the plurality of second-type light-emitting chips may include multiple green light-emitting chips and multiple blue-light chips.
  • the orthographic projection of the phase retarder 400 on the base plate 101 can cover the plurality of first-type light-emitting chips and their corresponding reflective prisms 300 , and the orthographic projection can be located on the plurality of second-type light-emitting chips and their corresponding reflective prisms 300 outside. In this way, the laser light emitted by the first type of light-emitting chip can be directed to the phase retarder 400 after being reflected by the corresponding reflecting prism 300 .
  • the phase retarder 400 can rotate the polarization direction of the incident laser by 90 degrees.
  • its polarization direction can be the same as the polarization direction of the laser light emitted by the second type light-emitting chip. Same direction.
  • a phase retardation film is provided on the side of the light-emitting chip away from the bottom plate, and the orthographic projection of the phase retardation film on the bottom plate covers each first-type light-emitting chip and the corresponding reflection prism in the laser, and is located In addition to each second-type light-emitting chip and the corresponding reflecting prism in the laser.
  • the laser light emitted by the first type of light-emitting chip can be reflected on the corresponding reflecting prism, and then go through the phase retarder to adjust the polarization direction and rotate it 90 degrees before being emitted, while the polarization direction of the laser light emitted by the second type light-emitting chip does not change.
  • the polarization direction of the laser light emitted by the first type of light-emitting chip becomes the same as the polarization direction of the laser light emitted by the second type light-emitting chip.
  • the polarization direction of the laser light emitted by the laser is the same. Therefore, the difference in transflective performance of lasers emitted by lasers from different types of light-emitting chips when transmitted in subsequent optical elements is small.
  • the ratio of lasers of various colors emitted by lasers changes little after passing through subsequent optical elements and can be weakened.
  • the color cast of the projection screen formed by the laser improves the display effect of the projection screen.
  • FIG 11 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Figure 11 can be a top view of Figure 10
  • Figure 10 can be a schematic diagram of the cross section b-b' of the laser shown in Figure 11
  • Figure 11 does not The phase retarder 400 and the light-transmitting sealing layer 600 in the laser 10 are illustrated.
  • the laser 10 may also include multiple heat sinks R.
  • the plurality of heat sinks R correspond to the plurality of light emitting chip assemblies 200 in the laser 10 in a one-to-one correspondence.
  • the heat sink R is in contact with the base plate 101 and is mounted on the base plate 101.
  • Each light-emitting chip 200 is mounted on the corresponding heat sink R.
  • both the heat sink R and the reflective prism 300 can be fixed to the base plate 101 by sintering silver glue.
  • multiple light-emitting chip assemblies 200 in the laser 10 can be arranged in multiple rows and multiple columns.
  • Figure 11 takes the laser 10 as an example including eight light-emitting chips 200 arranged in two rows and four columns, where the row direction is y direction, the column direction is the x direction.
  • the number and arrangement of the light-emitting chips 200 in the laser 10 can also be adjusted accordingly.
  • the laser 10 can also include 10 light-emitting chips 200 arranged in two rows and five columns, or 15 light-emitting chips 200 arranged in three rows and five columns. , the embodiments of this application are not limited.
  • the distance between adjacent light emitting chips 200 may be 1 mm to 3.5 mm.
  • a plurality of first-type light-emitting chips and a plurality of second-type light-emitting chips in the laser 10 can be respectively disposed in two independent areas.
  • the plurality of first-type light-emitting chips The placement area of the chip and the placement areas of the plurality of second-type light-emitting chips may be arranged along a target direction. If the target direction is the x direction, the x direction is perpendicular to the y direction.
  • the laser 10 includes two rows of light-emitting chips 200, one of which is a first type of light-emitting chip and the other is a second type of light-emitting chip.
  • the first row in the y direction is a first type of light-emitting chip
  • the second row is a second type of light-emitting chip.
  • the target direction may also be the y direction, for example, half of the light-emitting chips in each row are first-type light-emitting chips, and the other half are second-type light-emitting chips.
  • the number of the first type of light-emitting chips and the number of the second type of light-emitting chips may be equal, or may not be equal, which is not limited in the embodiment of the present application.
  • the first type of light-emitting chips and the second type of light-emitting chips may not be arranged in two independent areas.
  • the first type of light-emitting chips and the second type of light-emitting chips may be arranged in a staggered manner.
  • each row of light-emitting chips of the laser 10 may include first-type light-emitting chips and second-type light-emitting chips, and for example, the first-type light-emitting chips and the second type of light-emitting chips in each row may be arranged alternately one by one.
  • FIG. 11 takes as an example that multiple reflective prisms 300 in the laser 10 correspond to multiple light-emitting chip assemblies 200 , and each reflective prism 300 corresponds to one light-emitting chip 200 .
  • one reflective prism 300 can also correspond to multiple light-emitting chip assemblies 200 .
  • FIG. 12 is a schematic structural diagram of yet another laser provided by an embodiment of the present application. As shown in FIG. 12 , each reflective prism 300 may correspond to a row of light-emitting chips. For example, if the laser 10 includes two rows of light-emitting chips 200 and the light emitting directions of each row of light-emitting chips 200 are the same, the laser 10 may only include two reflecting prisms 300 .
  • Each reflective prism 300 may be in a strip shape, and the extending direction of the reflective prism is parallel to the arrangement direction of the corresponding row of light-emitting chips 200 .
  • each reflective prism 300 may also correspond to only part of the light-emitting chips in a row of light-emitting chips 200 .
  • each reflective prism 300 may correspond to only two light-emitting chips 200, and each row of light-emitting chips 200 may correspond to two reflective prisms 300.
  • the phase retarder 400 in the laser 10 can have multiple optional settings.
  • the phase retarder 400 can be directly fixed to the side wall 102 and supported by the side wall 102 .
  • the laser 10 may further include a bracket, which may be surrounded by the side walls 102, and the phase retarder 400 may be supported by the bracket.
  • the phase retarder 400 can be supported by the bracket and the side wall.
  • one edge of the phase retarder 400 is fixed to the side of the bracket away from the bottom plate 101 , and the phase retarder 400 is also fixed to the side wall 102 .
  • the laser 10 may include only one phase retarder 400 , which is fixed to the side wall 102 and is only supported by the side wall 102 .
  • the phase retarder 400 may be rectangular.
  • the side wall 102 may be surrounded by a plurality of sub-walls. If the side wall 102 is in the shape of a square tube and the orthographic projection of the side wall 102 on the bottom plate 101 is approximately rectangular, the side wall 102 may be surrounded by four sub-walls.
  • the phase retarder 400 may be located on a side of the side wall 102 away from the bottom plate 101 . At least two opposite edges of the phase retarder 400 are fixed to the surface of the side wall 102 away from the base plate 101 . As shown in Figure 10 and Figure 11, the The three edges of the phase retarder 400 are fixed to the surface of the side wall 102 away from the base plate 101 . For example, the three edges of the phase retarder 400 are respectively pasted on the surfaces of the three sub-walls of the side wall 102 away from the bottom plate 101 . In a specific implementation, each edge of the phase retarder 400 may only cover a partial area of one of the three sub-walls of the side wall 102 .
  • the side wall 102 can also have other shapes, and the number of sub-walls included in the side wall 102 can also be changed accordingly.
  • the orthographic projection of the side wall 102 on the bottom plate 101 is roughly pentagonal, and the side wall 102 is surrounded by five sub-walls, which is not limited by the embodiment of the present application.
  • the edge of the light-transmitting sealing layer 600 may be fixed to the surface of the side wall 102 away from the base plate 101 .
  • the light-transmitting sealing layer 600 can be adhered to the parts of the three sub-walls that are not covered by the light-transmitting sealing layer 600 through an adhesive; the light-transmitting sealing layer 600
  • the edges of the phase retarder 400 can also be pasted with the three edges on the side away from the bottom plate.
  • the light-transmitting sealing layer 600 can be directly fixed to the side of the sub-wall away from the bottom plate.
  • phase retarder 400 is also provided on the side wall 102, more adhesive may be used to fix the light-transmitting sealing layer 600, and the maximum thickness of the adhesive may be greater than the thickness of the light-transmitting sealing layer 600 to ensure light-transmitting sealing.
  • the layer 600 can be fixed to the side wall 102 through adhesive to ensure the sealing effect on the tube shell.
  • only two opposite edges of the phase retarder 400 may be respectively fixed to two opposite sub-walls of the side wall 102 .
  • only the left and right edges of the phase retarder 400 may be fixed to the left and right sub-walls of the side wall 102 respectively, and the upper edge is not fixed to the side wall. 102 fixed.
  • the phase retarder 400 is located in the package and is surrounded by the side wall 102 .
  • the inner surfaces of at least two opposite sub-walls of the side wall 102 have bosses, and the two opposite edges of the phase retarder 400 are respectively fixed to the sides of the bosses on the two sub-walls away from the base plate 101 .
  • Figure 13 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • the inner surfaces of the two opposite sub-walls of the side wall 102 have bosses T, and the two opposite edges of the phase retarder 400 are respectively on the side away from the base plate 101 with the bosses T on the two sub-walls. fixed.
  • the two sub-walls are opposite to each other in the row direction of the first type of light-emitting chips. It is necessary to ensure that the orthographic projection of the phase retarder 400 on the bottom plate 101 only covers the first type of light-emitting chips and does not cover the second type of light-emitting chips.
  • the two sub-walls are the two sub-walls in the y direction of the side wall 102, that is, the left sub-wall and the right sub-wall in Figure 13.
  • the left edge of the phase retarder 400 is fixed to the boss T on the left sub-wall of the side wall 102
  • the right edge of the phase retarder 400 is fixed to the boss T on the right sub-wall of the side wall 102 T fixed.
  • FIG. 14 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • the inner surface of the sub-wall between the two sub-walls and close to the first type of light-emitting chip also has a protrusion T.
  • the inner surface of the upper sub-wall of the side wall 102 also has a boss T.
  • the three edges of the phase retarder 400 are respectively fixed to the side of the boss T on the three sub-walls away from the bottom plate 101 . In this method, the fixing area between the phase retarder 400 and the boss T is large, and the fixing firmness of the phase retarder 400 is relatively high.
  • the boss T in the embodiment of the present application can be integrally formed with the side wall 102.
  • a piece of The plate is polished or etched to form the side wall 102 with the boss T.
  • the surface of the boss T away from the bottom plate 101 is flat.
  • the length of the boss on each sub-wall may be equal to the length of the sub-wall, or may be smaller than the length of the sub-wall.
  • the boss on each sub-wall may also include a plurality of independent small bosses arranged along the length direction of the sub-wall. The length direction of the sub-wall is the extending direction of the parallel bottom plate 101 of the sub-wall.
  • Figure 15 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • Figure 16 is a schematic structural diagram of yet another laser provided by another embodiment of the present application.
  • Figure 17 This is a schematic structural diagram of yet another laser provided by another embodiment of the present application.
  • Figures 16 and 17 can be top views of the laser shown in Figure 15, and Figure 15 can be a schematic diagram of section b-b' of the laser shown in Figure 16 or 17.
  • the laser 10 may further include at least one bracket 103 .
  • the bracket 103 may be located on the base plate 101 and surrounded by the side walls 102 .
  • An edge (eg, the first edge) of the phase retarder 400 may be supported by the bracket 103 , such as being fixed to a side of the bracket 103 away from the base plate 101 .
  • the remaining three edges may still be supported by side walls 102 .
  • the at least one bracket 103 may be a strip-shaped plate bracket, and the bearing surface of the bracket 103 may extend along the y direction.
  • the length of the bracket 103 may be greater than the overall arrangement length of the plurality of first-type light-emitting chips.
  • the two ends of the bracket 103 may be spaced apart from the side wall 102 (as shown in FIG. 16 ), or both ends of the bracket 103 may be in contact with the side wall 102 . This method is not illustrated in the embodiment of the present application.
  • the mounting process of the bracket 103 is relatively simple, which facilitates the preparation of the laser 10 .
  • the bottom of the bracket 103 can be fixed to the bottom plate 101 to achieve the fixation of the bracket 103 .
  • the bracket 103 can be integrally formed with the bottom plate 101; or the bracket 103 and the bottom plate 101 can also be two independent structures, and the two structures are welded to achieve the fixation of the bracket 103.
  • both ends of the bracket 103 are in contact with the side wall 102, and the two ends of the bracket 103 are fixed to the side wall 102 to achieve the fixation of the bracket 103.
  • the bracket 103 when both ends of the bracket 103 are fixed to the side wall 102, the bracket 103 may not be fixed to the bottom plate 101, for example, there is a gap between the bracket 103 and the bottom plate 101.
  • the bracket 103 can be integrally formed with the side wall 102; or the bracket 103 and the side wall 102 can also be two independent structures, and the two structures are welded to achieve the fixation of the bracket 103.
  • the at least one bracket 103 may also include a plurality of independent brackets.
  • the multiple brackets may be arranged along the y direction.
  • the multiple brackets 103 jointly support the phase retarder 400 .
