WO2022257548A1 - 激光器 - Google Patents

激光器 Download PDF

Info

Publication number
WO2022257548A1
WO2022257548A1 PCT/CN2022/082626 CN2022082626W WO2022257548A1 WO 2022257548 A1 WO2022257548 A1 WO 2022257548A1 CN 2022082626 W CN2022082626 W CN 2022082626W WO 2022257548 A1 WO2022257548 A1 WO 2022257548A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting chips
type
pin
emitting
Prior art date
Application number
PCT/CN2022/082626
Other languages
English (en)
French (fr)
Inventor
张昕
田有良
周子楠
卢瑶
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280040662.4A priority Critical patent/CN117461224A/zh
Publication of WO2022257548A1 publication Critical patent/WO2022257548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/0232Lead-frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding

Definitions

  • This application relates to the field of optoelectronic technology, in particular to a laser.
  • the packaging of lasers is also developing towards high density and high power with the development of process technology.
  • the reliability of the multi-chip packaged laser is low.
  • the present application provides a laser, and the laser includes: a bottom plate, a ring-shaped side wall, a plurality of conductive pins, and multiple types of light-emitting chips, each type of light-emitting chip includes a plurality of light-emitting chips;
  • Both the side wall and the multiple types of light-emitting chips are fixed on the bottom plate, and the side wall surrounds the multiple types of light-emitting chips; there are multiple openings on the side wall, and each of the conductive pins fixed to the side wall through one of the openings; the plurality of conductive pins include at least one positive pin and at least one negative pin;
  • the multiple types of light-emitting chips are in one-to-one correspondence with multiple colors, and each type of light-emitting chip is used to emit laser light of a corresponding color; multiple light-emitting chips in each type of light-emitting chip are connected in series, and the multiple light-emitting chips connected in series The two ends are respectively connected to one of the positive pins and one of the negative pins; there are at least two types of light-emitting chips among the multiple types of light-emitting chips connected to the same conductive pin.
  • Fig. 1 is a schematic structural diagram of a laser provided in the related art
  • FIG. 2 is a schematic structural diagram of a laser provided in an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another laser provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • lasers are used more and more widely.
  • lasers can be used as the light source of laser projection equipment or laser TV, and the requirements for the reliability of lasers are getting higher and higher.
  • the better the sealing of the accommodation space where the light-emitting chip is located in the laser the better the light-emitting effect of the light-emitting chip, the longer the service life of the light-emitting chip, and the higher the reliability of the laser.
  • FIG. 1 is a schematic structural diagram of a laser provided in the related art.
  • the laser 00 includes: a bottom plate 001 , an annular sidewall 002 , a plurality of conductive pins 003 and a plurality of light emitting chips 004 .
  • the sidewall 002 and the light-emitting chips 004 are fixed on the bottom plate 001, and the sidewall 002 surrounds the plurality of light-emitting chips 004.
  • Two opposite sides of the sidewall 002 (such as the first side and the second side) have a plurality of openings K, and each conductive pin 003 passes through one opening K and is fixed to the sidewall 002 .
  • the conductive pins 003 on the first side are all connected to the positive pole of the power supply, and the conductive pins 003 on the second side are all connected to the negative pole of the power supply.
  • the plurality of light-emitting chips 004 are arranged in multiple rows, and each row of light-emitting chips 004 is used to emit laser light of the same color.
  • the light-emitting chips 004 in each row are connected in series and both ends are respectively connected to a conductive pin 003 on the first side and a conductive pin 003 on the second side. For example, as shown in FIG.
  • four conductive pins 003 may be provided on the first side and the second side of the side wall 002 respectively, and the light emitting chips 004 may be arranged in four rows.
  • the openings on the sidewall 002 of the laser 00 tend to be poorly sealed, resulting in low reliability of the laser.
  • the embodiment of the present application provides a laser whose reliability can be improved.
  • Fig. 2 is a schematic structural diagram of a laser provided in an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of another laser provided in an embodiment of the present application
  • Fig. 2 may be a top view of the laser shown in Fig. 3
  • Fig. 3 may be A schematic diagram of the cross-section a-a' of the laser shown in FIG. 2 . Please combine FIG. 2 and FIG.
  • the laser 10 may include: a bottom plate 101, an annular side wall 102, a plurality of conductive pins 103 and multiple types of light-emitting chips 104, each type of light-emitting chip 104 includes a plurality of light-emitting chips 104, also That is, the number of light-emitting chips 104 of each type is greater than or equal to two.
  • Both the sidewall 102 and the multiple types of light-emitting chips 104 are fixed on the bottom plate 101 , and the sidewall 102 surrounds the multiple types of light-emitting chips 104 .
  • the plurality of conductive pins 103 in the laser 10 includes at least one positive pin and at least one negative pin.
  • the positive pin is used for electrical connection with the positive pole of the external power supply
  • the negative pole pin is used for electrical connection with the negative pole of the external power supply
  • the positive pole pin and the negative pole pin are used for transmitting current to connected components (such as light-emitting chips).
  • the structure composed of the bottom plate 101, the side wall 102 and the conductive pins 103 can be called a shell or a base assembly, and the space enclosed by the side wall 102 and the bottom plate 101 and surrounded by the side wall 102 can be the accommodating space of the shell.
  • the accommodating space is used for setting the light emitting chip 104 .
  • the multiple types of light-emitting chips 104 in the laser 10 can correspond to multiple colors one by one, and each type of light-emitting chip 104 is used to emit laser light of a corresponding color.
  • a plurality of light emitting chips 104 in each type of light emitting chip 104 can be connected in series, and two ends of the plurality of light emitting chips 104 in series can be respectively connected to a positive pin and a negative pin.
  • There are at least two types of light-emitting chips 104 connected to the same conductive pin 103 among the multiple types of light-emitting chips 104 for example, the at least two types of light-emitting chips 104 may be connected to the same positive pin or the same negative pin. It should be noted that different types of light-emitting chips require different currents, so the conductive pins other than the same conductive pin connected to the at least two types of light-emitting chips 104 are different.
  • multiple light-emitting chips in each type of light-emitting chip can be connected in series, so that only one switch can control the on-off of the multiple light-emitting chips.
  • the currents in the series circuit of the plurality of light-emitting chips are equal, so the requirements for the input current are relatively low, and the threshold current of each light-emitting chip is easily reached, which is convenient for the light-emitting chips to emit light.
  • each type of light-emitting chips in the laser is arranged in at least one row, and each row of light-emitting chips is connected to a positive pin and a negative pin, and the positive pins and negative pins connected to different rows of light-emitting chips are different. . Since each conductive pin needs to be fixed to the sidewall of the laser through an opening, the number of openings on the sidewall is at least twice the number of types of light emitting chips.
  • the laser provided by the embodiment of the present application, multiple light-emitting chips in each type of light-emitting chip are connected in series, and the two ends are respectively connected to the positive pin and the negative pin, and there are at least two types of light-emitting chips connected to the same conductive pin .
  • the laser can realize the normal light emission of many types of light-emitting chips through only a small number of conductive pins, and fewer openings can be set on the side wall of the laser, thereby reducing the poor sealing effect of the openings in the laser. risk and improve the reliability of the laser.
  • a part of the conductive pin 103 protrudes into the inner side of the side wall 102 through the corresponding opening K and is surrounded by the side wall 102 , and the other part is located outside the side wall 102 .
  • the part located on the outside of the side wall 102 can be connected to the positive pole or the negative pole of the external power supply, and the part located on the inside of the side wall 102 can be connected to the electrode of the corresponding light-emitting chip 104 through a wire, so that the external power supply can emit light through the conductive pin 103.
  • Chip 104 transmits electrical current.
  • the laser 10 may also include a plurality of ring-shaped sealing insulators 105 , which are used to fix the conductive pins 103 at the positions of the corresponding openings K on the side wall 102 .
  • each conductive pin 103 may be covered with an annular sealing insulator 105 , and then penetrate into the opening K.
  • the annular sealing insulator 105 is located between the conductive pin 103 and the sidewall of the opening K.
  • the ring-shaped sealing insulator 105 can be heated, for example, heated to 800-900 degrees Celsius, so that the ring-shaped sealing insulator 105 is melted, and then filled The gap between the conductive pin 103 and the sidewall of the opening K.
  • the melted ring-shaped sealing insulator 105 is used as a sealing adhesive to bond the conductive pin 103 and the sidewall of the opening K to fix the conductive pin 103 and the sidewall 102 .
  • the annular sealing insulator 105 is cooled and solidified.
  • the material of the annular sealing insulator 105 may include glass.
  • the ring-shaped sealing insulator in the opening of the side wall falling off after curing. If the ring-shaped sealing insulator falls off, the opening cannot be sealed, and the conductive pin at the opening is also difficult to fix with the side wall, which may cause the circuit connection between the conductive pin and the light-emitting chip to fail. If the wire between the foot and the light-emitting chip is broken, the reliability of the laser is low. The more openings on the side wall of the laser, the more difficult it is to ensure that the ring-shaped sealing insulators at each opening are well set, so it is more difficult to ensure the reliability of the laser. In the embodiment of the present application, the number of openings on the sidewall is reduced, which can reduce the possibility of the ring-shaped sealing insulator falling off at the opening, thereby improving the reliability of the laser.
  • Connecting different types of light-emitting chips to the same conductive pin is also referred to as the sharing of the same conductive pin by different types of light-emitting chips.
  • the following is an introduction to the sharing of conductive pins by multiple types of light-emitting chips in the laser:
  • At least two types of light-emitting chips 104 connected to the same conductive pin in the laser may be all light-emitting chips 104 in the laser, or may be part of the light-emitting chips 104 .
  • the number of the multiple types of light emitting chips 104 may be n, wherein there may be m types of light emitting chips 104 connected to the same conductive pin 103, 2 ⁇ m ⁇ n.
  • only one group of m-type light-emitting chips among n-type light-emitting chips share the same conductive pin, m is equal to any value from 2 to n, and n is any value greater than or equal to 2.
  • m n
  • n types of light-emitting chips in the laser can all share the same anode pin.
  • the number of conductive pins in the laser is n+1
  • the n+1 conductive pins include a positive pin and n negative pins
  • the n types of light-emitting chips are connected to the positive pins, and are connected to the positive pins respectively.
  • n negative pins are only one group of m-type light-emitting chips among n-type light-emitting chips share the same conductive pin, m is equal to any value from 2 to n, and n is any value greater than or equal to 2.
  • n types of light-emitting chips in the laser can all share the same anode pin.
  • n types of light-emitting chips in the laser can all share the same cathode pin. If the n+1 conductive pins include one negative pin and n positive pins, the n types of light-emitting chips are all connected to the negative pin, and are respectively connected to the n positive pins.
  • n may also be 2, 4, 5 or other values, which are not limited in this embodiment of the present application.
  • the conductive pins in the laser include n-m+1 positive pins and n negative pins, the m-type light-emitting chips can be connected to the same positive pin, and connected to m negative pins respectively.
  • the conductive pins in the laser include n positive pins and n-m+1 negative pins, and the m-type light-emitting chip can be connected to m positive pins respectively, and all of them are connected to the same negative pin.
  • n-m types of light-emitting chips are connected to a corresponding anode pin and a cathode pin, and does not share conductive pins with other types of light-emitting chips.
  • the laser includes 3 types of light-emitting chips and 5 conductive pins, two types of light-emitting chips in the 3 types of light-emitting chips are connected to the same conductive pin, and the remaining type of light-emitting chips are not connected to other types of light-emitting chips.
  • the light-emitting chips share conductive pins.
  • n may also be 4, 5 or other values, which are not limited in this embodiment of the present application.
  • n is any value greater than or equal to 4.
  • each type of light-emitting chip is only connected to the positive or negative pins shared with other types of light-emitting chips.
  • there may also be at least one type of light-emitting chip such as the target-type light-emitting chip
  • the positive pin and the negative pin are shared with other types of light-emitting chips, and the positive pin is shared with the target-type light-emitting chip.
  • the light-emitting chip with the pin is different from the light-emitting chip that shares the negative pin with the target light-emitting chip.
  • the n-type light-emitting chips can be divided into two groups of light-emitting chips, wherein the first type of light-emitting chips and the second type of light-emitting chips are a group of light-emitting chips, and the third type of light-emitting chips and the second type of light-emitting chips
  • the four types of light-emitting chips are another group of light-emitting chips.
  • the number of conductive pins in the laser can be 6, including two positive pins and four negative pins.
  • the first type of light-emitting chips and the second type of light-emitting chips can share one positive pin
  • the third type of light-emitting chips and the fourth type of light-emitting chips can share another positive pin
  • the four types of light-emitting chips can be connected to the four negative poles respectively pin.
  • the six conductive pins include two negative pins and four positive pins
  • the first type of light-emitting chip and the second type of light-emitting chip share one negative pin
  • the third type of light-emitting chip and the fourth type of light-emitting chip share another negative pin
  • the four types of light-emitting chips are respectively connected to the four positive pins.
  • the n-type light-emitting chips can be divided into four groups of light-emitting chips, wherein the first type of light-emitting chips and the second type of light-emitting chips form a group of light-emitting chips, and the third type of light-emitting chips and The fourth type of light-emitting chip forms a group of light-emitting chips, the first type of light-emitting chip and the third type of light-emitting chip also form a group of light-emitting chips, and the second type of light-emitting chip and the fourth type of light-emitting chip also form a group of light-emitting chips.
  • the number of conductive pins in the laser can be 4, including a first positive pin, a second positive pin, a first negative pin and a second negative pin.
  • the first type of light-emitting chip and the second type of light-emitting chip can share the first anode pin
  • the third type of light-emitting chip and the fourth type of light-emitting chip can share the second anode pin
  • the first type of light-emitting chip and the third type of light-emitting chip can Sharing the first negative pin
  • the second type of light-emitting chip and the fourth type of light-emitting chip can share the second negative pin.
  • the light-emitting chips used to emit laser light of different colors can share the same conductive pin.
  • more types of light-emitting chips can be arranged in the tube shell of the laser, which improves the luminescence of the laser. Effect.
