WO2019061258A1 - 信号处理方法、装置及系统 - Google Patents

信号处理方法、装置及系统 Download PDF

Info

Publication number
WO2019061258A1
WO2019061258A1 PCT/CN2017/104273 CN2017104273W WO2019061258A1 WO 2019061258 A1 WO2019061258 A1 WO 2019061258A1 CN 2017104273 W CN2017104273 W CN 2017104273W WO 2019061258 A1 WO2019061258 A1 WO 2019061258A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
signal
spreading code
signals
user data
Prior art date
Application number
PCT/CN2017/104273
Other languages
English (en)
French (fr)
Inventor
张晓风
方李明
胡小锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/104273 priority Critical patent/WO2019061258A1/zh
Publication of WO2019061258A1 publication Critical patent/WO2019061258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present application relates to the field of communications, and in particular, to a signal processing method, apparatus, and system.
  • the optical copper hybrid network is a high access rate access network formed by applying optical fibers to an existing copper network.
  • the optical copper hybrid network includes a Central Office (CO) device, a remote node (RN), and a Customer Premises Equipment (CPE).
  • CO Central Office
  • RN remote node
  • CPE Customer Premises Equipment
  • the central office device is connected to the remote node through a fiber, and the remote node and the user device are connected by a copper wire.
  • any one of the central office equipment or the remote node may use the code division multiple access (CDMA) technology after receiving the user signal with the same multi-channel spectrum width to be sent by the transmitting end.
  • CDMA code division multiple access
  • Each user signal is spread to expand the spectrum width of each user signal, and then the spread multi-channel user signal is superimposed and converted into an optical signal, and then the optical signal is transmitted through the optical fiber.
  • the receiving end After receiving the optical signal, the receiving end can perform photoelectric conversion processing on the optical signal to obtain an electrical signal, and then demodulate the electrical signal by using a CDMA demodulation technology to recover each user signal.
  • the network device at the sending end is the central office device
  • the network device at the receiving end is the remote node
  • the network device at the transmitting end is the remote node
  • the network device at the receiving end is the central office device.
  • the current signal processing method can only process multiple user signals of one spectrum width, and the pair of signals The processing method is relatively simple and the flexibility is poor.
  • the present invention provides a signal processing method, device and system, which can solve the problem that the signal processing method is relatively simple and the flexibility is poor in the related art.
  • a signal processing method may include: the network device modulating each of the received at least two user data, and each user data is modulated to obtain a user signal, and modulating The user signals with different spectral widths exist in at least two user signals obtained afterwards; then the network device can determine the spreading code corresponding to each user signal, and each channel obtained after modulation according to the spreading code corresponding to each user signal The user signal is spread, so that the chip rates of the at least two user signals after the spread are equal, wherein the spread of any two user signals is used in the codeword period of the spread code corresponding to any user signal.
  • the spreading code or the spreading code fragments are orthogonal to each other; finally, the network device can superimpose and transmit the spread of at least two user signals.
  • the signal processing method provided by the present application in the process of spreading the frequency of each user signal, in the codeword period of the spreading code corresponding to any user signal, the expansion used by any two user signals in the codeword period
  • the frequency code or the spread code code segments are orthogonal to each other, and the chip rates of the at least two user signals after the spread are equal, thereby ensuring that the at least two user signals can be superimposed in the time domain and sent to the receiving end, and The receiving end is correct Demodulate each user signal.
  • the method provided by the present application can process user signals of different spectral widths in a copper-copper hybrid network, and the signal processing method has high flexibility.
  • the spreading code corresponding to the at least two user signals has a spreading code with a different length; and any two spreading codes with different lengths have a longer length spreading code.
  • the spectral width of the corresponding user signal is smaller than the spectral width of the user signal corresponding to the shorter length spreading code. That is, when the network device allocates a spreading code for each user signal, the network device can preferentially allocate a spreading code having a longer codeword length to a user signal having a narrow spectrum width, and assign a codeword to a user signal having a wider spectrum width. A shorter length spreading code to improve the utilization of codeword resources.
  • the network device may perform sampling rate conversion processing on some of the at least two user signals, so that the sampling rate of the part of the user signals is the same; after that, the network device may The part of the user signal subjected to the sampling rate conversion process is assigned a spreading code of the same length; for other user signals that have not undergone the sampling rate conversion processing, the network device can preferentially allocate a longer codeword length for the user signal with a narrow spectrum width. a spreading code, and a spreading code having a shorter codeword length for a user signal having a wider spectral width; or, if the codeword resources in the system are sufficient, the network device may not perform a sampling rate conversion process on the user signal. Instead, different lengths of spreading codes are directly assigned to user signals of different spectrum widths.
  • the lengths of the spreading codes corresponding to any two user signals are equal, and the spreading codes corresponding to any two user signals are orthogonal to each other. Spreading the frequency of each user signal by using the same length of the spreading code can reduce the computational complexity of the spread spectrum processing and improve the efficiency of the spread spectrum processing.
  • each user signal is a digital signal
  • the at least two user signals may be divided into at least two sets of user signals, and each user signal in each group of user signals has the same spectral width and belongs to different groups of user signals.
  • the spectrum width is different.
  • the network device may further remove the target user signal group from the at least two groups of user signals.
  • Each of the other user signals except the user signal is separately subjected to a sampling rate conversion process, so that the sampling rate of each processed user signal is the same as the sampling rate of the target user signal group, and the target user signal group is a spectrum.
  • the widest set of user signals after that, the network device can respectively modulate each signal in the target user signal group and each of the other groups of user signals in the sample rate conversion process, respectively, according to the corresponding
  • the spreading code is used for spreading.
  • At least one Hadamard matrix may be included in the pre-configured code table in the network device.
  • the network device may obtain a row of elements from the pre-configured Hadamard matrix as a corresponding Spreading code.
  • the network device may determine the real-time line rate of each user data.
  • the network device may perform real-time In the N-way user data whose line rate is less than the first threshold, at least two user data are time-division multiplexed to generate one-way user data, and the N is an integer greater than or equal to 2.
  • the minimum allocatable time granularity on which the network device performs time division multiplexing on the user data is the codeword period of the longest spreading code among the spreading codes corresponding to at least two user signals, and the at least two users The signal is obtained by the network device separately modulating the at least two user data.
  • the one-way user data only needs to be modulated by one transmitter, and only one spreading code is used for spreading, which can not only effectively improve the network.
  • Bandwidth resource utilization can also reduce the number of transmitters that need to be used and increase the spread spectrum modulation gain.
  • the network device may first detect the transmission type of each user data in the N-channel user data whose real-time line rate is less than the first threshold, and the transmission type. These can include: point-to-point transmission and point-to-multipoint transmission. Because the communication protocol in the point-to-point transmission needs to use a separate spreading code to spread the user data, the network device can determine the N-type user whose real-time line rate is less than the first threshold after determining the transmission type of each user data.
  • At least two user data whose transmission type is point-to-multipoint transmission is time-division multiplexed to generate one-way user data; and for user data whose transmission type is point-to-point transmission, no time division multiplexing processing is performed.
  • the user data of the real-time line rate greater than the second threshold may be divided into At least two pieces of user data, the second threshold being greater than the first threshold.
  • the user whose real-time line rate is greater than the second threshold can be effectively improved.
  • the access rate of data improves the user experience.
  • the N-way user data may be time-multiplexed into M-way user data, that is, the N-way user data will occupy M codes after time division multiplexing.
  • Word channel that is, it is necessary to use M spreading codes for spreading.
  • part of the user data or all user data of the at least two user data may be time-division multiplexed. That is, the time division multiplexing and division of the user data can be performed in combination.
  • a signal processing apparatus which apparatus can include at least one module for implementing the signal processing method provided by the first aspect above.
  • a signal processing apparatus comprising: a transmitter and a receiver; the receiver is configured to receive at least two user data, wherein the transmitter is configured with a processing component, and the processing component is configured to Each user data is modulated, and each user data is modulated to obtain a user signal, and at least two user signals obtained by the modulation have user signals with different spectral widths; and a spreading code corresponding to each user signal is determined;
  • the spreading code corresponding to the user signal spreads the frequency of each user signal obtained after the modulation, so that the chip rates of the at least two user signals after the spreading are equal, wherein the code of the spreading code corresponding to the user signal of any channel In the word period, the spreading code or the spreading code segment used when spreading the signal of any two user signals is orthogonal to each other; and at least two user signals after spreading are superimposed and transmitted.
  • the spreading code corresponding to the at least two user signals there are different spreading codes of different lengths; in any two spreading codes with different lengths, the spectrum of the user signal corresponding to the longer-length spreading code The width of the spectrum of the user signal corresponding to the spread code whose width is shorter than the shorter length.
  • the lengths of the spreading codes corresponding to any two user signals are equal, and the spreading codes corresponding to any two user signals are orthogonal to each other.
  • each user signal is a digital signal
  • the at least two user signals include at least two sets of user signals
  • each user signal in each group of user signals has the same spectral width, and belongs to a spectrum between different groups of user signals.
  • the processing components in the transmitter are also used to:
  • each of the user signals of each group of user signals except the target user signal group are respectively subjected to a sampling rate conversion process, so that the sampling rate of each processed user signal and the target user are processed.
  • the sampling rate of the signal group is the same, and the target user signal group is a group of user signals with the wide spectrum width;
  • the processing component in the transmitter is configured to expand each of the modulated signals in the target user signal group and each of the signals in each of the other sets of user signals according to the corresponding spreading code. frequency.
  • a row of elements may be obtained from the pre-configured Hadamard matrix as the corresponding spreading code.
  • the processing component in the transmitter may be further configured to: determine a real-time bandwidth of each user data; and when there is a real-time bandwidth of the N-channel user data that is less than the first threshold, the N-channel with the real-time bandwidth less than the first threshold In the user data, at least two pieces of user data are time-division multiplexed to generate one-way user data, and the N is an integer greater than or equal to 2.
  • the processing component in the transmitter may be configured to: detect, in the N-way user data whose real-time line rate is less than the first threshold, a transmission type of each user data, where the transmission type includes: point-to-point transmission and point-to-point transmission Point transmission; in the N-way user data whose real-time line rate is less than the first threshold, at least two user data whose transmission type is point-to-multipoint transmission is time-division multiplexed to generate one-way user data.
  • the processing component in the transmitter is further configured to: when the real-time line rate of any user data is greater than the second threshold, divide the user data whose real-time line rate is greater than the second threshold into at least two user data.
  • the second threshold is greater than the first threshold.
  • a computer readable storage medium in a fourth aspect, storing instructions for causing a computer to perform the signal processing method provided by the first aspect when the computer readable storage medium is run on a computer .
  • a computer program product comprising instructions for causing a computer to perform the signal processing method provided by the first aspect when the computer program product is run on a computer is provided.
  • a signal processing system comprising:
  • a network device comprising the signal processing device of the second aspect or the third aspect.
  • the present application provides a signal processing method, apparatus, and system.
  • the network device may each channel according to a spreading code corresponding to each user signal.
  • the user signal is spread, so that the chip rates of the at least two user signals after the spread are equal, and the expansion of any two user signals is spread in the codeword period of the spread code corresponding to any user signal.
  • the frequency code or the spreading code fragments are orthogonal to each other, thereby ensuring that the receiving end can correctly demodulate each user signal.
  • FIG. 1 is a block diagram of an optical copper hybrid network according to an embodiment of the present invention.
  • 2-1 is a block diagram of a method for processing a user signal in an optical copper hybrid network according to an embodiment of the present invention
  • FIG. 2-2 is a block diagram of a method for processing a user signal in another optical copper hybrid network according to an embodiment of the present invention
  • 2-3 is a schematic structural diagram of a signal processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of partitioning bandwidth resources in a hybrid optical network according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of a method for processing a user signal in another optical copper hybrid network according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for performing sampling rate conversion processing on a user signal by a network device according to an embodiment of the present invention
  • FIG. 7 is a block diagram of a method for processing a user signal in another optical copper hybrid network according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another signal processing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another signal processing apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another signal processing apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an optical copper hybrid network according to an embodiment of the present invention.
  • the optical copper hybrid network mainly includes: a central office device 01, a remote node 02, and a client device 03.
  • the central office device 01 is connected to multiple remote nodes 02 through optical fibers.
  • the central office device 01 is connected to the remote nodes N1 to N3, respectively.
  • Each remote node 02 is connected to at least one client device 03 by a copper wire.
  • the remote node N1 is connected to the client devices CPE1 and CPE2 through copper wires, respectively.
  • the remote node 02 is further provided with a beam splitter 021.
  • the splitter 021 can divide the user signal sent by the central office device 01 into multiple optical signals and transmit the signals to the corresponding remote node 02.
  • the optical copper hybrid network can implement a Fiber To The Curb (FTTC).
  • FTTC Fiber To The Curb
  • the optical copper hybrid network can implement Fiber To The Building (FTTB); or when the remote node 02 is configured at the user's residence, the optical copper hybrid network can implement Fiber To The Home (FTTH).
  • FTTC Fiber To The Curb
  • FTTB Fiber To The Building
  • FTTH Fiber To The Home
  • the remote node and the client device can be configured together.
  • the remote node N3 and the client device CPE5 in FIG. 1 are configured together.
  • the signal processing method provided by the embodiment of the present invention can be applied not only to the optical copper hybrid network shown in FIG. 1 but also to a network in which an optical network is mixed with other transmission medium networks, for example, it can be applied to a mixture of optical and wireless.
  • the application scenario of the signal processing method is not limited in the embodiment of the present invention.
  • FIG. 2-1 is a block diagram of a method for processing a user signal in an optical copper hybrid network according to an embodiment of the present invention.
  • the central office device 01 may perform primary modulation on the user data, for example, may be adopted.
  • the Orthogonal Frequency Division Multiplexing (OFDM) technology performs multi-carrier modulation on the user data. As can be seen from FIG. 1 and FIG. 2-1, after receiving the user data sent by the backbone network (not shown in FIG. 2-1), the central office device 01 may perform primary modulation on the user data, for example, may be adopted.
  • the Orthogonal Frequency Division Multiplexing (OFDM) technology performs multi-carrier modulation on the user data. As can be seen from FIG.
  • OFDM Orthogonal Frequency Division Multiplexing
  • user data is first serial-to-parallel (STP), converted from a single serial signal into at least two parallel data, and then at least Two parallel user data for Quadrature Amplitude Modulation (QAM), conjugate symmetric processing, and
  • the inverse FFT time domain signal can be obtained by Inverse Fast Fourier Transform (IFFT) processing.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM-modulated user signal is converted into an analog signal by a digital to analog converter (DAC), and the analog signals are respectively input into a multiplier in the CDMA modulator, and respectively corresponding to the CDMA spreading code phase.
  • DAC digital to analog converter
  • the spreading code used by each user signal is obtained from a CDMA code table, and the code table may include a plurality of binary codeword sequences.
  • At least two user signals after CDMA modulation are superimposed by an adder, and after adding a DC offset signal, the optical signal is converted into an optical signal after being processed by an electric to optical (ETO) device.
  • the optical signal is amplified by an Erbium-doped Optical Fiber Amplifier (EDFA) and transmitted to the remote node 02 on the optical fiber.
  • EDFA Erbium-doped Optical Fiber Amplifier
  • the photodetector (PD) in the remote node 02 first converts the optical signal into an electrical signal, and then is amplified by an amplifier (AMP).
