WO2019061252A1 - 保险丝装置及其熔丝元件 - Google Patents

保险丝装置及其熔丝元件 Download PDF

Info

Publication number
WO2019061252A1
WO2019061252A1 PCT/CN2017/104255 CN2017104255W WO2019061252A1 WO 2019061252 A1 WO2019061252 A1 WO 2019061252A1 CN 2017104255 W CN2017104255 W CN 2017104255W WO 2019061252 A1 WO2019061252 A1 WO 2019061252A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse element
fuse
hole
holes
arc extinguishing
Prior art date
Application number
PCT/CN2017/104255
Other languages
English (en)
French (fr)
Inventor
俞东
Original Assignee
电安科技嘉兴有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电安科技嘉兴有限公司 filed Critical 电安科技嘉兴有限公司
Priority to PCT/CN2017/104255 priority Critical patent/WO2019061252A1/zh
Publication of WO2019061252A1 publication Critical patent/WO2019061252A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member

Definitions

  • the present invention relates to the field of fuse technology, and in particular to a fuse device and a cylindrical fuse element thereof.
  • the fuse device 10 includes a fuse element 11 , a protective carrier 12 sleeved on the outside of the fuse element 11 , and two encapsulated on the protected carrier 12 .
  • the fuse element 11 is generally composed of a conductive wire, a conductive sheet or an insulated wire or an insulating rod whose surface is covered with a conductive wire.
  • the fuse element In order to increase the current rating of the fuse device, the fuse element needs to have a lower electrical impedance.
  • the electrical resistance of the fuse element can be reduced by the following methods, including: (1) preparing a fuse element using a low-resistance material; or as shown in FIG. (1) increasing the thickness of the fuse element 11 or (3) widening the width of the chip fuse element 11, and increasing the rated current flowing through the fuse element 11 by increasing the sectional area of the fuse element.
  • a fuse device including a material of a different material is provided, however, since a metal material having a low electrical resistance is generally selected from copper, silver, and/or an alloy thereof, a metal material or an alloy material is present. Select the limit on it.
  • the fuse element is mainly made of a metal thin plate material, but the thickness-to-width ratio of the metal thin plate is much more difficult to process than the aspect ratio processing and is expensive, thereby causing processing limitations.
  • the method of the third method is simple and straightforward, however, it is limited to the inner space of the protective carrier 12 and the fuse element 11 should not be in contact with the protective carrier 12 to avoid the problem of improper fuse transfer causing fuse failure, etc., so that the width of the fuse element 11 is the largest. It can only be expanded to a size close to the inner diameter of the protective carrier 12.
  • FIGS. 3 to 5 three structural embodiments of the conventional chip fuse element 14 are shown, which form a narrow joint portion 15 to function in a fuse device.
  • the narrow and weakly connected joint portion 15 is preferentially broken.
  • the connecting portion 15 may be formed in the middle portion of the chip fuse element 14 as shown in FIG. 3 and form only a single connecting portion 15, Alternatively, the connecting portion 15 may be formed in the middle portion of the chip fuse element 14 as shown in FIG. 4 and form two connecting portions 15, or the connecting portion 15 may be formed near the chip fuse element as shown in FIG.
  • the position of the terminal 14 is passed through the opening to form a plurality of pairs of coupling portions 15 in pairs on opposite sides of the hole.
  • the connecting portion 15 is also likely to be easily broken due to its narrow and weak structure, and the manufacturing yield of the fuse device is lowered.
  • the present invention provides a fuse device and a fuse element thereof, which are formed by forming a fuse element into a hollow cylindrical shape and providing a plurality of narrow joint portions, and the cylindrical fuse element has a large cross-sectional area.
  • the rated current is increased, and the structural strength of the narrow joint is also increased by the cylindrical structure.
  • the technical solution adopted by the present invention is to provide a fuse element, which is formed into a hollow cylindrical shape, and opposite ends of the fuse element are respectively formed with a first port and a second port.
  • the fuse element is provided with a through hole, and the fuse element forms a narrow connection portion at a through hole to constitute a fuse portion of the fuse element.
  • the fuse element has at least one row of opening structures around its cylindrical structure, the opening structure includes a plurality of through holes, and between the through holes of the same row The narrow connection portion forms a fuse portion of the fuse element.
  • the fuse element is a cylindrical structure rolled from a sheet, the sheet having opposite first and second joint edges, the first joint edge Between the second joint edge and the second joint edge, the first joint edge and the second joint edge are connected; the sheet is wound into the fuse element, and the first joint edge and the second joint edge are fixed Engaging, the first enclosure edge is rolled up to enclose a first port of the fuse element, and the second enclosure edge is rolled up to enclose a second port of the fuse element.
  • the same row of through holes of the fuse element are hole structures having the same shape and size, and the fuse portions of the same row of aperture structures have the same width.
  • the through hole is an elliptical hole whose long axis extends along the length direction of the fuse element, and the long axis length of the through hole of the same row is equal in length;
  • the connection portion having the shortest distance between the through holes forms a fuse portion of the fuse element.
  • the fuse element is provided with three rows of open-cell structures, including a row of first opening structures disposed in a middle portion of the fuse element and two ends disposed at two ends of the fuse element Arranging a second opening structure; wherein the first opening structure comprises three rows spaced apart from each other a through hole and three first fuses; each of the second opening structures includes three second through holes spaced apart from each other and three second fuses; the first through holes and the second through holes An elliptical hole extending along a longitudinal direction of the fuse element, wherein a length of a major axis of the first through hole is greater than a length of a major axis of the second through hole; and a through hole of the first opening structure
  • the minor axis length is equal to the minor axis length of the through hole of the second opening structure, and the first fuse portion and the second fuse portion have the same width.
  • the through hole is formed into an elliptical hole, a circular hole, a hexagonal hole or a capsule hole.
  • the fuse element is made of a metal selected from silver or copper, or the fuse element is made of a metal alloy selected from the group consisting of silver/copper or copper/tin, or The fuse element is made by tin plating on copper or silver plating on copper.
  • a tin layer is provided on the fuse portion of the fuse element.
  • the invention further provides a fuse device comprising a fuse element as previously described.
  • the fuse device includes: the fuse element; a protection carrier sleeved on the outside of the fuse element; and a metal cap having two, the metal caps respectively disposed on the The fuse element and the two ends of the protection carrier, and both ends of the fuse element and both ends of the protection carrier are soldered and fixed to the inner surface of the metal cap.
  • the metal cap includes a sealing cover portion, a ring wall surrounding the peripheral side of the sealing cover portion, and a surrounding portion formed by the sealing cover portion and the ring wall a sleeve, wherein an inner surface of the cover portion forms a post toward the sleeve space, and an inner surface of the cap portion of the metal cap is provided with solder; and the metal cap is disposed on the fuse
  • the first port and the second port of the fuse element are respectively inserted into the socket of the metal cap and soldered and fixed to the solder; the two ends of the protection carrier
  • the solder is fixed to the solder and the ring wall of the metal cap covers the outside of the port of the protective carrier.
  • the fuse device is internally provided with an arc extinguishing material, and the arc extinguishing material is filled in the inner cavity of the fuse element and/or is filled in the fuse element and Protect the sandwich space between the carriers.
  • the arc extinguishing material is selected from the group consisting of sand, silica gel, melamine, magnesium hydroxide, glass, or a combination thereof.
  • the arc extinguishing material has a granular shape, a rod shape, a hollow tubular shape, a bundle shape or a cylindrical shape.
  • the protective carrier is selected from the group consisting of ceramic or melamine. Made of amine plus glass fiber.
  • the present invention achieves the purpose of improving the rated current of the fuse element by forming the fuse element into a hollow cylindrical structure, and simultaneously compares the linearly expanded fuse element and the fuse element formed with the narrow connection fuse portion. Has a more excellent structural strength.
  • the fuse element by forming the fuse element into a hollow cylindrical structure, the arc extinguishing material can be fixedly filled inside the fuse element, compared to a fuse device in which only the arc extinguishing material is filled outside the fuse element.
  • the fuse element since the fuse element is located in the middle of the fuse device and is not in contact with the protective carrier, the fuse element is not easily transferred to heat due to the heat generated by the current, which is more advantageous for the fuse element. Fuse.
  • the present invention forms a plug by forming a post on the inner surface of the metal cap of the fuse device, so that the fuse element is more easily assembled by assembly to form a fuse device, and the mounting position of the fuse element is prevented from being misaligned, resulting in contact with the protective carrier and affecting the fuse.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a conventional fuse device.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the A-A line in FIG. 1 through the 1 thickened and 2 widened fuse elements.
