WO2019059474A1 - 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법 - Google Patents

다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법 Download PDF

Info

Publication number
WO2019059474A1
WO2019059474A1 PCT/KR2018/002666 KR2018002666W WO2019059474A1 WO 2019059474 A1 WO2019059474 A1 WO 2019059474A1 KR 2018002666 W KR2018002666 W KR 2018002666W WO 2019059474 A1 WO2019059474 A1 WO 2019059474A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel oxide
composite catalyst
zirconia
zirconia composite
porous nickel
Prior art date
Application number
PCT/KR2018/002666
Other languages
English (en)
French (fr)
Inventor
문준혁
정민재
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2019059474A1 publication Critical patent/WO2019059474A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a porous nickel oxide-zirconia composite catalyst, a process for producing the same, and a process for producing an alcohol using the same.
  • Methane which is the main component of gas, has a problem of transportation and storage unlike liquid petroleum resources due to its physical characteristics, and its use is limited when the mountain is far from the market.
  • This limited use of low value gas can add value by physical liquefaction (LNG) or chemical conversion.
  • the chemical methane conversion process utilizes an indirect conversion pathway via synthesis gas (syngas, CO / H 2 ).
  • synthesis gas syngas, CO / H 2
  • the production of syngas in the indirect conversion pathway requires a reforming process, a Fischer-Tropsch (FT) synthesis process to produce olefins or liquid hydrocarbons from the synthesis gas, a process to synthesize methanol from the syngas, Or olefins, and through these, it is possible to obtain almost all the fuels and chemicals that can be obtained from conventional petroleum raw materials from methane.
  • FT Fischer-Tropsch
  • the methane conversion process involves a dry reforming reaction to produce synthesis gas by a partial oxidation reaction of methane and a two-step process to produce the product from the synthesis gas.
  • the standard reaction enthalpy of the dry reforming reaction is 247 kJ / mol, which requires a catalyst at high temperature. Therefore, most methane conversion catalyst studies have been conducted in terms of cost reduction of commercialized processes aimed at conversion of methane to syngas at lower temperatures.
  • the partial oxidation reaction generally has a higher selectivity for a specific product than the OCM reaction and is advantageous for obtaining a specific product.
  • the direct conversion of methane is undergoing much research on the reaction of obtaining methanol and formaldehyde.
  • Vafajoo et al. Achieved a methanol selectivity of 91.9 to 93.4% with a V 2 O 5 / SiO 2 catalyst, but showed a low methane conversion of 0.66 to 1.52% and a high temperature and pressure of 450 to 500 ° C and 20 to 120 bar Process.
  • Zhang et al. also achieved a methanol selectivity of 63% and a yield of 7 to 8%, but require high temperatures of 430 to 470 ° C and high pressure of 5 MPa.
  • the present inventors have studied to develop a catalyst capable of performing a methane reforming reaction at an excellent methane conversion ratio and found that a nickel-zirconia composite catalyst having a porous structure performs an excellent methane reforming reaction at an ordinary temperature and an atmospheric pressure condition through an electrochemical reaction It has been experimentally proven that alcohol can be produced.
  • an object of the present invention is to provide a porous nickel oxide-zirconia composite catalyst.
  • Another object of the present invention is to provide a method for producing a porous nickel oxide-zirconia composite catalyst.
  • Another object of the present invention is to provide a method for producing an alcohol using a porous nickel oxide-zirconia composite catalyst.
  • Another object of the present invention is to provide an alcohol-producing use of a porous nickel oxide-zirconia composite catalyst.
  • the present invention relates to a porous nickel oxide-zirconia composite catalyst, a process for producing the same, and a process for producing an alcohol using the same.
  • the present inventors have produced a porous nickel oxide-zirconia composite catalyst having improved reactivity and controllability through 3DOM structure control, and developed a method for producing alcohol at low cost by oxidizing methane at normal temperature and atmospheric pressure .
  • One aspect of the present invention relates to a porous nickel oxide-zirconia composite catalyst.
  • the catalyst may be one for producing an alcohol, formaldehyde, acetaldehyde or acetone, for example, for producing an alcohol, but is not limited thereto.
  • the alcohol is an organic compound in which a hydroxyl group (-OH) is bonded to a carbon atom, and can be represented by a structural formula of C n H 2n + 1 OH.
  • the alcohol may be methanol, 1-propanol, 2-propanol or ethanol, for example, ethanol represented by the structural formula of C 2 H 5 OH, but is not limited thereto.
  • the porous nickel oxide-zirconia composite catalyst has a specific surface area (BET) of 1 to 1000 m 2 / g, 10 to 1000 m 2 / g, 20 to 1000 m 2 / g, 30 to 1000 m 2 / g, 10 to 800 m 2 / g, 20 to 800 m 2 / g, 30 to 800 m 2 / g, 40 to 1000 m 2 / g, 70 to 1000 m 2 / g, 1 to 800 m 2 / 1 to 600 m 2 / g, 10 to 600 m 2 / g, 20 to 600 m 2 / g, 30 to 100 m 2 / g, 50 to 800 m 2 / g, 60 to 800 m 2 / 60 to 600 m 2 / g, 70 to 600 m 2 / g, 1 to 400 m 2 / g, 10 to 400 m 2 / g, 20 to 400 m 2 / g, 50 to 400 m 2
  • the porous nickel oxide-zirconia composite catalyst has an average pore size of 50 nm to 100 nm, 55 nm to 100 nm, 60 nm to 100 nm, 65 nm to 100 nm, 70 nm to 100 nm, 50 nm to 95 nm, 55 60 nm to 95 nm, 65 nm to 95 nm, 70 nm to 95 nm, 50 nm to 90 nm, 55 nm to 90 nm, 60 nm to 90 nm, 65 nm to 90 nm, 90 nm, 50 nm to 85 nm, 55 nm to 85 nm, 60 nm to 85 nm, 65 nm to 85 nm, 70 nm to 85 nm, 50 nm to 80 nm, 55 nm to 80 nm, 60 nm to 80 nm , 65 nm to 80 nm, 70 nm to 80 n
  • the porous nickel oxide-zirconia composite catalyst has a porosity of 1 to 99%, 1 to 90%, 1 to 80%, 10 to 99%, 10 to 90%, 10 to 80%, 20 to 99%, 20 to 90% , 30 to 99%, 30 to 90%, 30 to 80%, 40 to 99%, 40 to 90%, 40 to 80%, 50 to 99%, 50 to 90%, 50 to 80% , 60 to 99%, 60 to 90%, 60 to 80%, such as 70%.
  • the average pore size and porosity of the porous nickel oxide-zirconia composite catalyst can be controlled according to the particle size of the polymer flask.
  • the composite catalyst may have a molar ratio of nickel oxide to zirconia of 9.9: 0.1 to 4.0: 6.0, 9.0: 1.0 to 4.0: 6.0, such as 9.0: 1.0, 8.0: 2.0, 7.0: 3.0, or 6.0: 4.0 , But is not limited thereto.
  • Another aspect of the present invention relates to a process for preparing a porous nickel oxide-zirconia composite catalyst comprising the steps of:
  • Nickel is known to have excellent performance in activating CH bonds in methane. At high temperature conditions it is possible to oxidize methane while providing oxygen ions along with the activation of methane. However, at room temperature conditions, it is difficult to break CH bonds of methane and provide oxygen ions. In the alkaline solution, nickel oxide exists in the form of Ni 2+ and has a characteristic of flowing current as a p-type semiconductor at room temperature.
  • Zirconia is known to adsorb carbonates well.
  • zirconia has a bonding interval of about 5 eV, which makes it impossible to transfer electrons, and when used alone, electrochemical reactions are impossible. Therefore, when zirconia alone is used, it is difficult to cause a reaction in which CO 3 2- is electrochemically reduced to CO 2 , making it difficult to oxidize methane. Therefore, methane oxidation reaction at room temperature requires two factors: nickel oxide, which plays an active role on the CH bond of methane, and zirconia, which helps oxidation.
  • the nickel oxide precursor may be a nickel salt.
  • the nickel salt may be at least one selected from the group consisting of an acetic acid nickel salt, a phthalocyanine nickel salt, a phthalocyanine-tetrasulfonic acid nickel complex tetrasodium salt, 2-Ethylhexanoic acid nickel salt, Octanoic acid nickel salt hydrate, 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine nickel salt (1,4,8 , 11,15,18,22,25-Octabutoxyphthalocyanine nickel salt), 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine nickel salt (5,9,14 Octabutoxy-2,3-naphthalocyanine nickel salt, and nickel chloride, and may be, for example, nickel chloride, But is not limited thereto.
  • the zirconia precursor may be a zirconia salt.
  • the zirconia salt may be at least one selected from the group consisting of zirconium butoxide, zirconium sulfate, and zirconium acetate.
  • zirconium acetate may be zirconium acetate, It is not.
  • the nickel oxide precursor and the zirconia precursor have a molar ratio of 9.9: 0.1 to 4.0: 6.0 such as 9: 1, 8.5: 1.5, 8: 2, 7.5: 2.5, 7: 3, 6.5: 3.5, 5.5: 4.5, 5: 5, 4.5: 5.5, or 4: 6.
  • the nickel oxide precursor and the zirconia precursor may be mixed and injected into a polymer flask, but the present invention is not limited thereto.
  • the polymer may be one obtained by polymerizing at least one monomer selected from the group consisting of methyl methacrylate, butyl methacrylate, hydroxyethyl methacrylate, and styrene. And may be, for example, a polymer obtained by polymerizing styrene. However, the present invention is not limited thereto.
  • the polymer flask is made of poly (methyl methacrylate); PMMA], poly (butyl methacrylate); PBMA], poly (methyl methacrylate) (butyl methacrylate); PMMABMA), poly (hydroxyethyl methacrylate); PHEMA] and polystyrene, and may be, for example, polystyrene, but the present invention is not limited thereto.
  • the poly (methyl methacrylate) (butyl methacrylate) is a copolymer of PMMA and PBMA.
  • the polymer flask may be a spherical polymer flask which is prepared by centrifuging the polymer, drying the polymer, and arranging the polymer in a face centered cubic (fcc) shape.
  • the nickel oxide precursor and the zirconia precursor may be injected into a polymer flask using a methanol or methanol solution as a solvent.
  • the injecting step may further include a step of evaporating and drying the methanol, but is not limited thereto.
  • zirconia may exist in a tetragonal phase.
  • the methane oxidation reaction by the electrochemical reaction is based on the fact that CO 3 2- is adsorbed on zirconia and methane activated by nickel oxide is adsorbed on zirconia And oxidized by O 2- transferred from the surface. Therefore, it is ideal that nickel oxide and zirconia elements exist in a uniformly dispersed state.
  • the tetragonal zirconia has a lewis acid position about 3.5 times higher than that of the monoclinic phase zirconia, which is favorable for the electrochemical methane oxidation reaction in the carbonate ion adsorption characteristic.
  • the tetragonal zirconia is the most stable structure of zirconia, and therefore it is manufactured by a sintering step at a high temperature when it is produced singly or a long time sintering step at a low temperature sintering.
  • the sintering may be performed at 400 to 600 ° C, 400 to 550 ° C, 400 to 500 ° C, 450 to 600 ° C, 450 to 550 ° C, or 450 to 500 ° C, have. If it is lower than the above range, there is a possibility that the polymer flask incompletely burns, and if it exceeds the above range, the structure may be destroyed because it is too hot.
  • the sintering step may be performed for 2 hours or more, for example, 2 hours, but is not limited thereto.
  • Another aspect of the present invention relates to a method for producing an alcohol comprising contacting a porous nickel oxide-zirconia composite catalyst with methane.
  • the method for producing the alcohol comprises reacting the porous nickel oxide-zirconia composite catalyst according to the present invention with a solution containing methane.
  • the preparation method may be carried out at a temperature of 5 to 40 DEG C, 5 to 35 DEG C, 5 to 30 DEG C, 5 to 25 DEG C, 5 to 20 DEG C, 10 to 40 DEG C, 10 to 35 DEG C, 10 to 30 DEG C, 15 to 20 ⁇ , 20 to 40 ⁇ , 20 to 35 ⁇ , 20 to 30 ⁇ or 20 to 25 ⁇ And may be conducted at, for example, 20 ° C, but is not limited thereto, and can be carried out within a temperature range at which the reactor and the electrode are not damaged. The higher the temperature, the more favorable the reaction, There may be a problem of falling.
  • the process may be carried out at a pressure of 1 to 20 bar, 1 to 15 bar, 1 to 10 bar, 1 to 5 bar, 1 to 3 bar, 1 to 2 bar or 1 to 1.5 bar, And 1 bar.
  • a pressure of 1 to 20 bar, 1 to 15 bar, 1 to 10 bar, 1 to 5 bar, 1 to 3 bar, 1 to 2 bar or 1 to 1.5 bar, And 1 bar.
  • the present invention is not limited thereto. The higher the pressure is, the more the methane saturation in the solution increases and the reaction is favorable. However, considering the economical efficiency of the reaction, .
