WO2015127706A1 - Osd系统中的线路同步方法、系统及矢量化控制实体 - Google Patents

Osd系统中的线路同步方法、系统及矢量化控制实体 Download PDF

Info

Publication number
WO2015127706A1
WO2015127706A1 PCT/CN2014/074456 CN2014074456W WO2015127706A1 WO 2015127706 A1 WO2015127706 A1 WO 2015127706A1 CN 2014074456 W CN2014074456 W CN 2014074456W WO 2015127706 A1 WO2015127706 A1 WO 2015127706A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
synchronization
communication lines
symbols
Prior art date
Application number
PCT/CN2014/074456
Other languages
English (en)
French (fr)
Inventor
涂建平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14883622.4A priority Critical patent/EP3104532B1/en
Priority to CN201480000380.7A priority patent/CN105229931B/zh
Priority to JP2016554463A priority patent/JP6414715B2/ja
Publication of WO2015127706A1 publication Critical patent/WO2015127706A1/zh
Priority to US15/250,144 priority patent/US10097238B2/en
Priority to US16/125,301 priority patent/US10615845B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6478Digital subscriber line, e.g. DSL, ADSL, HDSL, XDSL, VDSL

Definitions

  • the present invention relates to the field of communications, and in particular to a line synchronization method, system and vectorization control entity in an OSD system. Background technique
  • xDSL Digital Subscriber Line
  • UDP unshielded Twist Pair
  • the xDSL transmission frequency of the passband transmission is used.
  • the sub-multiplexing technology enables xDSL and the traditional telephone service to coexist on the same pair of twisted pairs, wherein xDSL occupies a high frequency band, and the traditional telephone service occupies a baseband portion below 4 kHz, and the traditional telephone service signal and the xDSL signal are separated by a splitter.
  • the xDSL for passband transmission uses discrete multitone modulation.
  • a system that provides multiple xDSL access is called a Digital Subscriber Line Access Multiplexe (DSLAM).
  • DSLAM Digital Subscriber Line Access Multiplexe
  • NEXT Near-end crosstalk
  • FEXT Far-end Crosstalk
  • OSD Overlap Spectrum Duplex
  • NEXT crosstalk is generated due to the frequency overlap between the uplink and the downlink.
  • OSD Overlap Spectrum Duplex
  • the influence of NEXT crosstalk will become more and more serious.
  • the vectoring technology in the existing G.993.5 standard cancels the FEXT crosstalk, it cannot solve the NEXT crosstalk problem existing in the OSD system, and the performance of the OSD system is significantly degraded.
  • NEXT and FEXT joint cancellation must be used to eliminate NEXT and FEXT crosstalk, or DSM L2 dynamic spectrum management techniques to suppress NEXT crosstalk.
  • DSM L2 dynamic spectrum management techniques to suppress NEXT crosstalk. The prerequisite for using these techniques is to estimate the NEXT crosstalk channel.
  • the prior art method for performing crosstalk channel estimation is to transmit a downlink sounding signal in an uplink silent phase and a NEXT crosstalk signal in an uplink direction, thereby measuring a NEXT crosstalk channel. Similar in the down direction.
  • the disadvantage is that when the uplink also transmits a signal, the uplink received signal contains both FEXT and NEXT crosstalk, which cannot be separated, and the crosstalk channel measurement will have a large error.
  • An object of the embodiments of the present invention is to provide a crosstalk channel estimation method, which is used to distinguish between two types of crosstalk channels, NEXT and FEXT, when there is overlap between uplink and downlink frequency spectrum.
  • an embodiment of the present invention provides a line synchronization method in an OSD system, which is applied to an overlapped spectrum multiplexed OSD system, where the OSD system includes a K-pair communication line, and each pair of communication lines includes The uplink and the downlink, the method includes:
  • the downlink synchronization symbol of the downlink in all the communication lines of the synchronization includes:
  • All the central office sending units in the vectoring group are configured such that the downlink synchronization symbols sent by all the central office sending units are in the same location; wherein the vectoring group includes the multiple central office sending units and multiple remote sending units Each of the central office transmitting units controls one of the downlinks in the OSD system, and each of the remote transmitting units controls one of the uplinks in the OSD system Road.
  • the downlink synchronization symbol synchronization of the link includes:
  • All remote transmitting units in the vectoring group are configured such that all of the remote transmitting units are located.
  • all the remote sending units in the configuration vectorization group are configured to be sent by the remote sending unit, specifically including :
  • each of the central office sending units sends a synchronization request to the corresponding remote sending unit, where the synchronization request includes a downlink synchronization symbol count, so that after the remote sending unit receives the synchronization request, according to the downlink Synchronization symbol count, the uplink synchronization symbol and the downlink synchronization symbol are in the same position.
  • the OSD system includes a vectorization group, where the vectorization group includes a central office sending unit and a remote sending unit, and each of the central office sending units controls one The downlink, each of the remote sending units controls one of the uplinks, and the method further includes:
  • the uplink uplink synchronization symbol of each pair of communication lines is respectively synchronized with a downlink synchronization symbol of the downlink of the pair of communication lines, and then includes :
  • Crosstalk channel estimation is performed on the OSD system based on the uplink feedback error and the downlink feedback error.
  • the uplink symbol and the downlink symbol are synchronization symbols
  • the uplink uplink synchronization symbol of each pair of communication lines is respectively Synchronizing with the downlink synchronization symbol of the downlink of the pair of communication lines; specifically: notifying the user of the front-end device side of the uplink synchronization symbol of each uplink of the all communication lines and the downlink of the pair of communication lines Sync symbol alignment.
  • the uplink symbol and the downlink symbol are synchronization symbols
  • the uplink uplink synchronization symbol of each pair of communication lines is respectively Synchronizing with the downlink synchronization symbol of the downlink of the pair of communication lines; specifically: notifying the user that the front-end device aligns uplink uplink synchronization symbols of all communication lines; and transmitting the downlink of the all communication lines to the user front-end device
  • the number of symbols of the synchronization symbol and the downlink synchronization symbol is offset, so that the user front end device adjusts the uplink synchronization symbol of all the communication lines to synchronize with the downlink synchronization symbol of all the communication lines according to the number of symbols.
  • the pilot sequence is allocated to the K-pair communication line, and the method further includes:
  • the remaining K pilot sequences are allocated to K uplinks;
  • the K pilot sequences allocated to the K uplinks and the synchronization symbol positions synchronously transmitting the pilot sequences are transmitted to the user front end device through a special operation channel.
  • the uplink synchronization symbol and the downlink synchronization symbol are data symbols; and the uplink uplink synchronization of each pair of communication lines is performed.
  • the symbols are respectively synchronized with the downlink synchronization symbols of the downlink of the pair of communication lines; specifically:
  • the downlink feedback error of the downlink pilot sequence in each pair of the communication lines and the uplink feedback error of the downlink pilot sequence are obtained;
  • the downlink feedback error is an error that is fed back by the UE in the embedded operation channel;
  • the uplink feedback error is obtained according to the received probe signal sent by the user side.
  • Line pilot sequence further includes:
  • all the central office sending units in the configuration vectorization group are configured to enable all central office sending units to be in the control center
  • the sending unit notifies the downlink index value of the currently transmitted pilot sequence and the allocated uplink pilot sequence to the remote transmitting unit, so that the second aspect of the uplink pilot sequence modulated on the uplink synchronization symbol is provided by the embodiment of the present invention.
  • a vectorization control entity is applied to an overlapped spectrum multiplexed OSD system, the OSD system includes a K-pair communication line, and each pair of communication lines includes an uplink and a downlink, and the vectorization control entity includes:
  • a first synchronization unit configured to synchronize downlink downlink symbols of all downlinks of the communication lines; and downlink synchronization symbol synchronization of downlinks of the pair of communication lines.
  • the first synchronization unit is specifically used to:
  • All the central office sending units in the vectoring group are configured such that the downlink synchronization symbols sent by all the central office sending units are in the same location, wherein the vectoring group includes the plurality of central office sending units and multiple remote sending units, Each of the central office transmitting units controls one of the downlinks in the OSD system, and each of the remote transmitting units controls one of the uplinks in the OSD system.
  • the second synchronization unit is specifically configured to:
  • All remote transmitting units in the vectoring group are configured such that all of the remote transmitting units are located.
  • the second synchronization unit is specifically configured to:
  • each of the central office sending units sends a synchronization request to the corresponding remote sending unit, where the synchronization request includes a downlink synchronization symbol count, so that after the remote sending unit receives the synchronization request, according to the downlink Synchronization symbol count, the uplink synchronization symbol and the downlink synchronization symbol are in the same position.
  • the OSD system includes a vectorization group, where the vectorization group includes a central office sending unit and a remote sending unit, and each of the central office sending units controls one The downlink, each of the remote sending units controls one of the uplinks, and the vectoring control entity further includes:
  • a first configuration unit configured to: when a non-vectorized group exists in the OSD system, configure all the central office sending units or the remote sending unit in the vectoring group, so that all the central office or the remote end in the vectorized group sends The synchronization symbol sent by the unit is in the same position;
  • a second configuration unit configured to configure all the local sending units in the non-vectorized group or send the remote end
  • the vectorization control entity further includes:
  • a pilot sequence allocating unit configured to allocate a pilot sequence to the K pair communication line, wherein a pilot sequence allocated to each pair of communication lines is not related to a pilot sequence allocated to other K-1 to the communication line, and The uplink pilot sequence allocated for the uplink in each pair of communication lines and the downlink pilot sequence allocated for the downlink are not correlated;
  • control unit configured to control the downlink transmitter to send a downlink pilot sequence in downlink downlink synchronization symbols of all communication lines, and the uplink transmitter sends an uplink pilot sequence in an uplink uplink synchronization symbol of all communication lines;
  • An acquiring unit configured to acquire a downlink feedback error of each downlink communication sequence in the communication line, And an uplink feedback error of the downlink pilot sequence;
  • an estimating unit configured to perform crosstalk channel estimation on the OSD system according to the uplink feedback error and the downlink feedback error.
  • the uplink symbol and the downlink symbol are synchronization symbols; and the second synchronization unit is specifically configured to:
  • the user is notified to the front-end device side to align the uplink synchronization symbol of each of the all communication lines with the downlink synchronization symbol of the downlink in the pair of communication lines.
  • the uplink symbol and the downlink symbol are synchronization symbols; and the second synchronization unit is specifically configured to:
  • the front-end device aligns the uplink synchronization symbols of the uplinks of all the communication lines; and transmitting, to the user front-end device, the downlink synchronization symbols of the all communication lines and the number of symbols of the downlink synchronization symbols, so that the user front end
  • the device adjusts, according to the number of symbols, an uplink synchronization symbol of all the communication lines to synchronize with the downlink synchronization symbol of all the communication lines.
  • the pilot allocation unit is configured to:
  • the remaining K pilot sequences are allocated to K uplinks;
  • the K pilot sequences assigned to the K uplinks and the synchronization symbol locations of the synchronous transmission of the pilot sequences are transmitted through the special operation channel to the user front end device.
  • the uplink synchronization symbol and the downlink synchronization symbol are data symbols; the synchronization unit is specifically configured to: align data symbols and vectorization The synchronization symbol of the line.
  • the acquiring unit is specifically configured to obtain the error that is received by the user end in the embedded operation channel
  • the downlink feedback error is obtained according to the received probe signal sent by the user side.