  • Lasers including multiple types of light-emitting chips can also be prepared by using the shell with fewer conductive pins, which improves the versatility of the shell.
  • the volume of the shell with fewer conductive pins is also smaller, so that the miniaturization of the laser can be realized on the basis of realizing the laser emitting multiple colors of laser light.
  • the number of multiple conductive pins in the laser in the embodiment of the present application may be an even number, the multiple conductive pins are fixed on opposite sides of the side wall, and the number of conductive pins fixed on the two sides same amount.
  • the plurality of conductive pins 103 in the laser may include: a first pin 103a, a second pin 103b, a third pin 103c and a fourth pin 103d, the first The pin 103 a and the second pin 103 b can be fixed on the target side of the side wall 102 , and the third pin 103 c and the fourth pin 103 d can be fixed on the opposite side of the target side in the side wall 102 .
  • the number of conductive pins in the laser can also be an odd number, and each conductive pin in the laser can also be fixed on the same side of the side wall, or can also be fixed on the adjacent side of the side wall; When the pins are fixed on different sides of the side wall, the number of conductive pins fixed on the different sides may also be different, which is not limited in this embodiment of the present application.
  • the light emitting chips 104 in the laser can be arranged in an array, and the light emitting chips 104 can emit light along the column direction.
  • the target side on which the conductive pins 103 are disposed in the sidewall 102 and the opposite side thereof may be respectively opposite sides of the sidewall 102 in the row direction of the light emitting chips 104 .
  • the laser includes four conductive pins 103 as an example; among the four conductive pins 103, the first pin 103a can be connected to an electrode of the first polarity, and the second pin 103b, the second pin 103a Both the third pin 103c and the fourth pin 103d may be connected to electrodes of the second polarity.
  • the first polarity may be a positive pole, and the second polarity may be a negative pole; or the first polarity may be a negative pole, and the second polarity may be a positive pole, which is not limited in this embodiment of the present application.
  • the number of conductive pins 103 in the laser 10 may also be 5, 6, 7, 8 or other numbers.
  • Each type of light-emitting chip in the laser can emit laser light of one color, and the colors of laser light emitted by different types of light-emitting chips are different.
  • the number of types of the multi-type light-emitting chips is 3, and the multi-type light-emitting chips may include: a first type of light-emitting chip 104a, a second type of light-emitting chip 104b and The third type of light-emitting chip 104c.
  • the first type of light-emitting chip 104a is used to emit red laser light
  • the second type of light-emitting chip 104b is used to emit green laser light
  • the third type of light-emitting chip 104c is used to emit blue laser light.
  • the number of types of the multi-type light-emitting chips can also be 4, 5 or even more.
  • the laser may also include light-emitting chips for emitting laser light of other colors, such as a light-emitting chip for emitting purple laser light, and a light-emitting chip for emitting yellow laser light.
  • the arrangement positions of various light-emitting chips in the laser on the base plate may be related to the heat dissipation performance of the light-emitting chips themselves.
  • the heat dissipation performance of the light-emitting chip is related to the wavelength of the laser light emitted by the light-emitting chip, and the light-emitting chip that emits laser light with a shorter wavelength may have better heat dissipation performance.
  • the distance between the light-emitting chip and the middle area of the bottom plate may be directly related to the wavelength of the laser light emitted by the light-emitting chip.
  • the light-emitting chip with better heat dissipation performance can be placed close to the middle area of the bottom plate, so as to compensate the heat dissipation effect of the bottom plate through the heat dissipation performance of the light-emitting chip. ; In this way, it can ensure that the heat dissipation effect of various light-emitting chips is relatively balanced during work, and the reliability of the laser is high.
  • the first type of light-emitting chips 104a, the second type of light-emitting chips 104b and the third type of light-emitting chips 104c in the laser can be arranged in two rows and multiple columns, the row direction can be the x direction, and the column direction can be Can be y direction.
  • One row of light emitting chips (such as the second row of light emitting chips) includes the first type of light emitting chips 104a, and another row of light emitting chips (such as the first row of light emitting chips) includes the second type of light emitting chips 104b and the third type of light emitting chips 104c.
  • the third type of light emitting chip 104c is smaller than the wavelength of the laser light emitted by the second type of light emitting chip 104b, the heat dissipation performance of the third type of light emitting chip 104c is better, so the third type of light emitting chip 104c can be arranged on the opposite side.
  • the second type of light-emitting chip 104 b is closer to the middle area of the base plate 101 .
  • the second-type light-emitting chips 104b may be distributed on both sides of the third-type light-emitting chips 104c.
  • multiple light-emitting chips of each type of light-emitting chip in the laser may form a ring, and may all surround the middle area of the bottom plate, for example, multiple rings surrounded by various types of light-emitting chips may form concentric rings. The rings closer to the middle region are surrounded by light-emitting chips that emit laser light with shorter wavelengths.
  • multiple light-emitting chips in each type of light-emitting chip can be distributed around the middle area of the bottom plate in a circular manner, that is, multiple light-emitting chips in each type of light-emitting chip form a ring shape.
  • a plurality of light-emitting chips in each type of light-emitting chip may also form a square ring or a ring of other shapes, which is not limited in this embodiment of the present application.
  • each type of light-emitting chip is arranged in at least one row, and the relationship between the heat dissipation performance of the light-emitting chip itself and the heat dissipation effect of different positions in the laser is not considered.
  • the light-emitting chip with poor heat dissipation performance will also be arranged in the position of the laser with poor heat dissipation effect, resulting in significant heat accumulation of the light-emitting chip, and the heat generated by the light-emitting chip is difficult to dissipate when emitting light;
  • the threshold current of the chip will change, the luminous efficiency of the light-emitting chip is low, and the light-emitting chip is easily damaged by the heat.
  • the location of the light-emitting chip is determined based on the heat dissipation performance of the light-emitting chip itself and the heat dissipation effect of different positions in the laser.
  • the heat accumulation of the light-emitting chip improves the light-emitting efficiency of the light-emitting chip and reduces the risk of damage to the light-emitting chip.
  • the number of the first type of light emitting chips 104a in the embodiment of the present application may be equal to the sum of the number of the second type of light emitting chips 104b and the number of the third type of light emitting chips 104c, and the number of the second type of light emitting chips 104b may be more than the number of the third type of light emitting chips 104b.
  • the number of second-type light-emitting chips 104b may also be equal to the number of third-type light-emitting chips 104c, and the number of first-type light-emitting chips 104a may not be equal to the number of second-type light-emitting chips 104b and third-type light-emitting chips 104c. sum of quantities.
  • the number of various light-emitting chips in the laser can be determined according to the ratio of various colors in the laser to be obtained. The embodiment of the present application does not limit the number and quantitative relationship of various light-emitting chips.
  • the laser 10 may also include multiple heat sinks 106 and multiple reflective prisms 107 .
  • Each light emitting chip 104 in the laser may correspond to a heat sink 106 and a reflective prism 107 .
  • the heat sink 106 can be fixed on the bottom plate 101
  • the light-emitting chips 104 are fixed on the heat sink 106 to be fixed on the bottom plate 101
  • the reflective prism 107 is located on the light-emitting side of the corresponding light-emitting chip 104 .
  • the light-emitting chip 104 can emit laser light to the corresponding reflective prism 107 , and the reflective prism 107 can emit the incident laser light in a direction away from the base plate 101 (such as the z direction), thereby realizing the light emission of the laser 10 .
  • the heat sink 106 includes a heat dissipation substrate and a conductive layer on the heat dissipation substrate, and the light emitting chip can be fixed on the conductive layer of the heat sink 106 .
  • the heat sink 106 may also include a solder layer disposed on the conductive layer, and the solder layer is used for soldering the light-emitting chip when melted. It should be noted that, the embodiment of the present application does not show the specific structure of the heat sink 106 .
  • the material of the heat dissipation substrate in the heat sink may include ceramics or copper, and the material of the conductive layer may include gold.
  • the heat dissipation substrate of the heat sink is made of a conductive material
  • an insulating layer is provided between the heat dissipation substrate and the conductive layer in the heat sink to prevent the current from being transmitted to the light emitting chip due to conduction between the light emitting chip and the heat dissipation substrate.
  • the light emitting chip 104 includes a first electrode and a second electrode, and a light emitting structure located between the first electrode and the second electrode.
  • the first electrode and the second electrode are respectively used to connect with the positive pole and the negative pole of the power supply, so as to transmit current to the light-emitting structure, and excite the light-emitting structure to emit laser light, thus realizing the light-emitting chip 104 to emit light.
  • the first electrode, the light emitting structure and the second electrode in the light emitting chip are not illustrated.
  • the surface of the heat sink 106 away from the bottom plate 101 is a conductive surface, which is also the surface for disposing the light emitting chip 104 .
  • the light-emitting chip 104 After the light-emitting chip 104 is fixed on the heat sink 106, its first electrode can be electrically connected to the conductive surface of the heat sink 106, and then can be electrically connected to an electrode (such as a positive pole or a negative pole) of a power supply through the conductive surface. As long as the wire connected to the electrode of the power supply can be connected to the conductive surface, the wire does not need to be in direct contact with the first electrode of the light emitting chip 104 .
  • the conductive surface of the heat sink can also be directly used as the first electrode of the light-emitting chip, without setting an additional conductive film layer in the light-emitting chip as the first electrode.
  • multiple light-emitting chips in each type of light-emitting chips in the laser can be connected in series, and both ends of the series-connected multiple light-emitting chips are respectively connected to a positive pin and a negative pin.
  • the first electrode of the first light-emitting chip in the plurality of light-emitting chips is connected to the anode pin
  • the second electrode of the previous light-emitting chip in the plurality of light-emitting chips is connected to the first electrode of the next light-emitting chip
  • the last The second electrode of the light-emitting chip is connected to the negative electrode pin, so that the series connection of the plurality of light-emitting chips is realized.
  • the plurality of light-emitting chips connected in series in each type of light-emitting chip may be all of the light-emitting chips of this type, or may be only some of the light-emitting chips of this type.
  • the laser is provided with 10 light-emitting chips of the first type, all of the 10 light-emitting chips can be connected in series, or 5 of the 10 light-emitting chips can be connected in series, and the other 5 light-emitting chips can be connected in series.
  • the components in the laser can be connected by wires, which can be gold wires.
  • wires can be gold wires.
  • a wire bonding process may be used to arrange a wire between two components to be connected, so that two ends of the wire are respectively connected to the two components.
  • the wire can be pressed onto the surface metal layer (such as a gold layer) of the object to be connected by a cutter, and pressure is applied, while the pad is heated to soften the contact area between the wire and the gold layer, and the molecules of the wire diffuse to it.
  • wires may be used to connect the first electrode of one light emitting chip to the second electrode of another light emitting chip. It should be noted that the reliability of a wire is negatively correlated with its length.
  • the distance between two components that need to be connected by the same wire must be less than or equal to the distance threshold to ensure that the two components are connected.
  • the strength of the wires of the two components is relatively high, which ensures the connection reliability of the two components.
  • the distance between any two components connected by the same wire is less than or equal to 3 millimeters, that is, the distance threshold is 3 millimeters.
  • the distance between the two components may range from 2 mm to 3 mm.
  • At least two types of light-emitting chips in the laser share the same conductive pin, and the at least two types of light-emitting chips need to be connected to the same conductive pin. It is difficult to ensure that each type of light-emitting chip is connected to the two conductive pins.
  • the feet are evenly spaced. For example, it is difficult to ensure that the two conductive pins connected to each type of light-emitting chip are located on both sides of each type of light-emitting chip, and it is difficult to ensure that each type of light-emitting chip in the laser is arranged in the same direction as the two conductive pins connected superior.
  • the light-emitting chips in the laser are arranged in disorder, and the distance between the two light-emitting chips to be connected is relatively long, or the distance between the light-emitting chip and the conductive pins to be connected is relatively far, so it is difficult to realize each light-emitting chip only through wires.
  • the series connection of similar light-emitting chips and the corresponding conductive pins can be realized by means of connecting wires, and the two optional connection methods will be introduced below.
  • the laser 10 further includes a plurality of adapters 108 fixed on the bottom plate 101 .
  • Each type of light-emitting chip in the laser 10 can be connected in series to the corresponding positive and negative pins through the adapter 108 .
  • a transfer table can be set between the two parts, so that the wires pass through the connection transfer table to connect the two parts. If the wires cannot be directly connected to the electrodes of the two light-emitting chips, an interposer can be provided between the two light-emitting chips.
  • an adapter can be provided between the light-emitting chip and the conductive pin.
  • the number of switching stations provided between the two components can be determined according to the distance between the two components and the arrangement of the wires provided.
  • the plurality of first interposers 108a may be arranged in a row or approximately in a row along the row direction of the light emitting chips 104 (such as the x direction), and located between the two rows of light emitting chips 104 in the laser 10 .
  • the plurality of second transfer stations 108b may be located on the side of the first row of light-emitting chips 104 away from the second row of light-emitting chips 104.
  • the second type of light-emitting chips 104a are distributed on the plurality of second transfer stations in the x direction.
  • the plurality of third interposers 108c are located between the first row of light-emitting chips 104 and the plurality of first interposers 108a.
  • the first type of light-emitting chips 104a can be connected in series and connected to the first pin 103a and the second pin 103b through the plurality of first transfer stations 108a
  • the second type of light-emitting chips 104b can be connected in series and connected through the plurality of second transfer stations 108b
  • the first pin 103a and the third pin 103c, and the third type light-emitting chip 104c are connected in series and connected to the first pin 104a and the fourth pin 104d through a plurality of third transfer stations 108c.
  • the plurality of first-type light-emitting chips 104a arranged in a row may be sequentially connected along the x direction, and the plurality of first interposers 108a arranged in a row may be connected in sequence along the x direction.
