WO2019059405A1 - Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法 - Google Patents

Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法 Download PDF

Info

Publication number
WO2019059405A1
WO2019059405A1 PCT/JP2018/035534 JP2018035534W WO2019059405A1 WO 2019059405 A1 WO2019059405 A1 WO 2019059405A1 JP 2018035534 W JP2018035534 W JP 2018035534W WO 2019059405 A1 WO2019059405 A1 WO 2019059405A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
oam
channel estimation
signal sequence
transmission
Prior art date
Application number
PCT/JP2018/035534
Other languages
English (en)
French (fr)
Inventor
斗煥 李
裕文 笹木
浩之 福本
宏礼 芝
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US16/650,354 priority Critical patent/US10873376B2/en
Priority to CN201880062000.0A priority patent/CN111133696B/zh
Priority to JP2019543143A priority patent/JP7056665B2/ja
Priority to EP18859374.3A priority patent/EP3691152B1/en
Publication of WO2019059405A1 publication Critical patent/WO2019059405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/022Channel estimation of frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods

Definitions

  • the present invention relates to an OAM multiplex communication system, an OAM multiplex transmitting apparatus, an OAM multiplex receiving apparatus, and an OAM multiplex communication method for spatially multiplexing and transmitting a radio signal using Orbital Angular Momentum (OAM) of an electromagnetic wave.
  • OAM Orbital Angular Momentum
  • Non-Patent Document 1 a space multiplex transmission technology of a radio signal using OAM has been reported to improve transmission capacity.
  • the equiphase surface is spirally distributed along the propagation direction around the propagation axis. Since electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotational axis direction, the signals are multiplexed by separating the signals of each OAM mode modulated by different signal sequences at the receiving station. It is possible to transmit.
  • Non-Patent Document 2 a plurality of OAM modes are generated using equally spaced circular array antennas (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are circularly arranged at equal intervals.
  • UCA Uniform Circular Array
  • FIG. 7 shows an example of phase setting of the UCA for generating an OAM mode signal.
  • a signal whose phase rotation direction is opposite to that of the signal of the OAM mode n is referred to as an OAM mode-n.
  • the rotation direction of the phase of the signal of the positive OAM mode is counterclockwise, and the rotation direction of the phase of the signal of the negative OAM mode is clockwise.
  • Wireless communication by space multiplexing can be performed by generating different signal sequences as signals of different OAM modes and simultaneously transmitting the generated signals.
  • the signal to be transmitted in each OAM mode may be generated and synthesized in advance, and a single UCA may be used to transmit a combined signal in each OAM mode, or a plurality of UCAs may be used to perform different UCAs in each OAM mode.
  • a signal of each OAM mode may be transmitted.
  • FIG. 8 shows an example of the phase distribution and signal strength distribution of the OAM multiplexed signal.
  • the phase distribution of the signals in the OAM mode 1 and the OAM mode 2 as viewed from the end face (propagation orthogonal plane) orthogonal to the propagation direction from the transmission side is indicated by arrows.
  • the beginning of the arrow is 0 degrees, the phase changes linearly, and the end of the arrow is 360 degrees. That is, the signal of the OAM mode n propagates with n phases (n ⁇ 360 degrees) of phase rotation in the propagation orthogonal plane.
  • the arrows in the phase distribution of the signals in the OAM modes -1 and -2 are in the opposite direction.
  • the signal in each OAM mode has different signal strength distribution and different position where the signal strength is maximum for each OAM mode.
  • the intensity distribution of the same OAM mode different in code is the same.
  • the position at which the signal strength is maximized is farther from the propagation axis (Non-Patent Document 2).
  • the larger value of the OAM mode is referred to as a higher order mode.
  • the signal of OAM mode 3 is a higher order mode than the signals of OAM mode 0, OAM mode 1 and OAM mode 2.
  • the position where the signal strength is maximized for each OAM mode is indicated by a ring, but the position where the signal strength is maximized as the OAM mode becomes higher becomes farther from the central axis and the propagation distance Accordingly, the beam diameter of the OAM mode multiplexed signal spreads, and the ring indicating the position where the signal strength becomes maximum becomes large for each OAM mode.
  • FIG. 9 shows an example of UCA phase setting for separating an OAM multiplexed signal.
  • the phase of each antenna element of UCA is set to be in the opposite direction to the phase of the antenna element on the transmission side, and the signal of each OAM mode is separated. That is, the phase of each antenna element is set to rotate in the opposite direction to that in the case of FIG. 7, and, for example, in the case of separating an OAM mode 2 signal, each antenna element is rotated clockwise so that the phase rotates twice.
  • Set the phase difference of 90 degrees (0 degrees, 90 degrees, 180 degrees, 270 degrees, 0 degrees, 90 degrees, 180 degrees, 270 degrees) to.
  • the separation process on the receiving side can be performed after batch reception of each OAM mode using a single UCA, or it is possible to receive different OAM mode signals for each UCA using multiple UCAs. It is.
  • OAM multiplex communication transmission capacity can be improved by spatially multiplexing signals of a plurality of OAM modes with a single UCA or spatially multiplexing signals of the same OAM mode with a plurality of UCAs and increasing the number of multiplexing. is there.
  • OAM multiplex communication separation of individual OAM mode signals transmitted from a single UCA is performed according to the configuration shown in FIG. 9, but individual signals from the same OAM mode signals transmitted by a plurality of UCAs , Channel separation signals (referred to as streams) are used. Since this channel estimation signal is a signal for performing channel estimation as a known signal in the transmission apparatus and the reception apparatus, when the overhead of the channel estimation signal becomes large, the transmission capacity of data to be actually sent will be degraded. .
  • FIG. 10 shows a transmission form of a conventional channel estimation signal.
  • each transmission stream transmits its channel estimation signal in order, and does not transmit its own channel estimation signal at the transmission time of the channel estimation signal of another stream.
  • data signals of all streams are transmitted simultaneously.
  • the transmission of the channel estimation signal and the data signal is repeated to perform communication while estimating the channel.
  • control signals such as synchronization signals are also transmitted sequentially for each stream, or simultaneously transmitted in all streams. In the present invention, not the control signal but the channel estimation signal and its estimation process are targeted.
  • the overhead of the channel estimation signal increases as the number of multiplexing increases.
  • FIG. 11 shows an example of conventional channel estimation processing.
  • the receiving antenna unit and the RF unit of the OAM multiplex receiving apparatus include an antenna configuration for OAM reception, a phase converter, a band limiting filter, a down converter, a low noise amplifier, etc. Since the channel estimation processing after digital conversion of the received signal in the unit is targeted, details of the reception antenna unit and the RF unit of the OAM multiplex receiver are omitted.
  • An ADC analog-to-digital converter
  • equalization processing and the like of data and signals of each stream are performed to perform demodulation processing.
  • generally used equalization methods such as ZF (zero forcing) and MMSE (minimum mean square error) methods, MLD (Maximum likelihood decoding), MDD (Minimum distance).
  • MLD Maximum likelihood decoding
  • MDD Minimum distance
  • Demodulation methods generally used in wireless communication systems such as decoding
  • VD Viterbi decoder
  • the present invention relates to a method for generating a channel estimation signal in which overhead of a channel estimation signal does not increase even when the number of multiplexing increases in a wireless communication system using OAM multiplex transmission, and low-load channel estimation using the signal. It is an object of the present invention to provide an OAM multiplex communication system, an OAM multiplex transmitter, an OAM multiplex receiver and an OAM multiplex communication method which provide a processing method.
  • the OAM multiplex transmission apparatus of the present invention sets one transmission estimation stream for channel estimation to each transmission stream to be subjected to OAM multiplex transmission by time shifting, and each transmission stream is time shifted and input. Transmit signal sequences simultaneously.
  • the channel estimation signal sequence uses a signal sequence having zero correlation such as a Golay code.
  • the amount of time shift of each transmission stream is set to be longer than the time of channel response. The value of time shift here is set longer than the maximum value of channel responses of all transmission streams.
  • the second half of the channel estimation signal sequence of each transmission stream is added as CP (cyclic prefix) to the first half of the channel estimation signal sequence.
  • This CP sets a longer channel response of each transmission stream.
  • the channel estimation signal sequence of all transmission streams on the transmitting side is simultaneously received at the output of each reception stream on the receiving side.
  • the output of each received stream can be represented as a cyclic matrix.
  • This circulant matrix is characterized by being able to be decomposed into multiplication of DFT (discrete Fourier transform), diagonal matrix and IDFT (inverse discrete Fourier transform).
