CN104168046A - 利用压缩感知的单端频域波束搜索方法 - Google Patents

利用压缩感知的单端频域波束搜索方法 Download PDF

Info

Publication number
CN104168046A
CN104168046A CN201410396181.4A CN201410396181A CN104168046A CN 104168046 A CN104168046 A CN 104168046A CN 201410396181 A CN201410396181 A CN 201410396181A CN 104168046 A CN104168046 A CN 104168046A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410396181.4A
Other languages
English (en)
Other versions
CN104168046B (zh
Inventor
王梦瑶
成先涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410396181.4A priority Critical patent/CN104168046B/zh
Publication of CN104168046A publication Critical patent/CN104168046A/zh
Application granted granted Critical
Publication of CN104168046B publication Critical patent/CN104168046B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明属于无线通信技术领域,具体涉及在多天线正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)通信系统中的采用压缩感知来搜索最优波束矢量的方法。本发明提供了一种在多天线OFDM通信系统中的一种利用压缩感知的单端频域波束来搜索最优波束矢量的方法。该方法利用发射角、到达角的稀疏性将波束搜索的问题转化为压缩感知的问题,通过发射端和接收端使用不同的发射和接收矢量,由接收端单独确定最优的发射/接收波束矢量。本发明适用范围极广,可用于所有的慢衰落视距或者非视距信道。

