WO2012106936A1 - 支持非矢量化线路的方法、装置和系统 - Google Patents

支持非矢量化线路的方法、装置和系统 Download PDF

Info

Publication number
WO2012106936A1
WO2012106936A1 PCT/CN2011/077675 CN2011077675W WO2012106936A1 WO 2012106936 A1 WO2012106936 A1 WO 2012106936A1 CN 2011077675 W CN2011077675 W CN 2011077675W WO 2012106936 A1 WO2012106936 A1 WO 2012106936A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
far
end crosstalk
vectorized
lines
Prior art date
Application number
PCT/CN2011/077675
Other languages
English (en)
French (fr)
Inventor
王祥
李程
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11858007.5A priority Critical patent/EP2701373B1/en
Priority to ES11858007.5T priority patent/ES2581601T3/es
Priority to PCT/CN2011/077675 priority patent/WO2012106936A1/zh
Priority to EP15200488.3A priority patent/EP3032812B1/en
Priority to CN201180001370.1A priority patent/CN102859984B/zh
Publication of WO2012106936A1 publication Critical patent/WO2012106936A1/zh
Priority to US14/164,789 priority patent/US9444516B2/en
Priority to US15/227,485 priority patent/US9806762B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data

Definitions

  • This invention relates to the field of data communications, and more particularly to a method, apparatus and system for supporting non-vector lines in a vectored DSL system.
  • Digital Subscriber Line xDSL Digital Subscriber Line
  • UTP Unshielded Twist Pair
  • DSLAM DSL Access Multiplexer
  • the system reference model is shown in Figure 1.
  • the downlink precoding matrix P and the uplink 4 matrix elimination matrix W need to be estimated.
  • the Vectored DSL system passes the following steps:
  • Synchronization symbol (Sync Symbol) is aligned, and Sync Symbol is a DMT symbol synchronization signal carrying a synchronization frame;
  • an embodiment of the present invention provides a system for supporting a non-vectorized line, including: a vectorization control entity VCE, at least two lines, a 0NU side vector transceiver unit VTU-0, and the at least two lines Included at least one vectorized line and at least one non-vectorized line, the at least two lines being connected to the VTU-0 and controlled by the VTU-0, wherein the at least one vectorized line and the corresponding ONU side
  • the vector transceiver unit VTU-0-v is connected and controlled by the VTU-0-v
  • the at least one non-vectorized line is connected to the corresponding ONU side vector transceiver unit VTU-0-1, and is subjected to the VTU-0- 1 control;
  • Figure 1 shows the xDSL system reference model.
  • FIG. 12 is a schematic diagram of an apparatus for supporting a non-vectorized line in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a system interface according to an embodiment of the present invention.
  • the method of supporting the non-vectorized line may further include the steps in FIG. 6, including: 6 01:
  • the VCE control initializes at least one vectorized line Tv in the line in the initialization phase.
  • the ⁇ ⁇ may be a vectorized line in which all or part of the current time is in an initialization phase.
  • Update line set Sv is the union of the original Sv and Jv, and Jv becomes an empty set at this time.
  • the VCE can arbitrarily select a group of lines T from J u to continue initialization, and T should include a suitable number of lines. Preferably, one or two lines can be selected to continue initialization. In the period from the start of the initialization of T until T enters the Showtime P section, other lines cannot be lined until T all enters the Showtime P section.
  • the far-end crosstalk coefficients C T - SV2 of T to S V2 can be estimated before T enters Showtime, and C T - SV2 is used for signal processing to eliminate far-end crosstalk of T to S V2 .
  • the line in J L continues to be initialized.
  • a subset T of J L can be selected, the control continues to initialize T, and the far-end crosstalk coefficient of T to S v is estimated before T enters the Showt ime P section, and the state transitions to Showt ime 0 after the initialization is completed.
  • T continues to initialize until the time period of entering the Showt ime P section, blocking other lines in the JL, that is, no longer continue to initialize other lines in the JL until T enters the Showt ime P section.
  • the update line set SL is the union of SL and T determined in 1001, and at the same time, the update line set JL is the original minus T. If there are other lines in the JL, repeat the above process of this step until the JL becomes an empty set.
  • 1 004 Estimate the far-end crosstalk coefficient of SL to Jv, and update the line set Jv to an empty set.
  • the specific application of the estimated far-end crosstalk coefficient is illustrated by taking the case of supporting the non-vectorized line in FIG. 10 as an example.
  • the Sv center line can be enabled ⁇ !
  • the precoder and/or the uplink crosstalk canceler of the line in the ⁇ can be precoded for the downlink as follows:
  • Pvs-vs, P T — respectively is the downlink far-end crosstalk coefficient of the line from S v , S L , T to the line in Sv, where P T-VS is the estimated downlink far-end crosstalk coefficient; and ⁇ ⁇ are respectively input precoding
  • the non-vectorized line selecting unit 1201 is configured to select n non-vectorized lines TL from the lines in the initialization phase, where n is an integer greater than or equal to 1;
  • the device shown in 1200 can be implemented on the VCE, and the VCE uniformly controls the VTU-0-v corresponding to the Vector line and the VTU-0-1 corresponding to the Legacy line so that the VTU-0-v and the VTU-0-1 can be fixed.
  • the initialization process of the respective connected lines is sequentially completed, and the function of estimating the crosstalk coefficient of the Legacy line to the Vector line far-end coefficient can be completed through the interface described below.
  • the initializing Legacy line and / or Initializing Vector line complete the initialization process in a certain order.
  • VCE needs to be able to control the Legacy line and the Vector line in a unified manner, so as to control the initialization process of the Legacy line in a certain order, and the initialization process of the Legacy line and the Vector line to maximize the accuracy and rapid estimation of the Legacy line to the Vector line. End crosstalk coefficient.
  • VDSL2 and the Vectored DSL system cyclically insert a Sync Symbol every 256 Data Symbols, while the Data Symbol is aligned with the Sync Symbol and the Sync Symbol of all Vectored DSLs. Therefore, in the arbitrary direction, when all the legacy lines in the Showt ime phase and the Initialization in the current system are rooted, the Sync Symbol and the Vector line of the Legacy line above the root or the root are The probability of Sync Symbol alignment is: The following table can be obtained by calculation:
  • the estimated far-end crosstalk coefficients can still increase the rate of the Vector line.
  • LMS minimum mean square error algorithm
  • the non-vector can be estimated without performing alignment control on the synchronization symbol of the non-vectorized line and the synchronization symbol of the vectorized line to force the two to be misaligned or aligned.
  • the far-end crosstalk coefficient of the line to the vectorized line so that the estimated crosstalk coefficient can be used to minimize the far-end crosstalk of the non-vectorized line to the vectorized line, thereby minimizing the failure of the Vector-DSL system caused by the Legacy line. stability.
  • the uplink error sample is either a downlink error sample corresponding to the downlink synchronization symbol of the vectorization line, or an uplink error sample and a downlink error sample, and the error sample is received by the error receiving unit 1503 of the VCE.
  • the VCE calculates the far-end crosstalk coefficient of the Legacy line to the Vector line using the received signal and the error samples in the calculation unit 1505.
  • An embodiment of the present invention provides a VTU-0 of a Vector line, as shown in FIG. 16, including: a sending unit 1601, configured to send an error sample of the Vector line, where the error sample is an uplink synchronization symbol corresponding to the Vector line.
  • the far-end crosstalk coefficient is an uplink far-end crosstalk coefficient, or a downlink far-end crosstalk coefficient, or an uplink far-end crosstalk coefficient and a downlink far-end crosstalk coefficient;
  • An embodiment of the present invention provides a VTU-0 of a Legacy line, as shown by 1700 in FIG. 17, including:
  • the second sending unit 1703 is configured to send the legacy signal of the legacy line, where the second signal is a downlink signal, an uplink signal, or an uplink and downlink signal, including a data symbol Data Symbol and a synchronization symbol Sync Symbol.
  • Fig. 18 shows the case of downlink crosstalk cancellation in the system of the embodiment of the present invention.
  • the cancellation unit i can be located in VTU-0-.
  • the cancellation unit is (n+m) ⁇ 1 • I ⁇ unit, using signals including all Vec tor lines and signals of all Legacy lines, and including all Vector lines and

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明的实施例提供了支持非矢量化线路的方法、装置和系统。所述方法包括:从处于初始化阶段的线路中选取n条非矢量化线路TL,其中n为大于等于1的整数;控制对除所述TL之外的处于初始化阶段的其他线路不再继续进行初始化,直到所述TL全部进入数据传输阶段;在所述TL进入数据传输阶段之前,估计所述TL到处于数据传输阶段的矢量化线路SV的远端串扰系数CTL-SV,所述CTL-SV用于信号处理以消除所述TL对所述SV的远端串扰。Vectored-DSL系统无需升级VDSL2现网中的VDSL2LegacyCPE,就能支持现网中已有的VDSLLegacyCPE,抵消下行方向Legacy线路到Vector线路的串音,极大限度地抵消上行方向Legacy线路到Vector线路的串音,从而极大的减轻了Legacy线路对整个VectoredDSL系统中Vector线路造成的稳定性隐患。

