WO2024027769A1 - 光源组件及激光显示设备 - Google Patents

光源组件及激光显示设备 Download PDF

Info

Publication number
WO2024027769A1
WO2024027769A1 PCT/CN2023/110784 CN2023110784W WO2024027769A1 WO 2024027769 A1 WO2024027769 A1 WO 2024027769A1 CN 2023110784 W CN2023110784 W CN 2023110784W WO 2024027769 A1 WO2024027769 A1 WO 2024027769A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
frame
lasers
edge
Prior art date
Application number
PCT/CN2023/110784
Other languages
English (en)
French (fr)
Inventor
张昕
郭梦晓
卢云琛
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222023222.8U external-priority patent/CN217692089U/zh
Priority claimed from CN202222567324.6U external-priority patent/CN219696912U/zh
Priority claimed from CN202223314384.3U external-priority patent/CN218770544U/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2024027769A1 publication Critical patent/WO2024027769A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present application relates to the field of projection display technology, and in particular to a light source assembly and a laser display device.
  • this application provides a light source assembly, which includes: a power board and a plurality of lasers fixed on the power board;
  • Each of the plurality of lasers includes: a base plate, a frame located on the base plate, and a light-emitting chip located in a groove surrounded by the base plate and the frame; Two adjacent lasers are spliced, and the edges of the base plates of the two lasers that are close to each other are aligned;
  • the power board is used to provide current to the light-emitting chips in the plurality of lasers, and the light-emitting chip is used to emit laser light under the action of the current.
  • the display device includes: a display component and the above-mentioned light source component.
  • the light source component is used to emit laser light to the display component.
  • the display component is used to generate light based on the received laser light. Display the screen.
  • Figure 1 is a schematic structural diagram of a light source assembly provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of yet another light source assembly provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a light source assembly provided by another embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another light source assembly provided by another embodiment of the present application.
  • Figure 9 is a schematic diagram of the exploded structure of a laser provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the front structure principle of a laser provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of the pin structure of the laser in Figure 10.
  • Figure 12 is another structural schematic diagram of the pin structure of the laser in Figure 10;
  • Figure 13 is a schematic diagram of the front structure principle of another laser provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram corresponding to the three-dimensional structure of the laser in Figure 13;
  • Figure 15 is a schematic structural diagram of a pin structure in the laser provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another pin structure in the laser provided by the embodiment of the present application.
  • FIG 17 is a schematic structural diagram of another electrode pin in the laser provided by the embodiment of the present application.
  • Figure 18 is a schematic cross-sectional structural diagram of a laser provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of a light source assembly provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of a light source assembly provided by an embodiment of the present application.
  • a laser can be used in a light source assembly of a laser display device (such as a projection device or a laser TV) to provide laser light for forming a display screen.
  • a laser display device such as a projection device or a laser TV
  • the requirements for the display effect of display devices are relatively high, and the luminance of the light source component and the distribution of the emitted laser will have an impact on the display effect of the formed picture.
  • the better the luminous brightness of the light source component the higher the brightness of the display screen can be formed, and the brightness of the display screen can be adjusted in a wider range, so that the display effect of the screen is better.
  • the higher the distribution uniformity of the laser light emitted by the light source component the more conducive it is to subsequent laser shaping and ensuring the color uniformity of the formed display screen, so that the display effect of the screen is better.
  • Embodiments of the present application provide a light source component that can emit laser light with higher brightness and more uniform distribution, thereby ensuring that the display device forms a picture with better display effect based on the laser light emitted by the light source component.
  • FIG. 1 is a schematic structural diagram of a light source assembly provided by an embodiment of the present application.
  • the light source assembly 10 may include a power board 101 and a plurality of lasers 102 , and the plurality of lasers 102 are fixed on the power board 101 .
  • the power board 101 is used to provide current to the laser 102 so that the laser 102 normally emits light based on the received current.
  • FIG. 1 takes the light source assembly 10 including two lasers 102 as an example.
  • the light source assembly 10 may also include three lasers 102 or even more, which is not limited by the embodiment of this application.
  • the laser 102 may include: a base plate 1021, a frame 1022 and a light emitting chip (not shown in the figure).
  • the frame 1022 may be located on the bottom plate 1021, and the bottom plate 1021 and the frame 1022 may enclose a groove for accommodating other components.
  • the light-emitting chip is located in the groove surrounded by the bottom plate 1021 and the frame 1022.
  • the power board 101 can provide current to the light-emitting chips in the plurality of lasers 102, and each light-emitting chip emits laser light under the action of the current received.
  • the bottom plate 1021 of the laser 102 is generally rectangular, and the frame 1022 is also generally a rectangular frame.
  • the bottom plate 1021 may have four edges corresponding to the four sides of the rectangle.
  • the base plate 1021 of the laser 102 can also be in other shapes, such as pentagon, hexagon, etc., which are not limited in the embodiment of this application.
  • the light source component 10 includes a plurality of spliced lasers 102.
  • the light emitted by the light source component 102 is laser light emitted by the plurality of lasers 102.
  • the luminous brightness of the light source component 10 can be relatively high.
  • the edges of the bottom plates 1021 of two adjacent lasers 102 that are close to each other can fit together, so the lasers 102 are arranged more closely, and the overall space occupied by the lasers 102 is smaller, which is conducive to the compactness of the light source assembly. change.
  • the laser beams emitted by the plurality of lasers 102 are relatively close to each other, and the laser beam emitted by the light source assembly 10 as a whole has a smaller spot and a higher uniformity of the spot, which is beneficial to subsequent laser shaping and utilization, and helps to improve the performance of the laser based on the laser.
  • the display effect of the resulting display screen is relatively close to each other, and the laser beam emitted by the light source assembly 10 as a whole has a smaller spot and a higher uniformity of the spot, which is beneficial to subsequent laser shaping and utilization, and helps to improve the performance of the laser based on the laser.
  • the light source assembly provided by the embodiment of the present application includes multiple lasers fixed on the power supply board.
  • the light source component can emit a higher brightness laser, the brightness of the display screen formed based on the laser can be higher, and the display effect of the display screen can be better.
  • two adjacent lasers among the plurality of lasers can be spliced, and the edges of the base plates of the two lasers that are close to each other are bonded together. In this way, the plurality of lasers occupy less space as a whole, and the lasers emitted by the plurality of lasers are closer to each other, which is beneficial to subsequent overall adjustment and utilization of the lasers.
  • FIG. 2 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • the laser 102 may include a base plate 1021 , a frame 1022 , a plurality of light-emitting chips 1023 , a plurality of heat sinks 1024 and a plurality of reflective prisms 1025 .
  • the frame 1022 may be located on the bottom plate 1021. One end surface of the frame 1022 is fixed to the surface of the bottom plate 1021.
  • the bottom plate 1021 and the frame 1022 may enclose a groove.
  • the plurality of light-emitting chips 1023, the plurality of heat sinks 1024 and the plurality of reflective prisms 1025 They are all located in the groove surrounded by the bottom plate 1021 and the frame 1022 .
  • the edge of the bottom plate 1021 may not be flush with the outer wall of the frame 1022.
  • the edge of the bottom plate 1021 may protrude relative to the outer wall of the frame 1022.
  • the plurality of heat sinks 1024 and the plurality of reflective prisms 1025 in the laser 102 may correspond to the plurality of light-emitting chips 1023 one by one.
  • the heat sink 1024 is fixed on the base plate 1021, and each light-emitting chip 1023 is arranged on the corresponding heat sink 1024.
  • the heat sink 1024 can be used to assist the light-emitting chip 1023 in dissipating heat.
  • the reflective prism 1025 is located on the light-emitting side of the corresponding light-emitting chip 1023, and the surface of the reflective prism 1025 close to the light-emitting chip 1023 is a reflective surface.
  • the light-emitting chip 1023 can emit laser light to the reflective prism 1025, and the reflective surface of the reflective prism 1025 can reflect the laser light in a direction away from the base plate 1021 to realize the light emission of the laser 102.
  • the reflective surface can reflect laser light by coating it with reflective material (such as silver, aluminum, etc.) or pasting it with a reflective film.
  • one heat sink 1024 or one reflective prism 1025 may correspond to at least two light-emitting chips 1023, which is not limited by the embodiment of this application.
  • each laser 102 includes eight light-emitting chips 1023 arranged in two rows and four columns.
  • the laser 102 may also include four light-emitting chips 1023 arranged in one row, or may include six light-emitting chips 1023 arranged in two rows and three columns.
  • the embodiment of this application specifies the number and specific arrangement of the light-emitting chips 1023 in the laser 102 The method is not limited.
  • the structure composed of the bottom plate 1021 and the frame 1022 in the laser 102 can be called a tube shell.
  • the tube shell of the laser 102 in the embodiment of the present application may be a metal tube shell or a ceramic tube shell.
  • the bottom plate 1021 and the frame 1022 may both be made of metal or ceramic; or the bottom plate 1021 may be made of metal, and the frame 1022 may be made of ceramic; or the bottom plate 1021 may be made of ceramic, and the frame 1022 may be made of ceramic.
  • the metal may include copper, such as oxygen-free copper. Oxygen-free copper has good thermal conductivity, which can facilitate the rapid dissipation of heat generated by the light-emitting chip 1023 when emitting laser light.
  • the laser 102 also includes a plurality of electrode pins 1026 .
  • the plurality of electrode pins 1026 can be respectively located on opposite sides of the frame 1022 and used to connect the inside and outside of the groove.
  • the electrode pin 1026 includes a first portion located within the surrounding area of the frame 102 and a second portion located outside the surrounding area of the frame 1022 .
  • the first part can be used to electrically connect with the light-emitting chip 1023
  • the second part can be used to electrically connect with the power board 101 and then be connected to an external power source to transmit current to the light-emitting chip 1023 .
  • a plurality of soldering pads may be provided on the power board 101, and the second part of each electrode pin 1026 of the laser 102 may be electrically connected to the corresponding soldering pad through wires.
  • the electrode pins are electrically connected to the light-emitting chip 1023 in the laser 102, and the pad can be connected to the power supply, so that the light-emitting chip 1023 in the laser 102 can receive the current transmitted by the power supply through the electrode pins and the welding pad.
  • Laser 102 may also include a light-transmissive sealing layer (not shown).
  • the light-transmitting sealing layer is located on the side of the frame 1022 away from the bottom plate 1021 in the axial direction.
  • the light-transmitting sealing layer is used to seal the opening of the groove surrounded by the frame 1022 and the bottom plate 1021 . This can prevent external water, oxygen and other substances from corroding the light-emitting chip 1023 and other components in the groove, ensure the working reliability of the light-emitting chip and other components, and extend the life of the light-emitting chip and other components.
  • the laser 102 in the embodiment of the present application may be a monochromatic laser or a multi-color laser.
  • a monochromatic laser means that the light-emitting chips in the laser are all used to emit laser light of the same color.
  • a multi-color laser means that the laser includes at least two types of light-emitting chips, and different types of light-emitting chips are used to emit laser light of different colors.
  • the plurality of lasers 102 in the light source assembly 10 of the embodiment of the present application may all be the same laser.
  • the plurality of lasers 102 may all be monochromatic lasers or may all be the same multi-color laser.
  • the light-emitting chips 1023 in the plurality of lasers 102 are all used to emit laser light of the same color.
  • there may be at least two different lasers 102 among the plurality of lasers 102 that is, there may be at least two light-emitting chips 1023 in the lasers 102 used to emit light of different colors.
  • a monochromatic laser and a multi-color laser may coexist in the plurality of lasers 102, or monochromatic lasers or multi-color lasers of different colors may coexist. The specific structure of each laser will be introduced with examples later.
  • the light source assembly 102 may include a red laser and a blue-green laser.
  • the light-emitting chips in the red laser are all used to emit red laser light. Some of the light-emitting chips in the blue-green laser are used to emit blue laser light. The other part of the light-emitting chips are used to emit blue laser light. Used to emit green laser light.
  • the light source assembly 102 may include a plurality of trichromatic lasers.
  • the three-color laser includes three types of light-emitting chips, which are used to emit red laser, green laser and blue laser respectively.
  • the number of lasers 102 in the light source assembly 10 in the embodiment of the present application may be two, three or even more.
  • the light source assembly 10 includes two spliced lasers 102 (such as a first laser 102a and a second laser 102b respectively).
  • the bottom plate 1021 of each laser 102 is roughly rectangular with four edges. The splicing method of laser 102 is introduced below.
  • FIG. 3 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • the light source assembly 10 includes a first laser 102a and a second laser 102b.
  • the structure of the first laser 102a can be shown in Figure 2
  • the structure of the second laser 102b can be shown in Figure 4.
  • the bottom plates 1021 of the two lasers protrude relative to the frame 1022.
  • the first edge B1 of the bottom plate 1021 of the first laser 102a protrudes relative to the frame 1022 of the first laser 102a
  • the first edge B1 of the bottom plate 1021 of the second laser 102b protrudes.
  • the two edges B2 protrude relative to the frame 1022 of the second laser 102b.
  • the distance between the outer wall of the frame 1022 and the edge of the bottom plate 1021 in the arrangement direction of the two lasers 102 is 4.38 mm.
  • the first edge B1 of the base plate 1021 of the first laser 102a may be in contact with the second edge B2 of the base plate 1021 of the second laser 102b.
  • the first edge B1 has a notch K
  • the second edge B2 has a protruding portion T corresponding to the notch K
  • the protruding portion T is located in the corresponding notch K.
  • the notch K and the protruding portion T can engage with each other, and the first laser 102a and the second laser 102b can use the notch K and the protruding portion T to engage and splice, thereby realizing the positions of the first laser 102a and the second laser 102b fixed and mutually limited.
  • the shape of the protruding portion T is the same as the shape of the corresponding notch K, and the size difference between the protruding portion T and the corresponding notch K is also very small.
  • the size of the protrusion T and the corresponding notch K may be the same, or the size of the notch K may be slightly larger than the size of the protrusion T. This can ensure that the protruding portion T and the corresponding notch K are more firmly engaged.
  • FIG. 3 takes as an example that both the shape of the protruding portion T and the corresponding shape of the notch K are semicircular.
  • the shape of the protruding portion T and the corresponding shape of the notch K can also be a quadrilateral, a pentagon, or other shapes, which are not limited in the embodiment of the present application.
  • the first edge B1 has three notches K and the second edge B2 has three protrusions T as an example.
  • the first edge B1 may also have two, four or other numbers of notches K
  • the second edge B2 may have two, four or other numbers of protrusions T, each notch K and the protrusion T.
  • the protruding parts T may be evenly distributed or unevenly distributed. The embodiment of the present application does not limit the number and arrangement of the notches K and the protruding parts T.
  • the base plates 1021 of the two lasers 102 are spliced together in a manner in which the protruding portion of one edge of the edges that are close to each other snaps into the notch of the other edge.
  • the overall space occupied by the two lasers 102 can also be reduced, so that the distance between the frames 1022 of the two lasers 102 is shorter.
  • the light spots formed by the lasers emitted by the light-emitting chips 1023 surrounded by the frames 1022 of the two lasers 102 are relatively close, which is beneficial to the overall shaping and utilization of the lasers emitted by the two lasers 102 .
  • FIG. 5 is a schematic structural diagram of yet another light source assembly provided by an embodiment of the present application.
  • the light source assembly 10 includes a first laser 102a and a second laser 102b.
  • the first edge B1 of the base plate 1021 of the first laser 102a is flush with the frame 1022 of the first laser 102a, and the other edges are opposite to the frame 1022. Protruding; the second edge B2 of the base plate 1021 of the second laser 102b protrudes from the frame 1022 of the second laser 102b, and other edges also protrude relative to the frame 1022.
  • the first edge B1 of the bottom plate 1021 of the first laser 102a can fit with the second edge B2 of the bottom plate 1021 of the second laser 102b, so that the frame 1022 of the first laser 102a can fit with the frame 1022 of the second laser 102b. contact (such as fit).
  • the flushness described in the embodiment of this application only refers to being approximately flush, and there is a certain error. That is, the distance between the edge of the bottom plate 1011 and the outer wall of the frame 1022 is less than a small distance. Threshold; the mentioned fit also refers to fit within a certain error range, even if it is not closely fit, it still belongs to the situation described in the embodiment of this application.
  • FIG. 6 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application.
  • the edges connecting the two ends of the first edge B1 of the base plate 1021 in the first laser 102a are the third edge B3 and the fourth edge B4 respectively. Both edges protrude relative to the frame 1022 of the first laser 102a.
  • the connection between the first edge B1 and the third edge B3 has a first notch K1
  • the connection between the first edge B1 and the fourth edge B4 also has a first notch K1.
  • the edges connecting the two ends of the second edge B2 of the base plate 1021 in the second laser 102b are the fifth edge B5 and the sixth edge B6 respectively.
  • Both edges protrude relative to the frame 1022 of the second laser 102b.
  • the connection between the second edge B2 and the fifth edge B5 has a second notch K2, and the connection between the second edge B2 and the sixth edge B6 also has a second notch K2.
  • the two first notches K1 of the bottom plate 1021 of the first laser 102a can be opposite to the two second notches K2 of the bottom plate 1021 of the second laser 102b.
  • Each first notch K1 can form a fixing hole with its opposite second notch K2. , this fixing hole is called the first fixing hole in the embodiment of this application.
  • screws may be provided in the first fixing holes to fix the two lasers 102 and the power board 101 .
  • the light source assembly 10 may further include screws (not shown in FIG. 6 ), the power board 101 may have a first screw hole L1 connected to the first fixing hole, and the screw may be passed through the first fixing hole to communicate with the first screw hole. hole L1 to lock the two lasers 102 and the power board 101.
  • the screw passing through the first screw hole L1 communicating with the first fixing hole is called a first screw.
  • the inner walls of the first notch K1 and the second notch K2 may also have threads, and the first fixing hole formed by the first notch K1 and the second notch K2 may also be called a screw hole.