Description

利用压缩感知的单端频域波束搜索方法
技术领域
本发明属于无线通信技术领域,具体涉及在多天线正交频分复用(OrthogonalFrequency Division Multiplexing,OFDM)通信系统中的采用压缩感知来搜索最优波束矢量的方法。
背景技术
UWB系统和60GHz系统主要用于短距离高速传输,应用范围广泛,包括无线个域网(WPAN,Wireless Personal Area Network),无线高清多媒体接口,医疗成像,车载雷达等等。为了适应高数据率和高系统容量等方面的需要,UWB系统和60GHz系统往往利用多天线多载波技术用于传输数据。
多天线技术包括多输入多输出(Multiple Input Multiple Output,MIMO),多输入单输出(Multiple Input Single Output,MISO)和单输入多输出(Single Input MultipleOutput,SIMO)。基于阵列天线的波束成形技术利用传输信号的方向性提高信噪比(Signal to Noise Ratio,SNR),抑制干扰,改善系统性能。
阵列天线在空间的分布情况影响了信道空间的相关性,智能天线中的波束成形技术利用了这种相关性对信号进行处理,在期望方向上产生方向性强的辐射波束增强有用信号,零瓣方向对准干扰源达到抑制作用,由此提高信噪比和增加传输距离。在收/发端应用天线阵列波束成形具有以下优势:首先,降低对功率放大器的要求。发射端如果使用单个天线时,对PA增益要求很高。如果发射端使用天线阵列发送信号,每个天线阵元前面增加一个功放,这样通过使用多个较低功率增益的PA就能够满足发射功率要求。其次,天线阵列波束成形便于定向传输。在发射功率不变情况下,等效增加接收机接收信号的功率,同时还可以有效降低多径时延扩展。这样可以简化收发机的基带设计,降低模拟数字转换器的分辨率指标。最后,天线阵列系统动态地调整波束的方向,以使期望方向获得最大的功率并减小其他方向的功率。这样不仅改善了信号干扰比,还提高了系统的容量,扩大了系统通信覆盖范围,降低了发射功率要求。
OFDM是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道间相互干扰ISI。每个子信道上的信号带宽小于信道的相干带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。基于OFDM的波束成形需要在发射端天线前做快速傅里叶逆变换变换,接收端做快速傅里叶变换变换来解调。
波束切换是一种波束搜索规则,它在发射机和接收机两端都预先设置好波束控制矢量码本,使用时只需要从中选取。因此,切换波束形成也称为基于码本的波束成形,使用开关天线阵列,在发送数据包前,发射机要多次发送携带不同波束控制矢量的信息。
基于信道状态信息的波束成形技术,发射机和接收机都可以找到一个最优的波束成形控制矢量。其详细方法可参考:Yoon S,Jeon T,Lee W.Hybrid beam-formingand beam-switching for OFDM based wireless personal area networks[J].SelectedAreas in Communications,IEEE Journal on,2009,27(8):1425-1432.物理层(PHY)解决方案能够提供最优的系统性能,波束成形操作往往考虑在物理层进行,但获取完整的信道状态信息要很高的时间成本和开销。基于码本的波束成形技术有助于降低复杂度和开销,而且码本既可以完全根据基带信号处理而设计,也可以结合控制层(MAC)实现。