Description

支持非矢量化线路的方法、 装置和系统
技术领域
本发明涉及数据通讯领域, 具体地说, 涉及矢量化 DSL 系统中支持非矢 量化线路的方法、 装置和系统。
背景技术
数字用户线 xDSL( Digital Subscriber Line)是一种在无屏蔽双绞线 UTP (Unshielded Twist Pair )上的高速数据传输技术。 提供多路 xDSL接入的 系统 DSL接入复用器 DSLAM ( DSL Access Multiplexer ), 其系统参考模型如 图 1所示。
由于电磁感应, DSLAM接入的多路信号之间, 会相互产生干扰, 称为串音 (Crosstalk )或串扰, 如图 2所示, 近端串音 NEXT ( Near- End Cross Talk ) 和远端串音 FEXT (Far-End Cross Talk)能量都会随着频段升高而增强。 xDSL 上下行信道采用频分复用, 近端串音对系统的性能不会产生太大的危害。 但 由于 xDSL使用的频段越来越宽, 远端串音愈发严重地影响线路的传输性能。
目前业界提出了矢量化 DSL ( Vectored-DSL )技术, 主要利用在 DSLAM端 进行联合收发的可能性, 使用信号处理的方法来抵消 FEXT的干扰, 最终消除 每一路信号中 FEXT干扰。 图 3和图 4分别列出了在 DSLAM端同步发送和同步 接收的工作情形。
Vectored-DSL 中需要估计下行预编码矩阵 P与上行 4氏消矩阵 W。 Vectored DSL系统通过以下步骤:
1. 实现同步符号 (Sync Symbol )对齐, Sync Symbol 是载送同步帧的 DMT符号同步信号;
2. 矢量化控制实体 VCE (Vectoring Control Entity)对所有的线路统 一分配导频序列 ( Pilot Sequence ), 并且由所有线路各自的 0NU侧 VDSL2收 发器单元 VTU-0 ( VDSL2 Transceiver Unit at the Optical network unit ) 在所有线路的 Sync Symbol上联合调制 VCE分配的 Pilot Sequence;
3. 接收端向 VCE反馈误差; 可以在 VCE 中估计出下行预编码矩阵 P与上行氏消矩阵 w, 继而应用上 述的矢量化技术抵消 FEXT。 下行预编码矩阵, 又可以被称为下行串音抵消矩 阵、 下行远端串扰系数; 上行抵消矩阵, 又可以被称为上行串音抵消矩阵、 上行远端串扰系数。
现有技术对普通非矢量化 VDSL2线路和 Vectored-DSL矢量化线路的新加 入 ( Join in) 线路进行初始化的过程都包括握手 (Handshake), 信道发现
( Channel Discovery )、训练 ( Training )、信道分析和交换 ( Channel Analysis and Exchange ), 完成初始化后进入数据传输(Showtime) P介段, 普通非矢量 化 VDSL2线路的 Channel Discovery P介段又包括 0-P- Channel- Discovery 1 和 R-P-Channel-Discovery 1 P介段; Training P介段又包括 O-P-Training 1 和 R_P_Training 1 P介段。 对于 Vectored-DSL矢量化线路的初始化, 在进入 数据传输 ( Showtime ) 阶段前, 分别在 Channel Discovery 阶段插入了
0-P-VECT0R 1、 R-P-VECT0R 1, 在 Training P介段插入了 0-P- VECTOR 1-1、
0-P-VECT0R 2-1、 R-P-VECT0R 1-1、 R-P-VECT0R 1-2、 R-P-VECT0R 2 P介段, 在这些阶段内可以估计全部和 /或部分的下行预编码矩阵 P与上行抵消矩阵 W。
Vectored DSL是远端自串音消除的超高速数字用户线 VDSL2 (Very high speed Digital Subscriber Line 2), 由于 VDSL2技术早于 Vectored DSL技 术, 且已得到广泛应用, 因此将 VDSL2升级到 Vectored DSL时必须考虑支持 现有 (Legacy)线路, 即普通的非矢量化 VDSL2线路, Legacy线路的用户前 端装置 CPE ( Customer Premises Equipment )为不支持 Vectored DSL的 VDSL2 Legacy CPE。 然而, VDSL2 Legacy CPE不支持在 Sync Symbol上发送与接收 导频序列以及反馈误差, 从而导致 VCE难以估计用于抵消矢量 Vector线路上 来自 Legacy线路的串音的上行与下行远端串扰系数。 当系统中存在处于数据 传输 Showtime P介段, 随着 Legacy线路加入系统, 在来自 Legacy线路的串音 未被抵消的情况下, Showtime P介段的 Vector线路会因为信噪比 SNR ( Signal to Noise Ratio )降低将导致误码增多,甚至因此导致 Showtime P介段的 Vector 线路去激活而重新训练。 Legacy 线路作为一个潜在的不确定因素严重影响 Vector线路的速率与整个 Vec tored DSL系统的稳定性。
如果将 VDSL2 现网中所有的 VDSL2 Legacy CPE全部升级或更换至支持 Vectored DSL的矢量用户前端装置 VDSL2 Vector CPE, 需要消耗大量成本, 一些较旧的 Legacy CPE可能因为不支持误差计算、 误差反馈、 上行发送导频 序列等各种原因而无法升级到 Vector CPE从而需要更换整个 CPE, 将进一步 导致成本增加。
业界就 Vec tored DSL 向下兼容 Legacy CPE 的问题还提出了矢量友好 ( Vector Fr iendly ) CPE方案。具体而言,该方案规定了 Vector Fr iendly CPE 必须能够识别接收下行 Sync Symbol上调制的导频信号; 另一方面, 由 VTU-0 控制所有线路的下行 Sync Symbo l对齐。 在 Vec tored DSL系统满足上述两个 条件时, 对于 Vector线路 VCE可以估计用以抵消 Legacy线路串音的下行抵 消系数。从而在下行方向,消除 Legacy线路对整个 Vectored DSL系统中 Vector 线路造成的稳定性隐患。 应用 Vector Fr iendly 方案, 同样需要升级现网 Legacy CPE到 Vector Fr iendly CPE,需要消耗大量成本。由于 Vector Fr iendly CPE无法发送上行导频, VCE难以估计上行方向 Legacy线路对 Vector线路的 远端串扰系数, 从而在上行方向 Legacy线路对 Vectored DSL系统中 Vector 线路的稳定性隐患未被消除。
发明内容
本发明的实施例所要解决的技术问题是在 Vectored DSL系统中支持现网 中 VDSL2 Legacy CPE, 消除连接 VDSL2 Legacy CPE的 Legacy线路, 即非矢 量化线路, 对整个 Vectored DSL系统中矢量化 Vector线路稳定性的影响, 即消除 Legacy线路对矢量化 Vector线路的远端串音。
一方面, 本发明的实施例提供了一种支持非矢量化线路的方法, 包括: 从处于初始化阶段的线路中选取 n条非矢量化线路 TL, 其中 n为大于等 于 1的整数; 化, 直到所述 全部进入数据传输阶段;
在所述 进入数据传输阶段之前, 估计所述 到处于数据传输阶段的矢 量化线路 SV的远端串扰系数 CTL-SV, 所述 CTL-SV用于信号处理以消除所述 TV对所 述 SV的远端串扰。
另一方面, 本发明的实施例提供了一种支持非矢量化线路的装置, 包括: 非矢量化线路选取单元, 用于从处于初始化阶段的线路中选取 n条非矢 量化线路 TL, 其中 n为大于等于 1的整数;
非矢量化线路初始化控制单元, 用于控制对除所述 TL之外的处于初始化 P介段的其他线路不再继续进行初始化, 直到所述 TL全部进入数据传输阶段; 非矢量化线路远端串扰系数估计单元, 用于在所述 TL进入数据传输阶段 之前,估计所述 TL到处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV , 所述 (^ 用于信号处理以消除所述 TL对所述 Sv的远端串扰。
另一方面, 本发明的实施例提供了一种支持非矢量化线路的系统, 包括: 矢量化控制实体 VCE , 至少两条线路, 0NU侧矢量收发单元 VTU-0 , 所述 至少两条线路中包括至少一条矢量化线路和至少一条非矢量化线路, 所述至 少两条线路与所述 VTU-0相连, 并受该 VTU-0控制, 其中, 所述至少一条矢 量化线路与对应的 0NU侧矢量收发单元 VTU-0-v相连, 并受该 VTU-0-v控制, 所述至少一条非矢量化线路与对应的 0NU侧矢量收发单元 VTU-0- 1相连, 并 受该 VTU-0- 1控制;
所述 VCE从处于初始化阶段的线路中选取 n条非矢量化线路 TL, 其中 n 为大于等于 1的整数;
所述 VCE控制除所述 TL之外的处于初始化阶段的其他线路对应的 0NU侧 矢量收发单元不再对所述其他线路继续进行初始化, 直到所述 TL全部进入数 据传输阶段;
在所述 TL进入数据传输阶段之前, 所述 VCE估计所述 TV到处于数据传输 P介段的矢量化线路 Sv的远端串扰系数 CTL-SV, 所述(^^用于信号处理以消除所 述 TL对所述 Sv的远端串扰。 通过本发明的实施例, Vec tored-DSL系统无需升级 VDSL2现网中的 VDSL2 Legacy CPE ,就能支持现网中已有的 VDSL Legacy CPE ,通过有序地控制 Vec tor CPE与 Legacy CPE进行初始化, 4氏消下行方向 Legacy线路到 Vec tor线路的 串音, 极大限度地抵消上行方向 Legacy线路到 Vec tor线路的串音, 从而极 大的减轻了 Legacy线路对整个 Vec tored DSL系统中 Vec tor线路造成的稳定 性隐患。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作一筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1为 xDSL系统参考模型
图 2为线路串扰模型
图 3为 DSLAM端联合发送、 用户端分别接收示意图
图 4为 DSLAM端联合接收、 用户端分别发送示意图
图 5为本发明实施例中支持非矢量化线路流程示意图
图 6为本发明实施例中支持非矢量化线路流程示意图
图 7为本发明实施例中支持非矢量化线路流程示意图
图 8为本发明实施例中支持非矢量化线路处理示意图
图 9为本发明实施例中支持非矢量化线路状态转换示意图
图 1 0本发明实施例中支持非矢量化线路处理示意图
图 1 1为本发明实施例中支持非矢量化线路状态转换示意图
图 12为本发明实施例中支持非矢量化线路的装置的示意图
图 1 3为本发明实施例中系统接口示意图
图 14为本发明实施例中估计非矢量化线路到矢量化线路的远端串扰系数 的流程示意图 图 15为本发明实施例中估计远端串扰系数的装置的示意图
图 16为本发明实施例中一种 VTU-0示意图
图 17为本发明实施例中一种 VTU-0示意图
图 18为本发明实施例中下行串音 4氏消示意图
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中的非矢量化线路, 即现有(Legacy) 的普通 VDSL2线路, 包括已有的使用不支持在 Sync Symbol 上发送与接收导频序列以及反馈误差 样本 Error Sample的 VDSL2用户前端实体 CPE的线路。
在本发明的实施例中使用表 1中的符号表示处于不同 P介段的线路, Sv表示 处于 Showtime P介段的 Vector线路, SL表示处于 Showtime P介段的 Legacy线路, Jv表示处于初始化 ( Initializing ) 阶段的 Vector 线路, JL表示处于 Initializing P介段的 Legacy线路, V表示 Sv和 Jv组成所有 Vector线路, L 表示 SL和 JL组成所有 Legacy线路。表 1中的符号可以被认为分别表示对应的 线路集合。
表 1
Showt ime Join in
处于数据传输阶段 处于初始化阶段
Vector线路集合 Sv Jv
Legacy线路集合 SL JL
本发明的实施例提供了一种支持矢量化线路的方法, 如图 5中 500所示, 包括:
501: VCE从处于初始化阶段的线路中选取 n条非矢量化线路 Τ 其中 n 5 03 : VCE控制对除所述 TL之外的处于初始化阶段的其他线路不再继续进 行初始化, 直到所述 TL全部进入数据传输阶段;
505 : 在 TL进入数据传输 Showt ime P介段之前, VCE估计 TL到处于数据传 输阶段的矢量化线路 SV的远端串扰系数 CTL-SV, (^^用于信号处理以消除 TL对 Sv的远端串扰。
本领域技术人员应当知道所述远端串扰系数指下行远端串扰系数, 或者 上行远端串扰系数, 或者下行远端串扰系数和上行远端串扰系数。 为了描述 方便, 下文使用的远端串扰系数指前述的三种情况, 读者可以在上下文语境 中判断所指代的为下行远端串扰系数, 或上行远端串扰系数, 或下行远端串 扰系数与上行远端串扰系数。 进行初始化, 如果其他线路中包括非矢量化线路, 则可以控制 VTU-0 不向这 些非矢量化线路发握手信号; 或者, 控制 VTU-0 以阻止其他线路中的非矢量 化线路进入信道发现阶段或者继续保持在信道发现阶段; 如果其他线路包括 矢量化线路, 则可以控制 VTU-0 不向处于初始化阶段的其他矢量化线路发握 手信号; 或者, 控制处于初始化阶段的其他矢量化线路对应的 VTU-0 以阻止 所述处于初始化阶段的其他矢量化线路进入信道发现阶段或者保持在信道发 现阶段。 而对于 TL线路, 则可以控制 VTU-0向 TL线路发送握手信号, 或者使 TL进入信道发现阶段或者继续信道发现阶段过程, 以继续 TL线路的初始化过 程。