  • the first screw may be an M4 screw, that is, a screw with an outer diameter of 4 mm; or it may be an M6 screw, that is, a screw with an outer diameter of 6 mm.
  • Figure 6 takes the first notch K1 and the second notch K2 as a quarter-circular shape, and the first fixing hole formed as a semi-circular shape is used as an example for illustration.
  • the first notch K1 and the second notch K2 can also be semicircular, and the first fixing hole formed by them can be circular; in another specific implementation, the first notch K1 and the second notch K2 can also be both semicircular. It is rectangular, and the first fixing hole is still rectangular.
  • the embodiment of the present application does not limit the shapes of the first notch K1 and the second notch K2. It is only necessary to ensure that the first fixing hole can allow screws to penetrate and lock.
  • electrode pins 1026 need to be provided on opposite sides of the frame 1022 of the laser 102, and the electrode pins 1026 can be in contact with the bottom plate 1021. Therefore, the side where the electrode pins 1026 are located is not suitable for contact with the base plate 1021.
  • Both the first edge B1 and the second edge B2 may be edges on other sides of the base plate 1021 than the side where the electrode pins 1026 are located.
  • the edge area of the side that is not spliced to the laser may have at least one second fixing hole G.
  • the embodiment of the present application takes the edge area having three second fixing holes G as an example for illustration.
  • the power board 101 in the light source assembly 10 may have a second screw hole (not shown in the figure) communicating with the second fixing hole G.
  • the light source assembly 10 may also include a second screw, and the second screw may pass through the second fixing hole G and the second screw hole to lock the laser 102 with the power board 101 .
  • the second fixing hole G may be a closed hole, or may be a gap, which is not limited by the embodiment of the present application.
  • the light source assembly 10 may also include more than two lasers 102 .
  • FIG. 7 is a schematic structural diagram of a light source assembly provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another light source assembly provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of the light source assembly in the above-mentioned first connection mode
  • FIG. 8 is a schematic view of the light source assembly in the above-mentioned second connection mode.
  • the projection light source 10 may include three lasers 102 , and the three lasers 102 may be arranged sequentially in one direction, and adjacent lasers 102 are spliced.
  • the edges on the opposite sides of the bottom plate 1021 of the laser 102 can be the above-mentioned first edge B1 or the second edge B2.
  • the bottom plate of the laser 102 1021 may not have the second fixing hole G.
  • the edge area on the opposite side of the bottom plate 1021 of the laser 102 may have a second fixing hole G.
  • located in The edge areas of the bottom plate 1021 of the lasers 102 at both ends on the side away from the other lasers have second fixing holes G, while the laser 102 in the middle does not have the second fixing holes G.
  • the light source assembly provided by the embodiment of the present application includes multiple lasers fixed on the power supply board.
  • the light source component can emit a higher brightness laser, the brightness of the display screen formed based on the laser can be higher, and the display effect of the display screen can be better.
  • two adjacent lasers among the plurality of lasers can be spliced, and the edges of the base plates of the two lasers that are close to each other are bonded together. In this way, the plurality of lasers occupy less space as a whole, and the lasers emitted by the plurality of lasers are closer to each other, which is beneficial to subsequent overall adjustment and utilization of the lasers.
  • Figure 9 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Figure 9 is an exploded view of the laser shown in Figure 10.
  • Figure 10 is a diagram A top view of the laser shown in Figure 9.
  • the laser 102 may include a base plate 1021 , a frame 1022 , a plurality of light-emitting chips 1023 and a pin structure 104 .
  • the bottom plate 1021 has a plate-like structure.
  • the plate-like structure has two opposite and larger plate surfaces, and a plurality of smaller side surfaces connecting the two surfaces.
  • the frame 1022 is a frame-shaped structure.
  • the frame-like structure has two opposite annular end faces at both ends in the axial direction, and also has an inner wall and an outer wall connecting the two end faces.
  • the axial direction of the frame 1022 is the z direction.
  • One end of the frame 1022 can be fixed to the bottom plate 1021, and the frame 1022 and the bottom plate 1021 enclose a groove, which is also a receiving space.
  • the light-emitting chips 1023 in the laser 1021 are all located in the groove.
  • the frame 1022 and the light-emitting chip 1023 are both located on the base plate 1021.
  • One end surface of the frame 1022 is fixed on the surface of the base plate 1021, and the frame 1022 surrounds the light-emitting chip 1023.
  • the structure composed of the frame 1022 and the bottom plate 1021 may be called a tube shell or a base.
  • the end of the frame 1022 close to the bottom plate 1021 has a gap M.
  • the pin structure 104 is fixed to the frame 1022 and fills the gap M.
  • the pin structure 104 can also be fixed to the base plate 1021.
  • FIG. 11 is a schematic diagram of a pin structure provided by an embodiment of the present application. Please refer to FIGS. 9 to 11 .
  • the pin structure 104 includes: an insulator 1041 and a plurality of electrode pins 1042 .
  • the multiple electrode pins 1042 are fixed to the insulator 1041 .
  • the plurality of electrode pins 1042 are spaced apart from each other and are connected inside and outside the surrounding area of the frame 1022.
  • the electrode pins 1042 can extend from within the surrounding area of the frame 1022 to outside the surrounding area.
  • the extension direction of the electrode pins 1042 can be x direction in Figures 9 and 10.
  • Each electrode pin 1042 includes a first pad D1 located within the surrounding area and a second pad D2 located outside the surrounding area.
  • the first pad D1 is electrically connected to the second pad D2.
  • the extension direction of the middle electrode pin 1042 is also the arrangement direction of the first pad D1 and the second pad D2.
  • the first pad D1 is used for electrical connection with the light-emitting chip 1023
  • the second pad D2 is used for electrical connection with the external circuit. In this way, the current of the external circuit can be transmitted to the light-emitting chip 1023 through the electrode pin 1023, so that the light-emitting chip 1023 emits laser under the action of this current.
  • the insulator 1041 can carry the electrode pin 1042 and can isolate the electrode pin 1042 from other components to avoid other components from affecting the conductive effect of the electrode pin 1042.
  • the insulator 1041 can be used to isolate the electrode pins 1042 and the bottom plate 1021, and can also be used to isolate the electrode pins 1042 and the frame 1022, and can also be used to isolate each electrode pin 1022.
  • the material of the bottom plate 1021 in the embodiment of the present application may include metal or ceramics, and the material of the frame 1022 may also include metal or ceramics.
  • the material of the insulator 1041 includes ceramic.
  • the metal can be oxygen-free copper, Kovar alloy or other metals.
  • the ceramic component can be aluminum nitride, aluminum oxide or other components.
  • the pin structure 104 can be fixed to the notch M in the frame 1022 by soldering.
  • the middle area of each pin structure 104 can be aligned and snapped into the corresponding notch M, and solder can be disposed between the pin structure 104 and the corresponding notch M.
  • the frame 1022 with the pin structure 104 stuck at the notch M is placed in a suitable position on the bottom plate 1021, and solder is provided between the pin structure 104 and the bottom plate 1021, and between the end surface of the frame 1022 and the bottom plate 1021 Solder is also provided.
  • the structure composed of the base plate 1021, the frame 1022, the pin structure 104 and the solder is placed in a high-temperature furnace for sintering, so that the solder melts and the pin structure 104 is fixed at the corresponding notch M, and the pin structure 104 and frame 1022 are fixed to the bottom plate 1021, and ensure that the bottom plate 1021, Sealing of the connection between frame 1022 and pin structure 104 .
  • the bottom plate 1021, the frame 1022, and the pin structure 104 can enclose an accommodation space. After the bottom plate 1021, the frame 1022, and the pin structure 104 are fixed, the light-emitting chip 1023 can be fixed in the accommodation space. After that, wires can be set between the first pad D1 in the electrode pin 1042 in the pin structure 104 and the light-emitting chip 1023 close to the first pad D1, and between the light-emitting chips 1023 that need to be electrically connected. wire.
  • Figures 9 and 3 in the embodiments of this application do not illustrate the wires.
  • ball bonding technology can be used to fix wires on the first pad D1 and the light-emitting chip 1023 .
  • a wire bonding tool is used to melt one end of the wire, and the melted end is pressed against the object to be connected, and the wire bonding tool also applies ultrasonic waves to complete the bonding between the wire and the object to be connected.
  • the wire may be a gold wire, and the fixing process of the wire may also be called a gold wire bonding process.
  • the number of wires between any two components connected by wires in the laser 102 can be multiple to ensure the reliability of the connection between the components and reduce the sheet resistance on the wires.
  • the first pad D1 and the light-emitting chip 1023, as well as the adjacent light-emitting chips 1023 can be connected through multiple wires.
  • multiple electrode pins can be fixed by only fixing the pin structure 104. There is no need to fix each electrode pin individually, which can simplify the fixing process of the electrode pins. Moreover, the contact area between the pin structure 104 and the frame 1022 can be larger than the contact area between a single electrode pin and the frame in the related art, which can improve the fixing reliability of the electrode pin and improve the reliability of the laser. In addition, since certain assembly errors will occur during the assembly process of each component, in the embodiment of the present application, each electrode pin does not need to be fixed separately. Therefore, the assembly error caused by fixing each electrode pin separately can be avoided, ensuring that the electrode The accuracy of the fixed position of the pin is higher. The higher the accuracy of the fixed position of the electrode pins, the higher the precision and quality of the wiring on the electrode pins will be. Therefore, the reliability of wire connection in the laser can be improved and the difficulty of wiring can be reduced.
  • the pin structure 104 of the embodiment of the present application includes an insulator 1041 and a plurality of electrode pins 1042 .
  • the insulator 1041 includes: a first part B1 located within the surrounding area of the frame 1022, a second part B2 located outside the surrounding area, and a third part B3 located between the first part B1 and the second part B2.
  • the first part B1, The third part B3 and the second part B2 may be arranged along the extension direction of the electrode pins 1042 (that is, the x direction).
  • the surface of the third part B3 close to the bottom plate 1021 is flush with the end surface of the frame 1022 close to the bottom plate 1021 .
  • the third part B3 is covered by the frame 1022, and the width of the third part B3 is the same as the thickness of the frame 1022.
  • the electrode pin 1042 includes a first bonding pad D1 located within the surrounding area and a second bonding pad D2 located outside the surrounding area. The first bonding pad D1 and the second bonding pad D2 are electrically connected. In a specific implementation, as shown in FIGS. 9 and 11 , the length of the first pad D1 may be greater than the length of the second pad D2 in a target direction, and the target direction may be the extension direction of the vertical electrode pin 1042 direction (such as the y direction).
  • the first pad D1 in the electrode pin 1042 is fixed to the first part B1 in the insulator 1041, and the second pad D2 in the electrode pin 1042 is fixed to the second part B2 in the insulator 1041.
  • the first pad D1 and the second pad D2 are both exposed.
  • the first pad D1 in the electrode pin 1042 is located on the side of the first part B1 away from the base plate 1021
  • the second pad D2 is located on the side of the second part B2 away from the base plate 1021 . In this way, wires can be conveniently arranged on the first pad D1 and the second pad D2.
  • the electrode pins 1042 are spaced apart from each other, the first pads D1 in each electrode pin 1042 are spaced apart from each other, and the second pads D2 in each electrode pin 1042 are also spaced apart from each other to avoid interference of currents transmitted by different electrode pins 1042 interfere with each other.
  • Each first pad D1 can be arranged in sequence along the target direction (such as the y direction), and each second pad D2 can also be arranged in sequence along the target direction.
  • the insulator 1042 has grooves between adjacent first pads D1 to achieve spacing between different first pads D1 through the grooves.
  • a portion of the insulator 1042 may also be located between adjacent first pads D1 to achieve spacing between different first pads D1 through insulating materials.
  • the spacing method of the second pad D2 may be the same as the spacing mode of the first pad D1.
  • the adjacent second pads D2 in the insulator 1042 also have concavities. Groove, so as to realize the spacing of the second pad D2 through the groove; or the spacing between the second pad D2 can also be realized through the insulating material.
  • the height of the first pad D1 and the height of the second pad D2 may be the same or different.
  • the height of the pad refers to the distance between the pad and the bottom board.
  • Figure 11 takes the second bonding pad D2 as being higher than the first bonding pad D1 as an example; in a specific implementation, the second bonding pad D2 and the first bonding pad D1 can also be flush, or the second bonding pad D2 can be lower than the first bonding pad D1.
  • the electrode pin 1042 may also include a conductive portion (not shown in the figure) between the first pad D1 and the second pad D2.
  • the first pad D1 and the second pad D2 Electrically connected through conductive parts.
  • the conductive part between the electrode pins 1042 can be embedded inside the third part B3 to ensure that the conductive part can be isolated from the frame 1022 and the bottom plate 1021 through the third part B3.
  • the conductive part may also be located on the side of the third part B3 away from the bottom plate 1021 .
  • the conductive portion may also be located on the side of the third part B3 close to the bottom plate 1021 .
  • the third part B3 in the insulator 1041 is raised relative to the first part B1 and the second part B2.
  • the insulator 1041 may have a T-shaped structure.
  • the first cross section of the pin structure 104 may be T-shaped, and the first cross section may be parallel to the arrangement direction of the first part B1 and the second part B2, that is, parallel to the x direction.
  • the portion of the third part B3 that is convex relative to the first part B1 and the second part B2 may be in the shape of a rectangular parallelepiped.
  • the convex part in the third part B3 can also be in other shapes, such as pyramid, pyramid or other shapes. The embodiments of the present application are not limited to this.
  • the third part B3 The surface away from the base plate 1021 may also be flush with the surfaces of the first part B1 and the second part B2 away from the base plate 1021 .
  • the pin structure 104 can be fixed to the frame 1022 and the bottom plate 1021 using at least the third part B3.
  • the side of the third part B3 away from the bottom plate 1021 is fixed to the frame 1022, and the side close to the bottom plate 1021 is fixed to the frame 1022.
  • One side is fixed to the base plate 1021.
  • the insulator 1041 can be fixed to the bottom plate 1021 and the frame 1022 through solder. Any part of the insulator 1041 fixed to any structure of the bottom plate 1021 or the frame 1022 refers to any part of the insulator 1041 being fixed to any structure of the bottom plate 1021 or the frame 1022. Solder is provided between the structures.
  • the surfaces of the first part B1, the second part B2, and the third part B3 close to the bottom plate 1021 may be flush and all are in contact and fixed with the bottom plate 1021, so that each position of the pin structure 104 may be supported by the bottom plate 1021.
  • the pin structure 104 has a strong pressure-bearing capacity, which prevents the pin structure 104 from being damaged by the pressure exerted by the wiring equipment. Damage occurs under the action, and the welding firmness of the wire and the pad can be higher. Therefore, the success rate of wiring and the fixing effect of the wire can be improved, and the production yield of the laser can be improved.
  • only the third portion B3 of the insulator 1041 close to the bottom plate 1021 may be fixed to the bottom plate 1021 .
  • the sides of the first part B1 and the second part B2 close to the bottom plate 1021 can still be flush with the side of the third part B3 close to the bottom plate 1021 and contact the bottom plate 1021; or the first part B1 and the second part B2 can be close to the bottom plate 1021.
  • One side may not be flush with the side of the third part B3 close to the bottom plate 1021, and there may be a certain distance between it and the bottom plate 1021, which is not limited in the embodiment of the present application.
  • the laser 102 may further include a solder structure 105 located between the pin structure 104 and the frame 1022 , and between the pin structure 104 and the base plate 1021 .
  • the pin structure 104 is fixed to the frame 1022 and the bottom plate 1021 through a solder structure 105 .
  • the solder structure 105 may be a pre-prepared structure with a fixed shape, and the solder structure 105 may be placed on the pin structure 104 to wrap part of the surface of the pin structure 104, such as wrapping the entire surface of the third part B3. Afterwards, the pin structure 104 covered with the solder structure 105 is clamped into the notch M of the frame 1022, and subsequent fixing steps are performed.
  • the pin structure 104 in the embodiment of the present application may be in a strip shape, and its length direction may be the target direction (y direction), and its width direction may be the x direction.
  • the width of the pin structure 104 may be related to the wall thickness of the frame 1022, with the thicker the frame 1022 being, the wider the pin structure 104 will be. In a specific implementation, the thickness of the frame 1022 is about 1 mm, and the width of the pin structure 104 can be about 2 mm. For example, the width of the pin structure 104 ranges from 1.5 mm to 3 mm. In the target direction, the length of the pin structure 104 is less than or equal to the length of the frame 1022 .
  • the length of the frame 1022 in the target direction refers to the distance between the two farthest points in the frame 1022 in the target direction. Since the pin structure 104 fills the gap M in the frame 1022, the length of the pin structure 104 in the target direction is equal to the length of the gap M. based on The length of the pin structure 104 is different from the length of the frame 1022, the fixing surfaces of the pin structure 104 and the frame 1022 are also different, and the shape of the solder structure 105 is also different.
  • the length of the pin structure 104 in the target direction is equal to the length of the frame 1022 .
  • the frame 1022 has a certain thickness
  • the structures in the surrounding area of the pin structure 104 that need to be close to the frame 1022 are also fixed to the frame 1022.
  • Figure 12 is a schematic diagram of another pin structure provided by an embodiment of the present application.
  • the first part B1 also has extension parts Y at both ends in the y direction.
  • the extension parts Y are used to be fixed to the frame 1022 and are covered by the frame 1022 .
  • the structure in the surrounding area of the insulator 1041 that is close to the frame 1022 relative to the third part B3 includes the first part B1 and two extension parts Y located at both ends of the first part B1.
  • the first part B1 is defined as the part of the insulator 1041 located within the surrounding area, on which the first pad D1 can be disposed.
  • the shape of the solder structure 105 in this case is shown in Figure 9.
  • the solder structure 105 can cover the surface of the third part B3 in the pin structure 104 that is away from the base plate 1021, the extension part Y away from the surface of the base plate 1021, the extension part Y away from the surface of the third part B3, and the surface of the pin structure 104 that is close to the base plate 1021.
  • the length of the pin structure 104 in the target direction is smaller than the length of the frame 1022 .
  • the pin structure 104 in the laser can be as shown in FIG. 11 , the pin structure 104 does not include the extension part, and the pin structure 104 can only be fixed to the frame 1022 by using the third part B3.
  • the solder structure 105 in the laser can cover the surface of the third part B3 in the pin structure 104 away from the bottom plate 1021, the side of the third part B3 in the y direction, and the surface of the third part B3 in the pin structure 104 close to the bottom plate 1021. surface.