  • the first-type light-emitting chip 104a on the target side farthest from the side wall 102 can be connected to the first transfer station 108a on the farthest side from the target, the first-type light-emitting chip 104a on the target side can be connected to the first pin 103a, and the closest The first adapter 108a on the target side can be connected to the second pin 103b.
  • the second type of light-emitting chips 104b and the plurality of second transfer stations 108b can be sequentially connected along the x direction, the second-type light-emitting chips 104b closest to the target side can be connected to the first pin 108a, and the second type of light-emitting chips 104b farthest from the target side
  • the quasi-light-emitting chip 104b can be connected to the third pin 108c.
  • the plurality of third transfer stations 108c may be located on both sides of the third type light emitting chip 104c, the third type light emitting chip 104c and the plurality of third transfer stations 108c may be sequentially connected along the x direction, and the third type light emitting chip 104c
  • the component closest to the target side among the plurality of third switching platforms 108c may be connected to the nearest first switching platform 108a, and the third switching platform 108c far from the target side may be connected to the fourth pin 103d.
  • the third transfer station may also be located between the second type of light emitting chip 104b and the third type of light emitting chip 104c, which is not shown in this embodiment of the present application.
  • the third type of light-emitting chip 104c can also be connected to conductive pins through other transfer stations other than the third transfer station.
  • the laser 10 may further include a transfer station arranged between the conductive pin and the nearest light-emitting chip, so as to connect the conductive pin and the light-emitting chip through the transfer station.
  • the transfer station 108 may include: a transfer station main body and a conductive layer located on a side of the transfer station main body away from the bottom plate 101 .
  • the main body of the adapter can be made of insulating material, such as ceramics, or aluminum nitride or aluminum oxide; the conductive layer can be made of gold or other metals.
  • the connection between the adapter table and the light-emitting chip, between the adapter table and the conductive pin, between the light-emitting chip and the light-emitting chip, and between the light-emitting chip and the conductive pin can be realized by wire bonding technology. The relevant introduction of wire bonding will not be repeated in this embodiment of the present application.
  • the adapter table 108 may be in the shape of a cuboid, a cube, a cylinder, an ellipse cylinder, a prism or other cylinder shapes.
  • the surface of the transfer table 108 away from the bottom plate may be in the shape of a rectangle, a square, a circle, an ellipse, a rectangle or other polygons.
  • the size of the surface can be designed accordingly based on the arrangement requirements of the wires, which is not limited in this embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another laser provided by the embodiment of the present application, and Fig. 3 may also be a schematic diagram of the middle section a-a' of the laser shown in Fig. 4 .
  • part of the adapter can be replaced by a heat sink, and the series connection of various light-emitting chips in the laser and the connection with the conductive pins can be realized through the adapter and heat sink.
  • the transfer station 108 can be located between the light-emitting chip 104 and the conductive pin 103, and the number of transfer stations 108 is less than the number threshold.
  • the laser 10 only includes three transfer stations 108 as an example.
  • the heat sink 106 may have multiple conductive regions, for example, the conductive layer in the heat sink 106 may be divided into multiple conductive regions, and adjacent conductive regions in the multiple conductive regions are insulated.
  • the plurality of conductive regions may be sequentially arranged along the light emitting direction (such as the y direction) of the light emitting chip 104 .
  • One conductive region in the plurality of conductive regions is used to set the corresponding light-emitting chip 104 and is electrically connected to the light-emitting chip 104, such as the conductive region can be connected to the first electrode of the light-emitting chip 104, or as the second an electrode.
  • Other conductive areas in the plurality of conductive areas function as switching stations for circuit switching.
  • Each type of light-emitting chip in the laser 10 can be connected in series to the corresponding positive and negative pins through the transfer table 108 and the conductive area of each heat sink 106 .
  • the arrangement of the light-emitting chips 104 and the arrangement of the conductive pins 103 in FIG. 4 are the same as those in FIG. 2 , and reference may be made to the aforementioned related introductions, which will not be repeated in this embodiment of the present application.
  • the heat sink 106 corresponding to the first type of light emitting chip 104 a has a first conductive region Q1 and a second conductive region Q2 sequentially arranged along the y direction, and the first conductive region Q1 is used for setting the light emitting chip 104 .
  • the heat sinks 106 corresponding to the second-type light-emitting chip 104b and the third-type light-emitting chip 104c each have a third conductive region Q3, a fourth conductive region Q4, and a fifth conductive region Q5 arranged in sequence along the y direction.
  • Q3 is used to set the light emitting chip 104 .
  • the first type of light-emitting chips 104 a are connected in series through the first conductive region Q1
  • the first type of light-emitting chips 104 a connected in series are connected to the first pin 103 a and the second pin 103 b through the second conductive region Q2 and the transfer platform 108 .
  • the second type of light-emitting chip 104b is connected in series with the target conductive area through the third conductive area Q3, and the target conductive area is any one of the fourth conductive area Q4 and the fifth conductive area Q5.
  • the second type of light-emitting chips 104b connected in series are connected to the first pin 103a and the third pin 103c through the adapter 108 .
  • the third type of light-emitting chips 104c are connected in series through the third conductive area Q3, and the third type of light-emitting chips 104c connected in series are connected to the first pin 103a and the fourth pin 103d through the auxiliary conductive area and the transfer table 108, and the auxiliary conductive area is the second pin.
  • FIG. 4 takes the fifth conductive region Q5 as the target conductive region and the fourth conductive region Q4 as the auxiliary conductive region as an example.
  • the plurality of first-type light-emitting chips 104a arranged in a row may be sequentially connected along the x direction, and the second conductive regions Q2 in each heat sink 106 corresponding to the first-type light-emitting chips 104a may be sequentially connected along the x-direction.
  • the first conductive region Q1 of the heat sink 106 on the target side farthest from the side wall 102 is connected to the second conductive region Q2, and the first type light-emitting chip 104a closest to the target side is connected to the first pin 103a through the transfer platform 108, and finally
  • the second conductive region Q2 in the heat sink 106 close to the target side is connected to the second pin 103b through the transfer platform 108 .
  • the second type of light emitting chip 104b and the fifth conductive region Q5 of the heat sink 106 can be sequentially connected along the x direction, the second type of light emitting chip 104b closest to the target side can be connected to the first pin 108a, and the second type of light emitting chip 104b farthest from the target side can be connected to the first pin 108a, and the second type of light emitting chip 104b on the farthest
  • the quasi-light-emitting chip 104b can be connected to the third pin 108c through the adapter 108 .
  • the third type of light-emitting chip 104c and the fourth conductive region Q4 of the heat sink 106 can be sequentially connected along the x direction, and the fourth conductive region Q4 of the heat sink 106 closest to the target side can be connected to the first pin 103a, away from the target side
  • the fourth conductive region Q4 of the heat sink 106 can be connected to the fourth pin 103d.
  • An insulating material may be disposed between adjacent conductive regions in the heat sink 106 .
  • the multiple conductive areas may have different thicknesses.
  • the thickness of the conductive region for setting the light-emitting chip can be greater than the thickness of other conductive regions, so that the manufacturing cost of the heat sink can be reduced.
  • the thickness of the conductive region used for disposing the light-emitting chip in the heat sink may be 0.5 micron, and the thickness of other conductive regions may be 0.25 micron.
  • the thickness of the first conductive region Q1 and the third conductive region Q3 of the heat sink 106 can be 0.5 micron, and the thickness of the second conductive region Q2, the fourth conductive region Q4 and the fifth conductive region Q5 can be 0.25 micron.
  • a solder layer needs to be disposed on the conductive area for disposing the light-emitting chip, while no solder layer needs to be disposed on other conductive areas.
  • the embodiment of the present application only uses the two line connection methods shown in Figure 2 and Figure 4 as examples.
  • the specific arrangement of the light-emitting chips and the setting of the switchboard can also be used based on the wiring requirements.
  • the location and line connection mode are adjusted accordingly, which is not limited in this embodiment of the present application.
  • the above-mentioned method of providing multiple conductive regions on the heat sink to replace the switch board for circuit switching it is only necessary to extend the heat sink appropriately, and there is no need to separately set the switch board. Since the space occupied by the heat sink is small, it is beneficial to the miniaturization of the laser.
  • only the heat sink can be pasted on the bottom plate, without adding the process of pasting the transfer table on the bottom plate, which can simplify the preparation process of the laser.
  • Fig. 5 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • the laser 10 may further include a ring-shaped sealing cover plate 109 , a light-transmitting sealing layer 110 and a collimating lens group 111 .
  • the outer edge of the sealing cover plate 109 can be fixed with the surface of the side wall 102 away from the bottom plate 101, and the inner edge of the sealing cover plate 109 is fixed with the light-transmitting sealing layer 110 on the side away from the bottom plate 101, and the light-transmitting sealing layer 110 covers the sealing cover The opening of the plate 109 .
  • the collimating lens group 111 is located on the side of the sealing cover 109 away from the bottom plate 101 , and the collimating lens group 111 may include a plurality of collimating lenses T corresponding to the plurality of light emitting chips 103 one by one.
  • Each light-emitting chip 104 can emit laser light to the corresponding reflective prism 107, and the laser light is reflected on the reflective prism 107 and passes through the light-transmitting sealing layer 110 to the corresponding collimator lens T, which collimates the incident laser light After being collimated, it is emitted, and then the light emission of the laser is completed.
  • the structure composed of the sealing cover plate and the light-transmitting sealing layer can be referred to as an upper cover assembly, and the upper cover assembly is used to seal the opening of the tube case, so that the accommodating space of the tube case is a closed space.
  • the light-emitting chip being located in the confined space can prevent external water and oxygen from corroding the light-emitting chip, thereby prolonging the service life of the light-emitting chip and ensuring the light-emitting effect of the light-emitting chip.
  • there are fewer openings on the side wall of the tube shell which can also reduce the risk of poor sealing effect of the openings on the side wall, and further ensure better sealing effect of the laser accommodating space.
  • the material of the shell can be copper, such as oxygen-free copper
  • the material of the light-transmitting sealing layer can be glass
  • the material of the sealing cover can be stainless steel.
  • copper has a large thermal conductivity
  • the material of the tube shell in the embodiment of the present application is copper, so that the heat generated by the light-emitting chip arranged on the bottom plate of the tube shell can be quickly conducted through the tube shell during operation. , and then dissipate faster, avoiding damage to the light-emitting chip caused by heat accumulation.
  • the material of the shell can also be one or more of aluminum, aluminum nitride and silicon carbide.
  • the material of the sealing cover plate in the embodiment of the present application may also be other Kovar materials, such as iron-nickel-cobalt alloy or other alloys.
  • the material of the light-transmitting sealing layer may also be other light-transmitting and highly reliable materials, such as resin materials.
  • each ring-shaped sealing insulator can be placed on each conductive pin first, and then the conductive pin covered with the ring-shaped sealing insulator can be inserted into the opening of the side wall, And the annular sealing insulator is located in the opening.
  • the bottom plate, side walls, conductive pins and solder can be integrated (that is, the base assembly), and the airtightness of the openings of the side walls is realized.
  • the light-transmitting sealing layer and the sealing cover plate can also be fixed by the sealing material to obtain the upper cover assembly.
  • the heat sink, the light-emitting chip and the reflective prism can be welded on the corresponding positions on the bottom plate, and then the upper cover assembly can be welded on the surface of the side wall away from the bottom plate by using parallel sealing welding technology. Finally, after aligning the position of the collimating lens group, fix the collimating lens group on the side of the upper cover assembly away from the bottom plate through epoxy glue, and thus complete the assembly of the laser.
  • the above-mentioned assembly process is only an exemplary process provided by the embodiment of the present application, and the welding process used in each step can also be replaced by other processes, and the sequence of each step can also be adjusted accordingly. The embodiment of the application does not limit this.
  • the bottom plate and the side wall of the tube case are taken as two separate structures that need to be assembled as an example for illustration.
  • the bottom plate and the side wall can also be integrally formed. In this way, it can avoid wrinkles on the bottom plate caused by the difference in thermal expansion coefficient between the bottom plate and the side wall when the bottom plate and the side wall are welded at high temperature, thereby ensuring the flatness of the bottom plate, ensuring the reliability of the light-emitting chip on the bottom plate, and ensuring the emission of the light-emitting chip.
  • the light of the laser is emitted according to the predetermined light angle, which improves the light effect of the laser.
  • the laser provided by the embodiment of the present application, multiple light-emitting chips in each type of light-emitting chip are connected in series, and the two ends are respectively connected to the positive pin and the negative pin, and there are at least two types of light-emitting chips connected to the same conductive pin .
  • the laser can realize the normal light emission of many types of light-emitting chips through only a small number of conductive pins, and fewer openings can be set on the side wall of the laser, thereby reducing the poor sealing effect of the openings in the laser. risk and improve the reliability of the laser.
  • the terms “first” and “second” are used for description purposes only, and cannot be understood as indicating or implying relative importance.
  • the term “at least one” means one or more.
  • the term “plurality” means two or more, unless otherwise clearly defined. "Approximately” and “approximately” mean that within an acceptable error range, those skilled in the art can solve the technical problem to be solved within a certain error range, and basically achieve the desired technical effect.
  • the dimensions of layers and regions may be exaggerated for clarity of illustration. Also it will be understood that when an element or layer is referred to as being “on” another element or layer, it can be directly on the other element or intervening layers may be present.
  • Like reference numerals designate like elements throughout.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器(10),属于光电技术领域,包括:底板(101)、环状的侧壁(102)、多个导电引脚(103)和多类发光芯片(104),每类发光芯片(104)均包括多个发光芯片(104);侧壁(102)与多类发光芯片(104)均固定于底板(101)上,且侧壁(102)包围多类发光芯片(104);侧壁(102)上具有多个开孔K,每个导电引脚(103)穿过一个开孔K与侧壁(102)固定;多个导电引脚(103)包括至少一个正极引脚和至少一个负极引脚;多类发光芯片(104)与多种颜色一一对应,每类发光芯片(104)用于发出对应颜色的激光;每类发光芯片(104)中的多个发光芯片(104)串联,且串联的多个发光芯片(104)的两端分别与一个正极引脚和一个负极引脚连接;多类发光芯片(104)中存在至少两类发光芯片(104)连接同一导电引脚(103)。