所述的 TL应当包含合适数量的线路, 即 n应当有合适的大小, 以确保在 其内所有线路进入 Showt ime之前, Vec tor线路能够发送足够多的 Sync Symbo l 以及搜集其对应的 Er ror Samp l e用以估计该子集 T内部线路到 Vec tor线路 的远端串扰系数。 足够多的 Sync Symbo l可以为 4-5个 Sync Symbo l 0 而利用 4-5 个 Sync Symbo l 的 Er ror Samp l e 理论上可以估计 4-5 才艮线路到其他 Showt ime的 Vec tor线路的抵消系数,考虑到噪声对抵消系数估计值准确性的 影响, TL中合适的线路规模可以为 1-5根, 以确保抵消系数估计值的准确性。 如果依次逐个初始化非矢量化线路,理论上 Vec tor线路只需要发送 1个 Sync Symbo l就可以估计当前单独初始化的线路到 Vec tor线路的远端串扰系数。
进一步, 可以只在所述 初始化过程中的信道发现阶段, 估计所述 到 处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV; 或者, 分别在所述 TL初始化过程中的信道发现阶段和训练阶段, 两次估计所述 TV到处于数据传 输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV。 可以在 Channe l Di scovery阶 段的 0_P_Channe Di scovery 1 中估计 TL到 Sv的下行远端串扰系数, 在 R-P-Channe l-Di scovery 1 中估计 T\到 Sv线路的上行远端串扰系数。 还可以 在 O-P-Tra ining 1中重新估计 TL到 Sv的下行远端串扰系数,在 R-P-Tra ining
1中重新估计 TL到 Sv线路的上行远端串扰系数。
进一步, 上述估计所述 TL到处于数据传输阶段的矢量化线路 Sv的远端串 扰系数 CTL-sv时, 包括如图可以采用如图 1 4所示的方法进行估计, 包括: 不对 非矢量化线路的同步符号与矢量化线路的同步符号进行对齐控制, 接收所述
TL对应于矢量化线路同步符号时间点上频域的信号,所述信号为不对非矢量化 线路的同步符号与矢量化线路的同步符号对齐与否进行控制的情况下获得的 信号; 接收所述 Sv的同步符号对应于所述信号的误差样本; 利用所述信号、 所述误差样本, 计算所述 CTL-SV。 所述 Sv可以是处于数据传输阶段的全部或者 部分矢量化线路。
由以上实施例可知, 通过选取一部分非矢量化线路进行初始化, 在初始 化所选的非矢量化线路过程中不再对其他线路继续初始化, 从而实现了控制
Legacy线路有序地进行初始化。 同时, 可以减小其他线路初始化对所选线路 初始化产生的干扰, 在估计远端串扰系数时, 可以达到更好的估计结果。 通 过使用在初始化过程中估计的非矢量化线路到矢量化线路的串扰抵消系数, 可以最大限度消除非矢量化对矢量化线路的远端串扰, 从而最大限度降低由 Legacy线路引起的 Vec tor-DSL系统的不稳定性,实现对现有非矢量化线路的 兼容支持。
支持非矢量化线路的方法可以进一步包括图 6中的步骤, 包括: 6 01: VCE控制对处于初始化阶段的线路中的至少一条矢量化线路 Tv进行 初始化。 该 ΤΝ可以是全部或部分当前时刻处于初始化阶段的矢量化线路。
6 03 : 在 TV进入数据传输阶段之前, VCE估计处于数据传输阶段的非矢量 化线路 SL到 Tv的远端串扰系数 CSL-TV和 Tv之间的远端串扰系数 C TV-TV -) ^SL-TV用于 信号处理以消除 SL对 TV的远端串扰, CTV-TV用于信号处理以消除 TV线路之间的 远端串扰。
上述步骤可以在图 5中所示的步骤之前或之后完成。
进一步, 6 03中所述的 VCE估计当前时刻处于数据传输阶段的非矢量化线 路 SL到 Tv的远端串扰系数 CSL-tv和 Tv之间的远端串扰系数 CTV-TV , 可以是在 TV 初始化过程中的训练阶段完成。 可以在 0-P-VECT0R 2- 1 P介段估计 SL到 TV的下 行串扰抵消系数和 Tv线路之间的的下行串扰抵消系数, 在 R-P-VECT0R 2内估 计 SL到 TV的上行串扰抵消系数和 TV线路之间的的上行串扰抵消系数。
进一步, 6 03 中所述的 VCE估计 ΤΝ到 ΤΝ的远端串扰系数 CTV-TV , 可以在 0-P-VECT0R 2- 1 P介段估计 TV到 ΤΝ线路之间的的下行串扰抵消系数; 可以在 R-P-VECT0R 1 内估计 ΤΝ到 ΤΝ线路之间的的上行串扰抵消系数, 可以在 R-P-VECT0R 1 - 1内可以重新估计 ΤΝ到 ΤΝ线路之间的的上行串扰抵消系数, 可 以在 R-P-VECT0R 1 -2内重新估计 TV到 ΤΝ线路之间的的上行串扰抵消系数; 在 R-P-VECT0R 2估计或重新估计 Tv到 Tv线路之间的的上行串扰抵消系数。
进一步, 6 03中估计 SL到 Tv的远端串扰系数 CSL-tv时, 可以使用如图 1 4所 示的方法, 包括: 不对非矢量化线路的同步符号与矢量化线路的同步符号对 齐与否进行控制, 接收所述 SL对应于矢量化线路同步符号时间点上频域的信 号; 接收所述 ΤΝ的同步符号的误差样本; 利用所述信号、 所述误差样本, 计 算所述 CSL-TV
由以上实施例可知, 通过按顺序对矢量化线路、 非矢量化线路进行初始 化, 实现了控制新加入线路有序地完成初始化过程。 同时, 通过在矢量化线 路的初始化过程中估计处于数据传输状态的非矢量化线路到矢量化线路的远 端串扰系数, 并使用估计所得的远端串扰系数对远端串扰进行消除, 可以最 大限度消除非矢量化到矢量化线路的远端串扰, 从而最大限度降低由 Legacy 线路引起的 Vec tor-DSL系统的不稳定性, 实现对现有非矢量化线路的兼容支 持。
进一步, 考虑到处于数据传输阶段的矢量化线路 Sv的影响, 支持非矢量 化线路的方法可以进一步包括图 7中的步骤:
701: 在所述 TV进入数据传输阶段之前, VCE估计 TV到处于数据传输阶段 的矢量化线路 Sv的远端串扰系数 CTV-S Sv到 Tv的远端串扰系数 CSV-TV , („^用 于信号处理以消除 Tv对 Sv的远端串扰, CSV-TV用于信号处理以消除 Sv对 Tv的远 端串扰。
进一步, 701中所述的 VCE估计 Tv到当前时刻处于数据传输阶段的矢量化 线路 Sv的远端串扰系数 CTV-SV、 Sv到 TV的远端串扰系数 CSV-TV , 可以是在 0-P-VECTOR 1 P介段估计 Τν到 Sv的下行串扰抵消系数, 在 0_P_VECT0R 1-1阶 段重新估计 TV到 Sv的下行串扰抵消系数, 在 0-P-VECT0R 2-1 P介段估计 Sv到 Tv线路的下行串扰抵消系数, 在 R-P-VECT0R 1内估计 TV到 Sv的上行串扰抵消 系数并且可以估计 Sv到 Tv线路的上行串扰抵消系数, 在 R-P-VECT0R 1-1内重 新估计 TV到 Sv的上行串扰抵消系数并且可以重新估计 Sv到 Tv线路的上行串扰 抵消系数, 在 R-P-VECT0R 1 -2内重新估计 Tv到 Sv的上行串扰抵消系数并且可 以重新估计 Sv到 Τν线路的上行串扰氐消系数。 在 R-P-VECT0R 2估计或重新估 计 Sv到 TV线路的上行串扰抵消系数。
本发明的实施例提供的一个支持非矢量化线路的例子如图 8所示, 包括:
801: VCE确定线路集合 Sv、 SL, Jv、 JL o
在某个时间点, 可以先确定处于各个阶段的各线路集合。 这四个集合中 的每个都可能为空集,但是 JV、 JL中至少有一个不能为空集。在图 8的示例中, 假定四个集合都不是空集。 根据本实施例, 本领域技术人员应当容易得出某 个或某些集合为空集时的处理过程。 在本实施例中, 假设在 801中确定了 Sv、 SL、 JV、 JL之后, 直到 8 04中完成 JL中所有线路的初始化, 此段时间内没有新 加入线路。 因为 VTU-R在 Handshake P介段与 VTU-0交互其能力是否为 Vec tor CPE或者为 Legacy CPE , 因而在 Handshake前, VCE并不知道与其相连的 CPE 是否为 Vec tor CPE , 在 Handshake P介段, VCE通过 VTU-O知道了 CPE的类型, 也就知道了线路的类型。
8 02: VCE控制与 Jv相连的 VTU-0对 Jv继续进行初始化。 在 Jv完成初始化 进入 Showt ime P介段之前, VCE估计 Jv到 Sv的远端串音系数、 Sv到 Jv的远端串 音系数、 SL到 Jv的远端串音系数、 Jv到 Jv的远端串音系数, 即 Jv之间的远端 串音系数。 Jv完成初始化后进入数据传输阶段。
从继续对 JV进行初始化直到 JV进入 Showt ime P介段之前的时段内,控制与 JL相连的 VTU-0阻滞 JL中线路的初始化, 即不再继续对 JL中的线路进行初始 化。 如果 SL为空集, 可以不用估计 SL到 Jv的远端串音系数。
8 03 : 更新线路集合 Sv为原 Sv与 Jv的并集, Jv此时变为空集。
8 04 : VCE控制与 JL相连的 VTU-0对 JL中的线路继续进行初始化。 可以选 取 JL的一个子集 T , 控制对 T继续进行初始化, 在 T进入 Showt ime P介段之前 估计 T到 Sv的远端串音系数, T完成初始化后状态转换进入 Showt ime。 在从 对 T继续进行初始化直到 T进入 Showt ime的时间段, 阻滞 JL中的其他线路, 即不再继续对 JL中其他线路进行初始化, 直到 T全部进入 Showt ime P介段。 T 完成初始化后, 更新线路集合 SL为 8 01中确定的 SL与 T的并集, 同时, 更新 线路集合 为原来的 JL减去 T。 如果 JL中还有其他线路, 则重复本步骤的以 上过程, 直到 JL变为空集。
为保证初始化的效果, 每次选取的子集 T应当包括合适数量的线路, 优 选地, 可以包含 1至 5根线路。
在 8 02中, 可以先估计 Jv中线路到 Sv中线路的远端串扰系数, 然后再估 计其他远端串扰系数,防止 Sv由于 Jv的串音到导致误码或其他错误甚至掉线。
8 04 中估计非矢量化线路到矢量化线路远端串扰系数时可以采用最小均 方误差 LMS算法、 矩阵一阶近似算法、 矩阵求逆算法等方法。
以下以图 8 中支持非矢量化线路的情形为例, 说明估计得到的远端串扰 系数的具体应用。 在 8 02中估计出 Jv中线路到 Sv中线路的远端串扰系数后, Sv中线路可以使能 Jv线路到 Sv线路的下行预编码器或 /和上行抵消器。
对于下行而言, 可以进行如下的预编码:
xvs― ^vs-vsxvs + PLS— VSXLS + Ργτ -vsxvr
其中, 为 Sv线路之间已有的的下行远端串扰系数, 为输入预编码 器的 Sv线路信号, PLs-w为 SL中线路到 Sv中线路已有的下行远端串扰系数, 为输入预编码器的 SL线路信号, pw-vs为 8 02中估计得到的 Jv中线路到 Sv中线 路的下行远端串扰系数, 为输入预编码器的 Jv中线路信号, vs为 sv线路的 信号经过预编码器的输出信号。
对于上行, 可以进行如下的上行串音抵消: 其中, Wvs 为 Sv线路之间已有的的上行远端串扰系数, 为输入抵消器 的 Sv线路信号, WLS-w为 SL中线路到 Sv线路已有的上行远端串扰系数, 为 输入抵消器的 SL线路信号, 为 8 02中估计得到 JV到 Sv线路的上行远端串 扰系数, ^为输入抵消器的 Jv线路信号, ^为 Sv线路的信号经过抵消器的输 出信号。
经过 8 02的处理估计出 Sv中线路、 Jv中线路到 Jv中线路的远端串扰系数 以及 中线路到 Jv中线路的抵消系数后, Jv中线路使能 Sv线路到 Jv线路、 Jv 中线路到 Jv中线路、 SL中线路到 Jv中线路的下行预编码器和 /或上行抵消器。
对于下行而言, 可以进行如下的预编码:
xvr― ^vs-vr x s + PLS vr xLS + ^vr -vr xvr
其中, pw-w为 8 02中估计得到的 Sv到 Jv中线路的下行远端串扰系数, x w 是为输入预编码器的 Sv线路信号, PLS-W是 8 02 中估计得到的 SL中线路到 Jv 中线路的下行远端串扰系数, 为输入预编码器的 SL线路信号, pw-w为 8 02 中估计得到的 Jv中线路到 Jv中线路下行远端串扰系数, 为输入预编码器的 Jv线路信号, ^为 Jv线路的信号经过预编码器的输出信号。
上行方向, 可以进行如下的串音 4氐消: 其中, — vs—„ 802中估计得到的 Sv线路到 Jv线路的上行远端串扰系 数, ^为输入抵消器的 Sv线路信号, 8 02 中估计得到的 SL到 Jv 线路的上行远端串扰系数, y 为输入抵消器的 SL线路信号, ¾^^为 8 02 中估计得到的 Jv到 Jv线路的上行远端串扰系数, ^为输入抵消器的 Jv线路信 号, ^为 Jv线路的信号经过抵消器的输出信号。
8 04中在完成子集 T中线路到 V中线路的远端串扰系数的估计后, V内线 路使能 T内线路到 V内线路的预编码器或 /和上行串音抵消器,对于下行而言, 使用预编码器如下:
xv ~~ Py-vxv + PLS— VXLS + Ρτ-νχτ