  • FIG 3, 4, and 5 are schematic views showing the structure in which a conventional fuse element is provided with a narrow connecting portion.
  • Figure 6 is a cross-sectional view showing the structure of a fuse device of the present invention.
  • Fig. 7 is a schematic view showing the sheet structure of the fuse element of the present invention before being processed into a cylindrical shape.
  • Fig. 8 is a schematic view showing the structure of the fuse element of the present invention processed into a cylindrical shape.
  • Figure 9 is a diagram showing the inside of a cylindrical fuse element of the present invention.
  • Figure 10 is a cross-sectional view showing the structure of the arc extinguishing material filled in the carrier and the fuse element of the fuse device of the present invention.
  • Figure 11 is a cross-sectional view showing the structure taken along line B-B of Figure 10;
  • Figure 12 is a schematic view showing the structure of a first welding embodiment of a metal cap of the fuse device of the present invention.
  • Figure 13 is a schematic view showing the structure of a second welding embodiment of the metal cap of the fuse device of the present invention.
  • Figure 14 is a schematic view showing Embodiments A to E of the fuse device of the present invention.
  • a schematic view of a front view of a cylindrical fuse element of the embodiment A to the embodiment E (inline 1), a side view of the end side (inline 2), and a cylindrical fuse element are provided inside the protective carrier.
  • Figure 15 is a schematic view showing an embodiment F to an embodiment J of the fuse device of the present invention.
  • a schematic view of the front view of the cylindrical fuse element of the embodiment F to the embodiment J (inline 1), a side view of the end side (inline 2), and a cylindrical fuse element are provided inside the protective carrier.
  • Figure 16 is a schematic view showing an embodiment K to an embodiment N of the fuse device of the present invention.
  • a schematic diagram showing the structure of the fuse portion of the fuse element of the embodiment K to the embodiment N (inline 1), a structure diagram in which a metal layer is provided on the fuse portion (inline 2), and a fuse element having a plurality of rows of fuse portions Schematic diagram of the structure (inline 3), schematic diagram of the arrangement of the fuse portions on the fuse element sheet (inline 4), and a schematic view of the structure in which the sheet is wound into a cylindrical fuse element (inline 5).
  • Fuse device 10 fuse element 11; protective carrier 12; metal cap 13; chip fuse element 14; joint portion 15; solder 16; fuse element 20; first port 21; second port 22; a through hole 24; a fuse portion 25; a metal layer 26; a sheet 200; a first joint edge 201; a second joint edge 202; a first enclosure edge 203; a second enclosure edge 204; a first aperture structure 23A; First through hole 24A; first fuse portion 25A; second opening structure 23B; second through hole 24B; second fuse portion 25B; protective carrier 30; metal cap 40; cover plate portion 41; Space 43; post 44; solder 45; arc extinguishing material 50.
  • the present invention provides a fuse element 20 in the form of a hollow cylinder, and a fuse device including the fuse element 20.
  • the fuse device shown in FIG. 6 includes a fuse element 20, a protection carrier 30 sleeved outside the fuse element 20, and two metals covered at the ends of the fuse element 20 and the protection carrier 30. Cap 40.
  • the opposite ends of the fuse element 20 are respectively formed with a first port 21 and a second port 22, and the fuse element 20 is opened at least around its cylindrical structure.
  • An array of aperture structures 23 includes a plurality of vias 24, and a narrow junction between the vias 24 of the same row forms a fuse portion 25 of the fuse element 20.
  • the general fuse is composed of a wire having a uniform thickness, and the two ends of the fuse can be well radiated by being connected to the copper cap, so that when the fuse device operates, the temperature at both ends of the fuse is lower than the intermediate temperature. Temperature distribution state and melting when the amount of energization is greater than the rated current of the fuse The middle of the wire is blown to realize the power-off protection of the fuse. Therefore, in the embodiment of the present invention, when the through hole 24 is not provided, the fuse element 20 can also have the same principle that the cylindrical fuse element 20 is in operation, and the temperature at both ends is lower than the middle. The temperature distribution state of the temperature, in turn, acts as a power-off protection when the fuse element 20 is blown in the middle.
  • At least one of the through holes 24 is preferably formed in the cylindrical structure of the fuse element 20, and more preferably a through hole 24, so that the fuse element 20 forms a narrow connection portion at a position where the through hole 24 is provided to reduce the cross-sectional area through which the current passes, thereby increasing the electric resistance of the narrow connection portion, and passing the current through the narrow connection portion. It is possible to increase the temperature and further ensure that the narrow connection portion constitutes the fuse portion 25 of the fuse element 20.
  • the width ratio of the narrow connecting portion and the through hole can be designed according to actual use requirements.
  • the fuse element 20 is a cylindrical structure wound from a sheet 200 having opposite first joint edges 201 and second joint edges 202.
  • the first joint edge 201 and the second joint edge 202 are connected with a first surrounding edge 203 and a second surrounding edge 204; the sheet 200 is wound into the fuse element 20,
  • the first joint edge 201 is fixedly engaged with the second joint edge 202, and the first enclosure edge 203 is rolled up to form a first port 21 of the fuse element 20, and the second enclosure edge 204 is rolled.
  • a second port 22 enclosing the fuse element 20 is formed.
  • the circumference of a circle is 3.14 ( ⁇ ) times its diameter, so that the degree of expansion of the chip fuse element and the cylindrical fuse element in the cavity of the fuse element 20 is The same, but when the cylindrical c-fuse element 20 is unrolled into a sheet, the width of the cylindrical fuse element 20 will be 3.14 ( ⁇ ) times that of the sheet-like expansion fuse element, that is, the present invention is a sheet material.
  • the cut-off capability (rated current) of the wound hollow cylindrical fuse element 20 is 3.14 times that of the same expanded wide chip fuse element, and the fuse element 20 of the present invention can effectively and surely increase the rating of the fuse element 20. Current.
  • the first joint edge 201 of the sheet 200 and the second joint edge 202 may be connected by arc quenching materials, and the arc extinguishing material is preferably It is a silica gel, which can also serve as an arc-extinguishing effect when the fuse element is used while joining the seams of the sheet 200.
  • the bonding material is not limited to the foregoing, and the technical means capable of joining the two bonding edges to form the fuse element 20 are all within the protection scope of the present invention.
  • the same row of through holes 24 of the fuse element 20 are shaped and The hole structures of the same size are the same, and the fuse portions 25 of the same row of the opening structures 23 have the same width.
  • the through hole 24 is an elliptical hole whose long axis extends along the longitudinal direction of the fuse element 20, and the long axis length of the through hole 24 of the same row is equal in length; the distance between adjacent two through holes 24 is the shortest
  • the connection portion forms the fuse portion 25 of the fuse element 20.
  • the fuse element 20 is provided with three rows of aperture structures 23, including one disposed in the middle of the fuse element 20. a first opening structure 23A and two rows of second opening structures 23B disposed at two ends of the fuse element 20; wherein the first opening structure 23A includes three first through holes 24A spaced from each other And three first fuse portions 25A; each of the second aperture structures 23B includes three second through holes 24B and three second fuse portions 25B spaced apart from each other; the first through holes 24A and the first The two through holes 24B are all elliptical holes extending along the longitudinal direction of the fuse element 20, and the long axis length of the first through hole 24A is greater than the long axis length of the second through hole 24B; The minor axis length of the through hole 24 of the one opening structure 23A is equal to the minor axis length of the through hole 24 of the second opening structure 23B, and the first fuse portion 25A has the same width as
  • the fuse when the fuse is energized, the heat converted by the electric energy causes the melt to heat due to its own resistance, and the heat generated by the current is radiated to the surrounding environment through the fuse element 20 and the protection carrier 30, through convection and conduction, etc.
  • the way to dissipate heat When the fuse passes the allowable operating current, the amount of heat dissipated is balanced with the heat generated, and the heat does not accumulate in the melt, causing the temperature of the melt to rise, so that the fuse does not reach its melting point and melts.
  • the current through the fuse reaches a certain value, the amount of heat converted by the electric energy increases, and the heat dissipation rate cannot keep up with the heating rate.
  • the strength of the arc is also related to the current in the circuit, and the larger the current, the stronger the arc. If the arc cannot be extinguished in time, not only can the circuit be cut off, but other components in the circuit may be burned, resulting in a fire and an accident.
  • the present invention is formed by forming the fuse element 20. While the hollow cylindrical structure is used to increase its rated current, and also due to the hollow cylindrical structure of the fuse element 20, the arc extinguishing material 50 can be filled in the inner cavity of the fuse element 20 as shown in FIG. 10 and 11, optionally, the arc extinguishing material 50 is filled into the inner cavity of the fuse element 20 and the interlayer space between the fuse element 20 and the protective carrier 30 to eliminate the arc and ensure the present invention.