Description

激光器
相关申请的交叉引用
本申请要求在2021年6月9日提交中国专利局、申请号为202110642663.3,发明名称为激光器的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器。
背景技术
随着光电技术的发展,激光器被广泛应用,多色激光器由于其颜色表现力较强而备受青睐。
激光器的封装也随着工艺技术的发展向高密度、高功率方向发展。但相关技术中,多芯片封装的激光器的可靠性较低。
发明内容
本申请提供了一种激光器,所述激光器包括:底板、环状的侧壁、多个导电引脚和多类发光芯片,每类发光芯片均包括多个发光芯片;
所述侧壁与所述多类发光芯片均固定于所述底板上,且所述侧壁包围所述多类发光芯片;所述侧壁上具有多个开孔,每个所述导电引脚穿过一个所述开孔与所述侧壁固定;所述多个导电引脚包括至少一个正极引脚和至少一个负极引脚;
所述多类发光芯片与多种颜色一一对应,每类发光芯片用于发出对应颜色的激光;所述每类发光芯片中的多个发光芯片串联,且串联的所述多个发光芯片的两端分别与一个所述正极引脚和一个所述负极引脚连接;所述多类发光芯片中存在至少两类发光芯片连接同一所述导电引脚。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种激光器的结构示意图;
图2是本申请实施例提供的一种激光器的结构示意图;
图3是本申请实施例提供的另一种激光器的结构示意图;
图4是本申请实施例提供的再一种激光器的结构示意图;
图5是本申请实施例提供的又一种激光器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,激光器的应用越来越广泛,例如激光器可以作为激光投影设备或激光电视的光源,且目前对激光器的可靠性的要求也越来越高。激光器中发光芯片所在的容置空间的密封性越好,发光芯片的发光效果越好,发光芯片的使用寿命越长,激光器的可靠性越高。
图1是相关技术提供的一种激光器的结构示意图。如图1所示,激光器00包括:底板001、环状的侧壁002、多个导电引脚003和多个发光芯片004。其中,侧壁002与发光芯片004均固定于底板001上,且侧壁002包围该多个发光芯片004。侧壁002的相对两侧(如第一侧与第二侧)具有多个开孔K,每个导电引脚003穿过一个开孔K并与侧壁002固定。第一侧的导电引脚003均与电源正极连接,第二侧的导电引脚003均与电源负极连接。该多个发光芯片004排成多行,每行发光芯片004用于发出同一种颜色的激光。每行发光芯片004串联且两端分别连接第一侧的一个导电引脚003和第二侧的一个导电引脚003。示例地,如图1所示,侧壁002的第一侧与第二侧可以各设置四个导电引脚003,发光芯片004可以排成四行。但是,相关技术中激光器00的侧壁002上容易出现开孔的密封性较差的情况,导致激光器的可靠性较低。
本申请实施例提供了一种激光器,其可靠性可以提高。
图2是本申请实施例提供的一种激光器的结构示意图,图3是本申请实施例提供的另一种激光器的结构示意图,图2可以为图3所示的激光器的俯视图,图3可以为图2所示的激光器的截面a-a’的示意图。请结合图2和图3,激光器10可以包括:底板101、环状的侧壁102、多个导电引脚103和多类发光芯片104,每类发光芯片104均包括多个发光芯片104,也即是每类发光芯片104的数量均大于或等于2。
侧壁102与该多类发光芯片104均固定于底板101上,且侧壁102包围该多类发光芯片104。侧壁102上可以具有多个开孔K,每个导电引脚103穿过一个开孔K与侧壁102固定。激光器10中的多个导电引脚103包括至少一个正极引脚和至少一个负极引脚。正极引脚用于与外部电源的正极电连接,负极引脚用于与外部电源的负极电连接,正极引脚 与负极引脚用于向连接的部件(如发光芯片)传输电流。底板101、侧壁102和导电引脚103组成的结构可以称为管壳或者底座组件,侧壁102与底板101围合得到的被侧壁102包围的空间可以为该管壳的容置空间,该容置空间用于设置发光芯片104。
激光器10中的多类发光芯片104可以与多种颜色一一对应,每类发光芯片104用于发出对应颜色的激光。每类发光芯片104中的多个发光芯片104可以均串联,且串联的该多个发光芯片104的两端可以分别与一个正极引脚和一个负极引脚连接。该多类发光芯片104中存在至少两类发光芯片104连接同一导电引脚103,如该至少两类发光芯片104可以连接同一正极引脚,或者也可以连接同一负极引脚。需要说明的是,不同类的发光芯片所需的电流不同,故该至少两类发光芯片104连接的该同一导电引脚之外的另一导电引脚不同。
本申请实施例中,每类发光芯片中的多个发光芯片可以串联,如此仅需一个开关便可以控制该多个发光芯片的通断。且该多个发光芯片的串联电路中各处的电流相等,故对输入电流的要求较低,较容易达到各个发光芯片的阈值电流,便于发光芯片的发光。
需要说明的是,侧壁102的开孔K的密封效果对激光器的可靠性至关重要,侧壁102上的开孔K越多越难保证各个开孔均具有较好的密封效果,存在密封效果较差的开孔的可能性越大。相关技术中,激光器中的每类发光芯片排布成至少一行,每行发光芯片均与一个正极引脚和一个负极引脚连接,且不同行发光芯片连接的正极引脚和负极引脚均不同。由于每个导电引脚均需通过一个开孔固定于激光器的侧壁,如此侧壁具有的开孔的数量至少为发光芯片的种类数的两倍。而本申请实施例中,激光器中存在至少两类发光芯片连接同一导电引脚,如此侧壁上可以具有较少的开孔,较容易保证该较少的开孔均具有较好的密封效果,降低了侧壁中存在密封效果较差的开孔的可能性,进而可以提高激光器的可靠性。
综上所述,本申请实施例提供的激光器中,每类发光芯片中的多个发光芯片串联,且两端分别连接正极引脚和负极引脚,存在至少两类发光芯片连接同一导电引脚。如此激光器仅通过较少的导电引脚即可实现其中多类发光芯片的正常发光,激光器的侧壁上可以设置较少的开孔,进而可以降低激光器中出现开孔的密封效果较差的情况的风险,提高了激光器的可靠性。
需要说明的是,导电引脚103的一部分穿过对应的开孔K伸入侧壁102的内侧,被侧壁102包围,另一部分位于侧壁102的外侧。位于侧壁102的外侧的部分可以与外部电源的正极或负极连接,位于侧壁102的内侧的部分可以通过导线与相应的发光芯片104的电极连接,如此实现外部电源通过导电引脚103向发光芯片104传输电流。
可选地,激光器10还可以包括多个环状密封绝缘子105,该环状密封绝缘子105用于将导电引脚103固定在侧壁102上对应的开孔K所在位置。示例地,每个导电引脚103上均可以套有一个环状密封绝缘子105,进而才穿入开孔K。在导电引脚103位于开孔K中时,该环状密封绝缘子105位于导电引脚103与开孔K的侧壁之间。在将套有环状密封绝缘子105的导电引脚103穿入开孔K之后,可以对该环状密封绝缘子105进行加热,如加热到800~900摄氏度,使环状密封绝缘子105熔融,进而填充导电引脚103与开孔K的侧壁之间的缝隙。熔融后的环状密封绝缘子105作为密封粘合剂,粘合导电引脚103与该开孔K的侧壁,以将导电引脚103与侧壁102固定。之后使环状密封绝缘子105冷却固化。可选地,环状密封绝缘子105的材质可以包括玻璃。
需要说明的是,侧壁的开孔中的环状密封绝缘子在固化后存在脱落的风险。若环状密封绝缘子脱落则该开孔处无法密封,该开孔处的导电引脚也较难与侧壁固定,可能导致导电引脚与发光芯片之间的电路连接发生故障,如导致导电引脚与发光芯片之间的导线折断,激光器的可靠性较低。激光器中侧壁上开孔的数量越多,越难保证各个开孔处的环状密封绝缘子均设置完好,故越难保证激光器的可靠性。本申请实施例中,减少了侧壁上开孔的数量,如此可以降低开孔处的环状密封绝缘子脱落的情况出现的可能性,进而可以提高激光器的可靠性。
不同类发光芯片连接同一导电引脚也称为该不同类发光芯片共用该同一导电引脚,下面对激光器中的多类发光芯片对导电引脚的共用方式进行介绍:
本申请实施例中,激光器中连接同一导电引脚的至少两类发光芯片104,可以为激光器中的全部发光芯片104,或者也可以为部分发光芯片104。如激光器中该多类发光芯片104的类数可以为n,其中可以存在m类发光芯片104连接同一导电引脚103,2≤m≤n。
在一可选实施中,n类发光芯片中仅存在一组m类发光芯片共用同一导电引脚,m等于2至n中的任一值,n为大于或等于2的任一值。例如,m=n,激光器中的n类发光芯片可以均共用同一正极引脚。如激光器中导电引脚的个数为n+1,该n+1个导电引脚包括一个正极引脚和n个负极引脚,该n类发光芯片均连接该正极引脚,且分别连接该n个负极引脚。或者,激光器中的n类发光芯片可以均共用同一负极引脚。如该n+1个导电引脚包括一个负极引脚和n个正极引脚,该n类发光芯片均连接该负极引脚,且分别连接该n个正极引脚。图2以m=n=3,也即激光器包括3类发光芯片和4个导电引脚为例进行示意。可选地,n也可以为2、4、5或者其他值,本申请实施例不做限定。
又例如,m<n,激光器中导电引脚的个数为m+1+2*(n-m)=2n-m+1。如激光器中的导电引脚包括n-m+1个正极引脚和n个负极引脚,该m类发光芯片可以均连接同一正极引 脚,且分别连接m个负极引脚。或者,激光器中的导电引脚包括n个正极引脚和n-m+1个负极引脚,该m类发光芯片可以分别连接m个正极引脚,且均连接同一负极引脚。剩余的n-m类发光芯片中每类发光芯片均连接对应的正极引脚与负极引脚,且不与其他类发光芯片共用导电引脚。示例地,n=3,m=2,激光器包括3类发光芯片和5个导电引脚,该3类发光芯片中存在两类发光芯片连接同一导电引脚,剩余一类发光芯片不与其他类发光芯片共用导电引脚。可选地,n也可以为4、5或者其他值,本申请实施例不做限定。
在另一可选实施中,m≤n/2,n为大于或等于4的任一值。n类发光芯片中可以存在共用导电引脚的至少两组发光芯片,其中每组发光芯片包括至少两类发光芯片,每组发光芯片中的发光芯片共用一个导电引脚。在第一种可选方式中,每类发光芯片仅连接的正极引脚或负极引脚与其他类发光芯片共用。在第二种可选方式中,还可以存在至少一类发光芯片(如目标类发光芯片)连接的正极引脚和负极引脚均与其他类发光芯片共用,且与目标类发光芯片共用正极引脚的发光芯片不同于与目标类发光芯片共用负极引脚的发光芯片。
