WO2014090043A1 - Ofdm-pon系统及时钟信号的发送和提取方法 - Google Patents

Ofdm-pon系统及时钟信号的发送和提取方法 Download PDF

Info

Publication number
WO2014090043A1
WO2014090043A1 PCT/CN2013/085608 CN2013085608W WO2014090043A1 WO 2014090043 A1 WO2014090043 A1 WO 2014090043A1 CN 2013085608 W CN2013085608 W CN 2013085608W WO 2014090043 A1 WO2014090043 A1 WO 2014090043A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ofdm
ofdm signal
clock signal
clock
Prior art date
Application number
PCT/CN2013/085608
Other languages
English (en)
French (fr)
Inventor
林邦姜
李巨浩
何永琪
陈章渊
朱松林
郭勇
印永嘉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014090043A1 publication Critical patent/WO2014090043A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications, and in particular to an OFDM-PON system and a method for transmitting and extracting a clock signal.
  • Optical fiber communication technology is one of the important pillars of modern communication technology. Its development direction mainly has two major directions: (1) The backbone layer is oriented towards the development of high-speed, large-capacity, and intelligent optical networks, and finally realizes all-optical network. . (2) The access layer is oriented towards the development of low-cost, integrated access, broadband, and fiber-optic access networks, ultimately achieving fiber-to-the-home. The capacity at the backbone network level reaches Gb/s, even on the order of Tb/s.
  • PON Passive Optical Network
  • FIG. 1 is a schematic diagram of a structural system of a PON according to the related art.
  • the OLT is an optical switch or a router, and is a multi-service platform, and provides a network interface oriented to the P0N.
  • 0LT can also perform bandwidth allocation, network security and management configuration according to different requirements of user service levels.
  • 0DN is responsible for distributing downlink data and concentrating uplink data, and performs functions such as optical signal power allocation and wavelength multiplexing.
  • the ODN is mainly connected to the OLT and the ONU by one or more optical splitters.
  • the splitter is a simple device that does not require a power source and can be placed in an all-weather environment. In general, a splitter has a split ratio of 2, 4 or 8, and can be connected in multiple stages.
  • the 0NU provides a user-side interface for the network to complete the conversion of downlink optical to electrical and uplink electrical to optical to achieve access to various services.
  • 0LT is placed in the central office, and 0NU is the client device.
  • the P0N technology mainly includes an ATM Passive Optical Network (AP0N), an Ethernet Passive Optical Network (EP0N), and an Gigabit passive system using Asynchronous Transfer Mode (ATM).
  • GP0N Optical Network
  • WDM-PON Wavelength Division Multiplexed Passive Optical Network
  • the first three PON technologies are based on time division multiplexing
  • WDM-PON is based on wavelength division multiplexing.
  • the current mainstream products on the market are EPON and GPON, among which the Institute of Electrical and Electronics Engineers (IEEE) will develop the 802.3av 10-G EPON standard in 2009, the Telecommunication Standardization Group of the International Telecommunication Union ( I ITU-Telecommunication standardization sector (TU-T) has developed the 10-G GPON standard in 2010.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DSP Digital Signal Processor
  • FDM general frequency division multiplexing
  • the high-speed data stream is distributed to several frequency sub-channels with relatively low rate through serial-to-parallel conversion. Transfer.
  • the required protection bandwidth is different between the subcarriers of the FDM system, and the subcarriers generated by the OFDM are orthogonal to each other. Therefore, the modulated subcarriers can overlap each other without interfering with each other, and the spectrum utilization is greatly improved.
  • OFDM since OFDM has excellent performance against frequency selective fading and narrowband interference, it is determined as the core technology of the 4th generation mobile communication.
  • the baseband signal generation process of the OFDM transmitter is shown in Figure 2a.
  • the main steps include Quadrature Amplitude Modulation (QAM) signal mapping, serial-to-parallel conversion, and Inverse Fast Fourier Transform (referred to as Inverse Fast Fourier Transform).
  • QAM Quadrature Amplitude Modulation
  • Inverse Fast Fourier Transform For IFFT, add a cyclic prefix, and a string conversion step. The length of the FFT and cyclic prefix depends on the transmission conditions and the network size.
  • the baseband signal reception at the OFDM receiving end is shown in Figure 2b.
  • the main steps include serial-to-parallel conversion, de-cyclic prefix, N-point Fast Fourier Transform (FFT), frequency domain equalization, phase compensation, and parallel-to-serial conversion. Demap with QAM.
  • FFT Fast Fourier Transform
  • OFDM orthogonal frequency division multiple access
  • FIG. 3 is a schematic diagram of an OFDM-PON system according to the related art.
  • the transmitting parts in the OLT and the ONU are mainly composed of three parts: OFDM baseband signal generation, digital or analog up-conversion, and electro-optic modulation. Unlike the modulation method, it is possible to perform optical filtering before the optical signal is incident on the optical fiber.
  • the receiving part is mainly composed of four parts: photoelectric conversion, electrical filtering, down-conversion and OFDM baseband signal reception.
  • the ONU In the PON system, the ONU needs to extract clock information from the downlink signal according to the needs of the service.
  • the OLT sends binary (0, 1 code) to the ONU, and the ONU can extract clock information according to the pattern feature.
  • the OFDM-PON system due to the OFDM signal Near Gaussian on the domain, the ONU cannot extract the clock signal directly from the OFDM signal.
  • the OFDM-PON system the ONU cannot directly extract the clock signal from the OFDM signal, and no effective solution has been proposed yet.
  • an OLT comprising: a coupler configured to couple a clock signal with a first OFDM signal to obtain a second OFDM signal and to transmit a second OFDM signal.
  • the OLT further includes: an orthogonal (IQ) modulator and a light intensity modulator, wherein the IQ modulator is configured to up-convert the OFDM baseband signal to obtain a first OFDM signal; and the coupler is set to the light