  • the use of the fuse element 20 is safe.
  • the metal cap 40 of the fuse device of the present invention includes a cover plate portion 41, a ring wall 42 surrounding the peripheral side of the cover plate portion 41, and the cover plate portion 41 and the ring wall 42.
  • the formed cover space 43 is provided, and the inner surface of the cover plate portion 41 is provided with the solder 45 to fuse the fuse element 20 when the metal cap 40 is placed over the both ends of the fuse element 20 and the protective carrier 30.
  • the protective carrier 30 is soldered and fixed, and the fuse element 20 is electrically connected to the metal cap 40 such that the annular wall 42 of the metal cap 40 covers the outside of the port of the protective carrier 30.
  • the metal cap 40 also includes a cover portion 41 , a ring wall 42 , and a sleeve space 43 .
  • the inner surface of the cover plate portion 41 also faces the sleeve.
  • the space 43 is formed with a post 44 for insertion at both end ports of the fuse element 20 to easily fix the fuse element 20 to two metals without intentionally correcting the alignment.
  • the intermediate position of the cap 40 prevents the positional displacement of the fuse element 20 from contacting the protection carrier 30, so that heat is lost through the protection carrier 30, which affects the working effect and safety of the fuse device.
  • the solder 45 is disposed on the inner surface of the cover portion 41 between the ring wall 42 of the metal cap 40 and the post 44, and the metal cap 40 is disposed on the fuse element 20.
  • the first port 21 and the second port 22 of the fuse element 20 are respectively inserted and fixed with the insertion post 44 of the metal cap 40, and both ends of the fuse element 20 are provided at both ends of the protection carrier 30.
  • the port is soldered and fixed to the solder 45 to form an electrical conduction; the two end ports of the protection carrier 30 are also soldered and fixed to the solder 45, and the ring wall 42 of the metal cap 40 covers the outside of the port of the protection carrier 30.
  • the insertion post 44 of the metal cap 40 in the embodiment of FIG. 13 can be integrally formed on the inner surface of the cover plate portion 41 of the metal cap 40, and the metal cap 40 of FIG. 12 can be applied from the outside of the cover plate portion 41. An external force is applied to cause the sealing cover portion 41 to be recessed inwardly, so that the insertion post 44 is formed on the inner surface of the sealing cover portion 41.
  • the fuse element 20 may be made of a metal selected from silver or copper, or the fuse element 20 may be made of a metal alloy selected from the group consisting of silver/copper or copper/tin. Alternatively, the fuse element is made by tin plating on copper or silver plating on copper.
  • the protective carrier 30 can be made of a material selected from the group consisting of ceramic or melamine plus glass.
  • the arc extinguishing material 50 can be selected from the group consisting of sand, silica gel, melamine, magnesium hydroxide, glass, or combinations thereof.
  • the shape of the arc extinguishing material may be a material in the form of a pellet, a rod, a hollow tube, a bundle or a cylinder.
  • FIG. 14 is a front view of the cylindrical fuse element 20 of the embodiment A to the embodiment E (inline 1), a side view of the end side (inline 2), and a cylindrical fuse element 20.
  • a schematic cross-sectional view of the structure of the fuse device (inline 3) is formed inside the protective carrier 30.
  • the structural diagrams of the fuse device in which no arc extinguishing material is internally filled are shown as in the embodiments A1 to A3.
  • the arc extinguishing material 50 is selectively filled only in the inner cavity of the fuse element 20, or only the fuse element 20 is filled and protected.
  • the interlayer space between the carriers 30 is filled in the inner cavity of the fuse element 20 and in the interlayer space.
  • the inner cavity of the fuse element 20 may be filled with an arc extinguishing material in the form of particles (Example B), rods (Examples C, D, E) or bundles (Examples C, D, E);
  • the space between the protective carrier 30 and the fuse element 20 may not be filled with the arc extinguishing material (Example C), or filled with particles (Examples B, D), hollow tubular (Example E, the fuse element
  • the arc extinguishing material is placed in the tube or bundled (Example E, the bundled arc extinguishing material is interspersed and placed in the interlayer space).
  • the particulate arc extinguishing material is preferably selected from the group consisting of sand, silica gel, melamine, magnesium hydroxide or a mixture thereof, and the arc extinguishing material in the form of a rod, a hollow tubular, a bundle or the like is preferably selected from the group consisting of glass, silica gel or melamine.
  • a glass rod, a hollow glass tube, a glass bundle, a silica gel rod, a hollow silicone tube, a melamine rod or a hollow melamine tube is preferably selected from the group consisting of glass, silica gel or melamine.
  • the embodiments B1 to B3 show schematic views in which the inside of the fuse element 20 and its interlayer space with the protective carrier 30 are filled with a particulate arc extinguishing material.
  • Embodiments C1 to C3 show schematic views in which only a rod-shaped or bundle-shaped arc extinguishing material is filled inside the fuse element 20.
  • Embodiments D1 to D3 show a schematic view in which a rod-shaped or bundle-shaped arc extinguishing material is filled inside the fuse element 20, and a granular arc extinguishing material is filled in the interlayer space between the fuse element 20 and the protective carrier 30.
  • Embodiments E1 to E3 show a schematic view in which a rod-shaped or bundle-shaped arc extinguishing material is filled inside the fuse element 20, and a hollow tubular or bundle arc extinguishing material is filled in the interlayer space between the fuse element 20 and the protective carrier 30. .
  • FIG. 15 a schematic view of the front view of the cylindrical fuse element 20 of the embodiment F to the embodiment J (inline 1), a side view of the end side (inline 2), and a cylindrical melting are shown.
  • a schematic cross-sectional view of the structure in which the wire element 20 is disposed inside the protective carrier 30 to form a fuse device (inline 3) is exemplified by the inline English and the horizontal numerals of FIG. 15 as a representative of the respective small image embodiments.
  • the outer surface of the fuse element 20 is further preset with a cylindrical arc extinguishing material, as in the embodiment F3, when the arc extinguishing material is not filled inside the fuse device.
  • the cylindrical arc extinguishing material is attached to the outer surface of the fuse element 20 and is located in the interlayer space between the fuse element 20 and the protective carrier 30.
  • the embodiments G1 to G3 show that the outer surface of the fuse element 20 is attached with a cylindrical arc extinguishing material, and the inside of the fuse element 20 and its interlayer space with the protective carrier 30 are filled.
  • a schematic diagram of a particulate arc extinguishing material is provided.
  • Embodiments H1 to H3 show a schematic view in which a cylindrical arc extinguishing material is attached to the outer surface of the fuse element 20, and a rod-shaped or bundle arc extinguishing material is filled inside the fuse element 20.
  • Embodiments I1 to I3 show that the outer surface of the fuse element 20 is attached with a cylindrical arc extinguishing material, and a rod-shaped or bundle arc extinguishing material is filled inside the fuse element 20, and the fuse element 20 and the protective carrier are A schematic diagram of the filling of the particulate arc extinguishing material between the interlayer spaces of 30.
  • Embodiments J1 to J3 show a schematic view in which a cylindrical arc extinguishing material is attached to the outer surface of the fuse element 20, and a rod-shaped or bundle arc extinguishing material is filled inside the fuse element 20.
  • the cylindrical arc extinguishing material may be made of silica gel or chlorocyanamide; wherein the arc extinguishing material filled in the inside of the fuse element 20 and the cylindrical arc extinguishing material may be The same arc extinguishing material (Example J3) may also be a distinct arc extinguishing material (Example H3).
  • FIG. 16 is a view showing a structural embodiment of the fuse element 20 of the present invention.
  • FIG. 16 is a schematic view showing the structure of a fuse portion of the fuse element of the embodiment K to the embodiment N (inline 1), a structure diagram in which a metal layer is provided on the fuse portion (inline 2), and a plurality of rows of fuse elements.
  • the inline English and the horizontal numbers of FIG. 16 are used as the names of the respective small image embodiments.
  • the through hole 24 of the fuse element 20 may be an elliptical shape (Example K) having a long axis occupying more than half of the length of the fuse element 20, and a symmetrically elongated hexagon ( Embodiment L)
  • the fuse portion 25 of the fuse element 20 can be formed by being defined along two symmetrical concave edges, and the fuse element 20 can be blown as shown in Embodiments M1 and N1.
  • the portion 25 may be formed with one or more fuse portions 25 by providing the through holes 24.
  • the fuse portion 25 of the fuse element 20 can be advanced.
  • the metal layer 26 is provided in one step, and the material of the metal layer 26 is preferably tin, thereby lowering the melting point of the fuse portion 25.
  • a schematic diagram is shown in which a through hole 24 is formed in the fuse element 20 and a fuse portion 25 is formed, wherein the metal layer 26 on the fuse portion 25 is looped in the fuse portion. 25 is formed on the opposite side of the through hole 24 to form a strip-like portion which is easily melted from the fuse element 20.
  • the fuse element 20 may be provided with a plurality of rows of through holes 24, such as two rows of through holes 24 of the embodiments K3, L3, N3, or, for example, Three rows of through holes 24 of embodiment M3.