波束搜索时的搜索策略是至关重要的,高效的波束搜索策略能够有效降低搜索时间,假设发射端有N个发射波束矢量,M个接收波束矢量,则最多需要N×M次搜索,802.15.3c中采用了两级的码本结构:一个扇形码本和一个波束码本,波束码本的每个列向量表示一个波束,每个波束图案都表示一个精确的方向,每个扇区都是几个波束的集合,在空间中表示较宽的方向,所有的扇区加起来覆盖整个空间。搜索过程也分为两阶段:第一阶段在根据信噪比找到最优的扇区,第二阶段在最优的扇区中找到最优的波束。其详细方法可参考:Wang J,Lan Z,Pyo C W,et al.Beamcodebook based beamforming protocol for multi-Gbps millimeter-wave WPANsystems[J].Selected Areas in Communications,IEEE Journal on,2009,27(8):1390-1399.。
分阶段的波束搜索策略可以大幅减低搜索次数,但是当天线阵列很大时,需要的搜索次数仍然是巨大的。因此,研究一种快速有效的波束搜索算法是一项有创新性和重要实际意义且具挑战性的任务。
发明内容
本发明提供了一种在多天线OFDM通信系统中的一种利用压缩感知的单端频域波束来搜索最优波束矢量的方法。该方法利用发射角、到达角的稀疏性将波束搜索的问题转化为压缩感知的问题,通过发射端和接收端使用不同的发射和接收矢量,由接收端单独确定最优的发射/接收波束矢量。
本发明的目的是通过如下步骤来实现的:
S1、令设备1的收发天线数为Nt,所述设备1的码本中的波束数目为Ct,所述设备1采用Pt种发射矢量进行发射,任意一个发射矢量都是长度为Nt的向量,所述发射矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ t = φ → t , 1 . . . φ → t , P t T , 所述设备1使用OFDM技术在频域发射的序列为[1,1,...,1],长度为N,其中,d=1,2,...Pt,i为虚数单位,
令设备2的收发天线数为Nr,所述设备2的码本中的波束数目为Cr,对于设备1的每个发射矢量设备2都有Pr个接收矢量来接收,任意一个接收矢量都是长度为Nr的向量,所述接收矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ r = φ → r , 1 . . . φ → r , P r T , 所述测量矩阵Φr每一行都对应一次接收,接收端能够得到第m个子载波测量信号矩阵为Ym=ΦrHmΦT t+nm,其中,d′=1,2,...Pr,m=1,2,...,N,矩阵Ym的阶数为Pr×Pt,nm是噪声矩阵,Hm为第m个频点的阶数为Nr×Nt的信道矩阵,矩阵中第x行第y列的元素表示从发射端第y根天线到接收端第x根天线间的频域信道冲击响应,x=1,2,...,Nr,y=1,2,...,Nt,()T是矩阵的转置运算,N、Nt、Nr、Ct、Cr、Pr和Pt为大于1的整数;
S2、根据S1所述构建字典矩阵为D,D的每一列对应[-90°,90°]中的一个角度;
S3、根据S1所述Φr和Φt恢复出Hm,即已知Ym、Φr和Φt,算出矩阵Hm,具体为:
S31、根据子载波信号Ym恢复出Y′m,所述Y′m的每一列都可以在S2所述字典矩阵D下展开,即Y′m的每一列都可以表示为字典矩阵中少数列与对应不为0的展开系数相乘后的线性加和,展开系数为复数,具体如下:
使用Pt×N个任务的正交匹配追踪算法联合每个子载波信号Ym的每一列共同恢复出Y′m,所述子载波信号Ym的任意第l列为其中,Vr=ΦrD,是nm的第l列,可以在Vr下展开,就是在Vr下的展开系数,l=1,2,...,Pt,m=1,2,...,N。
S32、使用Nr×N个任务的正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)联合S31所述Y′m的每一列共同恢复出Hm T,所述Hm T的每一列都可以在S2所述字典矩阵D下展开,其中,Y′m=HmΦT t
