WO2019061593A1 - 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法 - Google Patents

一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法 Download PDF

Info

Publication number
WO2019061593A1
WO2019061593A1 PCT/CN2017/107026 CN2017107026W WO2019061593A1 WO 2019061593 A1 WO2019061593 A1 WO 2019061593A1 CN 2017107026 W CN2017107026 W CN 2017107026W WO 2019061593 A1 WO2019061593 A1 WO 2019061593A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethoxyquinoline
molecular distillation
purity
distiller
extracting high
Prior art date
Application number
PCT/CN2017/107026
Other languages
English (en)
French (fr)
Inventor
陈捷
褚伟华
任云华
宋兴福
金艳
唐波
王春民
Original Assignee
泰兴瑞泰化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰兴瑞泰化工有限公司 filed Critical 泰兴瑞泰化工有限公司
Publication of WO2019061593A1 publication Critical patent/WO2019061593A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms

Definitions

  • the invention belongs to the separation and purification of materials in the chemical industry, and relates to a process for extracting high-purity ethoxyquinoline by multi-stage molecular distillation technology.
  • the crude product after purification is purified by distillation, and the purity of the final product can reach more than 95%.
  • 10,000 ppm of the raw material p-aminophenylethyl ether remains in the ethoxyquinoline product.
  • the content of p-aminophenylethyl ether in ethoxyquinoline used as a feed additive is strictly limited in the industry. As specified by the European Union, the content of p-aminophenylether in the antioxidant ethoxyquinoline should not exceed 40 ppm.
  • the object of the present invention is to provide a method for extracting high-purity ethoxyquinoline by multi-stage molecular distillation technology, which can reduce the content of p-aminophenylethyl ether in ethoxyquinoline to 40 ppm or less. .
  • a method for extracting high-purity ethoxyquinoline by multi-stage molecular distillation technology characterized in that: crude ethoxyquinoline is filtered to remove particulate matter, and the obtained filtrate is sent to a multi-stage molecular distillation device; The inner wall scrapes the film, evaporates and condenses, and the obtained light component is used as a raw material of the secondary distiller; and so on, the obtained light component is scraped through the inner wall of the secondary distiller, evaporated, and condensed, and the obtained heavy component is used as a tertiary distiller.
  • Raw material; obtained heavy component The film is scraped through the inner wall of the tertiary distiller, evaporated, condensed, and finally the resulting recombination is divided into qualified products.
  • the content of the impurity p-aminophenylethyl ether in the crude ethoxyquinoline should be less than 10,000 ppm.
  • process parameters of the primary distiller are: heating temperature 130-160 ° C, condenser temperature 3-10 ° C, system pressure 0.1-5 mbar, feed rate 10-50 mL/min, and wiper speed 400-500 rpm.
  • the secondary distiller process parameters are: heating temperature 100-160 ° C, condenser temperature 3-10 ° C, system pressure 0.1-10 mbar, feed rate 10-100 mL/min, and wiper speed 300-400 rpm.
  • the three-stage distiller process parameters are: heating temperature 100-160 ° C, condenser temperature 3-10 ° C, system pressure 0.1-10 mbar, feed rate 10-100 mL/min, and wiper speed 300-400 rpm.
  • the filtrate obtained above is sent from a raw material storage tank to a multi-stage molecular distillation apparatus through a gear pump.
  • the filtrate is metered by a variable frequency control gear pump to a primary distiller.
  • a method for extracting high-purity ethoxyquinoline by a multi-stage molecular distillation technique wherein high-boiling impurities in a crude ethoxyquinoline are removed by primary molecular distillation, and the high-boiling impurities are impurities having a boiling point higher than 300 degrees. .
  • a method for extracting high-purity ethoxyquinoline by a multistage molecular distillation technique is provided, and the content of p-aminophenylether is reduced to 200 ppm by secondary molecular distillation.
  • a method for extracting high-purity ethoxyquinoline by a multistage molecular distillation technique which reduces the aminophenylethyl ether content to 20 ppm by tertiary molecular distillation.
  • the invention adopts a multi-stage molecular distillation technique for extracting high-purity ethoxyquinoline, and the crude ethoxyquinoline having a p-aminophenylethyl ether content of 10000 ppm is filtered (filtration precision is 15 ⁇ m) to remove particulate matter, and the obtained filtrate is placed.