Landscapes

  • Fuses (AREA)

Abstract

一种保险丝装置及其熔丝元件(20),所述熔丝元件(20)成形为中空圆筒状,所述熔丝元件(20)的相对两端分别成形有一第一端口(21)及第二端口(22),所述熔丝元件(20)设有通孔(24),且所述熔丝元件(20)于设有通孔(24)处形成狭窄连接部位以构成所述熔丝元件(20)的熔断部(25)。借此,通过将熔丝元件(20)成形为中空圆筒状且设有多个狭窄连结部,利用圆筒形熔丝元件(20)具有较大截面积而提高额定电流,同时也利用圆筒形结构提高狭窄连结部的结构强度,并使熔丝元件(20)的内部及外部皆可依需求填设消弧材料(50),确保包括熔丝元件(20)的保险丝装置的使用安全性。

Description

保险丝装置及其熔丝元件 技术领域
本发明涉及保险丝技术领域,具体来说涉及保险丝装置及其圆筒状熔丝元件。
背景技术
如图1所示,显示一种现有的保险丝装置10,所述保险丝装置10包括熔丝元件11、套设于所述熔丝元件11外部的保护载体12以及封设于所保护载体12两端的金属帽13,所述金属帽13通过焊料16焊接与所述熔丝元件11可导电地连接。其中,所述熔丝元件11通常为导电线、导电片或者表面包覆有导电线的绝缘线或绝缘棒所构成。
为了提高保险丝装置的额定电流(current rating),熔丝元件需要具有较低的电阻抗。在保险丝装置的规格尺寸及形状被固定情况下,可以通过以下几种方法实现降低熔丝元件的电阻抗,其包括:(1)采用低电阻的材料制备熔丝元件;或者如图2所示,(1)增加熔丝元件11的厚度或者(3)加宽片状熔丝元件11的宽幅,通过增加熔丝元件的截面积来提高流过熔丝元件11的额定电流。
其中,第(1)种方法中,提供一种包括异材质材料的保险丝装置,然而,由于低电阻抗的金属材料的通常选择只有铜、银及/或其合金,从而存在金属材料或合金材料选择上的限制。第(2)种方法中,熔丝元件主要由金属薄板材料制成,但金属薄板的厚宽比加工的难度远大于长宽比加工且昂贵,进而造成加工限制。第(3)种方法简单明了,然而,受限于保护载体12内部空间以及熔丝元件11不应与保护载体12接触以避免不当传热导致保险丝失效等问题,故熔丝元件11的宽度最大只能扩张至接近保护载体12内径的尺寸。
此外,如图3至图5所示,显示现有的片式熔丝元件14的三种结构实施例,所述片式熔丝元件14通过形成狭窄的连结部15,以在保险丝装置发生作用时,使所述狭窄且结构薄弱的连结部15优先断开。所述连结部15可以如图3形成于片式熔丝元件14的中段部位并仅形成单一连结部15, 或者,所述连结部15可以如图4形成于片式熔丝元件14的中段部位并形成两个连结部15,又或者,所述连结部15可以如图5形成于靠近片式熔丝元件14终端的位置,并通过开孔以在孔的相对两侧形成两两成对的多对连结部15。然而,前述连结部15也容易因其狭窄且薄弱的结构而易于折断,降低保险丝装置的制造良率。
发明内容
鉴于上述情况,本发明提供一种保险丝装置及其熔丝元件,通过将熔丝元件成形为中空圆筒状且设有多个狭窄连结部,利用圆筒形熔丝元件具有较大截面积而提高额定电流,同时也利用圆筒形结构提高狭窄连结部的结构强度。
为实现上述目的,本发明采取的技术方案是提供一种熔丝元件,所述熔丝元件成形为中空圆筒状,所述熔丝元件的相对两端分别成形有一第一端口及第二端口,所述熔丝元件设有通孔,且所述熔丝元件于设有通孔处形成狭窄连接部位以构成所述熔丝元件的熔断部。
本发明的熔丝元件实施例中,所述熔丝元件绕着其圆筒状结构开设有至少一排开孔结构,所述开孔结构包括多个通孔,且同一排的通孔之间的狭窄连接部位形成所述熔丝元件的熔断部。
本发明的熔丝元件实施例中,所述熔丝元件是由片材卷成的圆筒状结构,所述片材具有相对的第一接合边及第二接合边,所述第一接合边与所述第二接合边之间具有第一围合边及第二围合边连接;令所述片材卷成所述熔丝元件,所述第一接合边与所述第二接合边固定接合,所述第一围合边卷起围成所述熔丝元件的第一端口,所述第二围合边卷起围成所述熔丝元件的第二端口。
本发明的熔丝元件实施例中,所述熔丝元件的同一排通孔是形状及尺寸相同的孔结构,且同一排开孔结构的熔断部宽度相同。
本发明的熔丝元件实施例中,所述通孔是长轴沿所述熔丝元件长度方向延伸的椭圆形孔,且同一排的通孔的长轴长度等长;令相邻二所述通孔之间距离最短的连接部位形成所述熔丝元件的熔断部。
本发明的熔丝元件实施例中,所述熔丝元件设有三排开孔结构,包括设于所述熔丝元件中段的一排第一开孔结构以及设于所述熔丝元件两端的两排第二开孔结构;其中,所述第一开孔结构每排包括相互间隔的三个第 一通孔以及三个第一熔断部;所述第二开孔结构每排包括相互间隔的三个第二通孔以及三个第二熔断部;所述第一通孔与所述第二通孔皆为长轴沿所述熔丝元件长度方向延伸的椭圆形孔,所述第一通孔的长轴长度大于所述第二通孔的长轴长度;所述第一开孔结构的通孔的短轴长度与所述第二开孔结构的通孔的短轴长度相等,所述第一熔断部与所述第二熔断部的宽度相同。
本发明的熔丝元件实施例中,所述通孔成形为椭圆形孔、圆形孔、六边形孔或胶囊形孔。
本发明的熔丝元件实施例中,所述熔丝元件由选自银或铜的金属制成,或者所述熔丝元件由选自银/铜或者铜/锡构成的金属合金制成,或者所述熔丝元件通过铜上镀锡或者铜上镀银制成。
本发明的熔丝元件实施例中,所述熔丝元件的熔断部上设有锡层。
本发明另提供一种保险丝装置,其包括如前所述的熔丝元件。
本发明的保险丝装置实施例中,所述保险丝装置包括:所述熔丝元件;保护载体,套设于所述熔丝元件外部;金属帽,具有两个,所述金属帽分别设于所述熔丝元件与所述保护载体的两端,且所述熔丝元件的两端及所述保护载体的两端与所述金属帽的内表面焊接固定。
本发明的保险丝装置实施例中,所述金属帽包括封盖板部、围设于所述封盖板部周侧的环壁以及由所述封盖板部及所述环壁围设形成的套置空间,所述封盖板部的内表面中间朝向所述套置空间形成插柱,所述金属帽的封盖板部内表面上设有焊料;令所述金属帽设于所述熔丝元件与所述保护载体的两端,所述熔丝元件的第一端口及第二端口内部分别与所述金属帽的插柱插接并与所述焊料焊接固定;所述保护载体的两端与所述焊料焊接固定,且所述金属帽的环壁覆盖于所述保护载体的端口外部。
本发明的保险丝装置实施例中,所述保险丝装置内部设有消弧材料,所述消弧材料填设于所述熔丝元件的内腔及/或填设于所述熔丝元件与所述保护载体之间的夹层空间中。
本发明的保险丝装置实施例中,所述消弧材料选自沙、硅胶、三聚氰胺、氢氧化镁、玻璃或其组合。
本发明的保险丝装置实施例中,所述消弧材料的形态为颗粒状、棒状、中空管状、束状或圆筒状。
本发明的保险丝装置实施例中,所述保护载体由选自陶瓷或者三聚氰 胺加玻纤的材料制成。
本发明由于采用了以上技术方案,使其具有以下有益效果:
(1)本发明通过将熔丝元件成形为中空圆筒状结构,实现提高熔丝元件额定电流之目的,同时相较于线性扩张的熔丝元件以及形成有狭窄连接熔断部的熔丝元件皆具有更优异的结构强度。
(2)本发明通过将熔丝元件成形为中空圆筒状结构,从而能够将消弧材料固定填设熔丝元件内部,相较于仅将消弧材料填设于熔丝元件外部的保险丝装置而言,将消弧材料填于熔丝元件内部时,由于熔丝元件位于保险丝装置中间且未与保护载体接触,使得熔丝元件由于电流产生的热量不易被传递散热,更有利于熔丝元件熔断。
(3)本发明通过在保险丝装置的金属帽内表面形成插柱,使得熔丝元件更容易被对准组装形成保险丝装置,确实避免熔丝元件安装位置失准,导致与保护载体接触进而影响保险丝装置工作的技术问题。
附图说明
图1是现有保险丝装置的结构剖视示意图。