  • the laser 102 includes two pin structures 104, and each pin structure 104 includes two electrode pins 1042 as an example.
  • the number of electrode pins 1042 in the pin structure 104 may also be three or more, which is not limited in the embodiment of this application.
  • the frame 1022 is in the form of a rectangular frame, and the frame 1022 is surrounded by four side walls, and each pin structure 104 fills a gap in one side wall.
  • the two opposite side walls of the frame 1022 have gaps M at their ends close to the bottom plate 1021.
  • the two pin structures 104 in the laser 102 can be fixed to the two side walls respectively and fill the two side walls respectively. A gap M in the side wall.
  • the electrode pin 1042 in one of the two pin structures 104 serves as the positive pin, and the second pad D2 in the electrode pin 1042 is used to connect the positive electrode of the external circuit;
  • the electrode pin 1042 in the other pin structure 104 serves as the negative electrode pin, and the second pad D2 in the electrode pin 1042 is used to connect the negative electrode of the external circuit.
  • Multiple light-emitting chips 1023 in the laser 102 can be arranged in multiple rows and columns. 9 and 10 take the example of the laser 102 including 10 light-emitting chips 1023 arranged in two rows and five columns. In a specific implementation, the light-emitting chips 1023 in the laser 102 can also be arranged in other ways, and the number of the light-emitting chips 1023 can also be other numbers, which are not limited in the embodiment of this application.
  • the laser 102 may include 14 light-emitting chips arranged in two rows and seven columns, or 15 light-emitting chips arranged in three rows and five columns, or 21 light-emitting chips arranged in three rows and seven columns.
  • the spacing between two adjacent rows of light-emitting chips in the embodiment of the present application can range from 3.5 mm to 6.5 mm.
  • the spacing between two adjacent rows of light-emitting chips is 4 mm or 6 mm. smaller. In this way, compared with lasers of the same size in related technologies, more light-emitting chips can be arranged in the laser according to the embodiments of the present application, which can increase the luminous power of the laser.
  • the row direction of the light emitting chips 1023 may be the x direction.
  • Each row of light-emitting chips 1023 can be connected in series, and both ends are connected to two electrode pins 1042 respectively.
  • Each row of light-emitting chips 1023 can be connected to the positive and negative electrodes of the external circuit through the two electrode pins 1042 respectively. Both ends of each row of light-emitting chips 1023 can be respectively connected to one of the electrode pins 1042 of the two pin structures 104 in the row direction.
  • each row of light-emitting chips 1023 adjacent light-emitting chips 1023 are connected through wires to achieve series connection of the row of light-emitting chips 1023; the leftmost light-emitting chip 1023 is connected to an electrode in the left pin structure 104 through wires The first pad D1 of the pin 1042; the rightmost light-emitting chip 1023 is connected to the first pad D1 of an electrode pin 1042 in the pin structure 104 on the right through a wire.
  • the laser 102 in the embodiment of the present application may be a monochromatic laser, in which each light-emitting chip 1023 is used to emit laser light of the same color.
  • the laser 102 can also be a multi-color laser, in which multiple light-emitting lasers
  • the chip includes multiple types of light-emitting chips, each type of light-emitting chip is used to emit laser light of one color, and different types of light-emitting chips are used to emit laser light of different colors.
  • the laser 102 includes two types of light-emitting chips, and the two rows of light-emitting chips 1023 in FIG. 9 are respectively two types of light-emitting chips.
  • the laser 102 may also include three types of light-emitting chips, which are used to respectively emit red laser, green laser and blue laser.
  • the number of types of light-emitting chips in the laser 102 can also be greater than 3, and the laser colors emitted by multiple types of light-emitting chips can also be colors other than red, green, and blue, which are not limited in the embodiments of this application.
  • the laser 102 shown in FIG. 9 includes three types of light-emitting chips 1023, and a certain row of light-emitting chips in FIG. 9 may include two types of light-emitting chips.
  • Each type of the three types of light-emitting chips in the laser 102 can be connected in series, and each end is connected to an electrode pin 1042.
  • the two pin structures 104 in the laser 102 only include four electrode pins 1042, different types of light emitting chips among the three types of light emitting chips can share electrode pins, such as sharing a positive electrode pin or sharing a negative electrode pin.
  • the four electrode pins 1042 in the two-pin structure 104 may include one positive pin and three negative pins, or one negative pin and three positive pins.
  • the laser 102 may also include six electrode pins 1042, and each pin structure 104 may include three electrode pins 1042, so that the two electrode pins 10222 connected to different types of light-emitting chips 1023 are different. , different types of light-emitting chips 1023 do not share electrode pins 1042.
  • the laser 102 may also include three pin structures 104 or four pin structures 104 .
  • the frame 1022 may have gaps M on all three side walls, or have gaps M on all four side walls, so that each pin structure 104 fills one gap M.
  • the laser 102 includes a large number of pin structures 104, which can reduce the sharing of electrode pins 1042 by different types of light-emitting chips 1023 in the laser 102. And when the electrode pins are shared, since the position of the light-emitting chip may be far away from the position of the electrode pin to be connected, a transfer station is usually needed for circuit transfer, resulting in more structures in the laser and wiring. The way is complicated.
  • the use of the turntable can be correspondingly reduced, the structure of the laser can be simplified, and the wiring complexity in the laser can be reduced.
  • the laser 102 is a multi-color laser and includes at least three types of light-emitting chips 1023 and at least three pin structures 104.
  • the length of each pin structure 104 may be less than the length of the sidewall on which it is located.
  • each type is connected in series, and the two ends are electrically connected to two electrode pins 1042 respectively.
  • Different types of light-emitting chips 1023 do not share the electrode pins 1042, but are all electrically connected to different electrode pins.
  • the at least three types of light-emitting chips can be arranged in at least three rows. For example, each row of light-emitting chips includes one type of light-emitting chips, and each row of light-emitting chips is connected in series and connected to two electrode pins 1042 at both ends.
  • the number of rows of light-emitting chips 1023 can be the same as the number of types of light-emitting chips 1023, and different rows of light-emitting chips are different types of light-emitting chips; or the number of rows of light-emitting chips 1023 can be greater than the number of types of light-emitting chips 1023, for example, there can be two rows of light-emitting chips. They are the same type of light-emitting chips. For another example, there are two types of light-emitting chips located in the same row. The same type of light-emitting chips located in the same row are connected in series and the two ends are electrically connected to two electrode pins 1042 respectively.
  • the laser 102 includes three pin structures 104
  • two of the pin structures 104 can be located in the row direction of the light-emitting chip 1023, that is, they are respectively fixed to the two opposite side walls of the frame 1022 in the row direction; the other pin structure 104 can be located in the row direction of the light-emitting chip 1023.
  • the foot structure 104 is located in the column direction of the light-emitting chips 104, that is, fixed to one of the two side walls arranged in the column direction.
  • the laser 102 includes four pin structures 104, one pin structure 104 is fixed on each of the four side walls of the frame 1022.
  • the number of electrode pins 1042 in the pin structure 104 in the row direction can be equal to the number of rows of the light-emitting chips 1023. Both ends of each row of light-emitting chips can have electrode pins 1042 that are closer to it, so that each row of light-emitting chips can be connected in series. The last two ends can be directly connected to the electrode pins 1042 in the pin structure 104 in the row direction.
  • This connection method is more convenient. In this method, the two electrode pins connected to each row of light-emitting chips belong to two pin structures in the row direction, that is, the electrode pins 1042 connected to one end of each row of light-emitting chips belong to one pin structure 104, and the other end is connected to one pin structure 104.
  • the electrode pin 1042 belongs to another pin structure 104 in the row direction.
  • the number of electrode pins 1042 in the pin structure 104 in the column direction may be greater than or equal to 2. If in the column direction, A row of light-emitting chips on the edge (such as the first row and the last row of light-emitting chips) can be electrically connected to the electrode pins 1042 in the pin structure 104 in the column direction close to it, that is, the two light-emitting chips in the row are electrically connected. Electrode pins may belong to this pin structure 104 in the column direction.
  • the row of light-emitting chips includes two types of light-emitting chips. The two types of light-emitting chips are located at both ends of the row.
  • Each type of light-emitting chips are connected in series, and each type of light-emitting chips is the farthest from the other type of light-emitting chips.
  • the light-emitting chip is connected to the electrode pin 1042 in the pin structure 104 in the row direction, and the light-emitting chip closest to another type of light-emitting chip is connected to the electrode pin 1042 in the pin structure 104 in the column direction.
  • the distance between the light-emitting chip 1023 located at the edge in the column direction and the pin structure 104 in the column direction may be relatively far.
  • a transfer station may also be provided between the light-emitting chip 1023 and the pin structure 104. The wires between the light-emitting chip 1023 and the pin structure 104 are transferred through a transfer station.
  • the number of electrode pins 1042 in the pin structure 104 in the row direction can be reduced accordingly, and the pin structure The length of 104 can be reduced.
  • the pin structures 104 fixed on each side wall can be smaller. Since reducing the volume of the pin structures 104 can reduce the stress generated when it is fixed to the frame, the pin structures 104 can be fixed to the frame 1022 The stress during fixation can be smaller, which can reduce the risk of the pin structure 104 breaking due to stress during fixation.
  • the pin structures 104 located in the row direction may be completely identical to the pin structures 104 located in the column direction, such as having the same length and including the same number of electrode pins 1042 .
  • the pin structures 104 located in the row direction may be completely identical to the pin structures 104 located in the column direction, such as having the same length and including the same number of electrode pins 1042 .
  • the arrangement of the light-emitting chips 1023 can be more flexible, which can improve the versatility and compatibility of the package.
  • the length of the pin structure 104 can be smaller, or the pins can be The number of electrode pins 1042 in the structure 104 is less than the number of electrode pins 1042 in the pin structure 104 in the row direction.
  • the material of the pin structure 104 is ceramic and the material of the frame 1022 is metal, certain stress will be generated when the pin structure 104 and the frame 1022 are fixed.
  • the length of the pin structure 104 is made smaller. This stress can be reduced to a certain extent and ensure the reliability of fixation.
  • the width direction of the frame 1022 in the laser 102 may be parallel to the row direction of the light-emitting chips 1023, and the length direction of the frame 1022 may be parallel to the column direction of the light-emitting chips 1023. This ensures that more rows of light-emitting chips can be arranged in the laser 102, and different types of light-emitting chips can be located in different rows, making it easier to connect lines.
  • the notch M is located at one end of the frame 1022 close to the bottom plate 1021, and there is no other structure between the notch M and the bottom plate 1021.
  • the notch M may also be located in the middle area of the frame 1022 , and the frame 1022 may further include a portion located between the notch M and the bottom plate 1021 , and a portion located on a side of the notch M away from the bottom plate 1021 .
  • the embodiment of the present application also provides another laser structure.
  • FIG. 13 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 13 shows a front top view of the laser shown in FIG. 14 .
  • the laser 10 may include a base plate 1021 , a frame 1022 , a plurality of light-emitting chips 1023 and a plurality of pin structures 104 . Its structural composition can be seen in the introduction of Figures 9 and 10 mentioned above.
  • FIG. 15 is a schematic diagram of a pin structure provided by an embodiment of the present application
  • FIG. 16 is a schematic diagram of another pin structure provided by an embodiment of the present application.
  • Figures 15 and 16 take the pin structure 104 in the upper left corner of Figure 13 as an example.
  • Figure 15 is a schematic diagram of the first section of the lead structure 104 shown in Figure 13. The first section is parallel to the x direction and Perpendicular to the y direction;
  • FIG. 16 is a schematic diagram of a second cross-section of the pin structure 104 shown in FIG. 13 . The second cross-section is parallel to the y direction and perpendicular to the x direction. Please refer to FIGS. 13 to 16 .
  • the pin structure 104 includes an insulator 1041 and two conductive structures 1042 .
  • the two conductive structures 1042 are fixed to the insulator 1041 and spaced apart from each other to avoid short circuiting the two conductive structures 1042 .
  • the insulator 1041 includes: a portion located within the surrounding area of the frame 1022 , a portion located outside the surrounding area, and a portion located between the two portions and fixed to the frame 1022 .
  • the surface of the insulator 1041 close to the base plate 1021 It is flush with the end surface of the frame 1022 close to the bottom plate 1021 .
  • the insulator 1041 can carry the conductive structure 1042 and can isolate each conductive structure 1042 from other components to avoid other components from affecting the conductive effect of the conductive structure 1042.
  • the insulator 1041 can be used to isolate different conductive structures 1042, can also be used to isolate the conductive structure 1042 from the bottom plate 1021, and can also be used to isolate the conductive structure 1042 from the frame 1022.
  • Each conductive structure 1042 is connected inside and outside the surrounding area of the frame 1022, and the conductive structure 1042 can extend from within the surrounding area of the frame 1022 to outside the surrounding area.
  • Each conductive structure 1042 includes: a first conductive layer D1 located within the surrounding area, a second conductive layer D2 located outside the surrounding area, and a conductive portion D3 located within the insulator 1041.
  • the first conductive layer D1 and the second conductive layer D2 are located outside the surrounding area.
  • the conductive layer D2 is electrically connected through the conductive portion D3.
  • the first conductive layer D1 is used for electrical connection with the light-emitting chip 1023
  • the second conductive layer D2 is used for electrical connection with the external circuit. In this way, the current of the external circuit can be transmitted to the light-emitting chip 1023 through the conductive structure 1042, so that the light-emitting chip 1023 Laser light is emitted under the action of this current.
  • Multiple light-emitting chips 1023 in the laser 10 can be arranged in multiple rows and multiple columns.
  • the laser 10 includes 20 light-emitting chips 1023 arranged in four rows and five columns as an example.
  • the row direction of the light-emitting chip 1023 is the x direction
  • the column direction is the y direction.
  • Being located between two adjacent rows of light-emitting chips 1023 in the y-direction may refer to: being located between the ends of the two adjacent rows of light-emitting chips 1023 that are close to each other in the y-direction, or it may also refer to being located between the adjacent ends in the y-direction. between the center points of two rows of light-emitting chips 1023.
  • the two adjacent rows of light-emitting chips 1023 are respectively connected to the two first conductive layers D1 in the pin structure 104 between the two rows of light-emitting chips 1023.
  • the light-emitting chips 1023 of each row are connected to the two first conductive layers D1.
  • the row of light-emitting chips 1023 is closer to a first conductive layer D1.
  • the two adjacent rows of light-emitting chips 1023 are connected to the external circuit through the two conductive structures 1042 in the same pin structure 104, thereby reducing the number of pin structures 104 in the laser 10.
  • the pin structure 104 is located between the two adjacent rows of light-emitting chips 1023, and the volume of the pin structure 104 can be smaller than the volume of the two pin structures in the related art.
  • the first pin structure 104 is located between the first row of light-emitting chips 1023 and the second row of light-emitting chips 1023, and the second pin structure 104 is located between the third row of light-emitting chips 1023 and the fourth row of light-emitting chips 1023.
  • the first row of light-emitting chips 1023 is connected to the upper first conductive layer D1 in the first pin structure 104, and the second row of light-emitting chips 1023 is connected to the lower first conductive layer D1 of the first pin structure 104.
  • the third row of light-emitting chips 1023 is connected to the upper first conductive layer D1 in the second pin structure 104, and the fourth row of light-emitting chips 1023 is connected to the lower first conductive layer D1 of the second pin structure 104.
  • the pin structure 104 can be fixed to the notch M in the frame 1022 by soldering.
  • the middle area of each pin structure 104 can be aligned and snapped into the corresponding notch M, and solder can be disposed between the pin structure 104 and the corresponding notch M.
  • the frame 1022 with the pin structure 104 stuck at the notch M is placed in a suitable position on the bottom plate 1021, and solder is provided between the pin structure 104 and the bottom plate 1021, and between the end surface of the frame 1022 and the bottom plate 1021 Solder is also provided.
  • the structure composed of the base plate 1021, the frame 1022, the pin structure 104 and the solder is placed in a high-temperature furnace for sintering, so that the solder melts and the pin structure 104 is fixed at the corresponding notch M, and the pin structure 104
  • the frame 1022 and the base plate 1022 are both fixed to the base plate 1021, and the sealing of the connections between the base plate 1021, the frame 1022 and the pin structure 104 is ensured.
  • the bottom plate 1021, the frame 1022, and the pin structure 104 can enclose an accommodation space. After the bottom plate 1021, the frame 1022, and the pin structure 104 are fixed, the light-emitting chip 1023 can be fixed in the accommodation space. After that, wires can be set between the first conductive layer D1 in the conductive structure 1042 of the pin structure 104 and the light-emitting chip 1023 close to the first conductive layer D1, and wires can be set between the light-emitting chips 1023 that need to be electrically connected. .
  • the wires are not labeled in Figures 13 and 14. In a specific implementation, ball bonding technology can be used to fix wires on the first conductive layer D1 and the light-emitting chip 1023 .
  • a wire bonding tool is used to melt one end of the wire, and the melted end is pressed against the object to be connected, and the wire bonding tool also applies ultrasonic waves to complete the bonding between the wire and the object to be connected.
  • the wire may be a gold wire
  • the fixing process of the wire may also be called a gold wire bonding process.
  • the number of wires between any two components connected by wires in the laser 10 can be multiple to ensure the reliability of the connection between the components and reduce the sheet resistance on the wires.
  • the first conductive layer D1 and the light-emitting chip 1023, as well as the adjacent light-emitting chips 1023 can be connected through multiple wires.
  • each conductive structure 1042 in the pin structure 104 is equivalent to an electrode pin.
  • One pin structure 104 can realize the functions of two electrode pins, and only one pin structure 104 is fixed. Instead of fixing the two electrode pins in the related art, the fixing process of the pin structure 104 in the laser 10 is relatively simple.
  • only fewer pin structures 104 need to be fixed, which can reduce the assembly errors generated when fixing the pin structures 104 and improve the pin structure.
  • the accuracy of the wiring on the conductive layer in the structure 104 is improved, and the quality of the wiring is improved. Therefore, the reliability of wire connection in the laser can be improved and the difficulty of wiring can be reduced.