  • a signal sequence of zero correlation such as Golay code is characterized in that the correlation becomes zero with respect to time shift, and each transmission stream is generated by time shifting one signal sequence of zero correlation longer than channel response. The characteristics can be used to collectively channel estimate the channel response to each received stream from all transmitted streams.
  • the present invention can realize a method for generating a channel estimation signal in which overhead of a channel estimation signal does not increase even if the multiplexing number increases in an OAM multiplex communication system, and low-load channel estimation processing using the signal,
  • the overhead of the estimation signal can be reduced, and the amount of computation of the channel estimation process can be reduced. Further, in the case of dividing the band into a plurality of bands and performing the OAM communication, the same effect can be obtained even if the number of decomposition bands is increased.
  • the propagation directions of the UCA of the transmitting antenna and the UCA of the receiving antenna coincide with each other using GPS information and other measurement methods, and each UCA is disposed in the propagation orthogonal plane. .
  • FIG. 1 shows a schematic configuration of an OAM multiplex transmitting and receiving apparatus according to the present invention.
  • the OAM multiplex transmission apparatus 10 includes a digital signal processing unit 11, an RF processing unit 12, and a transmission antenna unit 13.
  • the digital signal processing unit 11 performs digital signal processing necessary for communication such as data modulation and stream generation.
  • the RF processing unit 12 performs analog processing such as frequency conversion and RF filtering.
  • the transmission antenna unit 13 transmits a plurality of streams by UCA.
  • the OAM multiplex reception apparatus 20 includes a reception antenna unit 21, an RF processing unit 22, and a digital signal processing unit 23.
  • the receiving antenna unit 21 receives a plurality of OAM mode signals by the UCA.
  • the RF processing unit 22 performs analog processing such as frequency conversion and RF filtering.
  • the digital signal processing unit 23 performs separation processing of a stream multiplexed by equalization processing using ZF, MMSE, or the like.
  • the digital signal processor 11 of the OAM multiplex transmitter 10 When performing channel estimation, the digital signal processor 11 of the OAM multiplex transmitter 10 generates and transmits a known signal, and the digital signal processor 23 of the OAM multiplex receiver 20 uses the information of the known signal. Perform channel estimation.
  • FIG. 2 shows an example of generation of a channel estimation signal according to the first embodiment of the present invention.
  • channel estimation signals for each stream are simultaneously transmitted.
  • each stream continuously transmits a channel estimation signal sequence and a data signal sequence in the time domain.
  • control signals defined by wireless communication standards such as synchronization signals are also continuously transmitted in the time domain.
  • a part of the second half of the channel estimation signal sequence of each stream is added to the first half of the channel estimation signal sequence as a CP (cyclic prefix). This CP is set to be longer than the longest value among the channel responses of each stream.
  • CP cyclic prefix
  • a signal sequence having one zero correlation (hereinafter, referred to as a basic channel estimation signal sequence) is time-shifted and used.
  • time shift means cyclic time shift.
  • the value of this time shift is set longer than the longest value among the channel responses of each stream.
  • the channel estimation signal sequence uses a longer signal sequence than the number of streams to be multiplexed multiplied by the time shift value.
  • a sequence of powers of 2 as a channel estimation signal sequence, such as Golay signals
  • the number of streams to be multiplexed is multiplied by the time shift value and the power of 2 is greater than the length Use a signal sequence with.
  • the length of the channel response of each stream may be measured by a method different from that of the present invention, or a predetermined value may be used.
  • the number of streams to be multiplexed, the type and length of a channel estimation signal sequence, and the value of time shift are assumed to be known for transmission and reception. This may be transmitted by the transmitting side to the receiving side using the control signal described above, or it may be assumed that both the transmitting side and the receiving side are known as a predetermined known value.
  • Example 1 of transmission stream The number of streams to be multiplexed is 4, the time shift value is 2, the basic channel estimation signal string length is 8 (c1, c2, c3, c4, c5, c6, c7, c8), and the CP length is 3
  • the channel estimation signal sequence of each stream is as follows.
  • the underlined part is CP.
  • Signal stream for channel estimation of transmission stream 1 ( C6, c7, c8, c1, c2, c3, c4, c5, c6, c7, c8)
  • Signal stream for channel estimation of transmission stream 2 ( C4, c5, c6, c7, c8, c1, c2, c3, c4, c5, c6)
  • Signal stream for channel estimation of transmission stream 3 ( C2, c3, c4, c5, c6, c7, c8, c1, c2, c3, c4)
  • FIG. 3 shows an example of channel estimation processing according to the first embodiment of the present invention.
  • the operations of the receiving antenna unit 21 and the RF unit 22 of the OAM multiplex receiving apparatus and the ADC of the digital signal processing unit 23 are the same as in the conventional configuration.
  • the feature of the channel estimation process in the present invention is to perform channel estimation from all transmission streams collectively for each reception stream. As a result, compared to the conventional method in which channel estimation is performed for each transmission stream, the amount of computation required for channel estimation can be reduced.
  • each received stream after ADC processing can be expressed as a cyclic matrix.
  • transform transform
  • IDFT inverse discrete Fourier transform
  • the reception signal of reception stream 1 can be expressed as a cyclic matrix.
  • the length of the channel response of the transmission stream i (xi) to the reception stream j (yj) is assumed to be one time sampling length, and is expressed as hij (hij (0), hij (1)).
  • N represents a noise component.
  • Equation (1) can be expressed by matrix operation as equation (2).
  • y1 (k) and n (k) represent the signal and noise component of the k-th time domain after ADC processing of y1.
  • equation (2) can be expressed by one matrix as equation (3).
  • y1 (1), y1 (2), y1 (3) are not used because they are signals corresponding to CP, and only equations y1 (4) to y1 (11) can be expressed as equation (4). It becomes.
  • the first matrix of the right term of equation (4) is a circulant matrix.
  • the cyclic matrix is known to the transmitting side and the receiving side because of the channel estimation signal sequence. Therefore, the receiving side may estimate the unknown channel using the known cyclic matrix and the signal after ADC processing of each stream.
  • channel responses from all streams on the transmitting side to each reception stream can be estimated at once.
  • equation (4) is expressed in equation (5)
  • DFT (8 ⁇ 8) and IDFT (8 ⁇ 8) represent an 8-point DFT matrix and an IDFT matrix.
  • C1, C2,..., C8 are values after the DFT processing of the basic channel signal sequences (c1, c2,..., C8), and thus become known to the receiving side. Since the circulant matrix is decomposed as in equation (5), the DFT processing and the inverse matrix operation of the diagonal matrix are performed on the column vector of [y1 (4), y1 (5), ..., y1 (11)]. If IDFT processing is performed, channel estimation from all transmission streams to reception stream 1 can be performed collectively.
  • the operation amount of DFT processing and IDFT processing is 0 (n log n), and the inverse matrix operation of the diagonal matrix is 0 (n) because of multiplication of scalar values. This is less than 0 (n3) which is an operation amount used for inverse matrix operation.
  • n is the size of the matrix (the number of rows).
  • Example 2 when OMA multiplex communication is performed in a plurality of divided bands, the overhead of the channel estimation signal increases as the number of divided bands increases, and the amount of computation required for channel estimation increases. Solve.
  • FIG. 4 shows an example of performing OAM multiplex communication by dividing bands according to the present invention.
  • the reduction of the overhead of the channel estimation signal sequence and the reduction of the computation amount of the channel estimation will be described when the decomposition band is used.
  • the entire band used for OAM multiplex communication is divided into decomposition bands.
  • these millimeter wave bands use a band 10 to 100 times wider than the conventional microwave band of 6 GHz or less. Due to limitations on the speed of the ADC, it is necessary to use separate bands. For example, when using a 2 GHz band of 28 GHz band for OAM multiplex communication, it is necessary to divide the band into four and use it when using a component such as an ADC that can not handle up to 500 MHz.
  • each transmission stream is configured using a plurality of m small resolution bands.
  • a signal sequence including a channel estimation signal sequence, its CP, and a data signal sequence as shown in FIG. 5 is generated in the baseband (BB) band (details will be described later).
  • the signal sequence generated in this manner is combined with the signal of the RF band as a small resolution band as shown in FIG. 4 and transmitted.
  • each small resolution band in the RF band may insert a guard interval (GI).
  • GI guard interval
  • the number of small resolution bands of patterns other than this example, the setting of the bands, and the band of GI are also assumed.
  • these pieces of information are known between transmission and reception.
  • control information or the like may be used to be known between transmission and reception by means separate from the present invention, or control information or the like may not be used, but even if it is known to be a predetermined value. Good.
