TW201611536A - 跨越共享傳輸介質的全雙工通訊 - Google Patents

跨越共享傳輸介質的全雙工通訊 Download PDF

Info

Publication number
TW201611536A
TW201611536A TW104110999A TW104110999A TW201611536A TW 201611536 A TW201611536 A TW 201611536A TW 104110999 A TW104110999 A TW 104110999A TW 104110999 A TW104110999 A TW 104110999A TW 201611536 A TW201611536 A TW 201611536A
Authority
TW
Taiwan
Prior art keywords
interference
user device
user
communication
individual
Prior art date
Application number
TW104110999A
Other languages
English (en)
Other versions
TWI565249B (zh
Inventor
偉納 庫曼斯
鴻基 周
約亨 美斯
Original Assignee
阿爾卡特朗訊公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿爾卡特朗訊公司 filed Critical 阿爾卡特朗訊公司
Publication of TW201611536A publication Critical patent/TW201611536A/zh
Application granted granted Critical
Publication of TWI565249B publication Critical patent/TWI565249B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • H04J11/0043Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation by grouping or ordering the users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/19Echo-cancelling; Hybrid; Amplifier; Attenuator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/292Time (de)multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本發明關於一種用於分配傳輸資源(101)到耦合到一共享傳輸媒體的一存取節點(11)和複數個使用者裝置(41至46)之間的通訊之方法。 根據本發明的一個實施方案,該方法包含一種用於分配傳輸資源(101)到耦合到一共享傳輸媒體的一存取節點(11)和複數個使用者裝置(41至47)之間的通訊之方法,並包含將在該共享傳輸媒體上的該複數個使用者裝置之個別一者之間的干擾特徵化,基於該特徵化的干擾將高度干擾使用者裝置分組成個別干擾組(G1,G2,G3,G4),並從任一干擾組的任一使用者裝置將不相交的傳輸時間間隔分配到上行通訊,以及朝著該相同干擾組的任何其他使用者裝置到下行通訊。 本發明還關於一種資源控制器。