  • the amplified signal needs to be input to a phase locked loop (PLL) to extract a clock within the signal for clock synchronization, and the CDMA decoder decodes (ie, despreads) the amplified signal.
  • PLL phase locked loop
  • the CDMA decoder can obtain the spreading code corresponding to each user signal from the code table, and multiply the received signal by the spreading code used by each user signal and the expansion of other user signals.
  • the frequency codes are orthogonal to each other, so other users can be filtered out during the multiplication process, thereby recovering each user signal.
  • the recovered user signal is transmitted through the copper wire to reach the user equipment 03.
  • the client device 03 can perform analog-to-digital converter (ADC) processing on the received user signal to obtain a digital signal, and then perform OFDM demodulation.
  • ADC analog-to-digital converter
  • the process of OFDM demodulation is opposite to the process of OFDM modulation.
  • FFT Fast Fourier Transform
  • FEQ frequency domain equalization
  • the OFDM-demodulated signal is subjected to compression processing (ie, half of the valid data in the OFDM demodulated signal is extracted), and then QAM demapping and parallel-to-serial (PTS) processing are performed. , you can restore the original user data.
  • compression processing ie, half of the valid data in the OFDM demodulated signal is extracted
  • QAM demapping and parallel-to-serial (PTS) processing are performed. , you can restore the original user data.
  • the central office device 01 can perform OFDM modulation on the user data to obtain a user signal, and then perform sampling rate conversion processing on the user signal, directly perform CDMA modulation and superimpose, and then The superimposed digital signal is subjected to digital-to-analog conversion processing to obtain an analog signal.
  • the remote node 02 may first perform analog-to-digital conversion on the user signal to obtain a digital signal, and then perform CDMA demodulation, and the demodulated signal is transmitted to the user by the copper wire.
  • the device 03, the user equipment 03 can perform sampling rate conversion processing and OFDM demodulation on the demodulated signal, thereby recovering the original signal.
  • the network device performs CDAM modulation (ie, spread spectrum) on the user signal
  • CDAM modulation ie, spread spectrum
  • the analog signal can be modulated, or the digital signal can be directly modulated.
  • DSL technology is a technology that uses copper wire to achieve high-speed digital signal access.
  • DSL technology has evolved from Asymmetric Digital Subscriber Line (ADSL) to Very High Speed Digital Subscriber Line (VDSL), G.Fast and the next generation of G.Fast (NG.Fast).
  • the access rate is also increased from 6 to 20 megabits per second (Mb/s) for ADSL to 20 to 100 Mb/s for VDSL, and then to 1 Gbit/s (Gb/s) for G.Fast, while NG.Fast
  • Mb/s megabits per second
  • Gb/s Gbit/s
  • Gb/s Gbit/s
  • various client devices in the optical copper hybrid network will be continuously updated to support higher access rates.
  • there may be support for different accesses The case where the rate of the client device coexists.
  • the optical copper hybrid network there are both G.Fast client devices, NG.Fast client devices, and FTTH devices. Since the spectrum widths of user signals of different access rates may be different, and the lengths of the codewords used in the current CDMA modulation are the same, and the two are orthogonal, the signals used in the current optical copper hybrid network are used.
  • the processing method can only be processed for user signals of a single spectrum width, and the signal processing method is less flexible.
  • the signal processing apparatus 00 may include a transmitter 001 and a receiver 002, where the transmitter 001 may A processing component 0011 is included, which may include a modulation module (eg, an OFDM modulation module), a digital to analog converter, a CDMA modulation module, an electro-optic converter, and a fiber amplifier.
  • the transmitter 001 is mainly used to implement modulation and transmission of user data.
  • the component 0021 can be processed in the receiver 002.
  • the processing component 0021 can include a photodetector, an amplifier, a phase locked loop, a CDMA decoder, etc., and the receiver 002 is mainly used to implement reception and demodulation of user signals.
  • the signal processing apparatus may be configured in the central office device 01 or the remote node 02 shown in FIG. 1 and may be used to implement the signal processing method provided by the following method embodiments.
  • FIG. 3 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • the network device may be a central office device 01 that sends data or a remote node 02 that sends data.
  • the method may include:
  • Step 101 Receive at least two pieces of user data.
  • the central office device 01 can receive at least two user data sent by the backbone network device.
  • the remote node 02 can receive the user terminal device to send. At least two user data.
  • the client devices CPE1 and CPE2 are G.Fast devices, which support an access rate of 1 Gb/s and a user signal with a spectrum width of 212 MHz (MHz).
  • the client devices CPE3 to CPE5 are NG.Fast devices, and the client device CPE5 is configured with the remote node, that is, the client device CPE5 is an FTTH device.
  • each client device supports an access rate of 5 Gb/s, and a user signal has a spectrum width of 424 MHz.
  • the central office device 01 can receive the five-way user data d1 to d5 sent by the backbone network for the five client devices through the receiver, and wherein the spectrum width modulated by the user data d1 and d2 should be For 212 MHz, the spectral width after user data d3 to d5 modulation should be 424 MHz.
  • the access rate supported by each client device refers to the upper limit value of the line rate supported by the user equipment (that is, the highest line rate), and the actual line rate is less than or equal to the highest access rate. .
  • Step 102 Determine a real-time line rate of each user data.
  • the line rate of the user data changes with time, and does not always stay at the highest access rate.
  • the real-time line rate of user data is low, the light copper is mixed.
  • the utilization of codeword resources of the spreading code in the combined network will be reduced.
  • the network device can monitor the real-time line rate of each user signal in real time.
  • Step 103 When the real-time line rate of the N-way user data is less than the first threshold, the N-way user data with the real-time line rate being less than the first threshold is time-division multiplexed to generate one-way user data.
  • the N is a positive integer greater than or equal to 2.
  • the first threshold may be a fixed value preset in the network device, or may be current by the network device according to the received at least two user data.
  • the average spectral width is determined.
  • the first threshold may be 1/3 of the current average line rate of at least two user data received by the network device.
  • time-division multiplexing may be adopted.
  • the at least two user data are multiplexed to obtain one user data, so that the at least two user data respectively occupy different time slots of one channel during transmission.
  • the at least two user data occupying different time slots of the same channel may be modulated by only one modulation module during modulation, and only one spreading code may be used for spreading during spreading, and one user data after instant multiplexing is used.
  • the CDMA decoder can decode the one-way user data by using the corresponding spreading code, and then the at least two user data can be extracted from different time slots of one channel by the demultiplexer.
  • the minimum assignable time granularity on which the network device performs time division multiplexing on the at least two user data is the codeword period of the longest spreading code in the spreading code corresponding to the at least two user signals, where The at least two user signals are obtained by the network device separately modulating (for example, OFDM modulation) the at least two user data.
  • FIG. 4 is a schematic diagram of partitioning bandwidth resources in an optical copper hybrid network according to an embodiment of the present invention.
  • the bandwidth resource in the optical copper hybrid network may be divided into two parts, wherein the horizontal axis is Time resource, the vertical axis is the codeword resource.
  • the real-time line rates of the user data d1 to d5 detected by the network device are 200 MHz, 200 MHz, 50 MHz, 50 MHz, and 400 MHz, respectively, and the first threshold is 1/3 of the real-time average line rate of the 5-way user data. Then the network device can calculate that the current first threshold is 60 MHz.
  • the user data d3 and d4 may be time-division multiplexed to generate one-way user data d3', the one-way user data d3' It may be modulated by one modulation module (for example, NG.Tx transmitter in FIG. 5) (for example, OFDM modulation), and may be spread using only one spreading code (for example, spreading code C3), that is, one user data d3 'Only occupy one modulation module and one codeword resource.
  • one modulation module for example, NG.Tx transmitter in FIG. 5
  • OFDM modulation for example, OFDM modulation
  • spreading code C3 for example, spreading code C3
  • the type of transmission of user data may include: point-to-point transmission and point-to-multipoint transmission. Since the user data specified in the communication protocol for the point-to-point transmission must be spread using a spreading code, the network device can perform at least two user data of the N-way user data with the transmission type of point-to-multipoint transmission.
  • One-way user data is generated after time division multiplexing; and time-division multiplexing is not performed for user data whose transmission type is point-to-point transmission.
  • the transmission type of the G.Fast user data is point-to-point transmission
  • the NG.Fast user data since the transmission type is point-to-multipoint transmission, when the network device detects that the real-time line rate of at least two NG.Fast user data is less than the first threshold, the at least two NGs may be .Fast user data is time division multiplexed.
  • the network device may also time-multiplex the N-way user data into M-way user data (M is an integer greater than 1), that is, the N-channel user data.
  • M is an integer greater than 1
  • M modulation modules and M codeword resources will be occupied (that is, M spreading codes need to be used for spreading).
  • the user data d3, the user data d4, and the user data d5 may be time-multiplexed with two codeword resources, that is, the data generated by the three-way user data after time division multiplexing needs to be modulated by two modulation modules, and needs to be Spreading is performed using two spreading codes.
  • Step 104 When the real-time line rate of any user data is greater than the second threshold, the user data whose real-time line rate is greater than the second threshold is divided into at least two pieces of user data.
  • the user data may be divided into at least two user data by dividing, and the at least two user data are modulated by using two transmitters. It is also necessary to use two spreading codes for spreading, so that the access rate of the user data can be effectively improved, thereby improving the performance of the optical copper hybrid network.
  • the second threshold may be greater than the first threshold.
  • the second threshold may be a fixed value preset in the network device, or may be determined by the network device according to the current average line rate of at least two user data. For example, the second threshold may be 1.5 times the current average line rate of at least two user data.
  • the network device may divide the user data d5 into two-way user data d4' and d5', and the divided two-way user data needs Two modulation modules are used for modulation, and two spreading codes (such as spreading codes C4 and C5) are required for spreading.
  • the two user data can be recoupled by means of bonding, thereby recovering the original user data d5.
  • the divided part of the user data may be time-division multiplexed.
  • the division of the user data and the time division multiplexing of the user data may be used in combination, which is not limited by the embodiment of the present invention.
  • the user data received by the network device further includes user data d6 and user data d7, and the network device may first divide the user data into two paths by using a split manner.
  • the user data is then time-multiplexed with the divided four-way user data to obtain two-way user data d6' and d7'.
  • the original user data d6 and d7 can be recovered by means of bonding and demultiplexing.
  • the processing component 0011 in the transmitter 001 of the central office device may further include a Dynamic Bandwidth Allocation (DBA) module, in the downlink scenario (ie, the central office device is remotely located).
  • DBA Dynamic Bandwidth Allocation
  • the method shown in steps 102 to 104 above may be implemented by the DBA module.
  • the spectrum width utilization and throughput of the optical copper hybrid network can be effectively improved.
  • the modulation module such as the G.Tx transmitter or NG.Tx transmitter shown in Figure 5).
  • Modulation which can turn off redundant modulation modules to save resources.
  • the reduction of the number of spreading codes can increase the gain of the CDMA modulation, and thus To some extent, improve the signal-to-noise ratio of the optical copper hybrid network.
  • the remote node can implement dynamic resource allocation in multiple manners.
  • the remote node may send a request message to the central office device, where the request message includes a real-time line rate of the user data, and the central office device may according to the request message sent by each remote node.
  • the division of the bandwidth resources is performed, and the division result is fed back to each remote node by using a response message, so that each remote node can perform modulation and spreading of the user data according to the division result.
  • the central office device may also estimate the line rate of each user data in the next scheduling period by using the received user signal, and perform bandwidth resource division according to the predicted result, and then feedback the division result to Each remote node.
  • the configuration information of the bandwidth resource may be pre-stored in each of the remote nodes, and the remote node may directly process the data according to the pre-stored configuration information when processing the user data.
  • the central office device can reuse the user data of the FTTH device.
  • the original modulation module and CDMA modulator in the central office equipment do not need to improve the hardware of the central office equipment, which effectively improves the compatibility of the optical copper hybrid network.
  • Step 105 Modulate each user data to obtain at least two user signals.
  • a plurality of modulation modules may be configured in the transmitter of the network device, and each modulation module may be used to modulate one user data, and each user data is modulated to obtain a user signal. Therefore, after the at least two user data are respectively modulated, corresponding corresponding at least two user signals can be obtained.
  • the modulation may be OFDM modulation, and the specific process of the OFDM modulation may refer to the foregoing description, and details are not described herein again.
  • a modulation technique such as QAM modulation or Pulse Amplitude Modulation (PAM) may be used, which is not limited in this embodiment of the present invention.
  • the network device may separately transmit each user data after TDM or split processing to a corresponding OFDM modulation module for OFDM modulation.
  • different types of user data need to be modulated by different types of OFDM modulation modules.
  • G.Fast user data can be OFDM modulated by the G.Fast transmitter G.Tx
  • NG.Fast user data is OFDM modulated by the NG.Fast transmitter NG.Tx.
  • a total of five user signals D1 to D5 can be obtained.
  • the spectrum widths of the user signals D1 and D2 are 212 MHz
  • the spectrum widths of the user signals D3 to D5 are 424 MHz.
  • Step 106 Determine a spreading code corresponding to each user signal of the at least two user signals.
  • the network device may determine a spreading code corresponding to each user signal from a pre-stored code table, so as to spread the frequency of each user signal according to the corresponding spreading code.
  • Each of the user signals corresponds to
  • the spreading code may be configured by the network device according to a preset configuration rule, and the configured spreading code should satisfy: the chip rate (chips per second, cps) of the at least two user signals after the spreading is equal, and In the codeword period of the spreading code corresponding to one user signal, the spreading code or the spreading code fragment used in spreading the signal of any two user signals is orthogonal to each other.
  • the codeword rate of the spreading code corresponding to each user signal should be greater than its Nyquist frequency, and the initial phase of the spreading code corresponding to different user signals is the same.
  • the chip rate refers to the number of chips transmitted in a unit time, and the chip refers to the basic unit of user signal transmission after spreading, so the chip rate can be used to indicate the transmission rate of the user signal after being spread.
  • the codeword rate of any spreading code may refer to the quotient of the chip rate and the number of codewords in the spreading code (ie, the length of the spreading code), and the codeword period of any spreading code is its codeword.
  • the codeword periods of the spreading codes of different lengths are different, and the longer the length of the spreading code, the longer the codeword period.
  • the receiving end can correctly demodulate the user signal according to the spreading code corresponding to each user signal, it is necessary to ensure that any two user signals are used in the codeword period of the spreading code used by any user signal.
  • the spreading code or the spreading code fragments are orthogonal to each other.
  • the code word in the first spreading code is [-1 1] and the second spreading code corresponding to another user signal is [1 1 1 1]
  • the code word in the first spreading code can only transmit half of the spreading code segment [1 1]
  • the spreading code segment [1 1] is orthogonal to the first spreading code [-1 1]
  • two first spreading codes may be transmitted, and the spreading code segments [-1 1 -1 1] composed of the two first spreading codes and the second spreading code [1] 1 1 1] Orthogonal.
  • the spreading code corresponding to at least two user signals may have a spreading code with a different length; And any two of the two different length spreading codes, the spectrum width of the user signal corresponding to the longer length spreading code is smaller than the spectrum width of the user signal corresponding to the shorter length spreading code. That is, when the network device allocates the spreading code, it may first allocate a short-length spreading code for the user signal with a wider bandwidth, and allocate a longer-length spreading code for the user signal with a narrow bandwidth to ensure the code in the system. The utilization of word resources.