  • FIG. 4 shows a so-called direct conversion in which the signal in the BB band is directly converted into the RF band, but in this case, after combining in the intermediate frequency (IF) band, the signal is converted into the RF band. It is also possible to convert heterodyne (heterodyne) systems. For example, signals in the BB band may be combined into 9-11 GHz which is an IF band, and signals in the IF band may be converted into an RF band (27-29 GHz).
  • IF intermediate frequency
  • FIG. 5 shows an example of generation of a channel estimation signal sequence according to a second embodiment of the present invention.
  • a channel estimation signal sequence ij represents a channel estimation signal sequence of the j-th small decomposition band of the i-th transmission stream.
  • it is set as a channel estimation signal sequence of each small resolution band of each transmission stream while applying time shift (cyclic shift).
  • the time shift and the method are set to be longer than the channel responses of the channels of all the small decomposition bands of all the transmission streams, as in the first embodiment. This setting makes it possible to prevent interference of each channel in channel estimation.
  • a CP longer than the time shift is attached.
  • a channel estimation signal sequence is set in each small resolution band of each transmission stream and simultaneously transmitted. This eliminates the need to transmit channel estimation signals at different times in each small resolution band of each transmission stream, and can significantly reduce the overhead of channel estimation signal sequences.
  • FIG. 6 shows an example of channel estimation processing according to the second embodiment of the present invention.
  • the reception antenna unit 21 and the RF unit 22 of the OAM multiplex reception apparatus are basically the same as in the first embodiment, but each reception stream is divided into small resolution bands using a band pass filter (BPF) or the like. And output as the BB band (opposite to FIG. 5).
  • BPF band pass filter
  • BB band opposite to FIG. 5
  • signals of n ⁇ m BB bands are output.
  • n ⁇ m ADCs are provided, and each output is converted into a digital signal.
  • Example 2 of transmission stream The number of streams to be multiplexed is 4, the number of small resolution bands of each stream is 2, the time shift value is 2, the length of the basic channel estimation signal sequence is 16 (c1, c2, ..., c16), all streams
  • the signal sequence for channel estimation of the small resolution band of each stream is as follows.
  • the underlined part is CP.
  • Signal stream for channel estimation of sub-resolution band 1 of transmission stream 1 ( C14, c15, c16, c1, c2, ..., c15, c16)
  • Signal stream for channel estimation of sub-resolution band 1 of transmission stream 2 ( C12, c13, c14, c15, c16, ..., c13, c14)
  • Signal stream for channel estimation of sub-resolution band 1 of transmission stream 3 (C10 , c11, c12, c13, c14, ..., c11, c12)
  • Signal stream for channel estimation of small resolution band 2 of transmission stream 1 ( C6, c7, c8, c9, c10, ..., c7, c8)
  • Signal stream for channel estimation of small resolution band 2 of transmission stream 2 ( C4,
  • signals obtained by multiplexing the signals of the BB bands of the small decomposition bands of the reception stream 1 with respect to the transmission stream example 2 can be represented as a cyclic matrix.
  • received stream 1 an example of received stream 1 is shown here, other received streams can be similarly shown as a cyclic matrix.
  • the length of the channel response of (yjl) from the stream (xik) of the k-th small decomposition band of transmit stream i to the stream of the l-th small decomposition band of receive stream j is one time sampling length Assuming that h jl ik (h jl ik (0), h jl ik (1)).
  • Nij represents a noise component.
  • the channel estimation method on the receiving side is shown below.
  • Equation (8) when the convolution is expressed as a matrix operation as in the first embodiment, the equation (8) is obtained.
  • y1 (k) and n (k) represent the signal and noise component of the kth time domain of y1.
  • equation (8) can be expressed by one matrix as equation (9).
  • y1 (1), y1 (2), y1 (3) are not used because they are signals corresponding to CP, and if only y1 (4) to y1 (19) are expressed as expression (10) Obviously, y1 (1), y1 (2), y1 (3) are not used because they are signals corresponding to CP, and if only y1 (4) to y1 (19) are expressed as expression (10) Obviously, y1 (1), y1 (2), y1 (3) are not used because they are signals corresponding to CP, and if only y1 (4) to y1 (19) are expressed as expression (10) Become.
  • the first matrix of the right term of equation (10) is a circulant matrix.
  • the cyclic matrix is known to the transmitting side and the receiving side because of the channel estimation signal sequence. Therefore, the receiving side may estimate the unknown channel using the known cyclic matrix and the signal after ADC processing of each stream.
  • equation (10) it is possible to collectively estimate channel responses from all streams on the transmitting side to each received stream.
  • a circulant matrix indicates a channel estimation method using a feature that is decomposed by a DFT matrix, a diagonal matrix, and an IDFT matrix.
  • equation (10) is expressed by equation (11).
  • DFT (16 ⁇ 16) and IDFT (16 ⁇ 16) represent a 168-point DFT matrix and an IDFT matrix.
  • C1, C2,..., C16 are values after DFT processing of the basic channel signal sequences (c1, c2,..., C16), and thus become known to the receiving side. Since the circulant matrix is decomposed as in equation (11), the DFT process and the inverse matrix operation of the diagonal matrix are performed on the column vector of [y1 (4), y1 (5), ..., y1 (19)]. If IDFT processing is performed, channel estimation from all transmission streams to reception stream 1 can be performed collectively.
  • the operation amount of DFT processing and IDFT processing is 0 (n log n), and the inverse matrix operation of the diagonal matrix is 0 (n) because of multiplication of scalar values. This is less than 0 (n3) which is an operation amount used for inverse matrix operation.
  • n is the size of the matrix (the number of rows).
  • the third embodiment is an example in which the channel estimation performance is improved while reducing the overhead of the channel estimation signal sequence and the computation amount required for channel estimation using the features of OAM multiplex communication in the first and second embodiments.
  • Received signals of OAM multiplex communication have different reception distributions for each OAM mode. Specifically, as shown in FIG. 8, the place of the peak value of the power is farther from the center as the mode is higher. However, the intensity distribution of the same OAM mode different in code is the same. As a feature of this OAM multiplex communication, interference between the same OAM modes with different codes becomes strong because the strength at the reception time is the same. Also, interference between adjacent modes (for example, OAM mode 1 and OAM mode 2) tends to be strong. The performance of channel estimation can be improved by adjusting the time shift of the signal sequence for channel estimation by using the feature of this OAM multiplex communication to arrange the channel components between modes which may cause strong interference.
  • a channel estimation signal sequence is generated from the basic channel signal sequence and its time shift in the order of OAM modes 1, 3, 2, 0, -1, -3, -2. For example, when the length of the CP is 2 and the time shift value is 1, it is set as follows.
  • the underlined part is CP.
  • Channel estimation signal sequence in OAM mode 1 (basic channel signal sequence): ( C7, c8, c1, c2, c3, c4, c5, c6, c7, c8)
  • Signal sequence for channel estimation in OAM mode 3 (signal sequence for basic channel): ( C6, c7, c8, c1, c2, c3, c4, c5, c6, c7)
  • Channel estimation signal sequence in OAM mode 2 base channel signal sequence): ( C5, c6, c7, c8, c1, c2, c3, c4, c5, c6)
  • Signal sequence for channel estimation in OAM mode 0 (signal sequence for basic channel): ( C4, c5, c6, c7, c8, c1, c2, c3, c4, c5)
  • Signal sequence for channel estimation in OAM mode-1 (signal sequence for basic channel): ( C3, c4, c5, c6, c7, c8, c1, c2, c3, c4,
  • the time shift is set in the order of OAM mode 1, 3, 2, 0, -1, -3, -2 of each UCA. That is, the OAM modes 1, 2, 3, 0, -1, -3, -2 of UCA1, the OAM modes 1, 3, 2, 0, -1, -3, -2 of UCA 2, the OAM mode 1, of UCA 3
  • the time shift is set in the order of 3, 2, 0, -1, -3, -2, and the OAM mode 1, 2, 3, 0, -1, -3, -2 of UCA 4.
  • the time shift is set in the order of OAM modes 1, 3, 2, 0, -1, -3 and -2 of the small resolution band. That is, the OAM modes 1, 3, 2, 0, -1, -3, -2 in the small resolution band 1 and the OAM modes 1, 3, 2, 0, -1, -3, -2 in the small resolution band 2 Set the time shift in order.
  • the time shift is set in the order of OAM modes 1, 3, 2, 0, -1, -3, -2 of each small resolution band of each UCA. That is, the OAM modes 1, 3, 2, 0, -1, -3, -2 of the small resolution band 1 of UCA 1 and the OAM modes 1, 3, 2, 0, -1, -3 of the small resolution band 2 of UCA 1 , -2, OAM modes 1, 2, 3, 0, -1, -3, -2 of small resolution band 1 of UCA 2, OAM modes 1, 3, 2, 0, -1, 2 of small resolution band 2 of UCA 2.
  • the performance of channel estimation can be improved because the effect of interference can be mitigated when the time shift value is set shorter than the maximum channel response.
  • the time shift value is predetermined rather than the maximum channel response, as it allows for some degree of inter-mode interference, ie it is set to reduce adjacent interference in the channel estimation process.
  • the delay By setting the delay to be longer than the threshold, the overhead of the signal sequence for channel estimation can be further reduced.
  • the channel response of OAM mode 1 is for 5 time sampling times and if the fourth and fifth channel responses are smaller than the threshold, then setting the time shift value to 3
  • the fourth and fifth channel responses cause channel estimation interference and degrade the channel estimation performance, but the channel estimation signal sequence next to the signal sequence for channel estimation in OAM mode 1 is the OAM mode Since it is 0 and 2, the influence of the interference can be reduced.
  • OAM Multiplexing Device 11 Digital Signal Processing Unit 12 RF Processing Unit 13 Transmit Antenna Unit (UCA) 20 OAM Multiplexing Receiver 21 Receiving Antenna Unit (UCA) 22 RF processor 23 Digital signal processor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