  • the alcohol may be methanol, 1-propanol, 2-propanol or ethanol, for example, ethanol represented by the structural formula of C 2 H 5 OH, but is not limited thereto.
  • Another aspect of the present invention relates to an alcohol production use of a porous nickel oxide-zirconia composite catalyst.
  • the alcohol may be methanol, 1-propanol, 2-propanol or ethanol, for example, ethanol represented by the structural formula of C 2 H 5 OH, but is not limited thereto.
  • the present invention relates to a porous nickel oxide-zirconia composite catalyst, a method for producing the same, and a method for producing an alcohol using the same, wherein the porous nickel oxide-zirconia composite catalyst has an excellent methane reforming reaction
  • the alcohol can be produced at a low cost.
  • 1A is a high magnification electron microscope image of a nanoparticulate nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • 1B is a high magnification electron microscope image of a porous nickel oxide-zirconia composite catalyst prepared by mixing a nickel oxide precursor and a zirconia precursor in a molar ratio of 4: 6 according to an embodiment of the present invention.
  • 1C is a high magnification electron microscope image of a porous nickel oxide-zirconia composite catalyst prepared by mixing a nickel oxide precursor and a zirconia precursor in a molar ratio of 7: 3 according to an embodiment of the present invention.
  • 1D is a high magnification electron micrograph of a porous nickel oxide-zirconia composite catalyst prepared by mixing a nickel oxide precursor and a zirconia precursor in a molar ratio of 9: 1 according to an embodiment of the present invention.
  • FIG. 2A is a transmission electron microscopy (TEM) image of a porous nickel oxide-zirconia composite catalyst IO (Inverse Opal) particle according to an embodiment of the present invention.
  • TEM transmission electron microscopy
  • Figure 2b is an enlarged image of a white circular representation of a TEM image of the porous nickel oxide-zirconia composite catalyst IO particles of Figure 2a according to an embodiment of the present invention.
  • FIG. 2C is an image of an EDS (Energy Dispersive Spectroscopy) analysis showing the distribution of oxygen elements in the white circular display portion of the TEM image of the porous nickel oxide-zirconia composite catalyst IO particles of FIG. 2A according to an embodiment of the present invention .
  • EDS Electronicgy Dispersive Spectroscopy
  • FIG. 2D is an image of an EDS analysis showing the distribution of nickel elements in a white circular display portion of a TEM image of a porous nickel oxide-zirconia composite catalyst IO particle of FIG. 2A according to an embodiment of the present invention.
  • FIG. 2D is an image of an EDS analysis showing the distribution of nickel elements in a white circular display portion of a TEM image of a porous nickel oxide-zirconia composite catalyst IO particle of FIG. 2A according to an embodiment of the present invention.
  • FIG. 2E is an image of an EDS analysis showing the distribution of zirconium elements relative to the white circular representation of the TEM image of the porous nickel oxide-zirconia composite catalyst IO particles of FIG. 2A according to an embodiment of the present invention.
  • FIG. 2E is an image of an EDS analysis showing the distribution of zirconium elements relative to the white circular representation of the TEM image of the porous nickel oxide-zirconia composite catalyst IO particles of FIG. 2A according to an embodiment of the present invention.
  • Figure 2f is a d-spacing pattern for a porous nickel oxide-zirconia composite catalyst according to one embodiment of the present invention.
  • FIG. 3 is a graph of XRD (X-ray diffraction) analysis results of a porous nickel oxide-zirconia composite catalyst and a nanoparticle-type nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • FIG. 4A is a graph showing X-ray photoelectron spectroscopy (NiP) analysis results of a porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • FIG. 4B is a graph showing the results of XPS (Zr 3 d) analysis of a porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • FIG. 5A is a graph showing a result of cyclic voltammetry analysis of nickel oxide according to an embodiment of the present invention.
  • 5B is a graph showing a result of cyclic voltammetry analysis of zirconia according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a cyclic voltammogram analysis result of a methane saturated solution of nickel oxide-zirconia composite catalyst according to an embodiment of the present invention and a comparative example.
  • FIG. 7 is a graph showing a cyclic voltammetry analysis result of a porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention under a nitrogen or methane saturation condition.
  • FIG. 8 is a graph showing a result of cyclic voltammetry analysis of a porous nickel oxide-zirconia composite catalyst prepared by mixing a nickel oxide precursor and a zirconia precursor according to an embodiment of the present invention by molar ratio under methane saturation condition to be.
  • FIG. 9A is a graph showing a result of GC / MS analysis of a product of methane oxidation using a porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • FIG. 9B is a graph showing the results of analyzing the ethanol production concentration according to the methane oxidation reaction time using the porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • FIG. 10 is a ball-and-rod model for an ethanol production mechanism using a porous nickel oxide-zirconia composite catalyst according to an embodiment of the present invention.
  • Polymer flasks were prepared by polymerizing polystyrene of the same size by emulsion polymerization method using styrene which does not use emulsifier. Then, the polymerized polystyrene was centrifuged at 8000 rpm for 15 minutes and then dried at 60 ° C for 12 hours to prepare a spherical polymer flask arranged in a face-centered cubic structure.
  • nickel chloride anhydride and zirconia acetate solution (Sigma Aldrich, 16 wt% Zr solution) were mixed at a molar ratio of 9: 1, 7: 3, 4: 6 and the polymer was impregnated into a spherical polymer mold using methanol as a solvent . Then, the methanol was evaporated using a vacuum pump (KNF LABOPRT) and then dried. Then, sintering was performed at 500 ° C for 2 hours to remove the polymer flask, and a porous nickel oxide-zirconia composite catalyst was obtained.
  • KNF LABOPRT vacuum pump
  • Nickel chloride and zirconia acetate were dispersed in a methanol solvent at a molar ratio of 9: 1 to prepare a precursor. Then, after sufficiently stirring and drying, sintering was performed at 500 ° C for 2 hours to obtain a nickel oxide-zirconia catalyst in nanoparticle form.
  • Catalysts of comparative examples and examples were attached to carbon tapes using an electron microscope (JEOL, Japan), and gold particles were coated on the carbon tape. After gold coating, SEM was taken at 60,000 times magnification, 1D.
  • the nickel oxide-zirconia composite catalyst prepared in the comparative example exhibited a nanoparticle form.
  • the nickel oxide- Respectively.
  • the HR-TEM crystal lattice confirmed that the nickel and zirconia elements were uniformly distributed along the IO skeleton.
  • FIGS. 2b to 2e A TEM image was taken during the TEM analysis and an EDS mapping analysis was performed on the nickel, zirconia and oxygen elements through the EDS analysis function at the location, and the results are shown in FIGS. 2b to 2e.
  • the angle of the beam was changed to 2 theta / min while irradiating the X-ray beam, and the diffraction of the beam was measured to analyze the crystallinity of the particle. 3.
  • XPS analysis was carried out using an X-ray beam of MXR1 Gun- 400 ⁇ m 15 kV catalyst prepared from nickel chloride and zirconia acetate at a molar ratio of 9: 1.
  • Figs. 4A and 4B The results are shown in Figs. 4A and 4B.
  • the XPS peak of the zirconia element was 185.5 eV and 183 eV , Whereas in the catalyst of the present invention, the peak appears near 184 eV and 181.8 eV. This binding energy is judged to be due to chemical interaction, not physical interaction.
  • the Ni 2+ / Ni 3+ redox couple reaction can be confirmed at 0.5 to 0.6 V as a result of the CV of the nickel oxide on the CO 3 2- electrolyte solution.
  • OER Oxygen evolution reaction
  • a 0.5 M NaCO 3 solution was saturated with methane and an inert gas, respectively, and then a 3-electrode electrochemical evaluation was carried out in a 15 ml vial.
  • a glassy carbon electrode was loaded with 60 ug of catalyst and used as a working electrode.
  • SCE electrode as a reference electrode and Pt as a counter electrode, The cyclic current voltage was evaluated up to 1.0 V, and the results are shown in FIG. 5B.
  • a voltage of 1.0 V to 2.0 V capable of oxidizing methane was applied to the positive electrode to conduct the methane oxidation reaction.
  • the inside of the solution was stirred to activate the movement of the electrolyte and methane.
  • the spent methane was replenished in the solution so that the oxidation reaction could be continued.
  • Conditions outside the reactor were no special control at normal temperature and normal pressure.
  • a carbon electrode supporting a nickel-zirconia catalyst was immersed in a solution saturated with methane, Pt was immersed in a counter electrode, and a voltage / current was applied between the two electrodes to perform a methane reaction. And the results are shown in Fig. 6 and Table 1. The results are shown in Fig.
  • the porous nickel oxide-zirconia composite catalyst of Example of the present invention showed an oxidation current value increased by 0.6405 A / g as compared with the nanoparticulate nickel oxide-zirconia composite catalyst of Comparative Example Respectively.
  • SCE vs. 0.8 V after the CH 4 oxidation current at the saturation condition can be interpreted in two ways. The first is the Oxygen evolution reaction (OER) promoted by the redox pair formation of nickel oxide, and the second is the oxidation reaction of CH 4 and the organic compounds generated by the oxidation reaction.
  • OER Oxygen evolution reaction
  • methane is oxidized through the path of methanol and formaldehyde. Ethanol can also be oxidized to acetaldehyde via a similar route.
  • ethanol production and propanol production by electrochemically oxidizing methane.
  • the expected mechanism is the nucleophilic reaction of methane with formaldehyde as a result of methane oxidation.
  • the resonance structure of formaldehyde and activated methane (CH 4 ) molecules react on the catalyst surface to produce ethanol (EtOH).
  • a methane and an inert gas were saturated with 0.5 M NaCO 3 solution, respectively, and a 3-electrode electrochemical evaluation was carried out in a 15 ml vial.
  • a catalyst was loaded on a glassy carbon electrode in an amount of 60 ug, Use as.
  • the circulation current voltage was evaluated from 0.2 V to 1.0 V using Pt as a reference electrode as a SCE electrode and a counter electrode, and the results are shown in FIG. 7 and Table 2.
  • V vs. SCE Voltage (V vs. SCE) Current
  • A Voltage (V vs. SCE) Current
  • A 0.2009 -0.0265 0.2009 -0.0062 0.3000 -0.0052 0.3000 -0.0004 0.3999 0.0055 0.3999 0.0023 0.4996 0.0265 0.5002 0.0076 0.6002 0.0701 0.6002 0.0204 0.7002 0.0961 0.7002 0.0254 0.8002 0.2150 0.8002 0.0507 0.9002 0.4810 0.9002 0.1169 0.9983 0.8277 0.9986 0.2000
  • the CV of the porous nickel oxide-zirconia composite catalyst under methane and nitrogen saturation conditions showed a higher current than that of nitrogen saturation at the methane saturation condition.
  • the porous nickel oxide-zirconia composite catalyst prepared by mixing nickel oxide and zirconia at a molar ratio of 9: 1, 7: 3 and 4: 6 was subjected to CV under methane saturation condition, Are shown in Fig. 8 and Table 3.
  • examples of methane oxidation reaction products include ethanol (EtOH), 2-propanol (2-PrOH), methanol (MeOH), formaldehyde, acetaldehyde and acetone And ethanol was detected as a major product at a high rate.
  • FIG. 9B After the voltage was applied, a liquid sample was taken out by time, and 10 ml of the solution was put in a 20 ml headspace vial. Then, the concentration of ethanol was measured using GC / MS equipped with a headspace sampler, and the results are shown in FIG. 9B and Table 5.
  • FIG. 9B After the voltage was applied, a liquid sample was taken out by time, and 10 ml of the solution was put in a 20 ml headspace vial. Then, the concentration of ethanol was measured using GC / MS equipped with a headspace sampler, and the results are shown in FIG. 9B and Table 5.
  • the present invention relates to a porous nickel oxide-zirconia composite catalyst, a process for producing the same, and a process for producing an alcohol using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올 제조방법에 관한 것으로서, 상기 다공성 구조의 산화니켈-지르코니아 복합 촉매는 전기 화학반응을 통해 상온 및 상압 조건에서도 우수한 메탄 개질 반응을 수행하여 저비용으로 알코올을 제조할 수 있다.