其中, Ρν-ν 表示线路 V中线路之间的下行远端串扰系数, 可以由已有的 Pvs— vs、 已经估计得到的 Pvs— w、 PvJ—w 、 和 Pw - w获得, v表示 SL线路到 V中 线路的下行远端串扰系数, 由已有的 PLS 、 已经估计得到的 PM-w获得, Ρτ-ν为
8 04中估计而得的 Τ中线路到 V中线路的下行远端串扰系数, xv、 XLS、 χτ分 别为输入预编码器的 V、 SL、 T中线路信号, χν为 V中线路的信号经过预编码 器的输出信号。
上行方向, 可以进行如下串音抵消:
Figure imgf000015_0001
其中, Wv-v表示 V中线路之间的上行远端串扰系数,可以由已有的 、 已经估计得到的 WW-W、 WW 、 获得, WLS-V表示 SL中线路到 V 中线路 的上行远端串扰系数, 可以由已有的 和估计得到的 获得, WT-V表 示 803中估计而得的 τ中线路到 V中线路的上行远端串扰系数, yv、 y 、 yT 分别表示输入抵消器的 v、 SL、 T中线路信号, ^为 V中线路的信号经过抵消 器的输出信号。
8 02中, 使用 LMS算法估计 SV、 SL、 Jv到 Jv的远端串扰系数; 或者基于多 次 Vec tor线路反馈的误差 Er ror , 使用如下矩阵形式的公式, 其中 X、 E的 每一列代表一次发送信号与相应的 Er ror :
Ε-ΙΓΤ ― H + Η、 、 + Ητ Τ N TJ 注意到 Ew Xvs , Xw、 XLJ均已知, Nw很小, 可以使用最大似然估计或 最小二乘法估计 SV SL Jv到 Jv的远端串扰抵消系数; 或者用其他算法估计。
804中, 使用 LMS算法估计 T到 Sv中的抵消系数; 或者基于多次 Vector 线路反馈的 Error, 使用如下矩阵形式的公式, 其中 X E的每一列代表一次 发送信号与相应的 Error:
Figure imgf000016_0001
类似于 Ew Xw Χ X均已知, Nw很小, 可以使用最大似然估计或最小 二乘法估计 T到 Sv中的抵消系数; 或者用其他算法估计。
使用上述方法, 在 Legacy线路与 Vector线路的 Sync Symbol不对齐时 可以得到较好的 Legacy到 Vector 的串音抵消系数; 在一些 Legacy线路与
Vector线路的 Sync Symbol对齐时也可以得到次优的 Legacy到 Vector串
Figure imgf000016_0002
抵消系数。
VCE可以实现一个状态机以控制对新加入的线路进行初始化,以实现对非 矢量化线路的支持。 任意时刻处于 Showtime P介段的线路构成的集合 S, 当前 时刻处于 Initializing P介段的新线路构成集合 J, S包括 Vector线路集合 Sv 和 Legacy线路集合 SL; J包括 Vector线路集合 JV和 Legacy线路集合 JL, VCE 可以按照如图 9所示进行状态跃迁:
VCE处于状态 S1时, VCE定期或不定期地更新当前时刻 J的状态, 并根 据 J的状态进行状态跃迁: J为空集, 即当前没有任何线路加入等待上线, 继 续 S1状态; Jv不为空集, 即 J中有 Vector线路, 跃迁至 S2状态; Jv为空集 且 L不为空集, 即 J中有且只有 Legacy线路, 跃迁至 S3状态。
从以上进行状态跃迁的判断可知, 在本状态机的处理中, 当同时有 Initializing状态的 Vector线路和 Legacy线路时,优先对 Vector线路进行 初始化。
VCE处于状态 S2时, 初始化处于 Initializing P介段的 Vector线路。 在 初始化过程中, 可能有新线路加入需要被初始化。 可以在每次对至少 1 条 Vector线路完成初始化后, 根据当前系统中 J的状态进行状态跃迁: J为 集, 跃迁到 SI状态; JV不为空集, 保持在 S2状态; JV为空集且 JL不为空集, 跃迁至 S3状态。
VCE处于状态 S3时, 初始化处于 Initializing P介段的 Legacy线路。 在 初始化过程中, 可能有新线路加入需要被初始化。 可以在每次对至少 1 条 Legacy线路完成初始化后, 根据当前系统中 J的状态进行状态跃迁: J为空 集, 跃迁到 S1状态; Jv不为空集, 跃迁到 S2状态; Jv为空集且 JL不为空集, 保持在 S3状态。
以下结合一个具体的例子对图 9中的状态机进行说明:
系统开始运行后, tO 时刻, 没有线路加入, 状态机运行在 S1 状态, 在 tl时刻, 如果已有新线路加入, Jv的值变为 Jvl, JL的值变为 Ju, 因此状态跃 迁至 S2。
在 S2状态, 可以控制 Jvl中线路所对应的 VTU-0使得 Jvl中线路同时继续 初始化进程或先后继续初始化进程, 此处以同时为例。 Jvl中所有线路完成初 始化后进入 Showtime P介段。 对于 Ju中线路, 从 Jvl中线路同时继续初始化进 程直到 ^中线路全部进入 Showtime P介段之间的时间段内, 控制 ^中线路所 对应的 VTU-0阻滞 Ju中线路继续初始化流程。
如果 tl时刻, 系统中已经有处于 Showtime P介段矢量化线路 Svl, 则在初 始化 Jvl的过程中, 可以估计 ^到当前时刻处于数据传输阶段的矢量化线路 Sv 远端串扰系数 Cm-svl
Figure imgf000017_0001
Jvl的远端串扰系数 Csvl-m、 ^之间的远端串扰 系数 Cm-m, Jvl完成初始化后进入数据传输阶段, Cm-svl用于信号处理以消除 JVL对 SVL的远端串扰, CSVL-M用于信号处理以消除 SVL对 JVL的远端串扰, CJV!-JVI 用于信号处理以消除 ^线路之间的远端串扰。
如果 tl时刻, 系统中已经有处于 Showtime P介段非矢量化线路 Su, 则在 初始化 Jvl的过程中, 可以估计 SL ij Jvl的远端 Csu-m, CSL1-m用于信号处理以 消除 SL对 Jv的远端串扰。
由于在初始化 Jvl的过程中, 没有其他线路被初始化, 因此, 直到 Jvl中线 路完成初始化进入 Showtime P介段, 系统中处于 Showtime P介段的 Vector线路 和 Legacy线路没有发生变化。
Jvi中线路完成初始化进入 Showtime P介段后,在 t2时刻,与 tl时刻相比, 处于 Initializing P介段的 Vector线路要减去 Jvl中的线路, 处于 Showtime P介段的 Vector线路增加了 JVL中的线路, 即 t2时刻 SV2
Figure imgf000018_0001
^的并集。 如 果在 tl到 t2之间, 如果没有新加入的 Vector线路,但是有新加入的 Legacy 线路, 则 JV2为空集, JL2不为空集, 状态需要跃迁到 S3。
在 S3状态, VCE可以从 Ju中任意选取一组线路 T继续进行初始化, T要 包含合适数量的线路, 优选地, 可以选择 1根或 2根线路继续进行初始化。 在从开始继续初始化 T直到 T都进入 Showtime P介段的时段中, 不能对其他线 化, 直到 T全部进入 Showtime P介段。 可以在 T进入 Showtime之前, 估计 T 到 SV2的远端串扰系数 CT-SV2, CT-SV2用于信号处理以消除 T对 SV2的远端串扰。 如 果 Ju中的线路的数量多于 T中线路的数量, 则在对 T继续初始化的过程中, VCE一方面控制 JL2中不属于 T的线路所对应的 VTU-0阻滞这些 Legacy线路继 续初始化流程, 另一方面控制 T中线路所对应的 VTU-0使得当前 T中的线路 同时继续初始化进程。 当然, 对线路的初始化可能失败。 初始化失败的线路 可以继续保持在 Initializing状态, 并择机重新进行初始化。 作为合理的减 化, 本实施例中假设所有线路都能够初始化成功, 本领域技术人员可以结合 本实施例的情况得出如何处理初始化失败的情形。
由于在初始化 T的过程中, 没有其他线路完成初始化, 因此, 直到 T中 线路完成初始化进入 Showtime P介段, 系统中处于 Showtime P介段的 Vector线 路和 Legacy线路没有发生变化。
在 T 中线路进入 Showtime P介段后, t3 时刻, 与 t2 时刻相比, 处于 Initializing P介段的非矢量化线路要减去 T, 变为 JL3, 处于 Showtime P介段的 非矢量化线路增加了 T,变为 SL3。如果在 13时刻, JL2中线路全部进入 Showt ime P介段, 且 t2到 t3之间没有新线路加入, 即 JL3为空集, JV3为空集, 则跃迁到 S1状态; 如果 Ju中有线路, 且 JV3为空集, 则按照上述描述的过程, 选取一 组处于 Jo in in P介段的线路 T继续对其进行初始化, 状态仍然保持在 S 3; 如 果已有新线路, JV3不为空集, 则跃迁到状态 S2。
本发明的实施例提供的另一个支持非矢量化线路的例子如图 10所示, 包 括:
1 001: VCE确定当前时刻线路集合 Sv、 SL、 Jv、 JL o
在某个时间点, 可以先确定处于各个阶段的各线路集合。 这四个集合中 的每个都可能为空集, 但是 JV、 JL中至少有一个不能为空集。 在图 10的示例 中, 假定四个集合都不是空集。 根据本实施例, 本领域技术人员应当容易得 出某个或某些集合为空集时的处理过程。 在本实施例中, 假设在 1001中确定 了 Sv、 SL, Jv、 JL之后, 直到 1004 中完成 JL中所有线路的初始化, 此段时间 内没有新线路加入并等待初始化。
1 002: 对 JL中的线路继续进行初始化。 可以选取 JL的一个子集 T, 控制 对 T继续进行初始化,在 T进入 Showt ime P介段之前估计 T到 Sv的远端串音系 数, T完成初始化后状态转换进入 Showt ime 0 从对 T继续进行初始化直到 Τ 进入 Showt ime P介段的时间段内, 阻滞 JL中的其他线路, 即不再继续对 JL中其 他线路进行初始化, 直到 T全部进入 Showt ime P介段。 T完成初始化后, 更新 线路集合 SL为 1001中确定的 SL与 T的并集, 同时, 更新线路集合 JL为原来的 减去 T。 如果 JL中还有其他线路, 则重复本步骤的以上过程, 直到 JL变为空 集。
为保证初始化的效果, 每次选取的子集 T应当包括合适数量的线路, 优 选地, 可以包含 1根或 1根线路。
1 003 : 继续 Jv的初始化进程, 在初始化 Jv过程中, 估计 Jv到 Sv的远端串 音系数、 Sv到 Jv的远端串音系数、 Jv到 Jv的远端串音系数, 即 Jv之间的远端 串音系数。 Jv完成初始化后进入数据传输阶段; 更新线路集合, 更新后的 Sv 为更新前的 Sv和 Jv的并集。 估计 Vec tor线路之间的远端串扰系数时, SL中线 路到 Jv线路的串音可以作为背景噪声处理
1 004: 估计 SL到 Jv的远端串音系数, 更新线路集合 Jv为空集。 以下以图 1 0中支持非矢量化线路的情形为例, 说明估计得到的远端串扰 系数的具体应用。 1 002中在完成 T中线路到 Sv中线路的远端串扰系数的估计 后, 可以使能 Sv中线^!氏消 τ中线路的预编码器和 /或上行串音抵消器, 对于 下行可以采用如下方式预编码:
xvs — P s— vsxvs + PLS— SXLS + Ρτ— VSXT
其中, Pvs— vs、
Figure imgf000020_0001
PT— 分别为 Sv、 SL , T 中线路到 Sv中线路的下行 远端串扰系数, 其中 PT-VS为估计出的下行远端串扰系数; 、 、 χτ分别为 输入预编码器的 Sv、 SL、 T中线路信号; 为 Sv线路的信号经过预编码器的输 出信号。
上行方向, 可以采用如下方式串音抵消: 其中, Wvs-w为 Sv线路之间已有的上行远端串扰系数, ^为输入抵消器的
Sv线路信号, wLs-w为 sL中线路到 Sv线路已有的上行远端串扰系数, 为输 入抵消器的 SL线路信号, WT-W为估计得到 T到 Sv线路的上行远端串扰系数, yT为输入抵消器的 τ中线路信号, 为 Sv线路的信号经过抵消器的输出信号。
1 003中在完成 Jv和 Sv中所有线路之间的远端串扰系数的估计后, 可以使 能 Sv中线^!氏消 Jv中线路的预编码器和 /或上行串音抵消器,可以使能 Jv中线 氏消 Sv中线路的预编码器和 /或上行串音抵消器, 此时 Sv中线路上行、 下行 抵消分别如下:
xvs ― ^vs-vsxvs + PLS— VSXLS + Ργτ -vsxvr
Figure imgf000020_0002
Jv中线路由于暂时没有估计 SL中线路到 Jv的远端串扰系数, 此时其上下 行抵消如下:
Figure imgf000020_0003
Yvr ^vs-vr Yvs ^vr -vr Yvr
1 004中估计完成 中线路到 Jv中线路的远端串扰系数、 中线路到 Jv中 线路的远端串扰系数后,可以使能 Jv中线路抵消 SL中线路的预编码器和 /或上 行串音抵消器, 以及抵消 JL中线路的预编码器和 /或上行串音抵消器, 此时 Jv 中线路上行下行抵消分别如下:
xvr― ^vs-vr xs + ^LS-VT XLS + ^vr -vr xvr
Figure imgf000021_0001
上述几个公式中的参数可以根据前文的描述知道其含义, 此处不赘述。
VCE可以实现一个状态机以控制对新加入的线路进行初始化,以实现对非 矢量化线路的支持。 任意时刻处于 Showtime P介段的线路构成的集合 S, 当前 时刻处于 Initializing P介段的新加入线路构成集合 J, S包括 Vector线路集 合 SV和 Legacy线路集合 SL; J包括 Vector线路集合 JV和 Legacy线路集合 JL, VCE可以按照如图 11所示进行状态跃迁:
VCE处于状态 T1时, 定期或不定期地更新当前时刻 J的状态, 并根据 J 的状态进行状态跃迁: J 为空集, 即当前没有任何线路加入等待上线, 继续 S1状态; L不为空集, 即 J中有 Legacy线路, 跃迁至 T2状态; L为空集且 Jv不为空集, 即 J中有且只有 Vector线路, 跃迁至 T3状态。
从以上进行状态跃迁的判断可知, 本状态机中当同时有 Join in状态的 Vector线路和 Legacy线路时, 优先对 Legacy线路进行初始化。
VCE处于状态 T2时, 初始化处于 Initializing P介段的 Legacy线路。 在 初始化过程中, 可能有新线路加入需要被初始化。 可以在每次对至少 1 条 Legacy线路完成初始化后, 根据当前系统中 J的状态进行状态跃迁: J为空 集, 跃迁到 T1状态; JL不为空集, 保持在 T2状态; JL为空集且 Jv不为空集, 跃迁至 T3状态。
VCE处于状态 T3时, 初始化处于 Initializing P介段的 Vector线路。 在 初始化过程中, 可能有新线路加入需要被初始化。 可以在每次对至少 1 条 Vector线路完成初始化后, 根据当前系统中 J的状态进行状态跃迁: J为空 集, 跃迁到 T1状态; JL不为空集, 跃迁到 T2状态; JL为空集且 Jv不为空集, 保持在 T3状态。
以下结合一个具体的例子对图 11中的状态机进行说明: 系统开始运行后, to 时刻, 没有线路加入, 状态机运行在 T1 状态, 在 tl时刻, 已有新线路加入处于 Initializing P介段, JL的值变为 Ju, Jv的值变 为 Jvl, 因此状态跃迁至 T2。 tl时刻处于 Showtime P介段的 Vector线路为 Svl
在 T2状态, VCE可以从 Ju中任意选取一组线路 T对其继续进行初始化, T要包含合适数量的线路, 优选地, 可以选择 1根或 2根线路进行初始化。 从 开始继续对 T进行初始化直到 T都进入 Showtim P介段的时间段内, 需要阻滞 对其他线路的初始化进程, 即不能继续对已经处在 Initializing P介段的其他 线路继续其初始化进程。 在 T进入 Showt ime P介段之前, 估计 T到当前时刻处 于 Showtime P介段的 Vector线路 Svl的远端串扰系数 CT-SV1, CT-SV1用于信号处理 以消除 T对 Svl的远端串扰, T完成初始化后进入数据传输阶段。 如果 Ju中的 线路的数量多于 T的数量, 则在初始化 T的时间段内, VCE—方面控制 Ju中 不属于 T的线路所对应的 VTU-0阻滞这些线路继续初始化流程, 另一方面控 制 T中线路所对应的 VTU-0使得当前 T中的线路同时继续初始化进程。 同时, 在初始化 T的时间段内, 也要阻滞 Jvl中线路的初始化, 即不再继续对 Jvl中的 线路进行初始化。
由于在初始化 T的过程中, 没有其他线路完成初始化, 因此, 直到 T中 线路完成初始化进入 Showtime P介段, 系统中处于 Showtime P介段的 Vector线 路和 Legacy线路没有发生变化。
在 T 中线路进入 Showtime P介段后, t2 时刻, 与 tl 时刻相比, 处于 Initializing P介段的非矢量化线路要减去 T, 变为 JL2, 处于 Showtime P介段的 非矢量化线路增加了 T,变为 Su。如果在 t2时刻, Ju中线路全部进入 Showtime P介段, 且 tl到 t2之间没有新线路加入, 即 JL2为空集, JV2为空集, 则跃迁到 T1 状态; 如果 JL2中仍有线路, 则按照上述描述的过程, 选取另一组处于 Initializing P介段的线路 T继续对其初始化进程, 状态仍然保持在 T2; 如果 JL2变为空集, JV2不为空集, 则跃迁到状态 T3。
在 Τ3状态, 控制 JV2中线路所对应的 VTU-0使得 JV2中线路同步进入初始 化进程, Jv2中所有线路完成初始化后进入 Showt ime P介段。 如果 t2时刻, 系统中已经有处于 Showtime P介段矢量化线路 Sv2, 则在初 始化 JV2的过程中, 可以估计 JV2到当前时刻处于数据传输阶段的矢量化线路
SV2的远端串扰系数 C JV2-SV2、 SV2到 JV2的远端串扰系数 C SV2-JV2、 JV2之间的远端串扰 系数 Cmm, JV2完成初始化后进入数据传输阶段, CjV2-sv2用于信号处理以消除 JV2对 SV2的远端串扰, C 用于信号处理以消除 SV2对 JV2的远端串扰, CjV2-JV2 用于信号处理以消除 JV2线路之间的远端串扰。
在初始化 JV2的过程中, 可以估计 SL2到 JV2的远端 C SL2-JV2 -> ^SL2-JV2用于信号 处理以消除 SL2对 JV2的远端串扰。
由于在初始化 JV2的过程中, 没有其他线路完成初始化, 因此, 从 t2时刻 开始, 直到 JV2中线路完成初始化进入 Showtime P介段, 系统中处于 Showtime P介段的 Vector线路和 Legacy线路没有发生变化。
JV2中线路完成初始化进入 Showtime P介段后,在 t3时刻,与 t2时刻相比, 处于 Join in P介段的 Vector线路减去了 Jv2中的线路, 处于 Showtime P介段的 Vector线路增加了 JV2中的线路, 即 t3时刻 Sv3是 Sv2和 Jv2的并集。 如果在 t2 到 t3之间, 有新加入的 Legacy线路, 则 Ju不为空集, 状态需要跃迁到 T2。
本发明的实施例提供的一种支持非矢量化线路的装置如图 12 中 1200所 示, 该装置包括:
非矢量化线路选取单元 1201, 用于从处于初始化阶段的线路中选取 η条 非矢量化线路 TL, 其中 n为大于等于 1的整数;
非矢量化线路初始化控制单元 1203, 用于控制除所述 TL之外的处于初始 化阶段的其他线路不再继续进行初始化, 直到所述 TL全部进入数据传输阶段; 非矢量化线路远端串扰系数估计单元 1205, 用于在所述 TL进入数据传输 P介段之前, 估计所述 TL到处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV, (^ 用于信号处理以消除 对 Sv的远端串扰。
进一步, 1200所示的装置可以包括:
矢量化线路初始化单元 1207, 用于控制对处于初始化阶段的线路中的至 少一条矢量化线路 Tv进行初始化; 矢量化线路远端串音系数估计单元 1209, 用于在所述 TV进入数据传输阶 段之前, 估计当前时刻处于数据传输阶段的非矢量化线路 SL到 TV的远端串扰 系数 CSL-tv, Tv之间的远端串扰系数 CTV-TV, CSL-tv用于信号处理以消除 SL对 Tv的 远端串扰, CTV-TV用于信号处理以消除 Tv线路之间的远端串扰。
其中, 1209还用于在所述 Tv进入数据传输阶段之前, 估计 TV到当前时刻 处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTV-SV、 Sv到 TV的远端串扰 系数 CSV-TV, CjV-TV用于信号处理以消除 Tv对 Sv的远端串扰, CTV-TV用于信号处理 以消除 Sv对 Τν的远端串扰。
1200所示的装置可以在 VCE上实现, VCE统一控制 Vector线路对应的 VTU-0-v和 Legacy线路对应的 VTU-0-1以使 VTU-0-v和 VTU-0-1能够以一定 的顺序完成各自连接的线路的初始化流程, 并能够通过下面描述的接口完成 估计 Legacy线路到 Vector线路远端串扰系数的计算相关的功能。 通过 VCE 的统一控制,使得 Initializing的 Legacy线路和 /或 Initializing的 Vector 线路按照一定顺序完成初始化流程。
在上述本发明的实施例中, 需要估计非矢量化线路到矢量化线路的远端 串扰系数。 为了估计 Legacy 线路到 Vector 线路的远端串扰系数, 可以使 Legacy线路与 Vector线路的符号同步, 这可以由 VTU-0控制 Legacy线路与 Vector线路下行发送符号对齐完成。 在当前 VDSL2系统中, 通过设定合适的 定时超前 TA (Timing Advance )值, 可以达到 VTU-0接收的 Legacy线路与 Vector线路的上行符号同步。
另外, VCE需要能够统一控制 Legacy线路以及 Vector线路,从而能够按 照一定的顺序控制 Legacy线路的初始化流程, 以及 Legacy线路与 Vector线 路的初始化流程以最大限度的准确并快速估计 Legacy线路到 Vector线路的 远端串扰系数。
另外, 为了能最大限度的准确估计 Legacy线路到 Vector线路的远端串 扰系数, Legacy线路在 Vector线路的 Sync Symbol上所发的信号应最大限度 的随机。 然而, Legacy线路在其 Sync Symbol上调制由全 "0" 或全 "1" 组成的 同步帧, 且仅在用于标记对端 VTU发出在线重新配置生效的时间戳时, 同步 帧才发生翻转即从全 "0"变为全 "1"或者从全 "1"变为全 "0" , 因而 Legacy 线路在其 Sync Symbol上下行发送信号或 /和上行接收信号随机性不够。 在下 行方向, 为了避免使用 Legacy线路在其 Sync Symbol上发送的随机性不够的 信号, VCE可以通过统一控制 Legacy线路下行方向的 Sync Symbol位置, 实 现 Legacy线路的 Sync Symbol与 Vector线路的 Sync Symbol位置(所有 Vector 线路的 Sync Symbol位置相同) 不对齐。 在上行方向, VCE难以控制 Legacy 线路的 Sync Symbol与 Vec tor线路的 Sync Symbol不对齐。
无论 VCE是否控制 Legacy线路的下行或上行 Sync Symbol的位置以使其 与同方向的 Vector线路的下行或上行 Sync Symbo l不对齐, 本发明实施例将 说明, 在非强制控制, 即 Legacy的同步符号与 Vector的一个超帧内 257个 符号即 256个数据符号与 1个同步符号中任意一个等概率对齐条件下, 对于 下行方向或 /和上行方向绝大多数情况中 Legacy线路的 Sync Symbol与 Vec tor 线路的 Sync Symbol是不对齐的。 此时, Legacy线路对应于 Vector线路 Sync Symbol 时间点上频域的信号可以是同步符号, 也可以是数据符号, 而不必强 制都不是同步符号。
对于下行方向和上行方向中任意一个方向, VDSL2与 Vectored DSL系统 循环地每隔 256个 Data Symbol插入一个 Sync Symbol , 而 Data Symbol与 Sync Symbol的时间等长且所有 Vectored DSL的 Sync Symbol保持对齐。 因 此对所述任意方向, 在当前系统中处于 Showt ime 阶段阶段与 Ini t ia l iz ingJoin in P介段的所有 Legacy线路一共为 根时, 根或 根以 上的 Legacy线路的 Sync Symbol与 Vector线路的 Sync Symbol对齐的概率 Λ为: 通过计算可得下表:
Figure imgf000026_0001
由于两才艮或两才艮以上 Legacy 线路的在任意一个方向 Sync Symbol 与 Vector线路的 Sync Symbo l对齐时, 才会因为这些对齐的 Legacy线路 Sync Symbol上发送信号随机性不够的原因, 对估计这些 Legacy线路到 Vector线 路的远端串扰系数造成精确程度的影响。从上表可以看出,当前系统中 Legacy 线路不超过 100根时, 产生上述影响的概率不超过 6%; 当前系统中 Legacy线 路不超过 50根时, 产生上述影响的概率不超过 2%。 因此, 由上述分析可得两 根或两根以上 Legacy线路的 Sync Symbol与 Vector线路的 Sync Symbo l对 齐为小概率事件。
其次, 当存在 ( 大于等于 2 )根 Legacy线路的 Sync Symbol与 Vector 线路的 Sync Symbol对齐时, VCE估计 Legacy线路到 Vector线路的串音信道 系数将有 列的精确程度受到影响。 结合概率分析, 可以计算在系统中有 N 根 Legacy线路时, 平均意义下串音信道系数精确程度受到影响的列的个数 K 为:
Figure imgf000027_0001
N 256 N 「256)N
257 ··∑ cj ·
257 257" 257
_N N_
257 257
Figure imgf000027_0002
对于不同的总 Legacy线数 N, 平均受影响的列数 列表如下:
Figure imgf000027_0003
通过上述表格可得, 总 Legacy线路数不多于 347时, 平均意义下精确度 受到影响的串音信道的列数不到 1列。 而实际应用中, 考虑到系统支持 莫、 已接入用户的总数、所有用户使用非 Vector普通 VDSL2业务和 Vectored-DSL 业务的分配情况以及使用普通 VDSL2 业务的用户在线收敛比, 通常不超过 50。
再次, 通过采用合适的估计方法, 比如最小均方误差算法(LMS )等算法, 应用估计而得的远端串扰系数依然可以使 Vector线路的速率得到提升。
综合而言, 即使 VCE不控制任意一个方向 Legacy线路的 Sync Symbol与 Vector线路的 Sync Symbol对齐或不对齐, 即不对 Legacy线路的同步符号和 Vector线路的同步符号进行对齐控制的情况下,存在不少于两根 Legacy线路 的 Sync Symbol与 Vector线路的 Sync Symbol对齐的可能性很小, 且 VCE估 计这些 Legacy线路到 Vector线路的远端串扰系数只在精确程度上受到影响。 平均意义下, 系统中总线路数不超过 347 时, 受到影响的串音信道的列数不 到 1列。 所以, 应用本发明的实施例, 在任意一个方向, VCE依然会有效地估 计 Legacy线路到 Vector线路的远端串扰系数。