  • each pin structure 104 in the laser 10 is small. Even when the pin structure 104 is fixed, stress will be generated between the pin structure 104 and the frame 1022 or the bottom plate 1021. This stress is also small, which is harmful to the laser. The quality impact of 10 is small and the reliability of laser 10 can be ensured.
  • the pin structure includes an insulator and two conductive structures fixed to the insulator.
  • the conductive structures can connect the inside and outside of the frame to utilize the first laser beam located in the area surrounded by the frame.
  • the conductive layer is connected to the light-emitting chip, and the second conductive layer located outside the area surrounded by the frame is used to connect to the external circuit.
  • the pin structure can be arranged between two adjacent rows of light-emitting chips, and the connection between the two adjacent rows of light-emitting chips and the external circuit can be achieved only through the one pin structure. In this way, fewer pin structures are required in the laser, which can reduce the fixing process of the pin structures, thus simplifying the laser preparation process.
  • Figures 15 and 16 illustrate an alternative implementation of the pin structure 104.
  • the first conductive layer D1 and the second conductive layer D2 are located on the surface of the insulator 1041 away from the bottom plate 1021 .
  • the first conductive layer D1 is located on the surface of the portion of the insulator 1041 surrounded by the frame 1022 away from the base plate 1021
  • the second conductive layer D2 is located on the surface of the portion of the insulator 1041 not surrounded by the frame 1022 away from the base plate 1021 .
  • wires can be conveniently arranged on the first conductive layer D1 and the second conductive layer D2.
  • the insulator 1041 may be in the shape of a square prism, and the surface of the insulator 1041 away from the bottom plate 1021 is flat. Among the surfaces of the insulator 1041 away from the bottom plate 1021, the area located in the middle in the x direction is fixed to the frame 1022.
  • the first conductive layer D1 and the second conductive layer D2 are respectively provided in the two areas located on both sides of this area.
  • the volume of this type of pin structure 104 can be smaller, and the contact area between the insulator 1041 and the frame 1022 is smaller. Even if stress is generated during the fixation process of the insulator 1041 and the frame 1022, the stress is also small. Due to the stress, Laser 10 has less risk of quality problems.
  • No other material may be disposed between the conductive layers in the pin structure 104 to achieve mutual separation by air.
  • insulating materials may also be filled between the first conductive layers D1 and between the second conductive layers D2 to ensure the insulation effect between the conductive layers.
  • the insulating material may be the same as the material of the insulator 1041, such as ceramic; or it may be different from the material of the insulator 1041, which is not limited in the embodiment of this application.
  • the conductive layer may be made of gold, and the conductive layer may be disposed on the insulator 1041 by electroplating.
  • the material of the conductive layer may also include other conductive materials, which are not limited in the embodiments of this application.
  • the conductive part D3 may include a first part B1, a second part B2 and a third part B3 that are all strip-shaped and connected in sequence.
  • the first part B1 is connected to the first conductive layer D1
  • the third part B3 is connected to the second conductive layer D2
  • the connection between the first part B1 and the second part B2 is bent
  • the connection between the second part B2 and the third part B3 is bent. fold.
  • the conductive portion D3 may be substantially U-shaped.
  • the first part B1 and the third part B3 are parallel and perpendicular to the board surface of the bottom plate 1021; the second part B2 is parallel to the board surface of the bottom plate 1021.
  • the conductive part D3 only needs to ensure that the first conductive layer D1 and the second conductive layer D2 are connected, and the shape of the conductive part D3 is not limited in this embodiment of the application. All structures in the conductive part D3 may be embedded in the insulator 1041 . In a specific implementation, if the material of the frame 1022 is an insulating material, such as ceramic, the second part B2 of the conductive part D3 may also be located on the side of the insulator 1041 away from the bottom plate 1021 . If the material of the bottom plate 1021 is an insulating material, the second portion B2 of the conductive portion D3 can also be located on the side of the insulator 1041 close to the bottom plate 1021 .
  • the insulator 1041 may not be in the shape of a square prism, and its surface away from the bottom plate 1021 may not be in the shape of a square prism. is a plane.
  • Figure 17 is a schematic diagram of yet another pin structure provided by an embodiment of the present application. As shown in FIG. 17 , in the pin structure 104 , the middle area of the surface of the insulator 1041 away from the base plate 1021 may have a boss T, and the boss T is used to be fixed to the frame 1022 . The existence of the boss T can facilitate the isolation of the conductive layers (ie, the conductive layers D1 and D2 ) in the conductive structure 1042 from the frame 1022 .
  • Figure 17 takes the boss T as a rectangular parallelepiped as an example.
  • the boss T can also be in other shapes, such as pyramid, pyramid or other shapes, which are not limited in the embodiment of the present application.
  • the structure of the conductive part D3 may also be the same as the structure of the conductive part D3 in FIG. 4 .
  • the conductive portion D3 may be in the same plane as the first conductive layer D1 and the second conductive layer D2, so as to directly connect the first conductive layer and the second conductive layer D2.
  • the second conductive layer D2 may also be located on a side of the insulator 1041 that is not surrounded by the frame 1022 and is away from the frame 1022 . This side may be perpendicular to the surface of the bottom plate 1021 .
  • the laser 10 may also include a solder structure (not shown in the figure) located between the pin structure 104 and the frame 1022 , and between the pin structure 104 and the base plate 1021 .
  • the pin structure 104 is fixed to the frame 1022 and the bottom plate 1021 through a solder structure.
  • the solder structure can be a pre-prepared structure with a fixed shape, and the solder structure can be placed on the pin structure 104 to wrap part of the surface of the pin structure 104, such as wrapping the entire surface of the middle part of the insulator 1041. Afterwards, the pin structure 104 covered with the solder structure is clamped into the notch M of the frame 1022, and subsequent fixing steps are performed.
  • the pin structure of the laser in the embodiment of the present application includes an insulator, and the conductive layer can be isolated from the base plate through the insulator. Therefore, the distance between the conductive layer and the base plate can be closer, and the thickness of the tube shell can be smaller, which is beneficial to Miniaturization of lasers.
  • the bottom plate and frame are made of oxygen-free copper.
  • the thermal expansion coefficient of oxygen-free copper is 17.4ppm/°C. ppm/°C represents the parts per million of material expansion when the surface temperature of the material increases by one degree. In the temperature range of 30°C to 300°C, the thermal expansion coefficient of ceramics is between 6.5 and 7.5. The thermal expansion coefficient of oxygen-free copper is quite different from that of ceramics.
  • the light-emitting chips in Figures 13 and 14 require 8 ceramic insulators.
  • the number of pin structures 104 in the laser 10 is small. In Figures 13 and 14, only four pin structures 104 are required. This can reduce the contact area between the ceramic material and the oxygen-free copper, reduce the risk of ceramic cracking, and improve the reliability of the laser 10 .
  • the light-emitting chips 1023 in the laser 10 can be arranged in an even number of rows.
  • the multiple gaps M in the frame 1022 are respectively located on both sides of the light-emitting chips 1023 in the row direction (x direction).
  • the multiple pin structures 104 The plurality of gaps M are filled in one-to-one correspondence on the two sides respectively.
  • the number of pin structures 104 on each side is equal to half the number of rows of the light-emitting chips 1023.
  • Each pin structure 104 can be located between two adjacent rows of the light-emitting chips 1023 in the column direction of the light-emitting chips 1023.
  • Each row of light-emitting chips 1023 is connected in series, and its two ends are respectively connected to the first conductive layer D1 in the pin structure 104 on both sides of the row direction.
  • the first conductive layer D1 in each pin structure 104 can be connected to Luminous chip 1023.
  • the conductive structure 1042 in the pin structure 104 on one side of the two sides serves as the positive pin, and the second conductive layer D2 in the conductive structure 1042 on this side is used to connect the positive electrode of the external circuit.
  • the conductive structure 1042 in the pin structure 104 on the other side serves as the negative pin, and the second conductive layer D2 in the conductive structure 1042 on this side is used to connect the negative electrode of the external circuit. pole.
  • the laser 10 includes four pin structures 104 and 20 light-emitting chips 1023 arranged in four rows and five columns.
  • the light-emitting chips 1023 in each row are connected in series.
  • the four pin structures 104 are respectively located on both sides of the light-emitting chip 1023 in the x direction.
  • Two pin structures 104 are provided on each side.
  • Each pin structure 104 is located between two adjacent rows of the light-emitting chips 1023 to utilize their
  • the first conductive layer D1 connects the two rows of light-emitting chips 1023 .
  • the second conductive layer D2 in the two pin structures 104 on the left can both be connected to the positive electrode (or negative electrode) of the external circuit, and the second conductive layer D2 in the two pin structures 104 on the right can both be connected to the positive electrode (or negative electrode) of the external circuit.
  • Negative pole (or positive pole).
  • the number of pin structures 104 on both sides of the light-emitting chip 1023 in the row direction of the laser 10 may also be different, or even multiple pin structures 104 may be located on one side of the light-emitting chip 1023 in the row direction.
  • two adjacent rows of light-emitting chips 1023 in the laser 10 are connected in series, and both ends of the two rows of light-emitting chips 1023 connected in series are connected to the first conductive layer D1 in the two pin structures 104 located on the same side.
  • the light-emitting chips 1023 can also be arranged in odd-numbered rows. There may also be a pin structure 104 in the laser 10 in which only one first conductive layer D1 is connected to the light-emitting chip 1023, while the other first conductive layer D1 is left vacant and is not connected to the light-emitting chip 1023.
  • the pin structure 104 can be aligned in the row direction with a row of light-emitting chips 1023 connected thereto, and is not located between two adjacent rows of light-emitting chips 1023 .
  • the laser 10 includes three rows of light-emitting chips 1023 and four pin structures 104.
  • the light-emitting chips 1023 are provided with two pin structures 104 on each side in the row direction.
  • one pin structure 104 can be located between the first two rows of light emitting chips 1023 and another pin structure 104 aligned with the last row of light emitting chips 1023 that connects one of the pin structures 104 First conductive layer D1.
  • the pin structure 104 with only one first conductive layer D1 connected to the light-emitting chip 1023 can also be replaced by a pin structure including only one conductive structure.
  • the second conductive layer D2 in the different pin structures 104 on the same side of the light-emitting chip 1023 in the row direction of the laser 10 can also be connected to different electrodes of the external circuit, and the two second conductive layers D2 in the same pin structure 104 can also be connected to different electrodes of the external circuit.
  • the two conductive layers D2 can also be connected to different electrodes of the external circuit.
  • the embodiment of the present application does not limit the electrodes connected to each second conductive layer D2.
  • each group of light-emitting chips 1023 connected in series is connected to the positive electrode of the external circuit, and the other end is connected to the negative electrode of the external circuit, ensuring that the light-emitting chips 1023 Just be able to receive current normally.
  • the laser 10 in the embodiment of the present application may be a monochromatic laser, in which each light-emitting chip 1023 is used to emit laser light of the same color.
  • the laser 10 may also be a multi-color laser, in which the plurality of light-emitting chips include multiple types of light-emitting chips. Each type of light-emitting chips is used to emit laser light of one color, and different types of light-emitting chips are used to emit laser light of different colors. laser.
  • the laser 10 includes two types of light-emitting chips.
  • the laser 10 may also include three types of light-emitting chips. The three types of light-emitting chips are used to respectively emit red laser, green laser and blue laser.
  • the first row of light-emitting chips 1023 is used to emit green laser light
  • the second row of light-emitting chips 1023 is used to emit blue laser light
  • the third and fourth rows of light-emitting chips 1023 are used to emit red laser light.
  • the number of types of light-emitting chips in the laser 10 may be greater than 3, and the laser colors emitted by multiple types of light-emitting chips may also be colors other than red, green, and blue, which are not limited by the embodiments of this application.
  • FIG. 18 is a schematic structural diagram of yet another laser provided by another embodiment of the present application.
  • FIG. 18 can be a schematic diagram of a cross-section of any of the above lasers.
  • the cross-section can be parallel to the row direction of the light-emitting chips 1023 (such as the x direction in the above figure) and perpendicular to the axial direction of the frame 1022 (such as the z direction in the above figure).
  • the laser 102 may also include a light-transmissive sealing layer 108.
  • the light-transmitting sealing layer 108 is located on the side of the frame 1022 away from the bottom plate 1021 and is used to seal the accommodation space surrounded by the frame 1022 and the bottom plate 1021 .
  • the edge area of the light-transmitting sealing layer 108 can be directly fixed to the surface of the frame 1022 away from the bottom plate 1021 .
  • the edge area of the light-transmitting sealing layer 108 may be pre-disposed with solder.
  • the light-transmitting sealing layer 108 can be placed on the side of the frame 1022 away from the base plate 1021 , and the solder is in contact with the surface of the frame 1022 away from the base plate 1021 . Then, the frame 1022 and the light-transmitting sealing layer 108 are placed in a high-temperature furnace to melt the solder, and then the frame 1022 and the light-transmitting sealing layer 108 are welded.
  • the laser 102 may also include a collimating lens group 109 .
  • the collimating lens group 109 may be located on the side of the frame 1022 away from the base plate 1021 , such as on the side of the light-transmitting sealing layer 108 away from the base plate 1021 .
  • the edge of the collimating lens group 109 can be fixed to the edge of the light-transmitting sealing layer 108 through adhesive.
  • Collimating lens group 109 can be included It includes a plurality of collimating lenses in one-to-one correspondence with the plurality of light-emitting chips 1023, and the collimating lenses are used to collimate the incident laser light.
  • the plurality of collimating lenses can be integrally formed.
  • the side of the collimating lens group 109 away from the base plate 1021 may have multiple convex arc surfaces, and the part where each convex arc surface is located may serve as a collimating lens.
  • collimating the light means adjusting the divergence angle of the light so that the light is adjusted to be as close to parallel light as possible.
  • the laser light emitted by the light-emitting chip 1023 can be reflected by the corresponding reflective prism 10225 to the light-transmitting sealing layer 108, and then the light-transmitting sealing layer 108 can transmit the laser light to the collimating lens corresponding to the light-emitting chip 1023 in the collimating lens group 109, so as to It is collimated by the collimating lens and then emitted, thereby realizing the laser 102 to emit light.
  • the laser may include a pin structure.
  • the pin structure includes an insulator and a plurality of electrode pins fixed to the insulator. This is equivalent to the pin structure being a plurality of electrode pins. Integrated structure. In this way, when preparing a laser, you only need to fix one pin structure to the frame to achieve the fixation of multiple electrode pins. There is no need to fix each electrode pin separately, which can simplify the laser preparation process.
  • FIG. 19 is a schematic structural diagram of a light source assembly provided by an embodiment of the present application
  • FIG. 20 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application.
  • the light source assembly may include any of the lasers 102 described above.
  • the laser 102 may be a multicolor laser.
  • the light source assembly also includes a light combining component 20 located on the light emitting side of the laser 102. The light combining component 20 is used to combine the lasers of different colors emitted by the laser 102 and then emit them.
  • the laser 102 can also be a monochromatic laser, and the light combining component 20 can mix the laser light emitted by the light-emitting chips at different positions in the laser 102 to reduce the size of the formed spot and facilitate subsequent use.
  • the light combining component 20 may include a plurality of light combining lenses, and each light combining lens may correspond to a row of light emitting chips in the laser. As shown in FIG. 19 , each light combining lens in the light combining component 20 is used to reflect the laser light emitted by a corresponding row of light emitting chips.
  • the rear light combining lens in the light path can be a dichroic mirror. The laser light reflected by the front light combining lens can be directed to the rear light combining lens and emitted through the light combining lens. , to achieve the combination of laser light emitted by each row of light-emitting chips.
  • FIG. 19 each light combining lens in the light combining component 20 is used to reflect the laser light emitted by a corresponding row of light emitting chips.
  • the rear light combining lens in the light path can be a dichroic mirror.
  • the laser light reflected by the front light combining lens can be directed to the rear light combining lens and emitted through the light combining lens.
  • the transmission direction of the combined laser light can be perpendicular to the light emission direction of the laser 102 .
  • the transmission direction of the laser light combined by the light combining component 20 may also be parallel to the light emission direction of the laser 102 .
  • the light emission directions of the lasers 102 are the same.
  • the light combining lens that transmits the laser light emitted by the corresponding light emitting chip can be a light combining lens located at the edge, and the other light combining lenses in the light combining component 20 reflect the laser light emitted by the corresponding light emitting chip to the light combining lens.
  • the light source assembly may also include a condensing lens 30 and a light uniformity component 40 .
  • the laser light emitted by the light combining component 20 can be directed to the condensing lens 30 to be condensed, and then directed to the light uniforming component 40 .
  • the light homogenizing component 40 can homogenize the incident laser light and then emit it for subsequent use.
  • the light uniformity component 40 can be a light pipe.
  • the arrangement direction of the light uniformity component 20 , the converging lens 30 and the light uniformity component 40 can be perpendicular to the light emission direction of the laser 102 .
  • the arrangement direction of the light uniformity component 20 , the convergence lens 30 and the light uniformity component 40 can be parallel. The light emission direction of the laser 102.
  • An embodiment of the present application also provides a laser display device, which includes a display component and any of the above light source components 10 .
  • the light source component 10 is used to provide laser light to a display component, and the display component is used to display images based on the laser light.
  • the display device may be a laser projection device.
  • the display component may include a light valve and a lens.
  • the light valve is used to modulate the laser light emitted by the projection light source 10 and then direct it to the lens.
  • the lens may project the laser light modulated by the light valve. , to form a projected image.
  • the display device may be a laser TV, and the display component may include a display screen, which is used to display images based on laser light emitted by the projection light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光源组件(10)和显示设备,属于光电技术领域。光源组件(10)包括:电源板(101)和固定于电源板(101)上的多个激光器(102);每个激光器(102)均包括:底板(1021),位于底板(1021)上的框体(1022),以及位于底板(1021)与框体(1022)围出的凹槽中的发光芯片;多个激光器(102)中相邻的两个激光器(102)拼接,两个激光器(102)的底板(1021)中相互靠近的边缘相贴合;电源板(101)用于向多个激光器(102)中的发光芯片提供电流,发光芯片用于在电流的作用下发出激光。