  • the plurality of brackets is also equivalent to dividing a strip-shaped plate bracket in Figure 16 into multiple parts, and spacing adjacent parts.
  • the two brackets 103 at both ends can be spaced apart from the side wall 102 (as shown in Figure 17), or the two brackets 103 at both ends can also be in contact with the side wall 102.
  • the embodiment of the present application This method is not indicated. In this manner, the plurality of brackets 103 can be bottom-fixed on the bottom plate 101 to achieve fixation of the plurality of brackets 103 .
  • FIG. 16 and FIG. 17 take the laser 10 including only one phase retarder 400 as an example for illustration.
  • FIG. 18 is a schematic structural diagram of a laser provided by yet another embodiment of the present application.
  • the laser 10 may also include multiple phase retarders 400 .
  • the orthographic projection of each phase retarder 400 on the base plate 101 can cover part of the first-type light-emitting chips in the laser 10 to ensure that the orthographic projections of the multiple phase retarders 400 on the base plate 101 jointly cover all the first-type light-emitting chips in the laser 10 .
  • a type of light-emitting chip is a type of light-emitting chip.
  • Each phase retarder 400 may cover one first-type light-emitting chip and its corresponding reflective prism 300 (as shown in FIG. 18 ), or may cover two or more first-type light-emitting chips and their corresponding reflective prisms 300 , the embodiments of this application are not limited.
  • the plurality of phase retarders 400 may be arranged along the y direction.
  • the first edge of each phase retarder 400 is fixed to the bracket 103, the second edge is fixed to the side wall, and the first edge is opposite to the second edge.
  • the number of phase retardation plates 400 is the same as the number of brackets 103 , and the first edge of each phase retardation plate 400 may be supported by only one bracket 103 .
  • the laser 10 includes at least one bracket 103 located on the base plate 101 and surrounded by a side wall 102.
  • the inner surface of the side wall 102 has a boss T
  • the phase retarder 400 is formed by the at least one bracket 103.
  • the boss T can be integrally formed with the side wall 102.
  • a plate can be polished or etched to form the side wall 102 with the boss T.
  • the surface of the bracket 103 away from the base plate 101 and the surface of the boss T away from the base plate 101 are both flat and parallel to the surface of the base plate 101 . The two surfaces may be equidistant from the base plate 101 .
  • the phase retarder 400 is fixed to the surface of the bracket 103 away from the base plate 101 , and is fixed to the surface of the boss T away from the base plate 101 .
  • the at least one bracket 103 may be a strip-shaped plate bracket, or may include multiple brackets 103 .
  • the optional implementation and fixing method of the at least one bracket 103 please refer to the relevant introduction in the second arrangement method of the phase retarder 400 , which will not be described again in the embodiment of the present application.
  • the number of phase retarder 400 may be one or multiple.
  • the at least one bracket 103 is only one bracket, and the number of phase retardation plates 400 is one.
  • the side wall 102 in the laser 10 is surrounded by a plurality of sub-walls.
  • the embodiment of the present application also takes as an example that the orthographic projection of the side wall 102 on the bottom plate 101 is approximately rectangular.
  • the side wall 102 is surrounded by four sub-walls, namely a first sub-wall, a second sub-wall, a third sub-wall and a fourth sub-wall.
  • the first sub-wall is opposite to the fourth sub-wall
  • the second sub-wall is opposite to the fourth sub-wall.
  • the three sub-walls are opposite to each other, and both the second sub-wall and the third sub-wall are adjacent to the first sub-wall.
  • Figure 19 is a schematic structural diagram of another laser provided by yet another embodiment of the present application.
  • Figure 20 is a schematic structural diagram of yet another laser provided by yet another embodiment of the present application.
  • Figure 20 is a schematic structural diagram of Figure 19
  • the top view of the laser shown in FIG. 19 is a schematic diagram of the section b-b' of the laser shown in FIG. 20 .
  • the inner surface of the first sub-wall has a boss T, and the boss T on the inner surface of the side wall 102 may be located only on the first sub-wall.
  • the first type of light-emitting chip in the laser 10 may be located between the boss T and the bracket 103 .
  • the first edge of the phase retarder 400 is fixed to the side of the bracket 103 away from the base plate 101
  • the second edge of the phase retardation plate 400 is fixed to the side of the boss T away from the base plate 101 .
  • the first edge is opposite to the second edge.
  • the first edge and the second edge are in the y direction of the phase retarder 400 .
  • the boss T may be a strip-shaped boss.
  • the length of the boss T on the first sub-wall can be equal to the length of the first sub-wall (such as the length in the x direction), or the length of the boss T can also be smaller than the length of the first sub-wall (as shown in Figure 20 shown), the embodiments of this application are not limited.
  • the preparation method of the strip-shaped boss is relatively simple.
  • the boss T on the first sub-wall may also include a plurality of independent small bosses arranged along the x-direction. This method is not illustrated in the embodiment of the present application.
  • the second edge of the phase retarder 400 is simultaneously fixed to the surface of the plurality of small bosses away from the base plate 101 .
  • the distance between any two adjacent small bosses may be equal.
  • the second edge of each phase retarder 400 can be fixed with a small boss on the surface away from the base plate 101 , or can be fixed on a plurality of small bosses on the surface far away from the bottom plate 101 .
  • the number of phase retarders 400, the number of small bosses on the first sub-wall, the number of brackets 103 and the number of first-type light-emitting chips can be equal, and each phase retarder 400 consists of one small boss. It is supported by a bracket 103 and covers a first-type light-emitting chip.
  • the specific arrangement, quantity and shape of the boss T on the first sub-wall are not limited. It is only necessary to ensure that the edge of the phase retarder 400 will not fall off after being fixed to the boss.
  • FIG. 21 is a schematic structural diagram of yet another laser provided by yet another embodiment of the present application.
  • FIG. 21 does not illustrate the phase retarder 400 and the light-transmitting sealing layer 600 in the laser.
  • the inner surfaces of the first sub-wall and the second sub-wall in the side wall 102 both have bosses, that is, the boss T on the inner surface of the side wall 102 can be located on the first sub-wall and the second sub-wall. Erzi on the wall.
  • the laser 10 may include only one phase retarder 400.
  • the first edge of the phase retarder 400 is fixed to the surface of the bracket 103 away from the base plate 101, and the second edge is fixed to the surface of the boss on the first sub-wall away from the base plate 101.
  • the laser 10 may also include a plurality of phase retarder plates, and the third edge of the phase retarder plate 400 closest to the second sub-wall among the plurality of phase retarder plates 400 is fixed to the boss on the second sub-wall.
  • other phase retarders 400 are fixed only by two edges.
  • the implementation of the boss on the second sub-wall can be the same as the implementation of the boss on the first sub-wall.
  • the boss can also be a strip-shaped boss or include multiple independent small bosses arranged along the x-direction.
  • the length of the boss on the second sub-wall (that is, the length in the x direction) can be smaller than the overall length of the second sub-wall. Only half of the second sub-wall has bosses, and only The phase retarder 400 is disposed on the boss to cover the first type of light-emitting chip and its corresponding reflective prism 300 . In a specific implementation, the length of the boss on the second sub-wall (that is, the length in the x direction) may also be equal to the overall length of the second sub-wall.
  • FIG. 22 is a schematic structural diagram of a laser provided by yet another embodiment of the present application.
  • FIG. 22 does not illustrate the phase retarder 400 and the light-transmitting sealing layer 600 in the laser.
  • the inner surfaces of the first sub-wall, the second sub-wall and the third sub-wall all have bosses, that is, the boss T on the inner surface of the side wall 102 can be located on the first sub-wall, the second sub-wall and the third sub-wall.
  • the laser 10 may include only one phase retarder 400.
  • the first edge of the phase retarder 400 is fixed to the surface of the bracket 103 away from the base plate 101, and the second edge is fixed to the surface of the boss on the first sub-wall away from the base plate 101.
  • the three edges are fixed to the surface of the boss on the second sub-wall away from the bottom plate 101, and the fourth edge is fixed to the surface of the boss on the third sub-wall away from the bottom plate 101. In this way, the position of the phase retarder 400 is fixed by fixing four edges thereof.
  • the laser 10 may also include a plurality of phase retarder plates, and among the plurality of phase retarder plates 400 , the third edge of the phase retarder plate 400 closest to the second sub-wall and the boss on the second sub-wall may be Fixed, the fourth edge of the phase retarder 400 closest to the third sub-wall is fixed to the boss on the second sub-wall, and other phase retarders 400 are only fixed through two edges.
  • the realization of the boss on the third sub-wall can be the same as the realization of the boss on the first sub-wall and the second sub-wall.
  • the boss can also be a strip-shaped boss or include multiple bosses arranged along the x-direction.
  • the four sub-walls of the side wall 102 each have a boss, which may be annular, and the length of the boss on each sub-wall may be equal to the length of the sub-wall.
  • the orthographic projection of the boss on the base plate 101 can surround all the light-emitting chips 200 and their corresponding reflective prisms 300 .
  • the sidewall 102 can have higher versatility, and the first type of light-emitting chip can be arranged more flexibly in the laser using the sidewall 102. There is no need to limit the first type of light-emitting chip to only be placed in a certain position, or with the other side.
  • the side walls 102 maintain a certain relative relationship, and the arrangement flexibility of the light-emitting chips is high.
  • the first type of light-emitting chips and the second type of light-emitting chips can be arranged arbitrarily on the base plate 101. It is only necessary to ensure that each first type of light-emitting chip and its corresponding reflective prism 300 are located close to the side wall 102, and then only It is necessary to provide a bracket 103 on the back side of the first type of light-emitting chip (that is, the side opposite to the light-emitting side), so that the phase retarder 400 can be supported through the bracket 103 and the boss on the side wall 102, so that the phase retardation film 400 can be supported.
  • the retarder 400 covers the first type of light-emitting chip and its corresponding reflective prism 300 .
  • the structure, formation method, arrangement method and fixation of the boss on the sub-wall in the third optional arrangement method with the phase retardation film 400 are the same as those in the first optional arrangement method.
  • the methods can be the same, and the relevant descriptions can be referred to each other, which are not limited by the embodiments of this application.
  • the laser 10 may include at least one bracket 103 , the phase retarder 400 is only supported by the bracket 103 , and the edge of the phase retarder 400 is only fixed to the surface of the bracket 103 away from the base plate 101 .
  • the inner surface of the side wall 102 may not have a boss, or may still have a boss.
  • FIG. 23 is a schematic structural diagram of another laser provided by yet another embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of yet another laser provided by yet another embodiment of the present application.
  • FIG. 24 may be a top view of the laser shown in FIG. 23
  • FIG. 23 may be a schematic diagram of the cross-section b-b' of the laser shown in FIG. 24 .
  • each bracket 103 includes a rectangular frame and four supporting feet respectively located at four corners of the rectangular frame.
  • the orthographic projection of each bracket 103 on the bottom plate 101 can surround at least one first A quasi-luminescent chip and its corresponding reflective prism 300.
  • Figure 24 only includes laser 10
  • a bracket 103 is included, and the orthographic projection of the bracket 103 on the base plate 101 surrounds all the first-type light-emitting chips and their corresponding reflective prisms 300 in the laser 10 .
  • the laser 10 may also include a plurality of brackets 103, and the orthographic projection of each bracket 103 on the base plate 101 surrounds part of the first type of light-emitting chip.
  • each bracket 103 may be in the shape of a tube, and each bracket 103 may be surrounded by four solid plates. In a specific implementation, each bracket 103 can also be surrounded by three solid plates. In this case, the bracket 103 half surrounds at least one first-type light-emitting chip and its corresponding reflective prism 300 . In a specific implementation, multiple brackets 103 in the laser 10 can also be distributed on opposite sides of multiple first-type light-emitting chips and their corresponding reflecting prisms 300. In this case, the structure of the brackets 103 can refer to the above three types. Introduction to bracket 103 in optional setting mode.
  • the bracket 103 may also include four independent plate-shaped brackets, which are distributed around at least one first-type light-emitting chip and its corresponding reflective prism 300 .
  • the setting mode of the phase retarder 400 on the bracket 103 can refer to the setting mode of the phase retarder 400 on the side wall 102 and the bracket 103 in the aforementioned three optional setting modes. The embodiments of this application will not be described again in detail.
  • the plurality of first-type light-emitting chips and the plurality of second-type light-emitting chips in the laser 10 are arranged in separate areas, and at least one bracket 103 in the laser 10 For example, it is located between the plurality of first-type light-emitting chips and the plurality of second-type light-emitting chips.
  • the material of the bottom plate 101 in the embodiment of the present application may include metal.
  • the material may include copper, such as oxygen-free copper, or the material may include other metals such as aluminum or iron.
  • the material of the bottom plate 101 is copper, which ensures that the heat generated by the light-emitting chip 200 provided on the bottom plate 101 during operation can be quickly conducted through the bottom plate 101 and then dissipated quickly, thereby avoiding the accumulation of heat and damage to the light-emitting chip. damage.
  • the material of the bottom plate 101 may also be one or more of aluminum, aluminum nitride, and silicon carbide.