  • the intensity modulator transmits a second OFDM signal; the light intensity modulator is configured to perform photoelectric conversion on the second OFDM signal, and transmit the photoelectrically converted second OFDM signal.
  • an ONU is provided, including: a clock extraction module configured to receive a second OFDM signal obtained by coupling a clock signal with a first OFDM signal, and extract a clock signal from the second OFDM signal .
  • the clock extraction module includes: a filter configured to filter the clock signal from the second OFDM signal.
  • a method for transmitting a clock signal of an OFDM-P0N system including: coupling a clock signal with a first OFDM signal to obtain a second OFDM signal; and transmitting a second OFDM signal.
  • the clock signal is at a different frequency than the first 0 DFM signal in the frequency domain.
  • a method for extracting a clock signal of an OFDM-P0N system includes: receiving a second OFDM signal obtained by coupling a clock signal with a first OFDM signal; and extracting a clock from the second OFDM signal signal.
  • an OLT including: a coupling module configured to couple a clock signal with a first orthogonal frequency division multiplexing OFDM signal to obtain a second OFDM signal; and a sending module configured to transmit Two OFDM signals.
  • an ONU including: a receiving module, configured to receive a second OFDM signal obtained by coupling a clock signal with a first orthogonal frequency division multiplexing OFDM signal; and an extracting module, configured to A clock signal is extracted from the second OFDM signal.
  • an OFDM-P0N system comprising: 0LT, configured to couple a clock signal with a first orthogonal frequency division multiplexing OFDM signal, obtain a second OFDM signal, and transmit a second OFDM Signal; 0NU, set to receive the second OFDM signal and extract the clock signal from the second signal.
  • 0LT includes any of the above 0LTs provided by the present invention.
  • the 0NU includes any of the above-mentioned ONUs provided by the present invention.
  • the receiving end receives the second OFDM signal obtained by coupling the clock signal with the first OFDM signal, and extracts the clock signal from the second OFDM signal, thereby solving the problem that the receiving end in the 0FDM-P0N system cannot directly directly from the OFDM.
  • the problem of extracting the clock signal from the signal realizes the extraction of the clock signal of the 0FDM-P0N system.
  • FIG. 1 is a schematic diagram of a structure of a PON according to the related art
  • FIG. 2a is a schematic diagram of a baseband signal generation flow of an OFDM transmitting end according to the related art
  • FIG. 2b is a schematic diagram of a baseband signal receiving flow of an OFDM receiving end according to the related art
  • 4 is a schematic diagram of an OFDM-PON system according to the related art
  • FIG. 1 is a schematic diagram of a structure of a PON according to the related art
  • FIG. 2a is a schematic diagram of a baseband signal generation flow of an OFDM transmitting end according to the related art
  • FIG. 2b is a schematic diagram of a baseband signal receiving flow of an OFDM receiving end according to the related art
  • 4 is a schematic diagram of an OFDM-PON system according to the related art
  • FIG. 4 is a schematic diagram of an OFDM-PON system according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of an OLT according to a first embodiment of the present invention
  • FIG. 7 is a block diagram of a downlink signal according to an embodiment of the present invention
  • FIG. 8 is a structural block diagram of an ONU according to a first embodiment of the present invention
  • FIG. 9 is a block diagram of an ONU according to an embodiment of the present invention
  • FIG. 10 is a spectrum diagram of a downlink signal after beat frequency according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a method for transmitting a clock signal of an OFDM-PON system according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a method for transmitting a clock signal of an OFDM-PON system according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a method for transmitting a clock signal of an OFDM-PON system according
  • FIG. 12 is a diagram showing a method of extracting a clock signal of an OFDM-PON system according to an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the receiving end In the OFDM-PON system in the related art, due to the near Gaussianity in the time domain of the OFDM signal, the receiving end cannot directly extract the clock signal from the OFDM signal.
  • an embodiment of the present invention provides a clock signal extraction scheme for an OFDM-PON system. The embodiments of the present invention are described below separately.
  • an OFDM-PON system is provided to implement clock signal extraction of an OFDM-PON system.
  • 4 is a schematic diagram of an OFDM-PON system according to an embodiment of the present invention.
  • the OFDM-PON system mainly includes: an OLT 1 and an ONU 2.
  • OLT l is set to divide the clock signal and the first orthogonal frequency Coupling with an OFDM signal to obtain a second OFDM signal and transmitting a second OFDM signal; ONU 2, and OLT
  • a phase coupling is provided to receive the second OFDM signal and extract a clock signal from the second signal.
  • the OLT 1 couples the clock signal with the first orthogonal frequency division multiplexing OFDM signal to obtain a second OFDM signal, and transmits the second OFDM signal; the ONU 2 receives the second OFDM signal, and The clock signal is extracted from the two signals, and the clock signal of the OFDM-PON system is extracted.
  • the preferred OLT 1 and ONU 2 of the embodiments of the present invention are described below.
  • an OLT is provided, and the OLT can be implemented in two manners.
  • FIG. 5 is a structural block diagram of an OLT according to a first embodiment of the present invention. As shown in FIG.
  • the OLT mainly includes: a coupling module 102 and a sending module 104.
  • the coupling module 102 is configured to couple the clock signal with the first orthogonal frequency division multiplexing OFDM signal to obtain a second OFDM signal.
  • the sending module 104 is connected to the coupling module 102 and configured to send the second OFDM signal.