图2是图1中A-A剖线的结构经①加厚及②加宽熔丝元件的剖面结构示意图。
图3、图4、图5是现有熔丝元件设有狭窄连结部的结构示意图。
图6是本发明保险丝装置的结构剖视示意图。
图7是本发明熔丝元件在加工成筒状前的片状结构示意图。
图8是本发明熔丝元件加工成筒状的结构示意图。
图9是本发明筒状熔丝元件的内部填设有
图10是本发明保险丝装置于载体及熔丝元件内皆填设的消弧材料的结构剖视示意图。
图11是图10中B-B剖线的结构剖视示意图。
图12是本发明保险丝装置的金属帽第一焊接实施例的结构示意图。
图13是本发明保险丝装置的金属帽第二焊接实施例的结构示意图。
图14是本发明保险丝装置的实施例A至实施例E的示意图。显示了横列实施例A至实施例E的圆筒状熔丝元件的主视外观示意图(直列1)、端部侧视外观示意图(直列2)以及圆筒状熔丝元件设于保护载体内部构成保险丝装置的结构剖视示意图(直列3)。
图15是本发明保险丝装置的实施例F至实施例J的示意图。显示了横列实施例F至实施例J的圆筒状熔丝元件的主视外观示意图(直列1)、端部侧视外观示意图(直列2)以及圆筒状熔丝元件设于保护载体内部构成保险丝装置的结构剖视示意图(直列3)。
图16是本发明保险丝装置的实施例K至实施例N的示意图。显示了横列实施例K至实施例N的熔丝元件的熔断部结构形状示意图(直列1)、熔断部上设有金属层的结构示意图(直列2)、熔丝元件设有多排熔断部的结构示意图(直列3)、熔丝元件片材上的熔断部排列结构示意图(直列4)以及由前述片材卷成圆筒状熔丝元件的结构外观示意图(直列5)。
附图标记与部件的对应关系如下:
保险丝装置10;熔丝元件11;保护载体12;金属帽13;片式熔丝元件14;连结部15;焊料16;熔丝元件20;第一端口21;第二端口22;开孔结构23;通孔24;熔断部25;金属层26;片材200;第一接合边201;第二接合边202;第一围合边203;第二围合边204;第一开孔结构23A;第一通孔24A;第一熔断部25A;第二开孔结构23B;第二通孔24B;第二熔断部25B;保护载体30;金属帽40;封盖板部41;环壁42;套置空间43;插柱44;焊料45;消弧材料50。
具体实施方式
为利于对本发明的了解,以下结合附图及实施例进行说明。
请参阅图6至图13,本发明提供了一种呈中空圆筒状的熔丝元件20,以及包括所述熔丝元件20的保险丝装置。
如图6所示所述保险丝装置包括熔丝元件20、套设于所述熔丝元件20外部的保护载体30以及盖设于所述熔丝元件20与所述保护载体30两端的两个金属帽40。
其中,如图6、图8所示,所述熔丝元件20的相对两端分别成形有一第一端口21及第二端口22,所述熔丝元件20绕着其圆筒状结构开设有至少一排开孔结构23,所述开孔结构23包括多个通孔24,且同一排的通孔24之间的狭窄连接部位形成所述熔丝元件20的熔断部25。
此外,一般熔丝是由一根粗细均匀的金属丝构成,熔丝两端经由与铜帽相接而能够良好地散热,进而在保险丝装置工作时,使熔丝形成两端的温度低于中间温度的温度分布状态,并在通电量大于熔丝额定电流时使熔 丝中间熔断,实现保险丝的断电保护作用。是以,于本发明实施例中,所述熔丝元件20在不设置通孔24时,亦能够以相同的原理,使圆筒状熔丝元件20在工作时,形成两端温度低于中间温度的温度分布状态,进而在熔丝元件20中间熔断时起到断电保护作用。
然而,为了使熔丝元件20起到良好的断电保护作用,于本发明实施例中,熔丝元件20的圆筒状结构上较佳开设有至少一个所述通孔24,更佳为多个通孔24,以使熔丝元件20在设有所述通孔24的位置处形成狭窄连接部位,以缩减电流通过的截面积,提高该狭窄连接部位的电阻,使电流通过该狭窄连接部位能起到升温作用,进而保证该狭窄连接部位构成所述熔丝元件20的熔断部25。另,在设有单一通孔24的实施例中,该狭窄连接部位与通孔的宽幅比例可依实际使用需求进行设计。
具体地,如图7、图8所示,所述熔丝元件20是由片材200卷成的圆筒状结构,所述片材200具有相对的第一接合边201及第二接合边202,所述第一接合边201与所述第二接合边202之间具有第一围合边203及第二围合边204连接;令所述片材200卷成所述熔丝元件20,所述第一接合边201与所述第二接合边202固定接合,所述第一围合边203卷起围成所述熔丝元件20的第一端口21,所述第二围合边204卷起围成所述熔丝元件20的第二端口22。
于本发明实施例中,考虑一个圆的圆周长是其直径的3.14(π)倍,是以,片状熔丝元件与圆筒形熔丝元件在熔丝元件20内腔中的膨胀程度是相同的但在将圆筒形c熔丝元件20展开成薄片时,圆筒形熔丝元件20的宽度将为片状扩张熔丝元件的3.14(π)倍,亦即,本发明以薄片材料卷成的中空圆筒状熔丝元件20的截流能力(额定电流)是相同扩张宽幅的片状熔丝元件的3.14倍,本发明熔丝元件20能有效且确实提高熔丝元件20的额定电流。
此外,于本发明实施例中,所述片材200的第一接合边201与所述第二接合边202之间可以采用消弧材料(arc quenching materials)连接,所述消弧材料较佳可为硅胶,以在连接片材200接缝的同时,于熔丝元件被使用时还能起到消弧作用。应被理解的是,所述接合材料不限前述,以能够使所述二个接合边接合形成所述熔丝元件20的技术手段皆属于本发明的保护范畴。
进一步地,如图6所示,所述熔丝元件20的同一排通孔24是形状及 尺寸相同的孔结构,且同一排开孔结构23的熔断部25宽度相同。所述通孔24是长轴沿所述熔丝元件20长度方向延伸的椭圆形孔,且同一排的通孔24的长轴长度等长;令相邻二所述通孔24之间距离最短的连接部位形成所述熔丝元件20的熔断部25。
如图7、图8所示,显示本发明熔丝元件20的具体实施态样之一,所述熔丝元件20设有三排开孔结构23,包括设于所述熔丝元件20中段的一排第一开孔结构23A以及设于所述熔丝元件20两端的两排第二开孔结构23B;其中,所述第一开孔结构23A每排包括相互间隔的三个第一通孔24A以及三个第一熔断部25A;所述第二开孔结构23B每排包括相互间隔的三个第二通孔24B以及三个第二熔断部25B;所述第一通孔24A与所述第二通孔24B皆为长轴沿所述熔丝元件20长度方向延伸的椭圆形孔,所述第一通孔24A的长轴长度大于所述第二通孔24B的长轴长度;所述第一开孔结构23A的通孔24的短轴长度与所述第二开孔结构23B的通孔24的短轴长度相等,所述第一熔断部25A与所述第二熔断部25B的宽度相同。应被理解的是,图7、图8仅为本发明熔丝元件20的其中一种开孔结构23实施例,不应被用于限制本发明。
需说明的是,保险丝通电时,由于其自身电阻而使电能转化成的热量使熔体发热,同时电流产生的热量又通过熔丝元件20、保护载体30向周围环境辐射,通过对流和传导等方式散发热量。当保险丝通过允许的工作电流时,散发的热量与产生的热量达到平衡,热量不会积聚于熔体使得熔体的温度升高,因此保险丝不会达到它的熔点而熔断。当保险丝通过的电流达到一定数值时,由电能转化的热量增多,散热速度跟不上发热速度,这些热量就会在熔体上逐渐积累,使熔体温度升高,当温度达到熔丝的熔点时,熔丝开始熔化并继续吸收热量进一步熔化变成液态,随后熔丝温度进一步升高到汽化点时即形成电弧,电弧是一种气体游离放电现象,电弧的强弱与电路的电压有关,电压越高电弧越强,保险丝的额定电压主要区别在于保险丝熔断时能承受的电路电压不同,保险丝不能用于高于其额定电压的电路中,因为电路电压高于保险丝额定电压时电弧不容易熄灭。另外,电弧的强弱还与电路中的电流有关,电流越大则电弧越强。如果不能及时将电弧熄灭,不仅无法切断电路,还可能烧毁电路中其它部件,从而导致火灾发生,造成事故。