本发明实施例提供的一种 Vectored DSL系统如图 13所示:
系统中有 n条 Vector线路, n大于等于 1,其中 Vector线路 k,k=l, ...,η, 对应的 VTU-0记#文 VTU-0-vk, VCE通过接口 ε-c-Vk与 VTU_0_vk相连并控制 VTU-0-vk;
每条 Vector线路的 VTU-0与其他 Vector线路的 VTU-0互相连接, 其中 线路 i, ί = 1,···,η,对应的 VTU- 0- V 通过接口 ε- ν「 ν』与线路 j, j = l, --,n, j ≠ i , 对应的 VTU-0-Vj互相连接并传输线路 i的信号用于线路 j的串音抵消; 系统中有 m条 Legacy线路, m大于等于 1,其中 Legacy线路 k, k=l, ...,m, 对应的 VTU-0记#文 VTU-0- lk; VCE通过接口 ε-c-lk与 VTU-0-lk相连并控制 VTU-0-lk; VCE通过 VTU- 0- lk控制 Legacy线路;
VCE不对 Legacy线路的同步符号与 Vector线路的同步符号是否对齐进行 控制, VTU_0_lk将 Legacy线路在 Vector线路 Sync Symbol时间点上频域的发 送信号与接收信号通过 ε -c-lk接口传输到 VCE;
VTU-0-Vi将每条 Vector 线路的同步符号的误差样本通过接口 ε -c-Vi, i=l, ...,η, 发送到 VCE;
VCE利用 Legacy线路在 Vector线路 Sync Symbol时间点上频域的发送信 号与接收信号以及 Vector线路的同步符号对应的误差样本估算 Legacy线路 到 Vector线路的远端串扰系数;
VCE 将估计得到的远端串扰系数通过接口 ε-c-Vi, i=l, ...,n, 发送到对 应的 VTU-0-Vi;
每条 Legacy线路的 VTU-0与每条 Vector线路的 VTU-0间相互作用,其中 Legacy线路 i, i=l, '",m, 对应的 VTU-O-l^ Vector线路 j, j=l, ···, n, 对 应的 VTU- 0- Vj之间的接口为 ε- 1「 ν』, VTU- 0- 通过接口 ε - Vj将 Legacy线 路 i上频域的发送信号与接收信号传输到 VTU-0-Vj;
VTU-0-Vi利用收到的远端串扰系数和 Legacy线路 i上频域的发送信号与 接收信号抵消 Legacy线路到 Vector线路的远端串音;
VTU-0-Vi, i=l, ...,η,通过 ε- c- Vi接口, VTU- 0-1』, j=l, --, 111,通过 ε- c- lj 接口,向 VCE上报所连接线路使用的 CPE是支持 Vectored-DSL标准的 Vector CPE还是不支持 Vectored-DSL标准的 Legacy CPE。 VCE可以识别 VTU-0上艮 的信息, 即 CPE是否支持 Vectored-DSL标准的信息;
VCE通过接口 ε - c- V i=l, ..., η, 与 ε - c- lj, j=l, m, 控制 Vector线 路 i的 VTU-0-Vi发送的下行符号与 Legacy线路 j的 VTU_0_lj发送的下行符号 同步;
VCE可以根据所述信息通过接口 ε -c-Vi, i=l,…, n,与 ε -c-lj, j=l,…, m, 控制 Vector线路 i的 VTU-O-Vi ^送的下行 Sync Symbol不对齐于 Legacy线 路 j的 VTU-0-lj发送的下行 Sync Symbol; 也可以通过 VTU-0来控制 Legacy 线路的远端矢量收发信机单元 VTU-R ( Vector Tranceiver Unit at Remote ) 发送的上行 Sync Symbol 不对齐于 Vector 线路的 VTU-R发送的上行 Sync Symbol。
本发明的实施例提供了一种估计远端串扰系数的方法, 该方法用于估计 Legacy线路对 Vector线路的远端串扰系数, 如图 14中 1400所示, 包括:
1401:不对 Legacy线路的同步符号和矢量线路的同步符号进行对齐控制, 接收每条 Legacy线路的信号, 该信号为对应于 Vector线路上行 Sync Symbol 时间点上频域的上行同步符号或数据符号, 或者为对应于 Vector 线路下行 Sync Symbol时间点上频域的同步符号或数据符号, 或者为所述上行信号和所 述下行信号。
1401 中无论下行方向或上行方向, 不对 Legacy线路的 Sync Symbol与 Vector线路的 Sync Symbol对齐或不对齐进行控制, 因此该信号可以是 Sync Symbol, 也可以是 Data Symbol。
1403: 接收每条 Vector线路的误差样本 Error Sample, 所述误差样本为 该 Vector线路的上行 Sync Symbol对应的上行误差样本, 或者为该 Vector 线路的下行 Sync Symbol 对应的下行误差样本, 或者为所述上行误差样本和 所述下行误差样本;
1405: 利用所述信号、所述误差样本计算每条 Legacy线路到每条 Vector 线路的远端串扰系数, 所述远端串扰系数为上行远端串扰系数, 或者下行远 端串扰系数, 或者上行远端串扰系数和下行远端串扰系数, 所述上行信号和 所述上行误差样本用于估计上行远端串扰系数, 所述下行信号和下行无差样 本用于估计下行远端串扰系数。
1405 中计算远端串扰系数时, 可以采用最小均方误差 LMS (Least Mean Square)算法、 矩阵一阶近似算法、 矩阵求逆算法等算法。
通过上述实施例, 无须升级现有 Legacy线路的 CPE, 可以在不对非矢量 化线路的同步符号和矢量化线路的同步符号进行对齐控制以强制实现二者不 对齐或对齐的情况下, 估计非矢量化线路到矢量化线路的远端串扰系数, 从 而可以使用估计所得串扰系数最大限度消除非矢量化线路对矢量化线路的远 端串扰, 从而最大限度降低由 Legacy线路引起的 Vector-DSL系统的不稳定 性。
本发明实施例提供了一种估计远端串扰系数的装置, 该装置的结构示意 图如图 15中的 1500所示, Legacy线路 i, i=l,…! , 对应的 VTU-0-Λ通过接 口 ε _ο-Λ将该非矢量化线路的信号传输到 VCE, 无须控制该非矢量化线路线 路的同步符号与矢量化线路的同步符号对齐与否, 该信号为对应于矢量化线 路上行同步符号时间点上频域的上行信号, 或者为对应于矢量化线路下行同 步符号时间点上频域的下行信号, 或者为上行信号和下行信号, 该信号由 VCE 的信号接收单元 1501接收。
Vector线路 i, i=l, ·'·η, 对应的 VTU_0_ 通过接口 ε .将该 Vector 线路的误差样本传输到 VCE,该误差样本为该矢量化线路的上行同步符号对应 的上行误差样本, 或者为该矢量化线路的下行同步符号对应的下行误差样本, 或者为上行误差样本和下行误差样本,该误差样本由 VCE的误差接收单元 1503 接收。
VCE在计算单元 1505中利用接收到的信号、误差样本计算得到 Legacy线 路到 Vector线路的远端串扰系数。
本发明的实施例提供了一种 Vector线路的 VTU-0, 如图 16所示, 包括: 发送单元 1601, 用于发送该 Vector 线路的误差样本, 该误差样本为该 Vector线路的上行同步符号对应的上行误差样本,或者为该 Vector线路的下 行同步符号对应的下行误差样本, 或者为上行误差样本和下行误差样本; 系数接收单元 1603, 用于接收 Legacy线路到该线路的远端串扰系数, 所 述远端串扰系数为上行远端串扰系数, 或者下行远端串扰系数, 或者上行远 端串扰系数和下行远端串扰系数;
信号接收单元 1605,用于接收 Legacy线路的包括数据符号和同步符号在 内的信号, 所述信号为上行信号、 或为下行信号、 或为上行和下行信号; 抵消单元 1607, 用于将所述远端串扰系数和所述信号抵消远端串音对于 该 Vector线路的干 4尤。
本发明的实施例提供了一种 Legacy线路的 VTU-0, 如图 17中 1700所示 所示, 包括:
第一发送单元 1701, 用于发送 Legacy线路的第一信号, 所述第一信号为 对应于 Vector线路上行 Sync Symbol时间点上频域的上行信号, 或者为对应 于 Vector线路下行 Sync Symbol时间点上频域的下行信号, 或者为上行信号 和下行信号, 所述第一信号为该非矢量化线路的同步符号与矢量化线路的同 步符号对齐与否未被控制的情况下的信号;
第二发送单元 1703, 用于发送该 Legacy线路第二信号, 该第二信号为包 括数据符号 Data Symbol与同步符号 Sync Symbol在内的下行信号、 上行信 号或上行和下行信号。
估计得到串扰系数后, VCE 通过接口 ε -c- ·, i=l, ...,η, 将估计得到的 这些远端串扰系数传输到 Vec tor线路 i对应的 VTU-0- .中。
图 18表示在本发明实施例的系统中下行串音抵消的情况。 每个抵消单元 对各自线路做的串音抵消, 抵消单元 i , i=l,… , n, 用以对 Vector线路 i上 的串音进行抵消。 抵消单元 i可以位于 VTU-0- .中, 抵消单元为(n+m) χ 1的 •I氐消单元, 利用包括所有 Vec tor线路的信号和所有 Legacy线路的信号, 以 及包括所有 Vector线路和所有 Legacy线路在内的所有线路到 Vec tor线路 i 的抵消系数做如下串音抵消, 即相乘并累加的操作: j=l j=i
其中 表示 Vector线路 j到 Vector线路 i的远端串扰系数, 表示 Legacy线路 j到 Vector线路 i的远端串扰系数, Xvj表示 Vector线路 j的输 入抵消器的信号数据, Χ¾表示 Legacy线路 j的输入抵消器的信号数据, X 表示 Vector线路 i的抵消器输出的信号数据, 且 可以设定为 1或者其他 数值。 所有 n个抵消单元综合起来构成矩阵形式的抵消器: 其中 pv-v表示 Vector线路之间的远端串扰系数, ρ^ ν表示 Legacy线路到 Vector线路的远端串扰系数, χν表示输入抵消器的 Vector线路的信号数据, XL示输入抵消器的 Legacy线路的信号数据, 示 Vector线路的抵消器输出 的信号数据。
VCE通过接口 ε - C- vk, k=l , ... , η, 记为 ε - c , 将计算所得的 Legacy线路 到 Vector线路的远端串扰系数分别传输到 Vector线路对应的 VTU-0中。
在 Vector线路对应的 VTU-0之间, 第 i ( i=l,…, n )个 VTU-0-Vi通过接 口 ε 言 Vj与第 j ( j=l,…, n, j≠ i )个 VTU-O-Vj互相连接并传输第 i条线路 信号到第 j条线路用于第 j条线路串音抵消。
VTU- 0- 通过接口 ε - 1「 Vj, i=l, ... , m, j=l, ...,n, 将第 i条 Legacy线路 频域的发送信号与接收信号传输到 VTU-0-Vj ,用于抵消 Legacy线路到 Vector 线路的串音。 VTU-0-Vj将利用这些信号以及 Legacy线路到 Vector线路的远端 串扰系数抵消 Legacy线路的串音。
第 k个接口 ε - vk, k=l, ...,n表示汇聚了 m个接口 ε - 1「 vk, i = 1, -, m, 与 n— 1个接口 £ _Vj_Vk, j=l, ... , n, j≠k的用于串音抵消的信号, 这些信号 在抵消器内进行串音抵消。
图 18是以下行为例的, 根据下行情形, 本领域技术人员容易推知上行的 情形。
通过本发明的实施例, Vectored-DSL系统无需升级 VDSL2现网中的 VDSL2 Legacy CPE , 可以通过选取一部分非矢量化线路进行初始化, 在初始化所选 的非矢量化线路过程中不再继续对其他线路初始化, 从而实现了控制 Legacy 线路有序地进行初始化。 同时, 可以减小其他线路初始化对所选线路初始化 产生的干扰, 在估计远端串扰系数时, 可以达到更好的估计结果, 从而达到 支持现网中已有的 VDSL Legacy CPE , 最大限度地抵消下行方向 Legacy线路 到 Vector线路的串音和上行方向 Legacy线路到 Vector线路的串音, 从而最 大限度地减轻了 Legacy线路对整个 Vectored DSL系统中 Vector线路稳定性 造成的影响。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明可借助软件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来 实施。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部或者 部分可以以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介 质中,如 R0M/RAM、磁碟、光盘等, 包括若干指令用以使得一台计算机设备(可 以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例或者实 施例的某些部分所述的方法。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应该以权利要求的保护范围为准。