  • the material of the base plate 101 may also include ceramic.
  • the material of the bracket 103 may include metal or ceramic.
  • the bracket 103 is made of the same material as the bottom plate 101 .
  • the bracket 103 can be integrally formed with the bottom plate 101 , or fixed to the bottom plate 101 by soldering.
  • the material of the bracket 103 can also be the same as the material of the side wall 102.
  • the bracket 103 can be integrally formed with the side wall 102, or fixed with the side wall 102 by welding or pasting.
  • the edge area of one side surface of the phase retarder 400 may be pre-disposed with solder.
  • the solder may be gold-tin solder, and the material of the solder may include gold and tin.
  • the solder can cover at least two edge areas of the phase retarder 400, for example, can cover four edge areas.
  • the solder in each edge area can be continuous, or only a few solder blocks can be provided at intervals. It is only necessary to ensure that the phase retarder 400 can be firmly fixed based on the solder.
  • the embodiment of the present application is for the solder in the phase retarder. Coverage and specific locations are not limited.
  • the phase retarder 400 is supported by the boss T on the side wall 102 and the bracket 103.
  • the edge of the phase retarder 400 can be overlapped on the protrusion T of the side wall 102 and the bracket 103.
  • the edge area of the phase retarder 400 is heated to melt the solder on the phase retarder 400 .
  • the melted solder can then be cooled down to solidify the phase retarder 400 to the side wall 102 and the bracket 103 to achieve fixation.
  • the phase retarder 400 is fixed in the same manner.
  • the material of the phase retarder 400 may include sapphire.
  • the expansion coefficients of sapphire and ceramic sidewalls have a high matching degree, so that the phase retarder 400 and the sidewall 102 can be better connected and ceramic cracks caused by stress can be reduced.
  • the area of the phase retarder 400 can be as small as possible, and it is only necessary to ensure that all the laser light emitted by the first light-emitting chip can enter the phase retarder 400, so as to reduce the manufacturing cost of the laser 10.
  • the material of the light-transmitting sealing layer 600 can be glass, sapphire, quartz or Bk7 model crown glass.
  • the arrangement of the light-transmitting sealing layer 600 in the laser 10 will be introduced below with reference to the accompanying drawings.
  • the edge of the light-transmitting sealing layer 600 can be directly fixed to the surface of the side wall 102 away from the bottom plate 101, and the light-transmitting sealing layer 600, the bottom plate 101 and the side wall 102 can form a closed space.
  • sealant can be used to directly adhere to the edge of the light-transmitting sealing layer 600 and the surface of the side wall 102 away from the base plate 101 .
  • solder can be pre-disposed on the edge of the light-transmitting sealing layer 600 , and then the solder is melted and the light-transmitting sealing layer 600 is disposed on the side of the side wall 102 away from the bottom plate 101 , so that the light-transmitting sealing layer 600 is in contact with the side wall 102 fixed.
  • the solder is gold-tin solder.
  • the laser 10 can also include a collimating lens group 500.
  • the collimating lens group 500 can collimate the incident laser so that the laser can be adjusted. For nearly parallel light emission.
  • the collimating lens group 500 may be located on a side of the light-transmitting sealing layer 600 away from the base plate 101 .
  • the collimating lens group 500 may include a plurality of collimating lenses J corresponding one-to-one to the plurality of light-emitting chip assemblies 200 in the laser 10 .
  • Each light-emitting chip 200 emits laser light to the corresponding reflective prism 300.
  • the reflective prism 300 reflects the incident laser light to the light-transmitting sealing layer 600.
  • the laser light After the laser light is transmitted through the light-transmitting sealing layer 600, it can be directed to the corresponding part of the light-emitting chip 200.
  • Collimating lens J The collimating lens J can collimate the incident laser and then emit it, thereby realizing the laser 10 to emit light.
  • collimating lenses in the collimating lens group 500 can be integrally formed.
  • the side of the collimating lens group 500 away from the base plate 101 may have a plurality of convex arc surfaces that are bent toward the side away from the base plate 101 .
  • the portion of each convex arc surface in the collimating lens group 500 can be regarded as a collimating lens J, and further it can be regarded that the collimating lens group 500 includes multiple collimating lenses J.
  • a phase retarder is provided on the side of the light-emitting chip away from the base plate in the laser, and the orthographic projection of the phase retardation plate on the base plate covers each first-type light-emitting chip in the laser. and corresponding reflective prisms, and are located outside each second type light-emitting chip and the corresponding reflective prism in the laser.
  • the laser light emitted by the first type of light-emitting chip can be reflected on the corresponding reflecting prism, and then go through the phase retarder to adjust the polarization direction and rotate it 90 degrees before being emitted, while the polarization direction of the laser light emitted by the second type light-emitting chip does not change.
  • the polarization direction of the laser light emitted by the first type of light-emitting chip becomes the same as the polarization direction of the laser light emitted by the second type light-emitting chip.
  • the polarization direction of the laser light emitted by the laser is the same. Therefore, the light emitted by the laser originates from different types of light-emitting chips.
  • the difference in the transflective performance of the laser when transmitted in the subsequent optical elements is small.
  • the ratio of the lasers of various colors emitted by the laser changes little after passing through the subsequent optical elements, which can weaken the color cast of the projection screen formed by the laser and improve The display effect of the projected screen.