OAM多重送信装置において、送信対象のデータ信号列の前に、所定の長さをもつゼロ相関のチャネル推定用信号列(基本チャネル推定用信号列)に対して、送信ストリームごとに所定のシフト値により時間シフトした信号列をチャネル推定用信号列として配置し、さらに該チャネル推定用信号列の前半に所定の長さのCPを配置した各送信ストリームをBB帯域で生成する手段と、生成したすべての送信ストリームのBB帯域の信号列をRF帯域に変換し、もしくは、IF帯域に変換してからRF帯域に周波数変換する手段と、周波数変換された複数の送信ストリームを次数が異なる複数のOAMモードの信号に変換し、UCAから空間多重送信する手段とを備える。

Description

OAM多重通信システム、OAM多重送信装置、OAM多重受信装置およびOAM多重通信方法
 本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送するOAM多重通信システム、OAM多重送信装置、OAM多重受信装置およびOAM多重通信方法に関する。
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術が報告されている(非特許文献1)。OAMをもつ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面が螺旋状に分布する。異なるOAMモードをもち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信局において分離することにより、信号を多重伝送することが可能である。
 このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送が行われる(非特許文献2)。
 図7は、OAMモードの信号を生成するためのUCAの位相設定例を示す。
 図7において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)の位相差により生成される。すなわち、OAMモードnの信号は、UCAの位相がn回転(n×360 度)になるように各アンテナ素子の位相を設定して生成する。例えば、8個のアンテナ素子で構成されるUCAは、OAMモードn=2の信号を生成する場合に、図7(3) に示すように位相が2回転するように、各アンテナ素子に反時計回りに 360n/m=90度の位相差(0度,90度, 180度, 270度,0度,90度, 180度, 270度)を設定する。なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。
 異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信ができる。送信側では、各OAMモードで伝送する信号をあらかじめ生成・合成し、単一UCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。
 図8は、OAM多重信号の位相分布と信号強度分布の例を示す。
 図8(1),(2) において、送信側から伝搬方向に直交する端面(伝搬直交平面)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは 360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360 度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。
 各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。
 図8(3) は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。
 図9は、OAM多重信号を分離するためのUCAの位相設定例を示す。
 図9において、受信側では、UCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定し、各OAMモードの信号を分離する。すなわち、各アンテナ素子の位相は、図7の場合と逆方向に回転するように設定し、例えばOAMモード2の信号を分離する場合は、位相が2回転するように、各アンテナ素子に時計回りに90度の位相差(0度,90度, 180度, 270度,0度,90度, 180度, 270度)を設定する。
 受信側の分離処理は、単一UCAを用いて各OAMモードを一括受信してから分離することもできるし、複数のUCAを用いて、UCA毎に異なるOAMモードの信号を受信することも可能である。
J. Wang et al., "Terabit free-space data transmission employing orbital angular momentum multiplexing, "Nature Photonics, Vol.6, pp.488-496, July 2012. Y. Yan et al.,"High-capacity millimeter-wave communications with orbital angular momentum multiplexing,"Nature Commun., vol.5, p.4876, Sep. 2014.
 OAM多重通信では、単一のUCAで複数のOAMモードの信号を空間多重するか、複数のUCAで同一のOAMモードの信号を空間多重し、多重数を上げることで伝送容量の向上が可能である。OAM多重通信では、単一のUCAから送信された個々のOAMモードの信号の分離は図9に示す構成により行うが、複数のUCAで送信された同一のOAMモードの信号から個々の信号(以下、ストリームと称する)を分離するためにチャネル推定用信号が用いられる。このチャネル推定用信号は、送信装置と受信装置における既知信号としてチャネル推定を行うための信号であるため、チャネル推定用信号のオーバヘッドが大きくなると、実際送りたいデータの伝送容量が劣化することになる。
 図10は、従来のチャネル推定用信号の送信形態を示す。
 図10において、各送信ストリームは、それぞれのチャネル推定用信号を順番に送信し、他ストリームのチャネル推定用信号の送信時間では自ストリームのチャネル推定用信号を送信しない。また、すべてのストリームのデータ信号は同時に送信する。このようなチャネル推定用信号とデータ信号の送信を繰り返し、チャネルを推定しながら通信を行う。なお、図10では省略されているが、同期用の信号等のコントロール信号もストリーム毎に順番に送信するか、もしくはすべてのストリームで同時に送信する。本発明では、このコントロール信号ではなく、チャネル推定用信号とその推定処理が対象となる。図10の従来の手法では、多重数が増えるとチャネル推定用信号のオーバヘッドが増加する課題がある。
 図11は、従来のチャネル推定処理例を示す。ここで、UCAは1個でも複数でもよい。
 図11において、OAM多重受信装置の受信アンテナ部とRF部には、OAM受信用のアンテナ構成と位相変換器、帯域制限フィルタ、ダウンコンバータ、低雑音アンプ等が含まれるが、ここではデジタル信号処理部における受信信号のデジタル変換後のチャネル推定処理を対象とするため、OAM多重受信装置の受信アンテナ部とRF部の詳細は省略する。
 ADC(アナログ-デジタル変換器)は、OAM多重受信装置の受信アンテナ部とRF部の出力をデジタル信号にサンプリングする。ここで、従来法では,サンプリング後のすべての受信ストリームの信号に対して、すべての送信ストリームに対するチャネル推定を行うため、多重数が増えるとチャネル推定に要する演算量が増加する課題がある。
 このように、多重数が大きくなるときに、OAM多重通信に適したチャネル推定用信号の設計、およびそのチャネル推定用信号を用いたチャネル推定法が必要となる。また、広帯域でOAM多重通信をする際に、帯域を複数の帯域に分けてOAM多重通信を行う場合も、チャネル推定用信号の設計とそれに相当するチャネル推定法が必要となる。
 なお、チャネル推定用信号を用いたチャネル推定処理後は、各ストリームのデータお信号の等化処理等を行い、復調処理を行う。この等化処理や復調処理の詳細は省略するが、ZF(zero forcing)やMMSE(minimum mean square error) 手法など一般的に使われる等化手法と、MLD(Maximum likelihood decoding) 、MDD(Minimum distance decoding) 、VD(Viterbi decoder)等の無線通信システムにおいて、一般的に用いられる復調手法が想定される。なお、チャネル符号と復号処理等も想定される。
 本発明は、OAM多重伝送を用いた無線通信システムにおいて、多重数が増加してもチャネル推定用信号のオーバヘッドが増加しないチャネル推定用信号の生成手法と、その信号を用いた低負荷のチャネル推定処理手法を提供するOAM多重通信システム、OAM多重送信装置、OAM多重受信装置およびOAM多重通信方法を提供することを目的とする。
 本発明のOAM多重送信装置は、1個のチャネル推定用信号列をOAM多重送信される各送信ストリームに時間シフトをかけて設定し、各送信ストリームはこの時間シフトされて入力されたチャネル推定用信号列を同時に送信する。ここで、チャネル推定用信号列は、ゴレイ符号(Golay code)等のゼロ相関をもつ信号列を用いる。また、各送信ストリームの時間シフト量は、チャネル応答の時間より長い時間で設定する。ここでの時間シフトの値は、すべての送信ストリームのチャネル応答の最大値より長く設定する。
 また、OAM多重受信装置の演算量削減のために、各送信ストリームのチャネル推定用信号列の後半部分をチャネル推定用信号列の前半にCP(cyclic prefix )として付加する。このCPは、各送信ストリームのチャネル応答のより長く設定する。これにより、各送信ストリームのチャネル推定用信号列を同時に送信しても、受信側では各送信ストリームのチャネル推定が可能となり、チャネル推定用信号のオーバヘッドが低減できる。
 なお、送信側がチャネル推定用信号列を同時に送信するため、受信側の各受信ストリームの出力には、送信側のすべての送信ストリームのチャネル推定用信号列が同時に受信される。また、チャネル推定用信号列には、チャネル応答より長いCPが付加されているため、各受信ストリームの出力は巡回行列として表せるようになる。この巡回行列は,DFT(discrete Fourier transform)と対角行列とIDFT(inverse discrete Fourier transform)の掛け算に分解できる特徴がある。また、ゴレイ符号等のゼロ相関の信号列は時間シフトに対して相関がゼロとなる特徴があり、各送信ストリームは、1個のゼロ相関の信号列をチャネル応答より長い時間シフトにより生成された特徴を用いて、すべての送信ストリームからの各受信ストリームへのチャネル応答を一括でチャネル推定することができる。
 また、帯域を複数の帯域に分けてOAM多重伝送を行う場合、分解帯域の数が増加しても同様の解決手段で問題を解決することができる。
 本発明は、OAM多重通信システムにおいて、多重数が増加してもチャネル推定用信号のオーバヘッドが増加しないチャネル推定用信号の生成手法とその信号を用いた低負荷のチャネル推定処理が実現でき、チャネル推定用信号のオーバヘッドが低減できるとともに、チャネル推定処理の演算量を削減することができる。また、帯域を複数の帯域に分けてOAM通信を行う場合、分解帯域の数が増加しても同様の効果をうることができる。