  • the above crude ethoxyquinoline is prepared by the acetone method of the company.
  • the principle is as follows: p-aminophenylether and acetone are used as raw materials, and the condensation reaction is carried out in the presence of a catalyst to synthesize the crude ethoxyquinoline.
  • the high-boiling impurities (high-boiling impurities are impurities with a boiling point higher than 300 degrees) in the crude ethoxyquinoline are removed by primary molecular distillation, and the collected light components are used as secondary separation raw materials, and the process conditions are controlled in the following range:
  • the distiller has a heating temperature of 130 to 160 ° C, a condenser temperature of 3 to 10 ° C, a system pressure of 0.1 to 5 mbar, a feed rate of 10 to 50 mL/min, and a wiper speed of 400 to 500 rpm.
  • the p-aminophenylether content was reduced to 200 ppm by secondary molecular distillation, and the collected heavy components were used as the raw materials for the tertiary separation.
  • the process conditions are controlled in the following ranges: the main distiller heating temperature is 100 to 160 ° C, the condenser temperature is 3 to 10 ° C, the system pressure is 0.1 to 10 mbar, the feed rate is 10 to 100 mL/min, and the wiper speed is 300 to 400 rpm.
  • the aminophenylethyl ether content was reduced to 20 ppm by three-stage molecular distillation, and the collected heavy components were qualified products (Fig. 1 is a qualified product map).
  • the process conditions are controlled in the following ranges: the main distiller heating temperature is 100 to 160 ° C, the condenser temperature is 3 to 10 ° C, the system pressure is 0.1 to 10 mbar, the feed rate is 10 to 100 mL/min, and the wiper speed is 300 to 400 rpm.
  • Model VKL70 of the German VTA company is a molecular distillation apparatus.
  • the method for extracting high-purity ethoxyquinoline by multi-stage molecular distillation technology provided by the invention reduces the content of p-aminophenylethyl ether in ethoxyquinoline to below 40 ppm, and the yield exceeds 85%.
  • Figure 1 is a gas chromatogram of a product for extracting high purity ethoxyquinoline by multistage molecular distillation technique.
  • the concentration of the impurity p-aminophenylethyl ether in the ethoxyquinoline can be calculated from the area of the two peaks in the figure, and it is proved that the concentration of the impurity p-aminophenylethyl ether in the ethoxyquinoline is 40 ppm or less, which is an acceptable product.
  • Figure 2 is a schematic view showing the structure of a molecular distillation apparatus used in the present invention:
  • 01 feeding system 012 liquid tank heating medium inlet, 012 liquid tank heating medium outlet, 013 vent valve, 014 flow valve, 02 distiller, 021 motor, 022 distributor, 023 wiper, 03 discharge system, 031 heavy component collection, 032 light component collection, 04 vacuum system, 041 secondary vacuum pump, 042 primary vacuum pump, 05 heating system, 051 distillation heating medium inlet, 052 distillation heating medium outlet, 06 refrigeration system, 061 condensing medium inlet, 062 Condensate medium outlet, 063 condenser tube.
  • Figure 3 is a flow chart showing the process of extracting high-purity ethoxyquinoline by molecular distillation technique.
  • the molecular distillation apparatus comprises: a 01 feed system, a 02 distiller, a 03 discharge system, a 04 vacuum system, a 05 heating system, and a 06 refrigeration system.
  • the multi-stage molecular distillation extraction process is as follows: the crude ethoxyquinoline is subjected to filtration treatment to remove particulate matter, and the obtained filtrate is transported to a primary molecular distillation raw material storage tank through a gear pump.
  • the raw material is quantitatively transported from the gear pump to 500 mL to the primary feed tank.
  • the raw material is scraped on the inner wall of the distiller, evaporated, condensed, and the obtained heavy components are introduced into the primary storage tank, and the light components are used as the secondary separation raw materials.
  • the raw materials are separated by two-stage molecular distillation, and the obtained light components are introduced into the secondary storage tank, and the heavy components are used as the raw materials for the tertiary separation.
  • the raw materials are separated by three-stage molecular distillation, and the obtained light components are returned to the secondary feed tank, and the heavy components are qualified products.