  • the coverage area of the orthographic projection of the phase retarder on the bottom plate can also correspond to part of the first-type light-emitting chip and the corresponding reflective prism, Therefore, only a part of the polarization direction of the laser beam emitted by the first-type light-emitting chips is changed.
  • the phase retardation plate is a half-wave plate, corresponding to half the number of first-type light-emitting chips, thereby only changing half of the first-type light-emitting chips.
  • the other half of the laser beams emitted by the first type of light-emitting chips do not pass through the half-wave plate, thereby maintaining the original polarization direction.
  • the laser beam also helps reduce the degree of coherence.
  • the phase retarder can also correspond to a part of the first type of light-emitting chips and a part of the second type of light-emitting chips respectively, and the ratio of both is specifically selected to be 50%. Therefore, in each of the plurality of first-type light-emitting chips and the plurality of second-type light-emitting chips, the polarization direction of half of the laser beams is changed, and the polarization direction of the remaining half of the laser beams maintains the original polarization direction.
  • both the first type of light-emitting chip and the second type of light-emitting chip have two different polarization directions, and the degree of difference in polarization directions is also improved, and for the same type of light-emitting chip, there are two different polarization directions.
  • Laser beams also help reduce coherence.
  • FIG. 25 is a schematic structural diagram of the laser projection device provided by the embodiment of the present application.
  • the laser projection device provided by the embodiment of the present application includes: any of the above-mentioned laser light sources 10 , a light valve modulation component 20 and a projection lens 30 .
  • a phase retardation film is provided on the prism on the light exit side of the laser light emitting chip or at least a phase retardation film is provided in the light exit path in the reflection direction of the prism, so that the laser light emitted by a type of light emitting chip passes through the prism.
  • the polarization direction of the laser light behind the phase retarder is the same as the polarization direction of the laser light emitted by another type of light-emitting chip, thereby avoiding color problems caused by different polarization states.
  • phase retarder when the phase retarder is arranged in the partial beam output path of the two types of light-emitting chips, in the output laser beam obtained from the laser, there are two polarization states of light of the same color, which can reduce the two types of luminescence on the one hand.
  • the polarization direction of the chip is completely orthogonal to the difference state. At the same time, it can also reduce the degree of coherence of light of the same color.
  • the light valve modulation component 20 is located on the light exit side of the laser 10.
  • the light valve modulation component 20 is used to modulate the incident light and then reflect it.
  • the light valve modulation component 20 can use a Digital Micromirror Device (DMD).
  • DMD is a reflective light valve device.
  • the surface of the DMD includes thousands of tiny mirrors. By controlling tiny The flip angle and duty cycle of the reflector can modulate the light.
  • the projection lens 30 is located on the reflected light path of the light valve modulation component 20.
  • the projection lens 30 is used to reflect the light valve modulation component.
  • the emerging light is imaged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器和激光投影设备,属于光电技术领域。激光器包括:管壳(100);管壳(100)包括底板(101)和位于底板(101)之上的环状侧壁(102);密封透光层(600),与环状侧壁(102)连接;其中,底板(101)、环状侧壁(102)和密封透光层(600)形成密封容置空间;多个发光芯片(200),贴装于管壳(100)的底板(101)之上;多个发光芯片(200)包括第一类发光芯片(201)和第二类发光芯片(202),第一类发光芯片(201)出射的激光的偏振方向与第二类发光芯片(202)出射的激光的偏振方向不同;至少一个棱镜(300);棱镜(300)对应多个发光芯片(200)中的至少一个,棱镜(300)用于接收对应的多个发光芯片(200)出射的激光,并向激光器的出光方向反射;相位延迟片(400),位于密封容置空间内且平行于底板(101)设置,至少部分发光芯片(200)的光束经相位延迟片(400)改变激光的偏振方向后再射向密封透光层(600)。

Description

一种激光器和激光投影设备
相关申请的交叉引用
本申请要求在2022年3月31日提交中国专利局、申请号为202210344076.0,发明名称为一种激光器和激光投影设备,以及在2022年5月16日提交中国专利局、申请号为202221173515.8,发明名称为激光器中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器和激光投影设备。
背景技术
目前,激光投影行业的发展十分迅速,激光器作为其中的核心部件之一,起到了无可替代的作用。半导体激光器是在生产完芯片后,在对芯片进行封装而成的。所以激光器的封装能力对激光器的应用、成本、性能等指标具有十分重大的影响。
基于激光器的发展和对色彩显示的需求,激光器封装追求出射高质量的光束,以期望在应用到光路中时,尽量减少光路部件的使用,使得激光显示设备体积小型化和简化。
发明内容
本申请一些实施例公开了一种激光器,包括:
管壳;所述管壳包括底板和位于所述底板之上的环状侧壁;
密封透光层,与所述环状侧壁连接;其中,所述底板、所述环状侧壁和所述密封透光层形成密封容置空间;
多个发光芯片,贴装于所述管壳的底板之上;所述多个发光芯片包括第一类发光芯片和第二类发光芯片,所述第一类发光芯片出射的激光的偏振方向与所述第二类发光芯片出射的激光的偏振方向不同;
至少一个棱镜;一个所述棱镜对应至少一个所述多个发光芯片,所述棱镜用于接收对应的所述多个发光芯片出射的激光向所述激光器的出光方向反射;
相位延迟片,位于所述容置空间内且平行于所述底板设置,至少部分所述多个发光芯片的光束经所述相位延迟片改变激光的偏振方向后再射向所述密封透光层。
本申请一些实施例中还公开了一种激光投影设备,包括上述技术方案中的激光器,以及
光阀调制部件,位于所述激光器的出光侧;所述光阀调制部件用于对所述激光器的出射光线进行调制;
投影镜头,位于所述光阀调制部件的出光侧。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的激光器的结构示意图;
图2为本申请实施例提供的激光器的结构示意图;
图3为图2所示的激光器的侧视结构示意图;
图4为本申请实施例提供的激光器的侧视结构示意图之二;
图5为本申请实施例提供的激光器的侧视结构示意图之三;
图6为图5所示的激光器的俯视结构示意图;
图7为本申请实施例提供的激光器的侧视结构示意图之四;
图8为图7所示的激光器的俯视结构示意图;
图9为本申请实施例提供的激光器的俯视结构示意图之三;
图10是本申请实施例提供的一种激光器的结构示意图;
图11是本申请实施例提供的另一种激光器的结构示意图;
图12是本申请实施例提供的再一种激光器的结构示意图;
图13是本申请实施例提供的又一种激光器的结构示意图;
图14是本申请另一实施例提供的一种激光器的结构示意图;
图15是本申请另一实施例提供的另一种激光器的结构示意图;
图16是本申请另一实施例提供的再一种激光器的结构示意图;
图17是本申请另一实施例提供的又一种激光器的结构示意图;
图18是本申请再一实施例提供的一种激光器的结构示意图;
图19是本申请再一实施例提供的另一种激光器的结构示意图;
图20是本申请再一实施例提供的再一种激光器的结构示意图;
图21是本申请再一实施例提供的又一种激光器的结构示意图;
图22是本申请又一实施例提供的一种激光器的结构示意图;
图23是本申请又一实施例提供的另一种激光器的结构示意图;
图24是本申请又一实施例提供的再一种激光器的结构示意图;
图25为本申请实施例提供的激光投影设备的结构示意图。
其中,100-管壳,101-底板,102-环状侧壁,107-支架,200-激光芯片组件,201-第一类发光芯片,202-第二类发光芯片,L1-第一类发光芯片行,L2-第二类发光芯片行,300-棱镜,S0-顶面,S1-第一反射面,S2-第二反射面,400-相位延迟片,500-准直透镜,600-密封玻璃,700-陶瓷绝缘子,T1-第一级台阶面,T2-第二级台阶面,10-激光器,20-光阀调制部件,30-投影镜头。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
随着显示行业的发展,人们对于显示的色彩提出了更高的要求。而当前的LED等显示技术由于其自身限制,很难有更纯的颜色显示及更高的色域效果。基于此,激光显示技术应运而生,由于激光本身的固有属性,其具备高亮度、波长单一性等关键指标,使其可以实现更高亮度下的较好的色彩还原性及高色域,可以实现更好地显示效果,达到更优的观看体验。
而目前激光器技术也日益成熟,其中可见光波段蓝色、红色、绿色的激光器均已经实现量产,所以三色激光的发展已经成为大势所趋。基于激光器的发展和对色彩显示的需求,目前主流应用的激光器已经从单色激光升级到三色激光器。随着激光器亮度的提高,为了使得系统的体积最小化,三色激光封装到一个管壳里面已经成为了必然趋势,并且已经得到了广泛地应用。
由于不同颜色激光的发光原理,目前蓝色激光芯片、绿色激光芯片出射的激光的偏振方向和红色激光芯片出射的激光的偏振方向不同。其中,蓝色激光和绿色激光的偏振方向相同,均与红色激光的偏振方向互相垂直。这种不同颜色激光偏振方向不一致的情况,会在作为光源照明应用时产生一些问题,比如比较突出的一点就是在整机投影画面端,会出现多区域色彩不一,“色块”或局部偏色的现象,影响最终的观看投影画面效果。
为了改善这一现象,目前的解决方案是在设计光路系统时,在光路中设置增加改变偏振态的系统部件,以使到屏幕画面端的三色激光的偏振方向一致。然而这样不可避免会导致系统成本的增加,增加结构复杂度和组装工序,并且也不利于整机设备的体积的小型化。
图1为相关技术中的激光器的结构示意图。