本発明のOAM多重送受信装置の概略構成を示す図である。 本発明における実施例1のチャネル推定用信号の生成例を示す図である。 本発明における実施例1のチャネル推定処理例を示す図である。 本発明による帯域を分けてOAM多重通信を行う例を示す図である。 本発明における実施例2のチャネル推定用信号列の生成例を示す図である。 本発明における実施例2のチャネル推定処理例を示す図である。 OAMモードの信号を生成するためのUCAの位相設定例を示す図である。 OAM多重信号の位相分布と信号強度分布の例を示す図である。 OAM多重信号を分離するためのUCAの位相設定例を示す図である。 従来のチャネル推定用信号の送信形態を示す図である。 従来のチャネル推定処理例を示す図である。
 以下に示す実施例では、送信アンテナのUCAと受信アンテナのUCAの中心は、GPS情報やその他計測手法を用いてそれぞれの伝搬方向が一致し、各UCAは伝搬直交平面に配置されるものとする。
 図1は、本発明のOAM多重送受信装置の概略構成を示す。
 図1において、OAM多重送信装置10は、デジタル信号処理部11、RF処理部12、送信アンテナ部13を備える。デジタル信号処理部11は、データの変調やストリーム生成などの通信に必要なデジタル信号処理を行う。RF処理部12は、周波数変換、RFフィルタリングなどのアナログ処理を行う。送信アンテナ部13は、UCAにより複数のストリームを送信する。OAM多重受信装置20は、受信アンテナ部21、RF処理部22、デジタル信号処理部23を備える。受信アンテナ部21は、UCAにより複数のOAMモードの信号を受信する。RF処理部22は、周波数変換、RFフィルタリングなどのアナログ処理を行う。デジタル信号処理部23は、ZFやMMSE手法などによる等化処理により多重されたストリームの分離処理を行う。チャネル推定を行う際には、OAM多重送信装置10のデジタル信号処理部11は、既知信号を生成し送信し、OAM多重受信装置20のデジタル信号処理部23は、この既知信号の情報を用いてチャネル推定を行う。
(実施例1)
 図2は、本発明における実施例1のチャネル推定用信号の生成例を示す。
 図2において、各ストリームのチャネル推定用信号は、同時に送信される。また、各ストリームは、チャネル推定用信号列とデータ信号列を時間領域で連続して送信する。図示しないが、同期信号などの無線通信規格にて定められているコントロール信号も時間領域で連続して送信される。なお、各ストリームのチャネル推定用信号列の後半の一部を、CP(cyclic prefix )としてチャネル推定用信号列の前半に付けて送信する。このCPは、各ストリームのチャネル応答の長さの中で最も長い値より長く設定する。
 また、各ストリームのチャネル推定用信号列は、1個のゼロ相関をもつ信号列(以下、基本チャネル推定用信号列と称する)を時間シフトして用いる。ここでの、時間シフトは、巡回的な時間シフトを意味する。また、この時間シフトの値は、各ストリームのチャネル応答の長さの中で最も長い値より長く設定する。また、チャネル推定用信号列は、多重するストリームの数に時間シフトの値をかけ算した値より、長い信号列を用いる。ゴレイ信号などのように、2のべき乗の長さをもつ信号列をチャネル推定用信号列として用いる場合は、多重するストリームの数に時間シフトの値をかけ算した値より大きい2のべき乗の長さを持つ信号列を用いる。ここで、各ストリームのチャネル応答の長さは、本発明と別途の手法で測定してもよいし、予め決めた値を用いることも可能である。また、多重するストリームの数、チャネル推定用信号列の種類および長さ、時間シフトの値は、送受信の既知であるとする。これは、前記のコントロール信号を用いて、送信側が受信側に伝えてもよいし、予め決められた既知の値として、送信側と受信側が両方既知であると想定してもよい。
(送信ストリームの例1)
 多重するストリームの数が4、時間シフトの値が2、基本チャネル推定用信号列の長さが8(c1,c2,c3,c4,c5,c6,c7,c8 )、CPの長さが3の場合に、各ストリームのチャネル推定用信号列は以下となる。下線部はCPである。
 送信ストリーム1のチャネル推定用信号列:
  (c6,c7,c8,c1,c2,c3,c4,c5,c6,c7,c8)
 送信ストリーム2のチャネル推定用信号列:
  (c4,c5,c6,c7,c8,c1,c2,c3,c4,c5,c6)
 送信ストリーム3のチャネル推定用信号列:
  (c2,c3,c4,c5,c6,c7,c8,c1,c2,c3,c4)
 送信ストリーム4のチャネル推定用信号列:
  (c8,c1,c2,c3,c4,c5,c6,c7,c8,c1,c2)
 図3は、本発明における実施例1のチャネル推定処理例を示す。
 図3において、OAM多重受信装置の受信アンテナ部21とRF部22と、デジタル信号処理部23のADCの動作は、従来構成と同様である。本発明におけるチャネル推定処理の特徴は、すべての送信ストリームからチャネル推定を受信ストリームごとに一括で行う。これにより、送信ストリームごとにチャネル推定を行う従来法に比べて、チャネル推定に要する演算量を軽減できる。また、送信側がゼロ相関を持つ信号列を時間シフトをしながら各送信ストリームのチャネル推定用信号列として送信する場合は、ADC処理後の各受信ストリームを巡回行列として表現できるため、DFT(discrete Fourier transform)とIDFT(inverse discrete Fourier transform)を用いることで、さらなる演算量の軽減が可能となる。
 次に、上記の送信ストリームの例の場合、受信ストリーム1の受信信号が巡回行列として表せることを示す。以下、受信ストリーム1の例を示すが、他の受信ストリームも同様に巡回行列として示すことができる。ここで、送信ストリームi(xi )から受信ストリームj(yj )のチャネル応答の長さは、1個の時間サンプリングの長さと想定し、hij (hij(0),hij(1))と表す。Nは、雑音成分を表す。
Figure JPOXMLDOC01-appb-M000001
 ここで、*はコンボリューション(convolution) を表す。コンボリューションは、行列演算として表現できるため、式(1) は式(2)のように行列演算で表せる。
Figure JPOXMLDOC01-appb-M000002
 式(2) のy1(k)とn(k) は、y1 のADC処理後のk番目の時間領域の信号と雑音成分を表す。
 また、チャネル推定用信号が、同一の基本チャネル推定用信号の時間シフトである特徴を活かし、式(2) を式(3) のように1個の行列で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、y1(1), y1(2), y1(3)は、CPに相当する信号のため使わずに、y1(4)からy1(11) のみを表す式にすると、式(4) となる。
Figure JPOXMLDOC01-appb-M000004
 ここで、式(4) の右項の1番目の行列は、巡回行列となる。また、巡回行列は、チャネル推定用信号列のため、送信側と受信側に既知である。従って、受信側は、既知の巡回行列と各ストリームのADC処理後の信号を用いて、未知のチャネルを推定すればよい。特に、本発明では、式(4) に示すように、送信側のすべてのストリームから各受信ストリームへのチャネル応答を一括で推定することができる。
 次に、巡回行列はDFT行列と対角行列とIDFT行列で分解される特徴を用いたチャネル推定法について説明する。まず、式(4) を式(5) に表す
Figure JPOXMLDOC01-appb-M000005
 ここで、DFT(8×8)とIDFT(8×8)は、8 ポイントのDFT行列とIDFT行列を表す。また、C1,C2,…, C8 は、基本チャネル用信号列(c1,c2,…, c8 )のDFT処理後の値であるため、受信側に既知となる。式(5) のように、巡回行列は分解されるため、 [y1(4), y1(5), …, y1(11)]の列ベクトルに、DFT処理と対角行列の逆行列演算とIDFT処理をすれば、すべての送信ストリームから受信ストリーム1へのチャネル推定が一括で可能となる。DFT処理とIDFT処理の演算量は0(nlogn) であり、対角行列の逆行列演算は、スカラー値の掛け算のため0(n) である。これは、逆行列演算に用途する演算量である0(n3)より少なくなる。ここでnは、行列のサイズ(行数)である。
 このように、本発明によりチャネル推定に要する演算量を大きく軽減することが可能となる。また、上記の説明は簡単な例であるが、一般的な値をもつケースの場合も同様に適用できる。
(実施例2)
 実施例2は、帯域を複数に分けた分解帯域でOMA多重通信を行う場合に、分解帯域の増加に伴いチャネル推定用信号のオーバヘッドが増加し、チャネル推定に必要な演算量が増加する課題を解決する。
 図4は、本発明による帯域を分けてOAM多重通信を行う例を示す。ここでは、分解帯域を用いる場合に、チャネル推定用信号列のオーバヘッドの軽減と、チャネル推定の演算量の軽減について説明する。
 図4において、OAM多重通信に使われる全帯域が分解帯域に分けられる。OAM多重通信を28GHz, 60GHz、73GHzやこれらより高い周波数帯で使う場合、これらのミリ波の帯域は、従来の6GHz以下のマイクロ波の帯域より10倍から 100倍程度の広い帯域を使うため、ADCの速度の限界などにより帯域を分けて使う必要が生じる。例えば、28GHz帯の2GHzの帯域をOAM多重通信に使う際に、 500MHzまでした対応できないADC等の部品を使う場合には、帯域を4分解して使う必要がある。
 そのため、各送信ストリームは、複数m個の小分解帯域を用いて構成される。各小分解帯域には、ベースバンド(BB)帯域で、図5で示すようにチャネル推定用信号列、そのCP、データ信号列を入れた信号列を生成する(詳しくは後述)。このように生成された信号列を、図4のようにRF帯の信号に小分解帯域として合波し、送信する。
 ここで、BB帯域の信号列では、実施例1で説明したように、通信規格の必要によりコントロール信号を入力することも想定される。また、RF帯域での各小分解帯域の合波はガードインターバル(GI)を挿入してもよい。例えば、2GHzのRF帯域幅(27~29GHz)を4分解し、小分解帯域ごとに 100MHzのGIを入れる場合に、小分解帯域は、 425MHz(=(2000-300)/4) ごとに割り当てることも想定される。なお、この例以外のパターンの小分解帯域の数、その帯域、GIの帯域の設定も想定される。また、これらの情報は、送受信間で既知であるとする。例えば、コントロール情報等を用いて、本発明と別途の手段で、送受信間で既知になってもよいし、コントロール情報等は用いないが、あらかじめ決められた値であることで既知であるとしてもよい。
 また、図4では、BB帯域の信号がそのままRF帯域に変換されるいわゆる直接変換(direct conversion )この例を示したが、中間周波数(IF)帯で合波をしてから、RF帯に変換するヘテロダイン(heterodyne)系の変換にしてもよい。例えば、BB帯の信号をIF帯域である9~11GHzに合波し、このIF帯域の信号をRF帯(27~29GHz)に変換してもよい。
 図5は、本発明における実施例2のチャネル推定用信号列の生成例を示す。
 図5において、チャネル推定用信号列ijは、i番目の送信ストリームのj番目の小分解帯域のチャネル推定用信号列を表す。ここでは、1個のチャネル推定用信号列を用いて、時間シフトをかけながら(巡回シフト)、各送信ストリームの各小分解帯域のチャネル推定用信号列として設定する。時間シフトと方法は、実施例1と同様に、すべての送信ストリームのすべての小分解帯域のチャネルのチャネル応答より長い値として設定する。この設定により、チャネル推定に各チャネルの干渉を防ぐことが可能となる。また、チャネル推定用信号列の長さは、各送信ストリームの各小分解帯域のチャネル推定用信号列が時間シフトに設定しても、1個のゴレイ符号等のゼロ相関をもつチャネル推定用信号列で対応できるような長さで設定する。例えば、4個の送信ストリームを3個の小分解帯域に分けてOAM多重通信を行う場合で、時間シフトの値が2である場合、チャネル推定用信号列は、4×3×2(=24)より長く設定する。2のべき乗の長さにする場合は、この長さより大きい2のべき乗の値(例えば、32等)とする。