S33、根据S32所述Hm T恢复出Hm
S4、恢复出所有频点的Hm,记作从码本中找到一个最优的使得频谱效率最大,即 ( c → , w → ) = arg c → , w → max ( 1 N Σ m = 1 N log 2 ( 1 + γ r , m ) ) , 其中 γ r , m = | w → T H ^ m c → | 2 N r N t σ 2 , σ2是噪声的功率,是长度为Nr的复向量。
进一步地,对于任意角度θ,S2所述字典矩阵D中的对应列为 1 e iπ sin ( θ ) e i 2 π sin ( θ ) . . . e i ( Nt - 1 ) π sin ( θ ) .
进一步地,S32所述恢复出Hm T具体方法如下:
S321、将S31所述全部合并为一个矩阵,记作Y,所述Y的第k列记作其中,k=1,2,...,Pt×N;
S322、从S31所述Vr中找出一列使得最大,记此时的为Vc
S323、算出S321所述Y在S322所述Vc下的展开系数对应的系数矩阵W=(Vc HVc)-1Vc HY与表示当前恢复程度的剩余量矩阵e=Y-VcW,其中,()-1是矩阵的求逆运算,()H是矩阵的共轭转置运算,|·|表示复数的幅度,||·||2是向量的二范数运算;
S324、从S31所述Vr中找出一列使得最大,记此时的其中,是矩阵e中的第k列;
S325、将S234所述加入S322所述Vc中,即更新Vc计算S321所述Y在更新后的Vc下的展开系数对应的系数矩阵W′=(Vc HVc)-1Vc HY,同时,计算更新后的剩余量矩阵e=Y-VcW′;
S326、循环S324到S325,直到e的F范数小于Y的F范数的α倍时停止,结合S2所述字典矩阵D中的列向量与对应位置的系数线性组合恢复出Y′m,其中,α为门限值,0<α<1,且α为实数;
S327、使用Nr×N个任务的OMP联合S31所述Y′m的每一列共同恢复出Hm T
进一步地,S326所述α=0.05。
本发明的有益效果是:波束搜索所需次数与总的路径数有关,搜索复杂度不会随着天线数目而增加。本发明适用范围极广,可用于所有的慢衰落视距或者非视距信道。
附图说明
图1是本发明利用压缩感知的单端频域波束搜索算法的结构图。
图2是本发明用于802.11.ad信道波束搜索的的成功概率性能曲线图。
具体实施方式
下面结合实施例和附图,详细说明本发明的技术方案。
如图1所示,本发明整个过程在频域中完成,设备1使用Pt种发射矢量发射,对于每种发射波束矢量设备2重复接收Pr次,每次用不同的接收矢量,设备2根据Pr×Pt个测量值使用两阶段的压缩感知对频域信道进行还原,关于信号的处理过程都是在频域完成,根据还原出的频域信道矩阵从码本中找到一个最优的发射矢量和最优的接收矢量使得频谱效率最大,随后,设备2向设备1告知设备1最优的发射矢量。整个过程不需要多次迭代,在非对称天线系统中也能够应用。
S1、令设备1的收发天线数为Nt,所述设备1的码本中的波束数目为Ct,所述设备1采用Pt种发射矢量进行发射,任意一个发射矢量都是长度为Nt的向量,所述发射矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ t = φ → t , 1 . . . φ → t , P t T , 所述设备1使用OFDM技术在频域发射的序列为[1,1,...,1],长度为N,其中,d=1,2,...Pt,i为虚数单位,