如图1所示,激光器通常包括管壳100,设置在管壳100内的多个发光芯片组件200,以及位于多个发光芯片组件200出光侧的棱镜300。
通常情况下,管壳100内设置多个发光芯片组件200,每个多个发光芯片组件200的出光侧设置一个棱镜,用于反射光线。一个多个发光芯片组件200及其出光侧的棱镜300构成一个单元,多个单元在管壳100内呈阵列排布。
在多芯片封装结构的激光器中,多个发光芯片组件200包括红色激光芯片组件、绿色激光芯片组件和蓝色激光芯片组件。由于激光芯片的固有性质,红色激光芯片组件出射的激光偏振方向通常为TM模,而蓝色激光芯片组件和绿色激光芯片组件出射的激光偏振方向通常为TE模,两者呈垂直正交,基于光学系统光效考虑,通常将红色激光的偏振方向即激光器内部的TM模,对应为成像画面端屏幕入光面的第二偏振方向的光,通常称为P光,则蓝色激光和绿色激光的偏振方向则对应为成像画面端屏幕入光面的第一偏振方向的光,通常称为S光。即使同一光学镜片,以及光学屏幕,对具有不同偏振方向的红色激光和蓝色、绿色激光的折反率存在差异,从而导致激光器出射的三色激光在经过后续光路之后在画面端出现色斑、色块以及偏色等问题。
有鉴于此,本申请实施例提供一种激光器,在激光器封装时对激光芯片处出射激光的偏振态进行调整,从而使激光器出射的激光的偏振方向均相同。
图2为本申请实施例提供的激光器的结构示意图;图3为图2所示的激光器的侧视结构示意图。
如图2和图3所示,激光器包括:管壳100、多个发光芯片组件200、棱镜300和相位延迟片400。
管壳100用于容置多个发光芯片组件200,对多个发光芯片组件200进行封装。管壳100包括底板101和位于底板之上的环状侧壁102,底板101和环状侧壁102形成容置空间。其中,管壳100的材料可以采用金属或陶瓷,金属可以采用不锈钢,陶瓷可以采用氧化铝。底板101优选采用散热性能比较好的金属,例如可以采用无氧铜。
多个发光芯片组件200固定于管壳的底板101之上。在具体实施时,多个发光芯片组件200包括激光芯片和热沉。激光芯片和热沉采用高精度共晶焊接机进行焊接,形成激光芯片组件。热沉用于对激光芯片进行散热,通常也可以采用ALN、第一偏振方向的iC等材料进行制作,在此不做限定。
本申请实施例提供的激光器包括至少一个棱镜300,位于管壳100的容置空间内,具体可以固定在管壳的底板101上。一个棱镜300可以对应至少一个多个发光芯片组件200,具体地,棱镜300位于对应的多个发光芯片组件200的出光侧,棱镜300用于接收对应的多个发光芯片组件200出射的激光向激光器的出光方向反射。
在具体实施时,棱镜300和多个发光芯片组件200通过烧结金浆或者烧结银浆等手段,温度控制在200℃-250℃之间,完成热沉和棱镜相对于管壳的贴合。
棱镜300可以与多个发光芯片组件200中的每个发光芯片一一对应,从而具有多个棱镜300,也可以将棱镜300设置为对应至少两个发光芯片。
在本申请实施例中,如图2和图3所示,多个发光芯片组件200包括:第一类发光芯片201和第二类发光芯片202,其中,第一类发光芯片201出射的激光的偏振方向与第二类发光芯片202出射的激光的偏振方向不同。
以及,本实施例的激光器还包括密封透光层600,与环状侧壁102连接;其中,底板101、环状侧壁102和密封透光层600形成密封容置空间,多个第一类发光芯片201和第二类发光芯片202位于该密封容置空间内。以及,位于位于该容置空间内且平行于底板101还设置有相位延迟片,具体地,相位延迟片为半波片。在设置于底板101上的至少部分发光芯片的光束经该相位延迟片改变激光的偏振方向后再射向密封透光层600,最终从激光器出射。
在一些实施例中,相位延迟片对应第一类发光芯片和第二类发光芯片中的两者之一进行设置,从而改变其中一类发光芯片的偏振方向,以使得与另一类发光芯片的偏振方向一致,以实现激光器出射的三色激光的偏振方向一致。
而在一些实施例中,相位延迟片可以针对第一类发光芯片和第二类发光芯片中的部分发光芯片设置。具体的,相位延迟片可以针对部分而非全部的第一类发光芯片设置,这样,相位延迟片为对应第一类发光芯片的半波片,只改变一部分第一类发光芯片所出射的激光光束的偏振方向,在具体实施时,半波片对应一半数量的第一类发光芯片设置,从而只改变一半的第一类发光芯片所出射的激光光束的偏振方向,而另一半数量的第一类发光芯片所出射的激光光束不经过半波片,从而维持原来的偏振方向。通过上述设置,对于第一类发光芯片而言,具有两种不同的偏振方向,与第二类发光芯片偏振方向不同的程度减轻,并且,对于同一类发光芯片而言,具有两种不同偏振方向的激光光束还有利于降低相干程度。
以及,相位延迟片还可以分别对应一部分的第一类发光芯片和一部分的第二类发光芯片,也具体选择均为50%的比例。从而,多个第一类发光芯片和多个第二类发光芯片中,各有一半的激光光束的偏振方向发生了改变,以及各有剩余一半的激光光束的偏振方向维持原来的偏振方向。从而通过上述设置,第一类发光芯片和第二类发光芯片均具有两种不同的偏振方向,偏振方向差异程度也得到了改善,并且对于同一类发光芯片而言,具有两种不同偏振方向的激光光束还有利于降低相干程度。
以下示例先以相位延迟片设置于其中一种偏振方向的激光光束的光路中为例进行说明,而对于相位延迟片部分对应某一类发光芯片设置的情况也同理可以参见以下示例方式。
以图3为例,本申请实施例中,反射棱镜300上设置了至少一个相位延迟片400,相位延迟片400可以设置于第一类发光芯片201或第二类发光芯片202出光侧的棱镜上;相位延迟片400用于接收对应的棱镜300的反射激光并改变对应的该类发光芯片发出的激光的偏振方向,以使激光器出射的激光的偏振方向相同。
在具体实施时,棱镜300的顶面通常为一平面,因此可以将相位延迟片400设置在该顶面的边缘处,并向棱镜的反射面伸出一定距离,这样可以使激光芯片组件出射的激光在经过棱镜300反射之后再入射到相位延迟片400上。
由于多个发光芯片组件200和棱镜300通常采用烧结金浆或者烧结银浆等手段与管壳100贴合,因此可以在相位延迟片400与棱镜300相接触的表面上设置镀金层,从而可以采用相同的工艺将相位延迟片400贴合在棱镜300上。除此之外,也可以采用不含有机物的抗高温胶水将相位延迟片粘贴在棱镜上,在此不做限定。
相位延迟片400只需要设置在第一类发光芯片201和第二类发光芯片202中的一种激光芯片组件出光侧的棱镜之上,使得一种激光芯片组件出射的激光在经过相位延迟片400之后激光的偏振方向与另一种激光芯片组件出射的激光的偏振方向相同,从而可以避免由于偏振态不同而导致的色彩问题。
在实际应用中,激光器通常包括红色激光芯片组件、绿色激光芯片组件和蓝色激光芯片组件,其中红色激光芯片组件出射的红色激光与,绿色激光芯片组件出射的绿色激光以及蓝色激光芯片组件出射的蓝色激光的偏振方向正交。那么本申请实施例中的第一类发光芯片201可以包括红色激光芯片组件,第二类发光芯片202可以包括绿色激光芯片组件和蓝色激光芯片组件;或者,第一类发光芯片201可以包括绿色激光芯片组件和蓝色激光芯片组件,第二类发光芯片202可以包括红色激光芯片组件,在此不做限定。
由于红色激光和蓝色激光、绿色激光的偏振方向相互垂直,为了追求一致的偏振方向,相位延迟片400可以采用二分之一波片。
以图3所示的激光器为例进行说明,其中,第一类发光芯片201为红色激光芯片组件,第二类发光芯片202包括绿色激光芯片组件和蓝色激光芯片组件。那么可以在第一类发光芯片201,即红色激光芯片组件出光侧的棱镜上设置二分之一波片,从而将红色激光芯片组件出射的第二偏振方向的光转化为第一偏振方向的光,与绿色激光芯片组件和蓝色激光芯片组件出射的第一偏振方向的光的偏振方向保持一致。
当然,也可以在第二类发光芯片202,即绿色激光芯片组件和蓝色激光芯片组件出光侧的棱镜上设置二分之一波片,从而将绿色激光芯片组件和蓝色激光芯片组件出射的第一偏振方向的光转化为第二偏振方向的光,与红色激光芯片组件出射的第二偏振方向的的偏振方向保持一致。
在具体实施过程中,可以根据红色激光芯片组件、绿色激光芯片组件和蓝色激光芯片 组件的布局决定在哪种激光芯片组件出光侧的棱镜上设置相位延迟片,以结构简化易组装为原则进行设置,在此不做限定。
图4为本申请实施例提供的激光器的侧视结构示意图之二。
如图4所示,激光器还包括:准直透镜500和密封玻璃600。
准直透镜500位于管壳100形成的容置空间内,具体可以固定在管壳的底板101上。在本申请实施例中,一个准直透镜500对应一个多个发光芯片组件200,准直透镜500位于对应的多个发光芯片组件200与对应的棱镜300之间。准直透镜用于对多个发光芯片组件200出射的激光进行准直,这样在设置相位延迟片时就不需要考虑不同角度入射到相位延迟片的效果,从而简化设计。
在具体实施时,准直透镜500可以采用单片透镜或透镜组,具体可以采用非球面透镜、柱状透镜、自由曲面透镜或菲涅尔透镜,在此不做限定。除此之外,也可以将棱镜300的反射面设置为曲面同时起到反射光线以及准直光线的作用,此时棱镜300的反射面优选采用非球面的曲面,在此不做限定。
密封玻璃600位于管壳100的上方开口位置,密封玻璃600与管壳100的边缘焊接,从而实现对激光器的封装。具体地,密封玻璃600可以采用蓝宝石,石英,Bk7等材料。管壳100与密封玻璃600之间可以采用电阻焊或者Au第一偏振方向的n直接焊接的方式进行焊接。其中,电阻焊接的方式需要将密封玻璃600与金属通过低温玻璃胶焊接到一起,在进行电阻焊接。
本申请实施例提供的激光器中激光芯片组件可以采用多种排列规则进行排列,相应地,可以将棱镜300进行变形设计,再配合将相位延迟片设置在合理的位置,实现激光器出射的激光的偏振方向相同的目的。
在一些实施例中,如图1所示,多个发光芯片组件200与棱镜300仍可以采用一一对应的设置关系,每个第一类发光芯片出光侧的棱镜上均可以设置一个相位延迟片;或者,每个第二类发光芯片出光侧的棱镜上均可以设置一个相位延迟片。这种设置方式不需要考虑不同种类的激光芯片组件的排列规则,只需要在需要进行转换偏振态的激光芯片组件出光侧的棱镜上设置相位延迟片即可。
在一些实施例中,如图1所示,各激光芯片组件沿设定方向排列为多行,以图1所示的结构为例,激光器中通常包括两行红色激光芯片组件、一行绿色激光芯片组件和一行蓝色激光芯片组件,且红色激光芯片组件行与绿色激光芯片组件行、蓝色激光芯片组件行替换排列。在这种情况下,可以改变两行红色激光芯片组件出射的激光的偏振方向,或者也可以改一行绿色激光芯片和一行蓝色激光芯片出射的激光的偏振方向。此时,可以分别在两个红色激光芯片组件行出光侧的各棱镜上设置一个相位延迟片;或者,也可以在绿色激光芯片组件行出光侧的各棱镜上设置一个相位延迟片,在蓝色激光芯片组件行出光侧的各 棱镜上设置一个相位延迟片。这样可以减少相位延迟片的设置数量,增大相位延迟片的尺寸,有利于增强相位延迟片与棱镜之间稳定性。
在一些实施例中,如图2所示,各激光芯片组件沿设定方向排列为多行,因此可以将棱镜300也设置为沿激光芯片组件行方向延伸的条形棱镜,从而使得一个棱镜300对应至少一行多个发光芯片组件200,这样可以减少棱镜的数量。
以图2所示的结构为例,第一类发光芯片201为红色激光芯片组件,第二类发光芯片202为绿色激光芯片组件和蓝色激光芯片组件;或者,第一类发光芯片201为绿色激光芯片组件和蓝色激光芯片组件,第二类发光芯片202为红色激光芯片组件。两个第一类发光芯片行和两个第二类发光芯片行替换排列,且每行激光芯片组件的出光侧设置一个条形棱镜。在每个第一类发光芯片行出光侧的条形棱镜上设置一个条形相位延迟片;或者,在第一个第二类发光芯片行出光侧的条形棱镜上设置一个条形相位延迟片,以使两种激光芯片组件最终出射的激光的偏振态相同。
在采用图1或图2所示的结构时,每行激光芯片组件之间相互串联,每行激光芯片组件两侧的管壳的环状侧壁102上分别设置一个引脚,用于连接对应行的激光芯片组件,两侧的引脚的其中一个施加正极信号,另一个施加负极信号,从而驱动该行激光芯片组件出射激光。
图5为本申请实施例提供的激光器的侧视结构示意图之三;图6为图5所示的激光器的俯视结构示意图。
在一些实施例中,如图5和图6所示,激光器中的各第一类发光芯片201排列成一个第一类发光芯片行L1;各第二类发光芯片202排列成一个第二类发光芯片行L2。例如,第一类发光芯片行L1中仅包括红色激光芯片组件,第二类发光芯片行L2中包括绿色激光芯片组件和蓝色激光芯片组件;或者,第一类发光芯片行L1中包括绿色激光芯片组件和蓝色激光芯片组件,第二类发光芯片行L2中仅包括红色激光芯片组件。
棱镜300包括:顶面第一偏振方向的0以及相对于顶面对称设置的第一反射面第一偏振方向的1和第二反射面第一偏振方向的2。其中,第一类发光芯片行L1位于棱镜的第一反射面第一偏振方向的1的一侧,第一反射面第一偏振方向的1用于接收第一类发光芯片行L1中的各第一类发光芯片201出射的激光向激光器的出光方向反射;第二类发光芯片行L2位于棱镜的第二反射面第一偏振方向的2的一侧,第二反射面第一偏振方向的2用于接收第二类发光芯片行L2中的各第二类发光芯片202出射的激光向激光器的出光方向反射。
出射激光为相同偏振方向的激光芯片组件排列成一行,因此相位延迟片400可以设置于棱镜的顶面第一偏振方向的0靠近第一反射面第一偏振方向的1的边缘;或者,相位延迟片400也可以设置于棱镜的顶面第一偏振方向的0靠近第二反射面第一偏振方向的2的 边缘,即可使两种激光芯片组件最终出射的激光的偏振方向相同。
在采用图5所示的激光器结构时,仅需要设置一个棱镜300,通过将棱镜的两个相对表面均设置为反射面,可以同时对两个激光芯片组件行出射的激光进行反射。
在具体实施时,棱镜300的顶面第一偏振方向的0的宽度大于或等于4mm,以使相位延迟片400与顶面第一偏振方向的0之间有足够的粘贴距离。棱镜300的高度通常大于4mm,具体尺寸可以根据光路进行设计。
若第一类发光芯片行L1中包括的激光芯片组件为红色激光芯片组件,第二类发光芯片行L2中包括的激光芯片组件为绿色激光芯片组件和蓝色激光芯片组件,如图6所示,激光器在管壳的侧壁上还设置有陶瓷绝缘子700。三种颜色的激光芯片组件可以设置三个陶瓷绝缘子。其中,红色激光芯片组件之间相互串联,位于两侧的两个红色激光芯片组件其中一个连接对应陶瓷绝缘子700的正极一端,另一个连接对应的陶瓷绝缘子700的负极一端。绿色激光芯片组件相邻设置且绿色激光芯片组件之间相互串联,位于两侧的两个绿色激光芯片组件其中一个连接对应陶瓷绝缘子700的正极一端,另一个连接陶瓷绝缘子700的负极一端。蓝色激光芯片组件相邻设置且蓝色激光芯片组件之间相互串联,位于两侧的两个蓝色激光芯片组件其中一个连接对应陶瓷绝缘子700的正极一端,另一个连接陶瓷绝缘子700的负极一端。激光芯片组件与陶瓷绝缘子之间可以采用金线连接,金线的直径和数量可以根据激光器的电流进行选择。通过上述连接关系,可以通过向陶瓷绝缘子的正极和负极施加电信号以驱动连接的激光芯片组件出射激光。
图7为本申请实施例提供的激光器的侧视结构示意图之四;图8为图7所示的激光器的俯视结构示意图。
在一些实施例中,如图7和图8所示,激光器中的各第一类发光芯片201排列成两个第一类发光芯片行L1;各第二类发光芯片202排列成两个第二类发光芯片行L2。例如,两个第一类发光芯片行L1中仅包括红色激光芯片组件,两个第二类发光芯片行L2中的其中一行包括绿色激光芯片组件,另一行包括蓝色激光芯片组件;或者,两个第一类发光芯片行L1中的其中一行包括绿色激光芯片组件,另一行包括蓝色激光芯片组件,两个第二类发光芯片行L2中仅包括红色激光芯片组件。