Description

光源组件及激光显示设备
相关申请的交叉引用
本申请要求在2022年8月2日提交中国专利局、申请号为202222023222.8,发明名称为光源组件和显示设备,以及在2022年9月27日提交中国专利局、申请号为202222567324.6,发明名称为激光器,以及在2022年12月9日提交中国专利局、申请号为的202223314384.3发明名称为激光器的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示技术领域,特别涉及一种光源组件和激光显示设备。
背景技术
随着光电技术的发展,激光器被广泛应用。但激光器的体积和发光效率都有待提升。
发明内容
本申请一方面,提供了一种光源组件,所述光源组件包括:电源板和固定于所述电源板上的多个激光器;
所述多个激光器中每个激光器均包括:底板,位于所述底板上的框体,以及位于所述底板与所述框体围出的凹槽中的发光芯片;所述多个激光器中相邻的两个激光器拼接,所述两个激光器的底板中相互靠近的边缘相贴合;
所述电源板用于向所述多个激光器中的发光芯片提供电流,所述发光芯片用于在所述电流的作用下发出激光。
另一方面,提供了一种显示设备,所述显示设备包括:显示组件和上述的光源组件,所述光源组件用于向所述显示组件发出激光,所述显示组件用于基于接收到的激光进行画面显示。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还根据这些附图获得其他的附图。
图1是本申请实施例提供的一种光源组件的结构示意图;
图2是本申请实施例提供的一种激光器的结构示意图;
图3是本申请实施例提供的另一种光源组件的结构示意图;
图4是本申请实施例提供的另一种激光器的结构示意图;
图5是本申请实施例提供的再一种光源组件的结构示意图;
图6是本申请实施例提供的又一种光源组件的结构示意图;
图7是本申请另一实施例提供的一种光源组件的结构示意图;
图8是本申请另一实施例提供的另一种光源组件的结构示意图;
图9是本申请实施例提供的一种激光器的爆炸结构示意图;
图10是本申请实施例提供的一种激光器的正面结构原理示意图;
图11是图10中的激光器的引脚结构的结构示意图;
图12是图10中的激光器的引脚结构的另一结构示意图;
图13是本申请实施例提供的另一种激光器的正面结构原理示意图;
图14是对应图13中的激光器立体结构的示意图;
图15是本申请实施例提供的激光器中一种引脚结构的结构示意图;
图16是本申请实施例提供的激光器中另一引脚结构的结构示意图;
图17是本申请实施例提供的激光器中又一电极引脚的结构示意图;
图18是本申请实施例提供的一种激光器的剖面结构示意图;
图19是本申请实施例提供的一种光源组件的示意图;
图20是本申请实施例提供的一种光源组件的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,激光器的应用越来越广泛。如激光器可以用在激光显示设备(如投影设备或激光电视)的光源组件中提供激光,以用于形成显示画面。目前对显示设备的显示效果的要求较高,而光源组件的发光亮度以及发出的激光的分布情况等均会对形成的画面的显示效果产生影响。光源组件的发光亮度越好,就可以形成亮度越高的显示画面,且可以使显示画面的亮度可调节范围较宽,使画面的显示效果较好。且光源组件发出的激光的分布均匀性越高,越有利于后续的激光整型以及保证形成的显示画面的颜色均匀性,使画面的显示效果较好。
本申请实施例提供了一种光源组件,可以发出亮度较高且分布较均匀的激光,进而保证显示设备基于光源组件发出的激光形成显示效果较好的画面。
图1是本申请实施例提供的一种光源组件的结构示意图。如图1所示,光源组件10可以包括电源板101和多个激光器102,该多个激光器102固定于电源板101上。电源板101用于向激光器102提供电流,以使激光器102基于接收的电流正常发光。图1以光源组件10包括两个激光器102为例进行示意。在一具体实施中,光源组件10也可以包括三个激光器102甚至更多,本申请实施例不做限定。
请继续参考图1,激光器102可以包括:底板1021、框体1022和发光芯片(图中未示出)。框体1022可以位于底板1021上,底板1021与框体1022可以围出用于容置其他部件的凹槽。发光芯片位于底板1021与框体1022围出的该凹槽。电源板101可以向该多个激光器102中的发光芯片提供电流,每个发光芯片接收到的电流的作用下发出激光。
光源组件10的多个激光器102中相邻的两个激光器102拼接,且该两个激光器102的底板1021中相互靠近的边缘相贴合。本申请实施例中以激光器102底板1021大致呈矩形,框体1022也大致为矩形框为例,底板1021可以具有与该矩形的四个边分别对应的四个边缘。在一具体实施中,激光器102的底板1021也可以呈其他形状,如五边形、六边形等,本申请实施例不做限定。
本申请实施例中,光源组件10包括拼接的多个激光器102,光源组件102发出的光为其中多个激光器102发出的激光,光源组件10的发光亮度可以较高。相邻的两个激光器102的底板1021的相互靠近的边缘可以相贴合,故该多个激光器102的排布较为紧密,该多个激光器102占用的整体空间较小,有利于光源组件的小型化。且如此该多个激光器102发出的激光相距较近,光源组件10整体发出的激光形成的光斑较小,且光斑均匀性较高,有利于后续的激光整形及利用,有助于提高基于该激光形成的显示画面的显示效果。
综上所述,本申请实施例提供的光源组件包括固定于电源板上的多个激光器。如此光源组件可以发出更高亮度的激光,基于该激光形成的显示画面的亮度可以较高,显示画面的显示效果可以较好。并且,该多个激光器中相邻的两个激光器可以拼接,且该两个激光器的底板中相互靠近的边缘相贴合。如此,该多个激光器整体所占的空间较少,且该多个激光器发出的激光距离较近,有利于后续对激光的整体调整及利用。
图2是本申请实施例提供的一种激光器的结构示意图。如图2所示,激光器102可以包括底板1021、框体1022、多个发光芯片1023、多个热沉1024和多个反射棱镜1025。框体1022可以位于底板1021上,框体1022的一个端面与底板1021的板面固定,底板1021和框体1022可以围出凹槽。该多个发光芯片1023、多个热沉1024和多个反射棱镜1025 均位于底板1021和框体1022围成的凹槽中。底板1021的边缘与框体1022的外壁可以并不平齐,如底板1021的边缘可以相对框体1022的外壁凸出。
在一具体实施中,激光器102中的多个热沉1024和多个反射棱镜1025均可以与该多个发光芯片1023一一对应。热沉1024固定在底板1021上,每个发光芯片1023设置在对应的热沉1024上,热沉1024可以用于辅助发光芯片1023散热。反射棱镜1025位于对应的发光芯片1023的出光侧,反射棱镜1025中靠近发光芯片1023的表面为反光面。发光芯片1023可以向反射棱镜1025发出激光,反射棱镜1025的反光面可以沿远离底板1021的方向反射该激光,以实现激光器102的出光。该反光面可以通过涂覆反光材料(如银、铝等)或者贴覆反光膜实现对激光的反射作用。在一具体实施中,也可以一个热沉1024或一个反射棱镜1025对应至少两个发光芯片1023,本申请实施例不做限定。
本申请实施例仅以每个激光器102包括排成两行四列的八个发光芯片1023为例进行示意。激光器102也可以包括排成一行的四个发光芯片1023,或者也可以包括排成两行三列的六个发光芯片1023,本申请实施例对于激光器102中发光芯片1023的数量以及具体的排布方式不做限定。
激光器102中底板1021和框体1022组成的结构可以称为管壳。本申请实施例中的激光器102的管壳可以为金属管壳也可以为陶瓷管壳。示例地,底板1021和框体1022的材质可以均为金属或者均为陶瓷;或者底板1021的材质包括金属,框体1022的材质包括陶瓷;或者底板1021的材质包括陶瓷,框体1022的材质包括金属。该金属可以包括铜,如无氧铜。无氧铜的导热性能较好,可以有利于发光芯片1023在发出激光时产生的热量的较快散发。
请继续参考图2,激光器102还包括多个电极引脚1026。该多个电极引脚1026可以分别位于框体1022的相对两侧,且用于连通该凹槽内外。电极引脚1026包括位于框体102的包围区域内的第一部分,还包括位于框体1022的包围区域外的第二部分。该第一部分可以用于与发光芯片1023电连接,该第二部分用于与电源板101电连接,进而连通至外部电源,进而向发光芯片1023传输电流的功能。
电源板101上可以设置有多个焊盘(图中未示出),激光器102的每个电极引脚1026的第二部分均可以通过导线与对应的焊盘电连接。电极引脚与激光其102中的发光芯片1023电连接,焊盘可以与电源连通,进而可以实现激光器102中的发光芯片1023通过电极引脚与焊盘接收电源传输的电流。
激光器102还可以包括透光密封层(图中未示出)。该透光密封层位于框体1022在轴向上远离底板1021的一侧,该透光密封层用于密封框体1022与底板1021围成的凹槽的开口。如此可以避免外界水氧等物质侵蚀该凹槽中的发光芯片1023等元器件,保证发光芯片等元器件的工作可靠性,延长发光芯片等元器件的寿命。
本申请实施例中的激光器102可以为单色激光器,或者也可以为多色激光器。单色激光器也即是该激光器中的发光芯片均用于发出同一颜色的激光,多色激光器也即是该激光器包括至少两类发光芯片,不同类发光芯片用于发出不同颜色的激光。
本申请实施例的光源组件10中的多个激光器102可以均为相同的激光器。例如该多个激光器102可以均为单色激光器或者也可以均为相同的多色激光器,如该多个激光器102中的发光芯片1023均用于发出同一颜色的激光。或者,该多个激光器102中也可以存在至少两个激光器102不同,也即存在至少两个激光器102中的发光芯片1023用于发出不同颜色的光。例如,该多个激光器102中可以同时存在单色激光器和多色激光器,或者也可以同时存在不同颜色的单色激光器或者多色激光器。后面将对每个激光器的具体结构进行举例介绍。
在一具体实施中,光源组件102可以包括红色激光器和蓝绿激光器,红色激光器中的发光芯片均用于发出红色激光,蓝绿激光器中的一部分发光芯片用于发出蓝色激光,另一部分发光芯片用于发出绿色激光。又在一具体实施中,光源组件102可以包括多个三色激 光器,三色激光器包括三类发光芯片,该三类发光芯片分别用于发出红色激光、绿色激光和蓝色激光。
本申请实施例的光源组件10中激光器102的数量可以为两个,也可以为三个甚至更多。下面以光源组件10包括拼接的两个激光器102(如分别为第一激光器102a和第二激光器102b),每个激光器102的底板1021均大致为矩形,具有四个边缘为例,对光源组件10中激光器102的拼接方式进行介绍。
在第一种可选拼接方式中,图3是本申请实施例提供的另一种光源组件的结构示意图,图4是本申请实施例提供的另一种激光器的结构示意图。如图3所示,光源组件10包括第一激光器102a和第二激光器102b,第一激光器102a的结构可以如图2所示,第二激光器102b的结构可以如图4所示。该两个激光器的底板1021均相对于框体1022凸出,如第一激光器102a的底板1021的第一边缘B1相对第一激光器102a的框体1022凸出,第二激光器102b的底板1021的第二边缘B2相对第二激光器102b的框体1022凸出。在一具体实施中,在该两个激光器102的排布方向上框体1022的外壁到底板1021的边缘的距离为4.38毫米。
第一激光器102a的底板1021的第一边缘B1可以与第二激光器102b的底板1021的第二边缘B2相贴合。该第一边缘B1具有缺口K,该第二边缘B2具有与缺口K对应的凸出部T,该凸出部T位于对应的缺口K中。如此,缺口K和凸出部T可以相互卡合,第一激光器102a和第二激光器102b可以利用该缺口K和凸出部T进行卡合拼接,实现第一激光器102a和第二激光器102b的位置的固定和相互限制。
在一具体实施中,凸出部T的形状与对应的缺口K的形状相同,凸出部T与对应的缺口K的尺寸差异也很小。凸出部T与对应的缺口K的尺寸可以相同,或者缺口K的尺寸可以略大于凸出部T的尺寸。如此可以保证凸出部T与对应的缺口K更牢固的卡合。图3以凸出部T的形状与对应的缺口K的形状均为半圆形为例。在一具体实施中,凸出部T的形状与对应的缺口K的形状也可以均为四边形、五边形或其他形状,本申请实施例不做限定。
图3以第一边缘B1具有三个缺口K,该第二边缘B2具有三个凸出部T为例。在一具体实施中,第一边缘B1也可以具有两个、四个或者其他数量的缺口K,该第二边缘B2具有两个、四个或者其他数量的凸出部T,各个缺口K和凸出部T可以均匀分布或者也可以不均匀分布,本申请实施例对缺口K和凸出部T的数量及排布方式不做限定。
本申请实施例中,两个激光器102的底板1021利用相互靠近的边缘中一个边缘的凸出部卡合进另一个边缘的缺口的方式进行拼接。如此在保证拼接牢固度的基础上,还可以减少该两个激光器102的整体占用空间,使该两个激光器102的框体1022之间的距离较短。进一步地,该两个激光器102中被框体1022包围的发光芯片1023发出的激光形成的光斑距离较近,有利于对该两个激光器102发出的激光的整体整形及利用。
在第二种可选拼接方式中,图5是本申请实施例提供的再一种光源组件的结构示意图。如图5所示,光源组件10包括第一激光器102a和第二激光器102b,第一激光器102a的底板1021的第一边缘B1与第一激光器102a的框体1022平齐,其他边缘相对框体1022凸出;第二激光器102b的底板1021的第二边缘B2与第二激光器102b的框体1022凸出,其他边缘也相对框体1022凸出。第一激光器102a的底板1021的第一边缘B1可以与第二激光器102b的底板1021的第二边缘B2相贴合,如此第一激光器102a的框体1022可以与第二激光器102b的框体1022相接触(如相贴合)。需要说明的是,本申请实施例中所述的平齐仅指的是大致平齐,存在一定的误差,也即是底板1011的边缘与框体1022的外壁之间的距离小于一个较小的阈值;所述的相贴合也指的是一定误差范围内的贴合,即使并未紧密贴合也属于本申请实施例中所描述的情况。
图6是本申请实施例提供的又一种光源组件的结构示意图。如图6所示,第一激光器102a中底板1021的第一边缘B1的两端连接的边缘分别为第三边缘B3和第四边缘B4,该 两个边缘均相对第一激光器102a的框体1022凸出。第一边缘B1与第三边缘B3的连接处具有第一缺口K1,第一边缘B1与第四边缘B4的连接处也具有第一缺口K1。第二激光器102b中底板1021的第二边缘B2的两端连接的边缘分别为第五边缘B5和第六边缘B6,该两个边缘均相对第二激光器102b的框体1022凸出。第二边缘B2与第五边缘B5的连接处具有第二缺口K2,第二边缘B2与第六边缘B6的连接处也具有第二缺口K2。第一激光器102a中底板1021的两个第一缺口K1可以与第二激光器102b中底板1021的两个第二缺口K2相对,每个第一缺口K1可以与其相对的第二缺口K2组成一个固定孔,本申请实施例中将该固定孔称为第一固定孔。
本申请实施例中,可以在该第一固定孔中设置螺钉以固定该两个激光器102与电源板101。光源组件10还可以包括螺钉(图6中未示出),电源板101可以具有与该第一固定孔连通的第一螺孔L1,可以将螺钉穿过第一固定孔与其连通的第一螺孔L1,以将该两个激光器102与电源板101锁固。本申请实施例中,将穿过第一固定孔与其连通的第一螺孔L1的螺钉称为第一螺钉。在一具体实施中,第一缺口K1和第二缺口K2的内壁上也可以具有螺纹,该第一缺口K1和第二缺口K2组成的第一固定孔也可以称为螺孔。如该第一螺钉可以为M4螺钉,也即是外径为4毫米的螺钉;或者也可以为M6螺钉,也即是外径为6毫米的螺钉。
图6以第一缺口K1和第二缺口K2均呈四分之一圆形,组成的第一固定孔呈半圆形为例进行示意。在一具体实施中,第一缺口K1和第二缺口K2也可以均呈半圆形,组成的第一固定孔呈圆形;又在一具体实施中,第一缺口K1和第二缺口K2也可以均呈矩形,组成的第一固定孔仍呈矩形。本申请实施例对第一缺口K1和第二缺口K2的形状不做限定,仅需保证组成的第一固定孔可以使螺钉穿入锁固即可。
该种拼接方式中,通过使底板1021的边缘与框体1022平齐,在底板1021的侧边设置边角半螺孔,以组成较完整的螺孔,并用螺钉进行锁固。如此可以保证激光器的拼接牢固性较高,且可以完全省去拼接的两个激光器之间的底板1021部分所占空间,减少激光器所占的空间体积。进一步地,该两个激光器发出的激光形成的光斑距离较近,有利于对激光的整体整形及利用。
需要说明的是,本申请实施例中由于激光器102的框体1022的相对两侧需设置电极引脚1026,该电极引脚1026可以与底板1021接触,故该电极引脚1026所在侧不适宜与其他激光器拼接。上述第一边缘B1和第二边缘B2均可以为底板1021中电极引脚1026所在侧之外其他侧的边缘。
请继续参考图1至图6,激光器102的底板1021中电极引脚1026所在侧之外的其他侧中,未与激光器拼接的一侧的边缘区域可以具有至少一个第二固定孔G。本申请实施例以该边缘区域具有三个第二固定孔G为例进行示意。光源组件10中的电源板101可以具有与该第二固定孔G连通的第二螺孔(图中未示出)。光源组件10还可以包括第二螺钉,可以通过第二螺钉穿过第二固定孔G和第二螺孔,以将激光器102与电源板101锁固。在一具体实施中,该第二固定孔G可以为封闭的孔,或者也可以为一缺口,本申请实施例不做限定。
在一具体实施中,光源组件10也可以包括两个以上的激光器102。图7是本申请另一实施例提供的一种光源组件的结构示意图,图8是本申请另一实施例提供的另一种光源组件的结构示意图。图7为上述第一种连接方式下的光源组件的示意图,图8为上述第二种连接方式下的光源组件的示意图。如图7和8所示,投影光源10可以包括三个激光器102,该三个激光器102可以沿一个方向依次排布,且相邻的激光器102拼接。
对于某激光器102,若其相对两侧均拼接有其他激光器,则该激光器102的底板1021的该相对两侧的边缘均可以为上述的第一边缘B1或第二边缘B2,该激光器102的底板1021可以不具有第二固定孔G。对于仅一侧与其他激光器拼接的激光器102,该激光器102的底板1021中该一侧的相对侧的边缘区域可以具有第二固定孔G。如图7和图8中,位于 两端的激光器102的底板1021中远离其他激光器的一侧的边缘区域具有第二固定孔G,而位于中间的激光器102不具有第二固定孔G。
综上所述,本申请实施例提供的光源组件包括固定于电源板上的多个激光器。如此光源组件可以发出更高亮度的激光,基于该激光形成的显示画面的亮度可以较高,显示画面的显示效果可以较好。并且,该多个激光器中相邻的两个激光器可以拼接,且该两个激光器的底板中相互靠近的边缘相贴合。如此,该多个激光器整体所占的空间较少,且该多个激光器发出的激光距离较近,有利于后续对激光的整体调整及利用。
以及,下面将介绍几种在上述至少一个实施例中提的激光器结构,多个激光器结构可进行拼接使用。
图9是本申请实施例提供的一种激光器的结构示意图,图10是本申请实施例提供的另一种激光器的结构示意图,图9是图10所示的激光器的爆炸图,图10是图9所示的激光器的俯视图。如图9和图10所示,激光器102可以包括底板1021、框体1022、多个发光芯片1023和引脚结构104。其中,底板1021为板状结构。板状结构具有两个相对且较大的板面,以及连接该两个面的多个较小的侧面。框体1022为框状结构。框状结构在轴向上的两端分别具有两个相对的环形的端面,还具有连接该两个端面的内壁和外壁。图9所示的激光器102中框体1022的轴向即为z方向。
框体1022中的一个端部可以与底板1021固定,且框体1022与底板1021围出凹槽,该凹槽也即是一个容置空间。激光器1021中的发光芯片1023均位于该凹槽中。如框体1022和发光芯片1023均位于底板1021上,框体1022的一个端面固定于底板1021的板面上,框体1022包围发光芯片1023。框体1022与底板1021组成的结构可以称为管壳,或者称为底座。框体1022中靠近底板1021的端部具有缺口M,引脚结构104与框体1022固定,且填充该缺口M。引脚结构104还可以与底板1021固定。
图11是本申请实施例提供的一种引脚结构的示意图。请结合图9至图11,引脚结构104包括:绝缘体1041和多个电极引脚1042,该多个电极引脚1042与绝缘体1041固定。该多个电极引脚1042相互间隔且均连通框体1022的包围区域内外,电极引脚1042可以从框体1022的包围区域内延伸到该包围区域外,如电极引脚1042的延伸方向可以为图9和图10中的x方向。每个电极引脚1042包括位于该包围区域内的第一焊盘D1和位于该包围区域外的第二焊盘D2,该第一焊盘D1与第二焊盘D2电连接,本申请实施例中电极引脚1042的延伸方向也即是第一焊盘D1与第二焊盘D2的排布方向。第一焊盘D1用于与发光芯片1023电连接,第二焊盘D2用于与外部电路电连接,如此可以通过电极引脚1023实现将外部电路的电流传输至发光芯片1023,以使发光芯片1023在该电流的作用下发出激光。
绝缘体1041可以对电极引脚1042起承载作用,且可以使电极引脚1042与其他部件相隔离,避免其他部件对电极引脚1042的导电效果的影响。如绝缘体1041可以用于隔离电极引脚1042与底板1021,还可以用于隔离电极引脚1042与框体1022,还可以用于将各个电极引脚1022进行隔离。在一具体实施中,本申请实施例中底板1021的材质可以包括金属或陶瓷,框体1022的材质也可以包括金属或陶瓷。绝缘体1041的材质包括陶瓷。如金属可以为无氧铜、可伐合金或者其他金属。陶瓷的成分可以为氮化铝、氧化铝或者其他成分。
在制备激光器102时,引脚结构104可以通过钎焊的方式固定于框体1022中的缺口M所在处。示例地,可以将每个引脚结构104的中间区域对准卡入对应的缺口M,且引脚结构104与对应的缺口M之间可以设置焊料。之后,将缺口M处卡有引脚结构104的框体1022放置于底板1021上合适的位置,且使引脚结构104与底板1021之间设置有焊料,框体1022的端面与底板1021之间也设置有焊料。接着,将底板1021、框体1022、引脚结构104和焊料组成的结构放置于高温炉中进行烧结,以使焊料熔化将引脚结构104固定于对应的缺口M处,且使引脚结构104和框体1022均与底板1021固定,且保证底板1021、 框体1022和引脚结构104的连接处的密封。