Description

다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법
본 발명은 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올 제조방법에 관한 것이다.
가스의 주성분인 메탄은 물리적인 특성상 액상의 석유자원과는 달리 수송과 저장의 문제를 안고 있어 산지가 시장과 멀리 떨어져 있는 경우 그 이용이 제한된다. 이렇게 이용이 제한되어 가치가 낮은 가스는 물리적인 액화(LNG) 또는 화학적인 전환에 의해 부가가치를 높일 수 있다.
화학적인 메탄 전환 방법은 합성가스(syngas, CO/H2)를 경유하는 간접 전환 경로를 이용한다. 간접 전환 경로에서 합성 가스의 제조를 위해서는 개질(reforming) 공정, 합성 가스로부터 올레핀 또는 액상의 탄화수소를 제조하는 Fischer-Tropsch(FT) 합성 공정, 합성 가스로부터 메탄올을 합성하는 공정, 메탄올을 경유하여 가솔린 또는 올레핀을 제조하는 공정 등이 있으며, 이들을 통해 메탄으로부터 기존 석유계 원료에서 얻을 수 있는 연료와 화학제품을 거의 모두 얻을 수 있다.
요컨대 메탄의 전환 공정은 메탄의 부분 산화(partial oxidation) 반응으로 합성가스를 생성하는 건식 개질(dry reforming) 반응과 합성가스로부터 생성물을 생산하는 2단계 공정을 거친다. 건식 개질 반응의 표준 반응 엔탈피는 247 kJ/mol로 이러한 공정은 고온 조건에서 촉매를 필요로 한다. 따라서, 대부분의 메탄 전환 촉매 연구는 보다 낮은 온도에서 메탄의 합성가스로의 전환을 목표로 상업화된 공정의 비용감소 측면에서 연구되었다.
그러나, 합성가스로의 전환은 CO를 중간물로 거치기 때문에 비효율적이다. 따라서 메탄을 직접 생성물로 전환하는 연구가 점차 중요해 지고 있다. 메탄의 직접 전환은 메탄을 부분 산화(partial oxidation of methane; 이하, POM) 또는 이량화(oxidative coupling of methane; 이하, OCM) 반응시켜 직접 생성물을 생산한다. 메탄의 직접 전환은 생성물을 직접 얻기 때문에 선별도(selectivity)가 중요한 포인트이다.
이 중 부분 산화 반응은 일반적으로 OCM 반응에 비해 특정 생성물에 대한 높은 선별도를 나타내 특정 생성물을 얻는데 유리하다. 메탄의 직접 전환은 메탄올과 포름알데히드를 얻는 반응에 대해서 많은 연구가 진행되고 있다.
Vafajoo 등은 V2O5/SiO2 촉매를 사용한 연구는 91.9 내지 93.4%의 메탄올 선별도를 달성하였으나, 0.66 내지 1.52%의 낮은 메탄 전환율을 보였으며 450 내지 500℃ 및 20 내지 120 bar의 고온 고압 공정을 필요로 한다.
또한, Zhang 등은 63%의 메탄올 선별도와 7 내지 8%의 수득율을 달성하였으나, 430 내지 470℃의 고온 및 5 MPa의 고압 조건을 필요로 한다.
Ceri Hammond 등은 NO 조건에서 Cu-ZSM-5 촉매를 사용하여 메탄에서 메탄올로의 전환을 이루었으나, 여전히 150℃의 고온 조건을 필요로 하고, 낮은 선별도와 수득율을 나타낸다.
JunXu등은 Cu- 와 Fe-로 개선한 ZSM-5 촉매를 사용하여 저온에서 92%의 메탄올 선별도를 달성했으나 0.5%의 매우 낮은 메탄 전환을 나타냈다.
본 발명자들은 우수한 메탄 전환율로 메탄 개질 반응을 수행할 수 있는 촉매를 개발하고자 연구한 결과, 다공성 구조의 산화니켈-지르코니아 복합 촉매가 전기 화학반응을 통해 상온 및 상압 조건에서도 우수한 메탄 개질 반응을 수행하여 알코올을 생산할 수 있다는 것을 실험적으로 규명하였다.
따라서 본 발명의 목적은 다공성 산화니켈-지르코니아 복합 촉매를 제공하는 것이다.
본 발명의 다른 목적은 다공성 산화니켈-지르코니아 복합 촉매 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 다공성 산화니켈-지르코니아 복합 촉매를 이용한 알코올 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 다공성 산화니켈-지르코니아 복합 촉매의 알코올 제조 용도를 제공하는 것이다.
본 발명은 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올 제조방법에 관한 것이다.
본 발명자들은 3DOM 구조제어를 통해 반응성을 향상시키고 선별도 측면에서도 우수한 다공성 산화니켈-지르코니아 복합 촉매를 제조하였으며, 이를 이용하여 상온 및 상압 조건에서 메탄을 산화시켜 저비용으로 알코올을 제조하는 방법을 개발하였다.
이하 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 양태는 다공성 산화니켈-지르코니아 복합 촉매에 관한 것이다.
상기 촉매는 알코올, 포름알데히드, 아세트알데히드 또는 아세톤 생산용, 예를 들어, 알코올 생산용인 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 알코올은 하이드록시기(-OH)가 탄소 원자에 결합된 유기 화합물로서, CnH2n+1OH의 구조식으로 표시될 수 있다.
상기 알코올은 메탄올, 1-프로판올, 2-프로판올 또는 에탄올, 예를 들어, C2H5OH의 구조식으로 표시되는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 산화니켈-지르코니아 복합 촉매는 비표면적(BET)이 1 내지 1000 ㎡/g, 10 내지 1000 ㎡/g, 20 내지 1000 ㎡/g, 30 내지 1000 ㎡/g, 40 내지 1000 ㎡/g, 50 내지 1000 ㎡/g, 60 내지 1000 ㎡/g, 70 내지 1000 ㎡/g, 1 내지 800 ㎡/g, 10 내지 800 ㎡/g, 20 내지 800 ㎡/g, 30 내지 800 ㎡/g, 40 내지 800 ㎡/g, 50 내지 800 ㎡/g, 60 내지 800 ㎡/g, 70 내지 800 ㎡/g, 1 내지 600 ㎡/g, 10 내지 600 ㎡/g, 20 내지 600 ㎡/g, 30 내지 600 ㎡/g, 40 내지 600 ㎡/g, 50 내지 600 ㎡/g, 60 내지 600 ㎡/g, 70 내지 600 ㎡/g, 1 내지 400 ㎡/g, 10 내지 400 ㎡/g, 20 내지 400 ㎡/g, 30 내지 400 ㎡/g, 40 내지 400 ㎡/g, 50 내지 400 ㎡/g, 60 내지 400 ㎡/g, 70 내지 400 ㎡/g, 1 내지 200 ㎡/g, 10 내지 200 ㎡/g, 20 내지 200 ㎡/g, 30 내지 200 ㎡/g, 40 내지 200 ㎡/g, 50 내지 200 ㎡/g, 60 내지 200 ㎡/g, 70 내지 200 ㎡/g, 1 내지 100 ㎡/g, 10 내지 100 ㎡/g, 20 내지 100 ㎡/g, 30 내지 100 ㎡/g, 40 내지 100 ㎡/g, 50 내지 100 ㎡/g, 60 내지 100 ㎡/g 또는 70 내지 100 ㎡/g, 예를 들어, 70 ㎡/g인 것일 수 있다.
상기 다공성 산화니켈-지르코니아 복합 촉매는 평균 공극 크기가 50 nm 내지 100 nm, 55 nm 내지 100 nm, 60 nm 내지 100 nm, 65 nm 내지 100 nm, 70 nm 내지 100 nm, 50 nm 내지 95 nm, 55 nm 내지 95 nm, 60 nm 내지 95 nm, 65 nm 내지 95 nm, 70 nm 내지 95 nm, 50 nm 내지 90 nm, 55 nm 내지 90 nm, 60 nm 내지 90 nm, 65 nm 내지 90 nm, 70 nm 내지 90 nm, 50 nm 내지 85 nm, 55 nm 내지 85 nm, 60 nm 내지 85 nm, 65 nm 내지 85 nm, 70 nm 내지 85 nm, 50 nm 내지 80 nm, 55 nm 내지 80 nm, 60 nm 내지 80 nm, 65 nm 내지 80 nm, 70 nm 내지 80 nm, 예를 들어, 75 nm 인 것일 수 있으며, 이에 한정되는 것은 아니다.
상기 다공성 산화니켈-지르코니아 복합 촉매는 공극율이 1 내지 99 %, 1 내지 90 %, 1 내지 80 %, 10 내지 99 %, 10 내지 90 %, 10 내지 80 %, 20 내지 99 %, 20 내지 90 %, 20 내지 80 %, 30 내지 99 %, 30 내지 90 %, 30 내지 80 %, 40 내지 99 %, 40 내지 90 %, 40 내지 80 %, 50 내지 99 %, 50 내지 90 %, 50 내지 80 %, 60 내지 99 %, 60 내지 90 %, 60 내지 80 %, 예를 들어, 70% 인 것일 수 있다.
상기 다공성 산화니켈-지르코니아 복합 촉매에서 평균 공극 크기 및 공극율은 고분자 주형틀의 입자크기에 따라 제어할 수 있다.
상기 복합 촉매는 산화니켈과 지르코니아의 몰비가 9.9:0.1 내지 4.0:6.0, 9.0:1.0 내지 4.0:6.0, 예를 들어, 9.0:1.0, 8.0:2.0, 7.0:3.0 또는 6.0:4.0인 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 다른 일 양태는 하기의 단계를 포함하는 다공성 산화니켈-지르코니아 복합 촉매 제조방법에 관한 것이다:
산화니켈 전구체 및 지르코니아 전구체를 고분자 주형틀에 주입하는 주입단계; 및
고분자 주형틀을 제거하는 소결 단계.
니켈은 메탄의 C-H 결합을 활성화 하는데 우수한 성능을 가지고 있다고 알려져 있다. 고온 조건에서는 메탄의 활성화와 더불어 산소 이온을 제공하면서 메탄을 산화시키는 것이 가능하다. 그러나 상온 조건에서는 메탄의 C-H 결합을 끊고 산소 이온을 제공하는 것이 어렵다. 알칼라인 용액 내에서 산화니켈은 Ni2+ 형태로 존재하며, 상온에서 p-타입 반도체로서 전류가 흐르는 특성을 가지고 있다.