假设,n=4,该n类发光芯片包括第一类发光芯片、第二类发光芯片、第三类发光芯片和第四类发光芯片;m=2,该n类发光芯片中存在两类发光芯片共用同一导电引脚。示例地,对于上述第一种可选方式,该n类发光芯片可以分为两组发光芯片,其中第一类发光芯片和第二类发光芯片为一组发光芯片,第三类发光芯片和第四类发光芯片为另一组发光芯片。激光器中的导电引脚的个数可以为6,包括两个正极引脚和四个负极引脚。第一类发光芯片和第二类发光芯片可以共用一个正极引脚,第三类发光芯片和第四类发光芯片可以共用另一个正极引脚,且该四类发光芯片可以分别连接该四个负极引脚。或者,该六个导电引脚包括两个负极引脚和四个正极引脚,第一类发光芯片和第二类发光芯片共用一个负极引脚,第三类发光芯片和第四类发光芯片共用另一个负极引脚,且该四类发光芯片分别连接该四个正极引脚。
又示例地,对于上述第二种可选方式,该n类发光芯片可以分为四组发光芯片,其中第一类发光芯片和第二类发光芯片组成一组发光芯片,第三类发光芯片和第四类发光芯片组成一组发光芯片,第一类发光芯片和第三类发光芯片也组成一组发光芯片,第二类发光芯片和第四类发光芯片也组成一组发光芯片。激光器中的导电引脚的个数可以为4,包括第一正极引脚、第二正极引脚、第一负极引脚和第二负极引脚。第一类发光芯片和第二类发光芯片可以共用第一正极引脚,第三类发光芯片和第四类发光芯片可以共用第二正极引脚,第一类发光芯片和第三类发光芯片可以共用第一负极引脚,第二类发光芯片和第四类发光芯片可以共用第二负极引脚。
需要说明的是,本申请实施例中用于发出不同颜色的激光的发光芯片可以共用同一导 电引脚,如此一来,激光器的管壳中可以设置更多类型的发光芯片,提高了激光器的发光效果。采用导电引脚较少的管壳还可制备包括多类发光芯片的激光器,提高了管壳的通用性。并且,导电引脚较少的管壳的体积也较小,如此还可以在实现激光器发出多种颜色的激光的基础上,实现激光器的小型化。
下面结合附图对激光器中导电引脚的设置进行介绍:
可选地,本申请实施例中激光器中的多个导电引脚的数量可以为偶数,该多个导电引脚固定于侧壁上相对的两侧,且该两侧上固定的导电引脚的数量相同。示例地,请继续参考图2和图3,激光器中的多个导电引脚103可以包括:第一引脚103a、第二引脚103b、第三引脚103c和第四引脚103d,第一引脚103a与第二引脚103b可以均固定于侧壁102的目标侧,第三引脚103c与第四引脚103d可以均固定于侧壁102中目标侧的对侧。需要说明的是,激光器中导电引脚的数量也可以为奇数,激光器中的各个导电引脚也可以均固定于侧壁上的同一侧,或者也可以固定于侧壁的相邻侧;在导电引脚固定于侧壁的不同侧时,该不同侧上固定的导电引脚的数量也可以不同,本申请实施例对此不做限定。
可选地,请继续参考图2,激光器中的发光芯片104可以阵列排布,发光芯片104可以沿其列方向出光。侧壁102中设置导电引脚103的目标侧及其对侧,可以分别为侧壁102在发光芯片104的行方向上相对的两侧。可选地,本申请实施例中以激光器包括四个导电引脚103为例;该四个导电引脚103中第一引脚103a可以连接第一极性的电极,第二引脚103b、第三引脚103c和第四引脚103d可以均连接第二极性的电极。该第一极性可以为正极,第二极性可以为负极;或者第一极性为负极,第二极性为正极,本申请实施例不做限定。可选地,激光器10中导电引脚103的个数也可以为5、6、7、8或者其他个数。
下面对激光器中的多类发光芯片进行介绍:
激光器中的各类发光芯片中的每类发光芯片可以发出一种颜色的激光,不同类发光芯片发出的激光的颜色不同。示例地,请继续参考图2,该多类发光芯片的类数为3,该多类发光芯片可以包括:发出的激光的波长依次递减的第一类发光芯片104a、第二类发光芯片104b和第三类发光芯片104c。可选地,该第一类发光芯片104a用于发出红色激光,该第二类发光芯片104b用于发出绿色激光,该第三类发光芯片104c用于发出蓝色激光。可选地,该多类发光芯片的类数也可以为4、5甚至更多。如激光器还可以包括用于发出其他颜色的激光的发光芯片,如用于发出紫色激光的发光芯片,用于发出黄色激光的发光芯片。
激光器中的各类发光芯片在底板上的设置位置可以与发光芯片本身的散热性能相关。示例地,发光芯片的散热性能与发光芯片发出的激光的波长相关,发出较短波长的激光的 发光芯片可以具有较好的散热性能。发光芯片与底板的中间区域的距离可以正相关于该发光芯片发出的激光的波长。由于底板的中间区域相对于边缘区域的散热效果较差,故可以将本身的散热性能较好的发光芯片靠近底板的中间区域设置,以通过发光芯片的散热性能对底板的散热效果进行一定地弥补;这样可以保证各类发光芯片在工作时的散热效果较为均衡,保证激光器的可靠性较高。
示例地,请继续参考图2,激光器中的第一类发光芯片104a、第二类发光芯片104b和第三类发光芯片104c可以排布成两行多列,行方向可以为x方向,列方向可以为y方向。其中一行发光芯片(如第二行发光芯片)包括第一类发光芯片104a,另一行发光芯片(如第一行发光芯片)包括第二类发光芯片104b和第三类发光芯片104c。由于第三类发光芯片104c发出的激光的波长小于第二类发光芯片104b发出的激光的波长,该第三类发光芯片104c的散热性能较好,故可以将第三类发光芯片104c设置于相对第二类发光芯片104b更靠近底板101的中间区域的位置。如可以在第一行发光芯片中使第二类发光芯片104b分布在第三类发光芯片104c的两侧。
可选地,激光器中每类发光芯片中的多个发光芯片可以围成环形,且可以均包围底板的中间区域,如各类发光芯片围成的多个环可以呈同心环。越靠近该中间区域的环由发出的激光的波长越短的发光芯片围成。如每类发光芯片中的多个发光芯片可以围绕底板的中间区域呈圆周分布,也即每类发光芯片中的多个发光芯片围成圆环状。可选地,每类发光芯片中的多个发光芯片也可以围成方环状,或者其他形状的环状,本申请实施例不做限定。
需要说明的是,相关技术中每类发光芯片均排成至少一行,并未考虑发光芯片本身的散热性能与激光器中不同位置的散热效果的关系。相关技术中散热性能较差的发光芯片也会设置在激光器中散热效果较差的位置,导致该发光芯片的热量聚集较为显著,该发光芯片在发光时产生的热量较难散发;进而会导致发光芯片的阈值电流会发生变化,发光芯片发光效率较低,且发光芯片较易在该热量的作用下损坏。而本申请实施例中,基于发光芯片本身的散热性能以及激光器中不同位置的散热效果,来确定发光芯片的设置位置,如此可以保证各个发光芯片的散热效果均较好,避免散热性能较差的发光芯片的热量聚集,提高了发光芯片的发光效率,降低了发光芯片的损坏风险。
可选地,本申请实施例中第一类发光芯片104a的数量可以等于第二类发光芯片104b与第三类发光芯片104c的数量之和,第二类发光芯片104b的数量可以多于第三类发光芯片104c的数量。可选地,第二类发光芯片104b的数量也可以等于第三类发光芯片104c的数量,第一类发光芯片104a的数量也可以不等于第二类发光芯片104b与第三类发光芯片104c的数量之和。激光器中各类发光芯片的数量可以依据所需得到的激光中各种颜色的 配比来确定,本申请实施例对各类发光芯片的数量以及数量关系不做限定。
可选地,激光器10还可以包括多个热沉106和多个反射棱镜107。激光器中的每个发光芯片104可以对应一个热沉106和一个反射棱镜107。热沉106可以固定在底板101上,发光芯片104固定在热沉106上以固定于底板101,反射棱镜107位于对应的发光芯片104的出光侧。发光芯片104可以向对应的反射棱镜107发出激光,反射棱镜107可以将射入的激光朝远离底板101的方向(如z方向)出射,进而实现激光器10的发光。
可选地,热沉106包括散热基板和位于散热基板上的导电层,发光芯片可以固定在热沉106的导电层上。可选地,热沉106还可以包括设置在导电层上的焊料层,该焊料层用于在熔化时焊接发光芯片。需要说明的是,本申请实施例未示出热沉106的具体结构。可选地,热沉中散热基板的材质可以包括陶瓷或铜,导电层的材质可以包括金。在热沉的散热基板的材质为导电材质时,该热沉中散热基板与导电层之间还设置有绝缘层,以避免发光芯片与该散热基板导通导致电流无法传输至发光芯片的情况。
下面对激光器中各类发光芯片的串联方式以及发光芯片与导电引脚的连接方式进行介绍:
发光芯片104包括第一电极和第二电极,以及位于第一电极和第二电极之间的发光结构。该第一电极和第二电极用于分别与电源的正极和负极连接,以将电流传输至发光结构,激发发光结构发出激光,如此实现发光芯片104的发光。本申请实施例中未对发光芯片中的第一电极、发光结构以及第二电极进行示意。示例地,热沉106中远离底板101的表面为导电表面,该表面也即是用于设置发光芯片104的表面。发光芯片104固定在热沉106上之后,其第一电极可以与热沉106的导电表面电连接,进而可以通过该导电表面与电源的电极(如正极或负极)电连接。如可以将与电源的电极连接的导线连接至该导电表面即可,该导线无需与发光芯片104的第一电极直接接触。可选地,也可以直接将热沉的导电表面作为发光芯片的第一电极,而无需在发光芯片中还设置额外的导电膜层作为第一电极。
本申请实施例中,激光器中的每类发光芯片中的多个发光芯片可以串联,且串联的该多个发光芯片的两端分别连接一个正极引脚和一个负极引脚。示例地,多个发光芯片中第一个发光芯片的第一电极与正极引脚连接,该多个发光芯片中前一个发光芯片的第二电极与后一个发光芯片的第一电极连接,最后一个发光芯片的第二电极与负极引脚连接,如此实现该多个发光芯片的串联。可选地,每类发光芯片中串联的该多个发光芯片可以为该类发光芯片中的全部发光芯片,或者也可以仅为该类发光芯片中的部分发光芯片。示例地,激光器中共设置有10个第一类发光芯片,该10个发光芯片可以全部串联,或者该10个发光芯片中的5个发光芯片串联,另外5个发光芯片串联。