底板1021、框体1022以及引脚结构104可以围成容置空间,在将底板1021、框体1022以及引脚结构104固定后,可以将发光芯片1023固定于该容置空间中。之后,可以在该引脚结构104中电极引脚1042中的第一焊盘D1与靠近该第一焊盘D1的发光芯片1023之间设置导线,以及在需要电连接的发光芯片1023之间设置导线。本申请实施例中的图9和3均未对导线进行示意。
在一具体实施中,可以采用球焊技术向第一焊盘D1及发光芯片1023上固定导线。采用球焊技术焊接导线时,会采用打线工具将导线的一端熔化,并将该熔化的一端压于待连接物上,且打线工具还会施加超声波,以完成导线与该待连接物的固定。在一具体实施中,该导线可以为金线,该导线的固定工艺也可以称为金线键合工艺。在一具体实施中,激光器102中任意两个通过导线连接的部件之间导线的数量均可以为多根,以保证部件之间的连接可靠性,以及降低导线上的方块电阻。如第一焊盘D1与发光芯片1023,以及相邻的发光芯片1023均可以通过多根导线连接。
本申请实施例中,仅进行引脚结构104的固定即可实现对多个电极引脚的固定,无需对各个电极引脚进行单独固定,可以简化电极引脚的固定过程。且引脚结构104与框体1022的接触面积可以大于相关技术中单个的电极引脚与框体的接触面积,可以提高电极引脚的固定可靠性,提高激光器的可靠性。另外,由于每个部件的组装过程中均会产生一定的组装误差,本申请实施例中各个电极引脚无需分别固定,故可以避免分别固定各个电极引脚分别固定时产生的组装误差,保证电极引脚的固定位置的精度较高。电极引脚的固定位置精度越高,电极引脚上的打线精度及质量便会越高,因此可以提升激光器中的导线连接可靠性,降低打线难度。
下面结合附图对引脚结构104进行介绍:
请结合图9至图11,本申请实施例的引脚结构104包括绝缘体1041和多个电极引脚1042。绝缘体1041包括:位于框体1022的包围区域内的第一部分B1,位于该包围区域外的第二部分B2,以及位于第一部分B1和第二部分B2之间的第三部分B3,第一部分B1、第三部分B3和第二部分B2可以沿电极引脚1042的延伸方向(也即x方向)排布,第三部分B3靠近底板1021的表面与框体1022靠近底板1021的端面平齐。第三部分B3被框体1022覆盖,第三部分B3的宽度与框体1022的厚度相同。电极引脚1042包括位于该包围区域内的第一焊盘D1和位于该包围区域外的第二焊盘D2,第一焊盘D1与第二焊盘D2电连接。在一具体实施中,如图9和图11所示,在目标方向上,第一焊盘D1的长度可以大于第二焊盘D2的长度,该目标方向可以为垂直电极引脚1042的延伸方向的方向(如y方向)。
电极引脚1042中的第一焊盘D1与绝缘体1041中的第一部分B1固定,电极引脚1042中的第二焊盘D2与绝缘体1041中的第二部分B2固定。第一焊盘D1和第二焊盘D2均裸露设置。例如,电极引脚1042中的第一焊盘D1位于该第一部分B1远离底板1021的一侧,第二焊盘D2位于第二部分B2远离底板1021的一侧。如此可以方便在第一焊盘D1和第二焊盘D2上设置导线。
各个电极引脚1042相互间隔,各个电极引脚1042中的第一焊盘D1相互间隔,各个电极引脚1042中的第二焊盘D2也相互间隔,以避免不同电极引脚1042传输的电流的相互干扰。请结合图9至图11,各个第一焊盘D1可以沿目标方向(如y方向)依次排布,各个第二焊盘D2也可以沿目标方向依次排布。绝缘体1042中在相邻的第一焊盘D1之间具有凹槽,以通过凹槽实现不同第一焊盘D1的间隔。在一具体实施中,也可以绝缘体1042中的部分位于相邻的第一焊盘D1之间,以通过绝缘材料实现不同第一焊盘D1的间隔。本申请实施例中,第二焊盘D2的间隔方式可以与第一焊盘D1的间隔方式可以相同,如图11所示,绝缘体1042中相邻的第二焊盘D2之间的也具有凹槽,以通过凹槽实现第二焊盘D2的间隔;或者也可以通过绝缘材料实现第二焊盘D2的间隔。
每个电极引脚1042中,第一焊盘D1的高度与第二焊盘D2的高度可以相同,也可以不同。焊盘的高度指的是焊盘距底板的距离。图11以第二焊盘D2高于第一焊盘D1为例;在一具体实施中,第二焊盘D2与第一焊盘D1也可以平齐,或者第二焊盘D2低于第一焊盘D1。
电极引脚1042还可以包括第一焊盘D1与第二焊盘D2之间的导电部(图中未示出),每个电极引脚1042中,第一焊盘D1与第二焊盘D2通过导电部电连接。电极引脚1042之间的导电部可以嵌入第三部分B3内部,以保证导电部可以通过第三部分B3实现与框体1022和底板1021的隔离。在一具体实施中,若框体1022的材质为绝缘材质,如陶瓷,则导电部也可以位于第三部分B3远离底板1021的一侧。若底板1021的材质为绝缘材质,则导电部也可以位于第三部分B3靠近底板1021的一侧。
请继续参考图9和图11,绝缘体1041中的第三部分B3相对第一部分B1和第二部分B2凸起。该绝缘体1041可以呈T型结构。引脚结构104的第一截面可以呈T型,该第一截面可以平行于第一部分B1与第二部分B2的排布方向,也即平行x方向。第三部分B3中相对第一部分B1和第二部分B2凸起的部分可以呈长方体。在一具体实施中,第三部分B3中该凸起的部分也可以呈其他形状,如棱锥状、棱台状或者其他形状,本申请实施例不做限定在一具体实施中,第三部分B3中远离底板1021的表面也可以与第一部分B1和第二部分B2中远离底板1021的表面平齐。
本申请实施例中,引脚结构104可以至少利用第三部分B3实现与框体1022和底板1021的固定,如第三部分B3中远离底板1021的一侧与框体1022固定,靠近底板1021的一侧与底板1021固定。本申请实施例中,绝缘体1041可以通过焊料与底板1021和框体1022固定,绝缘体1041中的任一部分与底板1021或框体1022中任一结构固定,均指的是该任一部分与该任一结构之间设置有焊料。
示例地,第一部分B1、第二部分B2和第三部分B3中靠近底板1021的表面可以平齐,且均与底板1021接触固定,故引脚结构104的各个位置可以均被底板1021支撑。如此,在向第一焊盘D1和第二焊盘D2打线时由于底板1021的支撑作用,引脚结构104的压力承受能力较强,避免引脚结构104在该打线设备施加的压力的作用下发生破损,且导线与焊盘的焊接牢固度可以较高。因此可以提高打线的成功率以及导线的固定效果,提高激光器的制备良率。
在一具体实施中,绝缘体1041中可以仅第三部分B3靠近底板1021的一侧与底板1021的固定。此时第一部分B1与第二部分B2靠近底板1021的一侧可以仍与第三部分B3靠近底板1021的一侧平齐,且接触底板1021;或者第一部分B1与第二部分B2靠近底板1021的一侧也可以不与第三部分B3靠近底板1021的一侧平齐,且与底板1021之间存在一定的间距,本申请实施例不做限定。
请继续参考图9,激光器102还可以包括焊料结构105,该焊料结构105位于引脚结构104与框体1022之间,以及引脚结构104与底板1021之间。引脚结构104与框体1022和底板1021通过焊料结构105固定。焊料结构105可以为预先制备的形状固定的结构,该焊料结构105可以套于引脚结构104上,以包裹引脚结构104的部分表面,如包裹第三部分B3的全部表面。之后将套有焊料结构105的引脚结构104卡接于框体1022的缺口M中,进而进行后续的固定步骤。
本申请实施例中的引脚结构104可以呈条状,其长度方向可以为目标方向(y方向),宽度方向可以为x方向。引脚结构104的宽度可以与框体1022的壁厚相关联,框体1022越厚则引脚结构104越宽。在一具体实施中,框体1022的厚度在1毫米左右,引脚结构104的宽度可以在2毫米左右,如引脚结构104的宽度范围为1.5毫米~3毫米。在目标方向上,引脚结构104的长度小于或等于框体1022的长度。在目标方向上框体1022的长度指的是:框体1022中在目标方向上距离最远的两个点之间的距离。由于引脚结构104填充框体1022中的缺口M,故在目标方向上引脚结构104的长度等于缺口M的长度。基于 引脚结构104的长度与框体1022的长度的不同,引脚结构104与框体1022的固定面也存在区别,进而焊料结构105的形状也不同。
在一种可选示例中,如图9所示,在目标方向上引脚结构104的长度等于框体1022的长度为例。此种情况下由于框体1022具有一定的厚度,引脚结构104中除第三部分B3之外还需靠近框体1022的包围区域内的结构也与框体1022固定。图12是本申请实施例提供的另一种引脚结构的示意图。第一部分B1在y方向上的两端还具有延伸部Y,该延伸部Y用于与框体1022固定,被框体1022覆盖。如此,绝缘体1041中相对第三部分B3靠近框体1022的包围区域内的结构包括第一部分B1以及位于第一部分B1两端的两个延伸部Y。本申请实施例中将第一部分B1定义为绝缘体1041中位于该包围区域内的部分,其上可以设置第一焊盘D1。延伸部Y上不设置有焊盘,延伸部Y仅用于与框体1022固定。该种情况中焊料结构105的形状如图9所示。该焊料结构105可以覆盖引脚结构104中的第三部分B3中远离底板1021的表面,延伸部Y远离底板1021的表面,延伸部Y远离第三部分B3的表面,以及引脚结构104中靠近底板1021的表面。
在另一种可选示例中,在目标方向上引脚结构104的长度小于框体1022的长度。此种情况下激光器中的引脚结构104可以如图11所示,引脚结构104中不包括延伸部,引脚结构104可以仅利用第三部分B3与框体1022固定。此种情况下激光器中的焊料结构105可以覆盖引脚结构104中的第三部分B3中远离底板1021的表面,第三部分B3在y方向上的侧面,以及引脚结构104中靠近底板1021的表面。
本申请实施例上述附图中,以激光器102包括两个引脚结构104,且每个引脚结构104均包括两个电极引脚1042为例进行示意。在一具体实施中,引脚结构104中电极引脚1042的数量也可以为三个甚至更多,本申请实施例不做限定。本申请实施例中,框体1022呈矩形框,框体1022由四个侧壁围成,每个引脚结构104填充一个侧壁中的缺口。如图9所示,框体1022中相对的两个侧壁靠近底板1021的端部具有缺口M,激光器102中的两个引脚结构104可以分别与该两个侧壁固定,分别填充该两个侧壁中的缺口M。
在一具体实施中,该两个引脚结构104中一个引脚结构104中的电极引脚1042作为正极引脚,该电极引脚1042中的第二焊盘D2用于连接外部电路的正极;另一个引脚结构104中的电极引脚1042作为负极引脚,该电极引脚1042中的第二焊盘D2用于连接外部电路的负极。
激光器102中的多个发光芯片1023可以排成多行多列。图9与图10以激光器102包括排成两行五列的10个发光芯片1023为例进行示意。在一具体实施中,激光器102中发光芯片1023也可以呈其他排布方式,发光芯片1023的数量也可以为其他数量,本申请实施例不做限定。如激光器102可以包括排成两行七列的14个发光芯片,或者包括排成三行五列的15个发光芯片,或者包括排成三行七列的21个发光芯片。在一具体实施中,本申请实施例中相邻两行发光芯片之间的间距范围可以为3.5毫米~6.5毫米,如相邻两行发光芯片之间的间距为4毫米或6毫米,该间距较小。如此一来,与相关技术相比相同尺寸的激光器中,本申请实施例中的激光器中可以排布较多的发光芯片,可以提升激光器的发光功率。
在一具体实施中,发光芯片1023的行方向可以为x方向。每行发光芯片1023可以均串联,且两端分别连接两个电极引脚1042。每行发光芯片1023可以通过该两个电极引脚1042分别连接外部电路的正极和负极。每行发光芯片1023的两端可以分别连接其行方向上的两个引脚结构104中的一个电极引脚1042。如图9中每行发光芯片1023中,相邻的发光芯片1023通过导线连接,以实现该行发光芯片1023的串联;最左端的发光芯片1023通过导线连接左侧的引脚结构104中一个电极引脚1042的第一焊盘D1;最右端的发光芯片1023通过导线连接右侧的引脚结构104中一个电极引脚1042的第一焊盘D1。
本申请实施例中的激光器102可以为单色激光器,其中各个发光芯片1023均用于发出同一颜色的激光。在一具体实施中,激光器102也可以为多色激光器,其中的多个发光 芯片包括多类发光芯片,每类发光芯片用于发出一种颜色的激光,不同类发光芯片用于发出不同颜色的激光。如激光器102包括两类发光芯片,图9中的两行发光芯片1023分别为两类发光芯片。在一具体实施中,激光器102也可以包括三类发光芯片,该三类发光芯片用于分别发出红色激光、绿色激光和蓝色激光。在一具体实施中,激光器102中发光芯片的种类数也可以大于3,多类发光芯片发出的激光颜色也可以为红色、绿色和蓝色之外的其他颜色,本申请实施例不做限定。
示例地,图9所示的激光器102包括三类发光芯片1023,图9中的某一行发光芯片可以包括两类发光芯片。激光器102中的该三类发光芯片中每类发光芯片可以串联,且两端分别连接一个电极引脚1042。由于激光器102中的两个引脚结构104仅包括四个电极引脚1042,故该三类发光芯片中不同类发光芯片可以共用电极引脚,如共用一个正极引脚或共用一个负极引脚。该两个引脚结构104中的四个电极引脚1042可以包括一个正极引脚和三个负极引脚,或者包括一个负极引脚和三个正极引脚。在一具体实施中,激光器102也可以包括六个电极引脚1042,每个引脚结构104可以包括三个电极引脚1042,以使得不同类发光芯片1023连接的两个电极引脚10222均不同,不同类发光芯片1023不共用电极引脚1042。
在一具体实施中,激光器102也可以包括三个引脚结构104或四个引脚结构104。相应地,框体1022可以在三个侧壁上均具有缺口M,或者在四个侧壁上均具有缺口M,以使每个引脚结构104填充一个缺口M。激光器102包括较多的引脚结构104,可以减少激光器102中不同类发光芯片1023对电极引脚1042的共用情况。且在共用电极引脚时,由于发光芯片的位置与其要连接的电极引脚的位置可能相距较远,故通常需要采用转接台进行电路转接,导致激光器中的结构较多,且连线方式复杂。本申请实施例中,通过设置较多的引脚结构,而避免发光芯片对电极引脚的共用,可以相应地减少转将台的使用,简化激光器的结构,降低激光器中的连线复杂度。
下面针对激光器102为多色激光器,且包括至少三类发光芯片1023和至少三个引脚结构104的情况进行介绍。在激光器102包括至少三个引脚结构104的情况下,每个引脚结构104的长度可以小于其所在的侧壁的长度。
本申请实施例中每类发光芯片1023中的至少部分发光芯片串联,且两端分别电连接两个电极引脚1042,不同类发光芯片1023不共用电极引脚1042,均电连接不同的电极引脚1042。该至少三类发光芯片可以排成至少三行。例如,每行发光芯片包括一类发光芯片,每行发光芯片串联且两端分别连接两个电极引脚1042。发光芯片1023的行数可以与发光芯片1023的类数相同,不同行发光芯片均为不同类发光芯片;或者发光芯片1023的行数可以大于发光芯片1023的类数,如可以存在两行发光芯片为同一类发光芯片。又例如,存在两类发光芯片位于同一行,位于同一行的同类发光芯片串联且两端分别电连接两个电极引脚1042。
激光器102包括三个引脚结构104时,其中两个引脚结构104可以位于发光芯片1023的行方向上,也即是分别与框体1022中该行方向上相对的两个侧壁固定;另一个引脚结构104位于发光芯片104的列方向上,也即是与该列方向上排布的两个侧壁中的一个侧壁固定。激光器102包括四个引脚结构104时,框体1022的四个侧壁上均固定有一个引脚结构104。
行方向上的引脚结构104中电极引脚1042的数量可以等于发光芯片1023的行数,每行发光芯片的两端均可以有距其较近的电极引脚1042,以便于每行发光芯片串联后两端可以直接就近与行方向上引脚结构104中的电极引脚1042连接,该连接方式较为方便。该种方式中,每行发光芯片连接的两个电极引脚分别属于行方向上的两个引脚结构,也即每行发光芯片一端连接的电极引脚1042属于一个引脚结构104,另一端连接的电极引脚1042属于行方向上的另一个引脚结构104。
列方向上的引脚结构104中电极引脚1042的数量可以大于或等于2。如在列方向上位 于边缘的一行发光芯片(如第一行和最后一行发光芯片),可以与其靠近的列方向上的引脚结构104中的电极引脚1042电连接,也即该行发光芯片电连接的两个电极引脚可以属于列方向上的该引脚结构104。在一具体实施中,该一行发光芯片包括两类发光芯片,该两类发光芯片分别位于该行中的两端,每类发光芯片串联,则每类发光芯片中距另一类发光芯片最远的发光芯片与行方向上引脚结构104中的电极引脚1042连接,距另一类发光芯片最近的发光芯片与列方向上引脚结构104中的电极引脚1042连接。在列方向上位于边缘的发光芯片1023距列方向上的引脚结构104的距离可能较远,本申请实施例中还可以在该发光芯片1023和引脚结构104之间设置转接台,以通过转接台进行该发光芯片1023和引脚结构104之间导线的转接。
在位于边缘的一行发光芯片与列方向上的引脚结构104中的电极引脚1042电连接时,行方向上的引脚结构104中的电极引脚1042的数量可以相应地减少,该引脚结构104的长度可以缩小。如此一来,各个侧壁上固定的引脚结构104可以均较小,由于降低引脚结构104的体积可以降低其与框体固定时产生的应力,故可以引脚结构104与框体1022固定时的应力可以较小,可以降低引脚结构104在固定时由于应力的作用而破裂的风险。
在一种可选实现中,位于行方向上的引脚结构104可以与位于列方向上的引脚结构104完全相同,如长度均相同,包括的电极引脚1042的数量也相同。如此,在制备激光器102时仅需提供一种结构的引脚结构104即可,且固定引脚结构104与框体1022时,无需针对在框体中的固定位置不同而对所用的引脚结构104进行区分,可以便于激光器102的制备。并且,将底板1021、框体1022和引脚结构104组装完成后所得的管壳中,发光芯片1023的排布可以较为灵活,可以提高管壳的通用性和兼容性。
在另一种可选实现中,由于列方向上的引脚结构104仅需包括两个电极引脚1042即可满足需求,故该引脚结构104的长度可以较小,也可以使该引脚结构104中电极引脚1042的数量少于行方向上引脚结构104中电极引脚1042的数量。在引脚结构104的材质为陶瓷,框体1022的材质为金属时,固定引脚结构104与框体1022时会产生一定的应力,本申请实施例中使引脚结构104的长度较小,可以一定程度的降低该应力,保证固定可靠性。
在一具体实施中,激光器102中框体1022的宽度方向可以与发光芯片1023的行方向平行,框体1022的长度方向可以与发光芯片1023的列方向平行。如此可以保证激光器102中可以排布较多行发光芯片,可以使不同类发光芯片位于不同行,便于进行线路的连接。
本申请上述内容均以缺口M位于框体1022中靠近底板1021的一端,缺口M与底板1021之间不具有其他结构为例。在一具体实施中,缺口M也可以位于框体1022的中间区域,框体1022还可以包括位于缺口M与底板1021之间的部分,以及位于缺口M远离底板1021的一侧的部分。
以及,本申请实施例还提供了另一种激光器结构。
图13是本申请实施例提供的一种激光器的结构示意图,图14是本申请实施例提供的另一种激光器的结构示意图,图13示出的可以为图14所示的激光器的正面俯视图。如图13和图14所示,激光器10可以包括底板1021、框体1022、多个发光芯片1023和多个引脚结构104。其结构组成可参见前述图9和图10的介绍。
图15是本申请实施例提供的一种引脚结构的示意图,图16是本申请实施例提供的另一种引脚结构的示意图。图15和图16以图13中左上角的引脚结构104为例进行示意,图15为图13中示出的该引脚结构104的第一截面的示意图,第一截面平行于x方向且垂直于y方向;图16为图13中示出的该引脚结构104的第二截面的示意图,该第二截面平行于y方向且垂直于x方向。请结合图13至图16,引脚结构104包括:绝缘体1041和两个导电结构1042,该两个导电结构1042与绝缘体1041固定且相互间隔,以避免该两个导电结构1042短路。
绝缘体1041包括:位于框体1022的包围区域内的部分,位于该包围区域外的部分,以及位于该两部分之间且与框体1022固定的部分。绝缘体1041中靠近底板1021的表面 与框体1022靠近底板1021的端面平齐。绝缘体1041可以对导电结构1042起承载作用,且可以使每个导电结构1042与其他部件相隔离,避免其他部件对导电结构1042的导电效果的影响。如绝缘体1041可以用于将不同的导电结构1042进行隔离,还可以用于隔离导电结构1042与底板1021,还可以用于隔离导电结构1042与框体1022。
每个导电结构1042均连通框体1022的包围区域内外,导电结构1042可以从框体1022的包围区域内延伸到该包围区域外。每个导电结构1042包括:位于该包围区域内的第一导电层D1,位于该包围区域外的第二导电层D2,以及位于绝缘体1041内的导电部D3,该第一导电层D1与第二导电层D2通过该导电部D3电连接。第一导电层D1用于与发光芯片1023电连接,第二导电层D2用于与外部电路电连接,如此可以通过导电结构1042实现将外部电路的电流传输至发光芯片1023,以使发光芯片1023在该电流的作用下发出激光。
请继续参考图13和图14,激光器10中的多个发光芯片1023可以排成多行多列,本申请实施例中以激光器10包括排成四行五列的20个发光芯片1023为例。发光芯片1023的行方向为x方向,列方向为y方向。在发光芯片1023列方向(也即y方向)上存在引脚结构104位于相邻两行发光芯片1023之间。在y方向上位于相邻两行发光芯片1023之间可以指:在y方向上位于该相邻两行发光芯片1023中相互靠近的一端之间,或者也可以指在y方向上位于该相邻两行发光芯片1023的中心点之间。该相邻两行发光芯片1023分别连接该两行发光芯片1023之间的引脚结构104中的两个第一导电层D1,每行发光芯片1023连接该两个第一导电层D1中离该行发光芯片1023较近的一个第一导电层D1。如此实现该相邻两行发光芯片1023通过同一引脚结构104中的两个导电结构1042连通外部电路,进而可以减少激光器10中引脚结构104的数量。并且,该引脚结构104位于该相邻两行发光芯片1023之间,该引脚结构104的体积可以小于相关技术中两个引脚结构的体积。