 また、実施例1のように、時間シフトより長いCPを付ける。このように各送信ストリームの各小分解帯域にチャネル推定用信号列を設定し、同時に送信する。これにより、各送信ストリームの各小分解帯域に別の時間でチャネル推定用信号を送信する必要性がなくなり、チャネル推定用信号列のオーバヘッドが大幅に削減できる
 図6は、本発明における実施例2のチャネル推定処理例を示す。
 図6において、OAM多重受信装置の受信アンテナ部21とRF部22は、基本的には実施例1と同様であるが、各受信ストリームを帯域通過フィルタ(BPF)等を用いて、小分解帯域に分けてBB帯域として出力する(図5と逆)。例えば、受信ストリームがn個で、小分解帯域の数がm個である場合、n×m個のBB帯域の信号を出力する。ADCもn×m個備え、それぞれの出力をデジタル信号に変換する。
 実施例2では、大きい演算量を要するn×m個のチャネル推定を行わずに、受信ストリームのすべての小分解帯域の信号をまとめて、すべての送信ストリームの小分解帯域の信号から、各受信ストリームのすべての小分解帯域へのチャネル推定を一括で行う。これにより、受信側のチャネル推定の演算量の軽減が可能となる。
(送信ストリームの例2)
 多重するストリームの数は4個、各ストリームの小分解帯域は2個、時間シフトの値が2、基本チャネル推定用信号列の長さが16(c1,c2,…, c16)、すべてのストリームのすべての小分解帯域のもっとも長いチャネル応答は1個のサンプル分の長さ、CPの長さは3の場合に、各ストリームの小分解帯域のチャネル推定用信号列は以下となる。下線部はCPである。
 送信ストリーム1の小分解帯域1のチャネル推定用信号列:
  (c14, c15, c16, c1, c2,…, c15, c16) 
 送信ストリーム2の小分解帯域1のチャネル推定用信号列:
  (c12, c13, c14, c15, c16, …, c13, c14) 
 送信ストリーム3の小分解帯域1のチャネル推定用信号列:
  (c10, c11, c12, c13, c14, …, c11, c12) 
 送信ストリーム4の小分解帯域1のチャネル推定用信号列:
  (c8, c9, c10, c11, c12, …, c9, c10) 
 送信ストリーム1の小分解帯域2のチャネル推定用信号列:
  (c6, c7, c8, c9, c10, …, c7, c8)
 送信ストリーム2の小分解帯域2のチャネル推定用信号列:
  (c4, c5, c6, c7, c8, …, c5, c6)
 送信ストリーム3の小分解帯域2のチャネル推定用信号列:
  (c2, c3, c4, c5, c6, …, c3, c4)
 送信ストリーム4の小分解帯域2のチャネル推定用信号列:
  (c16, c1, c2, c3, c4, …, c1, c2)
 次に、送信ストリームの例2に対する受信ストリーム1の各小分解帯域のBB帯域の信号を合波した信号が、巡回行列として表せることを示す。ここでは受信ストリーム1の例を示すが、他の受信ストリームも同様に巡回行列として示すことができる。ここで、送信ストリームiのk番目の小分解帯域のストリーム(xik)から受信ストリームjのl番目の小分解帯域のストリームへ(yjl)のチャネル応答の長さは、1個の時間サンプリングの長さと想定し、hjl ik(hjl ik(0),hjl ik(1) )と表す。また、Nijは、雑音成分を表す。
 以下、受信側のチャネル推定法を示す。
Figure JPOXMLDOC01-appb-M000006
 ここで、図6で示したように、受信ストリーム1のすべての小分解帯域のストリームの信号を合波すると(y1 と表記)、式(7) となる。
Figure JPOXMLDOC01-appb-M000007
 ここで、実施例1のように、コンボリューションを行列演算として表現すると、式(8) が得られる。
Figure JPOXMLDOC01-appb-M000008
 式(8) のy1(k)とn(k) は、y1 のk番目の時間領域の信号と雑音成分を表す。
 また、チャネル推定用信号が、同一の基本チャネル推定用信号の時間シフトである特徴を活かし、式(8) を式(9)のように1個の行列で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、y1(1), y1(2), y1(3)は、CPに相当する信号のため使わずに、y1(4)からy1(19) のみを表す式にすると式(10)となる。
Figure JPOXMLDOC01-appb-M000010
 ここで、式(10)の右項の1番目の行列は、巡回行列となる。また、巡回行列は、チャネル推定用信号列のため、送信側と受信側に既知である。従って、受信側は、既知の巡回行列と各ストリームのADC処理後の信号を用いて、未知のチャネルを推定すればよい。特に、本発明では、式(10)が示すように、送信側のすべてのストリームから各受信ストリームへのチャネル応答を一括で推定することができる。
 次に、巡回行列はDFT行列と対角行列とIDFT行列で分解される特徴を用いたチャネル推定法を示す。まず、式(10)を式(11)に表す。
Figure JPOXMLDOC01-appb-M000011
 ここで、DFT(16×16)とIDFT(16×16)は168 ポイントのDFT行列とIDFT行列を表す。また、C1,C2,…, C16は、基本チャネル用信号列(c1,c2,…, c16)のDFT処理後の値であるため、受信側に既知となる。式(11)のように、巡回行列は分解されるため、 [y1(4), y1(5), …, y1(19)]の列ベクトルに、DFT処理と対角行列の逆行列演算とIDFT処理をすれば、すべての送信ストリームから受信ストリーム1へのチャネル推定が一括で可能となる。DFT処理とIDFT処理の演算量は0(nlogn) であり、対角行列の逆行列演算は、スカラー値の掛け算のため0(n) である。これは、逆行列演算に用途する演算量である0(n3)より少なくなる。ここでnは、行列のサイズ(行数)である。
 このように、本発明によりチャネル推定に要する演算量を大きく軽減することが可能となる。また、上記の説明は簡単な例であるが、一般的な値をもつケースの場合も同様に適用できる。
(実施例3)
 実施例3は、実施例1と実施例2において、さらにOAM多重通信の特徴を用いて、チャネル推定用信号列のオーバヘッドとチャネル推定に要する演算量を減らしつつ、チャネル推定の性能を向上する例を示す。
 OAM多重通信の受信信号は、OAMモードごとに受信分布が異なる。具体的には、図8に示すように、高次モードになるほど電力のピーク値の場所が中心から遠くなる。ただし、符号が異なる同じOAMモードの強度分布は同じである。このOAM多重通信の特徴上、符号が異なる同じOAMモード間は、受信時点での強度が同じであるために干渉が強くなる。また、隣接モード間(例えば、OAMモード1とOAMモード2)の干渉も強くなる傾向がある。このOAM多重通信の特徴を生かし、チャネル推定用信号列の時間シフトを調整し、干渉が強くなりうるモード間のチャネル成分を遠く配置するようにすることで、チャネル推定の性能改善ができる。
 ここでは、OAM多重送受信装置において、1個のUCAでOAMモード-3,-2,-1,0,1,2,3を用いる場合(7多重)を示す。
 OAMモード1,3,2,0,-1,-3,-2の順に、基本チャネル用信号列とその時間シフトによりチャネル推定用信号列を生成する。例えば、CPの長さが2、時間シフト値が1の場合に以下のように設定する。下線部はCPである。
 OAMモード1のチャネル推定用信号列(基本チャネル用信号列) :
  (c7,c8,c1,c2,c3,c4,c5,c6,c7,c8)
 OAMモード3のチャネル推定用信号列(基本チャネル用信号列) :
  (c6,c7,c8,c1,c2,c3,c4,c5,c6,c7)
 OAMモード2のチャネル推定用信号列(基本チャネル用信号列) :
  (c5,c6,c7,c8,c1,c2,c3,c4,c5,c6)
 OAMモード0のチャネル推定用信号列(基本チャネル用信号列) :
  (c4,c5,c6,c7,c8,c1,c2,c3,c4,c5)
 OAMモード-1のチャネル推定用信号列(基本チャネル用信号列) :
  (c3,c4,c5,c6,c7,c8,c1,c2,c3,c4)
 OAMモード-3のチャネル推定用信号列(基本チャネル用信号列) :
  (c2,c3,c4,c5,c6,c7,c8,c1,c2,c3)
 OAMモード-2のチャネル推定用信号列(基本チャネル用信号列) :
  (c1,c2,c3,c4,c5,c6,c7,c8,c1,c2)
 このように設定することにより、受信側にて、干渉が強くなるモード間のチャネル成分が遠く配置される。例えば、式(5) のhの列ベクトルにおける距離が遠くなるので、干渉の影響が抑えられて性能改善ができる。
 次に、OAM多重送受信装置において、4個のUCAでOAMモード-3,-2,-1,0,1,2,3を用いる場合(28多重)を示す。
 各UCAのOAMモード1,3,2,0,-1,-3,-2の順に、時間シフトを設定する。すなわち、UCA1のOAMモード1,3,2,0,-1,-3,-2、UCA2のOAMモード1,3,2,0,-1,-3,-2、UCA3のOAMモード1,3,2,0,-1,-3,-2、UCA4のOAMモード1,3,2,0,-1,-3,-2の順に時間シフトを設定する。
 次に、OAM多重送受信装置において、1個のUCAでOAMモード-3,-2,-1,0,1,2,3を用いる場合で、2個の小分解帯域を用いる場合(7多重、ストリーム毎に2小分解帯域)を示す。
 小分解帯域のOAMモード1,3,2,0,-1,-3,-2の順に、時間シフトを設定する。すなわち、小分解帯域1のOAMモード1,3,2,0,-1,-3,-2、小分解帯域2のOAMモード1,3,2,0,-1,-3,-2の順に時間シフトを設定する。
 次に、OAM多重送受信装置において、2個のUCAでOAMモード-3,-2,-1,0,1,2,3を用いる場合で、2個の小分解帯域を用いる場合(14多重、ストリーム毎に2小分解帯域)を示す。
 各UCAの各小分解帯域のOAMモード1,3,2,0,-1,-3,-2の順に、時間シフトを設定する。すなわち、UCA1の小分解帯域1のOAMモード1,3,2,0,-1,-3,-2、UCA1の小分解帯域2のOAMモード1,3,2,0,-1,-3,-2、UCA2の小分解帯域1のOAMモード1,3,2,0,-1,-3,-2、UCA2の小分解帯域2のOAMモード1,3,2,0,-1,-3,-2の順に時間シフトを設定する。
 このようにすることで、時間シフト値が最大チャネル応答より短く設定される場合の干渉の影響を軽減ができるため、チャネル推定の性能が改善できる。言い換えると、ある程度のモード間の干渉を許容してもよくなるため、すなわちチャネル推定処理における隣の干渉が少なくなるように設定されているため、時間シフト値を最大チャネル応答ではなく、あらかじめ決められた閾値より大きい遅延の長さより長く設定することで、さらにチャネル推定用の信号列のオーバヘッドを軽減できる。例えば、OAMモード1のチャネル応答が、5個の時間サンプリングの時間分あったとする場合、かつ、4個目と5個目のチャネル応答が閾値より小さい場合、時間シフト値を3と設定すると、4個目と5個目のチャネル応答によりチャネル推定への干渉が生じ、チャネル推定の性能が低下するが、OAMモード1のチャネル推定用の信号列の隣のチャネル推定用信号列は、OAMモード0と2であったため、その干渉の影響が軽減できる。
 10 OAM多重送信装置
 11 デジタル信号処理部
 12 RF処理部
 13 送信アンテナ部(UCA)
 20 OAM多重受信装置
 21 受信アンテナ部(UCA)
 22 RF処理部
 23 デジタル信号処理部