  • FIG. 6 is a structural block diagram of an OLT according to a second embodiment of the present invention. As shown in FIG. 6, the OLT mainly includes: a coupler 106 configured to couple a clock signal with a first OFDM signal to obtain a second OFDM signal. And transmitting a second OFDM signal.
  • a coupler 106 configured to couple a clock signal with a first OFDM signal to obtain a second OFDM signal.
  • transmitting a second OFDM signal In a preferred embodiment of the present invention, as shown in FIG.
  • the OLT may further include: an IQ modulator and a light intensity modulator, where the IQ modulator is configured to perform up-conversion processing on the OFDM baseband signal to obtain a first OFDM signal; a coupler configured to transmit a second OFDM signal to the light intensity modulator; a light intensity modulator configured to photoelectrically convert the second OFDM signal and transmit the photoelectrically converted second OFDM signal.
  • an upconverted OFDM signal is coupled to a clock signal.
  • the OFDM baseband signal is upconverted to a higher frequency by an IQ modulator.
  • the upconverted OFDM signal is coupled to the clock signal, and the optical intensity conversion is achieved by a light intensity modulator.
  • FIG. 8 is a structural block diagram of an ONU according to a first embodiment of the present invention. As shown in FIG. 8, the ONU mainly includes: a receiving module 202 and an extracting module 204.
  • the receiving module 202 is configured to receive the second OFDM signal obtained by coupling the clock signal with the first orthogonal frequency division multiplexing OFDM signal
  • the extracting module 204 is connected to the receiving module 202 and configured to be from the second OFDM signal. Extract the clock signal.
  • FIG. 9 is a structural block diagram of an ONU according to a second embodiment of the present invention. As shown in FIG. 9, the ONU mainly includes: a clock extraction module 206 configured to receive a second clock signal coupled with a first OFDM signal, and obtain a second An OFDM signal, and extracting a clock signal from the second OFDM signal.
  • the clock extraction module 206 may include: a filter configured to filter a clock signal from the second OFDM signal.
  • the clock signal and the first ODFM signal may be at different frequencies in the frequency domain, and in the case that the frequency of the clock signal is smaller than the first OFDM signal, the filter may be low-pass filtering.
  • the optical signal passes through the optical receiver to obtain a second OFDM signal having a frequency spectrum as shown in FIG. 10, and the clock signal is directly obtained through the low-pass filter.
  • the frequency of the clock signal is relatively low, and the corresponding frequency multiplication processing can be performed according to the needs of the network.
  • the demodulation mode of the OFDM signal does not need to be changed.
  • the down-conversion is first implemented by an IQ demodulator, and then demodulated by an OFDM receiver. Since the clock signal has a certain frequency spacing from the OFDM signal, it can be filtered by the filter in the OFDM receiver without affecting the demodulation of the OFDM signal.
  • the clock signal can be well extracted from the downlink signal, and has the advantages of simplicity and economy.
  • a method for transmitting and extracting a clock signal is also provided, and the two methods are respectively described below.
  • 11 is a flowchart of a method for transmitting a clock signal of an OFDM-PON system according to an embodiment of the present invention. As shown in FIG.
  • Step S1102 Coupling the clock signal with the first OFDM signal to obtain a second OFDM signal.
  • the clock signal and the first ODFM signal are at different frequencies in the frequency domain.
  • the OFDM baseband signal may be up-converted to a higher frequency, and the up-converted OFDM signal is coupled with a clock signal, and the coupled OFDM signal is subjected to electro-optical conversion to obtain an optical signal of the double-side band.
  • the optical signal is filtered to remove one of the sidebands to obtain a single sideband downlink signal.
  • Step S1104 Send a second OFDM signal.
  • the transmitting end combines the clock signal with the first OFDM signal to obtain the second OFDM signal, and sends the second OFDM signal, so that the receiving end extracts the clock signal from the second OFDM signal, and solves the problem.
  • the receiving end cannot directly extract the clock signal from the OFDM signal, and the clock signal of the OFDM-PON system is extracted.
  • FIG. 12 is a method for extracting a clock signal of an OFDM-PON system according to an embodiment of the present invention. As shown in FIG. 12, the method mainly includes steps S1202 to S1204. Step S1202: Receive a second OFDM signal obtained by coupling a clock signal with the first OFDM signal.
  • Step S1204 extracting a clock signal from the second OFDM signal.
  • the clock signal may be at a different frequency from the first ODFM signal in the frequency domain, and in the case where the clock signal frequency is relatively low, the corresponding frequency multiplication processing may be performed according to the network requirement.
  • the receiving end receives the second OFDM signal obtained by coupling the clock signal with the first OFDM signal, and extracts the clock signal from the second OFDM signal, thereby solving the problem that the receiving end cannot directly directly from the OFDM in the OFDM-PON system.
  • the problem of extracting the clock signal from the signal realizes the extraction of the clock signal of the OFDM-PON system.
  • a method for extracting a clock signal is further provided, and the method includes steps 1 to 4.
  • Step 1 The OLT couples the clock signal with the first OFDM signal to obtain a second OFDM signal.
  • Step 2 The OLT phase ONU sends the second OFDM signal.
  • Step 3 The ONU receives the second OFDM signal obtained by coupling the clock signal with the first OFDM signal.
  • step four the ONU extracts a clock signal from the second OFDM signal.
  • the OFDM signal demodulation module does not need to be changed.
  • the solution effectively solves the problem of clock extraction in OFDM-PON, and has the advantages of simplicity and economy.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种OFDM-PON系统及时钟信号的发送和提取方法,其中,该时钟信号的提取方法包括:接收由时钟信号与第一OFDM信号耦合得到的第二OFDM信号;从第二OFDM信号中提取所述时钟信号。通过本发明,有效解决了OFDM-PON中时钟提取的难题。