为了共用一个棱镜300,如图7所示,管壳100的底板为阶梯状结构,管壳的底板包括第一级台阶面T1以及分别位于第一级台阶面两侧的第二级台阶面T2;第二级台阶面T2的高度大于第一级台阶面T1的高度。
棱镜300包括:顶面第一偏振方向的0以及相对于顶面第一偏振方向的0对称设置的第一反射面第一偏振方向的1和第二反射面第一偏振方向的2。
棱镜300位于第一级台阶面T1上,两个第一类发光芯片行L1均位于棱镜的第一反射面第一偏振方向的1的一侧,其中一个第一类发光芯片行L1位于第一级台阶面T1上,另 一个第一类发光芯片行位于第二级台阶面T2上;第一反射面第一偏振方向的1用于接收两个第一类发光芯片行L1中各第一类发光芯片201出射的激光向激光器的出光方向反射。
两个第二类发光芯片行L2均位于棱镜的第二反射面第一偏振方向的2的一侧,其中一个第二类发光芯片行L2位于第一级台阶面T1上,另一个第二类发光芯片行L2位于第二级台阶面T2上;第二反射面第一偏振方向的2用于接收两个第二类发光芯片行L2中各第二类发光芯片202出射的激光向激光器的出光方向反射。
出射激光为相同偏振方向的激光芯片组件位于棱镜的同一侧,因此相位延迟片400可以设置于棱镜的顶面第一偏振方向的0靠近第一反射面第一偏振方向的1的边缘;或者,相位延迟片400也可以设置于棱镜的顶面第一偏振方向的0靠近第二反射面第一偏振方向的2的边缘。
在采用图7所示的激光器结构时,仅需要设置一个棱镜300,位于棱镜300同一侧的两行激光芯片组件均向棱镜该侧的反射面出射光线。为了避免距离棱镜较远的后排激光芯片组件出射激光被遮挡,本申请实施例将管壳的底板设置为阶梯状结构,从而可以将距离棱镜较近的前排激光芯片组件和棱镜一起设置在第一级台阶面上,而将距离棱镜较远的后排激光芯片组件设置于高度较高的第二级台阶面上。
由于棱镜每侧反射面均需要接收两行激光芯片组件出射的激光,因此相比于图5所示的棱镜,图7所示棱镜的尺寸相对较大,具体尺寸可以根据光路进行选择,在此不做限定。
图9为本申请实施例提供的激光器的俯视结构示意图之三。
在一些实施例中,如图9所示,各激光芯片组件行中的至少一个激光芯片组件行中同时包含第一类发光芯片201和第二类发光芯片202。此时,相位延迟片400不再覆盖整个棱镜的表面,而是设置在棱镜对应第一类发光芯片201的区域或对应第二类发光芯片202的区域上。
以图9所示的结构为例,各激光芯片组件排列成一个激光芯片组件行,其中,第一类发光芯片201包括红色激光芯片组件,第二类发光芯片202包括绿色激光芯片组件和蓝色激光芯片组件。出射激光的偏振方向相同的激光芯片组件相邻设置。
棱镜300包括顶面第一偏振方向的0和反射面第一偏振方向的,相位延迟片设置在第二类发光芯片202出光侧的棱镜的表面上。
激光器可以包括三个陶瓷绝缘子700。其中,红色激光芯片组件相邻设置且红色激光芯片组件之间相互串联,位于两侧的两个红色激光芯片组件其中一个连接对应陶瓷绝缘子700的正极一端,另一个连接对应的陶瓷绝缘子700的负极一端。绿色激光芯片组件相邻设置且绿色激光芯片组件之间相互串联,位于两侧的两个绿色激光芯片组件其中一个连接对应陶瓷绝缘子700的正极一端,另一个连接陶瓷绝缘子700的负极一端。蓝色激光芯片组件相邻设置且蓝色激光芯片组件之间相互串联,位于两侧的两个蓝色激光芯片组件其中 一个连接对应陶瓷绝缘子700的正极一端,另一个连接陶瓷绝缘子700的负极一端。激光芯片组件与陶瓷绝缘子之间可以采用金线连接,金线的直径和数量可以根据激光器的电流进行选择。通过上述连接关系,可以通过向陶瓷绝缘子的正极和负极施加电信号以驱动连接的激光芯片组件出射激光。
图9仅以一行激光芯片组件进行举例说明,在具体实施时,激光器可以设置两个如图9所示的激光芯片组件行,从而将棱镜设置为如图5所示的对称结构;或者也可以包括两个以上的激光芯片组件行,其中每行激光芯片组件采用如图9相同的设计思路进行设计,在此不做限定。
图10是本申请实施例提供的一种激光器的结构示意图。该激光器10可以包括底板101、管状的侧壁102、多个发光芯片组件200、多个反射棱镜300,密封透光层600与底板101,侧壁102围合形成密封容置空间。与前述实施例中不同的是,相位延迟片400远离底板101、发光芯片200,以及反射棱镜300设置,具体地,可通过支架,或者通过与管壳的侧壁连接实现固定。
在本申请实施例中,该侧壁102的材质可以包括陶瓷,如可以为三氧化二铝(化学式:Al2O3)。在一具体实施中,相位延迟片400可以与侧壁102固定,透光密封层600也可以与侧壁102固定。由于陶瓷材料较容易与相位延迟片400和透光密封层600固定或结合,因此本申请实施例提供的激光器10相对于相关技术中金属侧壁的激光器更具有加工优势,且可以保证相位延迟片400和透光密封层600与侧壁102的固定牢固度,保证激光器10的可靠性较高。
在本示例中,每个反射棱镜300可以对应至少一个发光芯片200,不同的反射棱镜300对应的发光芯片200不同,每个发光芯片200发出的激光可以射向对应的反射棱镜300的反光面,该反光面可以将射入的激光沿远离底板101的方向(如图10中的z方向)反射。在一具体实施中,反射棱镜300中与发光芯片200相对的表面可以镀有反射膜,以形成该反光面。
类似的,在本示例中,激光器10中的该多个发光芯片组件200可以包括第一类发光芯片和第二类发光芯片,第一类发光芯片发出的激光的偏振方向垂直于第二类发光芯片发出的激光的偏振方向。第一类发光芯片发出的激光和第二类发光芯片发出的激光的颜色也不同。在一具体实施中,第一类发光芯片发出的激光为第一偏振方向的偏振光,第二类发光芯片发出的激光为第二偏振方向的偏振光。如第一偏振方向的偏振光可以包括绿色激光和蓝色激光,第二偏振方向的偏振光可以包括红色激光。在一具体实施中,也可以第一类发光芯片发出的激光为第二偏振方向的偏振光,第二类发光芯片发出的激光为第一偏振方向的偏振光。
激光器10中可以有多个第一类发光芯片和多个第二类发光芯片。示例地,该多个第 一类发光芯片中的部分第一类发光芯片为绿光芯片,用于发出绿色激光;剩余部分第一类发光芯片为蓝光芯片,用于发出蓝色激光。该多个第二类发光芯片均为红光芯片,用于发出红色激光。或者该多个第一类发光芯片也可以均发出绿色激光或者均发出蓝色激光,本申请实施例不做限定。在一具体实施中,激光器10中也可以该多个第一类发光芯片均为红光芯片,多个第二类发光芯片中的包括多个绿光芯片和多个蓝光芯片,本申请实施例不做限定。
相位延迟片400在底板101上的正投影可以覆盖该多个第一类发光芯片及其对应的反射棱镜300,且该正投影可以位于该多个第二类发光芯片及其对应的反射棱镜300之外。如此,第一类发光芯片发出的激光在经过对应的反射棱镜300反射后,可以射向相位延迟片400。相位延迟片400可以将射入的激光的偏振方向旋转90度,进而第一类发光芯片发出的激光在穿过相位延迟片400后,其偏振方向可以与第二类发光芯片发出的激光的偏振方向相同。
本申请实施例提供的激光器中,在发光芯片远离底板的一侧设置有相位延迟片,且相位延迟片在底板上的正投影覆盖激光器中各个第一类发光芯片及对应的反射棱镜,且位于激光器中各个第二类发光芯片及对应的反射棱镜之外。如此,第一类发光芯片发出的激光可以在对应的反射棱镜上反射后,再经过相位延迟片将调整偏振方向旋转90度后出射,而第二类发光芯片发出的激光的偏振方向不发生改变。第一类发光芯片发出的激光经过相位延迟片后偏振方向变为与第二类发光芯片发出的激光的偏振方向相同,激光器射出的激光的偏振方向均相同。因此,激光器发出的源自不同类发光芯片的激光在后续光学元件中传输时的透反性能差异较小,激光器射出的各种颜色的激光在经过后续光学元件后配比改变较小,可以减弱该激光形成的投影画面的偏色,提高投影画面的显示效果。
图11是本申请实施例提供的另一种激光器的结构示意图,图11可以为图10的俯视图,图10可以为图11所示的激光器的截面b-b’的示意图,且图11未对激光器10中的相位延迟片400和透光密封层600进行示意。请继续参考图10和图13,激光器10还可以包括多个热沉R。该多个热沉R与激光器10中的多个发光芯片组件200一一对应。热沉R与底板101接触,贴装在底板101上,每个发光芯片200贴装于对应的热沉R上。在一具体实施中,热沉R与反射棱镜300均可以通过银胶烧结的方式与底板101固定。
如图11所示,激光器10中的多个发光芯片组件200可以排成多行多列,图11以激光器10包括排成两行四列的8个发光芯片200为例,其中行方向为y方向,列方向为x方向。激光器10中发光芯片200的数量和排布方式也可以进行适应调整,如激光器10也可以包括排成两行五列的10个发光芯片200,或者排成三行五列的15个发光芯片200,本申请实施例不做限定。在一具体实施中,相邻发光芯片200的间距可以为1毫米至3.5毫米。
在一具体实施中,如图10和3所示,激光器10中的多个第一类发光芯片和多个第二类发光芯片可以分别设置在两个独立的区域,该多个第一类发光芯片的设置区域与该多个第二类发光芯片的设置区域可以沿目标方向排布。如该目标方向为x方向,x方向垂直y方向。如激光器10包括两行发光芯片200,其中一行为第一类发光芯片,另一行为第二类发光芯片。如图11中y方向上的第一行为第一类发光芯片,第二行为第二类发光芯片。在一具体实施中,该目标方向也可以为y方向,如每行发光芯片中的一半为第一类发光芯片,另一半为第二类发光芯片。第一类发光芯片的数量与第二类发光芯片的数量可以相等,或者也可以不相等,本申请实施例不做限定。
在一具体实施中,第一类发光芯片和第二类发光芯片也可以并不设置在两个独立的区域,第一类发光芯片和第二类发光芯片可以交错设置。如激光器10的每行发光芯片中均可以包括第一类发光芯片和第二类发光芯片,又如每行中第一类发光芯片和第二类发光芯片可以一一交替设置。
在一具体实施中,图11以激光器10中的多个反射棱镜300与多个发光芯片组件200一一对应,每个反射棱镜300对应一个发光芯片200为例。在一具体实施中,一个反射棱镜300也可以对应多个发光芯片组件200。示例地,图12是本申请实施例提供的再一种激光器的结构示意图。如图12所示,每个反射棱镜300可以对应一排发光芯片。如该激光器10包括两排发光芯片200,每排发光芯片200的出光方向相同,激光器10可以仅包括两个反射棱镜300。每个反射棱镜300可以呈条状,反射棱镜的延伸方向平行于对应的一排发光芯片200的排布方向。在一具体实施中,每个反射棱镜300也可以仅对应一排发光芯片200中的部分发光芯片。如每个反射棱镜300可以仅对应两个发光芯片200,每排发光芯片200可以对应两个反射棱镜300。
本申请实施例中,激光器10中的相位延迟片400可以有多种可选设置方式。示例地,相位延迟片400可以直接与侧壁102固定,通过侧壁102支撑。或者激光器10还可以包括支架,该支架可以被侧壁102包围,相位延迟片400被该支架支撑。或者相位延迟片400可以由支架和侧壁共同支撑,如相位延迟片400的一个边缘与支架远离底板101的一侧固定,且相位延迟片400还与侧壁102固定。下面结合附图对相位延迟片的几种可选设置方式进行介绍。
在第一种可选设置方式中,激光器10可以仅包括一个相位延迟片400,相位延迟片400与侧壁102固定,仅通过侧壁102支撑。相位延迟片400可以呈矩形。侧壁102可以由多个子壁围成。如侧壁102呈方管状,侧壁102在底板101上的正投影大致呈矩形,侧壁102可以由四个子壁围成。
在一种示例中,该相位延迟片400可以位于侧壁102远离底板101的一侧。相位延迟片400中至少相对的两个边缘与侧壁102远离底板101的表面固定。如图10和图11,该 相位延迟片400的三个边缘与侧壁102远离底板101的表面固定。如相位延迟片400的三个边缘分别粘贴于侧壁102的三个子壁远离底板101的表面上。在一具体实施中,相位延迟片400的每个边缘可以仅覆盖侧壁102的该三个子壁中一个子壁中的部分区域。在一具体实施中,侧壁102也可以呈其他形状,此时侧壁102包括的子壁的数量也可以相应地变化。如侧壁102在底板101上的正投影大致呈五边形,该侧壁102由五个子壁围成,本申请实施例不做限定。
透光密封层600的边缘可以与侧壁102远离底板101的表面固定。如对于侧壁102中被相位延迟片400覆盖的该三个子壁,透光密封层600可以通过粘贴剂与该三个子壁中未被透光密封层600覆盖的部分粘贴;透光密封层600的边缘还可以与相位延迟片400远离底板的一侧的三个边缘粘贴。对于侧壁102中未被相位延迟片400覆盖的子壁,透光密封层600可以直接与该子壁远离底板的一侧固定。由于在侧壁102上还设置了相位延迟片400,故固定透光密封层600所用的粘贴剂可以较多,该粘贴剂的最大厚度可以大于透光密封层600的厚度,以保证透光密封层600可以通过粘贴剂与侧壁102固定,保证对管壳的密封效果。
在一具体实施中,相位延迟片400中也可以仅相对的两个边缘分别与侧壁102中相对的两个子壁固定。如对于图11所示的激光器10,相位延迟片400中可以仅左侧边缘和右侧边缘分别与侧壁102中左侧和右侧的子壁固定,而靠上的边缘并不与侧壁102固定。
在另一种示例中,相位延迟片400位于管壳中,被侧壁102包围。侧壁102中至少相对的两个子壁的内表面具有凸台,相位延迟片400中相对的两个边缘分别与该两个子壁上的凸台远离底板101的一侧固定。
图13是本申请实施例提供的又一种激光器的结构示意图。如图13所示,侧壁102中相对的两个子壁的内表面具有凸台T,相位延迟片400中相对的两个边缘分别与该两个子壁上的凸台T远离底板101的一侧固定。该两个子壁在第一类发光芯片的行方向上相对,需保证该相位延迟片400在底板101上的正投影仅覆盖第一类发光芯片而并不覆盖第二类发光芯片。如该两个子壁为侧壁102中在y方向上的两个子壁,也即是图13中左侧的子壁和右侧的子壁。相位延迟片400的左侧边缘与该侧壁102中左侧的子壁上的凸台T固定,相位延迟片400的的右侧边缘与该侧壁102中右侧的子壁上的凸台T固定。
图14是本申请另一实施例提供的一种激光器的结构示意图。侧壁102中除了相对的两个子壁的内表面具有凸台T,该两个子壁之间且靠近第一类发光芯片的子壁的内表面也具有凸台T。如图14所示,侧壁102中上侧的子壁的内表面也具有凸台T。相位延迟片400的三个边缘分别与该三个子壁上的凸台T远离底板101的一侧固定。该种方式中,相位延迟片400与凸台T的固定面积较多,相位延迟片400的固定牢固度较高。
在一具体实施中,本申请实施例中的凸台T可以与侧壁102一体成型,如可以对一块 板材进行打磨或刻蚀,来形成具有凸台T的侧壁102。在一具体实施中,凸台T远离底板101的表面均平坦。在一具体实施中,每个子壁上的凸台的长度可以等于该子壁的长度,也可以小于该子壁的长度。在一具体实施中,每个子壁上的凸台也可以包括沿子壁的长度方向排布的多个独立的小凸台。子壁的长度方向为子壁的平行底板101的延伸方向。