示例地,图13与图14中沿y方向的反方向数,对于发光芯片1023在行方向上的任一侧(也即图中左侧和右侧中任一侧),第一个引脚结构104位于第一行发光芯片1023和第二行发光芯片1023之间,第二个引脚结构104位于第三行发光芯片1023和第四行发光芯片1023之间。第一行发光芯片1023连接第一个引脚结构104中靠上的第一导电层D1,第二行发光芯片1023连接第一个引脚结构104中靠下的第一导电层D1。第三行发光芯片1023连接第二个引脚结构104中靠上的第一导电层D1,第四行发光芯片1023连接第二个引脚结构104中靠下的第一导电层D1。
在制备激光器10时,引脚结构104可以通过钎焊的方式固定于框体1022中的缺口M所在处。示例地,可以将每个引脚结构104的中间区域对准卡入对应的缺口M,且引脚结构104与对应的缺口M之间可以设置焊料。之后,将缺口M处卡有引脚结构104的框体1022放置于底板1021上合适的位置,且使引脚结构104与底板1021之间设置有焊料,框体1022的端面与底板1021之间也设置有焊料。接着,将底板1021、框体1022、引脚结构104和焊料组成的结构放置于高温炉中进行烧结,以使焊料熔化将引脚结构104固定于对应的缺口M处,且使引脚结构104和框体1022均与底板1021固定,且保证底板1021、框体1022和引脚结构104的连接处的密封。
底板1021、框体1022以及引脚结构104可以围成容置空间,在将底板1021、框体1022以及引脚结构104固定后,可以将发光芯片1023固定于该容置空间中。之后,可以在该引脚结构104中导电结构1042中的第一导电层D1与靠近该第一导电层D1的发光芯片1023之间设置导线,以及在需要电连接的发光芯片1023之间设置导线。图13和图14均未对导线进行标示。在一具体实施中,可以采用球焊技术向第一导电层D1及发光芯片1023上固定导线。采用球焊技术焊接导线时,会采用打线工具将导线的一端熔化,并将该熔化的一端压于待连接物上,且打线工具还会施加超声波,以完成导线与该待连接物的固定。在一具体实施中,该导线可以为金线,该导线的固定工艺也可以称为金线键合工艺。在一 具体实施中,激光器10中任意两个通过导线连接的部件之间导线的数量均可以为多根,以保证部件之间的连接可靠性,以及降低导线上的方块电阻。如第一导电层D1与发光芯片1023,以及相邻的发光芯片1023均可以通过多根导线连接。
本申请实施例中,引脚结构104中的每个导电结构1042相当于一个电极引脚,一个引脚结构104可以实现两个电极引脚的功能,仅进行一个引脚结构104的固定即可替代相关技术中对两个电极引脚的固定,激光器10中引脚结构104的固定过程较为简单。另外,由于每个部件的组装过程中均会产生一定的组装误差,本申请实施例中仅需固定较少的引脚结构104,可以降低固定引脚结构104时产生的组装误差,提升引脚结构104中导电层上的打线精度,以及提高打线质量。因此可以提升激光器中的导线连接可靠性,降低打线难度。并且,激光器10中每个引脚结构104的体积较小,即使在固定引脚结构104时在引脚结构104与框体1022或底板1021之间会产生应力,该应力也较小,对激光器10的质量影响较小,可以保证激光器10的可靠性。
综上所述,本申请实施例提供的激光器中,引脚结构包括绝缘体以及与该绝缘体固定的两个导电结构,该导电结构可以连通框体内外,以利用位于框体包围区域内的第一导电层连接发光芯片,利用位于框体包围区域外的第二导电层连接外部电路。引脚结构可以设置在相邻两行发光芯片之间,仅需通过该一个引脚结构就可实现该相邻两行发光芯片与外部电路的连通。如此一来,激光器中仅需设置较少的引脚结构即可,可以减少引脚结构的固定工序,进而简化激光器的制备过程。
下面结合附图对引脚结构104进行介绍:
图15和图16对引脚结构104的一种可选实现方式进行了示意。如图15和图16所示,引脚结构104的每个导电结构1042中,第一导电层D1和第二导电层D2均位于绝缘体1041远离底板1021的表面上。第一导电层D1位于绝缘体1041中被框体1022包围的部分远离底板1021的表面上,第二导电层D2位于绝缘体1041中未被框体1022包围的部分远离底板1021的表面上。如此可以方便在第一导电层D1和第二导电层D2上设置导线。绝缘体1041可以呈四棱柱状,绝缘体1041远离底板1021的表面为平面。绝缘体1041远离底板1021的表面中,在x方向上位于中间的区域与框体1022固定,位于该区域两侧的两个区域中分别设置第一导电层D1和第二导电层D2。该种引脚结构104的体积可以较小,绝缘体1041与框体1022的接触面积较小,即使绝缘体1041与框体1022的固定过程中会产生应力,则该应力也较小,由于该应力导致激光器10产生质量问题的风险较小。
引脚结构104中的各个导电层之间可以不设置其他材料,以通过空气实现相互间隔。在一具体实施中,各个第一导电层D1之间以及各个第二导电层D2之间也可以填充有绝缘材质,以保证导电层之间的绝缘效果。该绝缘材质可以与绝缘体1041的材质相同,如均为陶瓷;或者也可以与绝缘体1041的材质不同,本申请实施例不做限定。示例地,导电层的材质可以包括金,导电层可以通过电镀的方式设置于绝缘体1041上。或者,导电层的材质也可以包括其他导电材料,本申请实施例不做限定。
引脚结构104的每个导电结构1042中,导电部D3可以包括依次连接的均呈条状的第一部分B1、第二部分B2和第三部分B3。第一部分B1与第一导电层D1连接,第三部分B3与第二导电层D2连接,第一部分B1与第二部分B2的连接处弯折,第二部分B2与第三部分B3的连接处弯折。导电部D3可以大致呈U形。示例地,第一部分B1和第三部分B3平行,且垂直底板1021的板面;第二部分B2平行底板1021的板面。在一具体实施中,导电部D3仅需保证将第一导电层D1和第二导电层D2连接即可,对于导电部D3的形状本申请实施例不做限定。导电部D3中的全部结构均可以嵌入绝缘体1041中。在一具体实施中,若框体1022的材质为绝缘材质,如陶瓷,则导电部D3中的第二部分B2也可以位于绝缘体1041远离底板1021的一侧。若底板1021的材质为绝缘材质,则导电部D3中的第二部分B2也可以位于绝缘体1041靠近底板1021的一侧。
在一具体实施中,绝缘体1041也可以不呈四棱柱状,其远离底板1021的表面可以不 为平面。如图17是本申请实施例提供的再一种引脚结构的示意图。如图17所示,引脚结构104中,绝缘体1041远离底板1021的表面的中间区域可以具有凸台T,该凸台T用于与框体1022固定。该凸台T的存在可以有利于导电结构1042中的导电层(也即导电层D1和D2)与框体1022的隔离。图17以该凸台T呈长方体为例,在一具体实施中,该凸台T也可以呈其他形状,如棱锥状、棱台状或者其他形状,本申请实施例不做限定。在一具体实施中,图17所示的引脚结构104中,导电部D3的结构也可以与图4中导电部D3的结构相同。或者,该引脚结构104中,导电部D3可以与第一导电层D1和第二导电层D2处于同一平面中,以直接连接第一导电层和第二导电层D2。在一具体实施中,第二导电层D2也可以位于绝缘体1041中未被框体1022包围且远离框体1022的侧面上,该侧面可以与底板1021的板面相垂直。
激光器10还可以包括焊料结构(图中未示出),该焊料结构位于引脚结构104与框体1022之间,以及引脚结构104与底板1021之间。引脚结构104与框体1022和底板1021通过焊料结构固定。焊料结构可以为预先制备的形状固定的结构,该焊料结构可以套于引脚结构104上,以包裹引脚结构104的部分表面,如包裹绝缘子1041中间部分的全部表面。之后将套有焊料结构的引脚结构104卡接于框体1022的缺口M中,进而进行后续的固定步骤。
相关技术中采用金属电极引脚的激光器中,由于要避免金属电极引脚与底板的导通,故需要使金属电极引脚与底板之间存在一定的安全距离,进而导致激光器的管壳厚度较大,激光器的体积较大。本申请实施例的激光器中的引脚结构包括绝缘体,导电层可以通过该绝缘体实现与底板的隔离,故可以导电层与底板之间的距离可以较近,管壳的厚度可以较小,有利于激光器的小型化。
相关技术中采用陶瓷绝缘子作为电极引脚的激光器中,底板和框体均为无氧铜。无氧铜的热膨胀系数为17.4ppm/℃,ppm/℃表示当材料的表面温度每增加一度材料膨胀的百万分率。在30℃~300℃的温度范围内,陶瓷的热膨胀系数在6.5至7.5之间。无氧铜的热膨胀系数与陶瓷的热膨胀系数相差较大。相关技术的激光器中陶瓷绝缘子的数量较多,对于图13和图14中的发光芯片需要8个陶瓷绝缘子,在将陶瓷绝缘子与底板和框体焊接在一起时会产生较大的热应力,容易产生瓷裂,导致激光器的制备效果较差。而本申请实施例中,激光器10中的引脚结构104的数量较少,如图13和图14中仅需设置4个引脚结构104即可。如此可以降低陶瓷材料与无氧铜的接触面积,降低瓷裂的风险,提升激光器10的可靠性。
另外,为了保证后续发光芯片与引脚结构之间的导线的键合工序的流畅度,要求固定后的所有引脚结构的共面度保持在较高的水平。相关技术中陶瓷绝缘子的数量较多,每个陶瓷绝缘子的固定过程中均会引入组装误差,进而各个陶瓷绝缘子整体的组装误差较大,达到较高的共面度的工艺难度较大,故管壳的良率较低,激光器的成本高昂。而本申请实施例中激光器10中的引脚结构104的数量较少,可以进行较少的引脚结构104的固定工序,引入的组装误差较小,较容易保证各个引脚结构104的共面度,可以降低工艺难度,提升良率,进而带来降低激光器成本的机会。
本申请实施例中,激光器10中发光芯片1023可以排成偶数行,框体1022中的多个缺口M分别位于发光芯片1023在行方向(x方向)上的两侧,多个引脚结构104分别位于该两侧以一一对应填充该多个缺口M。每侧的引脚结构104的数量均等于发光芯片1023的行数的一半,在发光芯片1023的列方向上每个引脚结构104均可以位于相邻两行发光芯片1023之间。每行发光芯片1023均串联,且两端分别连接其在行方向上的两侧的引脚结构104中的第一导电层D1,每个引脚结构104中的第一导电层D1可以均连接有发光芯片1023。该两侧中一侧的引脚结构104中的导电结构1042作为正极引脚,该侧的导电结构1042中的第二导电层D2用于连接外部电路的正极。另一侧的引脚结构104中的导电结构1042作为负极引脚,该侧的导电结构1042中的第二导电层D2用于连接外部电路的负 极。
如图13和图14所示,激光器10包括四个引脚结构104,以及排成四行五列的20个发光芯片1023,每行发光芯片1023串联。该四个引脚结构104分别位于发光芯片1023在x方向上的两侧,每侧设置两个引脚结构104,每个引脚结构104位于相邻两行发光芯片1023之间,以利用其第一导电层D1连接该两行发光芯片1023。左侧的两个引脚结构104中的第二导电层D2可以均连接外部电路的正极(或负极),右侧的两个引脚结构104中的第二导电层D2可以均连接外部电路的负极(或正极)。
在一具体实施中,激光器10中发光芯片1023的行方向上的两侧的引脚结构104的数量也可以不相同,甚至多个引脚结构104可以均位于发光芯片1023在行方向上的一侧。例如,激光器10中相邻两行发光芯片1023串联,串联的两行发光芯片1023的两端均连接位于同一侧的两个引脚结构104中的第一导电层D1。
在一具体实施中,发光芯片1023也可以排成奇数行。激光器10中也可以存在引脚结构104仅一个第一导电层D1连接有发光芯片1023,而另一个第一导电层D1空置并不连接发光芯片1023。该引脚结构104可以与其连接的一行发光芯片1023在行方向上对齐,而并不位于相邻两行发光芯片1023之间。例如,激光器10包括三行发光芯片1023和四个引脚结构104,发光芯片1023在行方向上的每侧均设置有两个引脚结构104。对于任一侧,一个引脚结构104可以位于前两行发光芯片1023之间,另一个引脚结构104与最后一行发光芯片1023对齐,该最后一行发光芯片1023连接该引脚结构104中的一个第一导电层D1。在一具体实施中,仅一个第一导电层D1连接有发光芯片1023的引脚结构104也可以仅采用包括一个导电结构的引脚结构代替。
在一具体实施中,激光器10中位于发光芯片1023在行方向上同一侧的不同引脚结构104中的第二导电层D2也可以连接外部电路的不同电极,同一引脚结构104中的两个第二导电层D2也可以连接外部电路的不同电极。本申请实施例对各个第二导电层D2连接的电极不做限定,仅需保证串联的每组发光芯片1023的一端连接至外部电路的正极,另一端连接至外部电路的负极,保证发光芯片1023能正常接收到电流即可。
本申请实施例中的激光器10可以为单色激光器,其中各个发光芯片1023均用于发出同一颜色的激光。在一具体实施中,激光器10也可以为多色激光器,其中的多个发光芯片包括多类发光芯片,每类发光芯片用于发出一种颜色的激光,不同类发光芯片用于发出不同颜色的激光。如激光器10包括两类发光芯片,激光器10也可以包括三类发光芯片,该三类发光芯片用于分别发出红色激光、绿色激光和蓝色激光。如图13和图14中第一行发光芯片1023用于发出绿色激光,第二行发光芯片1023用于发出蓝色激光,第三行和第四行发光芯片1023用于发出红色激光。在一具体实施中,激光器10中发光芯片的种类数也可以大于3,多类发光芯片发出的激光颜色也可以为红色、绿色和蓝色之外的其他颜色,本申请实施例不做限定。
图18是本申请另一实施例提供的又一种激光器的结构示意图。图18可以为上述任一激光器的截面的示意图,该截面可以平行于发光芯片1023的行方向(如上图中的x方向)且垂直框体1022的轴向(如上图中的z方向)。如图18所示,激光器102还可以包括透光密封层108。透光密封层108位于框体1022远离底板1021的一侧,用于密封框体1022与底板1021围成的容置空间。透光密封层108的边缘区域可以直接与框体1022远离底板1021的表面固定。示例地,透光密封层108的边缘区域可以预置有焊料。可以将该透光密封层108放置在框体1022远离底板1021的一侧,且使该焊料与框体1022远离底板1021的表面接触。接着将框体1022与该透光密封层108一同放置于高温炉中,以使焊料熔化进而将框体1022与该透光密封层108焊接。
请继续参考图18,激光器102还可以包括准直镜组109,准直镜组109可以位于框体1022远离底板1021的一侧,如位于透光密封层108远离底板1021的一侧。如图18所示,准直镜组109的边缘可以通过粘贴剂与透光密封层108的边缘固定。准直镜组109可以包 括与多个发光芯片1023一一对应的多个准直透镜,准直透镜用于对射入的激光进行准直。如该多个准直透镜可以一体成型。准直镜组109远离底板1021的一侧可以具有多个凸弧面,每个凸弧面所在的部分可以作为一个准直透镜。需要说明的是,对光线进行准直也即是调整光线的发散角度,使光线调整至尽可能接近平行光。发光芯片1023发出的激光可以被对应的反射棱镜10225反射向透光密封层108,进而透光密封层108可以将该激光透射向准直镜组109中该发光芯片1023对应的准直透镜,以被该准直透镜准直后射出,进而实现激光器102的发光。
综上,本申请实施例提供的激光器中,激光器可以包括引脚结构,该引脚结构包括绝缘体和与该绝缘体固定的多个电极引脚,相当于该引脚结构为多个电极引脚的一体化结构。如此一来,在制备激光器时,仅需将一个引脚结构与框体进行固定即可实现多个电极引脚的固定,无需将各个电极引脚单独固定,可以简化激光器的制备过程。
图19是本申请实施例提供的一种光源组件的结构示意图,图20是本申请实施例提供的另一种光源组件的结构示意图。如图19和图20所示,光源组件可以包括上述的任一激光器102。示例地,该激光器102可以为多色激光器。该光源组件还包括位于激光器102的出光侧的合光部件20,合光部件20用于将激光器102发出的不同颜色的激光进行合光后出射。在一具体实施中,该激光器102也可以为单色激光器,该合光部件20可以将激光器102中不同位置的发光芯片发出的激光进行混合,以减小形成的光斑尺寸,便于后续的利用。
合光部件20可以包括多个合光镜片,每个合光镜片可以对应激光器中一行发光芯片。如图19所示,合光部件20中每个合光镜片均用于将对应的一行发光芯片发出的激光进行反射。该多个合光镜片中在光路中靠后的合光镜片可以为二向色镜,靠前的合光镜片反射的激光可以射向靠后的合光镜片,并透过该合光镜片出射,以实现对各行发光芯片发出的激光的合光。图19以合光后的激光的传输方向可以与激光器102的出光方向垂直为例。经过合光部件20合光后的激光的传输方向也可以与激光器102的出光方向平行。如图20所示,合光部件20中可以存在合光镜片将对应的一行发光芯片发出的激光进行透射,而将其他发光芯片发出的激光进行反射,进而使合光后的激光的传输方向与激光器102的出光方向相同。将对应的发光芯片发出的激光进行透射的合光镜片可以为位于边缘的一个合光镜片,合光部件20中其他的合光镜片均将对应的发光芯片发出的激光反射至该合光镜片。
如图19和图20所示,该光源组件还可以包括会聚透镜30和匀光部件40。合光部件20射出的激光可以射向会聚透镜30进行会聚后,射向匀光部件40。该匀光部件40可以将射入的激光匀化后射出以进行后续的利用。如该匀光部件40可以为光导管。图19中匀光部件20、会聚透镜30和匀光部件40的排布方向可以垂直激光器102的出光方向,图20中匀光部件20、会聚透镜30和匀光部件40的排布方向可以平行激光器102的出光方向。
本申请实施例还提供了一种激光显示设备,该显示设备包括显示组件和上述任一光源组件10。该光源组件10用于向显示组件提供激光,该显示组件用于基于该激光进行画面显示。示例地,显示设备可以为激光投影设备,该显示组件可以包括光阀和镜头,光阀用于对投影光源10发出的激光进行调制后射向镜头,镜头可以将光阀调制后的激光进行投射,以形成投影画面。又示例地,显示设备可以为激光电视,该显示组件可以包括显示屏,该显示屏用于基于投影光源发出的激光进行画面显示。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种光源组件,包括:电源板和固定于所述电源板上的多个激光器;
    所述多个激光器中每个激光器均包括:底板,位于所述底板上的框体,以及位于所述底板与所述框体围出的凹槽中的发光芯片;所述多个激光器中相邻的两个激光器拼接,所述两个激光器的底板中相互靠近的边缘相贴合;
    所述电源板用于向所述多个激光器中的发光芯片提供电流,所述发光芯片用于在所述电流的作用下发出激光。
  2. 根据权利要求1所述的光源组件,所述两个激光器包括第一激光器和第二激光器,所述第一激光器的底板的第一边缘与所述第二激光器的底板的第二边缘相贴合;
    所述第一边缘具有缺口,所述第二边缘具有与所述缺口对应的凸出部,所述凸出部位于对应的所述缺口中。
  3. 根据权利要求2所述的光源组件,所述凸出部的形状与对应的所述缺口的形状相同。
  4. 根据权利要求1所述的光源组件,所述两个激光器包括第一激光器和第二激光器,所述第一激光器的底板的第一边缘与所述第二激光器的底板的第二边缘相贴合;
    所述第一边缘与所述第一激光器中框体的外壁平齐,所述第二边缘与所述第二激光器中框体的外壁平齐,所述第一激光器的框体与所述第二激光器的框体相接触。
  5. 根据权利要求4所述的光源组件,所述第一激光器的底板中与所述第一边缘两端连接的边缘相对所述第一激光器的框体凸出,且与所述第一边缘的连接处具有第一缺口;所述第二激光器的底板中与所述第二边缘两端连接的边缘相对所述第二激光器的框体凸出,且与所述第二边缘的连接处具有第二缺口;所述第一缺口与所述第二缺口相对,且组成第一固定孔;
    所述光源组件还包括第一螺钉,所述电源板具有与所述第一固定孔连通的第一螺孔,所述第一螺钉穿过所述第一固定孔与所述第一螺孔,以将所述两个激光器与所述电源板锁固。
  6. 根据权利要求5所述的光源组件,所述第一缺口与所述第二缺口呈四分之一圆形,所述第一固定孔呈半圆形;
    或者,所述第一缺口与所述第二缺口呈半圆形,所述第一固定孔呈圆形。
  7. 根据权利要求1至6任一所述的光源组件,所述激光器还包括位于框体的相对两侧的电极引脚,所述两个激光器的底板中相互靠近的边缘为所述相对两侧之外的其他侧的边缘。
  8. 根据权利要求1至6任一所述的光源组件,对于所述多个激光器中底板仅一个边缘与其他激光器拼接的激光器,所述激光器的底板中远离所述其他激光器的一侧的边缘区域具有第二固定孔;
    所述光源组件还包括第二螺钉,所述电源板具有与所述第二固定孔连通的第二螺孔,所述第二螺钉穿过所述第二固定孔与所述第二螺孔,以将所述两个激光器与所述电源板锁固。
  9. 根据权利要求1至6任一所述的光源组件,所述底板的材质包括金属或者陶瓷,所述框体的材质包括金属或者陶瓷。
  10. 一种激光显示设备,其特征在于,所述激光显示设备包括:显示组件和权利要求1至9任一所述的光源组件,所述光源组件用于向所述显示组件发出激光,所述显示组件用于基于接收到的激光进行画面显示。
PCT/CN2023/110784 2022-08-02 2023-08-02 光源组件及激光显示设备 WO2024027769A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202222023222.8U CN217692089U (zh) 2022-08-02 2022-08-02 光源组件和显示设备
CN202222023222.8 2022-08-02
CN202222567324.6 2022-09-27
CN202222567324.6U CN219696912U (zh) 2022-09-27 2022-09-27 激光器
CN202223314384.3 2022-12-09
CN202223314384.3U CN218770544U (zh) 2022-12-09 2022-12-09 激光器