Description

跨越共享傳輸介質的全雙工通訊
本發明關於一個跨越共享傳輸媒體的全雙工通訊。
DSL範例公司。正交分頻多工(Orthogonal Frequency Division Multiplexing;OFDM)和離散多音(Discrete Multi-Tone;DMT)技術,這已被證明是用於實現非常高的數據速率在帶寬受限的銅裝置特別成功,目前被認為是高品質的傳輸媒體,諸如同軸電纜。
一種同軸電纜裝置是共享點對多點(Point to Multi-Point;P2MP)媒體,藉由分接頭,功率分配器/組合器,耦合器等將中央節點經由彼此耦合的同軸段連接到複數個端子。
全雙工通訊被設想作為一種方式以使電纜裝置的利用最優化。端子仍然被分配不重疊的頻帶,然而同一集合的載波可用於下行和上行通訊兩者,與半雙工或分頻雙工(Frequency Division Duplexing;FDD)技術相比 得到加倍的數據流通量。一些技術障礙有待將被克服。
例如,從傳輸路徑到接收路徑中的自干擾在一個且相同的收發器(以下稱為回波)內應妥善消除。這是可能的,因為這傳輸信號和所述迴歸耦合函數兩者對於收發器是已知的。回波消除可藉由混合電路和/或藉由信號後處理技術的裝置,如最小均方(Least Mean Square;LMS)濾波器等來實施。
此外,如果終端具有有限隔離,從一個終端的上行傳輸信號洩漏到另一個終端的下行路徑中。例如,在一個典型的電纜網路中,分接頭到分接頭隔離僅20-25dB。不同於自干擾信號,該終端之間的干擾不能被去除,因為傳輸信號對於接收終端是不知道的。這種干擾信號會從FCU添加功率到直接接收信號,因為這兩個信號不相關,且因此可能會導致在收發器信號削波,並使直接接收的信號不可檢測到。事實上,無論期望其子集被實際用於通訊,收發器的類比部分被設計用於給定的和固定的頻帶。
為了減輕接收器處的終端之間的干擾,直接的方法是增加所有接收器的動態範圍,使得它們不會由於這種不希望的高功率干擾信號而將會被削波。然而,這種方法,將降低用於低功率的有用信號之信號解析度,並且因此導致下行鏈路的性能的障礙。
本發明的目的是克服現有技術解決方案的上述缺陷和缺點,並改善在共享傳輸媒體的全雙工通訊。
根據本發明的第一態樣,一種用於分配傳輸資源到耦合到一共享傳輸媒體的一存取節點和複數個使用者裝置之間的通訊之方法,並包含將在該共享傳輸媒體上的該複數個使用者裝置之個別一者之間的干擾特徵化,基於該特徵化的干擾將高度干擾使用者裝置分組成個別干擾組,並從任一干擾組的任一使用者裝置將不相交的傳輸時間間隔分配到上行通訊,以及朝著該相同干擾組的任何其他使用者裝置到下行通訊。
根據本發明進一步的態樣,一種用於分配傳輸資源到耦合到一共享傳輸媒體的一存取節點和複數個使用者裝置之間的通訊之資源控制器,並配置以將在該共享傳輸媒體上的該複數個使用者裝置之個別一者之間的干擾特徵化,基於該特徵化的干擾將高度干擾使用者裝置分組成個別干擾組,並從任一干擾組的任一使用者裝置將不相交的傳輸時間間隔分配到上行通訊,以及朝著該相同干擾組的任何其他使用者裝置到下行通訊。
資源控制器可以形成有線或無線存取節點的部分,比如光纖同軸單元(Fiber Coaxial Unit;FCU),無線電基站,無線電網路控制器(Radio Network Controller;RNC),行動性管理實體(Mobility Management Entity;MME),或可形成網路管理器或網路分析器的部分,或者可以被配置為在一個或複數個通用計算平台(又稱雲)上 運作。
在本發明的一個實施方案中,其中最初分配到朝向一第一干擾組的一第一使用者裝置之下行通訊的第一頻率資源在包含主動上行通訊的傳輸時間間隔期間從所述第二使用者裝置被重新分配到朝向第一干擾組的另一第二使用者裝置之下行通訊;且最初分配到朝向所述第二使用者裝置之下行通訊的第二頻率資源在包含主動上行通訊的進一步傳輸時間間隔期間從所述第一使用者裝置被重新分配到朝向所述第一使用者裝置之下行通訊。
在本發明的一個實施方案中,最初分配到朝向一第一干擾組的一第一使用者裝置之下行通訊的第一頻率資源在包含主動上行通訊的傳輸時間間隔期間從所述第一干擾組的另一第二使用者裝置所述第二使用者裝置和從所述第三使用者裝置被重新分配到朝向另一第二干擾組的另一第三使用者裝置之下行通訊;且最初分配到朝向所述第三使用者裝置之下行通訊的第三頻率資源在包含主動上行通訊的進一步傳輸時間間隔期間從所述第一使用者裝置和從所述第二干擾組的另一第四使用者裝置被重新分配到朝向所述第一使用者裝置之下行通訊。
在本發明的一個實施方案中,干擾特徵包含特徵化在該複數個使用者裝置的個別一者之間的個別耦合路徑的路徑損耗。
在本發明的一個實施方案中,干擾特徵包含特徵化在該複數個使用者裝置的個別一者之傳輸和/或接 收功率準位。
在本發明的一個實施方案中,干擾特徵包含在該複數個使用者裝置的個別一者之間的該共享傳輸媒體上的進行干擾測量。
在本發明的一個實施方案中,所述干擾測量是例如:藉由相互正交的引示序列而離線或在線來進行,該引示序列調變由該個別使用者裝置所傳輸的個別引示信號。
在本發明的一個實施方案中,分組包含相對於個別可持續干擾閾值從其他使用者裝置比較所述複數個使用者裝置的個別一者發生的單獨或集體的干擾準位。
在本發明的一個實施方案中,與所述複數個使用者裝置的下行和上行通訊是在一共同集合的頻率資源上所定義的全雙工通訊。
取決於彼此之間個別的耦合損耗,端子是首先被組織成不同干擾組。例如,在電纜裝置中連接到一單一分配器的分接頭之所有終端可以組成小組。在這些干擾組的每個內,一使用者裝置的上行傳輸和另一使用者裝置的下行傳輸並且不能同時出現,並應使用不相交的傳輸時間間隔。取決於瞬時流量條件或服務品質(Quality of Service;QoS)要求,存取節點分配頻率和時間資源至每個終端,使得上述限制條件被遵守。以這種方式,在保留了全雙工傳輸的全部容量的同時,避免有害的端子間干擾。