在第二种可选设置方式中,图15是本申请另一实施例提供的另一种激光器的结构示意图,图16是本申请另一实施例提供的再一种激光器的结构示意图,图17是本申请另一实施例提供的又一种激光器的结构示意图。图16和图17可以为图15所示的激光器的俯视图,图15可以为图16或图17所示的激光器中截面b-b’的示意图。如图15至图17所示,在图10和图11的基础上,激光器10还可以包括至少一个支架103。支架103可以位于底板101上且被侧壁102包围,相位延迟片400的一个边缘(如第一边缘)可以通过该支架103支撑,如与该支架103远离底板101的一侧固定。其余三个边缘可以仍由侧壁102支撑。
在一具体实施中,如图16所示,该至少一个支架103可以为一个条形板状支架,该支架103的承载面可以沿y方向延伸。该支架103的长度可以大于多个第一类发光芯片的整体排布长度。支架103的两端可以与侧壁102相间隔(如图16所示),或者支架103的两端也可以均与侧壁102相接触,本申请实施例未对此种方式进行示意。激光器10中仅设置一个支架103时,该支架103的贴装过程较为简单,便于激光器10的制备。
在支架103的一种可选固定方式中,该支架103可以底部与底板101固定,以实现支架103的固定。支架103与底板101固定的情况中,支架103可以与底板101一体成型;或者支架103与底板101也可以为独立的两个结构,该两个结构相焊接以实现支架103的固定。在支架103的另一种可选固定方式中,支架103的两端均与侧壁102相接触,该支架103的两端与侧壁102固定,以实现支架103的固定。在一具体实施中,支架103两端与侧壁102固定时,该支架103可以不与底板101固定,如支架103与底板101之间存在缝隙。在一具体实施中,支架103可以与侧壁102一体成型;或者支架103与侧壁102也可以为独立的两个结构,该两个结构相焊接以实现支架103的固定。
又在一具体实施中,如图17所示,该至少一个支架103也可以包括独立的多个支架,该多个支架可以沿y方向排布,该多个支架103共同支撑相位延迟片400的第一边缘。该多个支架也相当于将图16中的一个条形板状支架划分成多部分得到,且使相邻部分相间隔。在一具体实施中,位于两端的两个支架103可以与侧壁102相间隔(如图17所示),或者两端的该两个支架103也可以均与侧壁102相接触,本申请实施例未对此种方式进行示意。该种方式中,该多个支架103可以底部固定于底板101上,以实现该多个支架103的固定。
需要说明的是,图16与图17以激光器10仅包括一个相位延迟片400为例进行示意。 在一具体实施中,图18是本申请再一实施例提供的一种激光器的结构示意图。如图18所示,激光器10也可以包括多个相位延迟片400。每个相位延迟片400在底板101上的正投影可以覆盖激光器10中的部分第一类发光芯片,以保证该多个相位延迟片400在底板101上的正投影共同覆盖激光器10中的所有第一类发光芯片。每个相位延迟片400可以覆盖一个第一类发光芯片及其对应的反射棱镜300(如图18所示),或者也可以覆盖两个或者更多第一类发光芯片及其对应的反射棱镜300,本申请实施例不做限定。示例地,如图18所示,该多个相位延迟片400可以沿y方向排布。每个相位延迟片400的第一边缘与支架103固定,第二边缘与侧壁固定,第一边缘与第二边缘相对。在一具体实施中,相位延迟片400的数量与支架103的数量相同,每个相位延迟片400的第一边缘可以仅被一个支架103支撑。
在第三种可选设置方式中,激光器10包括位于底板101上且被侧壁102包围的至少一个支架103,侧壁102的内表面具有凸台T,相位延迟片400由该至少一个支架103与该凸台T共同支撑。在一具体实施中,该凸台T可以与侧壁102一体成型,如可以对一块板材进行打磨或刻蚀,来形成具有凸台T的侧壁102。在一具体实施中,支架103远离底板101的表面与该凸台T远离底板101的表面均平坦,且均平行于底板101的板面。该两个表面距底板101的距离可以相等。相位延迟片400与该支架103远离底板101的表面固定,且与该凸台T远离底板101的表面固定。
该至少一个支架103可以为一个条形板状支架,也可以包括多个支架103。关于该至少一个支架103的可选实现以及固定方式,可以参考上述相位延迟片400的第二种设置方式中的相关介绍,本申请实施例在此不再赘述。相位延迟片400的数量可以为一个,也可以为多个。对于多个相位延迟片400的设置方式可以参考上述第二种可选设置方式中关于图18的相关介绍。在该第三种可选设置方式中以该至少一个支架103仅为一个支架,且相位延迟片400的数量为1为例进行介绍。激光器10中的侧壁102由多个子壁围成。本申请实施例还以侧壁102在底板101上的正投影大致呈矩形为例。侧壁102由四个子壁围成,分别为第一子壁、第二子壁、第三子壁和第四子壁,且第一子壁与第四子壁相对,第二子壁与第三子壁相对,第二子壁和第三子壁均与第一子壁邻接。
在第一种示例中,图19是本申请再一实施例提供的另一种激光器的结构示意图,图20是本申请再一实施例提供的再一种激光器的结构示意图,图20为图19所示的激光器的俯视图,图19为图20所示的激光器中截面b-b’的示意图。如图19和图20所示,第一子壁的内表面具有凸台T,侧壁102的内表面上的凸台T可以仅位于第一子壁上。激光器10中的第一类发光芯片可以位于该凸台T与支架103之间。相位延迟片400的第一边缘与支架103远离底板101的一侧固定,相位延迟片400的第二边缘与该凸台T远离底板101的一侧固定。第一边缘与第二边缘相对,如第一边缘与第二边缘为相位延迟片400中在y方 向上相对的两个边缘。该种示例中,相位延迟片400通过其中相对的两个边缘的固定,实现相位延迟片400的位置固定。
在一具体实施中,凸台T可以为一个条状凸台。第一子壁上的凸台T的长度可以等于该第一子壁的长度(如在x方向上的长度),或者该凸台T的长度也可以小于第一子壁的长度(如图20所示),本申请实施例不做限定。该一个条状凸台的制备方式较为简单。在一具体实施中,第一子壁上的凸台T也可以包括沿x方向排布多个独立的小凸台,本申请实施例未对此种方式进行示意。此种方式中,若激光器10中仅包括一个相位延迟片400,则该相位延迟片400的第二边缘同时与该多个小凸台远离底板101的表面固定。在一具体实施中,任两个相邻的小凸台之间的间距可以相等。若激光器10包括多个相位延迟片400,则每个相位延迟片400的第二边缘可以与一个小凸台远离底板101的表面固定,也可以与多个小凸台远离底板101的表面固定。在一具体实施中,相位延迟片400的数量、第一子壁上小凸台的数量、支架103的数量和第一类发光芯片的数量可以相等,每个相位延迟片400由一个小凸台和一个支架103支撑,且覆盖一个第一类发光芯片。
本申请实施例中对第一子壁上凸台T的具体设置方式,数量以及形状等不做限定,仅需保证相位延迟片400的边缘与该凸台固定后不会脱落即可。
在第二种示例中,图21是本申请再一实施例提供的又一种激光器的结构示意图,图21未对激光器中的相位延迟片400及透光密封层600进行示意。如图21所示,侧壁102中的第一子壁和第二子壁的内表面均具有凸台,也即是侧壁102的内表面上的凸台T可以位于第一子壁和第二子壁上。激光器10中可以仅包括一个相位延迟片400,相位延迟片400的第一边缘与支架103远离底板101的表面固定,第二边缘与第一子壁上的凸台远离底板101的表面固定,第三边缘与第二子壁上的凸台远离底板101的表面固定。如此,该相位延迟片400通过其中三个边缘的固定,实现该相位延迟片400的位置固定。在一具体实施中,激光器10也可以包括多个相位延迟片,该多个相位延迟片400中最靠近第二子壁的相位延迟片400的第三边缘与第二子壁上的凸台固定,其他相位延迟片400仅通过两个边缘固定。第二子壁上的凸台的实现可以与第一子壁上的凸台的实现相同,如该凸台也可以为一个条状凸台或者包括沿x方向排布的多个独立的小凸台,具体可以参考上述第一种示例中的相关介绍,本申请实施例不再赘述。
在一具体实施中,故第二子壁上凸台的长度(也即在x方向上的长度)可以小于第二子壁的整体长度,第二子壁上仅一半区域具有凸台,仅需相位延迟片400设置在该凸台上可以覆盖第一类发光芯片及其对应的反射棱镜300即可。在一具体实施中,第二子壁上凸台的长度(也即在x方向上的长度)也可以等于第二子壁的整体长度。
在第三种示例中,图22是本申请又一实施例提供的一种激光器的结构示意图,图22未对激光器中的相位延迟片400及透光密封层600进行示意。如图22所示,侧壁102中 的第一子壁、第二子壁和第三子壁的内表面均具有凸台,也即是侧壁102的内表面上的凸台T可以位于第一子壁、第二子壁和第三子壁上。激光器10中可以仅包括一个相位延迟片400,相位延迟片400的第一边缘与支架103远离底板101的表面固定,第二边缘与第一子壁上的凸台远离底板101的表面固定,第三边缘与第二子壁上的凸台远离底板101的表面固定,第四边缘与第三子壁上的凸台远离底板101的表面固定。如此,该相位延迟片400通过其中四个边缘的固定,实现该相位延迟片400的位置固定。在一具体实施中,激光器10也可以包括多个相位延迟片,该多个相位延迟片400中可最靠近第二子壁的相位延迟片400的第三边缘与第二子壁上的凸台固定,最靠近第三子壁的相位延迟片400的第四边缘与第二子壁上的凸台固定,其他相位延迟片400仅通过两个边缘固定。
第三子壁上的凸台的实现可以与第一子壁和第二子壁上的凸台的实现相同,如该凸台也可以为一个条状凸台或者包括沿x方向排布的多个独立的小凸台,具体可以参考上述第一种示例和第二种示例中的相关介绍,本申请实施例不再赘述。
在一具体实施中,侧壁102的四个子壁上均具有凸台,该凸台可以呈环状,每个子壁上的凸台的长度可以等于该子壁的长度。该凸台在底板101上的正投影可以包围所有的发光芯片200及其对应的反射棱镜300。如此,该侧壁102的通用性可以较高,在使用该侧壁102的激光器中第一类发光芯片的设置灵活性较高,无需限制第一类发光芯片仅能设置在某位置,或者与侧壁102保持某相对关系,发光芯片的设置灵活性较高。
示例地,第一类发光芯片与第二类发光芯片可以在底板101上任意排布,仅需保证每个第一类发光芯片及其对应的反射棱镜300位于靠近侧壁102的位置,进而仅需在该第一类发光芯片的背侧(也即与出光侧相反的一侧)设置支架103,便可以通过该支架103及侧壁102上的凸台支撑相位延迟片400,以使该相位延迟片400覆盖该该第一类发光芯片及其对应的反射棱镜300。
需要说明的是,第三种可选设置方式中子壁上的凸台与第一种可选设置方式中子壁上的凸台的结构、形成方式、设置方式以及与相位延迟片400的固定方式均可以相同,相关描述可以相互参考,本申请实施例不做限定。
在第四种可选设置方式中,激光器10可以包括至少一个支架103,相位延迟片400仅通过支架103支撑,相位延迟片400的边缘仅与支架103远离底板101的表面固定。该种设置方式中,侧壁102的内表面可以不具有凸台,或者也可以仍具有凸台。
图23是本申请又一实施例提供的另一种激光器的结构示意图,图24是本申请又一实施例提供的再一种激光器的结构示意图。图24可以为图23所示的激光器的俯视图,图23可以为图24所示的激光器中截面b-b’的示意图。如图23和图24所示,每个支架103包括矩形框以及分别位于该矩形框的四个角处的四个支撑脚,每个支架103在底板101上的正投影可以包围至少一个第一类发光芯片及其对应的反射棱镜300。图24以激光器10仅包 括一个支架103,该支架103在底板101上的正投影包围激光器10中的所有第一类发光芯片及其对应的反射棱镜300为例。在一具体实施中,激光器10也可以包括多个支架103,每个支架103在底板101上的正投影包围部分第一类发光芯片。
在一具体实施中,每个支架103可以呈管状,每个支架103可以由四个实心的板围成。在一具体实施中,每个支架103也可以由三个实心的板围成,此时该支架103半包围至少一个第一类发光芯片及其对应的反射棱镜300。在一具体实施中,激光器10中的多个支架103也可以分布于多个第一类发光芯片及其对应的反射棱镜300的相对两侧,该种情况下支架103的结构可以参考上述三种可选设置方式中对支架103的介绍。在一具体实施中,该支架103也可以包括四个独立的板状支架,分布位于至少一个第一类发光芯片及其对应的反射棱镜300的四周。在该第四种可选设置方式中,相位延迟片400在该支架103上的设置方式,可以参考前述三种可选设置方式中相位延迟片400在侧壁102和支架103上的设置方式,本申请实施例不再赘述。
需要说明的是,在前三种可选设置方式中,均以激光器10中的多个第一类发光芯片与多个第二类发光芯片的设置区域相独立,激光器10中的至少一个支架103位于该多个第一类发光芯片与该多个第二类发光芯片之间为例。
在一具体实施中,本申请实施例中底板101的材质可以包括金属。可以该材质可以包括铜,如无氧铜,或者该材质也可以包括铝或铁等其他金属。需要说明的是,发光芯片200在发出激光时会产生较多热量,铜的导热系数较大。本申请实施例中底板101的材质为铜,如此可以保证底板101上设置的发光芯片200在工作时产生的热量可以快速地通过底板101进行传导,进而较快散发,避免热量聚集对发光芯片的损伤。在一具体实施中,底板101的材质也可以为铝、氮化铝和碳化硅中的一种或多种。在一具体实施中,底板101的材质也可以包括陶瓷。
在一具体实施中,支架103的材质可以包括金属或陶瓷。示例地,支架103的材质与底板101的材质相同,支架103可以与底板101一体成型,或者通过钎焊的方式固定于底板101。支架103的材质也可以与侧壁102的材质相同,支架103可以与侧壁102一体成型,或者通过焊接或粘贴的方式与侧壁102固定。
本申请实施例中,相位延迟片400的一侧表面的边缘区域可以预置有焊料。如该焊料可以为金锡焊料,该焊料的材质可以包括金和锡。在一具体实施中,该焊料可以覆盖相位延迟片400的至少两个边缘区域,如可以覆盖四个边缘区域。每个边缘区域中焊料可以均连续,或者也可以仅设置间隔的几个焊料块,仅需保证基于该焊料相位延迟片400可固定牢靠即可,本申请实施例对于相位延迟片中的焊料的覆盖范围及具体的位置不做限定。
在一具体实施中,以相位延迟片400通过侧壁102上的凸台T与支架103共同支撑为 例,在固定相位延迟片400时,可以先将相位延迟片400的边缘搭接在侧壁102的凸起T与支架103上。接着对相位延迟片400的边缘区域进行加热,以熔化相位延迟片400上的焊料。之后可以对熔化后的焊料进行降温,以使该焊料固化,实现相位延迟片400与侧壁102和支架103的固定。在采用其他方式支撑相位延迟片400的激光器中,相位延迟片400的固定方式与此相同。
在一具体实施中,相位延迟片400的材质可以包括蓝宝石。蓝宝石与陶瓷侧壁的膨胀系数匹配度较高,从而可以实现相位延迟片400与侧壁102更好的连接,减少由于应力而产生的瓷裂。在一具体实施中,相位延迟片400的面积可以尽可能地小,仅需保证使第一发光芯片发出的激光均能射入相位延迟片400即可,以降低激光器10的制备成本。
在一具体实施中,透光密封层600材质可以为玻璃、蓝宝石、石英或者Bk7型号的冕玻璃等。下面结合附图对激光器10中的透光密封层600的设置方式进行介绍。
请继续参考图10、7、11和15,透光密封层600的边缘可以直接与侧壁102远离底板101的表面固定,进而透光密封层600与底板101和侧壁102可以围成密闭空间。如可以采用密封胶直接贴合透光密封层600的边缘与侧壁102远离底板101的表面。或者,可以在透光密封层600的边缘预置焊料,进而熔化该焊料后将该透光密封层600设置在侧壁102远离底板101的一侧,以使透光密封层600与侧壁102固定。如该焊料为金锡焊料。