Description

OFDM-PON系统及时钟信号的发送和提取方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种 OFDM-PON系统及时钟信号的发送 和提取方法。 背景技术 光纤通信技术是现代通信技术的重要支柱之一, 其发展方向主要呈两个大方向: ( 1 )主干层面向高速率、大容量、智能化的光网络方向发展, 最终实现全光网络。(2) 接入层面向低成本、 综合接入、 宽带化、 光纤化的接入网发展, 最终实现光纤到家。 骨干网层面的容量达到 Gb/s, 甚至 Tb/s量级, 下一代网络的逐步引入使得网络 的利用率进一步提高, 已能基本上满足新兴业务的需求。 接入网层面始终是整个网络 的瓶颈, 需要一种经济、 简单、 易升级、 能够综合传输语音、 数字和视频业务的新的 接入网络技术。 在各种技术中, 无源光网络 (Passive Optical Network, 简称为 PON) 技术因其设备简单、 组网灵活、 设备安装方便、 无电磁干扰和扩容简单等优点, 引起 了广泛关注。 PON是指在光纤线路终端 (Optical Line Terminal, 简称为 OLT) 和光纤网络单元
(Optical Network Unit,简称为 0NU)之间的光分配网络(Optical Distribution Network, 简称为 ODN), 是没有任何有源电子设备的光接入网。 图 1是根据相关技术的 PON的结构体系的示意图, 在如图 1所示系统中, OLT 既是一个光交换机或路由器,又是一个多业务平台,提供面向 P0N的网络接口。另外, 0LT还可以根据用户服务水平的不同要求进行带宽分配、 网络安全与管理配置。 0DN 负责分发下行数据并集中上行数据, 完成光信号功率分配和波长复用等功能。 ODN主 要由一个或多个分光器来连接 OLT和 ONU。 分光器是一个简单设备, 它不需要电源, 可以置于全天候的环境中。 一般而言, 一个分光器的分路比为 2, 4或 8, 并且可以多 级连接。 0NU为网络提供用户侧的接口, 完成下行光到电、 上行电到光的转换, 实现 各类业务的接入。 0LT放在中心机房, 0NU为用户端设备。 目前 P0N技术主要有采用异步传输模式 (Asynchronous Transfer Mode, 简称为 ATM) 的 ATM无源光网络 (ATM Passive Optical Network, 简称为 AP0N)、 以太网 无源光网络 (EP0N )、 千兆比特无源光网络 (GP0N ) 和波分复用无源光网络 (WDM-PON) 等几种, 其主要差异在于采用了不同的传输技术。 其中, 前三种 PON 技术都是基于时分复用的, 而 WDM-PON是基于波分复用的。 目前市场上的主流产品 是 EPON与 GPON, 其中电气和电子工程师学 (Institute of Electrical and Electronics Engineers, 简称为 IEEE) 会于 2009年制定了 802.3av 10-G EPON标准, 国际电信联 盟电信标准化组(I ITU-Telecommunication standardization sector,简称为 TU-T)于 2010 制定了 10-G GPON标准。 随着新的宽带通信业务的发展, 用户对带宽的需求不断增加, 下一代无源光网络 将向 40-Gb/s及更高速率方向发展。 当前的无源光网络 (EPON、 GPON) 需要复杂的 算法与帧结构来支持多种业务, 并且对包延迟十分敏感。 另一方面, WDM-PON可以 通过复用波长很好地增加用户容量, 提供透明性的服务。 然而, 波分复用无源光网络 系统不能动态地分配带宽资源, 且成本较高。 正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM)具有 高频谱效率, 能够有效地抵抗多径效应、 色散及偏振模色散, 且可以简单地用数字信 号处理器 (Digital Signal Processor, 简称为 DSP) 技术实现。 OFDM技术是一种优秀 的数据调制技术, 它的基本原理与一般的频分复用 (FDM) 相同, 即把高速的数据流 通过串并转换分配到速率相对较低的若干个频率子信道中进行传输。 但与 FDM系统 子载波之间需要保护带宽不同, OFDM产生的子载波是相互正交的, 因此调制后子载 波可以相互重叠而不相互干扰, 还大大提高了频谱利用率。 在无线通信系统中, 由于 OFDM在对抗频率选择性衰落和窄带干扰方面具有优秀的性能, 因此被确定为第 4代 移动通信的核心技术。
OFDM 发射端的基带信号产生流程如图 2a 示, 主要步骤包括正交振幅调制 ( Quadrature Amplitude Modulation, 简称为 QAM)信号映射、 串并转换、 N点快速傅 里叶逆变换 (Inverse Fast Fourier Transform, 简称为 IFFT)、 添加循环前缀、 并串转换 等步骤。 FFT与循环前缀的长度视传输条件与网络规模而定。 OFDM接收端的基带信 号接收如图 2b所示,主要步骤包括串并转换、去循环前缀、 N点快速傅里叶变换(Fast Fourier Transform, 简称为 FFT)、 频域均衡、 相位补偿、 并串转换和 QAM解映射。 在 OFDM技术中, 全部系统带宽被划分成大量频谱相互正交的窄带子信道, 并将 附加的保护间隔引入 OFDM符号。 