  • the first-stage molecular distillation process conditions main distiller heating temperature 130 ° C, condenser temperature 3 ° C, system
  • the pressure was 1 mbar
  • the feed rate was 50 mL/min
  • the wiper speed was 500 rpm.
  • the secondary molecular distillation process conditions are: main distiller heating temperature 120 ° C, condenser temperature 3 ° C, system pressure 2 mbar, feed rate 50 mL / min and wiper speed 400 rpm.
  • the tertiary molecular distillation process conditions are: main distiller heating temperature 120 ° C, condenser temperature 3 ° C, system pressure 2 mbar, feed rate 50 mL / min and wiper speed 400 rpm, the product is 440 mL.
  • the concentration of p-aminophenylethyl ether in the product was 26 ppm by gas chromatography analysis, and the yield was 88%.
  • the multi-stage molecular distillation extraction process is as follows: the crude ethoxyquinoline is subjected to filtration treatment to remove particulate matter, and the obtained filtrate is transported to a primary molecular distillation raw material storage tank through a gear pump.
  • the raw material is quantitatively transported from the gear pump to 500 mL to the primary feed tank.
  • the raw material is scraped on the inner wall of the distiller, evaporated, condensed, and the obtained heavy components are introduced into the primary storage tank, and the light components are used as the secondary separation raw materials.
  • the raw materials are separated by two-stage molecular distillation, and the obtained light components are introduced into the secondary storage tank, and the heavy components are used as the raw materials for the tertiary separation.
  • the raw materials are separated by three-stage molecular distillation, and the obtained light components are returned to the secondary feed tank, and the heavy components are qualified products.
  • the primary molecular distillation process conditions are: main distiller heating temperature 135 ° C, condenser temperature 3 ° C, system pressure 2 mbar, feed rate 50 mL / min and wiper speed 500 rpm.
  • the secondary molecular distillation process conditions are: main distiller heating temperature 115 ° C, condenser temperature 3 ° C, system pressure 1 mbar, feed rate 50 mL / min and wiper speed 400 rpm.
  • the tertiary molecular distillation process conditions are: main distiller heating temperature 115 ° C, condenser temperature 3 ° C, system pressure 1 mbar, feed rate 50 mL / min and wiper speed 400 rpm, the product is 460 mL.
  • the concentration of p-aminophenylethyl ether in the product was 34 ppm by gas chromatography analysis, and the yield was 92%.
  • the multi-stage molecular distillation extraction process is as follows: the crude ethoxyquinoline is subjected to filtration treatment to remove particulate matter, and the obtained filtrate is transported to a primary molecular distillation raw material storage tank through a gear pump.
  • the raw material is quantitatively transported from the gear pump to 500 mL to the primary feed tank.
  • the raw material is scraped on the inner wall of the distiller, evaporated, condensed, and the obtained heavy components are introduced into the primary storage tank, and the light components are used as the secondary separation raw materials.
  • the raw materials are separated by two-stage molecular distillation, and the obtained light components are introduced into the secondary storage tank, and the heavy components are used as the raw materials for the tertiary separation.
  • the raw materials are separated by three-stage molecular distillation, and the obtained light components are returned to the secondary feed tank, and the heavy components are qualified products.
  • the primary molecular distillation process conditions are: main distiller heating temperature 140 ° C, condenser temperature 3 ° C, system pressure 3 mbar, feed rate 50 mL / min and wiper speed 500 rpm.
  • the secondary molecular distillation process conditions are: main distiller heating temperature 125 ° C, condenser temperature 3 ° C, system pressure 3 mbar, feed rate 50 mL / min and wiper speed 400 rpm.
  • the three-stage molecular distillation process conditions main distiller heating temperature 125 ° C, condenser temperature 3 ° C, system
  • the pressure was 3 mbar
  • the feed rate was 50 mL/min
  • the wiper speed was 400 rpm.
  • the product was 430 mL.
  • the concentration of p-aminophenylethyl ether in the product was determined by gas chromatography to be 12 ppm, and the yield was 86%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