  • the network device can also allocate a short-length spreading code for the user signal with a narrow bandwidth, that is, multiple channels of the same bandwidth.
  • the length of the spreading code corresponding to the user signal may also be different.
  • each user signal to be processed by the network device may perform sampling rate conversion processing on a part of the user signals of the at least two user signals, so that the sampling rate of the part of the user signals is the same;
  • the network device may allocate a spreading code of the same length to the part of the user signal subjected to the sampling rate conversion processing; for other user signals that have not undergone the sampling rate conversion processing, the network device may preferentially allocate a code for the user signal with a narrow spectrum width.
  • the network device may divide the at least two user signals into at least two sets of user signals according to different spectrum widths, and then respectively determine each group of user signals in units of user signal groups.
  • a spreading code corresponding to a user signal.
  • the frequency of each user signal in each group of user signals The spectral widths are the same, and the spectral widths between user signals belonging to different groups are different.
  • the user signals D1 and D2 may be divided into one group, and the user signals D3 to D5 may be divided into one group, and the spectrum width between the two sets of user signals.
  • the ratio is 2.
  • the network device may directly determine, from the pre-stored code table, a spreading code corresponding to each user signal in each group of user signals, where the code table may include multiple extensions of different lengths. Frequency code.
  • the spreading code selected by the network device may satisfy the following conditions: a length ratio of a spreading code corresponding to the first group of user signals and a length of the spreading code corresponding to the second group of user signals, and the first group
  • the ratio of the spectral width corresponding to the user signal and the spectral width corresponding to the second group of user signals is reciprocal to each other, that is, the length of the spreading code can be negatively correlated with the spectral width of the user signal.
  • the spreading codes corresponding to any two user signals belonging to the same group of user signals are orthogonal to each other.
  • a spreading code corresponding to each user signal of a group of user signals having a narrow spectrum width may be divided according to a codeword period of a spreading code corresponding to a group of user signals having a narrow spectrum width.
  • each of the spreading code segments has a length equal to the length of the spreading code corresponding to a group of user signals having a wide spectral width, and each of the spreading code segments and the spectral width is wider.
  • the spreading code corresponding to each user signal in the user signal is orthogonal, thereby ensuring that when the user signal with a narrow spectrum width is demodulated, the interference of each user signal in a group of user signals having a wide spectral width can be eliminated.
  • a spreading code corresponding to each user signal in a group of user signals having a wide spectrum width, can be transmitted, and the plurality of The spreading code segment composed of the spreading code and the spreading code corresponding to each user signal in a group of user signals having a wide spectral width are also orthogonal to each other.
  • the first set of user signals includes the user signal S1 and the second set of user signals includes the user signal S2, the spectral width of the user signal S2 being twice the spectral width of the user signal S1.
  • the length of the spreading code selected by the network device for the user signal S1 in the first group of user signals may be 4, and the length of the spreading code selected for the user signal S2 in the second group of user signals may be 2.
  • the spreading code corresponding to the user signal S1 can be divided into two spreading code segments, each of the spreading code segments has a length of 2, and each spreading code segment and the user signal S2 corresponding to the spreading code are positive.
  • the spreading code corresponding to the user signal S2 can transmit two, and the spreading code segment composed of the two spreading codes corresponds to the user signal S1.
  • the spreading code is orthogonal.
  • the spreading code corresponding to the user signal S1 may be [1 -1 -1 1]
  • the spreading code corresponding to the user signal S2 may be [1 1].
  • the spreading code [1 -1 -1 1] corresponding to the user signal S1 can be divided into two spreading code segments [1 -1] and [-1 1], the two Each of the spreading code segments is orthogonal to the spreading code [1 1] corresponding to the user signal S2, thereby ensuring correct demodulation of the user signal S1.
  • the codeword period of the spreading code [1 -1 -1 1] two spreading codes [1 1] can be transmitted, and the spreading code fragments composed of the two spreading codes [1 1 1 1] It is orthogonal to the spreading code [1 -1 -1 1].
  • At least one Hadamard matrix may be included in the code table pre-stored in the network device.
  • the network device may obtain a row of elements from a Hadamard matrix in the at least one Hadamard matrix as a corresponding spreading code, and shall ensure each channel The spreading codes selected by the user signals are different from each other.
  • the pre-stored code table in the network device may include a Hadamard matrix correspondingly configured for each group of user signals, wherein a matrix order ratio and a spectrum width ratio of the Hadamard matrix corresponding to any two sets of user signals may be mutually For the reciprocal, that is, the order of the Hadamard matrix corresponding to the user signal group having a narrower spectral width is higher.
  • the network device may configure the corresponding Hadamard matrix for each group of user signals according to the network. The total number of user signals to be processed by the device, the total number of channels of each group of user signals, and the spectral width ratio between each group of user signals determine the Hadamard matrix corresponding to each group of user signals.
  • the order of the Hadamard matrix is a positive integer power of 2
  • the 2nd order Hadamard matrix A satisfies:
  • the network device selects one row of elements in the 2 M-1 order Hadamard matrix as the spreading code corresponding to one user signal, and the corresponding two rows of elements in the 2 M- order Hadamard matrix can no longer be selected as expansion.
  • the frequency code, while the elements of other lines can be selected as the spreading code because they also satisfy the orthogonality.
  • the k-th row element of the Hadamard matrix of order 2 M is selected as spreading code (k is not more than 2 M a positive integer, and k ⁇ j), is generated according to the known law of Hadamard matrix
  • the The kth row element may be divided into two spreading code segments, each of which is orthogonal to the jth row element in the 2 M-1 order Hadamard matrix; or, the 2 M-1 order Hadamard spreading code fragment j-th row element of the matrix obtained after a copy is also perpendicular to the k-th row element of the order of 2 M Hadamard matrix.
  • the generation rule of the Hadamard matrix conforms to the selection rule when the network device selects the spreading code, so the network device can use the elements in the Hadamard matrix as the spreading code.
  • the network device may also select other qualified codeword resources as the spreading code, which is not limited in this embodiment of the present invention.
  • the first group of user signals includes the user signal S1
  • the second group of user signals includes the user signal S2
  • the spectrum width corresponding to the first group of user signals is the second group of users.
  • the sampling frequency of the first group of user signals is also half of the sampling frequency of the second group of user signals.
  • the Hadamard matrix corresponding to the second group of user signals is a second-order Hadamard matrix A
  • the Hadamard matrix corresponding to the first group of user signals is a fourth-order Hadamard matrix A 2 .
  • the network device can select a row element in the second-order Hadamard matrix A as the spreading code as the user signal S2.
  • the first row element [1 1] in the second-order Hadamard matrix A can be taken as the spreading code of the user signal S2 for spreading the sampling points Y1 and Y2 in the unit time.
  • a row of elements may be selected from the fourth-order Hadamard matrix A 2 as a spreading code, and it is necessary to ensure that the selected one-line element is divided into two length-coded code segments of length 2. Thereafter, each spreading code segment is orthogonal to the spreading code [1 1] corresponding to the user signal S1. Due to the four-line elements of the fourth-order Hadamard matrix A 2 , two spread spectrum code segments obtained by dividing each row element in [-1 -1 1 1] and [1 1 1 1] are spread spectrum corresponding to the user signal S2. The codes [1 1] are not orthogonal.
  • the network device may select [1 -1 -1 1] or [-1 1 -1 1] from the fourth-order Hadamard matrix A 2 as the spreading code corresponding to the user signal S1.
  • the network device can determine that the order of the Hadamard matrix corresponding to the first group of user signals can be the Hadamard matrix corresponding to the second group of user signals. Double the order.
  • the network device is a set of a first user signal may be configured Hadamard matrix of order 16 Hadamard matrix A 4, the second set of user signals Hadamard matrix may be configured to order-8 Hadamard matrix A 3.
  • three rows of elements may be selected from the 8th-order Hadamard matrix A 3 as the spreading codes corresponding to the user signals D3 to D5.
  • the first three rows of elements in the Hadamard matrix A 3 may be selected as the spreading codes corresponding to the user signals D3 to D5, that is, the spreading code C3 corresponding to the user signal D3 may be [1 1 1 1 1 1 1]
  • the spreading code C4 corresponding to the user signal D4 may be [-1 1 -1 1 -1 1 -1 1]
  • the spreading code C5 corresponding to the user signal D5 may be [-1 -1 1 1 1 -1 -1 1 ].
  • the network device can select two rows of elements from the 16th order Hadamard matrix A 4 as the spreading codes corresponding to the user signals D1 and D2, respectively. In the selection process, it is necessary to ensure that each row element selected from the matrix A 4 can be divided into two length-coded code segments of length 8, each of the spreading code segments corresponding to any of the user signals D3 to D5.
  • the spreading code is orthogonal. For example, the network device may select [-1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1] as the spreading code C1 corresponding to the user signal D1, and select [1 -1 -1] 1 1 -1 -1 1 -1 1 1 1 -1 1 1 -1] is a spreading code C2 corresponding to the user signal D2.
  • the spreading code C1 corresponding to the user signal D1 can be divided into two identical spreading code segments: [-1 -1 -1 -1 1 1 1], the spreading code segment and the spreading code C3 to C5 Both are orthogonal; the spreading code C2 corresponding to the user signal D2 can be divided into two spreading code segments: [1 -1 -1 1 1 -1 -1 1] and [-1 1 1 -1 -1 1 1 - 1], each of the two spreading code segments is orthogonal to the spreading codes C3 to C5. And, in the codeword period of the spreading code C1 or the spreading code C2, each of the spreading codes C3 to C5 may be transmitted twice, and each of the spreading codes C3 to C5 is spread.
  • the spreading code segment obtained after the code is copied once is orthogonal to both the spreading code C1 and the spreading code C2.
  • the lengths of the spreading codes corresponding to any two user signals may be equal, and any two paths may be used.
  • the spreading codes corresponding to the user signals are orthogonal to each other. Assuming that each modulated user signal is a digital signal, referring to FIG. 6, the network device may perform the following operations before determining the spreading code corresponding to each user signal:
  • Step 1061 Determine a group with the widest spectral width among the at least two groups of user signals as the target user signal group.
  • the network device may determine the second group of user signals as the target user signal group, and the target user signal group corresponds to a spectrum width of 424 MHz.
  • Step 1062 Perform sampling rate conversion processing on each of the at least two sets of user signals, each of the user signals except the target user signal group.
  • the network device may perform sampling rate conversion processing on each user signal in each group of user signals according to the spectrum width corresponding to the target user signal group, so that each processed user signal is processed.
  • the sampling rate of the number is the same as the sampling rate of the target user signal group. That is, if the sampling period of the user signal having the narrowest spectrum width is the unit time, the number of sampling points of each user signal in the unit time is equal after the sampling rate conversion processing.
  • each user signal in each of the other sets of user signals may be interpolated.
  • each user signal may be interpolated at a sampling point per unit time, so that After the interpolation process, the user signals of each channel have the same number of sampling points per unit time. Since the number of initial sampling points per unit time of the modulated user signal is generally positively correlated with the spectrum width thereof, the narrower the spectral width corresponding to each group of user signals during the sampling rate conversion processing, the group of user signals The number of sample points required to interpolate each user signal is also greater.
  • the network device may interpolate the sampling point X of the user signal D1 in the unit time in the first group of user signals to obtain [X X], and interpolate the sampling point Y of the user signal D2 in a unit time to obtain [ Y Y]. After the sampling points in the user signals D1 and D2 are interpolated, the number of sampling points of the five-way user signals in the unit time is two.
  • the first group of user signals includes the user signal S1
  • the second group of user signals includes the user signal S2
  • the spectrum width corresponding to the first group of user signals is corresponding to the second group of user signals.
  • the user signal S2 has two sampling points in a unit time, and the amplitudes thereof are Y1 and Y2.
  • the network device can interpolate the sampling point X1 of the user signal S1 in a unit time to obtain [X1 X1].
  • the network device may respectively configure a spreading code for each of the modulated signals in the target user signal group and each of the other samples of each group of user signals.
  • the network device may obtain a row of elements from the pre-configured Hadamard matrix as the corresponding spreading code.
  • the order of the pre-configured Hadamard matrix in the network device may be greater than or equal to the number of user devices to which the network device is connected.
  • the network device can directly select a row of elements from the pre-configured Hadamard matrix as the corresponding spreading code, and only ensure each user signal.
  • the corresponding spreading code can be different. Since the length of the spreading code allocated by the network device for each user signal is equal, the efficiency of the spread spectrum processing can be effectively improved.
  • the pre-configured Hadamard matrix in the network device is an eighth-order Hadamard matrix C. If the total number of user signals received by the current network device is 5, the network device may randomly select or sequentially select five rows of elements from the eighth-order Hadamard matrix C as the five-way user signals D1, D2, and D3 to D5, respectively.
  • Spreading code Or, the number of user equipments connected to the network device is 2, and the Hadamard matrix pre-configured in the network device is a 2nd-order Hadamard matrix A. If the total number of user signals received by the current network device is 2, the network The device can determine two rows of elements in the Hadamard matrix A as the spreading codes corresponding to the user signals S1 and S2, respectively.
  • Step 107 Spread the frequency modulated each user signal by using a spreading code.
  • the modulation may be performed.
  • Each subsequent user signal is spread according to the corresponding spreading code.
  • the network device may determine a spreading code corresponding to each user signal through a CDMA modulator in the transmitter, and perform spreading processing on each user signal by using a corresponding spreading code.
  • the network device may use the spreading code [1 -1 -1] 1]
  • the user signal S1 is subjected to spreading processing at the sampling point X1 per unit time to obtain a chip sequence [X1 - X1 - X1 X1], and the number of chips included in the unit sequence in the unit time is 4.
  • the network device may separately spread the two sampling points Y1 and Y2 of the user signal S2 in a unit time by using a spreading code [1 1].
  • the chip sequence [Y1 Y1] can be obtained by spreading the sample point Y1, and the chip sequence [Y2 Y2] can be obtained by spreading the sample point Y2. Therefore, the chip sequence in the unit time after the user signal S2 is spread is [Y1 Y1 Y2 Y2], and the number of chips included in the chip sequence is also 4, which can be seen that the two-way user After the signals S1 and S2 are spread, the number of chips that can be transmitted in a unit time is equal, that is, the chip rates of the two user signals are equal.
  • the network device may adopt the spreading code. [1 1]
  • the user signal S1 is separately spread at two sampling points [X1 X1] per unit time to obtain a chip sequence [X1 X1 X1 X1].
  • the network device can use the spreading code [-1 1] to spread the two sampling points Y1 and Y2 of the user signal S2 in unit time respectively to obtain a chip sequence [-Y1 Y1-Y2 Y2], the two The chip rate after the spread of the user signal is equal.
  • FIG. 7 is a block diagram of an algorithm for user signal processing in another optical copper hybrid network according to an embodiment of the present invention.
  • the spectrum width of the user signal S1 obtained by the central office device after modulating two user data is 212 MHz
  • the spectrum width of the user signal S2 is 424 MHz.
  • the central office device can perform sampling rate conversion processing on the OFDM-modulated user signal S1.
  • the user signal S1 can be interpolated at the sampling point X1 in a unit time to obtain a sampling sequence [X1 X1], and then corresponding thereto.
  • the spreading code C8 [-1 1 -1 1] is multiplied to obtain a chip sequence [-X1 X1 -X1 X1 -X1 X1 -X1 X1].