지르코니아는 탄산염(Carbonate)을 잘 흡착하는 것으로 알려져 있다. 그러나, 지르코니아는 결합 간격이 5 eV 정도로 전자의 이동이 불가능하고 단독으로 쓰였을 경우 전기화학 반응이 불가능하다. 따라서, 지르코니아 단독으로 쓰일 경우 CO3 2-가 전기화학적으로 CO2로 환원되는 반응이 일어나기 어려워 메탄을 산화시키는 반응이 어렵다. 그러므로 상온에서의 메탄 산화반응은 메탄의 C-H 결합에 대하여 활성화 역할을 하는 산화니켈과 산화를 돕는 지르코니아 두 가지 요소가 필수적이다.
상기 산화니켈 전구체는 니켈 염(nickel salt)일 수 있다.
상기 니켈 염은 아세트산 니켈 염(Acetic acid nickel salt), 프탈로시아닌 니켈 염(Phthalocyanine nickel salt), 프탈로시아닌 테트라설폰산 니켈 콤플렉스 테트라소듐 염(Phthalocyanine-tetrasulfonic acid Nickel complex tetrasodium salt), 2-에틸헥사노익산 니켈 염(2-Ethylhexanoic acid nickel salt), 옥탄산 니켈 염(Octanoic acid nickel salt hydrate), 1,4,8,11,15,18,22,25-옥타부톡시프탈로시아닌 니켈 염(1,4,8,11,15,18,22,25-Octabutoxyphthalocyanine nickel salt), 5,9,14,18,23,27,32,36-옥타부톡시-2,3-나프탈로시아닌 니켈 염(5,9,14,18,23,27,32,36-Octabutoxy-2,3-naphthalocyanine nickel salt) 및 니켈 클로라이드(Nickel chloride)로 이루어진 군에서 선택된 1종 이상인 것일 수 있으며, 예를 들어, 니켈 클로라이드일 수 있으나, 이에 한정되는 것은 아니다.
상기 지르코니아 전구체는 지르코니아 염일 수 있다.
상기 지르코니아 염은 지르코늄 부톡시드(Zirconium butoxide), 지르코늄 황산염(Zirconium sulfate) 및 지르코늄 아세트산염(Zirconium acetate)으로 이루어진 군에서 선택된 1종 이상인 것을 수 있으며, 예를 들어, 지르코늄 아세트산염일 수 있으나, 이에 한정되는 것은 아니다.
상기 산화니켈 전구체 및 지르코니아 전구체는 9.9:0.1 내지 4.0:6.0의 몰비, 예를 들어, 9:1, 8.5:1.5, 8:2, 7.5:2.5, 7:3, 6.5:3.5, 6:4, 5.5:4.5, 5:5, 4.5:5.5 또는 4:6의 몰비로 주입하는 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 산화니켈 전구체 및 지르코니아 전구체는 혼합하여 고분자 주형틀에 주입하는 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 고분자는 메타크릴산 메틸(methyl methacrylate), 메타크릴산 부틸(butyl methacrylate), 메타크릴산 히드록시에틸(hydroxyethyl methacrylate) 및 스티렌(styrene)으로 이루어진 군에서 선택된 1종 이상의 단위체를 중합반응 시킨 것일 수 있으며, 예를 들어, 스티렌을 중합반응 시킨 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 고분자 주형틀은 폴리메타크릴산 메틸[poly(methyl methacrylate); PMMA], 폴리메타크릴산 부틸[poly(butyl methacrylate); PBMA], 폴리(메타크릴산 메틸)(메타크릴산 부틸)[Poly(methyl methacrylate)(butyl methacrylate); PMMABMA), 폴리메타크릴산 히드록시에틸 [poly(hydroxyethyl methacrylate); PHEMA] 및 폴리스티렌(polystyrene)으로 이루어진 군에서 선택된 1종 이상의 중합체를 포함하는 것일 있으며, 예를 들어, 폴리스티렌인 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 폴리(메타크릴산 메틸)(메타크릴산 부틸)은 PMMA 및 PBMA의 공중합체이다.
상기 고분자 주형틀은 고분자를 원심분리 한 후 건조하여 면심입방구조(face centered cubic;fcc)로 배열시킨 구형의 고분자 주형틀인 것일 수 있다.
상기 산화니켈 전구체 및 지르코니아 전구체는 메탄올 또는 메탄올 용액을 용매로 사용하여 고분자 주형틀에 주입하는 것일 수 있다.
상기 주입 단계는 메탄올 증발 및 건조 단계를 추가적으로 포함하는 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 산화니켈-지르코니아 복합 촉매에서 지르코니아는 정방정 상(tetragonal phase) 형태로 존재하는 것일 수 있다.
전기화학적 반응에 의한 메탄 산화 반응은 지르코니아에 CO3 2- 가 흡착되고 산화니켈에 의해 활성화된 메탄이 지르코니아 표면으로부터 전달된 O2-에 의해 산화되는 과정을 거친다. 따라서 산화니켈과 지르코니아 원소가 균일하게 분산된 상태로 존재하는 것이 이상적이다.
정방정 상의 지르코니아는 단사정 상(Monoclinic phase)의 지르코니아에 비해 대략 3.5배 더 많은 루이스산(lewis acid) 위치를 갖기 때문에 탄산염 이온 흡착 특성에 있어 전기화학적 메탄 산화 반응에 유리한 구조이다.
정방정상의 지르코니아는 지르코니아의 가장 안정한 구조이며 따라서, 단독으로 제작될 때 고온의 소결 단계를 거치거나, 저온 소결에서는 장시간의 소결 단계를 거쳐 제조된다.
상기 소결 단계는 400 내지 600℃, 400 내지 550℃, 400 내지 500℃, 450 내지 600℃, 450 내지 550℃ 또는 450 내지 500℃에서 수행하는 것일 수 있으며, 예를 들어, 500℃에서 실시할 수 있다. 상기 범위보다 낮은 경우 고분자 주형틀이 불완전연소 할 가능성이 있으며, 상기 범위를 넘는 경우 너무 고온이라 구조가 무너질 가능성도 있다.
또한, 상기 소결 단계는 2시간 이상, 예를 들어, 2시간 동안 수행하는 것일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 일 양태는 다공성 산화니켈-지르코니아 복합 촉매를 메탄과 접촉시키는 단계를 포함하는 알코올 제조방법에 관한 것이다.
상기 알코올의 제조방법은 본 발명에 따른 다공성 산화니켈-지르코니아 복합 촉매와 메탄을 포함하는 용액을 반응시키는 것을 포함하여 이루어진다.
상기 제조방법은 5 내지 40℃, 5 내지 35℃, 5 내지 30℃, 5 내지 25℃, 5 내지 20℃, 10 내지 40℃, 10 내지 35℃, 10 내지 30℃, 10 내지 25℃, 10 내지 20℃, 15 내지 40℃, 15 내지 35℃, 15 내지 30℃, 15 내지 25℃, 15 내지 20℃, 20 내지 40℃, 20 내지 35℃, 20 내지 30℃ 또는 20 내지 25℃에서 실시되는 것일 수 있고, 예를 들어, 20℃에서 실시되는 것일 수 있으나, 이에 한정되는 것은 아니며, 반응기와 전극이 손상되지 않는 온도 범위 내에서 실시될 수 있고, 온도가 높을수록 반응이 유리하나 메탄 포화도가 떨어지는 문제가 발생할 수 있다.
상기 제조방법은 1 내지 20 bar, 1 내지 15 bar, 1 내지 10 bar, 1 내지 5 bar, 1 내지 3 bar, 1 내지 2 bar 또는 1 내지 1.5 bar의 압력에서 실시되는 것일 수 있고, 예를 들어, 1 bar의 압력에서 실시되는 것일 수 있으나, 이에 한정되는 것은 아니며, 반응기가 손상되지 않는 범위에서 압력이 높을수록 용액 속 메탄 포화도가 증가하여 반응에 유리하나, 반응에 대한 경제성을 고려하여 상압에서 실시할 수 있다.
상기 알코올은 메탄올, 1-프로판올, 2-프로판올 또는 에탄올, 예를 들어, C2H5OH의 구조식으로 표시되는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 또 다른 일 양태는 다공성 산화니켈-지르코니아 복합 촉매의 알코올 제조 용도에 관한 것이다.
상기 알코올은 메탄올, 1-프로판올, 2-프로판올 또는 에탄올, 예를 들어, C2H5OH의 구조식으로 표시되는 에탄올일 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법에 관한 것으로서, 상기 다공성 구조의 산화니켈-지르코니아 복합 촉매는 전기 화학반응을 통해 상온 및 상압 조건에서도 우수한 메탄 개질 반응을 수행하여 저비용으로 알코올을 제조할 수 있다.
도 1a는 본 발명의 일 실시예에 따른 나노 입자 형태의 산화니켈-지르코니아 복합 촉매에 대한 고배율 전자현미경 이미지이다.
도 1b는 본 발명의 일 실시예에 따른 산화니켈 전구체 및 지르코니아 전구체를 4:6의 몰비로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매에 대한 고배율 전자현미경 이미지이다.
도 1c는 본 발명의 일 실시예에 따른 산화니켈 전구체 및 지르코니아 전구체를 7:3의 몰비로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매에 대한 고배율 전자현미경 이미지이다.
도 1d는 본 발명의 일 실시예에 따른 산화니켈 전구체 및 지르코니아 전구체를 9:1의 몰비로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매에 대한 고배율 전자현미경 이미지이다.
도 2a는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매 IO(Inverse opal) 파티클에 대한 TEM(Transmission Electron Microscopy) 이미지이다.