令设备2的收发天线数为Nr,所述设备2的码本中的波束数目为Cr,对于设备1的每个发射矢量设备2都有Pr个接收矢量来接收,任意一个接收矢量都是长度为Nr的向量,所述接收矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ r = φ → r , 1 . . . φ → r , P r T , 所述测量矩阵Φr每一行都对应一次接收,接收端能够得到第m个子载波测量信号矩阵为Ym=ΦrHmΦT t+nm,其中,d′=1,2,...Pr,m=1,2,...,N,矩阵Ym的阶数为Pr×Pt,nm是噪声矩阵,Hm为第m个频点的阶数为Nr×Nt的信道矩阵,矩阵中第x行第y列的元素表示从发射端第y根天线到接收端第x根天线间的频域信道冲击响应,x=1,2,...,Nr,y=1,2,...,Nt,()T是矩阵的转置运算,N、Nt、Nr、Ct、Cr、Pr和Pt为大于1的整数;
S2、根据S1所述构建字典矩阵为D,D的每一列对应[-90°,90°]中的一个角度,对于任意角度θ,所述字典矩阵D中的对应列为 1 e iπ sin ( θ ) e i 2 π sin ( θ ) . . . e i ( Nt - 1 ) π sin ( θ ) ;
S3、根据S1所述Φr和Φt恢复出Hm,即已知Ym、Φr和Φt,算出矩阵Hm,具体为:
S31、根据子载波信号Ym恢复出Y′m,所述Y′m的每一列都可以在S2所述字典矩阵D下展开,即Y′m的每一列都可以表示为字典矩阵中少数列与对应不为0的展开系数相乘后的线性加和,展开系数为复数,具体如下:
使用Pt×N个任务的正交匹配追踪算法联合每个子载波信号Ym的每一列共同恢复出Y′m,所述子载波信号Ym的任意第l列为其中,Vr=ΦrD,是nm的第l列,可以在Vr下展开,就是在Vr下的展开系数,l=1,2,...,Pt,m=1,2,...,N。
S32、使用Nr×N个任务的OMP联合S31所述Y′m的每一列共同恢复出Hm T,具体如下:
S321、将S31所述全部合并为一个矩阵,记作Y,所述Y的第k列记作其中,k=1,2,...,Pt×N;
S322、从S31所述Vr中找出一列使得最大,记此时的为Vc
S323、算出S321所述Y在S322所述Vc下的展开系数对应的系数矩阵W=(Vc HVc)-1Vc HY与表示当前恢复程度的剩余量矩阵e=Y-VcW,其中,()-1是矩阵的求逆运算,()H是矩阵的共轭转置运算,|·|表示复数的幅度,||·||2是向量的二范数运算;
S324、从S31所述Vr中找出一列使得最大,记此时的其中,是矩阵e中的第k列;
S325、将S234所述加入S322所述Vc中,即更新Vc计算S321所述Y在更新后的Vc下的展开系数对应的系数矩阵W′=(Vc HVc)-1Vc HY,同时,计算更新后的剩余量矩阵e=Y-VcW′;
S326、循环S324到S325,直到e的F范数小于Y的F范数的α倍时停止,结合S2所述字典矩阵D中的列向量与对应位置的系数线性组合恢复出Y′m,其中,α为门限值,α=0.05;
S327、使用Nr×N个任务的OMP联合S31所述Y′m的每一列共同恢复出Hm T,所述Hm T的每一列都可以在S2所述字典矩阵D下展开,其中,Y′m=HmΦT t
S33、根据S32所述Hm T恢复出Hm
S4、恢复出所有频点的Hm,记作从码本中找到一个最优的使得频谱效率最大,即 ( c → , w → ) = arg c → , w → max ( 1 N Σ m = 1 N log 2 ( 1 + γ r , m ) ) , 其中 γ r , m = | w → T H ^ m c → | 2 N r N t σ 2 , σ2是噪声的功率,是长度为Nr的复向量。
实施例1、
子载波总数为512,采样频率为1GHz,设备1和设备2都有20根天线,码本中的波束数目为40个,构造字典时以5度为一间隔,使用多任务正交匹配追踪算法时,门限值α为0.05,CM4是非视距信道,有多条多径。
如图2所示,802.11.ad信道波束搜索的的成功概率性能曲线图,图2中横坐标是设备1使用的发射波束矢量和设备2使用接收矢量的数目,总的搜索次数是二者乘积,在信噪比为0dB的条件下,每个点都仿真1000次。
根据图2可以看出成功概率随着测量次数的增加而增大。