  • each sample point in the unit time can be directly multiplied by its corresponding spreading code C9:[-1 -1 1 1] to obtain a chip sequence [-Y1 -Y1 Y1 Y1 -Y2 -Y2 Y2 Y2], the chip rate after the two-way user signal spreading code is equal.
  • the two spread user signals are superimposed in the time domain, and then converted by electric light to generate an optical signal, which can be transmitted from the optical fiber to the remote node.
  • Step 108 Superimpose and transmit at least two user signals after spreading.
  • the network device may use an adder to superimpose the spread of at least two user signals, and convert the superposed signal into an optical signal by an electrical to optical converter, and then pass the optical fiber.
  • the optical signal is sent to the receiving end.
  • the spreading code corresponding to each user signal can be used to perform CDMA demodulation on each user signal, for example, a spreading code C8 can be used for the user signal.
  • S1 performs demodulation, and demodulates the user signal S2 by using a spreading code C9.
  • each user signal needs to be sent to the corresponding user equipment through the copper wire, and the solution is configured in the user equipment.
  • Tuning module for example, in FIG. 7, the demodulation module in the G.Fast device may be G.Fast receiver G.Rx, and the demodulation module in the NG.Fast device may be NG.Fast receiver NG.Rx), Baseband demodulation module for receiving signals Demodulation (e.g., OFDM demodulation) is performed to recover the original user data.
  • a demodulation module can be configured in the receiver in the central office device, and the central office device can directly demodulate the CDMA decoded signal through the demodulation module, thereby recovering Out of original user data.
  • the chip sequence in the unit time is [X1 -X1 -X1 X1]
  • the user signal S2 is spread spectrum.
  • the chip sequence in the unit time is [Y1 Y1 Y2 Y2]
  • the network device superimposes the two user signals, and the obtained chip sequence in the unit time is superimposed. Is [X1+Y1 –X1+Y1 –X1+Y2 X1+Y2].
  • the chip sequence [X1+Y1 -X1+Y1 -X1+Y2 X1+Y2] per unit time may be combined with the user signal S1 for the spreading code [1 -1 - 1 1]
  • the sampling point of the user signal S1 in unit time can be recovered, the amplitude of the sampling point is 4X1; when the receiving end decomposes the user signal S2, the chip sequence in unit time can be The first two sampling points [X1+Y1 –X1+Y1] and the last two sampling points [–X1+Y2 X1+Y2] in [X1+Y1 –X1+Y1 –X1+Y2 X1+Y2] and the user respectively
  • the multiplication of the spreading code [1 1] corresponding to the signal S2 can restore two sampling points of the user signal S2 in a unit time, and the amplitudes of the two sampling points are 2Y1 and 2Y2, respectively.
  • the chip sequence in the unit time is [X1 X1 X1 X1]
  • the user signal S2 is a spreading code [ -1 1]
  • the chip sequence in unit time is [-Y1 Y1 -Y2 Y2]
  • the network device superimposes the two user signals, and the obtained superimposed signal is in the unit time chip.
  • the sequence is [X1-Y1 X1+Y1 X1-Y2 X1+Y2].
  • the receiving end despreads the user signal S1
  • the first two chips and the last two chips in the chip sequence [X1-Y1 X1+Y1 X1-Y2 X1+Y2] in the unit time can be respectively associated with the user.
  • the spreading code [1 1] corresponding to the signal S1 is multiplied, and the sampling point [2X1 2X1] of the user signal S1 in the unit time can be recovered, and the receiving end further converts according to the initial sampling frequency of the user signal S1 (ie, the sampling rate The previous sampling rate) samples the sampling point [2X1 2X1] in the unit time to obtain a sampling point 2X1; when the receiving end decomposes the user signal S2, the chip sequence in unit time can be obtained [ The first two chips and the last two chips in X1-Y1 X1+Y1 X1-Y2 X1+Y2] are respectively multiplied by the spreading code [-1 1] corresponding to the user signal S2, respectively, and can be recovered
  • the receiving end receives the optical signal, and photoelectrically converts the optical signal to obtain an electrical signal, which may first pass through the CDMA decoder. Multiplying the electrical signal by a corresponding spreading code for CDMA decoding, and then demodulating by the demodulation module, and finally decomposing and multiplexing the demodulated signal by a demultiplexer to recover the at least Two-way user data.
  • the receiving end may multiply the user signal D3 by the spreading code C3 to perform CDMA decoding, and then perform OFDM demodulation on the CDMA decoded signal, and finally decompose and multiplex the demodulated signal.
  • User data d3 and d4 are obtained. If the network device divides a certain user data when transmitting the user signal, the receiving end needs to perform the demodulation and then couple the two user data through the bonding method to recover the original user data. Wherein, if the receiving end is a remote node, the demodulation, time division demultiplexing or bonding processing operations may be performed in the user equipment.
  • step 102 to step 104 may be performed according to the situation. delete. Any method that can be easily conceived by those skilled in the art within the scope of the technology disclosed in the present disclosure is intended to be included in the scope of the present disclosure, and therefore will not be described again.
  • the signal processing method provided by the present application after the network device acquires at least two user signals whose spectrum widths are not completely the same, may spread the frequency of each user signal according to the spreading code corresponding to each user signal.
  • the spreading rate of the at least two user signals after the spread is equal, and the spreading code or the spreading code used when spreading the frequency of any two user signals in the codeword period of the spreading code corresponding to any user signal.
  • the segments are orthogonal to each other, thereby ensuring that the receiving end can correctly demodulate each user signal.
  • FIG. 8 is a schematic structural diagram of a signal processing apparatus according to an embodiment of the present invention.
  • the signal processing apparatus may be used to implement the signal processing method provided by the embodiment shown in FIG. 3 .
  • the apparatus may include:
  • the modulation module 201 is configured to modulate each user data of the received at least two user data, and each user data is modulated to obtain a user signal, and the spectrum width of the at least two user signals obtained after the modulation is different. User signal.
  • the first determining module 202 is configured to determine a spreading code corresponding to each user signal.
  • the spread spectrum module 203 is configured to spread the frequency of each user signal obtained after the modulation according to the spreading code corresponding to each user signal, so that the chip rates of the at least two user signals after the spread are equal, wherein, in any way In the codeword period of the spreading code corresponding to the user signal, the spreading code or the spreading code segment used when spreading the arbitrary two user signals is orthogonal to each other.
  • the sending module 204 is configured to superimpose and transmit the spread of at least two user signals.
  • the spreading code corresponding to the at least two user signals there are different spreading codes of different lengths; in any two spreading codes with different lengths, the spectrum of the user signal corresponding to the longer-length spreading code The width of the spectrum of the user signal corresponding to the spread code whose width is shorter than the shorter length.
  • the lengths of the spreading codes corresponding to any two user signals are equal, and the spreading codes corresponding to any two user signals are orthogonal to each other.
  • each user signal is a digital signal
  • the at least two user signals include at least two sets of user signals
  • each user signal in each group of user signals has the same spectral width and a spectral width between user signals belonging to different groups.
  • the device may further include:
  • the processing module 205 is configured to separately perform sampling rate conversion processing on each of the at least two sets of user signals except the target user signal group, so that each processed user signal is processed.
  • the sampling rate is the same as the sampling rate of the target user signal group, and the target user signal group is a group of user signals having the widest spectral width.