是以,如图9、图10、图11所示,本发明在通过将熔丝元件20成形 为中空圆筒形结构以提高其额定电流的同时,也由于熔丝元件20的中空圆筒结构,可能够将消弧材料50如图9填设于熔丝元件20的内腔中,或者如图10、图11,可选择地将消弧材料50填入熔丝元件20的内腔及熔丝元件20与保护载体30之间的夹层空间中,以起到消除电弧之目的,保证本发明熔丝元件20的使用安全性。
如图12、图13所示,显示本发明保险丝装置的金属帽40的两种实施例。如图12所示,所述金属帽40包括封盖板部41、围设于所述封盖板部41周侧的环壁42以及由所述封盖板部41及所述环壁42围设形成的套置空间43,所述封盖板部41的内表面通过设置焊料45,以在将金属帽40套置于熔丝元件20及保护载体30的两端时,将熔丝元件20与保护载体30焊接固定,并使熔丝元件20与金属帽40电性导通,使金属帽40的环壁42覆盖于保护载体30的端口外部。
如图13所示,所述金属帽40同样包括封盖板部41、环壁42及套置空间43,于本实施例中,所述封盖板部41的内表面中间还朝向所述套置空间43形成有插柱44,用以插置于所述熔丝元件20的两端端口,以在无需刻意校正对准的情况下,即可轻易将熔丝元件20固设于两个金属帽40中间位置,避免熔丝元件20位置偏移与保护载体30接触,导致热量经保护载体30散失,影响保险丝装置的工作效果及使用安全性。于图13的实施例中,焊料45被设置在金属帽40的环壁42与插柱44之间的封盖板部41内表面上,令所述金属帽40设于所述熔丝元件20与所述保护载体30的两端,所述熔丝元件20的第一端口21及第二端口22内部分别与所述金属帽40的插柱44插接固定,且熔丝元件20的两端端口并与所述焊料45焊接固定形成电性导通;保护载体30的两端端口亦与焊料45焊接固定,且金属帽40的环壁42覆盖于保护载体30的端口外部。
进一步地,图13实施例中金属帽40的插柱44可以一体成形于所述金属帽40的封盖板部41内表面,可以将图12的金属帽40通过从封盖板部41外部施予外力,使封盖板部41往内凹入,从而在封盖板部41内表面凸出形成插柱44。
本发明的保险丝装置实施例中,所述熔丝元件20可由选自银或铜的金属制成,或者所述熔丝元件20可由选自银/铜或者铜/锡构成的金属合金制成,或者所述熔丝元件通过铜上镀锡或者铜上镀银制成。所述保护载体30可由选自陶瓷或者三聚氰胺加玻纤的材料制成。
所述消弧材料50可以选自沙、硅胶、三聚氰胺、氢氧化镁、玻璃或其组合。所述消弧材料的形态可以是颗粒状、棒状、中空管状、束状或圆筒状等形态的材料。
如图14显示的横列实施例A至实施例E的圆筒状熔丝元件20主视外观示意图(直列1)、端部侧视外观示意图(直列2)以及圆筒状熔丝元件20设于保护载体30内部构成保险丝装置的结构剖视示意图(直列3),以下以图14的直列英文及横行数字作为各小图实施例的代称。
如图14所示,如实施例A1至A3显示了内部不填设任何消弧材料的保险丝装置结构示意图。如实施例B至实施例E显示了所述消弧材料50可选择性地仅填设在所述熔丝元件20的内腔中,或者仅填设于所述熔丝元件20与所述保护载体30之间的夹层空间中,又或者同时填设于所述熔丝元件20的内腔中及所述夹层空间中。
所述熔丝元件20的内腔中可以填设颗粒状(实施例B)、棒状(实施例C、D、E)或束状(实施例C、D、E)的消弧材料;所述保护载体30与熔丝元件20之间的夹层空间中可以不填消弧材料(实施例C),或者填设颗粒状(实施例B、D)、中空管状(实施例E,使熔丝元件20穿置于管中)或束状(实施例E,使束状消弧材料散布穿置于夹层空间中)的消弧材料。
其中,颗粒状的消弧材料较佳可选自沙、硅胶、三聚氰胺、氢氧化镁或其混合物,棒状、中空管状、束材等形态的消弧材料较佳可选自玻璃、硅胶或三聚氰胺,具体例如:玻璃棒、中空玻璃管、玻璃束、硅胶棒、中空硅胶管、三聚氰氨棒或中空三聚氰氨管等。
更具体地,如图14,实施例B1至B3显示了熔丝元件20内部及其与保护载体30的夹层空间中皆填设了颗粒状消弧材料的示意图。实施例C1至C3显示了仅在熔丝元件20内部填设棒状或束状消弧材料的示意图。实施例D1至D3显示了在熔丝元件20内部填设棒状或束状消弧材料,并在熔丝元件20与保护载体30之间夹层空间填设颗粒状消弧材料的示意图。实施例E1至E3显示了在熔丝元件20内部填设棒状或束状消弧材料,并在熔丝元件20与保护载体30之间夹层空间中填设中空管状或束状消弧材料的示意图。
此外,如图15显示了横列实施例F至实施例J的圆筒状熔丝元件20主视外观示意图(直列1)、端部侧视外观示意图(直列2)以及圆筒状熔 丝元件20设于保护载体30内部构成保险丝装置的结构剖视示意图(直列3),以下以图15的直列英文及横行数字作为各小图实施例的代称。
于实施例F至实施例J中,熔丝元件20的外表面另预设了一层圆筒状的消弧材料,如实施例F3,当保险丝装置内部未填设任何消弧材料时,所述圆筒状消弧材料贴附于熔丝元件20的外表面并位于熔丝元件20与保护载体30之间的夹层空间内。
进而,如图15所示,实施例G1至G3显示了熔丝元件20的外表面贴附有圆筒状消弧材料,且熔丝元件20内部及其与保护载体30的夹层空间中皆填设了颗粒状消弧材料的示意图。实施例H1至H3显示了熔丝元件20的外表面贴附有圆筒状消弧材料,且在熔丝元件20内部填设棒状或束状消弧材料的示意图。实施例I1至I3显示了熔丝元件20的外表面贴附有圆筒状消弧材料,且在熔丝元件20内部填设棒状或束状消弧材料,并在熔丝元件20与保护载体30之间夹层空间填设颗粒状消弧材料的示意图。实施例J1至J3显示了熔丝元件20的外表面贴附有圆筒状消弧材料,且在熔丝元件20内部填设棒状或束状消弧材料的示意图。
于本发明实施例中,所述圆筒状消弧材料可由硅胶或三氯氰氨制成;其中,填设于熔丝元件20内部的消弧材料与所述圆筒状消弧材料可以是相同的消弧材料(实施例J3),也可以为相异的消弧材料(实施例H3)。
图16显示了本发明熔丝元件20的结构实施态样示意图。如图16显示了横列实施例K至实施例N的熔丝元件的熔断部结构形状示意图(直列1)、熔断部上设有金属层的结构示意图(直列2)、熔丝元件设有多排熔断部的结构示意图(直列3)、熔丝元件片材上的熔断部排列结构示意图(直列4)以及由前述片材卷成圆筒状熔丝元件的结构外观示意图(直列5)。以下以图16的直列英文及横行数字作为各小图实施例的代称。
如图16所示,于本发明实施例中,熔丝元件20的通孔24可为长轴占熔丝元件20长度一半以上的椭圆形(实施例K)、对称拉长的六边形(实施例L)、长轴占熔丝元件20长度约三分之一的椭圆形(实施例M)或者胶囊外形(实施例N)。
具体地,如实施例K1及L1所示,熔丝元件20的熔断部25可以通过沿两道对称的凹形边缘界定形成,亦可如实施例M1及N1所示,熔丝元件20的熔断部25也可以通过设置通孔24而形成一个以上的熔断部25。
如实施例K2、L2、M2、N2所示,熔丝元件20的熔断部25上可以进 一步设置金属层26,所述金属层26的材质较佳为锡,借此降低熔断部25的熔点。进一步地,如实施例M1、N1所示,显示熔丝元件20上开设有一个通孔24并形成一个熔断部25的示意图,其中,所述熔断部25上的金属层26环设于熔断部25上以连接所述通孔24的相对两侧,从在而熔丝元件20上形成带状易于熔断的部位。
如实施例K、L、M及N的直行3、4、5所示,熔丝元件20可以设置多排通孔24,例如实施例K3、L3、N3的两排通孔24,或者,如实施例M3的三排通孔24。
以上结合附图及实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (16)