1‧‧‧通訊系統
11‧‧‧FCU
12‧‧‧資源控制器
21-22‧‧‧分接頭
31-34‧‧‧分配器
41-47‧‧‧CPE1-CPE7
51-52‧‧‧主同軸電纜段
61-64‧‧‧次級同軸電纜段
71-77‧‧‧三元同軸段
F1-F4‧‧‧頻率塊
G1-G4‧‧‧干擾組
P1-P8‧‧‧端口
T1-T4、T11-T18‧‧‧分接頭端口
T1-T4‧‧‧時間間隔
81‧‧‧光學鏈路
101‧‧‧正方形
藉由參照與附圖並結合以下實施例的描述,本發明的上述和其它目的和特徵將變得更加明顯,並且本發明本身將得到最好的理解:- 圖1表示同軸裝置的特定實施例;和- 圖2A表示如先前技術的資源分配方案;和- 圖2B,2C和2D表示如本發明的三個資源分配方案。
在圖1中有看見,混合光纖同軸(Hybrid Fiber Coax;HFC)通訊系統1的部分包含經由電纜裝置耦合到客戶端設施(Customer Premises Equipment;CPE)41到47的FCU 11,以及經由一個或複數個光學鏈路81到營運商的網路(未示出)。
電纜裝置包含主同軸電纜段51和52,次級同軸電纜段61到64和三元同軸段71到77。主同軸電纜段51耦合在FCU 11到第一雙向分接頭21(或TAP1)的輸入端口P1,且主同軸電纜段52耦合分接頭21的輸出端口P2到另一個第二雙向分接頭22(或TAP2)的輸入端口P3。分接頭21和22進一步包含分接頭端口T1到T4,用於連接到CPE或進一步分配器。目前,分接頭21的分接頭端口T1經由次級同軸電纜段61到分配器31的 輸入端口P5耦合,其中之分接頭端口T11和T12中經由三元同軸段71和72耦合到CPE 41和42(或CPE1和CPE2);分接頭21的分接頭端口T2經由次級同軸段62耦合到分配器32的輸入端口P6,其中之分接頭端口T13和T14經由三元同軸段73和74耦合到CPE 43和44(或CPE3和CPE4);分接頭22的分接頭端口T3經由次級同軸段63耦合到分配器33的輸入端口P7,其中之分接頭端口T15和T16經由三元同軸段75和76耦合到CPE 45和46(或CPE5和CPE6);和最後,分接頭22的分接頭端口T4經由次級同軸電纜段64耦合到分配器34的輸入端口P8,其中之分接頭端口T17經由三元同軸段77耦合到CPE 47(或CPE7),而分接頭端口T18保持打開(典型地具有匹配阻抗)。
電纜裝置可包含進一步的分接頭,分配器和CPE,可能以不同的方式互相連接在一起。繪製在圖1的特定拓撲是僅在眾者之中的一者,並僅作為即將到來的說明之說明性的例子。
分接頭21和22以及分配器31到34引起的耦合損耗正取決於它們的硬體結構和執行,並且可能會從一個耦合器到另一種耦合器,並且還從一個製造商到另一個製造商發生變化。然而,有一些值得注意之通用的耦合特性。
在分接頭21的輸入端口P1和輸出端口P2之間的雙向耦合路徑的路徑損耗,以及在分接頭22的輸入 端口P3和輸出端口P4,分別通常為1至3分貝的範圍。此後,讓這個路徑損耗是2分貝。主要端口P1和個別分接頭端口T1或T2的路徑損耗,分別比在主端口P3和個別分接頭端口T3或T4之間的路徑損耗高,一般為8到27分貝的範圍,取決於到FCU 11的距離。此後,讓這個路徑損耗是17分貝。所述輸入端口和所述分配器31至34的各自的分接頭端口之間的路徑損耗用於雙向分配器通常為約4分貝。此後,讓這個路徑損耗是4分貝。分接頭21和22防止在它們的輸出端口所接收的返回上行信號耦合回到分接頭端口中。此路徑損耗通常為約30分貝,此後,我們將假設此值。最後,分接頭21和22的分接頭端口和分配器31至34的分接頭端口由在20到25分貝的範圍內的路徑損耗互相隔離,而此後,我們將假設為23分貝的公共值。各個路徑損耗和對應假設值被繪製在圖1。
在FCU 11包含收發器,並且所以沒有CPE 41至47(未示出)。一種收發器通常包含一個數位信號處理器(Digital Signal Processor;DSP)和類比前端(Analog Front End;AFE)。
將AFE包含數位到類比轉換器(Digital-to-Analog Converter;DAC)和類比到數位轉換器(Analog-to-Digital Converter;ADC),用於在合適的通訊頻帶內限制的信號能量,同時抑制帶外干擾的傳輸濾波器和接收濾波器,用於放大傳輸信號和用於驅動該傳輸媒體的線驅動 器,和用於放大用盡可能少雜訊的接收信號之低雜訊放大器(Low Noise Amplifier;LNA)。
AFE進一步包含在實現低傳輸機-接收機耦合比的同時用於將傳輸機輸出耦合到傳輸媒體和傳輸媒體到接收器輸入的混合。AFE或DSP還容納回波消除濾波器來減少在進一步程度的回波信號。
在AFE進一步包含阻抗匹配電路,用於適應所述傳輸媒體的特性阻抗,和一些突波保護和隔離電路。
DSP被配置成操作下游和上游通信通道用於在同軸媒體上傳送使用者流量。
DSP被配置成操作用於在同軸媒體傳輸使用者流量的下行和上行通訊信道。
該DSP還被配置來操作用於傳輸控制流量,如診斷或管理的命令和響應之下行和上行控制信道。控制流量以在傳輸媒體的使用者流量而多工。
更具體地說,DSP是用於編碼和調變使用者和控制數據轉換成數位數據符號,以及用於從數位數據符號解調和解碼使用者和控制數據。
以下的傳輸步驟通常在DSP中執行:- 數據編碼,如數據多工,成框,擾頻,錯誤修正編碼和交錯;- 信號調變,包含以下步驟,根據載波排序表排序每個載波,根據有序的載波的比特負載解析編碼比特流,並映射每個比特塊到適當的傳輸分佈點(具有 各自的載波幅度和相位)上,可能具有交織編碼;- 信號縮放;- 快速傅立葉逆變換(Inverse Fast Fourier Transform;IFFT);- 環字首(Cyclic Prefix;CP)的插入;並可能地- 開時間視窗。