  • the spread spectrum module 203 can be configured to: spread each frequency of the modulated signal in the target user signal group and each of the other groups of user signals in the sample rate conversion process according to the corresponding spreading code .
  • the spreading module 203 is configured to: acquire, for each user signal, a row of elements from the pre-configured Hadamard matrix as a corresponding spreading code.
  • FIG. 10 is a schematic structural diagram of still another signal processing apparatus according to an embodiment of the present invention.
  • the apparatus may further include:
  • the second determining module 206 is configured to implement the method shown in step 102 in the embodiment shown in FIG. 3 above.
  • the multiplexing module 207 is configured to implement the method shown in step 103 in the embodiment shown in FIG. 3 above.
  • the multiplexing module 207 can be used to:
  • the transmission type of each user data includes: point-to-point transmission and point-to-multipoint transmission;
  • N is an integer greater than or equal to 2.
  • the apparatus may further include:
  • the segmentation module 208 is configured to implement the method shown in step 104 of the embodiment shown in FIG. 3 above.
  • the signal processing apparatus after spreading the frequency of each user signal, the chip rates of at least two user signals are equal, and within the codeword period of the spreading code corresponding to any user signal, The spreading code or the spreading code segment used in spreading the signal of any two user signals is orthogonal to each other, thereby ensuring that the receiving end can correctly demodulate each user signal.
  • the signal processing method provided by the present application is used in the optical copper hybrid network, the user signals of different spectrum widths in the network can be processed, and the signal processing method has high flexibility.
  • the embodiment of the present invention further provides a signal processing system, which may include: a network device and a receiving end, and the network device may include a signal processing device as shown in any of FIG. 2-3, FIG. 8 to FIG.
  • the system can be applied to the optical copper hybrid network shown in FIG. 1.
  • the network device in the system can be any one of a central office device and a remote node.
  • the receiving end may be a remote node; when the network device is a remote node, the receiving end may be a central office device.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product comprising one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a readable storage medium of a computer or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data
  • the center transmits to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (eg, a solid state hard disk) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种信号处理方法、装置及系统,网络设备获取到至少两路频谱宽度不完全相同的用户信号后,可以根据每一路用户信号对应的扩频码对每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,并且在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交,由此可以保证接收端能正确解调出每一路用户信号。在光铜混合网络中采用本申请提供的信号处理方法后,可以对网络中不同频谱宽度的用户信号进行处理,该信号处理方法的灵活性较高。

Description

信号处理方法、装置及系统 技术领域
本申请涉及通信领域,特别涉及一种信号处理方法、装置及系统。
背景技术
光铜混合网络是将光纤应用于已有的铜线网络形成的一种高接入速率的接入网络。该光铜混合网络包括局端(Central Office,CO)设备、远端节点(Remote node,RN)和用户端设备(Customer Premises Equipment,CPE)。其中,局端设备与远端节点之间通过光纤连接,远端节点与用户端设备之间通过铜线连接。
相关技术中,局端设备或远端节点中的任一网络设备作为发送端接收到待发送的多路频谱宽度相同的用户信号后,可以采用码分多址(Code Division Multiple Access,CDMA)技术对该每一路用户信号进行扩频,以扩展每一路用户信号的频谱宽度,之后即可将该扩频后的多路用户信号进行叠加,并转换为光信号,然后将该光信号通过光纤传输至接收端。接收端接收到光信号后,可以对该光信号进行光电转换处理得到电信号,然后采用CDMA解调技术对电信号进行解调,恢复出每一路用户信号。其中,当该发送端的网络设备为局端设备时,接收端的网络设备为远端节点;当该发送端的网络设备为远端节点时,接收端的网络设备为局端设备。
但是,由于实际应用中,局端设备和远端节点之间传输的用户信号的频谱宽度可能不同,而目前的信号处理方法只能针对一种频谱宽度的多个用户信号进行处理,该对信号的处理方式较为单一,灵活性较差。
发明内容
本申请提供了一种信号处理方法、装置及系统,可以解决相关技术中信号处理方式较为单一,灵活性较差的问题,
第一方面,提供了一种信号处理方法,该方法可以包括:网络设备对接收到的至少两路用户数据中的每一路用户数据进行调制,每一路用户数据调制后对应得到一路用户信号,调制后得到的至少两路用户信号中存在频谱宽度不同的用户信号;之后网络设备可以确定每一路用户信号对应的扩频码,并根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,其中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交;最后网络设备即可将该扩频后的至少两路用户信号叠加后发送。
本申请提供的信号处理方法,网络设备在对每一路用户信号进行扩频的过程中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交,且扩频后的至少两路用户信号的码片速率相等,由此可以保证该至少两路用户信号可以在时域进行叠加并发送至接收端,且接收端能够正确 解调出每一路用户信号。本申请提供的方法可以对光铜混合网络中不同频谱宽度的用户信号进行处理,该信号处理方法的灵活性较高。
在一种可选的实现方式中,该至少两路用户信号对应的扩频码中,存在长度不同的扩频码;并且任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。也即是,网络设备在为每一路用户信号分配扩频码时,可以优先为频谱宽度较窄的用户信号分配码字长度较长的扩频码,为频谱宽度较宽的用户信号分配码字长度较短的扩频码,以提高码字资源的利用率。
可选的,若每一路用户信号均为数字信号,则网络设备可以对至少两路用户信号中的部分用户信号进行采样率变换处理,使得该部分用户信号的采样率相同;之后,网络设备可以为该经过采样率变换处理后的部分用户信号分配相同长度的扩频码;对于其他未经过采样率变换处理的用户信号,网络设备可以优先为频谱宽度较窄的用户信号分配码字长度较长的扩频码,并为频谱宽度较宽的用户信号分配码字长度较短的扩频码;或者,如果系统中的码字资源充足,则网络设备也可以不对用户信号进行采样率变换处理,而是直接为不同频谱宽的用户信号分配不同长度的扩频码。
在另一种可选的实现方式中,任意两路用户信号对应的扩频码的长度相等,且任意两路用户信号对应的扩频码相互正交。采用相同长度的扩频码对各路用户信号进行扩频,可以降低扩频处理时的计算复杂度,提高扩频处理的效率。
可选的,若每一路用户信号均为数字信号,则该至少两路用户信号可以划分为至少两组用户信号,每组用户信号内的各个用户信号的频谱宽度相同,属于不同组的用户信号之间的频谱宽度不同,在根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频之前,网络设备还可以对该至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理,使得处理后的每一路用户信号的采样率与该目标用户信号组的采样率相同,该目标用户信号组为频谱宽度最宽的一组用户信号;之后,网络设备即可对该目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别按照对应的扩频码进行扩频。
可选的,网络设备中预先配置的码表中可以包括至少一个哈达玛矩阵,网络设备在确定每一路用户信号的扩频码时,可以从该预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。
可选的,网络设备在对每一路用户数据进行调制之前,还可以先确定每一路用户数据的实时线路速率;当存在N路用户数据的实时线路速率小于第一阈值时,网络设备可以对实时线路速率小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据,该N为大于或等于2的整数。其中,网络设备在对用户数据进行时分复用时所依据的最小可分配时间粒度为至少两路用户信号对应的扩频码中长度最长的扩频码的码字周期,该至少两路用户信号是网络设备对该至少两路用户数据分别进行调制后得到的。
将至少两路用户数据进行时分复用后生成一路用户数据后,该一路用户数据仅需采用一个发射机进行调制,且仅需采用一个扩频码进行扩频,不仅可以有效提高网络的 带宽资源利用率,还可以减少所需使用的发射机的数量,提高扩频调制增益。
可选的,网络设备在对该至少两路用户数据进行时分复用时,还可以先检测该实时线路速率小于第一阈值的N路用户数据中,每一路用户数据的传输类型,该传输类型可以包括:点对点传输和点对多点传输。由于在点对点传输的通信协议中,需要采用单独的扩频码对用户数据进行扩频,因此网络设备在确定每一路用户数据的传输类型后,可以对实时线路速率小于第一阈值的N路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据;而对于传输类型为点对点传输的用户数据则不进行时分复用处理。
进一步的,网络设备在确定每一路用户数据的实时线路速率之后,当检测到存在任一路用户数据的实时线路速率大于第二阈值时,可以将该实时线路速率大于第二阈值的用户数据划分为至少两路用户数据,该第二阈值大于该第一阈值。
由于该划分后的至少两路用户数据需要采用至少两个发射机进行调整,并且每一路用户数据需要分别采用一个扩频码进行扩频,因此可以有效提高该实时线路速率大于第二阈值的用户数据的接入速率,改善用户体验。
可选的,网络设备在对N路用户数据进行时分复用时,还可以将该N路用户数据时分复用为M路用户数据,即该N路用户数据时分复用后将占用M个码字通道(也即是,需要采用M个扩频码进行扩频)。
可选的,网络设备在对某一路用户数据进行分割,得到至少两路用户数据之后,还可以对该至少两路用户数据中的部分用户数据或者全部用户数据进行时分复用。也即是,该用户数据的时分复用和划分可以结合执行。
第二方面,提供了一种信号处理装置,该装置可以包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的信号处理方法。
第三方面,提供了一种信号处理装置,该装置可以包括:发射机和接收机;该接收机用于接收至少两路用户数据,该发射机中配置有处理组件,该处理组件用于对每一路用户数据进行调制,每一路用户数据调制后对应得到一路用户信号,调制后得到的至少两路用户信号中存在频谱宽度不同的用户信号;确定每一路用户信号对应的扩频码;根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,其中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交;将扩频后的至少两路用户信号叠加后发送。
可选的,该至少两路用户信号对应的扩频码中,存在长度不同的扩频码;任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。
可选的,任意两路用户信号对应的扩频码的长度相等,且任意两路用户信号对应的扩频码相互正交。
可选的,每一路用户信号为数字信号,该至少两路用户信号包括至少两组用户信号,每组用户信号内的各个用户信号的频谱宽度相同,属于不同组的用户信号之间的频谱 宽度不同,该发射机中的处理组件还用于:
对该至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理,使得处理后的每一路用户信号的采样率与该目标用户信号组的采样率相同,该目标用户信号组为频谱宽度最宽的一组用户信号;
该发射机中的处理组件,用于对该目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别按照对应的扩频码进行扩频。
可选的,该发射机中的处理组件在确定每一路用户信号对应的扩频码时,对于每一路用户信号,可以从预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。
可选的,该发射机中的处理组件还可以用于:确定每一路用户数据的实时带宽;当存在N路用户数据的实时带宽小于第一阈值时,对实时带宽小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据,该N为大于或等于2的整数。
可选的,该发射机中的处理组件可以用于:检测该实时线路速率小于第一阈值的N路用户数据中,每一路用户数据的传输类型,该传输类型包括:点对点传输和点对多点传输;对该实时线路速率小于第一阈值的N路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据。
可选的,该发射机中的处理组件还可以用于:当存在任一路用户数据的实时线路速率大于第二阈值时,将实时线路速率大于第二阈值的用户数据划分为至少两路用户数据,该第二阈值大于该第一阈值。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该计算机可读存储介质在计算机上运行时,使得计算机执行第一方面所提供的信号处理方法。
第五方面,提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第一方面所提供的信号处理方法。
第六方面,提供了一种信号处理系统,该系统包括:
网络设备,该网络设备包括第二方面或第三方面提供的信号处理装置。
上述本发明实施例第二到第六方面所获得的技术效果与第一方面中对应的技术手段所获得的技术效果近似,在这里不再赘述。
综上所述,本申请提供了一种信号处理方法、装置及系统,网络设备获取到至少两路频谱宽度不完全相同的用户信号后,可以根据每一路用户信号对应的扩频码对每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,并且在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交,由此可以保证接收端能正确解调出每一路用户信号。在光铜混合网络中采用本申请提供的信号处理方法后,可以对网络中不同频谱宽度的用户信号进行处理,该信号处理方法的灵活性较高。
附图说明
图1是本发明实施例提供的一种光铜混合网络的架构图;
图2-1是本发明实施例提供的一种光铜混合网络中用户信号的处理方法的框图;
图2-2是本发明实施例提供的另一种光铜混合网络中用户信号的处理方法的框图;
图2-3是本发明实施例提供的一种信号处理装置的结构示意图;
图3是本发明实施例提供的一种信号处理方法的流程图;
图4是本发明实施例提供的一种光铜混合网络中带宽资源的划分示意图;
图5是本发明实施例提供的另一种光铜混合网络中用户信号的处理方法的框图;
图6是本发明实施例提供的一种网络设备对用户信号进行采样率变换处理的方法流程图;
图7是本发明实施例提供的又一种光铜混合网络中用户信号的处理方法的框图;
图8是本发明实施例提供的另一种信号处理装置的结构示意图;
图9是本发明实施例提供的又一种信号处理装置的结构示意图;
图10是本发明实施例提供的再一种信号处理装置的结构示意图。
具体实施方式