Publications (1)

Publication Number Publication Date
WO2024027769A1 true WO2024027769A1 (zh) 2024-02-08

Family

ID=89848528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110784 WO2024027769A1 (zh) 2022-08-02 2023-08-02 光源组件及激光显示设备

Country Status (1)

Country Link
WO (1) WO2024027769A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148020A1 (ja) * 2015-03-17 2016-09-22 カナレ電気株式会社 半導体レーザ及び半導体レーザ光源モジュール
CN113471181A (zh) * 2021-06-30 2021-10-01 上海天马微电子有限公司 一种发光模组及其制备方法、显示模组和背光模组
CN215771895U (zh) * 2021-06-25 2022-02-08 青岛海信激光显示股份有限公司 一种激光器
CN114527578A (zh) * 2022-03-31 2022-05-24 青岛海信激光显示股份有限公司 投影光源及投影设备
CN114609854A (zh) * 2022-03-23 2022-06-10 青岛海信激光显示股份有限公司 投影光源及投影设备
CN114628987A (zh) * 2022-03-14 2022-06-14 青岛海信激光显示股份有限公司 激光器及投影光源
CN217692089U (zh) * 2022-08-02 2022-10-28 青岛海信激光显示股份有限公司 光源组件和显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148020A1 (ja) * 2015-03-17 2016-09-22 カナレ電気株式会社 半導体レーザ及び半導体レーザ光源モジュール
CN215771895U (zh) * 2021-06-25 2022-02-08 青岛海信激光显示股份有限公司 一种激光器
CN113471181A (zh) * 2021-06-30 2021-10-01 上海天马微电子有限公司 一种发光模组及其制备方法、显示模组和背光模组
CN114628987A (zh) * 2022-03-14 2022-06-14 青岛海信激光显示股份有限公司 激光器及投影光源
CN114609854A (zh) * 2022-03-23 2022-06-10 青岛海信激光显示股份有限公司 投影光源及投影设备
CN114527578A (zh) * 2022-03-31 2022-05-24 青岛海信激光显示股份有限公司 投影光源及投影设备
CN217692089U (zh) * 2022-08-02 2022-10-28 青岛海信激光显示股份有限公司 光源组件和显示设备

Similar Documents

Publication Publication Date Title
US10054849B2 (en) Light source device and projector
WO2022257548A1 (zh) 激光器
JP6880855B2 (ja) 光源装置およびプロジェクター
CN216929162U (zh) 激光器
CN218887796U (zh) 激光器及投影光源
CN218770544U (zh) 激光器
CN114094434A (zh) 激光器
CN219696912U (zh) 激光器
CN218242550U (zh) 激光器及光源组件
CN213341076U (zh) 激光器
CN216929163U (zh) 激光器
WO2024027769A1 (zh) 光源组件及激光显示设备
CN217692089U (zh) 光源组件和显示设备
CN216773795U (zh) 激光器及投影光源
CN216773797U (zh) 激光器
CN216872474U (zh) 一种激光器和激光投影设备
CN113889839A (zh) 一种激光器
CN114583546A (zh) 一种激光器和激光投影设备
CN114637161A (zh) 一种激光器和激光投影设备
CN114253061A (zh) 激光器及投影设备
WO2023109778A1 (zh) 激光器及投影光源
WO2023030542A1 (zh) 激光器
CN216794229U (zh) 激光器
CN217823692U (zh) 激光器
WO2023124344A1 (zh) 激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849473

Country of ref document: EP

Kind code of ref document: A1