Claims (8)

  1.  複数のアンテナ素子を等間隔に円形配置したUCA(等間隔円形アレーアンテナ)を用い、OAM(電磁波の軌道角運動量)モードの信号を空間多重送信するOAM多重送信装置において、
     送信対象のデータ信号列の前に、所定の長さをもつゼロ相関のチャネル推定用信号列(基本チャネル推定用信号列)に対して、送信ストリームごとに所定のシフト値により時間シフトした信号列をチャネル推定用信号列として配置し、さらに該チャネル推定用信号列の前半に所定の長さのCP(cyclic prefix )を配置した各送信ストリームをBB(ベースバンド)帯域で生成する手段と、
     前記生成したすべての送信ストリームのBB帯域の信号列をRF(無線周波数)帯域に変換し、もしくは、IF(中間周波数)帯域に変換してからRF帯域に周波数変換する手段と、
     前記周波数変換された複数の送信ストリームを次数が異なる複数のOAMモードの信号に変換し、前記UCAから空間多重送信する手段と
     を備えたことを特徴とするOAM多重送信装置。
  2.  請求項1に記載のOAM多重送信装置において、
     前記空間多重送信する帯域を小分解帯域に分けて無線通信を行う構成とし、
     前記各送信ストリームをBB帯域で生成する手段は、1個の基本チャネル推定用信号列をすべての送信ストリームのすべての小分解帯域に時間シフトをかけてチャネル推定用信号列として設定する構成であり、
     前記周波数変換する手段は、前記すべての小分解帯域をRF帯域に合波して全体の帯域になるように変換し、もしくは、IF帯域に変換してからRF帯域に変換する構成である ことを特徴とするOAM多重送信装置。
  3.  複数のアンテナ素子を等間隔に円形配置したUCA(等間隔円形アレーアンテナ)を用い、空間多重伝送されたOAM(電磁波の軌道角運動量)モードの信号を受信するOAM多重受信装置において、
     前記UCAに受信した前記OAMモードの信号を入力し、各次数のOAMモードの受信ストリームに分離し、この受信ストリームごとにRF(無線周波数)帯域からBB(ベースバンド)帯域に変換し、もしくは、IF(中間周波数)帯域に周波数変換してからBB帯域に周波数変換する手段と、
     前記周波数変換された各受信ストリームの信号列をデジタル信号に変換し、所定の長さのDFT処理を行い、DFT処理後の値に、所定の長さをもつゼロ相関のチャネル推定用信号列(基本チャネル推定用信号列)のDFT処理の長さのFFT処理を行った値の逆数を対角成分としてもつ対角行列の掛け算を行い、その結果にDFT処理と同じ長さをもつIDFT処理を行い、その結果を所定の時間シフト量ごとに分けたすべての送信ストリームから各受信ストリームへのチャネル応答の推定値として用いるチャネル推定手段と
     を備えたことを特徴とするOAM多重受信装置。
  4.  請求項3に記載のOAM多重受信装置において、
     空間多重送信する帯域を小分解帯域に分けて無線通信を行う構成とし、
     前記周波数変換する手段は、前記各受信ストリームの各小分解帯域がBB帯域になるように変換し、もしくは、IF帯域に変換してからBB帯域に変換する構成であり、
     前記チャネル推定手段は、前記受信ストリームのすべての小分解帯域を合波し、その信号に、DFT処理、対角行列の掛け算、IDFT処理を行った結果を所定の時間シフト量ごとに分け、すべての送信ストリームの各小分解帯域から各受信ストリームへの各小分解帯域チャネル応答の推定値として用いる構成である
     ことを特徴とするOAM多重受信装置。
  5.  請求項1のOAM多重送信装置のUCAと請求項3のOAM多重受信装置のUCAを対向させ、複数のOAMモードの信号を空間多重伝送することを特徴とするOAM多重通信システム。
  6.  請求項5に記載のOAM多重通信システムにおいて、
     前記OAM多重送信装置と前記OAM多重受信装置との間で、符号が異なる同じOAMモードまたは隣接するOAMモードの信号のチャネル成分が遠い配置になるようにチャネル推定の時間シフトを調整してOAMモード間の干渉を最少化する
     ことを特徴とするOAM多重通信システム。
  7.  複数のアンテナ素子を等間隔に円形配置したUCA(等間隔円形アレーアンテナ)を用い、OAM(電磁波の軌道角運動量)モードの信号を空間多重伝送するOAM多重通信方法において、
     OAM多重送信装置は、
     送信対象のデータ信号列の前に、所定の長さをもつゼロ相関のチャネル推定用信号列(基本チャネル推定用信号列)に対して、送信ストリームごとに所定のシフト値により時間シフトした信号列をチャネル推定用信号列として配置し、さらに該チャネル推定用信号列の前半に所定の長さのCPを配置した各送信ストリームをBB(ベースバンド)帯域で生成するステップと、
     前記生成したすべての送信ストリームのBB帯域の信号列をRF(無線周波数)帯域に変換し、もしくは、IF(中間周波数)帯域に変換してからRF帯域に周波数変換するステップと、
     前記周波数変換された複数の送信ストリームを次数が異なる複数のOAMモードの信号に変換し、前記UCAから空間多重送信するステップと
     を有し、
     OAM多重受信装置は、
     前記UCAに受信した前記OAMモードの信号を入力し、各次数のOAMモードの受信ストリームに分離し、この受信ストリームごとにRF帯域からBB帯域に変換し、もしくは、IF帯域に周波数変換してからBB帯域に周波数変換するステップと、
     前記周波数変換された各受信ストリームの信号列をデジタル信号に変換し、所定の長さのDFT処理を行い、DFT処理後の値に、所定の長さをもつゼロ相関のチャネル推定用信号列(基本チャネル推定用信号列)のDFT処理の長さのFFT処理を行った値の逆数を対角成分としてもつ対角行列の掛け算を行い、その結果にDFT処理と同じ長さをもつIDFT処理を行い、その結果を所定の時間シフト量ごとに分けたすべての送信ストリームから各受信ストリームへのチャネル応答の推定値として用いてチャネル推定を行うステップと
     を有することを特徴とするOAM多重通信方法。
  8.  請求項7に記載のOAM多重通信方法において、
     前記空間多重送信する帯域を小分解帯域に分けて無線通信を行う構成とし、
     前記各送信ストリームをBB帯域で生成するステップは、1個の基本チャネル推定用信号列をすべての送信ストリームのすべての小分解帯域に時間シフトをかけてチャネル推定用信号列として設定し、
     前記OAM多重送信装置の周波数変換するステップは、前記すべての小分解帯域をRF帯域に合波して全体の帯域になるように変換し、もしくは、IF帯域に変換してからRF帯域に変換し、
     前記OAM多重受信装置の周波数変換するステップは、前記各受信ストリームの各小分解帯域がBB帯域になるように変換し、もしくは、IF帯域に変換してからBB帯域に変換し、
     前記チャネル推定を行うステップは、前記受信ストリームのすべての小分解帯域を合波し、その信号に、DFT処理、対角行列の掛け算、IDFT処理を行った結果を所定の時間シフト量ごとに分け、すべての送信ストリームの各小分解帯域から各受信ストリームへの各小分解帯域チャネル応答の推定値として用いる
     ことを特徴とするOAM多重通信方法。
PCT/JP2018/035534 2017-09-25 2018-09-25 Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法 WO2019059405A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/650,354 US10873376B2 (en) 2017-09-25 2018-09-25 OAM multiplexing communication system, OAM multiplexing transmission device, OAM multiplexing receiving device, and OAM multiplexing communication method
CN201880062000.0A CN111133696B (zh) 2017-09-25 2018-09-25 Oam多路复用通信方法和系统、发送装置以及接收装置
JP2019543143A JP7056665B2 (ja) 2017-09-25 2018-09-25 Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法
EP18859374.3A EP3691152B1 (en) 2017-09-25 2018-09-25 Oam multiplexing communication system, oam multiplexing transmission device, oam multiplexing receiving device, and oam multiplexing communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-183848 2017-09-25
JP2017183848 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059405A1 true WO2019059405A1 (ja) 2019-03-28