도 2b는 본 발명의 일 실시예에 따른 도 2a의 다공성 산화니켈-지르코니아 복합 촉매 IO 파티클에 대한 TEM 이미지의 흰색 원형 표시부분을 확대한 이미지이다.
도 2c는 본 발명의 일 실시예에 따른 도 2a의 다공성 산화니켈-지르코니아 복합 촉매 IO 파티클에 대한 TEM 이미지의 흰색 원형 표시부분에 대한 산소 원소의 분포를 나타낸 EDS(Energy Dispersive Spectroscopy) 분석 결과 이미지이다.
도 2d는 본 발명의 일 실시예에 따른 도 2a의 다공성 산화니켈-지르코니아 복합 촉매 IO 파티클에 대한 TEM 이미지의 흰색 원형 표시부분에 대한 니켈 원소의 분포를 나타낸 EDS 분석 결과 이미지이다.
도 2e는 본 발명의 일 실시예에 따른 도 2a의 다공성 산화니켈-지르코니아 복합 촉매 IO 파티클에 대한 TEM 이미지의 흰색 원형 표시부분에 대한 지르코늄 원소의 분포를 나타낸 EDS 분석 결과 이미지이다.
도 2f는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매에 대한 d-스페이싱 패턴이다.
도 3은 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매 및 나노 입자 형태의 산화니켈-지르코니아 복합 촉매에 대한 XRD(X-ray diffraction) 분석 결과 그래프이다.
도 4a는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매에 대한 XPS(X-ray Photoelectron Spectroscopy)(Ni 2p) 분석 결과를 보여주는 그래프이다.
도 4b는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매에 대한 XPS(Zr 3d) 분석 결과를 보여주는 그래프이다.
도 5a는 본 발명의 일 실시예에 따른 산화니켈의 순환전압 전류법 분석 결과를 보여주는 그래프이다.
도 5b는 본 발명의 일 실시예에 따른 지르코니아의 순환전압 전류법 분석 결과를 보여주는 그래프이다.
도 6은 본 발명의 일 실시예에 따른 실시예 및 비교예의 산화니켈-지르코니아 복합 촉매의 메탄 포화 용액에 대한 순환전압 전류법 분석 결과를 보여주는 그래프이다.
도 7은 본 발명의 일 실시에예 다른 다공성 산화니켈-지르코니아 복합 촉매의 질소 또는 메탄 포화 조건에서의 순환전압 전류법 분석 결과를 보여주는 그래프이다.
도 8은 본 발명의 일 실시예에 따른 산화니켈 전구체 및 지르코니아 전구체를 몰(mol) 비율별로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매의 메탄 포화조건에서의 순환전압 전류법 분석 결과를 보여주는 그래프이다.
도 9a는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매를 이용한 메탄 산화반응의 생성물을 GC/MS로 분석한 결과를 보여주는 그래프이다.
도 9b는 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매를 이용한 메탄 산화반응 시간에 따른 에탄올 생성 농도를 분석한 결과를 보영주는 그래프이다.
도 10은 본 발명의 일 실시예에 따른 다공성 산화니켈-지르코니아 복합 촉매를 이용한 에탄올 생산 메커니즘에 대한 공-막대 모형이다.
다공성 산화니켈-지르코니아 복합 촉매에 관한 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예. 다공성 산화니켈-지르코니아 촉매 제조
고분자 주형틀은 유화제를 사용하지 않는 스티렌을 사용하여 에멀젼 중합 방법으로 크기가 동일한 폴리스티렌을 중합하였다. 그 다음, 중합된 폴리스티렌을 8000rpm에서 15분간 원심분리한 뒤, 60도에서 12시간 건조하여 면심입방구조로 배열시킨 구형 고분자 주형틀을 제작하였다.
그 다음, 니켈클로라이드 무수물 및 지르코니아 아세테이트 솔루션(Sigma Aldrich, 16 wt% Zr 용액)을 9:1, 7:3, 4:6의 몰비로 혼합하여 메탄올을 용매로 사용하여 구형 고분자 주형틀에 침투시켰다. 그 다음, 진공펌프(KNF LABOPRT 사)를 사용하여 메탄올을 증발시킨 후 건조하였다. 그 다음, 500℃ 조건에서 2시간 동안 소결하여 고분자 주형틀을 제거하여, 다공성 산화니켈-지르코니아 복합 촉매를 수득하였다.
비교예. 나노 입자 산화니켈-지르코니아 촉매 제조
니켈클로라이드와 지르코니아 아세테이트를 9:1의 몰비로 메탄올 용매에 분산시켜 전구체를 제작하였다. 그 다음, 충분히 교반하여 건조시킨 뒤, 500℃ 조건에서 2시간 동안 소결하여 나노 입자 형태의 산화니켈-지르코니아 촉매를 수득하였다.
실험예 1. 전자 현미경 이미지 분석
전자 현미경(JEOL, 일본)을 이용하여 비교예 및 실시예의 촉매를 카본 테이프(carbon tape)위에 촉매 입자를 붙이고 금 코팅(gold coating) 후에 SEM으로 60,000배의 배율로 측정하여, 그 결과를 도 1a 내지 도 1d에 나타내었다.
도 1a에서 확인할 수 있듯이, 비교예에서 제조한 산화니켈-지르코니아 복합 촉매는 나노 입자 형태를 나타내었으나, 도 1b 내지 도 1d에서 확인할 수 있듯이, 실시예에서 제조한 산화니켈-지르코니아 복합 촉매는 다공성 구조를 나타냄을 확인하였다.
실험예 2. TEM(Transmission Electron Microscopy) 분석
실시예의 촉매 5 mg을 물 용매 1 ml에서 약 5분 동안 초음파로 분산시킨 뒤, TEM 그리드(greed)에 로딩하여 TEM 분석을 진행하여, 그 결과를 도 2a에 나타내었다.
도 2a에서 확인할 수 있듯이, 니켈과 지르코니아 원소가 IO 골격을 따라서 균일하게 분포되어 있는 것을 HR-TEM 결정 격자(lattice)에서 확인하였다.
실험에 3. EDS(Energy Dispersive Spectroscopy) 맵핑 분석
TEM 분석 중 TEM 이미지를 촬영하고 해당 위치에서 EDS 분석기능을 통해 니켈, 지르코니아 및 산소 원소에 대한 EDS 맵핑 분석을 실시하여, 그 결과를 도 2b 내지 2e에 나타내었다.
도 2b 내지 도 2e에서 확인할 수 있듯이, 실시예의 촉매에 산화니켈과 지르코니아가 혼재되어 존재하며, 니켈과 지르코니아 원소가 IO 골격을 따라서 균일하게 분포되어 있는 것을 EDS 이미지에서 확인하였다.
실험예 4. XRD(X-ray diffraction) 분석
다공성 산화니켈-지르코니아 복합 촉매를 그리드에 도포한 뒤, X-ray 빔을 조사하면서 빔의 앵글을 2 theta/min으로 변경하면서 빔의 회절을 측정하여 해당 입자의 결정성을 분석하여, 그 결과를 도 3에 나타내었다.
도 3에서 확인할 수 있듯이, 37.2°(111), 43.2°(200), 62.7°(220), 75.2°(311), 79.3°(222)의 큐빅 상(cubicphase) 산화니켈 피크(peak)와 30.3°(101), 50.5°(200), 60.2°(211)의 정방정 상(tetragonal phase)의 지르코니아를 확인하였다.
실험예 5. XPS(X-ray Photoelectron Spectroscopy) 분석
니켈클로라이드와 지르코니아 아세테이트를 9:1의 몰비로 제작한 촉매를 MXR1 Gun- 400 ㎛ 15 kV의 X-ray 빔을 사용하여 XPS 분석을 진행하였다. 구체적으로, Thermo Fisher Scientific 사(영국)의 XPS기기를 사용하여, X-ray 원(source)는 단색의(monochromated) Al Ka (hv=1486.6eV)이고, 300eV의 에너지를 1eV, 50eV의 에너지를 0.1eV씩 스캔 하여 측정하여, 그 결과를 도 4a 및 도 4b에 나타내었다.
도 4a 및 도 4b에서 확인할 수 있듯이, 니켈과 지르코니아 간의 화학적 상호작용이 존재함을 확인하였으며, 구체적으로, 산화니켈과 지르코니아의 물리적 혼합물(physical mixture)에서 지르코니아 원소의 XPS 피크는 185.5 eV, 183 eV 부근에서 두드러지게 나타나는 반면, 본원발명의 촉매에서는 피크가 184 eV, 181.8 eV 부근에서 나타난다. 이 결합 에너지는 물리적 상호작용이 아닌 화학적 상호작용에 의한 것으로 판단된다.
실험예 6. 순환 전압 전류법(Cyclic voltammetry, CV) 전기 화학 평가
5-1. 산화니켈의 전기 화학 평가
0.5M NaCO3 용액에 각각 메탄, 비활성기체를 포화시킨 뒤 15ml 바이알(vial)에서 3전극 전기화학평가를 진행, 유리상 탄소(glassy carbon) 전극에 제작 촉매를 60ug 로딩한 뒤 작업 전극(working electrode)으로 사용하였으며, 기준 전극(Reference electrode)으로 SCE전극, 상대 전극(counter electrode)으로 Pt를 사용하여, 0.2V 내지 1.0V까지 순환전류전압평가하여, 그 결과를 도 5a에 나타내었다.
도 5a에서 확인할 수 있듯이, CO3 2- 전해질 용액상에서 산화니켈의 CV 결과로 0.5 내지 0.6 V에서 Ni2+/Ni3+ 산화환원쌍(redox couple) 반응을 확인할 수 있으며, 0.85 V 이상에서는 NiOOH에 의한 산소발생반응(Oxygen evolution reaction, OER)을 확인할 수 있었다. 위 반응은 Ar 포화 조건과 CH4 포화 조건에서 모두 확인할 수 있었으며, 전압의 이동이 약간 존재하는 것을 제외하면, 도 5a에서 추가적인 산화반응에 의해 발생하는 전류를 확인하기 어려웠다.
5-2. 지르코니아의 전기 화학 평가