  • the control unit further includes:
  • a third configuration unit configured to configure all the central office sending units in the vectoring group, so that all the fourth configuration units are configured to configure all the remote sending units in the vectoring group, so that all are far based on the second aspect
  • the fourth configuration unit is specifically configured to:
  • the control station sending unit notifies the downlink index value of the currently transmitted pilot sequence and the allocated uplink pilot sequence to the remote transmitting unit, so that the third aspect of the uplink pilot sequence modulated on the uplink synchronization symbol is implemented by the present invention.
  • An embodiment provides an overlapping spectrum multiplexed OSD system, the system comprising a central office device, a user front end device, and any of the vectorized control entities provided by the second aspect, wherein the vectoring control entity and the central office end The devices are connected, and the central office equipment is connected to the user front end device through the K pair communication line.
  • the uplink and downlink uplink symbols and downlink symbols of all communication lines in the OSD system can be multiplexed by synchronous overlapping spectrum; the downlink transmitter can be controlled in each pair of communication lines. And transmitting, in the uplink symbol, an unrelated feedback error of the downlink; and performing crosstalk channel estimation on the OSD system according to the feedback error.
  • the embodiment of the present invention can implement a channel that distinguishes between NEXT and FEXT crosstalk when there is overlap between uplink and downlink spectrum.
  • FIG. 1 is a schematic diagram of far-end crosstalk of an xDSL system
  • FIG. 2 is a schematic diagram of near-end crosstalk of an xDSL system
  • FIG. 3 is a system architecture diagram of an OSD system in the present invention.
  • Figure 5 is a schematic diagram of uplink near-end crosstalk estimation
  • FIG. 6 is a flowchart of a line synchronization method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a crosstalk channel estimation method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a pilot sequence allocation matrix generated by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a pilot sequence allocation in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a pilot sequence allocation in another embodiment of the present invention.
  • FIG. 11 is a structural diagram of a vector control entity according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a vector control entity according to an embodiment of the present invention. detailed description
  • the OSD system has a K-pair communication line, and each pair of communication lines includes an uplink and a downlink.
  • each pair of communication lines includes an uplink and a downlink.
  • the uplink direction of the K-1 pair communication line is subjected to the uplink FEXT crosstalk and the uplink NEXT crosstalk from the remaining K-1 pair communication lines, and the K-1 is subjected to the downlink direction of the communication line.
  • All communication lines are controlled by a Vectoring Control Entity (VCE), and relevant information is collected from the communication line, and NEXT and FEXT crosstalk channels are estimated based on the information.
  • VCE Vectoring Control Entity
  • NEXT and FEXT crosstalk channels are estimated based on the information.
  • VCE is in the central office. side.
  • the OSD system includes a vectoring group, where the vectoring group includes a central office transmitting unit and a remote transmitting unit, and each of the central office transmitting units controls one of the downlinks, and each of the remote transmitting units controls One of the uplinks.
  • the transmitter (CO TX ) of the central office equipment of the VCE control center sends a sounding signal through the downlink channel (channel), and the downlink NEXT and FEXT crosstalk are mixed together, and the receiver of the user equipment ( After receiving the interfered signal, the client equipment determines the received signal, and feeds the decision error to the estimation unit of the central office through the uplink channel to perform downlink NEXT crosstalk estimation.
  • the transmitter of the user equipment sends a sounding signal through the uplink channel, and the uplink NEXT and FEXT crosstalk are mixed together, and the receiver (CO RX) of the central office equipment receives the signal. After the interfered signal, the central office equipment then determines the received signal, and directly inputs the decision error into the estimating unit for uplink NEXT crosstalk estimation.
  • the method in the embodiment of the present application is to simultaneously transmit a sounding signal on the uplink and downlink synchronization symbols of the plurality of pairs of communication lines, and the sounding signal carries an unrelated pilot sequence, and obtains a feedback error of the sounding signal for NEXT crosstalk channel estimation.
  • the embodiment of the present invention first provides a line synchronization method in an OSD system, where the method is applied to an overlapped spectrum multiplexed OSD system, where the OSD system includes a K-pair communication line, and each pair of communication lines includes an uplink.
  • Link and downlink the method includes:
  • step 601 can be implemented by vectoring the control entity to configure the position in the vectorization group.
  • the vectorization group includes the plurality of central office sending units and a plurality of remote transmitting units, each of the central office transmitting units controlling one of the downlinks in the OSD system, each of the remote transmitting units controlling one of the uplinks in the OSD system .
  • step 602 can be implemented by the way that the downlink synchronization symbols sent by all the remote sending units in the vectorization control entity configuration vectorization group are in the same location.
  • the vectorization control entity configures all the remote sending units in the vectorization group, so that the downlink synchronization symbols are in the same position, and specifically includes:
  • the vectoring control entity controls each of the central office sending units to send a synchronization request to the corresponding remote transmitting unit, where the synchronization request includes a downlink synchronization symbol count, so that after the remote sending unit receives the synchronization request, According to the downlink synchronization symbol count, the uplink synchronization symbol and the downlink synchronization symbol are in the same position.
  • the downlink synchronization symbol counter of all the central office sending units in the vectorization entity configuration group when the count value is the same, causes the downlink synchronization symbols sent by all the central office sending units to be in the same position, and then vectorized
  • the entity control station sending unit sends a synchronization request to the remote sending unit, so that the uplink synchronization symbol and the downlink synchronization symbol are in the same location.
  • the central office sending unit notifies the remote transmitting unit of its own downlink synchronization symbol count value.
  • the remote transmitting unit After receiving the synchronization request, the remote transmitting unit sets the uplink synchronization symbol and the downlink synchronization symbol at the same position according to the downlink synchronization symbol count value, so that all uplink synchronization symbols and downlink synchronization symbols are transmitted at the same position.
  • the pilot sequences modulated on the synchronization symbol are not orthogonal to each other,
  • the pilot sequences that are not allocated with the vectoring group are orthogonal to each other, so the vectoring entity needs to configure all the central office transmitting units or the remote transmitting units in the non-vectorized group, so that the non-vectors
  • the position of the synchronization symbol transmitted by the terminal transmitting unit or the remote transmitting unit is staggered; since the modulation of the non-synchronized symbol position of the non-vectorized group is a random sequence, according to the statistical characteristics of the random sequence, it can be regarded as an approximation for a long period of time. Orthogonal. Not only will the channel estimation between the lines within the vectoring group be affected, but the correlation algorithm can also be used to estimate the NEXT channel or FEXT channel of the non
  • the embodiment of the present invention provides a crosstalk channel estimation method based on the architecture shown in FIG. 3, where the method includes: 701, synchronization Downlink synchronization symbols of the downlink in all of the communication lines; downlink synchronization symbol synchronization of the downlink;
  • Allocate a pilot sequence for the K pair communication line where a pilot sequence allocated to each pair of communication lines is not related to a pilot sequence allocated to other K-1 pairs of communication lines, and is used in each pair of communication lines.
  • the uplink pilot sequence allocated by the uplink is not correlated with the downlink pilot sequence allocated by the downlink;
  • step 701 in order to ensure that the transmitted uncorrelated pilot sequences are synchronously aligned, the synchronization symbols corresponding to the probe information carrying the pilot sequence must be aligned first. There are two specific ways to align:
  • the VCE first aligns the downlink synchronization symbols of all communication lines, and then the downlink synchronization symbols of the communication lines in the center are aligned, and the uplink symbols of each pair of communication lines are also aligned with the downlink symbols thereof, then the uplink synchronization of all communication lines The symbols are simultaneously aligned with the downlink synchronization symbols, and the uplink synchronization symbols of all the lines are also aligned;
  • the VCE first aligns the downlink synchronization symbols of all communication lines and the uplink synchronization symbols of all communication lines. Obtaining the offset of the number of symbols between the downlink synchronization symbol and the uplink synchronization symbol, the central office end offsets the user end of each line, and the UE adjusts the uplink synchronization symbol of all lines to be aligned with the downlink synchronization symbol according to the same offset.
  • step 703 it is also necessary to generate 2K orthogonal pilot sequences; wherein K pilot sequences are allocated to K downlinks; the remaining K are allocated to K uplinks; Channel, SOC) transmits the pilot sequences assigned to the K uplinks and the synchronization symbol positions of the synchronous transmission pilot sequences to the user front end device.
  • VCE generates a 2* ⁇ Hadamard orthogonal matrix according to the number of lines, and selects K lines as the pilot sequence ⁇ ij in the downlink direction. , the remaining K rows are selected as the pilot sequence in the uplink direction;
  • FIG. 9 is a schematic diagram of the pilot sequence allocation of the two pairs of communication lines, first generating a Hadamard orthogonal matrix with a dimension of 4, and assigning the first row and the third row to two For the downstream direction of the communication line, assign the remaining two lines to the upstream direction;
  • the VCE generates a Hadamard orthogonal matrix of K+1 according to the number of lines, selects a pilot sequence of all 1s as a pilot sequence in the downlink direction of all lines, and selects the remaining K lines as the pilot sequence in the uplink direction.
  • Figure 10 is a schematic diagram of the pilot sequence allocation of two pairs of communication lines: Thereafter, the VCE control TX transmitter notifies the UE of the pilot sequence transmitted in the uplink and the synchronization symbol position of the synchronous transmission pilot sequence through the special operation channel SOC message. The UE starts transmitting the sounding signal at the corresponding synchronization symbol position, and the pilot sequence is carried in the sounding signal, and the pilot sequence can be periodically transmitted.
  • the UE After the UE receives the probe signal and the downlink pilot sequence in the probe signal, the UE starts error feedback.
  • error feedback There are two methods for error feedback.
  • One is that the Vectoring technique uses decision error feedback, that is, the decision of the constellation point. Calculating the error size; Because the NEXT interference is large, the constellation point decision may be wrong.
  • Another method is to notify the receiving side of the pilot sequence on the transmitting side as a reference signal, and perform reference signal error feedback;
  • the error is fed back to the VCE through the Embedded Operation Channel (ECC) or the L2 channel; for the uplink direction, the VCE directly receives the error;
  • ECC Embedded Operation Channel
  • the method for allocating the orthogonal pilot sequence by the VCE may also be in the following two ways: One is: VCE divides the K-pair communication line into several groups G, and the number of pairs of each group is M, first according to the line For the logarithm M, a 2*M Hadamard orthogonal matrix is generated, and M rows are selected as the time domain pilot sequences of each group in the downlink direction, and the remaining M rows are selected as the time domain pilot sequences of each group in the uplink direction; In the frequency dimension, the first group only transmits the pilot sequence at G*n + 0, and the remaining tones are all 1.
  • the first group only transmits the pilot sequence at G*n + 0 (n is a positive integer), and the rest The tone is all 1, the second group only transmits the pilot sequence in G*n + 1, the rest tone is 1, and so on, the G group only transmits the pilot on the tone with the sequence number G*n + G-1. Sequence, the remaining tones are 1;