在一具体实施中,请继续参考图10、7、11和15,激光器10还可以包括准直镜组500,该准直镜组500可以对射入的激光进行准直,使该激光被调整为接近平行光出射。准直镜组500位于可以位于透光密封层600远离底板101的一侧。准直镜组500可以包括与激光器10中的多个发光芯片组件200一一对应的多个准直透镜J。每个发光芯片200向对应的反射棱镜300发出激光,该反射棱镜300将射入的激光反射向透光密封层600,该激光透射透光密封层600后,可以射向该发光芯片200对应的准直透镜J。准直透镜J可以将射入的激光准直后射出,进而实现激光器10的发光。
准直镜组500中的多个准直透镜可以一体成型。该准直镜组500远离底板101的一侧可以具有朝远离底板101的一侧弯曲的多个凸弧面。准直镜组500中每个凸弧面所在部分可以作为一个准直透镜J,进而可以看做准直镜组500包括多个准直透镜J。
综上,在本申请多个实施例提供的激光器中,激光器中在发光芯片远离底板的一侧设置有相位延迟片,且相位延迟片在底板上的正投影覆盖激光器中各个第一类发光芯片及对应的反射棱镜,且位于激光器中各个第二类发光芯片及对应的反射棱镜之外。如此,第一类发光芯片发出的激光可以在对应的反射棱镜上反射后,再经过相位延迟片将调整偏振方向旋转90度后出射,而第二类发光芯片发出的激光的偏振方向不发生改变。第一类发光芯片发出的激光经过相位延迟片后偏振方向变为与第二类发光芯片发出的激光的偏振方向相同,激光器射出的激光的偏振方向均相同。因此,激光器发出的源自不同类发光芯片 的激光在后续光学元件中传输时的透反性能差异较小,激光器射出的各种颜色的激光在经过后续光学元件后配比改变较小,可以减弱该激光形成的投影画面的偏色,提高投影画面的显示效果。
以及,参见上述多个示例中相位延迟片与激光器侧壁,或支架的固定方式,相位延迟片在底板上的正投影的覆盖区域,也可以对应部分第一类发光芯片和对应的反射棱镜,从而改变只改变一部分第一类发光芯片所出射的激光光束的偏振方向,在具体实施时,相位延迟片为半波片,对应一半数量的第一类发光芯片设置,从而只改变一半的第一类发光芯片所出射的激光光束的偏振方向,而另一半数量的第一类发光芯片所出射的激光光束不经过半波片,从而维持原来的偏振方向。通过上述设置,对于第一类发光芯片而言,具有两种不同的偏振方向,与第二类发光芯片偏振方向不同的程度减轻,并且,对于同一类发光芯片而言,具有两种不同偏振方向的激光光束还有利于降低相干程度。
以及,相位延迟片还可以分别对应一部分的第一类发光芯片和一部分的第二类发光芯片,也具体选择均为50%的比例。从而,多个第一类发光芯片和多个第二类发光芯片中,各有一半的激光光束的偏振方向发生了改变,以及各有剩余一半的激光光束的偏振方向维持原来的偏振方向。从而通过上述设置,第一类发光芯片和第二类发光芯片均具有两种不同的偏振方向,偏振方向差异程度也得到了改善,并且对于同一类发光芯片而言,具有两种不同偏振方向的激光光束还有利于降低相干程度。
本申请实施例的另一方面,提供一种激光投影设备,图25为本申请实施例提供的激光投影设备的结构示意图。
如图25所示,本申请实施例提供的激光投影设备包括:上述任一激光器光源10、光阀调制部件20和投影镜头30。
激光器光源10的封装结构中,通过在激光发光芯片出光侧的棱镜上设置了相位延迟片或者至少在棱镜反射方向的出光路径中设置有相位延迟片,从而使得一类发光芯片出射的激光在经过相位延迟片之后激光的偏振方向与另一类发光芯片出射的激光的偏振方向相同,从而可以避免由于偏振态不同而导致的色彩问题。
以及,当相位延迟片设置于两类发光芯片的部分光束出射光路中时,可以从激光器得到的出射激光光束中,存在同一颜色的光具有两种偏振态,一方面能够减小两类发光芯片偏振方向完全正交的差异状态,同时,还可以减轻同一颜色的光的相干程度。
光阀调制部件20位于激光器10的出光侧,光阀调制部件20用于对入射光线进行调制后反射。在本申请实施例中,光阀调制部件20可以采用数字微反射镜(Digital Micromirror Device,简称DMD),DMD为反射式光阀器件,DMD表面包括成千上万个微小反射镜,通过控制微小反射镜的翻转角度以及占空比,可以实现对光线的调制。
投影镜头30位于光阀调制部件20的反射光路上,投影镜头30用于对光阀调制部件 的出射光进行成像。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种激光器,其特征在于,包括:
    管壳;所述管壳包括底板和位于所述底板之上的环状侧壁;
    密封透光层,与所述环状侧壁连接;其中,所述底板、所述环状侧壁和所述密封透光层形成密封容置空间;
    多个发光芯片,贴装于所述管壳的底板之上;所述多个发光芯片包括第一类发光芯片和第二类发光芯片,所述第一类发光芯片出射的激光的偏振方向与所述第二类发光芯片出射的激光的偏振方向不同;
    至少一个棱镜;一个所述棱镜对应至少一个所述多个发光芯片,所述棱镜用于接收对应的所述多个发光芯片出射的激光向所述激光器的出光方向反射;
    相位延迟片,位于所述容置空间内且平行于所述底板设置,至少部分所述多个发光芯片的光束经所述相位延迟片改变激光的偏振方向后再射向所述密封透光层。
  2. 如权利要求1所述的激光器,其特征在于,所述棱镜包括:顶面、底面和反射面,其中,所述棱镜的底面贴装于所述底板上,所述顶面为与所述底面相对的面,所述反射面面对至少一个所述发光芯片,并用于反射所述至少一个发光芯片出射的激光光束,所述相位延迟片位于所述棱镜的顶面靠近所述反射面的边缘并延伸出所述顶面的边缘。
  3. 如权利要求2所述的激光器,其特征在于,各所述多个发光芯片沿设定方向排列为一行,所述一行中同时包含所述第一类发光芯片和所述第二类发光芯片,所述棱镜在对应所述第一类发光芯片的区域或在对应所述第二类发光芯片的区域上设置所述相位延迟片。
  4. 如权利要求2所述的激光器,其特征在于,各所述第一类发光芯片排列成至少一个第一类发光芯片行,各所述第二类发光芯片排列成至少一个第二类发光芯片行;所述棱镜,在对应至少一行所述第一类发光芯片的行,或者在对应至少一行所述第二类发光芯片的行的区域设置有所述相位延迟片。
    其中,所述第一类发光芯片和所述第二类发光芯片两者之一出射两种颜色的激光,另一出射一种颜色的激光。
  5. 如权利要求3或4所述的激光器,其特征在于,所述棱镜为沿激光芯片组件行方向延伸的条形棱镜,一个所述棱镜对应至少一行所述多个发光芯片,所述相位延迟片设置在所述棱镜的顶面并用于透射所述至少一行多个发光芯片出射经所述棱镜反射的激光光束,或者,所述相位延迟片设置在所述棱镜的部分顶面并用于透射所述至少一行多个发光芯片出射经所述棱镜反射的部分激光光束。
  6. 如权利要求5所述的激光器,其特征在于,所述棱镜包括:第一反射面和第二反射面,所述第二反射面相对于所述顶面与第一反射面对称设置;所述第一类发光芯片行位于所述棱镜的第一反射面的一侧;所述第二类发光芯片行位于所述棱镜的第二反射面的一侧; 所述相位延迟片位于所述棱镜的顶面靠近所述第一反射面的边缘;或者,所述相位延迟片位于所述棱镜的顶面靠近所述第二反射面的边缘。
  7. 如权利要求2所述的激光器,其特征在于,所述相位延迟片与所述棱镜的顶面接触的部分设置有镀金层,所述相位延迟片通过所述镀金层贴合在所述棱镜的顶面上。
  8. 如权利要求1所述的激光器,其特征在于,所述侧壁具有朝向所述容置空间内部的凸台,所述相位延迟片固定于所述侧壁上的凸台上;所述侧壁的材质包括陶瓷。
  9. 如权利要求8所述的激光器,其特征在于,所述侧壁由多个子壁围成,所述多个子壁中至少相对的两个子壁的内表面具有凸台,所述相位延迟片中相对的两个边缘分别与所述两个子壁上的所述凸台远离所述底板的一侧固定。
  10. 如权利要求1所述的激光器,其特征在于,所述激光器还包括位于所述底板上且被所述侧壁包围的至少一个支架,所述支架的材质包括陶瓷或铜,所述支架与所述底板一体成型或者所述支架焊接于所述底板上;
    所述相位延迟片位于所述至少一个支架上,所述相位延迟片通过焊料与所述支架焊接固定。
  11. 如权利要求10所述的激光器,其特征在于,所述相位延迟片与所述至少一个支架远离所述底板的一侧固定,所述相位延迟片还与所述侧壁固定。
  12. 如权利要求1所述的激光器,其特征在于,所述激光器还包括:
    多个准直透镜,一个所述准直透镜对应一个所述多个发光芯片;
    所述准直透镜固定于所述底板上,位于对应的所述多个发光芯片与对应的所述棱镜之间,或者,
    多个准直透镜一体成型,设置于所述密封透光层远离所述底板方向的外侧。
  13. 一种激光投影设备,其特征在于,包括如权利要求1~12任一项所述的激光器,以及光阀调制部件,位于所述激光器的出光侧;所述光阀调制部件用于对所述激光器的出射光线进行调制;
    投影镜头,位于所述光阀调制部件的出光侧。
PCT/CN2023/084222 2022-03-31 2023-03-28 一种激光器和激光投影设备 WO2023185784A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210344076.0A CN114637161A (zh) 2022-03-31 2022-03-31 一种激光器和激光投影设备
CN202210344076.0 2022-03-31
CN202221173515.8 2022-05-16
CN202221173515.8U CN217522368U (zh) 2022-05-16 2022-05-16 激光器

Publications (1)

Publication Number Publication Date
WO2023185784A1 true WO2023185784A1 (zh) 2023-10-05

Family

ID=88199122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084222 WO2023185784A1 (zh) 2022-03-31 2023-03-28 一种激光器和激光投影设备

Country Status (1)

Country Link
WO (1) WO2023185784A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190864A (ja) * 2017-05-09 2018-11-29 ウシオ電機株式会社 半導体レーザ装置
US20190252852A1 (en) * 2016-10-28 2019-08-15 Osram Opto Semiconductors Gmbh Laser component and method of producing a laser component
CN113534587A (zh) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 激光器和投影设备
CN113922204A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备
CN114253061A (zh) * 2020-09-22 2022-03-29 青岛海信激光显示股份有限公司 激光器及投影设备
CN114637161A (zh) * 2022-03-31 2022-06-17 青岛海信激光显示股份有限公司 一种激光器和激光投影设备
CN217522368U (zh) * 2022-05-16 2022-09-30 青岛海信激光显示股份有限公司 激光器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190252852A1 (en) * 2016-10-28 2019-08-15 Osram Opto Semiconductors Gmbh Laser component and method of producing a laser component
JP2018190864A (ja) * 2017-05-09 2018-11-29 ウシオ電機株式会社 半導体レーザ装置
CN113534587A (zh) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 激光器和投影设备
CN114253061A (zh) * 2020-09-22 2022-03-29 青岛海信激光显示股份有限公司 激光器及投影设备
CN113922204A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备
CN114637161A (zh) * 2022-03-31 2022-06-17 青岛海信激光显示股份有限公司 一种激光器和激光投影设备
CN217522368U (zh) * 2022-05-16 2022-09-30 青岛海信激光显示股份有限公司 激光器

Similar Documents

Publication Publication Date Title
WO2021135847A1 (zh) 激光封装结构
US10642138B2 (en) Laser array, laser light source and laser projection device
JP5358878B2 (ja) 発光素子、発光モジュール、照明装置、および画像投影装置
CN110955102B (zh) 投影仪
JP7110851B2 (ja) 光源装置およびプロジェクター
CN217522368U (zh) 激光器
WO2023185784A1 (zh) 一种激光器和激光投影设备
CN114637161A (zh) 一种激光器和激光投影设备
CN216773797U (zh) 激光器
JP2017212363A (ja) 光源装置及びプロジェクター
JP7428129B2 (ja) 発光装置および投射型表示装置
JP6822452B2 (ja) 光源装置およびプロジェクター
CN114253061A (zh) 激光器及投影设备
CN217425916U (zh) 一种激光器及激光投影设备
WO2022111334A1 (zh) 激光器和投影设备
CN217507922U (zh) 激光器
JP6870215B2 (ja) 光源装置及びプロジェクター
WO2023284880A1 (zh) 激光器和激光投影设备
WO2024027769A1 (zh) 光源组件及激光显示设备
JP7306538B2 (ja) プロジェクター
CN218216096U (zh) 激光器
JP6759714B2 (ja) 光源装置およびプロジェクター
CN114895517A (zh) 一种激光器及激光投影设备
WO2022116631A1 (zh) 一种光源装置
WO2023109778A1 (zh) 激光器及投影光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778149

Country of ref document: EP

Kind code of ref document: A1