0.5M NaCO3 용액에 각각 메탄, 비활성기체를 포화시킨 뒤 15ml 바이알(vial)에서 3전극 전기화학평가를 진행하였다. 유리상 탄소(glassy carbon) 전극에 제작 촉매를 60ug 로딩한 뒤 작업 전극(working electrode)으로 사용하였으며, 기준 전극(Reference electrode)으로 SCE전극, 상대 전극(counter electrode)으로 Pt를 사용하여, 0.2V 내지 1.0V까지 순환전류전압평가하여, 그 결과를 도 5b에 나타내었다.
도 5b에서 확인할 수 있듯이, ZrO2의 전기화학평가의 평가에서는 매우 낮은 전류값이 측정되었고, 이것은 전기화학촉매로서 리엑션(reaction)이 없기 때문에 단독촉매로서 사용할 수 없음을 의미한다.
실험예 6: 산화 전류 값 비교
액상에서 메탄을 반응시키기 위하여 0.5 M 농도의 Na2CO3 용액에 순도 100% 메탄을 1시간 동안 공급하여 용액을 포화시키고, 반응기의 빈 공간을 메탄으로 가득 채웠다. 그 다음, 반응기의 양쪽에는 음극(Cathode)으로 Pt 전극을 연결하고 양극(Anode)으로 촉매가 균일하게 로딩된 카본지(carbon paper)를 연결하였다. 촉매를 물에 분산시켜 카본지 위에 올린 뒤 건조시키고, 바인더를 사용하여 촉매를 고정하여 카본지 전극에 촉매를 로딩하였으며, 반응기는 밀폐되어 외부와 단절되어 있다.
양전극에 메탄 산화가 가능한 1.0 V 내지 2.0 V의 전압을 인가하여 메탄 산화 반응을 진행하였다. 메탄 산화 반응이 진행되는 동안, 용액의 내부를 스티어링(stirring)하여 전해질과 메탄의 이동을 활발하게 하였다. 또한, 용액 속에 소모된 메탄을 보충하여 산화 반응이 지속될 수 있도록 하였다. 반응기 외부의 조건은 상온 및 상압으로 특별한 제어를 가하지 않았다.
니켈-지르코니아 촉매가 담지된 카본 전극을 메탄이 포화된 용액에 침지하고, 상대전극에 Pt를 침지하고, 두 전극 사이에 전압/전류를 인가하여 메탄 반응을 수행하여 비교예의 촉매와 실시예의 촉매에 대하여 CV를 실시하여, 그 결과를 도 6 및 표 1에 나타내었다.
실시예 비교예
Potential (V) Current(A/g) Potential (V) Current(A/g)
0.200892177 -0.026530098 0.199666058 -0.009517098
0.300878444 -0.004671138 0.299959031 0.005537072
0.40086471 0.005656687 0.399638591 0.008375128
0.500850977 0.026651759 0.499624858 0.015337362
0.600223832 0.070061952 0.599304419 0.032398411
0.700210098 0.096070649 0.698983979 0.033645684
0.800196365 0.215042039 0.798970246 0.080970472
0.900182632 0.481017777 0.898956513 0.146646523
0.998328661 0.827698177 0.997409248 0.187182878
도 6 및 표 1에서 확인할 수 있듯이, 1 V 기준으로 실시예의 다공성 산화니켈-지르코니아 복합 촉매가 비교예의 나노 입자 형태의 산화니켈-지르코니아 복합 촉매에 비해 0.6405 A/g 상승한 산화 전류 값을 나타냄을 확인하였다.
실험예 7. 메탄 또는 질소 포화 전해질에서 산화 전류 값 측정
SCE vs. 0.8 V 이후 CH4 포화 조건에서의 산화 전류는 두 가지로 해석될 수 있다. 첫 번째는 산화니켈의 산화환원쌍 생성에 의해 촉진되는 산소 발생 반응(Oxygen evolution reaction, OER)과 두 번째는 CH4와 그 산화 반응에 의해 생성된 유기화합물의 산화 반응이다.
산소 발생 반응에서는 4개의 OH-가 반응하여 4개의 전자를 생성하는 반응이 일어난다. 따라서, 1개의 Ni 활성 부위 당 1개의 전자가 나오는 반응이다. 반면, CH4의 산화 반응의 경우 1개의 CH4 산화 시 2개의 전자가 나오는 반응이다. N2 포화 조건에서는 반응물이 존재하지 않기 때문에 산소 발생 반응만 일어난다. 반면 CH4 조건에서는 반응물질로서 CH4가 존재하며 이 산화 반응에 의한 추가적인 전류가 발생하고 이 반응은 메탄 산화 반응으로 해석될 수 있다.
메탄 산화물로 확인할 수 있는 물질 중 메탄이 메탄올, 포름알데히드의 경로를 거치며 산화되는 것은 알려져 있다. 에탄올도 비슷한 경로로 아세트알데히드로 산화될 수 있다. 그러나 전기 화학적으로 메탄을 산화시켜 에탄올이 생성되는 반응과 프로판올이 생성되는 반응은 알려져 있지 않다. 예상되는 메커니즘은 메탄 산화 결과로 생성된 포름알데히드와 메탄의 친핵성 반응이다. 포름알데히드가 가진 공명구조와 활성화된 메탄(CH4) 분자가 촉매 표면에서 반응하여 에탄올(EtOH)를 생성한다.
구체적으로, 0.5M NaCO3 용액에 각각 메탄, 비활성기체를 포화시킨 뒤, 15ml 바이알(vial)에서 3전극 전기화학평가를 진행, glassy carbon 전극에 제작 촉매를 60ug 로딩한 뒤, 작업 전극(working electrode)로 사용. 기준 전극(Reference electrode)으로 SCE전극 및 상대 전극(counter electrode)로 Pt를 사용하여 0.2V 내지 1.0V까지 순환전류전압평가하여, 그 결과를 도 7 및 표 2에 나타내었다.
N2 CH4
Voltage(V vs. SCE) Current(A) Voltage(V vs. SCE) Current(A)
0.2009 -0.0265 0.2009 -0.0062
0.3000 -0.0052 0.3000 -0.0004
0.3999 0.0055 0.3999 0.0023
0.4996 0.0265 0.5002 0.0076
0.6002 0.0701 0.6002 0.0204
0.7002 0.0961 0.7002 0.0254
0.8002 0.2150 0.8002 0.0507
0.9002 0.4810 0.9002 0.1169
0.9983 0.8277 0.9986 0.2000
도 7 및 표 2에서 확인할 수 있듯이, 메탄과 질소 포화 조건에서 다공성 산화니켈-지르코니아 복합 촉매의 CV 결과, 메탄 포화 조건에서 질소 포화 조건에 비해 더 높은 전류를 나타냄을 확인하였다.
실험예 8. 산화니켈 및 지르코니아 혼합비에 따른 메탄 산화 반응 비교
도 8에서 확인할 수 있듯이, 산화니켈 및 지르코니아를 9:1, 7:3 및 4:6의 몰비로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매에 대하여 메탄 포화조건에서 CV를 실시하여, 그 결과를 도 8 및 표 3에 나타내었다.
40% (4:6) 70% (7:3) 90% (9:1)
Voltage(V vs. SCE) Current(A/g) Voltage(V vs. SCE) Current(A/g) Voltage(V vs. SCE) Current(A/g)
0.1997 -0.0063 0.2000 -0.0100 0.2009 -0.0265
0.2997 0.0019 0.2997 0.0031 0.3009 -0.0047
0.4003 0.0039 0.4006 0.0061 0.4018 0.0055
0.5002 0.0055 0.5005 0.0116 0.5018 0.0270
0.5996 0.0074 0.5999 0.0164 0.6011 0.0695
0.7002 0.0104 0.7002 0.0216 0.7017 0.0960
0.7996 0.0246 0.7999 0.0564 0.8011 0.2164
0.8996 0.0504 0.8999 0.1778 0.9011 0.4869
0.9974 0.0940 0.9974 0.4392 0.9983 0.8277
도 8 및 표 3에서 확인할 수 있듯이, 니켈 전구체의 비율이 상승함에 따라서 산화 전류가 상승하는 것을 확인하였다. 다공성 산화니켈-지르코니아 복합 촉매에서 니켈의 비율이 높아짐에 따라, 표면에 더 많은 산화니켈을 제공하고 이를 통해 더 많은 CH4의 활성화 부위를 제공하기 때문이다.
실험예 9. 메탄 산화 반응 생성물 분석
9-1. 반응 생성물 분석
산화니켈 및 지르코니아를 9:1의 몰비로 혼합하여 제조한 다공성 산화니켈-지르코니아 복합 촉매를 가지고 메탄 산화 반응 상온 및 상압 조건에서 6시간 반응을 진행한 후에 반응 생성물을 GC/MS로 분석하여, 그 결과를 도 9a 및 표 4에 나타내었다.
생성물 EtOH 2-PrOH MeOH Formaldehyde Acetone
생성양(mg/L) 104.7844 0.49 0.31 0.128 0.015
도 9a 및 표 4에서 확인할 수 있듯이, 메탄 산화 반응 생성물로는 에탄올(EtOH), 2-프로판올(2-PrOH), 메탄올(MeOH), 포름알데히드(Formaldehyde), 아세트알데히드 및 아세톤(Acetone) 등이 검출되었으며, 에탄올이 주요 생성물로서 높은 비율로 검출되었다.
9-2. 에탄올 생성량 측정
전압을 인가한 뒤 시간 별로 액상의 시료를 뽑아낸 뒤, 20ml 헤드스페이스바이알(headspace vial)에 10ml 용액을 담았다. 그 다음, 이를 헤드스페이스 샘플러(Headspace sampler)가 장착된 GC/MS를 사용하여 에탄올의 농도를 측정하여, 그 결과를 도 9b 및 표 5에 나타내었다.
시간(hr) 0 3 6 9 12
생성양 (mg/L) 0 0.62 0.99 1.16 1.54
도 9b 및 표 5에서 확인할 수 있듯이, 반응 시간이 증가할수록 에탄올의 양이 증가함을 확인하였다.
본 발명은 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올 제조방법에 관한 것이다.