采用 OFDM的传输系统可以将 OFDM技术与传统 的多址接入方案如频分多址 (FDMA)、 码分多址 (CDMA)和时分多址 (TDMA)相 结合, 实现多用户 OFDM系统。此外, OFDM本身可以利用子载波进行复用, 被称为 正交频分多址 (OFDMA)。 这几种多址方式下基于 OFDM/SCFDM的 PON的系统结构 是相似的, 主要是发射和接收端的数字信号处理方法和帧结构不同。 OFDM技术在 PON中的应用, 引起了广泛的讨论。 研究表明, OFDM-PON将是 10-Gb/s及更高速率的 PON的有竞争力的方案。 图 3是根据相关技术的 OFDM-PON系统的示意图, 如图 3所示, OLT和 ONU中 的发射部分都主要由 OFDM基带信号产生、数字或模拟上变频和电光调制三个部分构 成, 视变频和调制方式不同, 有可能光信号入射到光纤之前还需要进行光滤波。 而接 收部分都主要由光电转换、 电滤波、 下变频和 OFDM基带信号接收四个部分构成。 在 PON系统中, ONU端需要根据业务的需求从下行信号中提取出时钟信息。 在 基于时分复用的 EPON、 GPON中, OLT向 ONU端发送的是二进制(0、 1码), ONU 可以根据这种码型特征提取时钟信息, 而在 OFDM-PON系统中, 由于 OFDM信号时 域上的近高斯性, ONU端无法直接从 OFDM信号中提取出时钟信号。 针对在 OFDM-PON系统中, ONU无法直接从 OFDM信号中提取时钟信号的问题, 目前尚未提出有效的解决方案。 发明内容 针对在 OFDM-PON 系统中接收端无法直接从 OFDM信号中提取时钟信号的问 题, 本发明提供了一种 OFDM-PON系统及时钟信号的发送和提取方法, 以至少解决 上述问题。 根据本发明的一个方面, 提供了一种 OLT, 包括: 耦合器, 设置为将时钟信号与 第一 OFDM信号耦合, 得到第二 OFDM信号, 并发送第二 OFDM信号。 优选地, 上述 OLT还包括: 正交 (IQ) 调制器和光强度调制器, 其中, IQ调制 器, 设置为对 OFDM基带信号进行上变频处理, 得到第一 OFDM信号; 耦合器, 设 置为向光强度调制器发送第二 OFDM信号; 光强度调制器, 设置为对第二 OFDM信 号进行光电转换, 并发送光电转换后的第二 OFDM信号。 根据本发明的又一个方面, 提供了一种 ONU, 包括: 时钟提取模块, 设置为接收 由时钟信号与第一 OFDM信号耦合, 得到的第二 OFDM信号, 并从第二 OFDM信号 中提取时钟信号。 优选的, 上述时钟提取模块包括: 滤波器, 设置为从第二 OFDM信号中滤波得到 时钟信号。 根据本发明的又一个方面, 提供了一种 0FDM-P0N系统的时钟信号的发送方法, 包括: 将时钟信号与第一 OFDM信号耦合得到第二 OFDM信号; 发送第二 OFDM信 号。 优选地, 时钟信号与第一 0DFM信号在频域上处于不同的频率。 根据本发明的又一个方面, 提供了一种 0FDM-P0N系统的时钟信号的提取方法, 包括:接收由时钟信号与第一 OFDM信号耦合得到的第二 OFDM信号;从第二 OFDM 信号中提取时钟信号。 优选地, 时钟信号与第一 0DFM信号在频域上处于不同的频率。 根据本发明的又一个方面, 提供了一种 0LT, 包括: 耦合模块, 设置为将时钟信 号与第一正交频分复用 OFDM信号耦合, 得到第二 OFDM信号; 发送模块, 设置为 发送第二 OFDM信号。 根据本发明的又一个方面, 提供了 一种 0NU, 包括: 接收模块, 设置为接收由 时钟信号与第一正交频分复用 OFDM信号耦合得到的第二 OFDM信号; 提取模块, 设置为从第二 OFDM信号中提取时钟信号。 根据本发明的又一个方面, 提供了一种 0FDM-P0N系统, 包括: 0LT, 设置为将 时钟信号与第一正交频分复用 OFDM信号耦合, 得到第二 OFDM信号, 并发送第二 OFDM信号; 0NU, 设置为接收第二 OFDM信号, 并从第二信号中提取时钟信号。 优选地, 0LT包括本发明提供的上述任一 0LT。 优选地, 0NU包括本发明提供的上述任一项 0NU。 通过应用本发明的技术方案,接收端接收由时钟信号与第一 OFDM信号耦合得到 的第二 OFDM信号, 从第二 OFDM信号中提取时钟信号,解决了 0FDM-P0N系统中 接收端无法直接从 OFDM信号中提取时钟信号的问题, 实现了 0FDM-P0N系统的时 钟信号的提取。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的 PON的结构体系的示意图; 图 2a是根据相关技术的 OFDM发射端的基带信号产生流程的示意图; 图 2b是根据相关技术的 OFDM接收端的基带信号接收流程的示意图; 图 3是根据相关技术的 OFDM-PON系统的示意图; 图 4是根据本发明实施例的 OFDM-PON系统的示意图; 图 5是根据本发明实施例的方式一的 OLT的结构框图; 图 6是根据本发明实施例的方式二的 OLT的结构框图; 图 7是根据本发明实施例的下行信号的光谱图; 图 8是根据本发明实施例的方式一的 ONU的结构框图; 图 9是根据本发明实施例的方式二的 ONU的结构框图; 图 10是根据本发明实施例的拍频后下行信号的光谱图; 图 11是根据本发明实施例的 OFDM-PON系统的时钟信号的发送方法的流程图; 以及 图 12是根据本发明实施例的 OFDM-PON系统的时钟信号的提取方法。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 相关技术中的 OFDM-PON系统, 由于 OFDM信号时域上的近高斯性, 导致接收 端无法直接从 OFDM信号中提取出时钟信号。针对上述问题, 本发明实施例提出了一 种 OFDM-PON系统的时钟信号提取方案。 下面分别对本发明实施例进行描述。 根据本发明实施例, 提供了一种 OFDM-PON系统, 用以实现 OFDM-PON系统的 时钟信号提取。 图 4是根据本发明实施例的 OFDM-PON系统的示意图,如图 4所示, OFDM-PON 系统主要包括: OLT 1和 ONU 2。其中, OLT l, 设置为将时钟信号与第一正交频分复 用 OFDM信号耦合,得到第二 OFDM信号,并发送第二 OFDM信号; ONU 2,与 OLT