图1是本发明实施例提供的一种光铜混合网络的架构图,参考图1,该光铜混合网络主要包括:局端设备01、远端节点02和用户端设备03。其中,局端设备01通过光纤与多个远端节点02连接,例如局端设备01分别与远端节点N1至N3连接。每个远端节点02通过铜线与至少一个用户端设备03连接。例如,远端节点N1通过铜线分别与用户端设备CPE1和CPE2连接。其中,远端节点02侧还设置有分光器021,分光器021能够将局端设备01发送的用户信号分为多个光信号,并传输至对应的远端节点02。当该远端节点02配置在街边柜时,该光铜混合网络可以实现光纤到路边(Fiber To The Curb,FTTC),当该远端节点02配置在楼栋里时,该光铜混合网络可以实现光纤到楼(Fiber To The Building,FTTB;或者当该远端节点02配置在用户住所时,该光铜混合网络可以实现光纤到户(Fiber To The Home,FTTH)。对于光纤到户的场景,远端节点和用户端设备可以配置在一起。例如图1中的远端节点N3和用户端设备CPE5配置在一起。
本发明实施例提供的信号处理方法不仅可以应用于该图1所示的光铜混合网络中,还可以应用于光网络与其他传输介质网络混合的网络中,例如可以应用于光与无线混合的网络中,本发明实施例对该信号处理方法的应用场景不做限定。
图2-1是本发明实施例提供的一种光铜混合网络中用户信号的处理方法的框图。结合图1和图2-1可以看出,局端设备01在接收到骨干网(图2-1中未示出)发送的用户数据后,可以先对该用户数据进行初级调制,例如可以采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术对该用户数据进行多载波调制。参考图2-1可以看出,在OFDM调制过程中,用户数据先经过串并转换(serial to parallel,STP),由单路串行信号转换为至少两路并行数据,然后再依次对该至少两路并行的用户数据进行正交振幅调制(Quadrature Amplitude Modulation,QAM),共轭对称处理,以及 快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)处理,即可得到实数的OFDM时域信号。之后,经过OFDM调制的用户信号经过数模转换器(Digital to analog converter,DAC)转化为模拟信号,该模拟信号分别进入到CDMA调制器中的乘法器中,与各自对应的CDMA扩频码相乘。其中每个用户信号采用的扩频码均是从CDMA码表中获取的,该码表中可以包含多个二进制码字序列。进一步的,经过CDMA调制后的至少两路用户信号通过加法器进行叠加,再加上直流偏置信号后,经过电光转换(electric to optic,ETO)器处理后变为光信号。该光信号经由掺铒光纤放大器(Erbium-doped Optical Fiber Amplifier,EDFA)放大后在光纤上传输至远端节点02。
光信号经过光纤传输后到达远端节点02,远端节点02中的光电探测器(photodetector,PD)先将该光信号转换为电信号,然后再经过放大器(amplifier,AMP)放大。该放大后的信号需要输入至锁相环(PLL)提取信号内的时钟,以进行时钟同步,同时CDMA解码器会对该放大后的信号进行解码(即解扩)。参考图2-1,CDMA解码器能够从码表中获取到每一路用户信号对应的扩频码,并与接收信号相乘,由于每一路用户信号采用的扩频码与其他用户信号采用的扩频码两两正交,所以其他用户在相乘过程中可以被滤除,从而恢复出每一路用户信号。该恢复后的用户信号再经过铜线传输,到达用户端设备03。用户端设备03可以对接收到的用户信号进行模数转换器(ADC)处理,得到数字信号,然后再进行OFDM解调。该OFDM解调的过程与OFDM调制的过程相反,先是进行快速傅里叶变换(Fast Fourier Transform,FFT),并通过训练序列进行频域均衡(FEQ)处理。然后在对该OFDM解调后的信号进行压缩处理(即提取出该OFDM解调后的信号中的一半有效数据),之后再进行QAM解映射,以及并串转换(parallel to serial,PTS)处理,即可恢复出原始的用户数据。
图2-2是本发明实施例提供的另一种光铜混合网络中用户信号的处理方法的框图。参考图2-2可以看出,局端设备01在对用户数据进行OFDM调制得到用户信号后,还可以先对该用户信号进行采样率变换处理后,直接进行CDMA调制并进行叠加,然后再对叠加后的数字信号进行数模转换处理,得到模拟信号。相应的,远端节点02获取到光电转换后的用户信号后,可以先对该用户信号进行模数转换,得到数字信号,然后再进行CDMA解调,解调后的信号由铜线传输至用户设备03,该用户设备03可以对该解调后的信号进行采样率变换处理以及OFDM解调,从而恢复出原始信号。结合图2-1和图2-2可知,网络设备在对用户信号进行CDAM调制(即扩频)时,既可以对模拟信号进行调制,也可以直接对数字信号进行调制。
需要说明的是,光铜混合网络中采用的信号传输技术为数字用户线路(Digital Subscriber Line,DSL)技术。DSL技术是一种利用铜线实现高速数字信号接入的技术。DSL技术从非对称数字用户线路(Asymmetric Digital Subscriber Line,ADSL)发展到超高速数字用户线路(Very High Speed Digital Subscriber Line,VDSL)、G.Fast和下一代G.Fast(NG.Fast),其接入速率也从ADSL的6~20兆比特每秒(Mb/s)提高到VDSL的20~100Mb/s,然后到G.Fast的1吉比特每秒(Gb/s),而NG.Fast技术的接入速率则可以达到5Gb/s。随着DSL技术的不断发展,光铜混合网络中各用户端设备也会不断更新,以支持更高的接入速率。在该更新过程中,可能会存在支持不同接入 速率的用户端设备共存的情况。例如,光铜混合网络中同时存在支持G.Fast的用户端设备、支持NG.Fast的用户端设备以及FTTH设备。由于不同接入速率的用户信号的频谱宽度可能不同,而目前CDMA调制时所采用的码表中各个码字的长度相同,且两两正交,因此目前的光铜混合网络中所采用的信号处理方法只能针对单一频谱宽度的用户信号进行处理,该信号处理方法的灵活性较差。
图2-3是本发明实施例提供的一种信号处理装置的结构示意图,如图2-3所示,该信号处理装置00可以包括发射机001和接收机002,其中,该发射机001可以包括处理组件0011,该处理组件0011可以包括调制模块(例如OFDM调制模块)、数模转换器、CDMA调制模块、电光转换器和光纤放大器等。该发射机001主要用于实现用户数据的调制和发送。该接收机002中可以处理组件0021,该处理组件0021可以包括光电探测器、放大器、锁相环、CDMA解码器等,该接收机002主要用于实现用户信号的接收和解调。
在本发明实施例中,该信号处理装置可以配置于图1所示的局端设备01或者远端节点02中,并且可以用于实现下述方法实施例提供的信号处理方法。
图3是本发明实施例提供的一种信号处理方法的流程图,图1所示的局端设备01和远端节点02中任一网络设备需要发送数据时,均可以应用该方法,该方法中所称的网络设备,可以为发送数据的局端设备01或发送数据的远端节点02,参考图3,该方法可以包括:
步骤101、接收至少两路用户数据。
在本发明实施例中,由于光铜混合网络中可以存在支持不同接入速率的多个用户端设备,因此局端设备01与远端节点02之间传输的针对不同用户端设备的用户数据的类型不同。当该网络设备为局端设备01时,局端设备01可以接收骨干网设备发送的至少两路用户数据,当该网络设备为远端节点02时,该远端节点02可以接收用户端设备发送的至少两路用户数据。
示例的,假设在图1所示的网络中,用户端设备CPE1和CPE2为G.Fast设备,其支持的接入速率为1Gb/s,用户信号的频谱宽度为212兆赫兹(MHz)。用户端设备CPE3至CPE5为NG.Fast设备,并且,该用户端设备CPE5与远端节点配置在一起,也即是,该用户端设备CPE5为FTTH设备。该用户端设备CPE3至CPE5中,每个用户端设备支持的接入速率为5Gb/s,用户信号的频谱宽度为424MHz。则局端设备01在数据传输过程中,可以通过接收机接收到骨干网发送的针对该5个用户端设备的5路用户数据d1至d5,并且其中用户数据d1和d2调制后的频谱宽度应当为212MHz,用户数据d3至d5调制后的频谱宽度应当为424MHz。
需要说明的是,每个用户端设备所支持的接入速率是指该用户端设备所支持的线路速率的上限值(即最高线路速率),其实际线路速率小于或等于该最高接入速率。
步骤102、确定每一路用户数据的实时线路速率。
用户通过用户端设备获取网络资源的过程中,用户数据的线路速率是随时间发生变化的,而并不会一直处于最高接入速率。当用户数据的实时线路速率较低时,光铜混 合网络中扩频码的码字资源的利用率会降低。为了实现对码字资源的动态分配和调整,网络设备可以实时监测每一路用户信号的实时线路速率。
步骤103、当存在N路用户数据的实时线路速率小于第一阈值时,对实时线路速率小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据。
在本发明实施例中,该N为大于或等于2的正整数,该第一阈值可以是网络设备中预先设置的一固定值,也可以是网络设备根据接收到的至少两路用户数据当前的平均频谱宽度所确定的。例如,该第一阈值可以为网络设备接收到的至少两路用户数据当前的平均线路速率的1/3。
当网络设备检测到存在N路用户数据的实时线路速率小于该第一阈值时,为了提高光铜混合网络中码字资源的利用率,可以采用时分复用(time-division multiplexing,TDM)的方式对至少两路用户数据进行复用得到一路用户数据,以使得该至少两路用户数据在传输时分别占用一个信道的不同时隙。该占用同一信道的不同时隙的至少两路用户数据在调制时可以仅采用一个调制模块进行调制,在扩频时可以仅采用一个扩频码进行扩频,即时分复用后的一路用户数据仅占用一个调制模块以及一个码字资源,也即是,在该时分复用和CDMA调制结合的场景中,可以将一个调制模块和一个码字资源作为用户数据的资源调度粒度。在接收端,CDMA解码器可以采用对应的扩频码对该一路用户数据进行解码,然后可以通过解复用器从一个信道的不同时隙中提取出该至少两路用户数据。其中,网络设备对该至少两路用户数据进行时分复用时所依据的最小可分配时间粒度为至少两路用户信号对应的扩频码中长度最长的扩频码的码字周期,其中,该至少两路用户信号是网络设备对该至少两路用户数据分别进行调制(例如OFDM调制)后得到的。
示例的,图4是本发明实施例提供的一种光铜混合网络中带宽资源的划分示意图,如图4所示,可以将光铜混合网络中的带宽资源划分为两部分,其中横轴是时间资源,纵轴是码字资源。假设网络设备检测到的用户数据d1至d5的实时线路速率分别为200MHz,200MHz,50MHz,50MHz,400MHz,该第一阈值为5路用户数据的实时平均线路速率的1/3。则网络设备可以计算得到当前的第一阈值为60MHz。由于用户数据d3和d4的实时线路速率均小于该第一阈值,因此如图5所示,可以对该用户数据d3和d4进行时分复用后生成一路用户数据d3',该一路用户数据d3'可以由一个调制模块(例如图5中的NG.Tx发射机)进行调制(例如OFDM调制),并可以仅采用一个扩频码(例如扩频码C3)进行扩频,即该一路用户数据d3'仅占用一个调制模块和一个码字资源。
需要说明的是,在本发明实施例中,在对实时线路速率小于第一阈值的用户数据进行时分复用之前,还需要检测该实时线路速率小于第一阈值的N路用户数据中,每一路用户数据的传输类型。其中,每一路用户数据的传输类型可以包括:点对点传输和点对多点传输。由于通信协议中规定传输类型为点对点传输的用户数据必须使用一个扩频码进行扩频,因此网络设备可以对该N路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据;而对于传输类型为点对点传输的用户数据则不进行时分复用。
示例的,在光铜混合网络中,由于G.Fast用户数据的传输类型为点对点的传输,因此必须为每一路用户数据分配专门的调制模块和扩频码进行处理。而对于NG.Fast用户数据,由于其传输类型为点对多点传输,因此当网络设备检测有至少两路NG.Fast用户数据的实时线路速率小于第一阈值时,可以对该至少两路NG.Fast用户数据进行时分复用。
需要说明的是,网络设备在对N路用户数据进行时分复用时,还可以将该N路用户数据时分复用为M路用户数据(M为大于1的整数),即该N路用户数据时分复用后将占用M个调制模块和M个码字资源(也即是,需要采用M个扩频码进行扩频)。示例的,用户数据d3、用户数据d4和用户数据d5可以时分复用两个码字资源,即该三路用户数据进行时分复用后生成的数据,需要采用两个调制模块进行调制,并需要采用两个扩频码进行扩频。
步骤104、当存在任一路用户数据的实时线路速率大于第二阈值时,将实时线路速率大于第二阈值的用户数据划分为至少两路用户数据。
在本发明实施例中,对于实时线路速率较高的用户数据,还可以通过分割的方式将该用户数据划分为至少两路用户数据,该至少两路用户数据需使用两个发射机进行调制,并需要使用两个扩频码分别进行扩频,因此可以有效提高该用户数据的接入速率,进而改善光铜混合网络的性能。其中,该第二阈值可以大于该第一阈值。同样的,该第二阈值可以为网络设备中预设的一个固定值,也可以为网络设备根据至少两路用户数据当前的平均线路速率所确定的。例如,该第二阈值可以为至少两路用户数据当前的平均线路速率的1.5倍。接收端解调出由一路用户数据划分得到的至少两路用户数据后,可以采用绑定(bonding)的方式将该至少两路用户数据重新耦合,从而恢复出原始的用户数据。
示例的,假设网络设备检测到的用户数据d1至d5的实时线路速率分别为200MHz,200MHz,50MHz,50MHz,400MHz,第二阈值为该5路用户数据的实时平均线路速率的1.5倍,则网络设备可以确定当前的第二阈值为270MHz。由于用户数据d5的实时线路速率大于该第二阈值,因此如图5所示,网络设备可以将该用户数据d5划分为两路用户数据d4'和d5',该划分后的两路用户数据需要采用两个调制模块进行调制,并需要采用两个扩频码(例如扩频码C4和C5)分别进行扩频。在接收端,可以采用bonding的方式将该两路用户数据重新耦合,从而恢复出原始的用户数据d5。
还需要说明的是,在本发明实施例中,网络设备将实时线路速率大于第二阈值的用户数据划分为至少两路用户数据后,还可以对该划分后的部分用户数据进行时分复用,以生成一路用户数据。也即是,用户数据的划分,以及用户数据的时分复用可以结合使用,本发明实施例对此不作限定。示例的,如图4和图5所示,假设该网络设备接收到的用户数据还包括用户数据d6和用户数据d7,网络设备可以先采用分割的方式,将每一路用户数据分别划分为两路用户数据,然后再对划分得到的四路用户数据时分复用,得到两路用户数据d6'和d7'。相应的,在接收端,可以采用bonding和解复用的方式恢复出原始的用户数据d6和d7。
在本发明实施例中,局端设备的发射机001中的处理组件0011还可以包括动态带宽分配(DynamicBandwidthAllocation,DBA)模块,在下行场景(即局端设备向远端 节点发送数据的场景)中,上述步骤102至步骤104所示的方法可以由该DBA模块实现。通过DBA模块动态地分配时隙和码字资源,可以有效提高光铜混合网络的频谱宽度利用率和吞吐量。在光铜混合网络中的各路用户数据的总接入速率较低时,仅使用部分调制模块(例如图5所示的G.Tx发射机或者NG.Tx发射机)即可完成所有用户数据的调制,从而可以关闭多余的调制模块,达到节省资源的目的。同时,由于至少两路用户数据可以共享码字资源,从而有效降低了光铜混合网络中所需使用的扩频码的数量,扩频码数量的减少可以增大CDMA调制的增益,进而可以在一定程度上提高光铜混合网络的信噪比。
在上行场景(即远端节点向局端设备发送数据的场景)中,远端节点可以通过多种方式实现动态资源分配。一方面,远端节点接收到待发送的用户数据后,可以向局端设备发送请求消息,该请求消息中包括用户数据的实时线路速率,局端设备可以根据各个远端节点发送的请求消息,进行带宽资源的划分,并通过响应消息将划分结果反馈至各个远端节点,以便各个远端节点可以根据该划分结果进行用户数据的调制和扩频。另一方面,局端设备还可以已接收到的用户信号,预估下一调度周期内每一路用户数据的线路速率,并根据该预估的结果进行带宽资源的划分,然后将划分结果反馈至各个远端节点。再一方面,各个远端节点中还可以预先存储有带宽资源的配置信息,远端节点在处理用户数据时,可以直接根据该预先存储的配置信息进行处理。
此外,在本发明实施例中,参考图5可以看出,当光铜混合网络中的用户端设备升级为FTTH设备时,局端设备在对该FTTH设备的用户数据进行处理时,可以复用局端设备中原有的调制模块和CDMA调制器,而无需再对局端设备的硬件进行改进,有效提高了该光铜混合网络的兼容性。
步骤105、对每一路用户数据进行调制,得到至少两路用户信号。
在本发明实施例中,网络设备的发射机中可以配置有多个调制模块,每个调制模块可以用于对一路用户数据进行调制,每一路用户数据调制后对应得到一路用户信号。因此,对该至少两路用户数据分别进行调制后,可以得到对应的至少两路用户信号。其中,该调制可以为OFDM调制,该OFDM调制的具体过程可以参考上文的描述,此处不再赘述。当然,在实际应用中,除了可以采用OFDM调制,还可以采用QAM调制或者脉冲振幅调制(Pulse Amplitude Modulation,PAM)等调制技术,本发明实施例对此不做限定。
示例的,如图5所示,网络设备可以将经过TDM或者分割处理后的每一路用户数据分别传输至对应的OFDM调制模块中进行OFDM调制。从图5中还可以看出,对于不同类型的用户数据,需要采用不同类型的OFDM调制模块进行调制。例如,G.Fast用户数据可以通过G.Fast发射机G.Tx进行OFDM调制,而NG.Fast用户数据则需通过NG.Fast发射机NG.Tx进行OFDM调制。网络设备对该五路用户数据d1、d2、d3'、d4'和d5'分别进行调制后,可以得到D1至D5共五路用户信号。其中,用户信号D1和D2的频谱宽度为212MHz,用户信号D3至D5的频谱宽度为424MHz。
步骤106、确定该至少两路用户信号中每一路用户信号对应的扩频码。
进一步的,网络设备即可从预先存储的码表中确定每一路用户信号对应的扩频码,以便对每一路用户信号根据其所对应的扩频码进行扩频。其中每一路用户信号对应的 扩频码可以是网络设备根据预设的配置规则配置的,该配置的扩频码应当满足:扩频后的至少两路用户信号的码片速率(chips per second,cps)相等,并且,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交。此外,每一路用户信号所对应的扩频码的码字速率应大于其奈奎斯特频率(Nyquist frequency),不同用户信号所对应的扩频码的起始相位一致。
其中,码片速率是指单位时间内传输的码片的个数,而码片是指扩频后用户信号传输的基本单位,因此码片速率可以用于指示用户信号经过扩频后的传输速率。任一扩频码的码字速率可以是指码片速率与该扩频码中码字个数(即扩频码的长度)的商,任一扩频码的码字周期即为其码字速率的倒数。也即是,任一扩频码的码字周期可以是指码片周期(即码片速率的倒数)与该扩频码的长度的乘积,码字速率即为码字周期的倒数。例如,假设扩频后各路用户信号的码片速率为2cps,若某一路用户信号扩频时采用的扩频码的长度为4,则其码字速率可以为2/4=0.5码字每秒,其码字周期即为2秒。
根据上述分析可知,不同长度的扩频码的码字周期不同,且扩频码的长度越长,其码字周期也越长。为了保证接收端根据每一路用户信号对应的扩频码能够正确解调出该路用户信号,因此需要保证在任一用户信号采用的扩频码的码字周期内,任意两路用户信号所采用的扩频码或者扩频码片段相互正交。例如,假设一路用户信号对应的第一扩频码为[-1 1],另一路用户信号对应的第二扩频码为[1 1 1 1],则在该第一扩频码的码字周期内,第二扩频码只能传输一半的扩频码片段[1 1],该扩频码片段[1 1]与第一扩频码[-1 1]正交;而在该第二扩频码的码字周期内,可以传输两个第一扩频码,该两个第一扩频码组成的扩频码片段[-1 1 -1 1]与该第二扩频码[1 1 1 1]正交。