Claims (18)

  1. 다공성 산화니켈-지르코니아 복합 촉매.
  2. 제1항에 있엇어, 상기 다공성 산화니켈-지르코니아 복합 촉매는 알코올, 포름알데히드, 아세트알데히드 또는 아세톤 생산용인 것인, 다공성 산화니켈-지르코니아 복합 촉매.
  3. 제2항에 있어서, 상기 알코올은 메탄올, 1-프로판올, 2-프로판올 또는 에탄올인 것인, 다공성 산화니켈-지르코니아 복합 촉매.
  4. 제1항에 있어서, 상기 다공성 산화니켈-지르코니아 복합 촉매는 비표면적(BET)이 1 내지 1000㎡/g인 것인, 다공성 산화니켈-지르코니아 복합 촉매.
  5. 제1항에 있어서, 상기 다공성 산화니켈-지르코니아 복합 촉매는 평균 공극 크기가 50 내지 100 nm 인 것인, 다공성 산화니켈-지르코니아 복합 촉매.
  6. 제1항에 있어서, 상기 다공성 산화니켈-지르코니아 복합 촉매는 공극율이 1 내지 99 %인 것인, 다공성 산화니켈-지르코니아 복합 촉매.
  7. 제1항에 있어서, 상기 복합 촉매는 산화니켈과 지르코니아의 몰비가 9.9:0.1 내지 4.0:6.0인 것인, 복합 촉매.
  8. 상기 다공성 산화니켈-지르코니아 복합 촉매에서 지르코니아는 정방정 상(tetragonal phase) 형태인 것인, 다공성 산화니켈-지르코니아 복합 촉매
  9. 산화니켈 전구체 및 지르코니아 전구체를 고분자 주형틀에 주입하는 주입단계; 및
    고분자 주형틀을 제거하는 소결 단계;
    를 포함하는 다공성 산화니켈-지르코니아 복합 촉매 제조방범.
  10. 제9항에 있어서, 상기 고분자는 폴리메타크릴산 메틸[poly(methyl methacrylate); PMMA], 폴리메타크릴산 부틸[poly(butyl methacrylate); PBMA], 폴리(메타크릴산 메틸)(메타크릴산 부틸)[Poly(methyl methacrylate)(butyl methacrylate), 폴리메타크릴산 히드록시에틸 [poly(hydroxyethyl methacrylate); PHEMA] 및 폴리스티렌(polystyrene)으로 구성된 군으로부터 선택되는 1종 이상의 고분자인 것인, 다공성 산화니켈-지르코니아 복합 촉매 제조방법.
  11. 제9항에 있어서, 상기 산화니켈 전구체 및 지르코니아 전구체는 9.9:0.1 내지 4.0:6.0의 몰비로 주입하는 것인, 다공성 산화니켈-지르코니아 복합 촉매 제조방법.
  12. 제9항에 있어서, 상기 산화니켈 전구체는 아세트산 니켈 염(Acetic acid nickel salt), 프탈로시아닌 니켈 염(Phthalocyanine nickel salt), 프탈로시아닌 테트라설폰산 니켈 콤플렉스 테트라소듐 염(Phthalocyanine-tetrasulfonic acid Nickel complex tetrasodium salt), 2-에틸헥사노익산 니켈 염(2-Ethylhexanoic acid nickel salt), 옥탄산 니켈 염(Octanoic acid nickel salt hydrate), 1,4,8,11,15,18,22,25-옥타부톡시프탈로시아닌 니켈 염(1,4,8,11,15,18,22,25-Octabutoxyphthalocyanine nickel salt), 5,9,14,18,23,27,32,36-옥타부톡시-2,3-나프탈로시아닌 니켈 염(5,9,14,18,23,27,32,36-Octabutoxy-2,3-naphthalocyanine nickel salt) 및 니켈 클로라이드(Nickel chloride)로 구성된 군으로부터 선택되는 1종 이상인 것인, 다공성 산화니켈-지르코니아 복합 촉매 제조방법.
  13. 제9항에 있어서, 상기 지르코니아 전구체는 지르코늄 부톡시드(Zirconium butoxide), 지르코늄 황산염(Zirconium sulfate) 및 지르코늄 아세트산염(Zirconium acetate)으로 구성된 군으로부터 선택되는 1종 이상인 것인, 다공성 산화니켈-지르코니아 복합 촉매 제조방법.
  14. 제9항에 있어서, 상기 다공성 산화니켈-지르코니아 복합 촉매에서 지르코니아는 정방정 상(tetragonal phase) 형태인 것인, 다공성 산화니켈-지르코니아 복합 촉매 제조방법.
  15. 다공성 산화니켈-지르코니아 복합 촉매를 메탄을 포함하는 용액을 접촉시키는 단계를 포함하는 알코올의 제조방법.
  16. 제15항에 있어서, 상기 제조방법은 5 내지 40℃의 온도에서 수행되는 것인, 알코올의 제조방법.
  17. 제15항에 있어서, 상기 제조방법 1 내지 20 bar의 압력에서 수행되는 것인, 알코올의 제조방법.
  18. 제15항에 있어서, 상기 알코올은 메탄올, 1-프로판올, 2-프로판올 또는 에탄올인 것인, 제조방법.
PCT/KR2018/002666 2017-09-22 2018-03-06 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법 WO2019059474A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0122662 2017-09-22
KR1020170122662A KR101979108B1 (ko) 2017-09-22 2017-09-22 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법