1相耦合, 设置为接收第二 OFDM信号, 并从第二信号中提取时钟信号。 应用本发明实施例的系统, OLT 1将时钟信号与第一正交频分复用 OFDM信号耦 合, 得到第二 OFDM信号, 并发送第二 OFDM信号; ONU 2接收第二 OFDM信号, 并从第二信号中提取时钟信号, 实现了 OFDM-PON系统的时钟信号的提取。 下面分别对本发明实施例优选的 OLT 1和 ONU 2进行描述。 根据本发明实施例, 提供了一种 OLT , 该 OLT可以通过两种方式实现, 下面分 别对本发明实施例的两种方式进行描述。 图 5是根据本发明实施例的方式一的 OLT的结构框图, 如图 5所示, 该 OLT主 要包括: 耦合模块 102和发送模块 104。 其中, 耦合模块 102, 设置为将时钟信号与第 一正交频分复用 OFDM信号耦合, 得到第二 OFDM信号; 发送模块 104, 与耦合模块 102相连接, 设置为发送第二 OFDM信号。 图 6是根据本发明实施例的方式二的 OLT的结构框图, 如图 6所示, 该 OLT主 要包括: 耦合器 106, 设置为将时钟信号与第一 OFDM信号耦合, 得到第二 OFDM信 号, 并发送第二 OFDM信号。 在本发明实施例的一个优选实施方式中, 如图 6所示, 上述 OLT还可以包括: IQ 调制器和光强度调制器, 其中, IQ调制器, 设置为对 OFDM基带信号进行上变频处 理, 得到第一 OFDM信号; 耦合器, 设置为向光强度调制器发送第二 OFDM信号; 光强度调制器, 设置为对第二 OFDM信号进行光电转换, 并发送光电转换后的第二 OFDM信号。 在本发明实施例中, 以将经过上变频的 OFDM 信号与时钟信号耦合为例进行说 明。 OFDM基带信号, 通过 IQ调制器上变频到较高的频率上。 上变频的 OFDM信号 与时钟信号耦合, 由光强度调制器实现电光转换。 双边带的光信号经过一个光滤波器 滤除其中的一个边带, 从而产生如图 7所示的单边带下行信号, 其中, 垂直方向上的 实线箭头表示光载波, 虚线箭头表示时钟信号, 矩形框为 OFDM信号。 在本发明实施例中, 时钟信号与第一 ODFM信号可以在频域上处于不同的频率。 根据本发明实施例, 还提供了一种 ONU , 该 ONU可以通过两种方式实现, 下 面分别对本发明实施例的两种方式进行描述。 图 8是根据本发明实施例的方式一的 ONU的结构框图, 如图 8所示, 该 ONU主 要包括: 接收模块 202和提取模块 204。 其中, 接收模块 202, 设置为接收由时钟信号 与第一正交频分复用 OFDM信号耦合得到的第二 OFDM信号;提取模块 204,与接收 模块 202相连接, 设置为从第二 OFDM信号中提取时钟信号。 图 9是根据本发明实施例的方式二的 ONU的结构框图, 如图 9所示, 该 ONU主 要包括: 时钟提取模块 206, 设置为接收由时钟信号与第一 OFDM信号耦合, 得到的 第二 OFDM信号, 并从第二 OFDM信号中提取时钟信号。 在本发明实施例的一个实施方式中, 上述时钟提取模块 206可以包括: 滤波器, 设置为从第二 OFDM信号中滤波得到时钟信号。 对应于上述 OLT发送的第二 OFDM信号, 时钟信号与第一 ODFM信号可以在频 域上处于不同的频率, 在时钟信号的频率小于第一 OFDM信号的情况下, 上述滤波器 可以为低通滤波器。 在本发明实施例中, 光信号经过光接收机, 得到频谱如图 10所示的第二 OFDM 信号, 经过低通滤波器可直接得到时钟信号。 该时钟信号频率相对较低, 可以根据网 络需要进行相应的倍频处理。 在上述 ONU中, OFDM信号的解调方式不需做任何改变。 例如, 首先由 IQ解调 器实现下变频, 再由 OFDM接收机实现解调。 由于时钟信号与 OFDM信号有一定的 频率间隔, 其可由 OFDM接收机中的滤波器滤除, 不影响 OFDM信号的解调。 通过 应用上述方案, 能够很好地从下行信号中提取出时钟信号, 同时具有简单、 经济的优 点。 根据本发明实施例, 对应于上述系统及设备, 还提供了一种时钟信号的发送和提 取方法, 下面分别对这两种方法进行描述。 图 11是根据本发明实施例的 OFDM-PON系统的时钟信号的发送方法的流程图, 如图 11所示, 该方法主要包括步骤 S1102至步骤 S1104。 步骤 S1102, 将时钟信号与第一 OFDM信号耦合得到第二 OFDM信号。 优选地, 时钟信号与第一 ODFM信号在频域上处于不同的频率。 在实际应用中, 可以先将 OFDM 基带信号, 上变频到较高的频率上, 上变频的 OFDM信号与时钟信号耦合,将耦合得到的 OFDM信号进行电光转换,得到双边带的 光信号, 双边带的光信号经过滤除其中的一个边带, 得到单边带下行信号。 