以下的接收步驟通常在DSP中執行:- CP去除,和可能地開時間視窗;- 快速傅里葉變換(Fast Fourier Transform;FFT);- 頻域均衡(Frequency EQualization;FEQ);- 信號解調和檢測,包含以下步驟,向每一個均衡頻率樣本施加適當分佈網格,這些的型樣取決於個別載波比特負載,檢測預期的傳輸分佈點和與其編碼對應的傳輸二進制序列,可能具有交織解碼,並且根據載波排序表重新排序所有檢測到的比特塊;和- 數據解碼,諸如數據去交錯,錯誤修正編碼,解擾頻,框區隔和解多工。
其中的一些傳輸或接收的步驟可以省略,或一些其他步驟可以存在,這取決於被使用的確切數位通訊技術。
在同軸裝置通訊是全雙工並且被定義在正交載波共同的集合,這意味著相同集合的載波同時用於下行(從FCU朝向的CPE)和上行(從CPE朝向FCU)通訊兩者。因此,當相比於如部署用於DOCSIS或xDSL技術 部署的FDD,或時分雙工(Time Division Duplexing;TDD)的遺留技術作為設想用於將來G.Fast時,集體的容量加倍。然而,全雙工並不意味著每一個使用者所使用的載波都相同:每個使用者應當進一步被分配在公共頻帶內非重疊的頻帶。
為了動態地適應各個使用者的實際的流量型樣,傳輸資源劃分時間方面和頻率方面。特定時隙內的特定的頻率塊(典型地包含載波的給定數量)被稱為傳輸資源塊(Transmission Resource Block;TRB)。
FCU 11還包含基於各個使用者的流量需求,以及在它們各自的服務質量,以及進一步的調度標準而分配可用TRBS的資源控制器12(或CTRL)。TRB被分配到特定通訊的方向用於特定使用者。因為全雙工傳輸,同樣的TRB可以被分配到通訊的相對方向用於同一或另一使用者。
更正式地說,讓我們將Dti表示在時間間隔t期間用於具有使用者i的下行通訊的該集合的載波;和將Uti表示在時間間隔t期間用於具有使用者i的上行通訊的該集合的載波。上述限制被正式表示為:
具有全雙工傳輸,人們所期望的所有CPE始終在各自的頻段接收和傳輸。然而,由於與上行至下行的干擾的上述問題,一些聰明時分方式是必需的,其基本上 減輕這些干擾,同時保留全雙工操作的性能。
為了這一目的,該資源控制器12配置以特徵化CPE 41至47的各個之間的干擾的準位以分離所謂干擾組內的強干擾終端,並在每個干擾組強加某些傳輸限制條件,如將在進一步的描述中被闡述。
作為第一實施方案,資源控制器12從本地存儲庫(例如,從管理信息庫(MIB))電纜裝置和/或藉由與個別的收發器通訊而獲取了電纜裝置和數據通訊的特徵。這些特徵隨後被用來計算各別的CPE 41至47之間的上行至下行的干擾。
資源控制器12獲取網路拓撲,即其中的裝置被連接到其它裝置,以及耦合單元的耦合特性,即如前所述分接頭21和22各自的端口的和分配器31至34之間的耦合損耗。然後,忽略了同軸段的插入損耗,該資源控制器12計算對於各自的CPE之間的路徑損耗之近似值。
路徑損耗預計是對稱的,這意味著從給定的CPE朝向另一CPE的路徑損耗和從其他CPE朝向給定的CPE的反向路徑損耗被假定為大致相等。
例如,CPE 41和42之間的路徑損耗大約等於-23分貝;在CPE 41和43(或44)之間的路徑損耗大約等於-4-23-4=-31分貝;和CPE 41和45(或46或47)之間的路徑損耗大約等於-4-30-17-4=-55分貝。
因此,和有了由各個CPE用於上行通訊用的傳輸功率的知識,在假定所有其它CPE CPEj被同時傳輸 上行之給定的CPE CPEi,該資源控制器12計算所招致的干擾功率準位Ii的估算。計算干擾功率準位Ii作為藉由這些其他CPE CPEj和給定的CPE CPEi之間的各個路徑損耗所加權的這些其他CPE CPEj的各個上行傳輸功率的總和: 其中Hij表示從CPE CPEj轉移或偶合函數到CPE CPEi,而表示在CPE CPEj的上行傳輸功率。頻率依賴性已經自願在這裡省略,以減少的路徑損失和對應的干擾準位至簡單的純量的因子。
因為來自其它CPE CPEj的同步上行傳輸,資源控制器12可以藉由比較該具有接收功率之計算的整體干擾水平Ii而在由從FCU 11的直接下行接收信號和CPEi自身上行傳輸的回波所組成的CPE CPEi的輸入來獲取有關在CPE CPEi的AFE中誘導的傳輸損害之一些事後之見: 其中Hi0表示從FCU 11到CPE CPEi的偶合函數,Hii表示CPE CPEi內的回波偶合函數,表示在FCU 11的下行傳輸功率,而表示在CPE CPEi的下行接收功率。
參數Hi0和Hii可由CPE CPEi進行測量,報告回FCU 11,和結合已知的使用而得到。可替代地,接收功率可由CPE CPEi來測量,而其它的CPE是沉默的,並回報告給FCU 11。
我們可以預期,在沒有這些干擾Ii之下,藉由自動增益放大器(Automatic Gain Amplifier;AGC)使藉由一些因子α縮放的輸入信號在ADC的輸入匹配一些參考電壓Vref,或者可替換地:
參考電壓Vref根據由ADC支援的標稱輸入電壓範圍被確定,同時適當考慮預期的輸入信號的峰值對均值比(Peak-to-Average Ratio;PAR)。
現在,考慮該來自其它CPEs CPEj招致的上行至下行干擾的Ii,且假定輸入信號仍然藉由一些因子β縮放以匹配基準電壓Vref,我們有: 這意味著假定所有其他的CPE CPEj正在傳輸的直接信號的該增益降低β/α由下式給出:
如果雜訊底大多由ADC的量化雜訊(這是通常的情況)確定,然後方程式(6)給出了在CPEi預期的SNR減少。為了減輕這種損害,資源控制器12組織CPE到干擾組中。
作為一個可能的實現中,算法將運行如下。給定CPEi被選作犧牲者。其他的CPE CPEj根據,從最弱干擾到的最強干擾源開始它們各自與犧牲者CPE CPEi的干擾準位|Hij|2 排序。最弱干擾的貢獻首先單獨加入到 方程式(6),產生第一增益衰減值。這個過程是重新迭代地在排序列表中將下一個干擾與最弱的一個添加在一起,等等,直到計算出的增益減少超出給定閾值。這最後的CPE,這已經引起了違反的閾值,以及其他的CPE,目前為止其貢獻沒有被考慮,隨著他們的貢獻甚至更高,這也將導致類似的違反,被分配給與CPE CPEi相同的干擾組。作為進一步的任選步驟,可以使該組的另一CPE作為犧牲者CPE而再次開始,並檢查該組內容是否保持不變,或者如果新的CPE需要被添加到該組。目前為止如下一個犧牲者CPE,隨著另一個CPE不分配到任何干擾組,該算法繼續進行,並直到所有的CPE已正確分至干擾組中。
應注意到,除非從所有其它CPE產生的總干擾不會超過所配置的閾值,干擾組可包含一個單一的CPE。
可替代地,且沒有考慮直接接收信號功率,人們可以大致計算出給定的犧牲者CPE和CPE之間的個體耦合損耗,並選擇出(複數個)CPE,其朝向犧牲者CPE之個別耦合損耗是比預定的閾值低,如是在與犧牲者CPE相同的干擾組內。這個算法是較簡單的,但較不準確。
作為說明性實例,CPE 41和42被分組為干擾組G1按照它們從彼此經歷可以是損害的-23分貝之路徑損耗的下行通訊。CPE 43和44中可能是在-31分貝的邊緣情 況下,並且可以或不可以被添加到同一個干擾組G1。為了說明的目的,該路徑損耗被假定為足夠高,且它們被添加到不同的干擾組G2。CPE 45和46預計不會實質損害CPE 41至44的下行通訊,因為其路徑損耗是在-55分貝。CPE 45和46因此被分組為第三干擾組G3。當從所有其它CPE所產生的干擾被認為是可以接受的時,CPE 47被單獨留在干擾組G4內。對應的干擾組G1至G4已經繪製在圖1。
又或者,資源控制器12可以組織CPE到基於由電纜裝置所進行的干擾測量之干擾組中。干擾測量可以在線上,下線,或者在特定的初始化或診斷階段期間來進行。
例如,CPE 41至47與FCU 11被分配相互正交的引示序列,例如來自如Walsh-Hadamard序列,用於引示符號的調變。引示符號的引示載波是從各自的引示序列的連續的引示數位所調變之4-QAM,並傳輸兩個複數分佈點之一,是'1+j'對應於'+1'或'-1-j'對應於'-1'。
引示符號由所有在保留符號的位置期間連接到電纜裝置的收發器同步地傳輸。為了特徵化在整個頻率範圍內的干擾,無論哪個載波用於與個別CPE通訊的實際的數據,引示載波是該共同集合的載波之代表載波。
在引示符號的傳輸期間,收發器還測量所接收的引示符號的限幅器誤差。限幅器誤差測量用於每個引示符號的每一個引示載波,並同時包含在接收和恰當地均衡頻率樣本和分佈點之間,或在所接收的頻率樣本,和已 被用於傳輸的已知分佈點之間的差分向量的實部和虛部,其中該頻率樣本被解映射的在該分佈點上。然後,相繼測量的限幅器誤差回報告至資源控制器12。一些頻率抽選可用於減少錯誤報告的大小。
引示信號的功率也可以逐漸增加,以避免在CPE的AFE中的任何信號削波與對應的估計偏差。
如藉由給定的犧牲者的CPE CPEi測得的連續的誤差樣本接下來相關用,以獲得(在一些功率正常化後),用於由給定干擾的CPE CPEj對應的引示序列,從該特定的CPE CPEj的貢獻。當引示序列是相互正交的時,在該相關步驟之後,從其他干擾的CPE的貢獻減少到零。
因此,資源控制器12可以得到FCU 11和各CPE 41至47之間的偶合函數的幅度對頻率的精確知識,以及各CPE 41至47之間的。然後,用該信息來適當地組織CPE到干擾組中。因為沒有拓撲數據需要維護,這種解決方案是進一步有利的。
人們可替代地使用由個別CPE 41至47順序傳輸的引示信號。人們可以使用例如偽隨機二進制序列(Pseudo Random Binary Sequence;PRBS)用於調變引示信號。該PRBS可以在接收側被重新產生,以確定準確的傳輸頻率樣本及因此對應的誤差向量。
一旦干擾組已被正確定義,資源控制器12加強每一個干擾組內一些傳輸限制條件:從給定的干擾組的 任何CPE的上行傳輸被配置成使得它不與下行傳輸碰撞朝向相同的干擾組的任何其他CPE。然而,從給定的干擾組的任何CPE的上行傳輸可能伴隨下行傳輸朝向同一CPE發生。更正式地說,這數學地轉化為以下分配限制: 其中再一次,將Dti和Uti分別表示在時間間隔t期間用於具有使用者i的下行通訊和上行通訊的該集合的載波,且其中所述{GK}K=1..K表示干擾組的該集合。
在圖2A中,有看見通常用於全雙工傳輸的第一分配方案。為緩解該圖中,只CPE 41至44,和對應的干擾組G1={41,42}和G2={43,44},已被考慮。水平時間軸被劃分成時間間隔T1,T2,T3 T4,等等;和垂直頻率軸被劃分為頻率塊F1,F2,F3,F4,等等。TRB被定義為特定的頻率塊和特定時間間隔的組合,並且被繪製為在圖2A中的正方形101。當相同TRB可以分配給上行和下行通訊時,TRB正方形被對角線劃分:左上部分是指下行通訊(downstream communication;DS),而右下角的一部分是指上行通訊(upstream communication;US)。對於每個TRB,分配該TRB用於下行通訊的使用者在左上角中提到,而分配該TRB用於上行通訊的使用者在右下角中提到。使用者由索引為1至4分別標識分別用於CPE 41至44。