  • VCE divides the K-pair communication line into several groups G, each group has a line number of M, firstly generates a M+1 Hadamard orthogonal matrix according to the line pair 3 ⁇ 4 M, and selects the all-one behavior as each group.
  • the remaining M rows are selected as the pilot sequences of each group in the uplink direction; then in the frequency dimension, the first group transmits the pilot sequence only in G*n + 0, and the remaining tones are 1, the first group The pilot sequence is sent only in G*n + 0 (n is a positive integer), the remaining tones are all 1, the second group is only G*n + 1 sends the pilot sequence, the remaining tones are 1, and so on, the G group only transmits the pilot sequence on the tone with the sequence number G*n + G-1, and the remaining tones are all 1;
  • the VCE takes the error error of the transmission pilot sequence feedback on the corresponding subcarrier tone, and estimates the NEXT channel; the present invention is not limited to the above methods for allocating orthogonal pilot sequences.
  • the above embodiment is directed to a system for supporting a VCE to control the transmission of a designated pilot sequence by its synchronization symbol. Since legacy (Legacy) VDSL2 does not support control of its synchronization symbol (sync symbol) to transmit a designated pilot sequence, the synchronization symbol of the VDSL2 line ( sync symbol ) cannot be orthogonal to the pilot of the vectorized line.
  • the downlink transmitter is controlled to send a downlink pilot sequence in downlink downlink synchronization symbols of all communication lines, and the uplink transmitter generates, according to the number of lines, all the communication line vectorization control entities.
  • the vectorization control entity configures all the central office sending units in the vectorization group, so that all the local transmitting units transmit the downlink index value of the currently transmitted pilot sequence to the symbol mode, or the downlink of the currently transmitted pilot sequence.
  • the index value is sent by the SOC message, so that the index value of the uplink pilot sequence modulated on the uplink synchronization symbol and the index value of the downlink pilot sequence modulated on the downlink synchronization symbol are the same, thus ensuring the uplink modulation at the same synchronization symbol position.
  • the pilot signal and the downlink modulated pilot signal are mutually orthogonal, and it is convenient to separate the uplink or downlink NEXT or FEXT signal during channel estimation.
  • the vectorization control entity configures all the central office transmission units in the vectorization group, so that Column value; and configure all remote sending units in the vectoring group so that all remote sending units are
  • All the central office sending units in the configuration vectorization group are configured to enable all central office sending units
  • the vectoring control entity controls each of the central office sending units to notify the corresponding remote transmitting unit of the downlink index value of the currently transmitted pilot sequence and the allocated uplink pilot sequence, so that the uplink pilot sequence modulated on the uplink synchronization symbol
  • the index value is the same as the index value of the downlink pilot sequence modulated on the downlink synchronization symbol.
  • VCE can estimate FEXT and NEXT interference according to the following methods.
  • the parameters are:
  • E ds is the error sample of the downlink feedback
  • X ds is the downlink transmission signal
  • is the uplink transmission signal
  • is the reference signal for the downlink error decision
  • N is the noise signal of the downlink receiver.
  • Feq represents the downlink frequency domain equalization coefficient
  • H represents the downlink FEXT channel matrix
  • the diagonal element is the direct channel
  • the diagonal element is the ECHO channel.
  • the downlink pilot sequence is used to correlate with the downlink error signal to obtain
  • the uplink pilot sequence is used to correlate with the downlink error signal
  • Eds Xus Fe - H NEXT
  • the sequence sent by the data symbol is random, and the random signal can be regarded as approximately irrelevant for a long period of time, and the data symbol is synchronized with this feature.
  • the sync symbols are orthogonal to estimate the crosstalk channel of this conventional line to the new line.
  • the data symbol of the Legacy VDLS2 may be first aligned with the sync symbol of the vectorized line, and the random sequence sent by the data symbol may be considered as the synchronization symbol. (sync symbol) achieves an irrelevant effect; the rest of the methods are the same as those of the foregoing embodiment, and will not be described again.
  • the embodiment of the present invention can implement a channel that distinguishes between NEXT and FEXT crosstalk when there is overlap between the uplink and downlink frequency.
  • the embodiment of the present invention further provides a vectorization control entity.
  • the entity includes:
  • a first synchronization unit 111 configured to synchronize downlink downlink symbols of all downlinks in the communication line; and downlink downlink symbol synchronization with downlink of the pair of communication lines;
  • a pilot sequence allocating unit 113 configured to allocate a pilot sequence to the K-pair communication line, wherein a pilot sequence allocated to each pair of communication lines is not related to a pilot sequence allocated to other K-1 pairs of communication lines, and , the uplink pilot sequence allocated for the uplink in each pair of communication lines and the downlink pilot sequence allocated for the downlink are not related;
  • the control unit 114 is configured to control the downlink transmitter to send the downlink pilot sequence in the downlink downlink synchronization symbol of all the communication lines, and the uplink transmitter sends the uplink pilot sequence in the uplink uplink synchronization symbol of all the communication lines.
  • the obtaining unit 115 is configured to obtain a downlink feedback error of each downlink communication sequence in the pair of communication lines, and an uplink feedback error of the downlink pilot sequence;
  • the estimating unit 116 is configured to perform crosstalk channel estimation on the OSD system according to the uplink feedback error and the downlink feedback error.
  • the uplink symbol and the downlink symbol are synchronization symbols; and the second synchronization unit is specifically configured to:
  • the user is notified to the front-end device side to align the uplink synchronization symbol of each of the all communication lines with the downlink synchronization symbol of the downlink in the pair of communication lines.
  • the uplink symbol and the downlink symbol are synchronization symbols; and the second synchronization unit is specifically configured to:
  • the front-end device aligns the uplink synchronization symbols of the uplinks of all the communication lines; and transmitting, to the user front-end device, the downlink synchronization symbols of the all communication lines and the number of symbols of the downlink synchronization symbols, so that the user front end
  • the device adjusts, according to the number of symbols, an uplink synchronization symbol of all the communication lines to synchronize with the downlink synchronization symbol of all the communication lines.
  • the pilot allocation unit is used to:
  • the remaining K pilot sequences are allocated to K uplinks;
  • the K pilot sequences assigned to the K uplinks and the synchronization symbol locations of the synchronous transmission of the pilot sequences are transmitted through the special operation channel to the user front end device.
  • the uplink symbol and the downlink symbol are data symbols; and the second synchronization unit is specifically configured to:
  • the acquiring unit is specifically configured to obtain the downlink feedback error in an error that is fed back by the user end in the embedded operation channel, and obtain the location according to the received detection signal sent by the user side.
  • the upstream feedback error is described.
  • an embodiment of the present invention further provides another vectorization control entity, which is applied to an overlapped spectrum multiplexed OSD system, where the OSD system includes a K-pair communication line, and each pair of communication lines includes an uplink and Downlink, in this embodiment, the vectorization control entity includes:
  • the first synchronization unit 121 is configured to synchronize the downlink synchronization symbols of the downlink in all the communication lines; and synchronize the downlink synchronization symbols of the downlink of the pair of communication lines.
  • the first synchronization unit 121 is specifically configured to:
  • All the central office sending units in the vectoring group are configured such that the downlink synchronization symbols sent by all the central office sending units are in the same location; wherein the vectoring group includes the multiple central office sending units and multiple remote sending units Each of the central office transmitting units controls one of the downlinks in the OSD system, and each of the remote transmitting units controls one of the uplinks in the OSD system.
  • the second synchronization unit 122 is specifically configured to: configure all the remote sending units in the vectorization group so that the downlink synchronization symbols are at the same location.
  • the second synchronization unit 122 controls each of the central office sending units to send a synchronization request to the corresponding remote transmitting unit, where the synchronization request includes a downlink synchronization symbol count, so that the remote transmitting unit receives the synchronization. After the request, according to the downlink synchronization symbol count, the uplink synchronization symbol and the downlink synchronization symbol are in the same position.
  • the vectoring control entity further includes:
  • a first configuration unit configured to configure, when a non-vectorized group exists in the OSD system, all the central office sending units or the remote sending units in the vectoring group, so that all the central office sending units or the remote end in the vectoring group send The synchronization symbol sent by the unit is in the same position;
  • a second configuration unit configured to configure all the local sending units in the non-vectorized group or send the remote end
  • the vectoring control entity further includes:
  • a pilot sequence allocating unit configured to allocate a pilot sequence to the K pair communication line, wherein a pilot sequence allocated to each pair of communication lines is not related to a pilot sequence allocated to other K-1 to the communication line, and The uplink pilot sequence allocated for the uplink in each pair of communication lines and the downlink pilot sequence allocated for the downlink are not correlated;
  • control unit configured to control the downlink transmitter to send a downlink pilot sequence in downlink downlink synchronization symbols of all communication lines, and the uplink transmitter sends an uplink pilot sequence in an uplink uplink synchronization symbol of all communication lines;
  • An acquiring unit configured to obtain a downlink feedback error of each downlink communication sequence in the communication line, and an uplink feedback error of the downlink pilot sequence;
  • an estimating unit configured to perform crosstalk channel estimation on the OSD system according to the uplink feedback error and the downlink feedback error.
  • the uplink symbol and the downlink symbol are synchronization symbols; and the second synchronization unit 122 is specifically configured to:
  • the user is notified to the front-end device side to align the uplink synchronization symbol of each of the all communication lines with the downlink synchronization symbol of the downlink in the pair of communication lines.
  • the second synchronization unit 121 is specifically configured to:
  • the pilot allocation unit is configured to:
  • the remaining K pilot sequences are allocated to K uplinks;
  • the K pilot sequences assigned to the K uplinks and the synchronization symbol locations of the synchronous transmission of the pilot sequences are transmitted through the special operation channel to the user front end device.
  • the synchronization unit is specifically configured to:
  • the acquiring unit is specifically configured to obtain the downlink feedback error in an error that is fed back by the user end in the embedded operation channel, and obtain the uplink feedback error according to the received detection signal sent by the user side.
  • control unit further includes:
  • a third configuration unit configured to configure all the central office sending units in the vectoring group, so that all the fourth configuration units are configured to configure all the remote sending units in the vectoring group, so that all the fourth configurations are far away
  • the unit control station sending unit notifies the downlink index value of the currently transmitted pilot sequence and the allocated uplink pilot sequence to the corresponding remote transmitting unit, so that the index value and downlink synchronization of the uplink pilot sequence modulated on the uplink synchronization symbol are performed.
  • the index value of the downlink pilot sequence modulated on the symbol is the same.
  • the embodiment of the present invention further provides an overlapping spectrum multiplexing OSD system, including a central office device (CO), a user front end device (CPE), and the above vectorization control entity, where the vectorization control entity and the central office device are Connected, the central office equipment is connected to the user front end device through the K pair communication line.
  • CO central office device
  • CPE user front end device
  • K pair communication line K pair communication line
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种OSD系统中的线路同步方法,应用于重叠频谱复用OSD系统中,所述OSD系统包括K对通讯线路,每对通讯线路包括上行链路和下行链路,所述方法包括:同步所全部所述通讯线路中下行链路的下行同步符号;将每对通讯线路的上行链路的上行同步符号分别与该对通讯线路的下行链路的下行同步符号同步。通过本发明实施例可以应用在串扰信道估计中,实现在上下行频谱存在交叠时,区分NEXT和FEXT两种串扰的信道。