在本发明实施例第一种可选的实现方式中,网络设备在为每一路用户信号分配扩频码时,至少两路用户信号对应的扩频码中,可以存在长度不同的扩频码;并且任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。即网络设备在分配扩频码时,可以先为带宽较宽的用户信号分配长度较短的扩频码,并为带宽较窄的用户信号分配长度较长的扩频码,以保证系统中码字资源的利用率。一方面,若系统码字资源充足,则相同频谱宽度的用户信号所对应的扩频码的长度可以相同,且不同频谱宽度的用户信号所对应的扩频码的长度可以不同。另一方面,若系统中长度较长的扩频码的码字资源不足,则网络设备也可以为带宽较窄的用户信号分配长度较短的扩频码,也即是,相同带宽的多路用户信号所对应的扩频码的长度也可以不同。具体的,若网络设备待处理的每一路用户信号均为数字信号,则网络设备可以对至少两路用户信号中的部分用户信号进行采样率变换处理,使得该部分用户信号的采样率相同;之后,网络设备可以为该经过采样率变换处理后的部分用户信号分配相同长度的扩频码;对于其他未经过采样率变换处理的用户信号,网络设备可以优先为频谱宽度较窄的用户信号分配码字长度较长的扩频码,并为频谱宽度较宽的用户信号分配码字长度较短的扩频码。
对于系统码字资源充足的情况,网络设备可以根据频谱宽度的不同,将该至少两路用户信号划分为至少两组用户信号,然后可以以用户信号组为单位,分别确定每组用户信号中每一路用户信号对应的扩频码。其中,每组用户信号内的各个用户信号的频 谱宽度相同,且属于不同组的用户信号之间的频谱宽度不同。例如,网络设备对用户数据进行调制后得到的五路用户信号中,用户信号D1和D2可以划分为一组,用户信号D3至D5可以划分为一组,该两组用户信号之间的频谱宽度的比值为2。
进一步的,网络设备在选取扩频码时,可以直接从预先存储的码表中确定每组用户信号中与每一路用户信号对应的扩频码,该码表中可以包括多个长度不同的扩频码。网络设备所选取的扩频码可以满足以下条件:任意两组用户信号中的第一组用户信号对应的扩频码和第二组用户信号对应的扩频码的长度比值,与该第一组用户信号对应的频谱宽度和该第二组用户信号对应的频谱宽度的比值互为倒数,即扩频码的长度与用户信号的频谱宽度可以负相关。并且,属于同一组用户信号的任意两路用户信号对应的扩频码相互正交。并且,任意两组用户信号中,频谱宽度较窄的一组用户信号中每一路用户信号对应的扩频码可以按照频谱宽度较窄的一组用户信号对应的扩频码的码字周期,划分为多个扩频码片段,每个扩频码片段的长度与频谱宽度较宽的一组用户信号对应的扩频码的长度相等,且每个扩频码片段与频谱宽度较宽的一组用户信号中每一路用户信号对应的扩频码正交,由此可以保证在解调频谱宽度较窄的用户信号时,能够消除该频谱宽度较宽的一组用户信号中每一路用户信号的干扰。反之,在频谱宽度较窄的用户信号对应的扩频码的码字周期内,频谱宽度较宽的一组用户信号中,每一路用户信号所对应的扩频码能够传输若干个,该若干个扩频码组成的扩频码片段与频谱宽度较宽的一组用户信号中每一路用户信号对应的扩频码也相互正交。
示例的,假设第一组用户信号包括用户信号S1,第二组用户信号包括用户信号S2,用户信号S2的频谱宽度为用户信号S1的频谱宽度的两倍。则网络设备为第一组用户信号中用户信号S1选取的扩频码的长度可以4,为第二组用户信号中用户信号S2选取的扩频码的长度可以为2。并且,该用户信号S1对应的扩频码可以划分为两个扩频码片段,每个扩频码片段的长度为2,且每个扩频码片段与用户信号S2对应的扩频码均正交;并且,在用户信号S1对应的扩频码的码字周期内,用户信号S2对应的扩频码能够传输两个,该两个扩频码组成的扩频码片段与该用户信号S1对应的扩频码正交。例如,该用户信号S1对应的扩频码可以为[1 -1 -1 1],该用户信号S2对应的扩频码可以为[1 1]。对比该两个扩频码可以看出,用户信号S1对应的扩频码[1 -1 -1 1]可以划分为两个扩频码片段[1 -1]和[-1 1],该两个扩频码片段均与用户信号S2对应的扩频码[1 1]正交,由此可以保证对用户信号S1的正确解调。反之,在扩频码[1 -1 -1 1]的码字周期内,可以传输两个扩频码[1 1],该两个扩频码组成的扩频码片段[1 1 1 1]与扩频码[1 -1 -1 1]正交。
进一步的,在本发明实施例中,网络设备中预先存储的码表中可以包括至少一个哈达玛(Hadamard)矩阵。相应的,网络设备在确定每一路用户信号对应的扩频码时,可以从该至少一个哈达玛矩阵中的一个哈达玛矩阵中,获取一行元素作为对应的扩频码,并且应当保证为各路用户信号选取的扩频码互不相同。
可选的,网络设备中预先存储的码表中可以包括为每一组用户信号对应配置的哈达玛矩阵,其中任意两组用户信号对应的哈达玛矩阵的矩阵阶数比值与频谱宽度比值可以互为倒数,也即是,频谱宽度越窄的用户信号组对应的哈达玛矩阵的阶数越高。在实际应用中,网络设备在为每组用户信号配置对应的哈达玛矩阵时,可以根据该网络 设备所需处理的用户信号的总组数,每组用户信号的总路数,以及各组用户信号之间的频谱宽度比确定每组用户信号对应的哈达玛矩阵。
其中,哈达玛矩阵的阶数为2的正整数次幂,且2阶哈达玛矩阵A满足:
Figure PCTCN2017104273-appb-000001
2M(M为大于1的整数)阶哈达玛矩阵的生成规律如下:
Figure PCTCN2017104273-appb-000002
从公式(2)可以看出,每个哈达玛矩阵中,任意两行元素相互正交,因此可以将哈达玛矩阵中的一行元素作为一路用户信号对应的扩频码。
参考上述公式(1)和公式(2)可以看出,对于2M-1阶哈达玛矩阵中的第j(j为不大于2M-1的正整数)行元素,2M阶哈达玛矩阵的子矩阵AM-1中的第j行元素与该2M-1阶哈达玛矩阵中的第j行元素相同,两者不正交;相应的,2M阶哈达玛矩阵的子矩阵‐AM-1中的第j行元素与该2M-1阶哈达玛矩阵中的第j行元素也不正交。也即是,网络设备在2M-1阶哈达玛矩阵中每选取一行元素作为一路用户信号对应的扩频码,2M阶哈达玛矩阵中就有对应的两行元素无法再被选为扩频码,而其他行的元素由于还满足正交性,因此可以被选为扩频码。例如,若该2M阶哈达玛矩阵中的第k行元素被选为扩频码(k为不大于2M的正整数,且k≠j),则根据哈达玛矩阵的生成规律可知,该第k行元素可以划分为两个扩频码片段,每个扩频码片段均与2M-1阶哈达玛矩阵中的第j行元素正交;或者,将该2M-1阶哈达玛矩阵中的第j行元素复制一次后得到的扩频码片段与该2M阶哈达玛矩阵中的第k行元素也正交。
根据上述分析可知,哈达玛矩阵的生成规律符合网络设备选取扩频码时的选取规律,因此网络设备可以将该哈达玛矩阵中的元素作为扩频码。当然,在实际应用中,除了哈达玛矩阵之外,网络设备还可以选取其他符合条件的码字资源作为扩频码,本发明实施例对此不做限定。
示例的,假设网络设备接收到的两组用户信号中,第一组用户信号包括用户信号S1,第二组用户信号包括用户信号S2,且第一组用户信号对应的频谱宽度为第二组用户信号对应的频谱宽度的一半,该第一组用户信号的采样频率也是第二组用户信号的采样频率的一半。并且,该第二组用户信号对应的哈达玛矩阵为二阶哈达玛矩阵A,该第一组用户信号对应的哈达玛矩阵为四阶哈达玛矩阵A2。该两路用户信号在经过调制后,以该第一组用户信号的采样周期为单位时间,则用户信号S1在该单位时间内的采样点幅值是X1,而用户信号S2在单位时间内有两个采样点,其幅值分别是Y1和Y2。网络设备可以选取二阶哈达玛矩阵A中的一行元素作为作为用户信号S2的扩频码。例如可以取二阶哈达玛矩阵A中的第一行元素[1 1]作为用户信号S2的扩频码,用来对该单位时间内的采样点Y1和Y2进行扩频。而对于第一组用户信号中的用户信号S1,可以从四阶哈达玛矩阵A2中选取一行元素作为扩频码,并且需要保证选取的一行元素划分为两个长度为2的扩频码片段后,每个扩频码片段与用户信号S1对应的扩频码[1 1]均正交。由于四阶哈达玛矩阵A2的4行元素中,[-1 -1 1 1]和[1 1 1 1]中每行元素划分得到的两个扩频码片段与用户信号S2对应的扩频码[1 1]均不正交,如果采 用该两行元素中的任一个作为用户信号S1的扩频码,则在对用户信号S1解调的过程中将无法消除用户信号S2的串扰,因此不能选用该两行元素作为用户信号S1的扩频码。相应的,网络设备可以从四阶哈达玛矩阵A2中选取[1 -1 -1 1]或者[-1 1 -1 1]作为用户信号S1对应的扩频码。
若网络设备接收到的两组用户信号中,第一组用户信号包括D1和D2,第二组用户信号包括D3至D5,且第一组用户信号对应的频谱宽度为第二组用户信号对应的频谱宽度的一半,则网络设备在为该两组用户信号配置对应的哈达玛矩阵时,可以确定第一组用户信号对应的哈达玛矩阵的阶数可以为第二组用户信号对应的哈达玛矩阵的阶数的两倍。例如该网络设备为第一组用户信号配置的哈达玛矩阵可以为16阶哈达玛矩阵A4,为第二组用户信号配置的哈达玛矩阵可以为8阶哈达玛矩阵A3
进一步的,网络设备在为每一路用户信号选取扩频码时,可以从该8阶哈达玛矩阵A3中选取三行元素分别作为用户信号D3至D5对应的扩频码。例如可以选取哈达玛矩阵A3中的前三行元素分别作为用户信号D3至D5对应的扩频码,即用户信号D3对应的扩频码C3可以为[1 1 1 1 1 1 1 1],用户信号D4对应的扩频码C4可以为[-1 1 -1 1 -1 1 -1 1],用户信号D5对应的扩频码C5可以为[-1 -1 1 1 -1 -1 1 1]。同理,网络设备可以从16阶哈达玛矩阵A4中选取2行元素分别作为用户信号D1和D2对应的扩频码。在选取过程中,需要保证从矩阵A4中选取的每一行元素可以划分为两个长度为8的扩频码片段,每个扩频码片段与用户信号D3至D5中任一用户信号对应的扩频码正交。例如,网络设备可以选取[-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1]作为用户信号D1对应的扩频码C1,选取[1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1]作为用户信号D2对应的扩频码C2。其中,用户信号D1对应的扩频码C1可以划分为两个相同的扩频码片段:[-1 -1 -1 -1 1 1 1 1],该扩频码片段与扩频码C3至C5均正交;用户信号D2对应的扩频码C2可以划分为两个扩频码片段:[1 -1 -1 1 1 -1 -1 1]和[-1 1 1 -1 -1 1 1 -1],该两个扩频码片段中的每个扩频码片段与扩频码C3至C5均正交。并且,在该扩频码C1或者扩频码C2的码字周期内,扩频码C3至C5中的每个扩频码可以传输两次,该扩频码C3至C5中的每个扩频码复制一次后得到的扩频码片段与该扩频码C1和扩频码C2均正交。
在本发明实施例第二种可选的实现方式中,网络设备为该至少两路用户信号分配的扩频码中,任意两路用户信号对应的扩频码的长度可以相等,且任意两路用户信号对应的扩频码相互正交。假设该调制后的每一路用户信号为数字信号,则参考图6,网络设备在确定每一路用户信号对应的扩频码之前,还可以进行如下操作:
步骤1061、将至少两组用户信号中频谱宽度最宽的一组确定为目标用户信号组。
示例的,网络设备可以将第二组用户信号确定为目标用户信号组,该目标用户信号组对应的频谱宽度为424MHz。
步骤1062、对该至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理。
在本发明实施例中,网络设备可以根据该目标用户信号组对应的频谱宽度,对其他每组用户信号中的每一路用户信号进行采样率变换处理,使得处理后的每一路用户信 号的采样率与该目标用户信号组的采样率相同。也即是,若以频谱宽度最窄的用户信号的采样周期为单位时间,则在经过该采样率变换处理后,各路用户信号在该单位时间内的采样点数相等。
可选的,在进行该采样率变换处理时,可以对该其他每组用户信号中的每一路用户信号进行插值处理,例如,可以对每一路用户信号在单位时间内的采样点进行插值,使得插值处理后,各路用户信号在单位时间内的采样点数相同。由于调制后的每一路用户信号在单位时间内的初始采样点数一般与其频谱宽度正相关,因此在该采样率变换处理的过程中,每组用户信号对应的频谱宽度越窄,该组用户信号中每一路用户信号所需插值的采样点数也越多。
示例的,假设第一组用户信号对应的频谱宽度为212MHz,目标用户信号组对应的频谱宽度424MHz与该第一组用户信号对应的频谱宽度212MHz的比值为2。如果以该第一组用户信号的采样周期为单位时间,则该目标用户信号组在该单位时间内的采样点数为2。因此网络设备可以对该第一组用户信号中用户信号D1在单位时间内的采样点X进行插值,得到[X X],并对用户信号D2在单位时间内的采样点Y进行插值,得到[Y Y]。用户信号D1和D2中的采样点经过插值后,该5路用户信号在单位时间内的采样点数均为2。
若网络设备接收到的两组用户信号中,第一组用户信号包括用户信号S1,第二组用户信号包括用户信号S2,且第一组用户信号对应的频谱宽度为第二组用户信号对应的频谱宽度的一半,该两路用户信号经过调制后,用户信号S1在单位时间内的采样点幅值是X1,而用户信号S2在单位时间内有两个采样点,其幅值分别是Y1和Y2。则网络设备可以对用户信号S1在单位时间内的采样点X1进行插值,得到[X1 X1]。
进一步的,网络设备即可对该目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别配置一个扩频码。可选的,对于每一路用户信号,网络设备可以从预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。网络设备中预先配置的哈达玛矩阵的阶数可以大于或等于该网络设备所连接的用户设备的数量。
由于哈达玛矩阵中任意两行元素相互正交,因此对于每一路用户信号,网络设备可以直接从该预先配置的哈达玛矩阵中选取一行元素作为对应的扩频码,且只要保证每一路用户信号对应的扩频码不同即可。由于网络设备为每一路用户信号分配的扩频码的长度均相等,因此可以有效提高扩频处理的效率。
示例的,假设网络设备所连接的用户设备的数量为7,网络设备中预先配置的哈达玛矩阵为8阶哈达玛矩阵C。若当前网络设备接收到的用户信号的总路数为5,则网络设备可以从8阶哈达玛矩阵C中随机选取或者顺序选取五行元素分别作为该5路用户信号D1,D2以及D3至D5对应的扩频码。或者,假设网络设备所连接的用户设备的数量为2,网络设备中预先配置的哈达玛矩阵为2阶哈达玛矩阵A,若当前网络设备接收到的用户信号的总路数为2,则网络设备可以将哈达玛矩阵A中的两行元素分别确定为用户信号S1和S2对应的扩频码。
步骤107、采用扩频码对调制后的每一路用户信号进行扩频。
在本发明实施例中,网络设备确定每一路用户信号对应的扩频码之后,即可对调制 后的每一路用户信号按照对应的扩频码进行扩频。例如,网络设备可以通过发射机中的CDMA调制器确定每一路用户信号对应的扩频码,并对每一路用户信号采用对应的扩频码进行扩频处理。
示例的,假设用户信号S1对应的扩频码为[1 -1 -1 1],用户信号S2对应的扩频码为[1 1],则网络设备可以采用扩频码[1 -1 -1 1]对用户信号S1在单位时间内的采样点X1进行扩频处理,得到码片序列[X1 –X1 –X1 X1],该码片序列在单位时间内所包括的码片个数为4。同时,网络设备可以采用扩频码[1 1]对用户信号S2在单位时间内的两个采样点Y1和Y2分别进行扩频。其中对采样点Y1进行扩频后可以得到码片序列[Y1 Y1],对采样点Y2进行扩频后可以得到码片序列[Y2 Y2]。因此,该用户信号S2扩频后在单位时间内的码片序列为[Y1 Y1 Y2 Y2],该码片序列所包括的码片个数也为4,由此可以看出,该两路用户信号S1和S2扩频后在单位时间内可传输的码片的个数相等,即两路用户信号的码片速率相等。
若用户信号S1对应的扩频码为[1 1],用户信号S2对应的扩频码为[-1 1],且用户信号S1经过了采样率变换处理,则网络设备可以采用该扩频码[1 1]对用户信号S1在单位时间内的两个采样点[X1 X1]分别进行扩频,得到码片序列[X1 X1 X1 X1]。同时,网络设备可以采用扩频码[-1 1]对用户信号S2在单位时间内的两个采样点Y1和Y2分别进行扩频,得到码片序列[-Y1 Y1-Y2 Y2],该两路用户信号扩频后的码片速率相等。
图7是本发明实施例提供的又一种光铜混合网络中用户信号处理的算法框图。如图7所示,假设该局端设备对两路用户数据进行调制后得到的用户信号S1的频谱宽度为212MHz,用户信号S2的频谱宽度为424MHz。之后,局端设备可以对经过OFDM调制后的用户信号S1进行采样率变换处理,例如可以对用户信号S1在单位时间内的采样点X1进行插值,得到采样序列[X1 X1],然后再与其对应的扩频码C8:[-1 1 -1 1]相乘,得到码片序列[-X1 X1 -X1 X1 -X1 X1 -X1 X1]。而对于用户信号S2,则可以直接将其在单位时间内的每个采样点与其对应的扩频码C9:[-1 -1 1 1]相乘,得到码片序列[-Y1 -Y1 Y1 Y1 -Y2 -Y2 Y2 Y2],该两路用户信号扩频码后的码片速率相等。从频谱的角度来看,由于该两路用户信号都是进行4倍的扩频,因此用户信号S1与扩频码相乘后的频谱宽度变为212*4=848MHz,而用户信号S2经过与扩频码相乘后的频谱宽度变为424*4=1696MHz。两个扩频后的用户信号在时域上进行叠加,再通过电光转换后即可生成光信号,该光信号可以由光纤传输到远端节点。
步骤108、将扩频后的至少两路用户信号叠加后发送。
进一步的,如图5所示,网络设备可以采用加法器Σ将扩频后的至少两路用户信号进行叠加,将叠加后的信号通过电光转换器由电信号转换为光信号,然后通过光纤将该光信号发送至接收端。接收端对该光信号进行光电转换处理得到电信号后,即可采用每一路用户信号对应的扩频码,对该每一路用户信号分别进行CDMA解调,例如可以采用扩频码C8对用户信号S1进行解调,并采用扩频码C9对用户信号S2进行解调。若该接收端为远端节点,则远端节点通过CDMA解码器完成对用户信号的解扩后,需要通过铜线将每一路用户信号发送至对应的用户端设备,用户端设备中配置有解调模块(例如图7中,G.Fast设备中的解调模块可以为G.Fast接收机G.Rx,NG.Fast设备中的解调模块可以为NG.Fast接收机NG.Rx),该基带解调模块用于对接收到的信号 进行解调(例如OFDM解调),以恢复出原始的用户数据。若该接收端为局端设备,在该局端设备中的接收机中即可配置有解调模块,局端设备可以直接通过该解调模块对该CDMA解码后的信号进行解调,从而恢复出原始用户数据。
示例的,一方面,假设用户信号S1采用扩频码[1 -1 -1 1]扩频后,在单位时间内的码片序列为[X1 –X1 –X1 X1],用户信号S2采用扩频码[1 1]扩频后,在单位时间内的码片序列为[Y1 Y1 Y2 Y2],则网络设备将该两路用户信号进行叠加后,得到的叠加信号在单位时间内的码片序列为[X1+Y1 –X1+Y1 –X1+Y2 X1+Y2]。
接收端对用户信号S1进行解扩时,可以将单位时间内的码片序列[X1+Y1 –X1+Y1 –X1+Y2 X1+Y2]与用户信号S1对应的扩频码[1 -1 -1 1]相乘,即可恢复出用户信号S1在单位时间内的采样点,该采样点的幅值为4X1;接收端对用户信号S2进行解扩时,可以将单位时间内的码片序列[X1+Y1 –X1+Y1 –X1+Y2 X1+Y2]中的前两个采样点[X1+Y1 –X1+Y1]和后两个采样点[–X1+Y2 X1+Y2]分别与用户信号S2对应的扩频码[1 1]相乘,即可恢复出用户信号S2在单位时间内的两个采样点,该两个采样点的幅值分别为2Y1和2Y2。虽然恢复出的采样点的幅值发生变化,但不会影响用户信号的正常接收。
另一方面,假设用户信号S1经过采样率变换处理并采用扩频码[1 1]扩频后,在单位时间内的码片序列为[X1 X1 X1 X1],用户信号S2采用扩频码[-1 1]扩频后,在单位时间内的码片序列为[-Y1 Y1 -Y2 Y2],则网络设备将该两路用户信号进行叠加后,得到的叠加信号在单位时间内的码片序列为[X1-Y1 X1+Y1 X1-Y2 X1+Y2]。
接收端对用户信号S1进行解扩时,可以将单位时间内的码片序列[X1-Y1 X1+Y1 X1-Y2 X1+Y2]中的前两个码片和后两个码片分别与用户信号S1对应的扩频码[1 1]相乘,即可恢复出用户信号S1在单位时间内的采样点[2X1 2X1],接收端再按照该用户信号S1的初始采样频率(即采样率变换之前的采样率)对该单位时间内的采样点[2X1 2X1]进行采样,即可获取到一个采样点2X1;接收端对用户信号S2进行解扩时,可以将单位时间内的码片序列[X1-Y1 X1+Y1 X1-Y2 X1+Y2]中的前两个码片和后两个码片分别与分别与用户信号S2对应的扩频码[-1 1]相乘,即可恢复出用户信号S2在单位时间内的采样点2Y1和2Y2。