有全雙工傳輸,每個使用者通常被分配專用頻帶用於上行和下行通訊。即,使用者1至4分別在所有時間間隔期間使用頻率塊F1到F4。然而,正如前面提到的,這樣的瑣碎分配方案會導致量化雜訊在各自的CPE的大幅增加。為了緩解這一問題,更聰明分配方案需要被設計成在任何傳輸時間間隔期間符合限制條件(7)和(8)。
在圖2B中,有看見本發明的第一示例性分配方案。在時間間隔T1期間,使用者1(或CPE 41)被分配頻率塊F1和F2用於上行和下行通訊。在此相同的時間間隔期間,當使用者1保持沉默時,使用者2(或CPE 42)屬於同一干擾組,從而符合限制條件(7)和(8)。類似地,在時間間隔T1期間,使用者3(或CPE 43)被分配頻率塊F3和F4用於上行和下行通訊;並且再次,當使用者3保持沉默時,使用者4(或CPE 44)屬於同一干擾組。
在時間間隔T2期間,該方案與允許分別使用者2,使用者4進行通訊相反:現在使用者1,使用者3分別保持沉默以符合限制條件(7)和(8)。
正如人們所看到的,這個分配方案達到預期的全雙工傳輸的係性能,每個使用者在每個通訊的方向仍然被分配4 TRB,同時避免相鄰終端的強干擾。
人們可以考慮要傳輸給/來自各使用者的流量之實際量:如果使用者2在時間間隔T2期間無可傳輸, 也不接收,則頻率塊F1和F2在時間間隔T1期間可保持分配給使用者1。人們可以說明分配的分時態樣相關的可能潛在限制條件,以及用於服務的個別的等級,其可能會限制分配給已知使用者的下行和/或上行TRB的最大量。
在圖2C中,有看見本發明的第二替代分配方案。在時間間隔T1,使用者1現在被分配頻率塊F1用於下行通訊,以及頻率塊F1和F2的上行通訊。由於當使用者1正在上行傳輸時,頻率塊F2不能由使用者2使用於下行通訊,它被重新分配給使用者3,其屬於另一組的干擾。類似地,頻率塊F3和F4被分配給使用者3用於上行通訊,而頻率塊F3被分配給使用者3用於下行通訊。再次,頻率塊F4,其不能因為限制條件(7)和(8)而由使用者4使用,被重新分配給使用者1。
在時間間隔T2期間,使用者2現在允許在兩個頻率塊F1和F2上的上行傳輸,並在頻率塊F2上的下行傳輸。下行頻率塊F1,最初分配給使用者1,被重新分配給使用者4,其屬於另一組的干擾。類似地,上行頻率塊F3和F4和下行頻率塊F4被分配給使用者4,而下行頻率塊F3被重新分配給使用者2。
再次,這種分配方案達到預期用於全雙工傳輸的性能,因為每個使用者在每個通訊的方向仍然被分配4個TRB,同時仍避免從相鄰終端的強干擾。
在圖2D中,有看見本發明的第三替代分配方案。在時間間隔T1期間,使用者1被分配頻率塊F1至 F4用於下行通訊,和使用者3被分配頻率塊F1到F4用於上行通訊。在時間間隔T2期間,使用者2被分配頻率塊F1至F4用於下行通訊,和使用者4被分配頻率塊F1到F4用於上行通訊。在時間間隔T3期間,使用者3被分配頻率塊F1至F4用於下行通訊和使用者1被分配頻率塊F1至F4用於上行通訊。而最後,在時間間隔T4期間,使用者4被分配頻率塊F1至F4下行通訊;而使用者2被分配頻率塊F1至F4用於上行通訊。同樣,限制條件(7)和(8)在任意時間間隔期間得到遵守,並再次每個使用者在每個通訊的方向仍然被分配4個TRB。
應注意到,如果干擾組只包含一個裝置(如干擾組G4),然後一般沒有傳輸限制條件強加在該裝置上。另外,有可能是一個額外的頻帶專用於通訊控制和管理。從該頻帶僅很少載波需要被分配,因此,我們可以預期誘導干擾的水平保持相當的低。因此,我們可以用我們用於數據載波(即用於傳輸使用者酬載流量的載波)所做之以外的另一種分配模式用於這些控制載波(即,用於傳輸控制流量的載波)。
應當進一步注意到的是,雖然實施方式集中於詳細描述同軸電纜通訊,本發明同樣適用於無線通訊,雖然使用者終端的分組成干擾組預計將是因為使用者的行動性和動態而更加複雜。
它是要進一步注意的是,術語“包含”不應該被解釋為限於其後列出的裝置。因此,「一個裝置包含 裝置A和B」的表述範圍不應該被限制為僅由部件A和B所組成的裝置。它意味著,關於本發明,裝置的相關組件是A和B。
它是要進一步注意的是,術語“耦合”不應被解釋為僅限於直接連接。因而,表達“耦合於裝置B的裝置A”的範圍不應被限定於裝置或系統,其中裝置A的輸出直接連接到裝置B的輸入,和/或反之亦然。它意味著存在A的輸出和B的輸入,和/或反之亦然,其可能是包含其它裝置或裝置的路徑之間的路徑。
說明書和附圖僅僅是說明本發明的原理。因此,將理解的是,儘管沒有明確地描述,或示出,體現了本發明的原理,本領域的技術人員將能夠設計各種佈置。此外,這裡列舉的所有例子都主要旨在明確是僅用於教學目的,以幫助讀者理解本發明的原理和發明人提供的概念,以促進本領域,並且應被解釋為不限於這些具體引用的示例和條件。而且,所有在這裡敘述的原則,方面和本發明的實施例,以及其特定示例,意在包含其等效物。
在圖中所示的各種元件的功能可以藉由使用專用硬體以及能夠結合適當的軟體執行軟體的硬體來提供。當由處理器提供時,這些功能可由單個專用處理器,由單個共享處理器,或由複數個單獨的處理器提供,其中一些可以是共享的。此外,處理器不應該被解釋為專指能夠執行軟體的硬體,並且可以隱含地包含,但不限於,數位信號處理器(DSP)硬體,網路處理器,專用集成電路 (ASIC),場程式化閘極陣列(FPGA)等其他的硬體,習知和/或客制化的,諸如唯讀記憶體(ROM),隨機存取記憶體(RAM),和非揮發性記憶體,也可包含在內。
1‧‧‧通訊系統
11‧‧‧FCU
12‧‧‧資源控制器
21-22‧‧‧分接頭
31-34‧‧‧分配器
41-47‧‧‧CPE1-CPE7
51-52‧‧‧主同軸電纜段
61-64‧‧‧次級同軸電纜段
71-77‧‧‧三元同軸段
G1-G4‧‧‧干擾組
P1-P8‧‧‧端口
T1-T4、T11-T18‧‧‧分接頭端口
81‧‧‧光學鏈路