Description

OSD系统中的线路同步方法、 系统及矢量化控制实体 技术领域
本发明涉及通讯领域, 具体涉及到一种 OSD 系统中的线路同步方法、 系统及矢量化控制实体。 背景技术
xDSL ( Digital Subscriber Line , 数字用户线) 是一种在无屏蔽双绞线 ( Unshielded Twist Pair, UTP )传输的高速数据传输技术, 除了基带传输的 数字用户环路外, 通带传输的 xDSL利用频分复用技术使得 xDSL与传统电话 业务共存于同一对双绞线上,其中 xDSL占据高频段,传统电话业务占用 4KHz 以下基带部分, 传统电话业务信号与 xDSL信号通过分离器分离。 通带传输的 xDSL釆用离散多音频调制。 提供多路 xDSL接入的系统叫做 DSL接入复用器 ( Digital Subscriber Line Access Multiplexe, DSLAM )。 如图 1和图 2所示, 中 心局 ( Central office , CO ) 端设备与用户前端设备 ( Customer Premises Equipment, CPE )之间的线路, 由于电磁感应原理, DSLAM接入的多路信 号之间, 会相互产生干扰, 称为串音(Crosstalk ) 。
近端串音( Near-end Crosstalk, NEXT )和远端串音( Far-end Crosstalk, FEXT )能量都会随着频段升高而增强。 由于 DSL频谱资源有限,且线路越长, 衰减越大,更高频谱资源并不能提升性能。在重叠频谱复用( Overlap Spectrum Duplex , OSD ) 系统中, 由于上下行的频语交叠, 会产生 NEXT串音, 当使 用频带越宽时, 受到 NEXT串扰的影响将越来越严重。 现有 G.993.5标准中的矢量化(Vectoring )技术虽然抵消了 FEXT串扰, 但 不能解决 OSD系统中存在的 NEXT串音问题, 使得 OSD系统的性能显著退化。 为了降低 NEXT串音的影响, 必须使用 NEXT和 FEXT联合抵消消除 NEXT和 FEXT串扰,或者使 DSM L2动态频谱管理技术抑制 NEXT串音, 而使用这些技 术的前提条件就是要估计出 NEXT串音信道。
现有技术进行串音信道估计的方法是, 在上行静默阶段, 发送下行的 探测信号,在上行方向接收 NEXT串扰信号,从而测量出 NEXT串扰信道。 在下行方向类似。 其缺点是, 当上行也发送信号时, 上行接收信号同时包 含 FEXT, NEXT串音, 无法分离, 串扰信道测量会出现较大误差 。 发明内容
本发明实施例的目的是提供一种串扰信道估计方法, 以实现在上下行频 谱存在交叠时, 区分 NEXT和 FEXT两种串扰的信道。
为实现上述目的, 第一方面, 本发明实施例提供了一种 OSD系统中的线 路同步方法, 应用于重叠频谱复用 OSD系统中, 所述 OSD系统包括 K对通 讯线路, 每对通讯线路包括上行链路和下行链路, 所述方法包括:
同步所全部所述通讯线路中下行链路的下行同步符号; 链路的下行同步符号同步。
基于第一方面, 在第一种可能的实施方式中, 所述同步所全部所述通讯 线路中下行链路的下行同步符号具体包括:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元发送的下 行同步符号处在同一位置; 其中所述矢量化组包括所述多个局端发送单元和 多个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述 下行链路, 每个所述远端发送单元控制所述 OSD 系统中的一条所述上行链 路。
基于第一方面的第一种可能的实施方式, 在第二种可能的实施方式中, 链路的下行同步符号同步, 具体包括:
配置所述矢量化组中的所有远端发送单元, 使得所述所有远端发送单元 位置。
基于第一方面的第二种可能的实施方式, 在第三种可能的实施方式中, 所述配置矢量化组中的所有远端发送单元, 使得所述所有远端发送单元发送 置, 具体包括:
控制每一个局端发送单元发送一个同步请求给对应的所述远端发送单 元, 所述同步请求中包括下行同步符号计数, 以便于所述远端发送单元接收 到同步请求后, 根据所述下行同步符号计数, 将上行同步符号和下行同步符 号处在同一位置。
基于第一方面, 在第四种可能的实施方式中, 所述 OSD系统包括矢量化 组, 所述矢量化组包括局端发送单元和远端发送单元, 每个所述局端发送单 元控制一条所述下行链路, 每个所述远端发送单元控制一条所述上行链路, 所述方法还包括:
当存在非矢量化组时, 配置矢量化组中的所有局端发送单元或远端发送 一位置;
配置非矢量化组中的所有局端发送单元或远端发送单元, 使得非矢量化 发送单元或远端发送单元发送的同步符号位置错开。 基于第一方面, 在第五种可能的实施方式中, 所述将每对通讯线路的上 行链路的上行同步符号分别与该对通讯线路的下行链路的下行同步符号同 步, 之后, 还包括:
为所述 K对通讯线路分配导频序列, 其中分配给每对通讯线路的导频序 列与分配给其他 K-1对通讯线路的导频序列不相关, 并且, 为每对通讯线路 中的上行链路分配的上行导频序列和下行链路分配的下行导频序列不相关;
行导频序列;
获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频 序列的上行反馈误差;
根据所述上行反馈误差和下行反馈误差对所述 OSD系统进行串扰信道估 计。
基于第一方面的第五种可能的实施方式, 在第六种可能的实施方式中, 所述上行符号和下行符号为同步符号; 所述将每对通讯线路的上行链路的上 行同步符号分别与该对通讯线路的下行链路的下行同步符号同步;具体包括: 通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
基于第一方面的第五种可能的实施方式, 在第七种可能的实施方式中, 所述上行符号和下行符号为同步符号; 所述将每对通讯线路的上行链路的上 行同步符号分别与该对通讯线路的下行链路的下行同步符号同步;具体包括: 通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。 基于第一方面的第五种可能的实施方式, 在第八种可能的实施方式中, 为所述 K对通讯线路分配导频序列, 之前, 还包括:
生成 2K个正交的导频序列;
将其中 K个导频序列分配给 K个下行链路;
剩余 K个导频序列分配给 K个上行链路;
通过特殊操作信道将分配给所述 K个上行链路的 K个导频序列以及同步 发送所述导频序列的同步符号位置发送给用户前端设备。
基于第一方面的第五种可能的实施方式, 在第九种可能的实施方式中, 所述上行同步符号和下行同步符号为数据符号; 所述将每对通讯线路的上行 链路的上行同步符号分别与该对通讯线路的下行链路的下行同步符号同步; 具体包括:
对齐数据符号与矢量化线路的同步符号。
基于第一方面的第五种可能的实施方式, 在第十种可能的实施方式中, 获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频序列 的上行反馈误差; 其中, 所述下行反馈误差为用户端在嵌入式操作信道中反 馈的误差;
所述上行反馈误差根据接收到的用户侧发送的探测信号获得。
基于第一方面的第五种可能的实施方式,在第十一种可能的实施方式中,
行导频序列; 进一步包括:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元在索引相 配置矢量化组中的所有远端发送单元, 使得所有远端发送单元在索引相 基于第一方面的第十一种可能的实施方式, 在第十二种可能的实施方式 中, 所述配置矢量化组中的所有局端发送单元, 使得所有局端发送单元在索 控制局端发送单元将当前发送的导频序列的下行索引值、 分配的上行导 频序列通知给远端发送单元, 使得上行同步符号上调制的上行导频序列的索 第二方面, 本发明实施例提供了一种矢量化控制实体, 应用于重叠频谱 复用 OSD系统中, 所述 OSD系统包括 K对通讯线路, 每对通讯线路包括上 行链路和下行链路, 所述矢量化控制实体包括:
第一同步单元, 用于同步所全部所述通讯线路中下行链路的下行同步符 号; 该对通讯线路的下行链路的下行同步符号同步。
基于第二方面, 在第一种可能的实施方式中, 所述第一同步单元具体用 于:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元发送的下 行同步符号处在同一位置其中所述矢量化组包括所述多个局端发送单元和多 个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述下 行链路, 每个所述远端发送单元控制所述 OSD系统中的一条所述上行链路。
基于第二方面的第一种可能的实施方式, 在第二种可能的实施方式中, 第二同步单元具体用于:
配置所述矢量化组中的所有远端发送单元, 使得所述所有远端发送单元 位置。
基于第二方面的第二种可能的实施方式, 在第三种可能的实施方式中, 第二同步单元具体用于:
控制每一个局端发送单元发送一个同步请求给对应的所述远端发送单 元, 所述同步请求中包括下行同步符号计数, 以便于所述远端发送单元接收 到同步请求后, 根据所述下行同步符号计数, 将上行同步符号和下行同步符 号处在同一位置。
基于第二方面, 在第四种可能的实施方式中, 所述 OSD系统包括矢量化 组, 所述矢量化组包括局端发送单元和远端发送单元, 每个所述局端发送单 元控制一条所述下行链路, 每个所述远端发送单元控制一条所述上行链路, 所述矢量化控制实体还包括:
第一配置单元, 用于当所述 OSD系统中存在非矢量化组时, 配置矢量化 组中的所有局端发送单元或远端发送单元, 使得矢量化组内的所有局端或者 远端发送单元发送的同步符号处在同一位置;
第二配置单元, 用于配置非矢量化组中的所有局端发送单元或远端发送
基于第二方面, 在第五种可能的实施方式中, 所述矢量化控制实体还包 括:
导频序列分配单元, 用于为所述 K对通讯线路分配导频序列, 其中分配 给每对通讯线路的导频序列与分配给其他 K-1 对通讯线路的导频序列不相 关, 并且, 为每对通讯线路中的上行链路分配的上行导频序列和下行链路分 配的下行导频序列不相关;
控制单元, 用于控制下行发送器在全部通讯线路的下行链路的下行同步 符号中发送下行导频序列, 上行发送器在全部通讯线路的上行链路的上行同 步符号中发送上行导频序列;
获取单元, 用于获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频序列的上行反馈误差;
估计单元, 用于根据所述上行反馈误差和下行反馈误差对所述 OSD系统 进行串扰信道估计。
基于第二方面的第五种可能的实施方式, 在第六种可能的实施方式中, 所述上行符号和下行符号为同步符号; 所述第二同步单元具体用于:
通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
基于第二方面的第五种可能的实施方式, 在第七种可能的实施方式中, 所述上行符号和下行符号为同步符号; 所述第二同步单元具体用于:
通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。
基于第二方面的第五种可能的实施方式, 在第八种可能的实施方式中, 所述导频分配单元用于:
生成 2K个正交的导频序列;
将其中 K个导频序列分配给 K个下行链路;
剩余 K个导频序列分配给 K个上行链路;
通过特殊操作信道将分配给所述 K个上行链路的 K个导频序列以及同步 发送所述导频序列的同步符号位置发送费用户前端设备。