步骤 S1104, 发送第二 OFDM信号。 通过应用本发明实施例的技术方案,发送端将时钟信号与第一 OFDM信号耦合得 到的第二 OFDM信号, 并发送第二 OFDM信号, 使得接收端从第二 OFDM信号中提 取时钟信号, 解决了 OFDM-PON系统中接收端无法直接从 OFDM信号中提取时钟信 号的问题, 实现了 OFDM-PON系统的时钟信号的提取。 图 12是根据本发明实施例的 OFDM-PON系统的时钟信号的提取方法, 如图 12 所示, 该方法主要包括步骤 S1202至步骤 S1204。 步骤 S1202, 接收由时钟信号与第一 OFDM信号耦合得到的第二 OFDM信号。 步骤 S1204, 从第二 OFDM信号中提取时钟信号。 在本发明实施例中, 时钟信号可以与第一 ODFM信号在频域上处于不同的频率, 在时钟信号频率相对较低的情况下, 可以根据网络需要进行相应的倍频处理。 通过应用本发明的技术方案,接收端接收由时钟信号与第一 OFDM信号耦合得到 的第二 OFDM信号, 从第二 OFDM信号中提取时钟信号,解决了 OFDM-PON系统中 接收端无法直接从 OFDM信号中提取时钟信号的问题, 实现了 OFDM-PON系统的时 钟信号的提取。 根据本发明实施例, 还提供了一种时钟信号的提取方法, 该方法包括步骤一至步 骤四。 步骤一, OLT将时钟信号与第一 OFDM信号耦合得到第二 OFDM信号。 步骤二, OLT相 ONU发送第二 OFDM信号。 步骤三, ONU接收由时钟信号与第一 OFDM信号耦合得到的第二 OFDM信号。 步骤四, ONU从第二 OFDM信号中提取时钟信号。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 时钟信号随 OFDM信 号一起作为下行信号, ONU端时钟提取模块用一个低通滤波器有效地提取出时钟信 号, OFDM信号解调模块不需做任何改变。 该方案有效解决了 OFDM-PON中时钟提 取的难题, 同时具有简单、 经济的优点。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种光纤线路终端 OLT, 包括:
耦合器, 设置为将时钟信号与第一正交频分复用 OFDM信号耦合, 得到第 二 OFDM信号, 并发送所述第二 OFDM信号。
2. 根据权利要求 1所述的 0LT, 其中, 所述装置还包括: 正交 IQ调制器和光强 度调制器, 其中,
所述 IQ调制器,设置为对正交频分复用 OFDM基带信号进行上变频处理, 得到所述第一 OFDM信号;
所述耦合器, 设置为向所述光强度调制器发送所述第二 OFDM信号; 所述光强度调制器, 设置为对所述第二 OFDM信号进行光电转换, 并发送 所述光电转换后的所述第二 OFDM信号。
3. 一种光纤网络单元 ONU, 包括:
时钟提取模块,设置为接收由时钟信号与第一正交频分复用 OFDM信号耦 合, 得到的第二 OFDM信号, 并从所述第二 OFDM信号中提取所述时钟信号。
4. 根据权利要求 3所述的 ONU, 其中, 所述时钟提取模块包括: 滤波器, 设置为 从所述第二 OFDM信号中滤波得到所述时钟信号。
5. 一种正交频分复用无源光网络 OFDM-PON系统的时钟信号的发送方法, 包括: 将时钟信号与第一正交频分复用 OFDM信号耦合得到第二 OFDM信号; 发送所述第二 OFDM信号。
6. 根据权利要求 5所述的方法, 其中, 所述时钟信号与所述第一 ODFM信号在频 域上处于不同的频率。
7. 一种正交频分复用无源光网络 OFDM-PON系统的时钟信号的提取方法, 包括: 接收由时钟信号与第一正交频分复用 OFDM信号耦合得到的第二 OFDM 信号;
从所述第二 OFDM信号中提取所述时钟信号。
8. 根据权利要求 7所述的方法, 其中, 所述时钟信号与所述第一 ODFM信号在频 域上处于不同的频率。
9. 一种光纤线路终端 OLT, 包括:
耦合模块, 设置为将时钟信号与第一正交频分复用 OFDM信号耦合, 得到 第二 OFDM信号;
发送模块, 设置为发送所述第二 OFDM信号。
10. 一种光纤网络单元 ONU, 包括:
接收模块,设置为接收由时钟信号与第一正交频分复用 OFDM信号耦合得 到的第二 OFDM信号;
提取模块, 设置为从所述第二 OFDM信号中提取所述时钟信号。
11. 一种正交频分复用无源光网络 OFDM-PON系统, 包括:
光纤线路终端 OLT,设置为将时钟信号与第一正交频分复用 OFDM信号耦 合, 得到第二 OFDM信号, 并发送所述第二 OFDM信号;
光纤网络单元 ONU, 设置为接收所述第二 OFDM信号, 并从所述第二信 号中提取所述时钟信号。
12. 根据权利要求 11所述的系统, 其中, 所述 OLT包括权利要求 1或 2以及 9中 任一项所述的 OLT。
13. 根据权利要求 11或 12所述的系统, 其中, 所述 ONU包括权利要求 3或 4以 及 10中任一项所述的 ONU。
PCT/CN2013/085608 2012-12-12 2013-10-21 Ofdm-pon系统及时钟信号的发送和提取方法 WO2014090043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210535395.6 2012-12-12
CN201210535395.6A CN103873410B (zh) 2012-12-12 2012-12-12 Ofdm-pon系统及时钟信号的发送和提取方法