Claims (11)

  1. 一種用於分配傳輸資源(101)到耦合到一共享傳輸媒體的一存取節點(11)和複數個使用者裝置(41至47)之間的通訊之方法,並包含將在該共享傳輸媒體上的該複數個使用者裝置之個別一者之間的干擾特徵化,基於該特徵化的干擾將高度干擾使用者裝置分組成個別干擾組(G1,G2,G3,G4),並從任一干擾組的任一使用者裝置將不相交的傳輸時間間隔分配到上行通訊,以及朝著該相同干擾組的任何其他使用者裝置到下行通訊。
  2. 如申請專利範圍第1項所述之方法,其中最初分配到朝向一第一干擾組(G1)的一第一使用者裝置(41)之下行通訊的第一頻率資源(F1)在包含主動上行通訊的傳輸時間間隔(T2,T4)期間從該第二使用者裝置被重新分配到朝向第一干擾組的另一第二使用者裝置(42)之下行通訊,且其中最初分配到朝向該第二使用者裝置之下行通訊的第二頻率資源(F2)在包含主動上行通訊的進一步傳輸時間間隔(T1,T3)期間從該第一使用者裝置被重新分配到朝向該第一使用者裝置之下行通訊。
  3. 如申請專利範圍第1項所述之方法,其中最初分配到朝向一第一干擾組(G1)的一第一使用者裝置(41)之下行通訊的第一頻率資源(F1)在包含主動上行通訊的傳輸時間間隔(T2,T4)期間從該第一干擾組的另一第二使用者裝置(42)該第二使用者裝置和從該第三使用者裝置 被重新分配到朝向另一第二干擾組(G2)的另一第三使用者裝置(44)之下行通訊,且其中最初分配到朝向該第三使用者裝置之下行通訊的第三頻率資源(F4)在包含主動上行通訊的進一步傳輸時間間隔(T1,T3)期間從該第一使用者裝置和從該第二干擾組的另一第四使用者裝置(43)被重新分配到朝向該第一使用者裝置之下行通訊。
  4. 如申請專利範圍第1項所述之方法,其中干擾特徵包含特徵化在該複數個使用者裝置的個別一者之間的個別耦合路徑的路徑損耗。
  5. 如申請專利範圍第4項所述之方法,其中干擾特徵包含特徵化在該複數個使用者裝置的個別一者之傳輸和/或接收功率準位。
  6. 如申請專利範圍第1項所述之方法,其中干擾特徵包含在該複數個使用者裝置的個別一者之間的該共享傳輸媒體上進行干擾測量。
  7. 如申請專利範圍第6項所述之方法,其中該干擾測量是藉由相互正交的引示序列而進行,該引示序列調變由該複數個使用者裝置的個別一者所傳輸的個別引示信號。
  8. 如申請專利範圍第1項所述之方法,其中分組包含相對於個別可持續干擾閾值從其他使用者裝置比較該複數個使用者裝置的個別一者發生的單獨或集體的干擾準位。
  9. 如申請專利範圍第1項所述之方法,其中與該複數個使用者裝置的下行和上行通訊是在一共同集合的頻率資 源上所定義的全雙工通訊。
  10. 一種用於分配傳輸資源到耦合到一共享傳輸媒體的一存取節點(11)和複數個使用者裝置(41至47)之間的通訊之資源控制器(12),並配置以將在該共享傳輸媒體上的該複數個使用者裝置之個別一者之間的干擾特徵化,基於該特徵化的干擾將高度干擾使用者裝置分組成個別干擾組(G1,G2,G3,G4),並從任一干擾組的任一使用者裝置將不相交的傳輸時間間隔分配到上行通訊,以及朝著該相同干擾組的任何其他使用者裝置到下行通訊。
  11. 一種存取節點(11),包含如申請專利範圍第10項所述之一資源控制器(12)。
TW104110999A 2014-04-25 2015-04-02 跨越共享傳輸介質的全雙工通訊 TWI565249B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14305610.9A EP2938095B1 (en) 2014-04-25 2014-04-25 Full-duplex communication over a shared transmission medium