基于第二方面的第五种可能的实施方式, 在第九种可能的实施方式中, 所述上行同步符号和下行同步符号为数据符号; 所述同步单元具体用于: 对齐数据符号与矢量化线路的同步符号。
基于第二方面的第五种可能的实施方式, 在第十种可能的实施方式中, 所述获取单元具体用于在用户端在嵌入式操作信道中反馈的误差中获取所述 下行反馈误差,根据接收到的用户侧发送的探测信号获得所述上行反馈误差。 基于第二方面的第五种可能的实施方式,在第十一种可能的实施方式中, 控制单元进一步包括:
第三配置单元, 用于配置矢量化组中的所有局端发送单元, 使得所有局 第四配置单元, 用于配置矢量化组中的所有远端发送单元, 使得所有远 基于第二方面的第五种可能的实施方式,在第十二种可能的实施方式中, 所述第四配置单元, 具体用于:
控制局端发送单元将当前发送的导频序列的下行索引值、 分配的上行导 频序列通知给远端发送单元, 使得上行同步符号上调制的上行导频序列的索 第三方面, 本发明实施例提供了一种重叠频谱复用 OSD系统, 该系统包 括中心局端设备、 用户前端设备和第二方面提供的任一所述的矢量化控制实 体, 其中所述矢量化控制实体和中心局端设备相连接, 所述中心局端设备通 过所述 K对通讯线路和用户前端设备相连接。
通过本发明实施例可以 通过一种线路同步方法,通过同步重叠频谱复用 OSD系统中全部通讯线路的上行链路和下行链路的上行符号和下行符号; 可 以控制下行发送器在每对通讯线路的下行符号和上行符号中发送不相关的导 下行链路的反馈误差; 根据反馈误差对所述 OSD系统进行串扰信道估计。 通 过本发明实施例可以实现在上下行频谱存在重叠时, 区分 NEXT和 FEXT两 种串扰的信道。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是 xDSL系统远端串扰的示意图;
图 2是 xDSL系统近端串扰的示意图;
图 3是本发明中 OSD系统的系统架构图;
图 4是下行近端串扰估计示意图;
图 5是上行近端串扰估计示意图;
图 6是本发明实施例提供的线路同步方法的流程图;
图 7是本发明实施例提供的串扰信道估计方法的流程图;
图 8是本发明一种实施例生成的导频序列分配矩阵示意图;
图 9是本发明一种实施例中的一种导频序列分配示意图;
图 10是本发明另一种实施例中的一种导频序列分配示意图;
图 11是本发明实施例提供的矢量控制实体的结构图;
图 12是本发明实施例提供的矢量控制实体的结构图。 具体实施方式
图 3是本发明实施例的应用系统架构图, OSD系统中有 K对通讯线路, 每对通讯线路又包含一条上行链路和一条下行链路。 以第 K-1对通讯线路为 例,第 K-1对通讯线路的上行方向受到来自其余 K-1对通讯线路的上行 FEXT 串扰和上行 NEXT串扰, 第 K-1对通讯线路的下行方向受到来自其余 K-1对 通讯线路的下行 FEXT串扰和下行 NEXT串扰。 所有通讯线路受到矢量化控 制实体(Vectoring Control Entity, VCE ) 的控制, 并从通讯线路收集相关信 息, 根据这些信息估计 NEXT和 FEXT串扰信道。 一般地, VCE处于中心局 侧。
所述 OSD系统包括矢量化组,所述矢量化组包括局端发送单元和远端发 送单元, 每个所述局端发送单元控制一条所述下行链路, 每个所述远端发送 单元控制一条所述上行链路。
如图 4所示, 在下行方向, VCE控制中心局端设备的发送器 (CO TX ) 发送探测信号经过下行信道 ( channel ) , 和下行 NEXT、 FEXT 串扰混合在 一起, 用户端设备的接收器(CPE RX )接收到受干扰的信号后, 用户端设备 对接收信号进行判决,将判决误差通过上行通道反馈给中心局端的估计单元, 进行下行 NEXT串扰估计。
如图 5所示, 在上行方向, 用户端设备的发送器( CPE TX )发送探测信 号经过上行信道, 和上行 NEXT、 FEXT串扰混合在一起, 中心局端设备的接 收器 (CO RX )接收到受干扰的信号后, 中心局端设备然后对接收信号进行 判决, 将判决误差直接输入估计单元, 进行上行 NEXT串扰估计。
本申请实施例的方法是在多对通讯线路的上、 下行的同步符号上同时发 送探测信号, 并且探测信号承载不相关的导频序列, 并获取探测信号的反馈 误差进行 NEXT串扰信道估计。
如图 6所示, 本发明实施例首先提供一种 OSD系统中的线路同步方法, 该方法应用于重叠频谱复用 OSD系统中,所述 OSD系统包括 K对通讯线路, 每对通讯线路包括上行链路和下行链路, 所述方法包括:
601, 同步所全部所述通讯线路中下行链路的下行同步符号; 下行链路的下行同步符号同步。
在一种实施方式中, 步骤 601可以通过矢量化控制实体配置矢量化组中 位置, 这样的方式来实现。 其中所述矢量化组包括所述多个局端发送单元和 多个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述 下行链路, 每个所述远端发送单元控制所述 OSD 系统中的一条所述上行链 路。
类似的, 步骤 602可以通过矢量化控制实体配置矢量化组中的所有远端 发送单元发送的下行同步符号处在同一位置的方式实现。
更具体的, 矢量化控制实体配置矢量化组中的所有远端发送单元, 使得 下行同步符号处在同一位置, 具体包括:
矢量化控制实体控制每一个局端发送单元发送一个同步请求给对应的所 述远端发送单元, 所述同步请求中包括下行同步符号计数, 以便于所述远端 发送单元接收到同步请求后, 根据所述下行同步符号计数, 将上行同步符号 和下行同步符号处在同一位置。
更具体的说, 矢量化实体配置矢量化组中的所有局端发送单元的下行同 步符号计数器, 当计数值相同时, 使得所有局端发送单元发送的下行同步符 号处在同一位置, 然后矢量化实体控制局端发送单元发送一个同步请求给远 端发送单元, 使得上行同步符号和下行同步符号处在同一位置。 一般情况下, 局端发送单元会将自己的下行同步符号计数值通知远端发送单元。 远端发送 单元接收到同步请求后, 根据下行同步符号计数值, 将上行同步符号和下行 同步符号处在同一位置, 这样所有的上行同步符号和下行同步符号在同一位 置发送。
在另一种实施例中, 如果存在非矢量化组, 即 Legacy VDSL2线路, 由 于其同步符号上发送的信号不受矢量化实体控制, 其同步符号上调制的导频 序列相互不正交, 也不与矢量化组分配的导频序列相互正交, 所以需要矢量 化实体配置非矢量化组中的所有局端发送单元或远端发送单元, 使得非矢量 端发送单元或远端发送单元发送的同步符号位置错开; 由于非矢量化组的非 同步符号位置上调制是随机序列, 根据随机序列的统计特性, 在较长的一段 时间内, 可以看作近似正交的。 不仅不会影响矢量化组内线路之间的信道估 计, 而且还可以使用相关算法估计非矢量化组线路到矢量化组线路的 NEXT 信道或 FEXT信道。
通过上述的实施例,可以实现 OSD系统中的全部上行链路和下行链路的 上行同步符号和下行同步符号位置相同, 在这些同步位置上传送不相关的导 频序列, 便于信道串扰估计。
作为图 6所示的线路同步方法的一种应用, 如图 7所示, 本发明实施例 基于图 3所示的架构, 提供了一种串扰信道估计方法, 所述的方法包括: 701, 同步所全部所述通讯线路中下行链路的下行同步符号; 下行链路的下行同步符号同步;
703, 为所述 K对通讯线路分配导频序列,其中分配给每对通讯线路的导 频序列与分配给其他 K- 1对通讯线路的导频序列不相关, 并且, 为每对通讯 线路中的上行链路分配的上行导频序列和下行链路分配的下行导频序列不相 关;
704,控制下行发送器在全部通讯线路的下行链路的下行同步符号中发送 下行导频序列, 上行发送器在全部通讯线路的上行链路的上行同步符号中发 送上行导频序列;
705, 获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行 导频序列的上行反馈误差;
706, 根据所述上行反馈误差和下行反馈误差对所述 OSD 系统进行串扰 信道估计。 其中, 在步骤 701 中, 为了保证发送的不相关的导频序列是同步对齐, 承载导频序列的探测信息对应的同步符号必须先对齐。 对齐的具体方法有两 种:
在一种实施例中, VCE先对齐所有通讯线路的下行同步符号, 然后中心 有通讯线路的下行同步符号已经对齐, 各对通讯线路的上行符号也与其下行 符号对齐, 那么所有通讯线路的上行同步符号都同时与下行同步符号对齐, 自然所有线路的上行同步符号也是对齐的;
在另一种实施例中, VCE先分别对齐所有通讯线路的下行同步符号, 以 及所有通讯线路的上行同步符号。 获取下行同步符号和上行同步符号之间的 符号个数偏移 offset, 中心局端将 offset通知各线路的用户端, 用户端根据相 同的 offset同时调整所有线路的上行同步符号与下行同步符号对齐。
在步骤 703之前, 还需要生成 2K个正交的导频序列; 将其中 K个导频 序列分配给 K个下行链路; 剩余 K个分配给 K个上行链路; 通过特殊操作信 道( special operation channel, SOC )将分配给所述 K个上行链路的 Κ个导频 序列以及同步发送导频序列的同步符号位置发送给用户前端设备。
其中, 分配正交导频序列的方法有如下几种方式:
在一种实施方式中, 假设线路数有 Κ对, 如图 8所示, VCE根据线路数 产生 2*Κ的哈达玛( Hadamard )正交矩阵, 选取 K行作为下行方向的导频序 歹 ij, 选取其余 K行作为上行方向的导频序列; 图 9是两对通讯线路的导频 序列分配示意图, 首先产生维数为 4的 Hadamard正交矩阵, 将第 1行和第 3 行分配给两对通讯线路的下行方向, 将其余两行分配给上行方向;
在另一种实施方式中, VCE根据线路数产生 K+1的 Hadamard正交矩阵, 选取全 1的导频序列作为所有线路下行方向的导频序列, 选取其余 K行作为 上行方向的导频序列; 图 10是是两对通讯线路的导频序列分配示意图: 之后, VCE控制 TX发射器通过特殊操作信道 SOC消息将上行发送的导 频序列, 以及同步发送导频序列的同步符号位置通知给用户端。 用户端在对 应的同步符号位置开始发送探测信号, 导频序列承载在探测信号中, 导频序 列可以被周期性的发送。
用户端接收到探测信号以及探测信号中的下行的导频序列后, 用户端开 始进行误差反馈, 误差反馈的方法有两种, 一种是 Vectoring技术使用判决误 差反馈, 即通过星座点的判决来计算误差大小; 由于 NEXT干扰较大, 星座 点判决可能出现错误, 另一种方法是, 将发送侧的导频序列通知接收侧作为 参考信号, 进行参考信号误差反馈;
在接收侧计算出误差之后,对于下行方向,通过上行嵌入操作信道( Embedded Operation Channel, EOC),或者 L2 channel把误差反馈给 VCE;对于上行方向, VCE直接接收误差;
在步骤 703中, VCE分配正交导频序列的方法还可以是如下的两种方式: 一种为: VCE将 K对通讯线路分成若干组 G, 每组的线对数为 M, 首 先根据线对数 M, 产生 2*M的哈达玛( Hadamard )正交矩阵, 选取 M行作 为各组下行方向的时域导频序列, 选取其余 M行作为各组上行方向的时域导 频序列;然后在频率维度,第一组只在 G*n + 0发送导频序列,其余音调( tone ) 都为 1, 第一组只在 G*n + 0 ( n为正整数)发送导频序列, 其余 tone都为 1, 第二组只在 G*n + 1发送导频序列, 其余 tone都为 1, 以此类推, 第 G组只 在序号为 G*n + G-1的 tone上发送导频序列, 其余 tone都为 1 ;