本发明涉及一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,属于抗氧化剂深加工领域。首先,采用一级分子蒸馏脱除乙氧基喹啉粗品中高沸点杂质得到后续原料;其次,通过二级分子蒸馏降低原料中对氨基苯乙醚浓度至200ppm;最后,通过三级分子蒸馏降低对氨基苯乙醚浓度至40ppm以下,满足欧盟要求。本发明可以有效分离乙氧基喹啉和对氨基苯乙醚,使产品乙氧基喹啉纯度大幅提高,得到高纯、高附加值产品乙氧基喹啉。该方法在乙氧基喹啉生产及分离提纯领域具有广阔的应用前景。

Description

一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法 技术领域
本发明属于化工领域物料分离和提纯,涉及一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的工艺。
背景技术
自上世纪50年代由美国孟山都公司投入工业化生产以来,抗氧化剂乙氧基喹啉已有60年的使用历史,由于长时间的技术垄断,我国于90年代才开始自行生产。伴随人们对于肉类、禽类和奶类的需求逐年增大,乙氧基喹啉的产量也随之快速增长。截止2010年,我国乙氧基喹啉年产量已达8000吨,其中约有40%的产值用于出口。中国作为乙氧基喹啉全球产能中心的地位不断得到巩固,这为国内乙氧基喹啉生产企业带来了更多的发展机遇。
在丙酮法生产乙氧基喹啉过程中,合成的粗产品经过蒸馏精制除杂后,最终产品纯度可达95%以上。但是受到反应转化率的限制,乙氧基喹啉产品中仍会残留10000ppm的原料对氨基苯乙醚。由于特殊的高生物毒性,行业内对用作饲料添加剂的乙氧基喹啉中对氨基苯乙醚的含量有严格限制。如欧盟规定,抗氧化剂乙氧基喹啉中对氨基苯乙醚的含量不得高于40ppm。目前乙氧基喹啉中微量对氨基苯乙醚的分离技术鲜有报道。因此,研究乙氧基喹啉中微量对氨基苯乙醚的分离技术对于抗氧化剂产品出口创汇至关重要。
发明内容
本发明的目的是提供一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,能够将乙氧基喹啉中对氨基苯乙醚的含量降低至40ppm以下的多级分子蒸馏处理工艺。
本发明提供的技术方案如下:
一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:将乙氧基喹啉粗品进行过滤处理去除颗粒物,所得滤液输送至多级分子蒸馏装置;经一级蒸馏器内壁刮膜,蒸发,冷凝,所得轻组分作为二级蒸馏器的原料;以此类推,所得轻组分通过二级蒸馏器内壁刮膜,蒸发,冷凝,所得重组分作为三级蒸馏器的原料;所得重组分 通过三级蒸馏器内壁刮膜,蒸发,冷凝,最后所得重组分为合格的产品。
所述的乙氧基喹啉粗品中杂质对氨基苯乙醚的含量应该低于10000ppm。
进一步,一级蒸馏器的工艺参数为:加热温度130~160℃、冷凝器温度3~10℃、系统压强0.1~5mbar、进料速率10~50mL/min和刮膜器转速400~500rpm。
进一步,二级蒸馏器工艺参数为:加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
进一步,三级蒸馏器工艺参数为:加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
上述所得滤液由原料储罐通过齿轮泵输送至多级分子蒸馏装置。通过变频控制齿轮泵定量输送所述滤液至一级蒸馏器。
根据本发明提供多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,通过一级分子蒸馏脱除乙氧基喹啉粗品中高沸点杂质,所述高沸点杂质为沸点高于300度的杂质。
根据本发明提供多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,通过二级分子蒸馏将对氨基苯乙醚含量降低至200ppm。
根据本发明提供多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,通过三级分子蒸馏将氨基苯乙醚含量降低至20ppm。
本发明采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,将对氨基苯乙醚含量为10000ppm的乙氧基喹啉粗品进行过滤(过滤精度为15微米)去除颗粒物,所得滤液置于一级分子蒸馏原料储罐。
上述乙氧基喹啉粗品为本公司通过丙酮法制备,原理为:以对氨基苯乙醚与丙酮为原料,在催化剂存在的条件下,进行缩合反应,合成的乙氧基喹啉粗品
通过一级分子蒸馏脱除乙氧基喹啉粗品中高沸点杂质(高沸点杂质是沸点高于300度的杂质),收集的轻组分作为二级分离的原料,工艺条件控制于如下范围:主蒸馏器加热温度130~160℃、冷凝器温度3~10℃、系统压强0.1~5mbar、进料速率10~50mL/min和刮膜器转速400~500rpm。
通过二级分子蒸馏将对氨基苯乙醚含量降低至200ppm,收集的重组分作为三级分离的原料。工艺条件控制于如下范围:主蒸馏器加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
通过三级分子蒸馏将氨基苯乙醚含量降低至20ppm,收集的重组分即为合格的产品(图1为合格产品图谱)。工艺条件控制于如下范围:主蒸馏器加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