可选地,激光器中的部件可以通过导线连接,该导线可以为金线。示例地,可以采用打线工艺在需连接的两个部件之间设置导线,使导线的两端分别连接该两个部件。如可以通过切刀把导线压到该待连接物的表面金属层(如金层)上,并施加压力,同时加热焊盘,使导线与该金层的接触区变软,导线的分子扩散至其接触的材料,实现焊接的目的。示例地,可以采用导线连接一个发光芯片的第一电极与另一个发光芯片的第二电极。需要说明的是,导线的可靠性与其长度负相关,导线的长度越长其强度越弱,故需通过同一导线连接的两个部件之间的距离需小于或等于距离阈值,以保证连接该两个部件的导线的强度较高,保证该两个部件的连接可靠性。示例地,通过同一导线连接的任意两个部件之间的距离小于或等于3毫米,也即该距离阈值为3毫米。如该两个部件之间的距离范围可以为2毫米~3毫米。
本申请实施例中,激光器中的至少两类发光芯片共用同一导电引脚,该至少两类发光芯片均需与该同一导电引脚连接,较难保证每类发光芯片与连接的两个导电引脚均规律排布。如较难保证每类发光芯片连接的两个导电引脚均位于该每类发光芯片的两侧,且较难保证激光器中的每类发光芯片与连接的两个导电引脚排布在同一方向上。本申请实施例中,激光器中的发光芯片无序排布,存在需连接的两个发光芯片距离较远,或者发光芯片与其需连接的导电引脚距离较远,因此较难仅通过导线实现各类发光芯片的串联且与对应的导电引脚的连接。本申请实施例中,可以通过转接导线的方式,实现发光芯片之间以及发光芯片与导电引脚之间的连接,下面对其中的两种可选连接方式进行介绍。
在一种可选连接方式中,请继续参考图2,激光器10还包括固定于底板101上的多个转接台108。激光器10中的每类发光芯片均可以通过转接台108,串联并连接对应的正极引脚和负极引脚。在需要连接的两个部件之间无法通过导线直接连接时,可以在该两个部件之间设置转接台,以使导线通过连接转接台进而连接该两个部件。如在导线无法直接连接两个发光芯片的电极时,可以在该两个发光芯片之间设置转接台。在导线无法直接连接串联的多个发光芯片中最靠边的发光芯片与导电引脚时,可以在该发光芯片与导电引脚之间设置转接台。两个部件之间设置的转接台的数量可以依据该两个部件之间的距离,以及设置的导线的布置方式来确定。
示例地,对于图2所示的发光芯片104的排布方式以及导电引脚103的设置方式,激光器10中的多个转接台108可以包括:多个第一转接台108a、多个第二转接台108b和多个第三转接台108c。该多个第一转接台108a可以沿发光芯片104的行方向(如x方向)排成一行或大致排成一行,且位于激光器10中的该两行发光芯片104之间。该多个第二转接台108b可以位于第一行发光芯片104远离第二行发光芯片104的一侧,可选地,在x 方向上第二类发光芯片104a分布于多个第二转接台108b的两侧。该多个第三转接台108c位于第一行发光芯片104与该多个第一转接台108a之间。第一类发光芯片104a可以通过该多个第一转接台108a串联并连接第一引脚103a与第二引脚103b,第二类发光芯片104b通过多个第二转接台108b串联并连接第一引脚103a与第三引脚103c,第三类发光芯片104c通过多个第三转接台108c串联并连接第一引脚104a与第四引脚104d。
例如,排成一行的该多个第一类发光芯片104a可以沿x方向依次连接,排成一行该多个第一转接台108a可以沿x方向依次连接。最远离侧壁102的目标侧的第一类发光芯片104a可以与远离目标侧的第一转接台108a连接,最靠近目标侧的第一类发光芯片104a可以连接第一引脚103a,最靠近目标侧的第一转接台108a可以连接第二引脚103b。第二类发光芯片104b与该多个第二转接台108b可以沿着x方向依次连接,最靠近目标侧的第二类发光芯片104b可以连接第一引脚108a,最远离目标侧的第二类发光芯片104b可以连接第三引脚108c。该多个第三转接台108c可以位于第三类发光芯片104c的两侧,第三类发光芯片104c与多个第三转接台108c可以沿着x方向依次连接,第三类发光芯片104c与多个第三转接台108c中最靠近目标侧的部件可以与距其最近的第一转接台108a连接,远离目标侧的第三转接台108c可以与第四引脚103d连接。
可选地,第三转接台还可以位于第二类发光芯片104b与第三类发光芯片104c之间,本申请实施例对此种方式并未示意。第三类发光芯片104c还可以通过第三转接台之外的其他转接台连接导电引脚。可选地,激光器10中还可以包括设置在导电引脚与距其最近的发光芯片之间的转接台,以通过该转接台连接该导电引脚与该发光芯片。可选地,转接台108可以包括:转接台主体和位于该转接台主体远离底板101的一侧的导电层。转接台主体的材质可以为绝缘材质,如陶瓷,或者也可以为氮化铝或氧化铝;该导电层的材质可以为金或者其他金属。上述转接台与发光芯片之间,转接台与导电引脚之间,发光芯片与发光芯片之间,发光芯片与导电引脚之间均可以通过打线技术实现连接,具体可以参考上述关于打线的相关介绍,本申请实施例不再赘述。
可选地,转接台108可以呈长方体状、正方体状、圆柱状、椭圆柱状、棱柱状或者其他柱形。相应地,转接台108远离底板的表面可以呈长方形、正方形、圆形、椭圆形、矩形或者其他多边形。该表面的尺寸可以基于导线的设置需求进行相应设计,本申请实施例不做限定。
在另一种可选连接方式中,图4是本申请实施例提供的再一种激光器的结构示意图,图3也可以为图4所示的激光器中截面a-a’的示意图。如图4所示,可以用热沉代替部分转接台,通过转接台和热沉来实现激光器中的各类发光芯片的串联以及与导电引脚的连接。 此种可选连接方式中,转接台108可以位于发光芯片104与导电引脚103之间,且转接台108的数量少于数量阈值,图4以激光器10仅包括三个转接台108为例。
热沉106可以具有多个导电区,如热沉106中的导电层可以划分为多个导电区,该多个导电区中相邻的导电区之间绝缘。如该多个导电区可以沿发光芯片104的出光方向(如y方向)依次排布。该多个导电区中的一个导电区用于设置对应的发光芯片104,且与该发光芯片104电连接,如该导电区可以与发光芯片104的第一电极连接,或者作为发光芯片104的第一电极。该多个导电区中的其他导电区起到转接台的作用,用于进行电路的转接。激光器10中的每类发光芯片可以通过转接台108以及各个热沉106具有的导电区,串联并连接对应的正极引脚与负极引脚。
示例地,图4中发光芯片104的排布方式以及导电引脚103的设置方式与图2相同,可以参照前述的相关介绍,本申请实施例不再赘述。如图4所示,第一类发光芯片104a对应的热沉106具有沿y方向依次排布的第一导电区Q1和第二导电区Q2,该第一导电区Q1用于设置发光芯片104。第二类发光芯片104b与第三类发光芯片104c对应的热沉106均具有沿y方向依次排布的第三导电区Q3、第四导电区Q4和第五导电区Q5,该第三导电区Q3用于设置发光芯片104。第一类发光芯片104a通过第一导电区Q1串联,串联后的第一类发光芯片104a通过第二导电区Q2和转接台108连接第一引脚103a与第二引脚103b。第二类发光芯片104b通过第三导电区Q3和目标导电区串联,目标导电区为第四导电区Q4与第五导电区Q5中的任一导电区。串联后的第二类发光芯片104b通过转接台108连接第一引脚103a与第三引脚103c。第三类发光芯片104c通过第三导电区Q3串联,串联后的第三类发光芯片104c通过辅助导电区和转接台108连接第一引脚103a与第四引脚103d,辅助导电区为第四导电区Q4与第五导电区Q5中任一导电区之外的导电区。图4以目标导电区为第五导电区Q5,辅助导电区为第四导电区Q4为例。
例如,排成一行的该多个第一类发光芯片104a可以沿x方向依次连接,第一类发光芯片104a对应的各个热沉106中的第二导电区Q2可以沿x方向依次连接。最远离侧壁102的目标侧的热沉106的第一导电区Q1与第二导电区Q2连接,最靠近目标侧的第一类发光芯片104a通过转接台108连接第一引脚103a,最靠近目标侧的热沉106中的第二导电区Q2通过转接台108连接第二引脚103b。第二类发光芯片104b与热沉106的第五导电区Q5可以沿着x方向依次连接,最靠近目标侧的第二类发光芯片104b可以连接第一引脚108a,最远离目标侧的第二类发光芯片104b可以通过转接台108连接第三引脚108c。第三类发光芯片104c与热沉106的第四导电区Q4可以沿着x方向依次连接,最靠近目标侧的热沉106的第四导电区Q4可以与第一引脚103a连接,远离目标侧的热沉106的第四导电区Q4 可以与第四引脚103d连接。
热沉106中相邻的导电区之间可以设置有绝缘材料。可选地,热沉106划分为多个导电区时,该多个导电区的厚度可以不同。热沉106中用于设置发光芯片的导电区的厚度可以大于其他导电区的厚度,如此可以降低热沉的制备成本。示例地,热沉中用于设置发光芯片的导电区的厚度可以为0.5微米,其他导电区的厚度可以为0.25微米。如图4中热沉106的第一导电区Q1和第三导电区Q3的厚度可以为0.5微米,第二导电区Q2、第四导电区Q4和第五导电区Q5的厚度均可以为0.25微米。可选地,用于设置发光芯片的导电区上还需设置有焊料层,而其他导电区上无需设置焊料层。
需要说明的是,本申请实施例仅以图2与图4两种线路连接方式为例进行示意,实际实施时可以也可以发光芯片的具体排布,以及基于布线需求,对转接台的设置位置以及线路连接方式进行相应地调整,本申请实施例不做限定。对于上述将热沉设置多个导电区,以代替转接台进行电路转接的方式,仅需对热沉进行适当的延长即可,无需单独设置转接台。由于热沉占用的空间较小,故有利于激光器的小型化。且可以仅在底板上粘贴热沉即可,无需增加在底板上粘贴转接台的工序,可以简化激光器的制备过程。
图5是本申请实施例提供的又一种激光器的结构示意图。如图5所示,在图3的基础上,激光器10还可以包括环状的密封盖板109、透光密封层110以及准直镜组111。该密封盖板109的外边缘可以与侧壁102远离底板101的表面固定,该密封盖板109的内边缘远离底板101的一侧与透光密封层110固定,透光密封层110覆盖密封盖板109的开口。准直镜组111位于密封盖板109远离底板101的一侧,准直镜组111可以包括多个准直透镜T,该多个准直透镜T与该多个发光芯片103一一对应。每个发光芯片104可以向对应的反射棱镜107发出激光,该激光在反射棱镜107上反射后穿过透光密封层110射向对应的准直透镜T,该准直透镜T将射入的激光进行准直后射出,进而完成激光器的发光。