另一种方式为: VCE将 K对通讯线路分成若干组 G,每组的线对数为 M, 首先根据线对 ¾ M, 产生 M+1的 Hadamard正交矩阵, 选取全 1行为作为各 组下行方向的导频序列, 选取其余 M行作为各组上行方向的导频序列; 然后 在频率维度, 第一组只在 G*n + 0发送导频序列, 其余 tone都为 1, 第一组 只在 G*n + 0 ( n为正整数)发送导频序列, 其余 tone都为 1, 第二组只在 G*n + 1发送导频序列, 其余 tone都为 1, 以此类推, 第 G组只在序号为 G*n + G-1的 tone上发送导频序列, 其余 tone都为 1;
对于每一个组中的线路, VCE分别取对应子载波 tone上发送导频序列反 馈的误差 error, 估计 NEXT信道; 本发明不限于以上几种分配正交导频序列 的方法。
上述的实施例是针对支持 VCE控制其同步符号发送指定导频序列的系 统, 由于遗留的 (Legacy ) VDSL2不支持控制其同步符号 (sync symbol ) 发送指定的导频序列, 所以 VDSL2线路的同步符号( sync symbol )无法与矢 量化线路的导频正交。
在一种可能的实施方式中, 步骤 704,控制下行发送器在全部通讯线路的 下行链路的下行同步符号中发送下行导频序列, 上行发送器在全部通讯线路 矢量化控制实体根据线路数生成上行和下行相互正交的导频序列, 矢量 化控制实体给局端发送单元和远端发送单元分别分配下行导频序列和上行导 频序列, 然后局端发送单元通过 SOC消息将上行导频序列发送给远端发送单 元。
矢量化控制实体配置矢量化组中的所有局端发送单元, 使得所有局端发 发送单元将当前发送的导频序列的下行索引值调制到符号模式上, 或者将当 前发送的导频序列的下行索引值通过 SOC消息发送,使得上行同步符号上调 制的上行导频序列的索引值和下行同步符号上调制的下行导频序列的索引值 相同, 这样就保证了在相同的同步符号位置, 上行调制的导频信号和下行调 制的导频信号是相互正交的, 在进行信道估计时便于分离上行或者下行的 NEXT或 FEXT干 4尤信号。
也就是说, 矢量化控制实体配置矢量化组中的所有局端发送单元, 使得 列值; 并且配置矢量化组中的所有远端发送单元, 使得所有远端发送单元在
Figure imgf000018_0001
其中所述配置矢量化组中的所有局端发送单元, 使得所有局端发送单元
Figure imgf000018_0002
以是:
矢量化控制实体控制每一个局端发送单元将当前发送的导频序列的下行 索引值、 分配的上行导频序列通知给对应的远端发送单元, 使得上行同步符 号上调制的上行导频序列的索引值和下行同步符号上调制的下行导频序列的 索引值相同。
除了估计 FEXT和 NEXT干扰方式之外, VCE可以根据以下的方式, 估 计 FEXT和 NEXT干扰
Eds = Feq(HXds + + N) - Xref
其中, 参数分别为:
Eds为下行反馈的误差样本, Xds表示下行发送信号, ^表示上行发送信 号, ^表示下行进行误差判决的参考信号, N表示下行接收端的噪声信号,
Feq表示下行的频域均衡系数, H表示下行的 FEXT信道矩阵,对角元为直接 信道, 上行的 NEXT信道矩阵, 对角元为 ECHO信道。
当需要分离上行的 NEXT干扰时, 使用下行的导频序列与下行误差信号 进行相关, 得到
Figure imgf000018_0003
从而计算出 FEXT串扰矩阵
当需要分离下行的 FEXT干扰时, 使用上行的导频序列与下行误差信号 进行相关, 得到
Eds Xus = Fe - HNEXT 从而计算出 NEXT串扰矩阵 是发一样的序列值, 所以序列是相关的, 无法估计串扰信道。 在本实施例中 釆用一种替代方案, 数据符号 (data symbol )发送的序列是随机的, 随机信 号在较长的一段时间内可以看做近似不相关的, 利用这个特性将数据符号与 同步符号( sync symbol )正交, 以估计这种传统的线路对新线路的串扰信道。
在该种实施例中,可以首先使得 Legacy VDLS2的数据符号( data symbol ) 与矢量化线路的同步符号(sync symbol )对齐, 由于数据符号( data symbol ) 发送的随机序列, 可以认为是与同步符号(sync symbol )达到不相关的效果; 其余方法均与前述的实施例相同, 不多赘述。
通过本发明实施例可以实现在上下行频语存在交叠时, 区分 NEXT 和 FEXT两种串扰的信道。
相应的, 本发明实施例还提供了一种矢量化控制实体, 如图 11所示, 该 实体包括:
第一同步单元 111,用于同步所全部所述通讯线路中下行链路的下行同步 符号; 与该对通讯线路的下行链路的下行同步符号同步;
导频序列分配单元 113, 用于为所述 K对通讯线路分配导频序列, 其中 分配给每对通讯线路的导频序列与分配给其他 K- 1对通讯线路的导频序列不 相关, 并且, 为每对通讯线路中的上行链路分配的上行导频序列和下行链路 分配的下行导频序列不相关;
控制单元 114,用于控制下行发送器在全部通讯线路的下行链路的下行同 步符号中发送下行导频序列, 上行发送器在全部通讯线路的上行链路的上行 同步符号中发送上行导频序列; 获取单元 115,用于获取每对所述通讯线路中下行导频序列的下行反馈误 差, 以及下行导频序列的上行反馈误差;
估计单元 116, 用于根据所述上行反馈误差和下行反馈误差对所述 OSD 系统进行串扰信道估计。
在一种实施例中, 所述上行符号和下行符号为同步符号; 所述第二同步 单元具体用于:
通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
在另一种实施方式中, 所述上行符号和下行符号为同步符号; 所述第二 同步单元具体用于:
通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。
所述导频分配单元用于:
生成 2K个正交的导频序列;
将其中 K个导频序列分配给 K个下行链路;
剩余 K个导频序列分配给 K个上行链路;
通过特殊操作信道将分配给所述 K个上行链路的 K个导频序列以及同步 发送所述导频序列的同步符号位置发送费用户前端设备。
在另一种实施例中, 所述上行符号和下行符号为数据符号; 所述第二同 步单元具体用于:
对齐数据符号与矢量化线路的同步符号。
进一步的, 所述获取单元具体用于在用户端在嵌入式操作信道中反馈的 误差中获取所述下行反馈误差, 根据接收到的用户侧发送的探测信号获得所 述上行反馈误差。
如图 12所示, 本发明实施例还提供了另外一种矢量化控制实体, 应用于 重叠频谱复用 OSD系统中, 所述 OSD系统包括 K对通讯线路, 每对通讯线 路包括上行链路和下行链路, 在该实施例中, 矢量化控制实体包括:
第一同步单元 121,用于同步所全部所述通讯线路中下行链路的下行同步 符号; 与该对通讯线路的下行链路的下行同步符号同步。
在一种实施方式中, 所述第一同步单元 121具体用于:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元发送的下 行同步符号处在同一位置; 其中所述矢量化组包括所述多个局端发送单元和 多个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述 下行链路, 每个所述远端发送单元控制所述 OSD 系统中的一条所述上行链 路。
第二同步单元 122具体用于: 配置矢量化组中的所有远端发送单元, 使 的下行同步符号处在同一位置。
更具体的, 第二同步单元 122控制每一个局端发送单元发送一个同步请 求给对应的远端发送单元, 所述同步请求中包括下行同步符号计数, 以便于 所述远端发送单元接收到同步请求后, 根据所述下行同步符号计数, 将上行 同步符号和下行同步符号处在同一位置。
在另一种实施例中, 所述的矢量化控制实体还包括:
第一配置单元, 用于当 OSD系统中存在非矢量化组时, 配置矢量化组中 的所有局端发送单元或远端发送单元, 使得矢量化组内的所有局端发送单元 或者远端发送单元发送的同步符号处在同一位置; 第二配置单元, 用于配置非矢量化组中的所有局端发送单元或远端发送
在另一种实施例中, 所述的矢量化控制实体还包括:
导频序列分配单元, 用于为所述 K对通讯线路分配导频序列, 其中分配 给每对通讯线路的导频序列与分配给其他 K-1 对通讯线路的导频序列不相 关, 并且, 为每对通讯线路中的上行链路分配的上行导频序列和下行链路分 配的下行导频序列不相关;
控制单元, 用于控制下行发送器在全部通讯线路的下行链路的下行同步 符号中发送下行导频序列, 上行发送器在全部通讯线路的上行链路的上行同 步符号中发送上行导频序列;
获取单元, 用于获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频序列的上行反馈误差;
估计单元, 用于根据所述上行反馈误差和下行反馈误差对所述 OSD系统 进行串扰信道估计。
在该实施例中, 所述上行符号和下行符号为同步符号; 所述第二同步单 元 122具体用于:
通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
如果所述上行符号和下行符号为同步符号; 所述第二同步单元 121具体 用于:
通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。 在该实施例中, 所述导频分配单元用于:
生成 2K个正交的导频序列;
将其中 K个导频序列分配给 K个下行链路;
剩余 K个导频序列分配给 K个上行链路;
通过特殊操作信道将分配给所述 K个上行链路的 K个导频序列以及同步 发送所述导频序列的同步符号位置发送费用户前端设备。
如果所述上行同步符号和下行同步符号为数据符号; 所述同步单元具体 用于:
对齐数据符号与矢量化线路的同步符号。
进一步的, 所述获取单元具体用于在用户端在嵌入式操作信道中反馈的 误差中获取所述下行反馈误差, 根据接收到的用户侧发送的探测信号获得所 述上行反馈误差。
优选的, 所述控制单元进一步包括:
第三配置单元, 用于配置矢量化组中的所有局端发送单元, 使得所有局 第四配置单元, 用于配置矢量化组中的所有远端发送单元, 使得所有远 其中所述第四配置单元控制局端发送单元将当前发送的导频序列的下行 索引值、 分配的上行导频序列通知给对应的远端发送单元, 使得上行同步符 号上调制的上行导频序列的索引值和下行同步符号上调制的下行导频序列的 索引值相同。
本发明实施例还提供一种重叠频谱复用 OSD 系统, 包括中心局设备 ( CO ) 、 用户前端设备(CPE )和上述的矢量化控制实体, 其中所述矢量化 控制实体和中心局端设备相连接, 所述中心局端设备通过所述 K对通讯线路 和用户前端设备相连接。 所述三种设备之间的连接关系示意图在图 3中以体 现, 此处不再赘述。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种 OSD 系统中的线路同步方法, 其特征在于, 应用于重叠频谱复 用 OSD系统中, 所述 OSD系统包括 K对通讯线路, 每对通讯线路包括上行 链路和下行链路, 所述方法包括:
同步所全部所述通讯线路中下行链路的下行同步符号; 链路的下行同步符号同步。
2、 如权利要求 1所述的方法, 其特征在于, 所述同步所全部所述通讯线 路中下行链路的下行同步符号具体包括:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元发送的下 行同步符号处在同一位置; 其中所述矢量化组包括所述多个局端发送单元和 多个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述 下行链路, 每个所述远端发送单元控制所述 OSD 系统中的一条所述上行链 路。