本发明所用分子蒸馏装置:德国VTA公司的型号VKL70为分子蒸馏装置。
本发明有益的技术效果:
本发明提供的采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法将乙氧基喹啉中的对氨基苯乙醚的含量降低到40ppm以下,同时收率超过85%。
附图说明
图1为本发明采用多级分子蒸馏技术提取高纯度乙氧基喹啉的产品的气相色谱图。
通过图中的两个峰的面积可以计算出乙氧基喹啉中杂质对氨基苯乙醚的浓度,证明乙氧基喹啉中杂质对氨基苯乙醚的浓度在40ppm以下,为合格产品。
图2为本发明中采用分子蒸馏装置结构示意图:
01进料系统、011料液罐加热介质入口、012料液罐加热介质出口、013放空阀、014流量阀,02蒸馏器、021电机、022分布器、023刮膜器,03出料系统、031重组分收集、032轻组分收集,04真空系统、041二级真空泵、042一级真空泵,05加热系统、051蒸馏加热介质入口、052蒸馏加热介质出口,06制冷系统、061冷凝介质入口、062冷凝介质出口、063冷凝管。
图3采用分子蒸馏技术提取高纯度乙氧基喹啉的工艺流程图。
具体实施方式
以下用实施例对本发明作更详细的描述。这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。
以下提供本发明一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的工艺的具体实施方式。
如图2所示,分子蒸馏装置包括:01进料系统、02蒸馏器、03出料系统、04真空系统、05加热系统、06制冷系统六大部分组成。
实施例1:
如图3所示,多级分子蒸馏提取工艺流程如下:将乙氧基喹啉粗品进行过滤处理去除颗粒物,所得滤液通过齿轮泵输送至一级分子蒸馏原料储罐。由齿轮泵定量输送原料500mL至一级给料罐,原料在蒸馏器内壁刮膜,蒸发,冷凝,所得重组分进入一级储罐,轻组分作为二级分离的原料。以此类推,原料通过二级分子蒸馏分离,所得轻组分进入二级储罐,重组分作为三级分离的原料。原料通过三级分子蒸馏分离,所得轻组分返回二级给料罐,重组分即为合格的产品。
所述的一级分子蒸馏工艺条件:主蒸馏器加热温度130℃、冷凝器温度3℃、系统 压强1mbar、进料速率50mL/min和刮膜器转速500rpm。
所述的二级分子蒸馏工艺条件:主蒸馏器加热温度120℃、冷凝器温度3℃、系统压强2mbar、进料速率50mL/min和刮膜器转速400rpm。
所述的三级分子蒸馏工艺条件:主蒸馏器加热温度120℃、冷凝器温度3℃、系统压强2mbar、进料速率50mL/min和刮膜器转速400rpm,产品为440mL。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为26ppm,收率为88%。
实施例2
如图3所示,多级分子蒸馏提取工艺流程如下:将乙氧基喹啉粗品进行过滤处理去除颗粒物,所得滤液通过齿轮泵输送至一级分子蒸馏原料储罐。由齿轮泵定量输送原料500mL至一级给料罐,原料在蒸馏器内壁刮膜,蒸发,冷凝,所得重组分进入一级储罐,轻组分作为二级分离的原料。以此类推,原料通过二级分子蒸馏分离,所得轻组分进入二级储罐,重组分作为三级分离的原料。原料通过三级分子蒸馏分离,所得轻组分返回二级给料罐,重组分即为合格的产品。
所述的一级分子蒸馏工艺条件:主蒸馏器加热温度135℃、冷凝器温度3℃、系统压强2mbar、进料速率50mL/min和刮膜器转速500rpm。
所述的二级分子蒸馏工艺条件:主蒸馏器加热温度115℃、冷凝器温度3℃、系统压强1mbar、进料速率50mL/min和刮膜器转速400rpm。
所述的三级分子蒸馏工艺条件:主蒸馏器加热温度115℃、冷凝器温度3℃、系统压强1mbar、进料速率50mL/min和刮膜器转速400rpm,产品为460mL。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为34ppm,收率为92%。
实施例3
如图3所示,多级分子蒸馏提取工艺流程如下:将乙氧基喹啉粗品进行过滤处理去除颗粒物,所得滤液通过齿轮泵输送至一级分子蒸馏原料储罐。由齿轮泵定量输送原料500mL至一级给料罐,原料在蒸馏器内壁刮膜,蒸发,冷凝,所得重组分进入一级储罐,轻组分作为二级分离的原料。以此类推,原料通过二级分子蒸馏分离,所得轻组分进入二级储罐,重组分作为三级分离的原料。原料通过三级分子蒸馏分离,所得轻组分返回二级给料罐,重组分即为合格的产品。
所述的一级分子蒸馏工艺条件:主蒸馏器加热温度140℃、冷凝器温度3℃、系统压强3mbar、进料速率50mL/min和刮膜器转速500rpm。
所述的二级分子蒸馏工艺条件:主蒸馏器加热温度125℃、冷凝器温度3℃、系统压强3mbar、进料速率50mL/min和刮膜器转速400rpm。
所述的三级分子蒸馏工艺条件:主蒸馏器加热温度125℃、冷凝器温度3℃、系统 压强3mbar、进料速率50mL/min和刮膜器转速400rpm,产品为430mL。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为12ppm,收率为86%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。