Publications (1)

Publication Number Publication Date
WO2014090043A1 true WO2014090043A1 (zh) 2014-06-19

Family

ID=50911544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085608 WO2014090043A1 (zh) 2012-12-12 2013-10-21 Ofdm-pon系统及时钟信号的发送和提取方法

Country Status (2)

Country Link
CN (1) CN103873410B (zh)
WO (1) WO2014090043A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219033B1 (en) 2014-11-10 2019-11-20 British Telecommunications public limited company Communications network
US10320444B2 (en) 2014-11-10 2019-06-11 British Telecommunications Public Limited Company Communications network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514556A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 在正交频分复用系统中寻呼信息传送的方法及其收发装置
CN102263726A (zh) * 2011-06-27 2011-11-30 中兴通讯股份有限公司 一种数据的传输方法、装置及系统
CN102291360A (zh) * 2011-09-07 2011-12-21 西南石油大学 一种基于叠加训练序列光ofdm系统及其帧同步方法
WO2012119178A1 (en) * 2011-03-09 2012-09-13 Commonwealth Scientific And Industrial Research Organisation Arbitrary sample rate conversion for communication systems
CN102710996A (zh) * 2012-05-09 2012-10-03 电子科技大学 一种多用户ofdm-pon中实现onu无源的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124665A (ja) * 2006-11-09 2008-05-29 Japan Radio Co Ltd 中継装置およびそれを利用した放送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514556A (zh) * 2002-12-31 2004-07-21 �����ʩ���عɷݹ�˾ 在正交频分复用系统中寻呼信息传送的方法及其收发装置
WO2012119178A1 (en) * 2011-03-09 2012-09-13 Commonwealth Scientific And Industrial Research Organisation Arbitrary sample rate conversion for communication systems
CN102263726A (zh) * 2011-06-27 2011-11-30 中兴通讯股份有限公司 一种数据的传输方法、装置及系统
CN102291360A (zh) * 2011-09-07 2011-12-21 西南石油大学 一种基于叠加训练序列光ofdm系统及其帧同步方法
CN102710996A (zh) * 2012-05-09 2012-10-03 电子科技大学 一种多用户ofdm-pon中实现onu无源的方法及装置

Also Published As

Publication number Publication date
CN103873410A (zh) 2014-06-18
CN103873410B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
Cvijetic et al. 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing
US9654245B2 (en) Optimizing optical systems using code division multiple access and/or orthogonal frequency-division multiplexing
EP2924896A1 (en) Sending/receiving/communication system and signal modulation method for optical fibre network
WO2011063728A1 (zh) 无源光纤网络的信号处理方法、设备和系统
CN102237977A (zh) 一种偏振交织的ofdm/scfdm无源光网络系统
CN103297169B (zh) 基于梳状光源再生技术的ofdm-pon长距离传输方法
CN105264853A (zh) 一种应用于无源光网络pon通信的方法、装置及系统
Lin et al. Experimental demonstration of an NOMA-PON with single carrier transmission
Gupta et al. Passive optical networks: Review and road ahead
CN103581770A (zh) 基于单载波频分复用的无源光网络信号处理方法与系统
CN102291633B (zh) 一种基于交织频分多址的无源光网络上行传输系统
US20140362869A1 (en) Network node transmission method, apparatus, and system
CN104010233A (zh) 一种基于rosa的偏振复用相干检测无源光网络
CN103856836A (zh) 无源光网络中用户数据的发送和接收方法及系统、设备
CN104038463A (zh) 基于四维动态资源分配的光接入网络系统
WO2014090043A1 (zh) Ofdm-pon系统及时钟信号的发送和提取方法
Luo The application of OFDM in optical fiber communication systems
CN104936047A (zh) 基于滤波器多载波调制技术的无源光网络上行传输系统
Deng et al. OFDMA-based LAN emulation in long-reach hybrid PON system
CN104737480A (zh) 多载波分复用系统的方法和装置
Songlin et al. ZTE’s perspective on applying OFDM-PON in next converged optical and wireless networks
Zhan et al. A novel design of orthogonal frequency division multiplexing-based passive optical networks
CN105323200A (zh) 一种光线路终端、光网络单元及无源光网络系统
Ansari et al. PON architectures
CN103347222A (zh) Ofdm-pon中实现onu无色化的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863623

Country of ref document: EP

Kind code of ref document: A1