  1. 一种熔丝元件,其特征在于,所述熔丝元件成形为中空圆筒状,所述熔丝元件的相对两端分别成形有一第一端口及第二端口,所述熔丝元件设有通孔,且所述熔丝元件于设有通孔处形成狭窄连接部位以构成所述熔丝元件的熔断部。
  2. 根据权利要求1所述的熔丝元件,其特征在于:
    所述熔丝元件绕着其圆筒状结构开设有至少一排开孔结构,所述开孔结构包括多个通孔,且同一排的通孔之间的狭窄连接部位形成所述熔丝元件的熔断部。
  3. 根据权利要求1或2所述的熔丝元件,其特征在于:
    所述熔丝元件是由片材卷成的圆筒状结构,所述片材具有相对的第一接合边及第二接合边,所述第一接合边与所述第二接合边之间具有第一围合边及第二围合边连接;
    令所述片材卷成所述熔丝元件,所述第一接合边与所述第二接合边固定接合,所述第一围合边卷起围成所述熔丝元件的第一端口,所述第二围合边卷起围成所述熔丝元件的第二端口。
  4. 根据权利要求2所述的熔丝元件,其特征在于:
    所述熔丝元件的同一排通孔是形状及尺寸相同的孔结构,且同一排开孔结构的熔断部宽度相同。
  5. 根据权利要求2或4所述的熔丝元件,其特征在于:
    所述通孔是长轴沿所述熔丝元件长度方向延伸的椭圆形孔,且同一排的通孔的长轴长度等长;令相邻二所述通孔之间距离最短的连接部位形成所述熔丝元件的熔断部。
  6. 根据权利要求2或4所述的熔丝元件,其特征在于:
    所述熔丝元件设有三排开孔结构,包括设于所述熔丝元件中段的一排第一开孔结构以及设于所述熔丝元件两端的两排第二开孔结构;其中,
    所述第一开孔结构每排包括相互间隔的三个第一通孔以及三个第一熔断部;
    所述第二开孔结构每排包括相互间隔的三个第二通孔以及三个第二熔断部;
    所述第一通孔与所述第二通孔皆为长轴沿所述熔丝元件长度方向延伸 的椭圆形孔,所述第一通孔的长轴长度大于所述第二通孔的长轴长度;所述第一开孔结构的通孔的短轴长度与所述第二开孔结构的通孔的短轴长度相等,所述第一熔断部与所述第二熔断部的宽度相同。
  7. 根据权利要求1、2或4所述的熔丝元件,其特征在于:
    所述通孔成形为椭圆形孔、圆形孔、六边形孔或胶囊形孔。
  8. 根据权利要求1、2或4所述的熔丝元件,其特征在于:
    所述熔丝元件由选自银或铜的金属制成,或者所述熔丝元件由选自银/铜或者铜/锡构成的金属合金制成,或者所述熔丝元件通过铜上镀锡或者铜上镀银制成。
  9. 根据权利要求1、2或4所述的熔丝元件,其特征在于:
    所述熔丝元件的熔断部上设有锡层。
  10. 一种保险丝装置,其特征在于,包括如权利要求1至9中任一项所述的熔丝元件。
  11. 根据权利要求10所述的保险丝装置,其特征在于,所述保险丝装置包括:
    所述熔丝元件;
    保护载体,套设于所述熔丝元件外部;
    金属帽,具有两个,所述金属帽分别设于所述熔丝元件与所述保护载体的两端,且所述熔丝元件的两端及所述保护载体的两端与所述金属帽的内表面焊接固定。
  12. 根据权利要求11所述的保险丝装置,其特征在于:
    所述金属帽包括封盖板部、围设于所述封盖板部周侧的环壁以及由所述封盖板部及所述环壁围设形成的套置空间,所述封盖板部的内表面中间朝向所述套置空间形成插柱,所述金属帽的封盖板部内表面上设有焊料;
    令所述金属帽设于所述熔丝元件与所述保护载体的两端,所述熔丝元件的第一端口及第二端口内部分别与所述金属帽的插柱插接并与所述焊料焊接固定;所述保护载体的两端与所述焊料焊接固定,且所述金属帽的环壁覆盖于所述保护载体的端口外部。
  13. 根据权利要求11或12所述的保险丝装置,其特征在于:
    所述保险丝装置内部设有消弧材料,所述消弧材料填设于所述熔丝元件的内腔及/或填设于所述熔丝元件与所述保护载体之间的夹层空间中。
  14. 根据权利要求13所述的保险丝装置,其特征在于:
    所述消弧材料选自沙、硅胶、三聚氰胺、氢氧化镁、玻璃或其组合。
  15. 根据权利要求14所述的保险丝装置,其特征在于:
    所述消弧材料的形态为颗粒状、棒状、中空管状、束状或圆筒状。
  16. 根据权利要求11所述的熔丝元件,其特征在于:
    所述保护载体由选自陶瓷或者三聚氰胺加玻纤的材料制成。
PCT/CN2017/104255 2017-09-29 2017-09-29 保险丝装置及其熔丝元件 WO2019061252A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104255 WO2019061252A1 (zh) 2017-09-29 2017-09-29 保险丝装置及其熔丝元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104255 WO2019061252A1 (zh) 2017-09-29 2017-09-29 保险丝装置及其熔丝元件