需要说明的是,密封盖板和透光密封层组成的结构可以称为上盖组件,上盖组件用于封住管壳的开口,以使管壳的容置空间为一个密闭空间。发光芯片位于该密闭空间中可以防止外部的水氧对该发光芯片的侵蚀,进而可以延长发光芯片的使用寿命,保证发光芯片的发光效果。本申请实施例中管壳的侧壁上的开孔较少,也可以降低侧壁上的开孔出现密封效果较差的情况的风险,进一步保证激光器的容置空间的密封效果较好。
可选地,本申请实施例中管壳的材质可以为铜,如无氧铜,该透光密封层的材质可以为玻璃,该密封盖板的材质可以为不锈钢。需要说明的是,铜的导热系数较大,本申请实施例中管壳的材质为铜,如此可以保证管壳的底板上设置的发光芯片在工作时产生的热量可以快速地通过管壳进行传导,进而较快地散发,避免热量聚集对发光芯片的损伤。可选 地,管壳的材质也可以为铝、氮化铝和碳化硅中的一种或多种。本申请实施例中密封盖板的材质也可以为其他可伐材料,如铁镍钴合金或其他合金。透光密封层的材质也可以为其他透光且可靠性较强的材质,如树脂材料等。
可选地,本申请实施例中在组装激光器时,可以先将各个环状密封绝缘子套在各个导电引脚上,之后将套有环状密封绝缘子的导电引脚穿入侧壁的开孔,且使环状密封绝缘子位于该开孔中。之后将侧壁放置在底板上,且在侧壁和底板之间放置环状的焊料(如银铜焊料),接着将该底板、侧壁和导电引脚的结构放入高温炉中进行密封烧结,待密封烧结并固化后底板、侧壁、导电引脚以及焊料即可为一个整体(也即底座组件),且实现了侧壁的开孔处的气密。还可以通过密封材料将透光密封层与密封盖板进行固定,得到上盖组件。接着可以将热沉、发光芯片以及反射棱镜焊接在底板上的对应位置,继而采用平行封焊技术将上盖组件焊接在侧壁远离底板的表面上。最后对准直镜组的位置进行对准后,将准直镜组通过环氧胶固定在上盖组件远离底板的一侧,至此完成激光器的组装。需要说明的是,上述组装过程仅为本申请实施例提供的一种示例性的过程,其中的各个步骤中采用的焊接工艺也可以采用其他工艺代替,各个步骤的先后顺序也可以适应调整,本申请实施例对此不做限定。
需要说明的是,本申请以上实施例均以管壳的底板与侧壁为需要组装的两个单独的结构为例进行说明。可选地,底板与侧壁也可以一体成型。如此可以避免底板与侧壁在高温焊接时由于底板与侧壁的热膨胀系数不同导致的底板产生褶皱,进而可以保证底板的平坦度,保证发光芯片在底板上的设置可靠性,且保证发光芯片发出的光线按照预定的发光角度出射,提高激光器的发光效果。
综上所述,本申请实施例提供的激光器中,每类发光芯片中的多个发光芯片串联,且两端分别连接正极引脚和负极引脚,存在至少两类发光芯片连接同一导电引脚。如此激光器仅通过较少的导电引脚即可实现其中多类发光芯片的正常发光,激光器的侧壁上可以设置较少的开孔,进而可以降低激光器中出现开孔的密封效果较差的情况的风险,提高了激光器的可靠性。
需要指出的是,在本申请实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”指的是一个或多个。术语“多个”指两个或两个以上,除非另有明确的限定。“大致”和“近似”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所需解决的技术问题,基本达到所需达到的技术效果。在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称 为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。通篇相似的参考标记指示相似的元件。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种激光器,其特征在于,所述激光器包括:底板、环状的侧壁、多个导电引脚和多类发光芯片,每类发光芯片均包括多个发光芯片;
    所述侧壁与所述多类发光芯片均固定于所述底板上,且所述侧壁包围所述多类发光芯片;所述侧壁上具有多个开孔,每个所述导电引脚穿过一个所述开孔与所述侧壁固定;所述多个导电引脚包括至少一个正极引脚和至少一个负极引脚;
    所述多类发光芯片与多种颜色一一对应,每类发光芯片用于发出对应颜色的激光;所述每类发光芯片中的多个发光芯片串联,且串联的所述多个发光芯片的两端分别与一个所述正极引脚和一个所述负极引脚连接;所述多类发光芯片中存在至少两类发光芯片连接同一所述导电引脚。
  2. 根据权利要求1所述的激光器,其特征在于,所述多类发光芯片的类数为n,所述多个导电引脚的个数为n+1,n≥2;
    所述多个导电引脚包括1个所述正极引脚和n个所述负极引脚,所述多类发光芯片均连接所述正极引脚,且分别连接n个所述负极引脚;
    或者,所述多个导电引脚包括n个所述正极引脚和1个所述负极引脚,所述多类发光芯片均连接所述负极引脚,且分别连接n个所述正极引脚。
  3. 根据权利要求2所述的激光器,其特征在于,n=3。
  4. 根据权利要求1所述的激光器,其特征在于,所述激光器中发光芯片与所述底板的中间区域的距离,正相关于所述发光芯片发出的激光的波长。
  5. 根据权利要求4所述的激光器,其特征在于,所述多类发光芯片包括:发出的激光的波长依次递减的第一类发光芯片、第二类发光芯片和第三类发光芯片;
    所述多类发光芯片排布成两行多列,其中一行发光芯片包括所述第一类发光芯片,另一行发光芯片包括所述第二类发光芯片与所述第三类发光芯片,且所述第二类发光芯片分布于所述第三类发光芯片的两侧。
  6. 根据权利要求1至5任一所述的激光器,其特征在于,所述激光器还包括固定于所述底板上的多个转接台;
    所述每类发光芯片中的各个发光芯片通过所述转接台,串联并连接所述正极引脚和所述负极引脚。
  7. 根据权利要求6所述的激光器,其特征在于,所述多个转接台位于所述导电引脚与所述多类发光芯片之间;所述激光器还包括:固定于所述底板上的多个热沉,所述多个热沉与所述激光器中的各个发光芯片一一对应,每个所述发光芯片通过固定于对应的所述热沉以固定于所述底板;
    所述热沉具有多个导电区,所述多个导电区中相邻的导电区之间绝缘;所述多个导电区中一个导电区用于设置对应的所述发光芯片,且与所述发光芯片电连接,其他导电区用于进行电路的转接;所述每类发光芯片中的各个发光芯片通过所述转接台以及所述多个热沉具有的导电区,串联并连接所述正极引脚与所述负极引脚。
  8. 根据权利要求6所述的激光器,其特征在于,所述多类发光芯片排布成两行多列,其中一行发光芯片包括第一类发光芯片,另一行发光芯片包括第二类发光芯片与第三类发光芯片,且所述第二类发光芯片分布于所述第三类发光芯片的两侧;
    所述多个导电引脚包括:连接第一极性的电极的第一引脚,以及连接第二极性的电极的第二引脚、第三引脚和第四引脚;所述第一引脚与所述第二引脚均固定于所述侧壁的目标侧,所述第三引脚与所述第四引脚均固定于所述侧壁中所述目标侧的对侧;所述目标侧与所述对侧分别为所述侧壁在所述发光芯片的行方向上相对的两侧;
    所述多个转接台包括:多个第一转接台、多个第二转接台和多个第三转接台;所述多个第一转接台沿所述行方向排成一行,且位于所述一行发光芯片与所述另一行发光芯片之间;所述多个第二转接台位于所述另一行发光芯片远离所述一行发光芯片的一侧,且在所述行方向上所述第二类发光芯片分布于所述多个第二转接台的两侧;所述多个第三转接台位于所述另一行发光芯片与所述多个第一转接台之间;
    所述第一类发光芯片通过所述多个第一转接台串联并连接所述第一引脚与所述第二引脚,所述第二类发光芯片通过所述多个第二转接台串联并连接所述第一引脚与所述第三引脚,所述第三类发光芯片通过所述多个第三转接台串联并连接所述第一引脚与所述第四引脚。
  9. 根据权利要求7所述的激光器,其特征在于,所述多类发光芯片排布成两行多列,其中一行发光芯片包括第一类发光芯片,另一行发光芯片包括第二类发光芯片与第三类发光芯片,且所述第二类发光芯片分布于所述第三类发光芯片的两侧;
    所述多个导电引脚包括:连接第一极性的电极的第一引脚,以及连接第二极性的电极的第二引脚、第三引脚和第四引脚;所述第一引脚与所述第二引脚均固定于所述侧壁的目标侧,所述第三引脚与所述第四引脚均固定于所述侧壁中所述目标侧的对侧;所述目标侧与所述对侧分别为所述侧壁在所述发光芯片的行方向上相对的两侧;
    所述第一类发光芯片对应的热沉具有沿所述发光芯片的列方向依次排布的第一导电区和第二导电区,所述第一导电区用于设置发光芯片;所述第二类发光芯片与所述第三类发光芯片对应的热沉均具有沿所述列方向依次排布的第三导电区、第四导电区和第五导电区,所述第三导电区用于设置发光芯片;
    所述第一类发光芯片通过所述第一导电区串联,串联后的所述第一类发光芯片通过所述第二导电区和所述转接台连接所述第一引脚与所述第二引脚;所述第二类发光芯片通过所述第三导电区和目标导电区串联,所述目标导电区为所述第四导电区与所述第五导电区中的任一导电区;串联后的所述第二类发光芯片通过所述转接台连接所述第一引脚与所述第三引脚;所述第三类发光芯片通过所述第三导电区串联,串联后的所述第三类发光芯片通过辅助导电区和所述转接台连接所述第一引脚与所述第四引脚,所述辅助导电区为所述第四导电区与所述第五导电区中所述任一导电区之外的导电区。
  10. 根据权利要求1至5任一所述的激光器,其特征在于,所述激光器中不同的部件通过导线连接,通过同一导线连接的任意两个部件之间的距离小于或等于3毫米。
PCT/CN2022/082626 2021-06-09 2022-03-24 激光器 WO2022257548A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280040662.4A CN117461224A (zh) 2021-06-09 2022-03-24 激光器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110642663.3 2021-06-09
CN202110642663.3A CN113394654A (zh) 2021-06-09 2021-06-09 激光器