Family

ID=65810494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035534 WO2019059405A1 (ja) 2017-09-25 2018-09-25 Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法

Country Status (5)

Country Link
US (1) US10873376B2 (ja)
EP (1) EP3691152B1 (ja)
JP (1) JP7056665B2 (ja)
CN (1) CN111133696B (ja)
WO (1) WO2019059405A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346957A (zh) * 2021-06-01 2021-09-03 北京理工大学 一种oam-qpsk传输的聚类非线性补偿方法
WO2024062619A1 (ja) * 2022-09-22 2024-03-28 日本電信電話株式会社 送信装置、受信装置、送信制御方法及び受信制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059407A1 (ja) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam多重通信システムおよびoam多重通信方法
CN111769856B (zh) * 2020-07-30 2022-02-01 重庆邮电大学 用于oam-mimo动态信道的功率分配方法
CN112235019B (zh) * 2020-09-28 2023-08-01 西安理工大学 一种基于涡旋电磁波技术的无线加密绿色传输系统
WO2022104781A1 (en) * 2020-11-23 2022-05-27 Qualcomm Incorporated Techniques for determining orbital angular momentum transmitter circles
CN112636796B (zh) * 2020-12-16 2021-11-19 西安交通大学 一种los mimo系统用均匀圆阵设计方法、系统、介质及设备
WO2022266871A1 (en) * 2021-06-23 2022-12-29 Qualcomm Incorporated Multiplexing reference signal transmission in orbital angular momentum (oam) communication systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148262A1 (ja) * 2015-03-17 2016-09-22 日本電気株式会社 通信装置、方法及びシステムと端末とプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881948B2 (ja) 2006-06-23 2012-02-22 パナソニック株式会社 無線送信装置、無線受信装置、およびデータ生成方法
WO2015189653A1 (en) * 2014-06-10 2015-12-17 Eutelsat S A Ofdm based orbital angular momentum system and method
US9413448B2 (en) * 2014-08-08 2016-08-09 Nxgen Partners Ip, Llc Systems and methods for focusing beams with mode division multiplexing
EP3269198B1 (en) * 2015-03-13 2018-06-27 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for traffic aggregation setup between wlan and 3gpp
CN106130655B (zh) * 2016-06-30 2018-04-24 中国科学院上海微系统与信息技术研究所 一种多模态轨道角动量复用通信系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148262A1 (ja) * 2015-03-17 2016-09-22 日本電気株式会社 通信装置、方法及びシステムと端末とプログラム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EDFORS, OVE ET AL.: "Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 60, no. 2, February 2012 (2012-02-01), pages 1126 - 1131, XP011403555, DOI: doi:10.1109/TAP.2011.2173142 *
J. WANG ET AL.: "Terabit free-space data transmission employing orbital angular momentum multiplexing", NATURE PHOTONICS, vol. 6, July 2012 (2012-07-01), pages 488 - 496, XP055375755, DOI: 10.1038/nphoton.2012.138
Y. YAN ET AL.: "High-capacity millimetre-wave communications with orbital angular momentum multiplexing", NATURE COMMUNICATIONS, vol. 5, September 2014 (2014-09-01), pages 4876, XP055141889, DOI: 10.1038/ncomms5876
YUAN, YUQING ET AL.: "Capacity analysis of UCA- based OAM multiplexing communication system", 2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 17 October 2015 (2015-10-17), XP032820668 *
ZHANG, WEITE ET AL.: "Multi-OAM-mode Microwave Communication with the Partial Arc Sampling Receiving Scheme", 2016 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 27 May 2016 (2016-05-27), XP032941301 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346957A (zh) * 2021-06-01 2021-09-03 北京理工大学 一种oam-qpsk传输的聚类非线性补偿方法
CN113346957B (zh) * 2021-06-01 2022-08-05 北京理工大学 一种oam-qpsk传输的聚类非线性补偿方法
WO2024062619A1 (ja) * 2022-09-22 2024-03-28 日本電信電話株式会社 送信装置、受信装置、送信制御方法及び受信制御方法

Also Published As

Publication number Publication date
EP3691152A1 (en) 2020-08-05
JPWO2019059405A1 (ja) 2020-10-22
JP7056665B2 (ja) 2022-04-19
US10873376B2 (en) 2020-12-22
US20200304180A1 (en) 2020-09-24
EP3691152A4 (en) 2021-07-07
EP3691152B1 (en) 2022-06-22
CN111133696A (zh) 2020-05-08
CN111133696B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
JP7056665B2 (ja) Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法
US11202211B2 (en) OAM multiplexing communication system and OAM multiplexing communication method
Vieira et al. A flexible 100-antenna testbed for massive MIMO
CN107078769B (zh) 用于使用多个频率的波束选择的系统和方法
CN106576036B (zh) 发送用于估计模拟波束的训练符号的方法和设备
EP2898646B1 (en) Method and apparatus for transmitting and receiving broadcast channel in cellular communication system
JP6962135B2 (ja) Oam多重通信システムおよびoam多重通信方法
CN106911371B (zh) 一种波束训练方法和装置
EP3691149B1 (en) Oam multiplexing communication system and oam multiplexing communication method
KR20160146850A (ko) 궤도 각 모멘텀을 갖는 전자기 모드들을 가지는 신호들의 송신 및/또는 수신을 위한 시스템, 및 그 디바이스 및 방법
WO2017219389A1 (zh) 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
Noh et al. Fast beam search and refinement for millimeter-wave massive MIMO based on two-level phased arrays
Yin et al. High-throughput beamforming receiver for millimeter wave mobile communication
CN108881074B (zh) 一种低精度混合架构下宽带毫米波信道估计方法
CN110650103B (zh) 利用冗余字典加强稀疏性的透镜天线阵列信道估计方法
EP2104241A2 (en) Wireless communication system, wireless communication method, transmission apparatus, and reception apparatus
CN115065432A (zh) 天波大规模mimo三重波束基信道建模及信道信息获取
US10511380B2 (en) System and method for efficient wideband code division multiplexing in subband domain
CN104168046A (zh) 利用压缩感知的单端频域波束搜索方法
Sung et al. Compressed-sensing based beam detection in 5G NR initial access
Ahmad et al. Low RF-complexity digital transmit beamforming for large-scale millimeter wave MIMO systems
CN104218984A (zh) 利用压缩感知的双端频域波束搜索方法
CN114337737B (zh) 一种宽带毫米波凸镜天线阵列通信系统传输方法
Chiang et al. Hybrid beamforming strategy for wideband millimeter wave channel models
TWI788921B (zh) 可重組混合式波束成型之快速波束搜尋與追蹤系統及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859374

Country of ref document: EP

Effective date: 20200428