Claims (10)

  1. 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:将乙氧基喹啉粗品进行过滤处理去除颗粒物,所得滤液输送至多级分子蒸馏装置;经一级蒸馏器内壁刮膜,蒸发,冷凝,所得轻组分作为二级蒸馏器的原料;以此类推,所得轻组分通过二级蒸馏器内壁刮膜,蒸发,冷凝,所得重组分作为三级蒸馏器的原料;所得重组分通过三级蒸馏器内壁刮膜,蒸发,冷凝,最后所得重组分为合格的产品。
  2. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:所述的乙氧基喹啉粗品中杂质对氨基苯乙醚的含量应该低于10000ppm。
  3. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:一级蒸馏器的工艺参数为:加热温度130~160℃、冷凝器温度3~10℃、系统压强0.1~5mbar、进料速率10~50mL/min和刮膜器转速400~500rpm。
  4. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:二级蒸馏器工艺参数为:加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
  5. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:三级蒸馏器工艺参数为:加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
  6. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:所得滤液由原料储罐通过齿轮泵输送至多级分子蒸馏装置。
  7. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:通过变频控制齿轮泵定量输送所述滤液至一级蒸馏器。
  8. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:通过一级分子蒸馏脱除乙氧基喹啉粗品中高沸点杂质,所述高沸点杂质为沸点高于300度的杂质。
  9. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:通过二级分子蒸馏将对氨基苯乙醚含量降低至200ppm。
  10. 根据权利要求1所述采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法,其特征在于:通过三级分子蒸馏将氨基苯乙醚含量降低至20ppm。
PCT/CN2017/107026 2017-09-27 2017-10-20 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法 WO2019061593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710891436.8 2017-09-27
CN201710891436.8A CN109553576B (zh) 2017-09-27 2017-09-27 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法