3、 如权利要求 2所述的方法, 其特征在于, 所述将每对通讯线路的上行 链路的上行同步符号分别与该对通讯线路的下行链路的下行同步符号同步, 具体包括:
配置所述矢量化组中的所有远端发送单元, 使得所述所有远端发送单元 位置。
4、 如权利要求 3所述的方法, 其特征在于, 所述配置矢量化组中的所有 局端发送单元发送的下行同步符号处在同一位置, 具体包括:
控制每一个局端发送单元发送一个同步请求给对应的所述远端发送单 元, 所述同步请求中包括下行同步符号计数, 以便于所述远端发送单元接收 到同步请求后, 根据所述下行同步符号计数, 将上行同步符号和下行同步符 号处在同一位置。
5、 如权利要求 1所述的方法, 其特征在于, 所述 OSD系统包括矢量化 组, 所述矢量化组包括局端发送单元和远端发送单元, 每个所述局端发送单 元控制一条所述下行链路, 每个所述远端发送单元控制一条所述上行链路; 当所述 OSD系统中存在非矢量化组时, 配置所述矢量化组中的所有局端 发送单元或远端发送单元, 使得矢量化组内的所有局端发送单元或者远端发 送单元发送的同步符号处在同一位置;
配置非矢量化组中的所有局端发送单元或远端发送单元, 使得非矢量化 发送单元或远端发送单元发送的同步符号位置错开。
6、 如权利要求 1所述的方法, 其特征在于, 所述将每对通讯线路的上行 链路的上行同步符号分别与该对通讯线路的下行链路的下行同步符号同步, 之后, 还包括:
为所述 K对通讯线路分配导频序列, 其中分配给每对通讯线路的导频序 列与分配给其他 K-1对通讯线路的导频序列不相关, 并且, 为每对通讯线路 中的上行链路分配的上行导频序列和下行链路分配的下行导频序列不相关;
行导频序列;
获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频 序列的上行反馈误差;
根据所述上行反馈误差和下行反馈误差对所述 OSD系统进行串扰信道估 计。
7、 如权利要求 6所述的方法, 其特征在于, 所述上行符号和下行符号为 线路的下行链路的下行同步符号同步; 具体包括:
通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
8、 如权利要求 6所述的方法, 其特征在于, 所述上行符号和下行符号 讯线路的下行链路的下行同步符号同步; 具体包括:
通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。
9、 如权利要求 6所述的方法, 其特征在于, 为所述 K对通讯线路分配导 频序列, 之前, 还包括:
生成 2K个正交的导频序列;
将其中 K个导频序列分配给 K个下行链路;
剩余 K个导频序列分配给 K个上行链路;
通过特殊操作信道将分配给所述 K个上行链路的 K个导频序列以及同步 发送所述导频序列的同步符号位置发送给用户前端设备。
10、 如权利 6所述的方法, 其特征在于, 所述上行同步符号和下行同步 对通讯线路的下行链路的下行同步符号同步; 具体包括:
对齐数据符号与矢量化线路的同步符号。
11、 如权利要求 6所述的方法, 其特征在于, 获取每对所述通讯线路中 下行导频序列的下行反馈误差, 以及下行导频序列的上行反馈误差; 其中, 所述下行反馈误差为用户端在嵌入式操作信道中反馈的误差; 所述上行反馈误差根据接收到的用户侧发送的探测信号获得。
12、 如权利要求 6所述的方法, 其特征在于, 所述控制下行发送器在全
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元在索引相 配置矢量化组中的所有远端发送单元, 使得所有远端发送单元在索引相
13、 如权利要求 12所述的方法, 其特征在于, 所述配置矢量化组中的所 索引相同的下行导频序列值; 具体包括:
控制局端发送单元将当前发送的导频序列的下行索引值、 分配的上行导 频序列通知给远端发送单元, 使得上行同步符号上调制的上行导频序列的索
14、 一种矢量化控制实体, 其特征在于, 应用于重叠频谱复用 OSD系统 中, 所述 OSD系统包括 K对通讯线路, 每对通讯线路包括上行链路和下行 链路, 包括:
第一同步单元, 用于同步所全部所述通讯线路中下行链路的下行同步符 号; 该对通讯线路的下行链路的下行同步符号同步。
15、 如权利要求 14所述的矢量化控制实体, 其特征在于, 所述第一同步 单元具体用于:
配置矢量化组中的所有局端发送单元, 使得所有局端发送单元发送的下 行同步符号处在同一位置; 其中所述矢量化组包括所述多个局端发送单元和 多个远端发送单元,每个所述局端发送单元控制所述 OSD系统中的一条所述 下行链路, 每个所述远端发送单元控制所述 OSD 系统中的一条所述上行链 路。
16、 如权利要求 15所述的矢量化控制实体, 其特征在于, 第二同步单元 具体用于:
配置所述矢量化组中的所有远端发送单元, 使得所述所有远端发送单元 位置。
17、 如权利要求 16所述的矢量化控制实体, 其特征在于, 第二同步单元 具体用于:
控制每一个局端发送单元发送一个同步请求给对应的所述远端发送单 元, 所述同步请求中包括下行同步符号计数, 以便于所述远端发送单元接收 到同步请求后, 根据所述下行同步符号计数, 将上行同步符号和下行同步符 号处在同一位置。
18、 如权利要求 14所述的矢量化控制实体, 其特征在于, 所述 OSD系 统包括矢量化组, 所述矢量化组包括局端发送单元和远端发送单元, 每个所 述局端发送单元控制一条所述下行链路, 每个所述远端发送单元控制一条所 述上行链路, 所述控制实体还包括:
第一配置单元, 用于当存在非矢量化组时, 配置矢量化组中的所有局端 发送单元或远端发送单元, 使得矢量化组内的所有局端发送单元或者远端发 送单元发送的同步符号处在同一位置;
第二配置单元, 用于配置非矢量化组中的所有局端发送单元或远端发送
19、 如权利要求 14所述的矢量化控制实体, 其特征在于, 所述矢量化控 制实体还包括:
导频序列分配单元, 用于为所述 K对通讯线路分配导频序列, 其中分配 给每对通讯线路的导频序列与分配给其他 K-1 对通讯线路的导频序列不相 关, 并且, 为每对通讯线路中的上行链路分配的上行导频序列和下行链路分 配的下行导频序列不相关;
控制单元, 用于控制下行发送器在全部通讯线路的下行链路的下行同步 符号中发送下行导频序列, 上行发送器在全部通讯线路的上行链路的上行同 步符号中发送上行导频序列;
获取单元, 用于获取每对所述通讯线路中下行导频序列的下行反馈误差, 以及下行导频序列的上行反馈误差;
估计单元, 用于根据所述上行反馈误差和下行反馈误差对所述 OSD系统 进行串扰信道估计。
20、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述上行符号 和下行符号为同步符号; 所述第二同步单元具体用于:
通知用户前端设备侧将所述全部通讯线路中每条上行链路的上行同步符 号与该对通讯线路中下行链路的下行同步符号对齐。
21、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述上行符 号和下行符号为同步符号; 所述第二同步单元具体用于:
通知用户前端设备将全部通讯线路的上行链路的上行同步符号对齐; 向所述用户前端设备发送所述全部通讯线路的下行同步符号和下行同步 符号的符号个数偏移, 以便于, 用户前端设备根据所述符号个数调整所述全 部通讯线路的上行同步符号与所述全部通讯线路的所述下行同步符号同步。
22、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述导频分配 单元用于:
生成 2K个正交的导频序列; 将其中 K个导频序列分配给 K个下行链路;
剩余 Κ个导频序列分配给 Κ个上行链路;
通过特殊操作信道将分配给所述 Κ个上行链路的 Κ个导频序列以及同步 发送所述导频序列的同步符号位置发送费用户前端设备。
23、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述上行同步 符号和下行同步符号为数据符号; 所述同步单元具体用于:
对齐数据符号与矢量化线路的同步符号。
24、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述获取单元 具体用于在用户端在嵌入式操作信道中反馈的误差中获取所述下行反馈误 差, 根据接收到的用户侧发送的探测信号获得所述上行反馈误差。
25、 如权利要求 19所述的矢量化控制实体, 其特征在于, 控制单元进一 步包括:
第三配置单元, 用于配置矢量化组中的所有局端发送单元, 使得所有局 第四配置单元, 用于配置矢量化组中的所有远端发送单元, 使得所有远
26、 如权利要求 19所述的矢量化控制实体, 其特征在于, 所述第四配置 单元, 具体用于:
控制局端发送单元将当前发送的导频序列的下行索引值、 分配的上行导 频序列通知给远端发送单元, 使得上行同步符号上调制的上行导频序列的索
27、 一种重叠频谱复用 OSD系统, 包括中心局端设备、 用户前端设备和 权利要求 14-26任一所述的矢量化控制实体, 其中所述矢量化控制实体和中 心局端设备相连接, 所述中心局端设备通过所述 Κ对通讯线路和用户前端设 备相连接。
PCT/CN2014/074456 2014-02-27 2014-03-31 Osd系统中的线路同步方法、系统及矢量化控制实体 WO2015127706A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14883622.4A EP3104532B1 (en) 2014-02-27 2014-03-31 Method and system for synchronizing lines in osd system, and vectorization control entity
CN201480000380.7A CN105229931B (zh) 2014-02-27 2014-03-31 Osd系统中的线路同步方法、系统及矢量化控制实体
JP2016554463A JP6414715B2 (ja) 2014-02-27 2014-03-31 Osdシステムにおける回線同期方法、システム、およびベクトル化制御エンティティ
US15/250,144 US10097238B2 (en) 2014-02-27 2016-08-29 Line synchronization method in OSD system, system, and vectoring control entity
US16/125,301 US10615845B2 (en) 2014-02-27 2018-09-07 Line synchronization method in OSD system, system, and vectoring control entity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/072633 WO2015127624A1 (zh) 2014-02-27 2014-02-27 串扰信道估计方法、矢量化控制实体及osd系统
CNPCT/CN2014/072633 2014-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/250,144 Continuation US10097238B2 (en) 2014-02-27 2016-08-29 Line synchronization method in OSD system, system, and vectoring control entity