此外,若网络设备在发送用户信号时,对至少两路用户数据进行了时分复用,则接收端接收到光信号,并对该光信号进行光电转换得到电信号后,可以先通过CDMA解码器将该电信号与对应的扩频码相乘以进行CDMA解码,然后再通过解调模块进行解调,最后通过解复用器对该解调后的信号进行时分解复用,恢复出该至少两路用户数据。例如,接收端可以将用户信号D3与扩频码C3相乘以进行CDMA解码,然后再将该CDMA解码后的信号进行OFDM解调,最后再对该解调后的信号进行时分解复用,得到用户数据d3和d4。若网络设备在发送用户信号时,对某一路用户数据进行了分割,则接收端需要在完成解调后再通过bonding的方式,对两路用户数据进行耦合,以恢复出原始的用户数据。其中,若该接收端为远端节点,则上述解调,以及时分解复用或者bonding的处理操作可以在用户端设备中进行。
需要说明的是,本发明实施例提供的信号处理方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,例如,步骤102至步骤104可以根据情况 删除。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本申请提供的信号处理方法,网络设备获取到至少两路频谱宽度不完全相同的用户信号后,可以根据每一路用户信号对应的扩频码对每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,并且在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交,由此可以保证接收端能正确解调出每一路用户信号。在光铜混合网络中采用本申请提供的信号处理方法后,可以对网络中不同频谱宽度的用户信号进行处理,该信号处理方法的灵活性较高。
图8是本发明实施例提供的一种信号处理装置的结构示意图,该信号处理装置可以用于实现上述图3所示实施例提供的信号处理方法,参考图8,该装置可以包括:
调制模块201,用于对接收到的至少两路用户数据中的每一路用户数据进行调制,每一路用户数据调制后对应得到一路用户信号,调制后得到的至少两路用户信号中存在频谱宽度不同的用户信号。
第一确定模块202,用于确定每一路用户信号对应的扩频码。
扩频模块203,用于根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,其中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交。
发送模块204,用于将扩频后的至少两路用户信号叠加后发送。
可选的,该至少两路用户信号对应的扩频码中,存在长度不同的扩频码;任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。
可选的,任意两路用户信号对应的扩频码的长度相等,且任意两路用户信号对应的扩频码相互正交。
可选的,每一路用户信号为数字信号,该至少两路用户信号包括至少两组用户信号,每组用户信号内的各个用户信号的频谱宽度相同,属于不同组的用户信号之间的频谱宽度不同,参考图9,该装置还可以包括:
处理模块205,用于对该至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理,使得处理后的每一路用户信号的采样率与该目标用户信号组的采样率相同,该目标用户信号组为频谱宽度最宽的一组用户信号。
该扩频模块203可以用于:对该目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别按照对应的扩频码进行扩频。
可选的,该扩频模块203可以用于:对于每一路用户信号,从预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。
图10是本发明实施例提供的又一种信号处理装置的结构示意图,参考图10,该装置还可以包括:
第二确定模块206,用于实现上述图3所示实施例中步骤102所示的方法。
复用模块207,用于实现上述图3所示实施例中步骤103所示的方法。
可选的,该复用模块207可以用于:
检测该实时线路速率小于第一阈值的N两路用户数据中,每一路用户数据的传输类型,该传输类型包括:点对点传输和点对多点传输;
对该实时线路速率小于第一阈值的N两路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据,该N为大于或等于2的整数。
可选的,如图10所示,该装置还可以包括:
分割模块208,用于实现上述图3所示实施例中步骤104所示的方法。
综上所述,本申请提供的信号处理装置在对每一路用户信号进行扩频后,至少两路用户信号的码片速率相等,并且在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交,由此可以保证接收端能正确解调出每一路用户信号。在光铜混合网络中采用本申请提供的信号处理方法后,可以对网络中不同频谱宽度的用户信号进行处理,该信号处理方法的灵活性较高。
本发明实施例还提供了一种信号处理系统,该系统可以包括:网络设备和接收端,该网络设备可以包括如图2-3、图8至图10任一所示的信号处理装置。
可选的,该系统可以应用于图1所示的光铜混合网络中,该系统中的网络设备可以为局端设备和远端节点中的任一设备。当该网络设备为局端设备时,接收端可以为远端节点;当该网络设备为远端节点时,接收端可以为局端设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质,或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    网络设备对接收到的至少两路用户数据中的每一路用户数据进行调制,所述每一路用户数据调制后对应得到一路用户信号,调制后得到的至少两路用户信号中存在频谱宽度不同的用户信号;
    确定每一路用户信号对应的扩频码;
    根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,其中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交;
    将扩频后的至少两路用户信号叠加后发送。
  2. 根据权利要求1所述的方法,其特征在于,
    所述至少两路用户信号对应的扩频码中,存在长度不同的扩频码;
    任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。
  3. 根据权利要求1所述的方法,其特征在于,
    任意两路用户信号对应的扩频码的长度相等,且任意两路用户信号对应的扩频码相互正交。
  4. 根据权利要求3所述的方法,其特征在于,每一路用户信号为数字信号,所述至少两路用户信号包括至少两组用户信号,每组用户信号内的各个用户信号的频谱宽度相同,属于不同组的用户信号之间的频谱宽度不同,在根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频之前,所述方法还包括:
    对所述至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理,使得处理后的每一路用户信号的采样率与所述目标用户信号组的采样率相同,所述目标用户信号组为频谱宽度最宽的一组用户信号;
    所述根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,包括:
    对所述目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别按照对应的扩频码进行扩频。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述确定每一路用户信号对应的扩频码,包括:
    对于每一路用户信号,从预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。
  6. 根据权利要求1至4任一所述的方法,其特征在于,在对每一路用户数据进行调制之前,所述方法还包括:
    确定每一路用户数据的实时线路速率;
    当存在N路用户数据的实时线路速率小于第一阈值时,对实时线路速率小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据,其中,所述N为大于或等于2的整数,时分复用时所依据的最小可分配时间粒度为所述至少两路用户信号对应的扩频码中长度最长的扩频码的码字周期。
  7. 根据权利要求6所述的方法,其特征在于,所述对实时频谱宽度小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据,包括:
    检测所述实时线路速率小于第一阈值的N路用户数据中,每一路用户数据的传输类型,所述传输类型包括:点对点传输和点对多点传输;
    对所述实时线路速率小于第一阈值的N路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据。
  8. 根据权利要求6所述的方法,其特征在于,在确定每一路用户数据的实时线路速率之后,所述方法还包括:
    当存在任一路用户数据的实时线路速率大于第二阈值时,将实时线路速率大于第二阈值的用户数据划分为至少两路用户数据,所述第二阈值大于所述第一阈值。
  9. 一种信号处理装置,其特征在于,所述装置包括:
    调制模块,用于对接收到的至少两路用户数据中的每一路用户数据进行调制,所述每一路用户数据调制后对应得到一路用户信号,调制后得到的至少两路用户信号中存在频谱宽度不同的用户信号;
    第一确定模块,用于确定每一路用户信号对应的扩频码;
    扩频模块,用于根据每一路用户信号对应的扩频码对调制后得到的每一路用户信号进行扩频,使得扩频后的至少两路用户信号的码片速率相等,其中,在任一路用户信号对应的扩频码的码字周期内,任意两路用户信号扩频时所使用的扩频码或者扩频码片段相互正交;
    发送模块,用于将扩频后的至少两路用户信号叠加后发送。
  10. 根据权利要求9所述的装置,其特征在于,
    所述至少两路用户信号对应的扩频码中,存在长度不同的扩频码;
    任意两个长度不同的扩频码中,长度较长的扩频码所对应的用户信号的频谱宽度小于长度较短的扩频码所对应的用户信号的频谱宽度。
  11. 根据权利要求9所述的装置,其特征在于,
    任意两路用户信号对应的扩频码的长度相等,且任意两路用户信号对应的扩频码相互正交。
  12. 根据权利要求11所述的装置,其特征在于,每一路用户信号为数字信号,所述至少两路用户信号包括至少两组用户信号,每组用户信号内的各个用户信号的频谱 宽度相同,属于不同组的用户信号之间的频谱宽度不同,所述装置还包括:
    处理模块,用于对所述至少两组用户信号中,除目标用户信号组之外的其他每组用户信号中的每一路用户信号分别进行采样率变换处理,使得处理后的每一路用户信号的采样率与所述目标用户信号组的采样率相同,所述目标用户信号组为频谱宽度最宽的一组用户信号;
    所述扩频模块,用于:
    对所述目标用户信号组中调制后的每一路信号,以及其他每组用户信号中采样率变换处理后的每一路信号,分别按照对应的扩频码进行扩频。
  13. 根据权利要求9至12任一所述的装置,其特征在于,所述扩频模块,用于:
    对于每一路用户信号,从预先配置的哈达玛矩阵中获取一行元素作为对应的扩频码。
  14. 根据权利要求9至12任一所述的装置,其特征在于,所述装置还包括:
    第二确定模块,用于确定每一路用户数据的实时线路速率;
    复用模块,用于当存在N路用户数据的实时线路速率小于第一阈值时,对实时线路速率小于第一阈值的N路用户数据中,至少两路用户数据进行时分复用后生成一路用户数据,所述N为大于或等于2的整数。
  15. 根据权利要求14所述的装置,其特征在于,所述复用模块,用于:
    检测所述实时线路速率小于第一阈值的N路用户数据中,每一路用户数据的传输类型,所述传输类型包括:点对点传输和点对多点传输;
    对所述实时线路速率小于第一阈值的N路用户数据中,传输类型为点对多点传输的至少两路用户数据进行时分复用后生成一路用户数据。
  16. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    分割模块,用于当存在任一路用户数据的实时线路速率大于第二阈值时,将实时线路速率大于第二阈值的用户数据划分为至少两路用户数据,所述第二阈值大于所述第一阈值。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述计算机可读存储介质在计算机上运行时,使得计算机执行权利要求1至8任一所述的信号处理方法。
  18. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1至8任一所述的信号处理方法。
  19. 一种信号处理系统,其特征在于,所述系统包括:
    网络设备,所述网络设备包括如权利要求9至16任一所述的信号处理装置。
PCT/CN2017/104273 2017-09-29 2017-09-29 信号处理方法、装置及系统 WO2019061258A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104273 WO2019061258A1 (zh) 2017-09-29 2017-09-29 信号处理方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104273 WO2019061258A1 (zh) 2017-09-29 2017-09-29 信号处理方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019061258A1 true WO2019061258A1 (zh) 2019-04-04

Family

ID=65903823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104273 WO2019061258A1 (zh) 2017-09-29 2017-09-29 信号处理方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2019061258A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545339A (zh) * 2003-11-13 2004-11-10 西安交通大学 基于扰码的cdma—blast空时编码发射与接收方法
CN101222460A (zh) * 2007-12-24 2008-07-16 北京邮电大学 一种新的频域均衡联合部分并行干扰消除接收方法
CN101702704A (zh) * 2009-11-16 2010-05-05 清华大学 时域同步的多载波扩频收发方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1545339A (zh) * 2003-11-13 2004-11-10 西安交通大学 基于扰码的cdma—blast空时编码发射与接收方法
CN101222460A (zh) * 2007-12-24 2008-07-16 北京邮电大学 一种新的频域均衡联合部分并行干扰消除接收方法
CN101702704A (zh) * 2009-11-16 2010-05-05 清华大学 时域同步的多载波扩频收发方法、装置及系统

Similar Documents

Publication Publication Date Title
US8000604B2 (en) Orthogonal frequency division multiple access (OFDMA) based passive optical network (PON) architecture and its extension to long distance
US10333752B2 (en) Guard-band for scaled numerology multiplexing
FI123211B (fi) Monipiste-pisteeseen tietoliikennejärjestelmä
US8238303B2 (en) Method and apparatus of allocating subcarriers in an orthogonal frequency division multiplexing system
CN107148771B (zh) 向多个接收器设备发送数据的方法、发送器和接收器设备
RU2617439C2 (ru) Структура пилот-сигнала восходящей линии связи в системе связи с ортогональным мультиплексированием с частотным разделением точка-многоточка
KR101452551B1 (ko) 기지국 장치, 이동국 장치, 무선 통신 시스템, 파일럿 채널 생성 방법 및 안테나 선택 방법
JP6127434B2 (ja) Ponシステム及びサブキャリア割当方法
WO2013184834A2 (en) Method and apparatus of building a coaxial convergence layer in ethernet passive optical network (pon) over coaxial network (epoc)
CN106464554B (zh) 用于通过有线共享介质向多个用户进行数据传输的分配点单元以及方法和系统
US20140362869A1 (en) Network node transmission method, apparatus, and system
WO2015127706A1 (zh) Osd系统中的线路同步方法、系统及矢量化控制实体
EP3203696A1 (en) Registration method, device and system
CN105122835B (zh) 通信系统中的突发标记物方案
CN105245482B (zh) 一种ofdm-pon上行链路时间同步方法
WO2019157795A1 (zh) 一种通信方法、装置及系统
WO2019061258A1 (zh) 信号处理方法、装置及系统
JP5692344B1 (ja) 局舎端末、光アクセスネットワーク及び通信方法
CN104737480A (zh) 多载波分复用系统的方法和装置
WO2014090043A1 (zh) Ofdm-pon系统及时钟信号的发送和提取方法
CN103036843A (zh) Pon局端的信号调制方法及用户端的信号解调方法
KR19990051722A (ko) 멀티캐리어 변조방식을 이용한 직접확산-코드분할 다중접속 방법
CN110266391B (zh) 光通信方法、光通信设备和计算机可读存储介质
Jin et al. Experimental Demonstrations of Point-to-Multipoint Flexible Optical Transceiver-Enabled Concurrent Direct Inter-ONU and Upstream Communications in IMDD PONs
García-Álvarez Time–Frequency Channel Assignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926395

Country of ref document: EP

Kind code of ref document: A1