Publications (1)

Publication Number Publication Date
WO2019061593A1 true WO2019061593A1 (zh) 2019-04-04

Family

ID=65863862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107026 WO2019061593A1 (zh) 2017-09-27 2017-10-20 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法

Country Status (2)

Country Link
CN (1) CN109553576B (zh)
WO (1) WO2019061593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276336A (zh) * 2021-12-15 2022-04-05 山东东泰农化有限公司 一种丙环唑分子蒸馏精制方法
CN114751895A (zh) * 2022-04-09 2022-07-15 山东东泰农化有限公司 一种苯醚甲环唑分子蒸馏脱色方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285918A (zh) * 2011-07-29 2011-12-21 上海福达精细化工有限公司 一种乙氧基喹啉的生产方法
CN105968044A (zh) * 2016-05-11 2016-09-28 张加明 一种乙氧基喹啉的工业化生产方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102285918A (zh) * 2011-07-29 2011-12-21 上海福达精细化工有限公司 一种乙氧基喹啉的生产方法
CN105968044A (zh) * 2016-05-11 2016-09-28 张加明 一种乙氧基喹啉的工业化生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG ET AL: "molecular distillation equipment ant its application technology", MODERN CHEMICAL INDUSTRY, vol. 31, no. SUPP1, 30 June 2011 (2011-06-30), pages 385 - 388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276336A (zh) * 2021-12-15 2022-04-05 山东东泰农化有限公司 一种丙环唑分子蒸馏精制方法
CN114751895A (zh) * 2022-04-09 2022-07-15 山东东泰农化有限公司 一种苯醚甲环唑分子蒸馏脱色方法

Also Published As

Publication number Publication date
CN109553576B (zh) 2022-06-03
CN109553576A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN109232352B (zh) 一种n-甲基吡咯烷酮减压提纯系统及提纯方法
CN105001056B (zh) 一种变压精馏分离异丁醇与正庚烷共沸体系的方法
CN103394209B (zh) 低高压双塔精馏分离乙醇和四氢呋喃共沸物系的方法
WO2019061593A1 (zh) 一种采用多级分子蒸馏技术提取高纯度乙氧基喹啉的方法
CN103408513B (zh) 高低压双塔精馏分离乙醇和四氢呋喃共沸物系的方法
CN108976144B (zh) 一种生物医药产dmf废液提纯的方法
CN109761776B (zh) 一种六氯丙酮的提纯方法
CN204400883U (zh) 戊二胺纯化系统
CN104262376A (zh) 一种三氟甲磺酸三甲基硅酯的纯化方法
CN104844420A (zh) 新戊二醇缩合水洗母液的连续化处理工艺与装置
CN106365178A (zh) 一种氢氰酸的提纯方法
CN107759467B (zh) 一种提高迷迭香脂溶性抗氧化剂中鼠尾草酸含量的制备方法
CN106631795B (zh) 热集成变压精馏分离乙酸异丙酯和正庚烷共沸物的方法
CN211284206U (zh) 一种6-氨基己腈制备过程中的己内酰胺提纯装置
CN102617315B (zh) 一种分子蒸馏精制假性紫罗兰酮的方法
CN104151137A (zh) 高压常压双塔精馏分离正丁醇和mibk共沸物系的方法
CN109180614B (zh) 一种己烷、四氢呋喃和水混合物中四氢呋喃的提纯工艺
CN208430057U (zh) 一种净化氯甲烷的系统
CN112920048A (zh) 一种高纯1,3-丁二醇二甲基丙烯酸酯的制备方法
CN219897099U (zh) 一种高纯度一甲胺的分离工艺系统
CN110964053A (zh) 一种提纯三氟甲磺酸三甲基硅酯的装置及方法
CN107434757B (zh) 一种超低能耗回收己内酰胺有机萃取剂的方法及装置
CN106478456A (zh) 乙腈精制系统中的加酸系统和防止氢氰酸聚合的方法
CN205347271U (zh) 一种生产高纯乙醇的装置
CN215084926U (zh) 一种丙酮蒸馏装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927442

Country of ref document: EP

Kind code of ref document: A1