Publications (1)

Publication Number Publication Date
WO2015127706A1 true WO2015127706A1 (zh) 2015-09-03

Family

ID=54008141

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/072633 WO2015127624A1 (zh) 2014-02-27 2014-02-27 串扰信道估计方法、矢量化控制实体及osd系统
PCT/CN2014/074456 WO2015127706A1 (zh) 2014-02-27 2014-03-31 Osd系统中的线路同步方法、系统及矢量化控制实体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072633 WO2015127624A1 (zh) 2014-02-27 2014-02-27 串扰信道估计方法、矢量化控制实体及osd系统

Country Status (4)

Country Link
US (2) US10097238B2 (zh)
EP (1) EP3104532B1 (zh)
JP (1) JP6414715B2 (zh)
WO (2) WO2015127624A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141976B2 (en) * 2015-02-24 2018-11-27 Lantiq Beteiligungs-GmbH & Co. KG Crosstalk mitigation
US20160380673A1 (en) * 2015-06-23 2016-12-29 Ikanos Communications, Inc. Vectoring across multiple co boxes/cards/dslams either owned by the same operator or by different operators
EP3255808B1 (en) * 2016-06-09 2018-12-05 Alcatel Lucent Crosstalk mitigation for out-of-band tones
CN108886381B (zh) * 2016-08-15 2020-02-14 华为技术有限公司 Cm受干扰度测量方法、装置和系统
CN107979551B (zh) * 2016-10-25 2022-04-15 中兴通讯股份有限公司 一种信道误差获取方法及装置
EP3593457B1 (en) * 2017-03-10 2024-05-15 Intel Corporation Partial echo cancellation duplexing
CN110113122B (zh) * 2018-02-01 2021-06-22 华为技术有限公司 一种定时的方法及装置
CN110311875B (zh) * 2018-03-20 2022-10-18 华为技术有限公司 一种数据传输方法及装置
EP3554016B1 (en) * 2018-04-15 2021-10-27 National Instruments Belgium NV Exchanging data in a real-time data communication system
US10873366B2 (en) * 2018-04-16 2020-12-22 Intel Corporation Virtual distribution point architecture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175156A1 (en) * 2008-01-07 2009-07-09 Wen Xu Communication Apparatus and Method
CN102396160A (zh) * 2009-07-10 2012-03-28 华为技术有限公司 用于评估串扰信道的强度的方法
CN103178897A (zh) * 2011-12-20 2013-06-26 Ruag瑞士股份公司 光下行链路系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394752B2 (en) 2001-11-06 2008-07-01 The Board Of Trusttees Of The Leland Stanford Junior University Joint reduction of NEXT and FEXT in xDSL systems
US8644497B2 (en) * 2008-04-24 2014-02-04 Lantiq Deutschland Gmbh Method and apparatus for adding a communication connection to a vectored group
US9287928B2 (en) * 2008-04-24 2016-03-15 Lantiq Deutschland Gmbh Method and apparatus for adding a communication connection to a vectored group
US7860044B2 (en) * 2008-05-30 2010-12-28 Alcatel-Lucent Usa Inc. Methods and apparatus for providing synchronization in a multi-channel communication system
US8432955B2 (en) * 2009-07-10 2013-04-30 Futurewei Technologies, Inc. Method for robust crosstalk precoder training in channels with impulse noise
US8780686B2 (en) * 2010-07-22 2014-07-15 Nicholas P. Sands Reduced memory vectored DSL
US9270831B2 (en) 2011-04-27 2016-02-23 Ikanos Communications, Inc. Systems and methods for G.vector initialization
WO2012106936A1 (zh) * 2011-07-27 2012-08-16 华为技术有限公司 支持非矢量化线路的方法、装置和系统
US9531491B2 (en) * 2012-02-13 2016-12-27 Lantiq Deutschland Gmbh Communication method, apparatus and system
US9020145B2 (en) * 2012-07-20 2015-04-28 Futurewei Technologies, Inc. MIMO mechanism for strong FEXT mitigation
EP2690805B1 (en) * 2012-07-23 2020-05-27 Lantiq Beteiligungs-GmbH & Co.KG Spectrum management and timing optimization over multiple distribution points
BR112015001818A2 (pt) * 2012-07-27 2017-08-08 Adaptive Spectrum & Signal Alignment Inc sistema de gerenciamento e métodos de gerenciamento de transmissão duplex por divisão de tempo (tdd) através de cobre
EP2885887B1 (en) * 2012-08-20 2018-07-18 Adtran, Inc. Systems and methods for power optimized framing
CN103828251B (zh) * 2012-08-30 2016-06-15 华为技术有限公司 一种兼容vdsl2传统用户端设备的方法、装置及系统
CN104054275B (zh) * 2013-01-10 2015-09-23 华为技术有限公司 一种dsl系统信号处理方法、装置及系统
US9306733B2 (en) * 2013-02-28 2016-04-05 Broadcom Corporation Method of synchronizing a communication system
US9473339B2 (en) * 2013-04-12 2016-10-18 Futurewei Technologies, Inc. Performing upstream symbol alignment under FEXT
EP3525440B1 (en) * 2013-05-13 2020-11-04 Lantiq Beteiligungs-GmbH & Co.KG Methods, devices and systems of supporting discontinuous operation in communication systems using vectoring
EP2988426B1 (en) * 2013-06-20 2017-05-10 Huawei Technologies Co., Ltd. Line initialization method, device and system
EP3039851B1 (en) * 2013-08-29 2020-02-19 Lantiq Beteiligungs-GmbH & Co.KG Power saving in communication systems
US9825666B2 (en) * 2014-01-28 2017-11-21 Maxlinear Asia Singapore Private Limited Communication system for telephone line access with crosstalk stability
US9912376B2 (en) * 2014-07-15 2018-03-06 Adtran, Inc. Managing crosstalk in vectored transmissions
WO2016019378A1 (en) * 2014-08-01 2016-02-04 Ikanos Communications, Inc. Method and apparatus for crosstalk management among different vectored groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175156A1 (en) * 2008-01-07 2009-07-09 Wen Xu Communication Apparatus and Method
CN102396160A (zh) * 2009-07-10 2012-03-28 华为技术有限公司 用于评估串扰信道的强度的方法
CN103178897A (zh) * 2011-12-20 2013-06-26 Ruag瑞士股份公司 光下行链路系统

Also Published As

Publication number Publication date
WO2015127624A1 (zh) 2015-09-03
JP6414715B2 (ja) 2018-10-31
EP3104532A4 (en) 2017-01-25
JP2017512431A (ja) 2017-05-18
EP3104532B1 (en) 2018-03-21
US10615845B2 (en) 2020-04-07
US20160365896A1 (en) 2016-12-15
US10097238B2 (en) 2018-10-09
EP3104532A1 (en) 2016-12-14
US20190007097A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
US10615845B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
US10797751B2 (en) Communication coexistence in overlap spectrum
JP6152165B2 (ja) 通信システムのための伝送方式
JP4201903B2 (ja) 時分割二重トランシーバの同期方法およびシステム
US8989063B2 (en) Time division multiple access far end crosstalk channel estimation
KR101755971B1 (ko) 연결-준비 그룹을 사용하는 벡터화된 시스템에서의 복수의 회선의 트레이닝 최적화
WO2014032260A1 (zh) 一种兼容vdsl2传统用户端设备的方法、装置及系统
WO2012149791A1 (zh) 一种串扰信道估计方法、装置及系统
JP2005333681A (ja) 時分割二重化高速データ伝送システム及びその方法
TW201611536A (zh) 跨越共享傳輸介質的全雙工通訊
US20080187077A1 (en) Method for estimating crosstalk interferences in a communication network
US9473240B2 (en) Method and apparatus for providing twisted pair multilink communications
CN107294561B (zh) 一种dsl系统中抵消线路串扰的方法、设备和系统
US10141977B2 (en) Special operations channel in vectored systems
KR100591644B1 (ko) 시분할듀플렉싱된트랜시버를동기화시키기위한방법및시스템
WO2009140890A1 (zh) 一种实现符号同步的方法、系统及装置
WO2016082221A1 (zh) 信号发送的方法、装置和系统
CN105229931A (zh) Osd系统中的线路同步方法、系统及矢量化控制实体
CN107210878A (zh) 用于wifi ofdma的导频图案
Nilsson Digital communication in wireline and wireless environments

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000380.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014883622

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014883622

Country of ref document: EP