Publications (1)

Publication Number Publication Date
WO2019059474A1 true WO2019059474A1 (ko) 2019-03-28

Family

ID=65811378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002666 WO2019059474A1 (ko) 2017-09-22 2018-03-06 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법

Country Status (2)

Country Link
KR (1) KR101979108B1 (ko)
WO (1) WO2019059474A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452973A (zh) * 2022-02-08 2022-05-10 权冉(银川)科技有限公司 一种氢能源催制工艺及其材料方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102561473B1 (ko) * 2019-10-24 2023-08-01 서강대학교 산학협력단 연속 흐름 메탄 전환 방법 및 연속 흐름 메탄 전환 장치
RU2720369C1 (ru) * 2019-11-08 2020-04-29 Ооо "Катализатор-Про" Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004172A (ko) * 2009-07-07 2011-01-13 서울대학교산학협력단 금속산화물 안정화제를 포함한 다공성 지르코니아 담체에 담지된 니켈 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법
KR20120063925A (ko) * 2010-12-08 2012-06-18 한국전자통신연구원 다공성 금속 산화물의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435608B2 (ja) * 1993-01-08 2003-08-11 株式会社村田製作所 多孔質電極の製造方法および燃料電池の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110004172A (ko) * 2009-07-07 2011-01-13 서울대학교산학협력단 금속산화물 안정화제를 포함한 다공성 지르코니아 담체에 담지된 니켈 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법
KR20120063925A (ko) * 2010-12-08 2012-06-18 한국전자통신연구원 다공성 금속 산화물의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BALGIS, R. ET AL.: "Synthesis of Uniformly Porous NiO/ZrO2 Particles", MATERIALS RESEARCH BULLETIN, vol. 46, no. 5, 2011, pages 708 - 715, XP028368149, DOI: doi:10.1016/j.materresbull.2011.01.019 *
SPINNER, N. ET AL.: "Electrochemical Methane Activation and Conversion to Oxygenates at Room Temperature", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 160, no. 11, 2013, pages F1275 - F1281, XP055585102 *
ZHAO, Y. ET AL.: "DRY REFORMING OF METHANE ON NANO-ZIRCONIA SUPPORTED NICKEL CATALYST", DIVISION OF FUEL CHEMISE, vol. 49, no. 1, 2004, pages 135 - 136 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452973A (zh) * 2022-02-08 2022-05-10 权冉(银川)科技有限公司 一种氢能源催制工艺及其材料方法

Also Published As

Publication number Publication date
KR101979108B1 (ko) 2019-05-15
KR20190033918A (ko) 2019-04-01

Similar Documents

Publication Publication Date Title
WO2019059474A1 (ko) 다공성 산화니켈-지르코니아 복합 촉매, 이의 제조방법 및 이를 이용한 알코올의 제조방법
US5516597A (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
AU2008207641B2 (en) Polymerised inorganic-organic precursor solutions
WO2019054557A1 (ko) 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법
WO2016144067A1 (ko) 전극의 제조방법, 이로 제조된 전극, 이를 포함하는 전극구조체, 연료전지 또는 금속공기이차전지, 상기 전지를 포함하는 전지모듈, 및 전극 제조용 조성물
US8741502B2 (en) Nickel oxide powder material for solid oxide type fuel cell and method for producing the same, and anode material, anode and solid oxide type fuel cell using the same
García et al. Electrocatalysis on metal carbide materials
EP2465863A1 (en) Method for producing strongly acidic zirconium particles, method for producing proton conducting material and proton conducting film, proton conducting film, electrode for fuel cell, film-electrode joined body, fuel cell
WO2015016599A1 (ko) 고체 산화물 연료전지 및 이의 제조방법
WO2020085875A1 (ko) 고니켈 함유 탄화수소 개질반응용 페로브스카이트 금속산화물 촉매 및 이의 제조방법
WO2018194263A1 (ko) 연료전지 촉매용 인화철 나노입자 제조방법 및 이에 의해 제조된 인화철 나노입자
WO2017003109A1 (ko) 고체산화물 연료전지용 전해질막의 제조방법, 고체산화물 연료전지용 전해질막, 고체산화물 연료전지 및 연료전지모듈
WO2023128407A1 (ko) 페로브스카이트 금속산화물 산화방지제 및 그의 제조 방법
CN107615545B (zh) 聚合物电解质膜、包括其的膜电极组件和包括该膜电极组件的燃料电池
US9799891B2 (en) Method for producing an air electrode, the electrode thus obtained and its uses
WO2018048236A1 (ko) 수증기 메탄 개질용 니켈계 촉매 성형체 및 이의 이용
WO2013129749A1 (ko) 졸겔법에 의한 중·저온형 고체산화물 연료전지용 공기극 분말 합성방법
US8298984B2 (en) Non-pyrophoric catalyst for water-gas shift reaction and method of preparing the same
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
WO2016052966A1 (ko) 전해질막, 이를 포함하는 연료 전지, 상기 연료 전지를 포함하는 전지 모듈 및 상기 전해질막의 제조방법
KR102108003B1 (ko) 다공성 산화철-지르코니아 복합 촉매의 제조방법, 이에 의해 제조된 다공성 산화철-지르코니아 복합 촉매, 및 이를 이용한 알코올의 제조방법
WO2021261692A1 (ko) 알칼리 기반 프로모터가 도입된 연료극을 포함하는 고체 산화물 연료전지
WO2016052965A2 (ko) 복합금속 산화물 입자 및 이의 제조방법
WO2023101339A1 (ko) 바나듐 전해액 제조용 촉매 및 바나듐 전해액의 제조 방법
WO2023106637A1 (ko) 내구성이 우수한 연료전지용 카본계 촉매 및 그 제조 방법과, 이를 포함하는 고분자 전해질 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859829

Country of ref document: EP

Kind code of ref document: A1