Claims (4)

1.利用压缩感知的单端频域波束搜索方法,其特征在于,包括如下步骤:
S1、令设备1的收发天线数为Nt,所述设备1的码本中的波束数目为Ct,所述设备1采用Pt种发射矢量进行发射,任意一个发射矢量都是长度为Nt的向量,所述发射矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ t = φ → t , 1 . . . φ → t , P t T , 所述设备1使用OFDM技术在频域发射的序列为[1,1,...,1],长度为N,其中,d=1,2,...Pt,i为虚数单位,
令设备2的收发天线数为Nr,所述设备2的码本中的波束数目为Cr,对于设备1的每个发射矢量设备2都有Pr个接收矢量来接收,任意一个接收矢量都是长度为Nr的向量,所述接收矢量中每个位置的元素的值从集合[1,i,-1,-i]中随机选择,组成一个测量矩阵 Φ r = φ → r , 1 . . . φ → r , P r T , 所述测量矩阵Φr每一行都对应一次接收,接收端能够得到第m个子载波测量信号矩阵为Ym=ΦrHmΦT t+nm,其中,d′=1,2,...Pr,m=1,2,...,N,矩阵Ym的阶数为Pr×Pt,nm是噪声矩阵,Hm为第m个频点的阶数为Nr×Nt的信道矩阵,矩阵中第x行第y列的元素表示从发射端第y根天线到接收端第x根天线间的频域信道冲击响应,x=1,2,...,Nr,y=1,2,...,Nt,()T是矩阵的转置运算,N、Nt、Nr、Ct、Cr、Pr和Pt为大于1的整数;
S2、根据S1所述构建字典矩阵为D,D的每一列对应[-90°,90°]中的一个角度;
S3、根据S1所述Φr和Φt恢复出Hm,即已知Ym、Φr和Φt,算出矩阵Hm,具体为:
S31、根据子载波信号Ym恢复出Y′m,所述Y′m的每一列都可以在S2所述字典矩阵D下展开,即Y′m的每一列都可以表示为字典矩阵中少数列与对应不为0的展开系数相乘后的线性加和,展开系数为复数,具体如下:
使用Pt×N个任务的正交匹配追踪算法联合每个子载波信号Ym的每一列共同恢复出Y′m,所述子载波信号Ym的任意第l列为其中,Vr=ΦrD,是nm的第l列,可以在Vr下展开,就是在Vr下的展开系数,l=1,2,...,Pt,m=1,2,...,N;
S32、使用Nr×N个任务的正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)联合S31所述Y′m的每一列共同恢复出Hm T,所述Hm T的每一列都可以在S2所述字典矩阵D下展开,其中,Y′m=HmΦT t
S33、根据S32所述Hm T恢复出Hm
S4、恢复出所有频点的Hm,记作从码本中找到一个最优的使得频谱效率最大,即 ( c → , w → ) = arg c → , w → max ( 1 N Σ m = 1 N log 2 ( 1 + γ r , m ) ) , 其中 γ r , m = | w → T H ^ m c → | 2 N r N t σ 2 , σ2是噪声的功率,是长度为Nr的复向量。
2.根据权利要求1所述的利用压缩感知的单端频域波束搜索方法,其特征在于:对于任意角度θ,S2所述字典矩阵D中的对应列为 1 e iπ sin ( θ ) e i 2 π sin ( θ ) . . . e i ( Nt - 1 ) π sin ( θ ) .
3.根据权利要求1所述的利用压缩感知的单端频域波束搜索方法,其特征在于:S32所述恢复出Hm T具体方法如下:
S321、将S31所述全部合并为一个矩阵,记作Y,所述Y的第k列记作其中,k=1,2,...,Pt×N;
S322、从S31所述Vr中找出一列使得最大,记此时的为Vc
S323、算出S321所述Y在S322所述Vc下的展开系数对应的系数矩阵W=(Vc HVc)-1Vc HY与表示当前恢复程度的剩余量矩阵e=Y-VcW,其中,()-1是矩阵的求逆运算,()H是矩阵的共轭转置运算,|·|表示复数的幅度,||·||2是向量的二范数运算;
S324、从S31所述Vr中找出一列使得最大,记此时的其中,是矩阵e中的第k列;
S325、将S234所述加入S322所述Vc中,即更新Vc计算S321所述Y在更新后的Vc下的展开系数对应的系数矩阵W′=(Vc HVc)-1Vc HY,同时,计算更新后的剩余量矩阵e=Y-VcW′;
S326、循环S324到S325,直到e的F范数小于Y的F范数的α倍时停止,结合S2所述字典矩阵D中的列向量与对应位置的系数线性组合恢复出Y′m,其中,α为门限值,0<α<1,且α为实数;
S327、使用Nr×N个任务的OMP联合S31所述Y′m的每一列共同恢复出Hm T
4.根据权利要求3所述的利用压缩感知的单端频域波束搜索方法,其特征在于:S326所述α=0.05。
CN201410396181.4A 2014-08-13 2014-08-13 利用压缩感知的单端频域波束搜索方法 Expired - Fee Related CN104168046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410396181.4A CN104168046B (zh) 2014-08-13 2014-08-13 利用压缩感知的单端频域波束搜索方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410396181.4A CN104168046B (zh) 2014-08-13 2014-08-13 利用压缩感知的单端频域波束搜索方法