Publications (1)

Publication Number Publication Date
WO2022257548A1 true WO2022257548A1 (zh) 2022-12-15

Family

ID=77620050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082626 WO2022257548A1 (zh) 2021-06-09 2022-03-24 激光器

Country Status (2)

Country Link
CN (2) CN113394654A (zh)
WO (1) WO2022257548A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394654A (zh) * 2021-06-09 2021-09-14 青岛海信激光显示股份有限公司 激光器
WO2023109778A1 (zh) * 2021-12-13 2023-06-22 青岛海信激光显示股份有限公司 激光器及投影光源
WO2023124344A1 (zh) * 2021-12-31 2023-07-06 青岛海信激光显示股份有限公司 激光器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216274A1 (en) * 2006-03-17 2007-09-20 3M Innovative Properties Company Illumination assembly with enhanced thermal conductivity
US20080315408A1 (en) * 2007-06-20 2008-12-25 Samsung Electronics Co., Ltd. Semiconductor package, semiconductor package module including the semiconductor package, and methods of fabricating the same
JP2009210988A (ja) * 2008-03-06 2009-09-17 Canon Inc 画像投射装置
CN204190159U (zh) * 2014-10-09 2015-03-04 西安炬光科技有限公司 一种传导冷却型医疗用高功率半导体激光器系统
CN109461725A (zh) * 2018-11-20 2019-03-12 惠州市辉采实业有限公司 多色温led光源、灯及制备方法
CN209458836U (zh) * 2018-11-13 2019-10-01 中山市木林森电子有限公司 Led支架及高光通量的led光源
CN213341076U (zh) * 2020-11-25 2021-06-01 青岛海信激光显示股份有限公司 激光器
CN113394654A (zh) * 2021-06-09 2021-09-14 青岛海信激光显示股份有限公司 激光器
CN114094434A (zh) * 2021-12-13 2022-02-25 青岛海信激光显示股份有限公司 激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216274A1 (en) * 2006-03-17 2007-09-20 3M Innovative Properties Company Illumination assembly with enhanced thermal conductivity
US20080315408A1 (en) * 2007-06-20 2008-12-25 Samsung Electronics Co., Ltd. Semiconductor package, semiconductor package module including the semiconductor package, and methods of fabricating the same
JP2009210988A (ja) * 2008-03-06 2009-09-17 Canon Inc 画像投射装置
CN204190159U (zh) * 2014-10-09 2015-03-04 西安炬光科技有限公司 一种传导冷却型医疗用高功率半导体激光器系统
CN209458836U (zh) * 2018-11-13 2019-10-01 中山市木林森电子有限公司 Led支架及高光通量的led光源
CN109461725A (zh) * 2018-11-20 2019-03-12 惠州市辉采实业有限公司 多色温led光源、灯及制备方法
CN213341076U (zh) * 2020-11-25 2021-06-01 青岛海信激光显示股份有限公司 激光器
CN113394654A (zh) * 2021-06-09 2021-09-14 青岛海信激光显示股份有限公司 激光器
CN114094434A (zh) * 2021-12-13 2022-02-25 青岛海信激光显示股份有限公司 激光器

Also Published As

Publication number Publication date
CN113394654A (zh) 2021-09-14
CN117461224A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2022257548A1 (zh) 激光器
CN100472820C (zh) 发光器件
TWI434442B (zh) 發光二極體封裝
JP2005109282A (ja) 発光装置
CN113872042B (zh) 激光器
CN114094434A (zh) 激光器
CN213341076U (zh) 激光器
CN101476710B (zh) 发光器件及其制造方法
CN214069080U (zh) 激光器
CN114628987A (zh) 激光器及投影光源
CN219696912U (zh) 激光器
CN218770544U (zh) 激光器
CN218242550U (zh) 激光器及光源组件
CN216929163U (zh) 激光器
CN216773797U (zh) 激光器
JP2021044501A (ja) 発光装置
CN216872474U (zh) 一种激光器和激光投影设备
CN111180994A (zh) 一种ld发光装置及其制备方法
CN116073228A (zh) 激光器及激光器模组
CN216794229U (zh) 激光器
CN212062998U (zh) 一种半导体激光器阵列封装模组
CN114583546A (zh) 一种激光器和激光投影设备
CN114336265A (zh) 激光器
WO2024027769A1 (zh) 光源组件及激光显示设备
WO2022111335A1 (zh) 激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040662.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819153

Country of ref document: EP

Kind code of ref document: A1