Publications (1)

Publication Number Publication Date
WO2019061252A1 true WO2019061252A1 (zh) 2019-04-04

Family

ID=65903743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104255 WO2019061252A1 (zh) 2017-09-29 2017-09-29 保险丝装置及其熔丝元件

Country Status (1)

Country Link
WO (1) WO2019061252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038205A (zh) * 2020-09-02 2020-12-04 四川天微电子股份有限公司 一种大电流高分断熔断器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294103A (ja) * 2004-04-01 2005-10-20 Fuji Electric Fa Components & Systems Co Ltd ヒューズのエレメント保持構造
CN201352536Y (zh) * 2009-01-22 2009-11-25 上海电器陶瓷厂有限公司 半导体保护用熔断器
CN102403173A (zh) * 2010-09-09 2012-04-04 上海电器陶瓷厂有限公司 一种半导体设备保护用快速熔断体
CN203573925U (zh) * 2013-10-31 2014-04-30 厦门赛尔特电子有限公司 一种温度保险丝
CN204289341U (zh) * 2014-12-16 2015-04-22 广东中贝能源科技有限公司 一种动力电池熔断器
CN204632708U (zh) * 2015-05-07 2015-09-09 西安西整熔断器厂 一种密封式快速熔断器
CN206331999U (zh) * 2017-01-10 2017-07-14 上海查尔斯电子有限公司 一种保险丝

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294103A (ja) * 2004-04-01 2005-10-20 Fuji Electric Fa Components & Systems Co Ltd ヒューズのエレメント保持構造
CN201352536Y (zh) * 2009-01-22 2009-11-25 上海电器陶瓷厂有限公司 半导体保护用熔断器
CN102403173A (zh) * 2010-09-09 2012-04-04 上海电器陶瓷厂有限公司 一种半导体设备保护用快速熔断体
CN203573925U (zh) * 2013-10-31 2014-04-30 厦门赛尔特电子有限公司 一种温度保险丝
CN204289341U (zh) * 2014-12-16 2015-04-22 广东中贝能源科技有限公司 一种动力电池熔断器
CN204632708U (zh) * 2015-05-07 2015-09-09 西安西整熔断器厂 一种密封式快速熔断器
CN206331999U (zh) * 2017-01-10 2017-07-14 上海查尔斯电子有限公司 一种保险丝

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038205A (zh) * 2020-09-02 2020-12-04 四川天微电子股份有限公司 一种大电流高分断熔断器

Similar Documents

Publication Publication Date Title
KR101825866B1 (ko) 고전압 직류전류 온도 퓨즈
JPS63264845A (ja) 限流ヒューズ
US20020101323A1 (en) High-voltage current-limiting fuse
JP2004071264A (ja) ヒューズ
CN107481902A (zh) 保险丝装置及其熔丝元件
JPH0210623A (ja) 電気ヒューズ
WO2019061252A1 (zh) 保险丝装置及其熔丝元件
US3342964A (en) Dual element cartridge fuse for small current intensities
WO2013166788A1 (zh) 表面贴装熔断器
WO2019114186A1 (zh) 热保护型压敏电阻
CN110299272A (zh) 一种具有灭弧介质的温度保险丝
US20180068820A1 (en) Non-arcing fuse
TW201832344A (zh) 熔絲、製造熔絲的方法以及可熔元件
JP2009032567A (ja) ヒューズ
US11107612B2 (en) Overheat protection device and varistor
US3733572A (en) Current limiting fuse
CN210956319U (zh) 过热保护装置、压敏电阻
JP2697257B2 (ja) 限流ヒューズ
US20160189904A1 (en) Protection Device Comprising a Plurality of Vacuum Fuses
TW202016956A (zh) 熔斷電阻器組件及製造該熔斷電阻器組件的方法
JP2016162683A (ja) 高圧電気回路保護用ヒューズ
CN204792274U (zh) 电阻元件
US3294937A (en) Time lag dual element fuse having means for precluding arc initiation adjacent terminals
CN109411309B (zh) 熔断结构及熔断器
KR101463710B1 (ko) 이중관 구조의 퓨즈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926782

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17926782

Country of ref document: EP

Kind code of ref document: A1