Publications (2)

Publication Number Publication Date
TW201611536A true TW201611536A (zh) 2016-03-16
TWI565249B TWI565249B (zh) 2017-01-01

Family

ID=50693584

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104110999A TWI565249B (zh) 2014-04-25 2015-04-02 跨越共享傳輸介質的全雙工通訊

Country Status (9)

Country Link
US (1) US10200167B2 (zh)
EP (1) EP2938095B1 (zh)
JP (1) JP2017519393A (zh)
KR (1) KR101787307B1 (zh)
CN (1) CN106233635B (zh)
ES (1) ES2625835T3 (zh)
PL (1) PL2938095T3 (zh)
TW (1) TWI565249B (zh)
WO (1) WO2015162104A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9420606B2 (en) * 2014-06-25 2016-08-16 Qualcomm Incorporated Full duplex operation in a wireless communication network
US10033513B2 (en) * 2015-02-09 2018-07-24 Huawei Technologies Co., Ltd. Channel impulse response estimation for full-duplex communication networks
US9966993B2 (en) 2015-07-15 2018-05-08 Cisco Technology, Inc. Interference suppression in full duplex cable network environments
US9912464B2 (en) 2015-07-15 2018-03-06 Cisco Technology, Inc. Interference relationship characterization in full duplex cable network environments
US9942024B2 (en) 2015-07-15 2018-04-10 Cisco Technology, Inc. Full duplex network architecture in cable network environments
US10033542B2 (en) 2015-07-15 2018-07-24 Cisco Technology, Inc. Scheduling mechanisms in full duplex cable network environments
WO2017139781A1 (en) * 2016-02-12 2017-08-17 Arris Enterprises Llc Full duplex bidirectional transmission on coaxial cable in catv network
US10797750B2 (en) 2016-02-24 2020-10-06 Cisco Technology, Inc. System architecture for supporting digital pre-distortion and full duplex in cable network environments
CN108886381B (zh) 2016-08-15 2020-02-14 华为技术有限公司 Cm受干扰度测量方法、装置和系统
EP3340519B1 (en) * 2016-12-20 2022-04-27 Alcatel Lucent Method and apparatus for full-duplex communication over wired transmission media
US10742264B2 (en) 2017-03-31 2020-08-11 Intel Corporation Signaling method for interference group discovery in cable modems
US10361837B2 (en) 2017-06-16 2019-07-23 Cisco Technology, Inc. Selective proxy to alleviate adjacent channel interference in full duplex cable network environments
US9954712B1 (en) * 2017-06-23 2018-04-24 Intel Corporation Blind decoding in orthogonal frequency division multiplexing (OFDM) communication systems
US10924253B2 (en) 2017-12-18 2021-02-16 Arris Enterprises Llc Full duplex expander in a full duplex network
US10601512B1 (en) * 2019-04-02 2020-03-24 Charter Communications Operating, Llc Silent start when connecting to fiber access network
US11838143B2 (en) * 2020-02-28 2023-12-05 Intel Corporation Method and system for pilot tone synchronization in point-to-multipoint systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158563B2 (en) 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
ATE519281T1 (de) 2008-06-16 2011-08-15 Alcatel Lucent Vorrichtung und zugehöriges verfahren zur übersprechnungbeurteilung
WO2011054372A1 (en) * 2009-11-03 2011-05-12 Nokia Siemens Networks Oy Method and apparatuses for data transfer within a relay enhanced telekommunikation network
US8824311B2 (en) * 2010-09-13 2014-09-02 Blinq Wireless Inc. System and method for co-channel interference measurement and managed adaptive resource allocation for wireless backhaul
WO2012075031A2 (en) * 2010-12-02 2012-06-07 Interdigital Patent Holdings, Inc. Method and apparatus for minimizing interference at a mobile station using a shared node
WO2012139516A1 (en) * 2011-04-13 2012-10-18 Zte Corporation Mitigating rogue optical network unit (onu) behavior in a passive optical network (pon)
CN102811107B (zh) * 2011-06-03 2016-03-30 华为技术有限公司 导频序列配置方法和网络设备
US8781400B2 (en) 2011-06-30 2014-07-15 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for reducing co-channel interference
US9137788B2 (en) * 2011-09-05 2015-09-15 Nec Laboratories America, Inc. Multiple-input multiple-output wireless communications with full duplex radios
JP5853797B2 (ja) * 2012-03-19 2016-02-09 富士通株式会社 ゲートウエイ装置、ノード装置、通信システム、動作期間の制御方法及びコンピュータプログラム
CN103458420B (zh) * 2012-05-31 2016-12-28 华为技术有限公司 一种无线通信方法、基站及用户设备
US20140169234A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Interference Avoidance, Channel Sounding, and Other Signaling for Multi-User Full Duplex Transmission
EP3125632B1 (en) 2014-03-26 2021-03-24 LG Electronics Inc. Method and apparatus for allocating resources in wireless access system supporting fdr transmission
US9912464B2 (en) * 2015-07-15 2018-03-06 Cisco Technology, Inc. Interference relationship characterization in full duplex cable network environments
US9762377B2 (en) * 2015-09-29 2017-09-12 Cable Television Laboratories, Inc. Hybrid full duplex communications in a radio frequency cable network

Also Published As

Publication number Publication date
CN106233635A (zh) 2016-12-14
PL2938095T3 (pl) 2017-06-30
JP2017519393A (ja) 2017-07-13
US20170222775A1 (en) 2017-08-03
EP2938095B1 (en) 2017-03-01
ES2625835T3 (es) 2017-07-20
TWI565249B (zh) 2017-01-01
WO2015162104A1 (en) 2015-10-29
CN106233635B (zh) 2018-11-13
EP2938095A1 (en) 2015-10-28
KR101787307B1 (ko) 2017-10-18
US10200167B2 (en) 2019-02-05
KR20160138483A (ko) 2016-12-05

Similar Documents

Publication Publication Date Title
TWI565249B (zh) 跨越共享傳輸介質的全雙工通訊
US11569973B1 (en) Hybrid full duplex communications in a radio frequency cable network
US9906353B2 (en) Scheme system and method for power saving in vectored communications
US10615845B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
KR101858910B1 (ko) 단일 루프 언번들링을 갖는 향상된 벡터링 연산
JP6286043B2 (ja) デマッピングエラーの検出
US11201969B2 (en) Method and apparatus for operating a digital subscriber line arrangement
US11411603B2 (en) Device for transmitting and receiving on a copper wire installed at a customer premise
CN110100406B (zh) 用于有线传输介质上的全双工通信的方法和装置
TW201724772A (zh) 鎖定之長方調節
US20190288744A1 (en) Method and apparatus for operating a digital subscriber line arrangement
Prasad et al. Enhancing transmission efficiency of broadband PLC systems with in-band full duplexing
JP2017539126A (ja) 共有伝送媒体を介した全二重通信のための装置及び方法
US10367546B2 (en) Communication method and system adapted for concurrently operating over a communication channel susceptible to crosstalk from at least a second communication system
EP3306825A1 (en) Two-step initialization procedure for adaptive analog echo cancellation
WO2018198118A1 (en) A system and method for coordinated silencing for alien noise mitigation in a multi-users communication system