Claims

权利要求书
1 . 一种支持非矢量化线路的方法, 其特征在于, 包括:
从处于初始化阶段的线路中选取 n条非矢量化线路 TL,其中 n为大于等于 1 的整数; 直到所述 全部进入数据传输阶段;
在所述 进入数据传输阶段之前, 估计所述 到处于数据传输阶段的矢量 化线路 SV的远端串扰系数 CTL-SV, 所述(^^用于信号处理以消除所述 TV对所述 SV 的远端串扰。
2. 如权利要求 1所述的方法, 其特征在于, 所述在所述 TV进入数据传输阶 段之前,估计所述 TL到处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV , 包括:
只在所述 TL初始化过程中的信道发现阶段, 估计所述 TL到所述处于数据传 输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV; 或者,
分别在所述 TL初始化过程中的信道发现阶段和训练阶段, 两次估计所述 TL 到所述处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV
3. 如权利要求 1或 2所述的方法, 其特征在于, 所述估计所述 TL到处于数 据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV, 包括:
不对非矢量化线路的同步符号与矢量化线路的同步符号进行对齐控制, 接 收所述 TL对应于矢量化线路同步符号时间点上频域的信号;
接收所述 Sv的同步符号的误差样本;
利用所述信号、 所述误差样本, 计算所述 CTL-SV
4. 如权利要求 1 - 3任一所述的方法, 其特征在于, 进一步包括:
控制对处于初始化阶段的线路中的至少一条矢量化线路 Tv进行初始化; 在所述 Tv进入数据传输阶段之前, 估计处于数据传输阶段的非矢量化线路
SL到所述 Tv的远端串扰系数 CSL-tv和所述 Tv之间的远端串扰系数 CTV-TV , 所述 CSL-TV 用于信号处理以消除所述 SL对所述 TV的远端串扰, 所述 CTV-TV用于信号处理以消 除所述 Tv线路之间的远端串扰。
5. 如权利要求 4所述的方法, 其特征在于, 所述在所述 Τν进入数据传输阶 段之前, 包括:
在所述 TV初始化过程中的训练阶段。
6. 如权利要求 4或 5所述的方法, 其特征在于, 所述估计处于数据传输阶 段的非矢量化线路 SL到所述 Tv的远端串扰系数 CSL-TV , 包括:
不对非矢量化线路的同步符号与矢量化线路的同步符号进行对齐控制, 接 收所述 SL对应于矢量化线路同步符号时间点上频域的信号;
接收所述 Tv的同步符号的误差样本;
利用所述信号、 所述误差样本, 计算所述 CSL-TV
7. 如权利要求 4 - 6任一所述的方法, 其特征在于, 进一步包括: 在所述 TV进入数据传输阶段之前, 估计所述 TV到处于数据传输阶段的矢量 化线路 SV的远端串扰系数 CTV-SV、所述 SV到所述 TV的远端串扰系数 CSV-TV ,所述 CTV-SV 用于信号处理以消除所述 TV对所述 Sv的远端串扰, 所述 CSV-TV用于信号处理以消 除所述 Sv对所述 Τν的远端串扰。
8. 如权利要求 1 - 7任一所述的方法, 其特征在于, 所述控制对除所述 TL 控制光网络单元侧 VDSL 2收发器单元 VTU-0不向所述其他线路发握手信号; 或者, 控制 VTU-0 以阻止所述其他线路进入信道发现阶段或者保持在信道 发现阶段。
9. 一种支持非矢量化线路的装置, 其特征在于, 包括:
非矢量化线路选取单元, 用于从处于初始化阶段的线路中选取 n条非矢量 化线路 TL, 其中 n为大于等于 1的整数;
非矢量化线路初始化控制单元, 用于控制对除所述 TL之外的处于初始化阶 段的其他线路不再继续进行初始化, 直到所述 TL全部进入数据传输阶段;
非矢量化线路远端串扰系数估计单元, 用于在所述 TL进入数据传输阶段之 前, 估计所述 TL到处于数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV, 所 述 CTL-SV用于信号处理以消除所述 TL对所述 SV的远端串扰。
1 0. 如权利要求 9 所述的方法, 其特征在于, 所述非矢量化线路远端串扰 系数估计单元, 包括:
信号接收子单元, 用于在不对非矢量化线路的同步符号与矢量化线路的同 步符号进行对齐控制的情况下, 接收所述 TL对应于矢量化线路同步符号时间点 上频域的信号;
误差接收子单元, 用于接收所述 Sv的同步符号的误差样本;
计算子单元, 用于利用所述信号、 所述误差样本, 计算所述 CTL-SV
1 1 . 如权利要求 9或 1 0所述的装置, 其特征在于, 进一步包括:
矢量化线路初始化单元, 用于控制对处于初始化阶段的线路中的至少一条 矢量化线路 TV进行初始化;
矢量化线路远端串音系数估计单元,用于在所述 TV进入数据传输阶段之前, 估计处于数据传输阶段的非矢量化线路 SL到所述 TV的远端串扰系数 CSL-tv和所述
Tv之间的远端串扰系数 CTV-TV , 所述 CSL-tv用于信号处理以消除所述 SL对所述 Tv的 远端串扰, 所述 CTV-TV用于信号处理以消除所述 Tv线路之间的远端串扰。
1 2. 如权利要求 1 1所述的装置, 其特征在于, 所述矢量化线路远端串音系 数估计单元, 还用于在所述 TV进入数据传输阶段之前, 估计所述 TV到处于数据 传输阶段的矢量化线路 Sv的远端串扰系数 CTV-SV和所述 Sv到所述 Tv的远端串扰系 数 CSV-TV , 所述 CTV-SV用于信号处理以消除所述 TV对所述 Sv的远端串扰, 所述 CSV-TV 用于信号处理以消除所述 Sv对所述 Tv的远端串扰。
1 3. 一种支持非矢量化线路的系统, 其特征在于, 包括:
矢量化控制实体 VCE , 至少两条线路, 0NU侧矢量收发单元 VTU-0 , 所述至 少两条线路中包括至少一条矢量化线路和至少一条非矢量化线路, 所述至少两 条线路与所述 VTU-0相连, 并受该 VTU-0控制, 其中, 所述至少一条矢量化线 路与对应的 0NU侧矢量收发单元 VTU-0-v相连, 并受该 VTU-0-v控制, 所述至 少一条非矢量化线路与对应的 0NU 侧矢量收发单元 VTU-0- 1 相连, 并受该 VTU-0-1控制; 所述 VCE从处于初始化阶段的线路中选取 n条非矢量化线路 TL, 其中 n为 大于等于 1的整数;
所述 VCE控制除所述 TL之外的处于初始化阶段的其他线路对应的 0NU侧矢 量收发单元不再对所述其他线路继续进行初始化, 直到所述 TL全部进入数据传 输阶段;
在所述 TL进入数据传输阶段之前, 所述 VCE估计所述 TL到处于数据传输阶 段的矢量化线路 SV的远端串扰系数 CTL-SV, 所述 CTL-SV用于信号处理以消除所述 TV 对所述 Sv的远端串扰。
1 4. 如权利要求 1 3所述的系统, 其特征在于, 所述 VCE估计所述 TL到处于 数据传输阶段的矢量化线路 Sv的远端串扰系数 CTL-SV, 包括:
所述 VCE 不对非矢量化线路的同步符号与矢量化线路的同步符号进行对齐 控制, 所述 VTU-0- 1将所述 对应于矢量化线路同步符号时间点上频域的信号 传输到所述 VCE ;
所述 VTU-0-v将所述 Sv的同步符号的误差样本传输到所述 VCE ;
所述 VCE利用所述信号和所述误差样本计算所述 CTL-SV
PCT/CN2011/077675 2011-07-27 2011-07-27 支持非矢量化线路的方法、装置和系统 WO2012106936A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP11858007.5A EP2701373B1 (en) 2011-07-27 2011-07-27 Method, apparatus and system for supporting non-vectored line
ES11858007.5T ES2581601T3 (es) 2011-07-27 2011-07-27 Procedimiento, aparato y sistema para soportar una línea no vectorizada
PCT/CN2011/077675 WO2012106936A1 (zh) 2011-07-27 2011-07-27 支持非矢量化线路的方法、装置和系统
EP15200488.3A EP3032812B1 (en) 2011-07-27 2011-07-27 Method, apparatus and system for supporting non-vector line
CN201180001370.1A CN102859984B (zh) 2011-07-27 2011-07-27 支持非矢量化线路的方法、装置和系统
US14/164,789 US9444516B2 (en) 2011-07-27 2014-01-27 Method, apparatus and system for supporting non-vector line
US15/227,485 US9806762B2 (en) 2011-07-27 2016-08-03 Method, apparatus and system for supporting non-vector line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077675 WO2012106936A1 (zh) 2011-07-27 2011-07-27 支持非矢量化线路的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/164,789 Continuation US9444516B2 (en) 2011-07-27 2014-01-27 Method, apparatus and system for supporting non-vector line