Publications (2)

Publication Number Publication Date
CN104168046A true CN104168046A (zh) 2014-11-26
CN104168046B CN104168046B (zh) 2017-06-23

Family

ID=51911706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410396181.4A Expired - Fee Related CN104168046B (zh) 2014-08-13 2014-08-13 利用压缩感知的单端频域波束搜索方法

Country Status (1)

Country Link
CN (1) CN104168046B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763237A (zh) * 2016-04-21 2016-07-13 江苏中兴微通信息科技有限公司 无线通信系统中分离型子阵列模拟波束矢量训练方法
WO2017152504A1 (zh) * 2016-03-09 2017-09-14 中兴通讯股份有限公司 波束搜索的方法及装置
CN110383884A (zh) * 2017-01-06 2019-10-25 株式会社Ntt都科摩 用户终端及无线通信方法
CN110401475A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 下行波束训练方法、网络设备和终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100219215B1 (ko) * 1996-12-27 1999-09-01 유기범 에이티이엠 교환기에서 스위치 경로 시험방법
CN101984612A (zh) * 2010-10-26 2011-03-09 南京邮电大学 基于压缩感知的非连续正交频分复用信道估计方法
CN103064082A (zh) * 2012-09-11 2013-04-24 合肥工业大学 基于方位维随机功率调制的微波成像方法
CN103944578A (zh) * 2014-03-28 2014-07-23 电子科技大学 一种多信号的重构方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100219215B1 (ko) * 1996-12-27 1999-09-01 유기범 에이티이엠 교환기에서 스위치 경로 시험방법
CN101984612A (zh) * 2010-10-26 2011-03-09 南京邮电大学 基于压缩感知的非连续正交频分复用信道估计方法
CN103064082A (zh) * 2012-09-11 2013-04-24 合肥工业大学 基于方位维随机功率调制的微波成像方法
CN103944578A (zh) * 2014-03-28 2014-07-23 电子科技大学 一种多信号的重构方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017152504A1 (zh) * 2016-03-09 2017-09-14 中兴通讯股份有限公司 波束搜索的方法及装置
CN105763237A (zh) * 2016-04-21 2016-07-13 江苏中兴微通信息科技有限公司 无线通信系统中分离型子阵列模拟波束矢量训练方法
CN105763237B (zh) * 2016-04-21 2019-04-16 江苏中兴微通信息科技有限公司 无线通信系统中分离型子阵列模拟波束矢量训练方法
CN110383884A (zh) * 2017-01-06 2019-10-25 株式会社Ntt都科摩 用户终端及无线通信方法
CN110383884B (zh) * 2017-01-06 2021-12-21 株式会社Ntt都科摩 用户终端及无线通信方法
CN110401475A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 下行波束训练方法、网络设备和终端设备
CN110401475B (zh) * 2018-04-25 2021-10-15 华为技术有限公司 下行波束训练方法、网络设备和终端设备

Also Published As

Publication number Publication date
CN104168046B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
US8040278B2 (en) Adaptive antenna beamforming
CN110401476B (zh) 一种基于码本的毫米波通信多用户并行波束训练方法
CN104168047B (zh) 利用压缩感知的单端时域波束搜索方法
CN106031068B (zh) 一种基于波束成形的通信方法及装置
US8619886B2 (en) Method and system for mixed analog/digital beamforming in wireless communication systems
US20160087695A1 (en) Method and Apparatus of Beam Training for MIMO Operation and Multiple Antenna Beamforming Operation
Obara et al. Joint processing of analog fixed beamforming and CSI-based precoding for super high bit rate massive MIMO transmission using higher frequency bands
CN103634038B (zh) 基于多天线的联合doa估计和波束形成的多径信号接收方法
KR20120109611A (ko) 빔형성 방법, 프레임 포맷 사용 방법, 빔형성 및 결합 가중치 선택 방법, 빔 형성 장치, 가입자 디바이스, 피코넷 컨트롤러 및 컴퓨터 판독 가능한 매체
JP2015231241A (ja) 大規模mimoシステムにおいて情報を送信するのに使用するための送受信機及び方法
WO2017219389A1 (zh) 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
CN108881074B (zh) 一种低精度混合架构下宽带毫米波信道估计方法
WO2017107593A1 (zh) 一种波束训练方法和装置
CN108667493B (zh) 一种面向大规模mimo中nlos场景下的波束赋形方法
CN109005133B (zh) 双稀疏多径信道模型及基于此模型的信道估计方法
CN102404035B (zh) 一种短距通信中基于信道矩阵的干扰抑制波束形成方法
CN110650103B (zh) 利用冗余字典加强稀疏性的透镜天线阵列信道估计方法
CN108599825A (zh) 一种基于mimo-ofdm毫米波结构的混合编码方法
Rodríguez-Fernández et al. A frequency-domain approach to wideband channel estimation in millimeter wave systems
CN109861933B (zh) 一种基于music算法和预编码的毫米波mimo信道估计方法
CN104168046B (zh) 利用压缩感知的单端频域波束搜索方法
Zhou et al. Fast codebook-based beamforming training for mmWave MIMO systems with subarray structures
CN106233685B (zh) 用于大规模mimo系统的混合模拟数字预编码的方法
CN104218984B (zh) 利用压缩感知的双端频域波束搜索方法
CN103427888B (zh) 一种获取波束赋形权向量的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170623

Termination date: 20200813

CF01 Termination of patent right due to non-payment of annual fee