Publications (1)

Publication Number Publication Date
WO2012106936A1 true WO2012106936A1 (zh) 2012-08-16

Family

ID=46638136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077675 WO2012106936A1 (zh) 2011-07-27 2011-07-27 支持非矢量化线路的方法、装置和系统

Country Status (5)

Country Link
US (2) US9444516B2 (zh)
EP (2) EP3032812B1 (zh)
CN (1) CN102859984B (zh)
ES (1) ES2581601T3 (zh)
WO (1) WO2012106936A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876817A4 (en) * 2012-08-30 2015-10-14 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM COMPATIBLE WITH CONVENTIONAL VDSL2 USER DEVICE
EP2928167A4 (en) * 2012-12-26 2016-03-02 Huawei Tech Co Ltd METHOD AND DEVICE FOR LINE INITIALIZATION
CN108028678A (zh) * 2015-04-29 2018-05-11 华为技术有限公司 一种发送信号的方法、装置和系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032812B1 (en) * 2011-07-27 2017-03-29 Huawei Technologies Co., Ltd. Method, apparatus and system for supporting non-vector line
WO2012092895A2 (zh) * 2012-02-03 2012-07-12 华为技术有限公司 接入设备端口线路的串扰抵销处理方法、相关设备及系统
EP2690805B1 (en) * 2012-07-23 2020-05-27 Lantiq Beteiligungs-GmbH & Co.KG Spectrum management and timing optimization over multiple distribution points
PL2995072T3 (pl) 2013-05-05 2017-08-31 Lantiq Deutschland Gmbh Optymalizacja szkolenia wielu linii w wektorowym systemie stosującym grupę przygotowaną do łączenia
WO2015127624A1 (zh) * 2014-02-27 2015-09-03 华为技术有限公司 串扰信道估计方法、矢量化控制实体及osd系统
US11233538B2 (en) * 2014-03-25 2022-01-25 Lantiq Beteiligungs-GmbH & Co. KG Interference mitigation
EP3113378B1 (en) * 2014-04-30 2018-06-13 Huawei Technologies Co. Ltd. Method, device and system for cancelling circuit crosstalk in dsl system
US9985685B2 (en) * 2014-09-26 2018-05-29 Futurewei Technologies, Inc. Power spectrum density optimization
US10141976B2 (en) * 2015-02-24 2018-11-27 Lantiq Beteiligungs-GmbH & Co. KG Crosstalk mitigation
US10505583B2 (en) * 2016-12-19 2019-12-10 Futurewei Technologies, Inc. Crosstalk channel estimation for legacy CPE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094428A2 (en) * 2004-03-05 2005-10-13 Texas Instruments Incorporated Training and updating for multiple input-output wireline communications
CN101213826A (zh) * 2005-06-02 2008-07-02 适应性频谱和信号校正股份有限公司 Dsl系统训练
US20110007623A1 (en) * 2009-07-10 2011-01-13 Futurewei Technologies, Inc. Method for Estimating the Strength of a Crosstalk Channel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965546B (zh) * 2004-05-18 2012-08-15 适应性频谱和信号校正股份有限公司 基于激励的dsl系统
US7843949B2 (en) * 2007-08-17 2010-11-30 Lantiq Deutschland Gmbh Communication apparatus and method with changing composition of a vectored group
US8717862B2 (en) * 2008-01-07 2014-05-06 Lantiq Deutschland Gmbh Communication apparatus and method
US8644497B2 (en) * 2008-04-24 2014-02-04 Lantiq Deutschland Gmbh Method and apparatus for adding a communication connection to a vectored group
JP5499026B2 (ja) * 2008-06-10 2014-05-21 イカノス テクノロジー リミテッド ベクトル化されたdslクロストークキャンセル
US8204211B2 (en) * 2009-04-29 2012-06-19 Ikanos Communications, Inc. Systems and methods for selecting tones for far-end cross talk mitigation
EP2601747B1 (en) * 2010-08-05 2016-04-20 Telefonaktiebolaget LM Ericsson (publ) Method in a communication system
US8537655B2 (en) * 2011-01-28 2013-09-17 Alcatel Lucent Multiplicative updating of precoder or postcoder matrices for crosstalk control in a communication system
KR101658971B1 (ko) * 2011-04-27 2016-09-30 이카노스 커뮤니케이션스, 인크. G.벡터 초기화 시스템 및 방법
EP3032812B1 (en) * 2011-07-27 2017-03-29 Huawei Technologies Co., Ltd. Method, apparatus and system for supporting non-vector line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094428A2 (en) * 2004-03-05 2005-10-13 Texas Instruments Incorporated Training and updating for multiple input-output wireline communications
CN101213826A (zh) * 2005-06-02 2008-07-02 适应性频谱和信号校正股份有限公司 Dsl系统训练
US20110007623A1 (en) * 2009-07-10 2011-01-13 Futurewei Technologies, Inc. Method for Estimating the Strength of a Crosstalk Channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The ITUT-T's New Gvector Standard Proliferates 100 Mb/s DSL.", IEEE COMMUNICATIONS MAGAZINE., vol. 48, no. 10, 31 October 2010 (2010-10-31), pages 142 - 147, XP011319418 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876817A4 (en) * 2012-08-30 2015-10-14 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM COMPATIBLE WITH CONVENTIONAL VDSL2 USER DEVICE
US9225826B2 (en) 2012-08-30 2015-12-29 Huawei Technologies Co., Ltd. Method, apparatus and system for compatibility with VDSL2 legacy customer premises equipment
EP2928167A4 (en) * 2012-12-26 2016-03-02 Huawei Tech Co Ltd METHOD AND DEVICE FOR LINE INITIALIZATION
US9654172B2 (en) 2012-12-26 2017-05-16 Huawei Technologies Co., Ltd. Method and device for line initialization
EP3244544A1 (en) * 2012-12-26 2017-11-15 Huawei Technologies Co., Ltd. Method and device for line initialization
CN108028678A (zh) * 2015-04-29 2018-05-11 华为技术有限公司 一种发送信号的方法、装置和系统
CN108028678B (zh) * 2015-04-29 2020-12-22 华为技术有限公司 一种发送信号的方法、装置和系统

Also Published As

Publication number Publication date
US20140140187A1 (en) 2014-05-22
US9444516B2 (en) 2016-09-13
EP2701373A4 (en) 2014-07-30
EP3032812A1 (en) 2016-06-15
CN102859984B (zh) 2016-01-20
US20160344446A1 (en) 2016-11-24
ES2581601T3 (es) 2016-09-06
EP2701373A1 (en) 2014-02-26
US9806762B2 (en) 2017-10-31
EP3032812B1 (en) 2017-03-29
CN102859984A (zh) 2013-01-02
EP2701373B1 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2012106936A1 (zh) 支持非矢量化线路的方法、装置和系统
US10148415B2 (en) Aligning the upstream DMT symbols of multiple lines in a TDD DSL system
US9225826B2 (en) Method, apparatus and system for compatibility with VDSL2 legacy customer premises equipment
US8989063B2 (en) Time division multiple access far end crosstalk channel estimation
KR101520313B1 (ko) 다수의 조이닝하는 라인들 사이의 크로스토크 획득 단계들의 시간―정렬
JP6014686B2 (ja) 漏話を低減する方法およびシステム
US9985685B2 (en) Power spectrum density optimization
JP6178498B2 (ja) ベクタリングを用いた通信システムにおける不連続動作を支援する方法、装置およびシステム
US20160105215A1 (en) Crosstalk Cancellation Over Multiple Mediums
EP2919392B1 (en) Non-linear precoder with separate tracking
JP2015513250A (ja) 漏話を低減する方法およびシステム
US9686035B2 (en) Spectrum management and timing optimization over multiple distribution points
WO2012167537A1 (zh) 一种降低数字用户线路干扰的方法、装置和系统
WO2015165091A1 (zh) 一种dsl系统中抵消线路串扰的方法、设备和系统
WO2011100927A2 (zh) 线对分组的方法、装置及系统
US20180041246A1 (en) Line grouping for crosstalk avoidance
US20150341081A1 (en) Method and apparatus for updating fext coefficients for g.fast vectoring with discontinuous operation
WO2008017274A1 (fr) Procédé et dispositif pour contrôler la qualité de communication en ligne
WO2009152704A1 (zh) 一种信道估计方法、装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001370.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011858007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE