WO2017152504A1 - 波束搜索的方法及装置 - Google Patents

波束搜索的方法及装置 Download PDF

Info

Publication number
WO2017152504A1
WO2017152504A1 PCT/CN2016/083345 CN2016083345W WO2017152504A1 WO 2017152504 A1 WO2017152504 A1 WO 2017152504A1 CN 2016083345 W CN2016083345 W CN 2016083345W WO 2017152504 A1 WO2017152504 A1 WO 2017152504A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
measurement information
beams
specified
search
Prior art date
Application number
PCT/CN2016/083345
Other languages
English (en)
French (fr)
Inventor
郭阳
王小鹏
王衍文
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017152504A1 publication Critical patent/WO2017152504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • This document relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for beam search.
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover Recipients in a certain direction. That is to say, before the transmitting end and the receiving end communicate, it is necessary to first determine the optimal beam direction through beam search, and then perform data communication.
  • the related beam search technology is basically divided into two types of single-level traversal and multi-level traversal; single-stage traversal is to traverse all the beams to find the optimal beam; hierarchical traversal is to divide the beam into multiple different broad and narrow beams, each level Both are traversed, and finally the search for a suitable narrow beam.
  • Single-level traversal and hierarchical traversal have large search overhead, especially the problem of large search time overhead.
  • Embodiments of the present invention provide a method and an apparatus for beam search, which can reduce the overhead of a beam search process.
  • a method for beam search including:
  • the following training process is performed layer by layer until the search termination condition is satisfied:
  • the measurement information corresponding to one or more beams in the all beams adjacent to the designated beam in the upper layer is greater than the measurement information of the specified beam, one or more measurement information that is present is greater than the specified beam. All of the beams of the measurement information are set to the specified beam that performs the training process in the next layer;
  • the search termination condition is that the measurement information is less than or equal to the measurement information of the specified beam, and/or the current layer is the Mth layer;
  • the optimal beam is a beam having the largest measurement information; wherein M is a positive integer greater than one, N is a positive integer.
  • the method before measuring the measurement information of the beam corresponding to the layer 1 in the beam set, the method further includes: determining, in the area of the beam search, a beam corresponding to the layer 1; wherein the area of the beam search is The beam set coverage.
  • Measurement information includes:
  • the measurement information set to 0 and the measurement information that remains unchanged are used as measurement information corresponding to all the beams adjacent to the designated beam in the upper layer among the beams corresponding to the current layer.
  • the method further includes:
  • determining a beam corresponding to the layer 1 according to one of the following manners: when the region is covered by the beam set 360 degrees, one beam in the beam set is randomly selected as the beam corresponding to the layer 1; The beam corresponding to the position is used as the beam corresponding to the first layer.
  • the measurement information includes physical quantities used to characterize channel conditions.
  • the physical quantity includes at least one of the following: received power, signal to noise ratio SNR, and signal to interference plus noise ratio SINR.
  • an apparatus for beam search including:
  • the measurement module is configured to measure measurement information of a beam corresponding to the layer 1 in the beam set; wherein the beam set is divided into M layers;
  • the processing module is configured to use the beam corresponding to the layer 1 as a search starting point, and perform the following training process layer by layer until the search termination condition is met: measuring the beam corresponding to the current layer, adjacent to the designated beam in the upper layer All the beams of the current layer are obtained by the measurement information corresponding to all the beams adjacent to the specified beam in the upper layer in the corresponding layer; wherein, when the current layer is the N+1th layer, the upper layer The Nth layer; comparing the measurement information of all the beams adjacent to the specified beam in the upper layer in the beam corresponding to the current layer with the measurement information of the specified beam; the specified beam phase in the upper layer One or more beams corresponding to all the beams in the neighbor When the measurement information is greater than the measurement information of the specified beam, all of the beams of the one or more measurement information that are greater than the measurement information of the specified beam are set as the specified beam that performs the training process in the next layer; The current layer is updated to the N+2 layer, and the upper layer is updated to the N+1 layer
  • the first determining module is configured to determine an optimal beam from all measured beams in the beam set when the search termination condition is met, wherein the optimal beam is a beam with the largest measurement information; wherein, M A positive integer greater than 1, N is a positive integer.
  • the apparatus further includes: the second determining module is configured to determine the beam corresponding to the layer 1 in a region of the beam search; wherein the region of the beam search is covered by the beam set.
  • the measuring module is further configured to: measure the measurement information of all beams adjacent to a specified beam in the upper layer in a beam corresponding to the current layer; the processing module is further configured to be less than a predetermined
  • the measurement information of the threshold is set to 0; the measurement information that is greater than or equal to the predetermined threshold remains unchanged; the measurement information set to 0 and the measurement information that remains unchanged are used as the upper layer and the upper layer corresponding to the current layer Measurement information corresponding to all of the beams adjacent to the designated beam.
  • the processing module is further configured to. If the measurement information of the all beams adjacent to the designated beam in the upper layer and the specified beam of the upper layer in the beam corresponding to the current layer measured by the current layer are both 0 And all the beams in the beam corresponding to the current layer measured by the current layer and adjacent to the designated beam in the upper layer are set as the specified beam that performs the training process in the next layer.
  • the second determining module determines, according to one of the following manners, a beam corresponding to the first layer: when the region is covered by the beam set 360 degrees, one beam of the beam set is randomly selected as the beam corresponding to the first layer; The beam corresponding to the center position in the area is used as the beam corresponding to the first layer.
  • the technical solution provided by the present invention includes: using the beam corresponding to the layer 1 as a search starting point, performing the following training process layer by layer until the search termination condition is satisfied: measuring the beam corresponding to the current layer, and All the beams adjacent to the specified beam in the layer are obtained with the measurement information corresponding to all the beams in the beam corresponding to the specified layer in the previous layer; all the beams adjacent to the specified beam in the upper layer When there is one or more beams corresponding to the measurement information that is larger than the measurement information of the specified beam, the total of the beams larger than the measurement information of the specified beam The part is set to a specified beam that performs training processing in the next layer; when the search termination condition is satisfied, the optimal beam is determined from all the measured beams in the beam set.
  • An embodiment of the present invention provides a method for layered beam search based on measurement information gradient, that is, a layered beam set for covering an area of a search, and an increase direction of measurement information along a beam in each layer.
  • Beam search is performed on different layers until the search termination condition is reached, that is, the measurement information of the beam reaching the current layer is less than or equal to the measurement information of the specified beam of the previous layer, and/or the current layer is the M layer (all layers are trained to end)
  • the problem of large overhead of the beam search process in the related art is solved, the beam search overhead is reduced, and the search time is saved.
  • FIG. 1 is a flowchart of a beam searching method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a beam search method according to an alternative embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a two-dimensional beam omnidirectional coverage according to an alternative embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a direction of a two-dimensional beam portion of an alternative embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a two-dimensional wide and narrow beam coverage according to an alternative embodiment of the present invention.
  • FIG. 6 is a schematic diagram 1 of three-dimensional beam coverage according to an alternative embodiment of the present invention.
  • FIG. 7 is a second schematic diagram of three-dimensional beam coverage according to an alternative embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a beam search device according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a beam search method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step 102 Measure measurement information of a beam corresponding to the layer 1 in the beam set.
  • the beam set is divided into M layers.
  • the M layer of the beam set partition may include: a first layer of a preset beam set, for example, The geometric center position is taken as the first layer, and the position of the first layer can also be set according to the actual situation; after the first layer is determined, the beam set is divided by using the preset beam unit as a layered basis.
  • the size of the beam unit can be determined by a person skilled in the art based on empirical analysis.
  • Step 104 The first layer of the beam is used as a search starting point, and the following training process is performed layer by layer until the search termination condition is met: measuring all beams in the beam corresponding to the current layer and adjacent to the specified beam in the upper layer, Obtaining measurement information corresponding to all beams adjacent to the specified beam in the upper layer in the corresponding beam of the current layer; wherein, when the current layer is the N+1 layer, the upper layer is the Nth layer; comparing the current layer Measurement information of all beams in the beam adjacent to a specified beam in the upper layer and measurement information of the specified beam; measurement of one or more beams corresponding to all beams adjacent to the designated beam in the upper layer When the information is larger than the measurement information of the specified beam, the part of the beam that has one or more measurement information larger than the measurement information of the specified beam is set as the designated beam that performs the training process in the next layer; here, the search process of the next layer is : updating the current layer to the N+2 layer, and the upper layer is updated to the N+1 layer;
  • Step 106 When the search termination condition is met, the optimal beam is determined from all the measured beams in the beam set, wherein the optimal beam is the beam with the largest measurement information; wherein M is a positive integer greater than 1, and N is a positive integer .
  • beam search is performed on different layers along the direction in which the measurement information of the beams in each layer increases, until the search termination condition is reached, that is, the current layer is reached.
  • the measurement information of the beam is less than or equal to the measurement information of the specified beam of the previous layer, and/or the current layer is the M layer (the training process ends at all layers), which solves the problem that the beam search process has a large overhead in the related art, and further Reduces beam search overhead and saves search time.
  • the foregoing current layer is adjacent to the upper layer, and the adjacent layers may include planes adjacent to each other, or may be spatially adjacent, such as diagonally adjacent, and are not limited thereto.
  • the above beam set can It is a set of two-dimensional beams, and may also be a collection of multi-dimensional beams, such as a set of three-dimensional beams, or a set of wide beams and/or narrow beams, but is not limited thereto, and the number of beams included in the beam set may be There are actual conditions to determine.
  • the foregoing measurement information may be a physical quantity for characterizing a channel condition, and the physical quantity may include at least one of the following, but is not limited thereto: a received power, a signal noise ratio (SNR), and a signal to interference plus noise ratio ( Signal to Interference plus Noise Ratio (SINR).
  • the measurement information may be expressed as a measured value.
  • the measurement information may be expressed as a power value of the received power.
  • the measurement information includes a plurality of physical quantities, when comparing the measurement information, it may include comparing only one physical quantity.
  • the measurement information of the beam may be specified in step 104 as the measurement information of the specified beam with the largest beam measurement information.
  • the method of the foregoing embodiment further includes: determining a beam corresponding to the layer 1 in a region of the beam search; wherein the region of the beam search is covered by the beam set.
  • the beam corresponding to the first layer may be determined according to one of the following methods: when the region is covered by the beam set 360 degrees, one beam in the beam set is randomly selected as the first layer. Corresponding beam; the beam corresponding to the center position in the area is used as the beam corresponding to the first layer. Different ways can be selected according to different situations to determine the beam corresponding to the first layer, and the search time can be saved as much as possible.
  • the foregoing step 104 may include: measuring measurement information of all beams adjacent to a specified beam in the upper layer in a beam corresponding to the current layer; setting measurement information smaller than a predetermined threshold to 0; The measurement information of the predetermined threshold remains unchanged.
  • the above embodiment method may further include: the current layer measured at the current layer If the measurement information of all the beams in the corresponding beam adjacent to the specified beam in the upper layer and the specified beam in the upper layer are both 0, the current layer corresponding to the current layer is measured in the upper layer and the upper layer. All beams adjacent to the specified beam are set to the specified beam for performing the training process in the next layer; here, after the specified beam is set, the current layer is updated to the N+2 layer. The previous layer is updated to the N+1 layer.
  • the predetermined threshold may be configured by the base station according to relevant measurement information, and different users correspond to different predetermined thresholds, but are not limited thereto. By setting the predetermined threshold, the search result converges to the optimal solution with a large probability, and the optimal beam can be searched as soon as possible.
  • the predetermined threshold corresponding to the received power may include a value in a range of -140 to -80 decibels (dBm). If the measurement information includes an SNR or an SINR, the predetermined threshold may include: A value in the range of 50 to 5 dB.
  • the beam search method provided by the embodiment of the present invention includes:
  • Step 202 Determine an area of the beam search, and completely cover an area with a specific beam set, and select a beam corresponding to the center position of the area as a starting beam of the search (corresponding to step 102 in the foregoing embodiment), and Layering the beam, the starting beam is the corresponding beam of the first layer, and all the beams adjacent to the first layer beam (when spatially adjacent to the diagonal) are recorded as the second layer beam, and the second layer beam All adjacent beams are recorded as a third layer beam, ...., and so on, until all beams are layered (equivalent to the above as step 104 in the embodiment).
  • the starting beam is a marking beam of the first layer beam (corresponding to the designated beam in the above embodiment), training (training includes transmitting data at the transmitting end, receiving data at the receiving end, the same below) and measuring the measurement of the starting beam Information (measurement information includes physical quantities capable of characterizing channel conditions, including but not limited to received power, SNR, SINR), and measurement information is less than a threshold value (predetermined threshold) T1 (the value of T1 is configured by the base station according to relevant measurement information) ), the measurement information is set to 0, the same below.
  • the second layer beam acts as the current layer beam.
  • Step 204 Train and measure all beams in the current layer beam adjacent to the upper layer of the marker beam to obtain corresponding measurement information (corresponding to step 106 in the foregoing embodiment).
  • Step 206 It is determined whether the measurement information of all the beams measured by the current layer and the marker beam of the previous layer are both 0. If the measurement information is 0, step 208 is performed; if the measurement information is not all 0. Go to step 210.
  • step 208 all the beams of the current layer are set as the marker beam, and the next layer of the beam is set as the current layer beam, and the process returns to step 204.
  • Step 210 Determine whether the measurement information of the trained beam of the current layer is not greater than the measurement information of the previous layer of the labeled beam (if the beam of the current layer is adjacent to more than one marker beam of the previous layer, the previous one If the training is over, step 212 is performed. If the training is not finished, step 214 is performed.
  • step 212 the search ends, and the beam corresponding to the largest measurement information among all the trained beams is the optimal beam.
  • Step 214 Determine a beam in the current layer beam that is larger than the measurement information of the previous layer of the marker beam adjacent thereto, set the beam as a marker beam, and set the next layer beam as the current layer beam, and return to step 204.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the beam search method.
  • FIG. 3 is a schematic diagram of two-dimensional beam omnidirectional coverage according to an alternative embodiment of the present invention. As shown in FIG. 3, it is assumed that six horizontal two-dimensional beams need to be searched to determine an optimal transmit beam. The black dot indicates the location of the receiving end. The steps are as follows:
  • the first layer beam is beam 1 and the second layer beam is beam 2.
  • Beam 6 the third layer beam is 3, beam 5, the fourth layer beam is beam 4, first obtain the measurement information P1 of the first layer beam 1;
  • the search starting position is beam 2 (because the 360-degree coverage is at this time, the starting point position can be arbitrarily selected); layering the beam, the first layer beam is beam 2, and the second layer beam is beam 1.
  • Beam 3 the third layer beam is 4, beam 6, and the fourth layer beam is beam 5, first obtaining the measurement information P2 of the first layer beam 2;
  • the beam is beam 2.
  • the search starting position is beam 5 (because the 360-degree coverage is at this time, the starting point position can be arbitrarily selected), and layering the beam, the first layer beam is beam 5, and the second layer beam is beam 4, Beam 6, the third layer beam is 3, beam 1, and the fourth layer beam is 2, first obtaining the measurement information P5 of the first layer beam 5;
  • FIG. 4 is a schematic diagram of a two-dimensional beam portion direction according to an alternative embodiment of the present invention, which is assumed to be as shown in FIG.
  • the two-dimensional beam coverage map the beam covers only a certain part of the plane, and the optimal beam needs to be determined by beam search.
  • the black point indicates the location of the receiving end.
  • FIG. 5 is a schematic diagram of two-dimensional wide and narrow beam coverage according to an alternative embodiment of the present invention. It is assumed that a wide and narrow beam coverage map as shown in FIG. 5 (only two narrow beams corresponding to a wide beam are drawn), and an optimal narrowness needs to be determined by searching. Beam, black dot indicates the location of the receiving end. It is assumed that the optimal wide beam is determined by the method proposed in this paper or other methods. The following steps mainly use the scheme to search for 7 narrow beams corresponding to the wide beam 6:
  • FIG. 6 is a schematic diagram of three-dimensional beam coverage according to an alternative embodiment of the present invention. It is assumed that the three-dimensional beam coverage map shown in FIG. 6 has two horizontal and vertical dimensions, and each region corresponds to one beam, which needs to be determined by beam search. The optimal beam, the black dot indicates the location of the receiver.
  • the third layer needs to measure the beam is 3-10 ⁇ 3-16, and the third layer beam measurement information is smaller than the measurement information of the adjacent second layer mark beam, so the search ends and the selected training is selected.
  • the beam 2-8 corresponding to the largest measurement information is the optimal beam.
  • FIG. 7 is a schematic diagram of three-dimensional beam coverage according to an alternative embodiment of the present invention. It is assumed that the three-dimensional beam coverage map shown in FIG. 7 has two horizontal and vertical dimensions, and each region corresponds to one beam, and needs to be searched by beam. The optimal beam is determined, and the black dot indicates the location of the receiving end.
  • S1 determining the starting position of the search as beam 1-1 (in principle, the starting beam may also be 2-3), layering the beams, and different layers are represented by different colors and different labels as shown in the figure, and the training beam 1 is trained.
  • -1 obtaining measurement information P1-1, P1-1>T1;
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the method of each embodiment of the present invention.
  • a beam search device is also provided in the embodiment, which is used to implement the above-mentioned embodiments and optional embodiments, and has not been described again.
  • the term “module” A block” can implement a combination of software and/or hardware for a predetermined function.
  • the devices described in the following embodiments are implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 8 is a structural block diagram of a beam search apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes:
  • the measurement module 82 is configured to measure measurement information of a beam corresponding to the layer 1 in the beam set; wherein the beam set is divided into M layers;
  • the processing module 84 is configured to perform the following training process layer by layer until the search termination condition is satisfied by using the beam corresponding to the layer 1 as a search starting point: measuring the beam corresponding to the current layer, adjacent to the designated beam in the upper layer. All the beams, the measurement information corresponding to all the beams in the beam corresponding to the current layer and the specified beam in the previous layer are obtained; wherein, when the current layer is the N+1 layer, the upper layer is the Nth layer; Measurement information of all beams adjacent to a specified beam in the upper layer of the layer corresponding to the size of the measurement information of the specified beam; one or more beams present in all beams adjacent to the designated beam in the upper layer When the corresponding measurement information is greater than the measurement information of the specified beam, all of the existing one or more measurement information is larger than the specified beam of the measurement information of the specified beam, and the current layer is updated to the first layer. In the N+2 layer, the upper layer is updated to the N+1 layer; wherein, the search termination condition is that the measurement information is less
  • the first determining module 86 is configured to determine an optimal beam from all the measured beams in the beam set when the search termination condition is satisfied, wherein the optimal beam is the beam with the largest measurement information; wherein M is greater than 1 An integer, N is a positive integer.
  • the layered beam set covering the searched area is used to perform beam search on different layers along the direction in which the measurement information of the beam in each layer increases, until the search termination condition is reached, that is, the current layer is reached.
  • the measurement information of the beam is less than or equal to the measurement information of the specified layer of the previous layer, and/or the current layer is the M layer (all layers are trained to end), which solves the problem of large overhead of the beam search process in the related art, thereby reducing
  • the beam search overhead saves search time.
  • the foregoing current layer is adjacent to the upper layer, and the adjacent layers may include planes adjacent to each other, or may be spatially adjacent, such as diagonally adjacent, and are not limited thereto.
  • the above beam set may be a set of two-dimensional beams or a collection of multi-dimensional beams, such as a collection of three-dimensional beams, but not Limited to this.
  • the above measurement information may be a physical quantity for characterizing a channel condition, and the physical quantity may include at least one of the following, but is not limited thereto: a received power, a signal to noise ratio (SNR), and a signal to interference plus noise ratio (SINR).
  • the measurement information may be expressed as a measured value.
  • the measurement information may be expressed as a power value of the received power.
  • the measurement information of the specified beam in the action performed by the processing module 84 is the measurement information of the specified beam with the largest specified beam measurement information. .
  • the apparatus may further include: the second determining module is configured to determine a beam corresponding to the layer 1 in a region of the beam search; wherein the region of the beam search is covered by the beam set.
  • the beam corresponding to the first layer may be determined according to one of the following methods: when the region is covered by the beam set 360 degrees, one beam in the beam set is randomly selected as the first layer corresponding Beam; the beam corresponding to the center position in the area is used as the beam corresponding to the first layer.
  • the second determining module may select different manners according to different situations to determine the starting position, and the search time may be saved as much as possible.
  • the measurement module 82 is further configured to: measure measurement information of all beams in the beam corresponding to the current layer, adjacent to the specified beam in the upper layer; the processing module is further configured to set the measurement information less than the predetermined threshold to 0; The measurement information that is greater than or equal to the predetermined threshold is kept unchanged; the measurement information set to 0 and the measurement information that remains unchanged are used as the measurement corresponding to all the beams in the beam corresponding to the current layer and adjacent to the specified beam in the upper layer. information.
  • the foregoing processing module 84 is also configured to be. If the measurement information of all the beams adjacent to the specified beam in the previous layer and the specified beam of the previous layer in the corresponding beam of the current layer measured by the current layer are both 0, the current layer of the current layer is correspondingly measured. All beams in the beam that are adjacent to the specified beam in the upper layer are set to the specified beam that performs the training process in the next layer.
  • the foregoing predetermined threshold may be configured by the base station according to relevant measurement information, and different users correspond to different predetermined thresholds, but are not limited thereto.
  • the search result converges to the optimal solution with a large probability, and the optimal beam can be searched as soon as possible.
  • each of the foregoing modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, each of the above modules is located in the same processor; or each of the above Modules are located in multiple processors.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the layer is the N+1th layer
  • the upper layer is the Nth layer
  • the search termination condition is that the measurement information is less than or equal to the measurement information of the specified beam, and/or the current layer is the Mth layer;
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a medium such as a disc or an optical disc that can store program code.
  • modules or steps of the embodiments of the present invention can be implemented by a general-purpose computing device, which can be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into corresponding integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above technical solution reduces beam search overhead and saves search time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种波束搜索方法及装置,包括:以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息;在上一层中的指定波束相邻的所有波束中存在一个或一个以上波束对应的测量信息大于指定波束的测量信息时,将大于指定波束的测量信息的波束中的全部设置为下一层执行训练处理的指定波束;在满足搜索终止条件时,从波束集合中所有被测量的波束中确定最优波束。本发明实施例,降低了波束搜索开销,节约了搜索时间。

Description

波束搜索的方法及装置 技术领域
本文涉及但不限于通信领域,尤其涉及一种波束搜索的方法及装置。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300兆赫兹(MHz)~3吉赫兹(GHz)之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在未来无线通信中,将会采用比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨水影响大等缺点,严重影响了高频通信系统的覆盖性能,为了保证高频通信与长期演进(LTE)系统覆盖范围内具有近似的信号与干扰加噪声比(SINR),需要保证高频通信的天线增益。值得庆幸的是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的接收者。也就是说,在发射端与接收端进行通信前,需要首先要通过波束搜索确定最优波束方向,进而进行数据通信。相关的波束搜索技术基本上分为单级遍历和多级遍历两种;单级遍历就是将所有波束进行遍历找到最优波束;分级遍历就是将波束分为多级不同的宽窄波束,每一级都采用遍历,最终通过搜索找到合适的窄波束。单级遍历和分级遍历都有搜索开销大,尤其是搜索时间开销大的问题。
针对上述技术问题,目前尚未提出有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求 的保护范围。
本发明实施例提供一种波束搜索的方法及装置,能够降低波束搜索过程开销。
根据本发明实施例的一个方面,提供了一种波束搜索的方法,包括:
测量波束集合中第1层对应的波束的测量信息;其中,波束集合被分为M层;
以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:
测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息;其中,所述当前层为第N+1层时,所述上一层为第N层;
比较当前层对应的波束中与上一层中的指定波束相邻的所述所有波束的测量信息与所述指定波束的测量信息的大小;
在上一层中的指定波束相邻的所述所有波束中存在一个或一个以上波束对应的测量信息大于所述指定波束的测量信息时,将存在的一个或一个以上测量信息大于所述指定波束的测量信息的波束中的全部设置为下一层执行训练处理的所述指定波束;
其中,所述搜索终止条件为所述测量信息都小于或者等于所述指定波束的测量信息,和/或所述当前层为第M层;
在满足所述搜索终止条件时,从所述波束集合中所有被测量的波束中确定最优波束,其中,所述最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
可选地,在测量波束集合中第1层对应的波束的测量信息之前,所述方法还包括:在波束搜索的区域中确定第1层对应的波束;其中,所述波束搜索的区域被所述波束集合覆盖。
可选地,测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息包括:
测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的所述测量信息;
将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变;
将设置为0的测量信息和保持不变的测量信息作为所述当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息。
可选地,在将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变之后,所述方法还包括:
在所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束和所述上一层的所述指定波束的所述测量信息都为0的情况下,将所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束设置为下一层执行训练处理的所述指定波束。
可选地,按照以下之一方式确定第1层对应的波束:在区域被波束集合360度覆盖的情况下,随机选择波束集合中的一个波束作为第1层对应的波束;将区域中的中心位置对应的波束作为第1层对应的波束。
可选地,测量信息包括用于表征信道条件的物理量。
可选地,物理量包括以下至少之一:接收功率,信噪比SNR,信号与干扰加噪声比SINR。
根据本发明实施例的一个方面,提供了一种波束搜索的装置,包括:
测量模块设置为,测量波束集合中第1层对应的波束的测量信息;其中,所述波束集合被分为M层;
处理模块设置为,以所述第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息;其中,所述当前层为第N+1层时,所述上一层为第N层;比较当前层对应的波束中与上一层中的指定波束相邻的所述所有波束的测量信息与所述指定波束的测量信息的大小;在上一层中的指定波束相邻的所述所有波束中存在一个或一个以上波束对应 的测量信息大于所述指定波束的测量信息时,将存在的一个或一个以上测量信息大于所述指定波束的测量信息的波束中的全部设置为下一层执行训练处理的所述指定波束;将所述当前层更新为第N+2层,所述上一层更新为所述N+1层;其中,所述搜索终止条件为所述测量信息都小于或者等于所述指定波束的测量信息,和/或所述当前层为第M层;
第一确定模块设置为,在满足所述搜索终止条件时,从所述波束集合中所有被测量的波束中确定最优波束,其中,所述最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
可选地,装置还包括:第二确定模块设置为,在波束搜索的区域中确定所述第1层对应的波束;其中,所述波束搜索的区域被所述波束集合覆盖。
可选地,所述测量模块还设置为,测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的所述测量信息;所述处理模块还设置为,将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变;将设置为0的测量信息和保持不变的测量信息作为所述当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息。
可选地,所述处理模块还设置为。在所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束和所述上一层的所述指定波束的所述测量信息都为0的情况下,将所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束设置为下一层执行训练处理的所述指定波束。
可选地,第二确定模块按照以下之一方式确定第1层对应的波束:在区域被波束集合360度覆盖的情况下,随机选择波束集合中的一个波束作为第1层对应的波束;将区域中的中心位置对应的波束作为第1层对应的波束。
与相关技术相比,本发明提供的技术方案,包括:以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息;在上一层中的指定波束相邻的所有波束中存在一个或一个以上波束对应的测量信息大于指定波束的测量信息时,将大于指定波束的测量信息的波束中的全 部设置为下一层执行训练处理的指定波束;在满足搜索终止条件时,从波束集合中所有被测量的波束中确定最优波束。本发明实施例,提供了一种基于测量信息梯度的分层波束搜索的方法,即采用对覆盖搜索的区域的分层的波束集合,沿着每一层中的波束的测量信息增大的方向对不同层进行波束搜索,直到达到搜索终止条件,即达到当前层的波束的测量信息都小于或者等于上一层指定波束的测量信息,和/或当前层为第M层(所有层都训练结束),解决了相关技术中波束搜索过程开销较大的问题,降低了波束搜索开销,节约了搜索时间。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例的波束搜索方法的流程图;
图2是本发明可选实施例的波束搜索方法的流程图;
图3是本发明可选实施例的二维波束全向覆盖示意图;
图4是本发明可选实施例的二维波束部分方向示意图;
图5是本发明可选实施例的二维宽窄波束覆盖示意图;
图6是本发明可选实施例的三维波束覆盖示意图一;
图7是本发明可选实施例的三维波束覆盖示意图二;
图8是本发明实施例的波束搜索装置的结构框图。
本发明的实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种波束搜索方法,图1是根据本发明实施例的波束搜索方法的流程图,如图1所示,该流程包括如下步骤:
步骤102,测量波束集合中第1层对应的波束的测量信息;其中,波束集合被分为M层;这里,波束集合划分的M层可以包括:预先设定波束集合的第一层,例如、以几何中心位置作为第一层,第一层的位置也可以根据实际情况设定其他位置;确定第一层后,以预设的波束单位作为分层依据,进行波束集合的划分。波束单位的大小可以由本领域技术人员根据经验分析进行确定。
步骤104,以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息;其中,当前层为第N+1层时,上一层为第N层;比较当前层对应的波束中与上一层中的指定波束相邻的所有波束的测量信息与指定波束的测量信息的大小;在上一层中的指定波束相邻的所有波束中存在一个或一个以上波束对应的测量信息大于指定波束的测量信息时,将存在的一个或一个以上测量信息大于指定波束的测量信息的波束中的部分设置为下一层执行训练处理的指定波束;这里,下一层的搜索处理为:将当前层更新为第N+2层,上一层更新为N+1层;其中,搜索终止条件为测量信息都小于或者等于指定波束的测量信息,和/或当前层为第M层;本发明实施例,第一层可以包括,第一层为一个波束,即指定波束。
步骤106,满足搜索终止条件时,从波束集合中所有被测量的波束中确定最优波束,其中,最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
通过上述步骤,采用对覆盖搜索的区域的分层的波束集合,沿着每一层中的波束的测量信息增大的方向对不同层进行波束搜索,直到达到搜索终止条件,即达到当前层的波束的测量信息都小于或者等于上一层指定波束的测量信息,和/或当前层为第M层(所有层都训练处理结束),解决了相关技术中波束搜索过程开销较大的问题,进而降低了波束搜索开销,节约了搜索时间。
需要说明的是,上述当前层与上一层是相邻的,该相邻可以包括平面相邻,也可以是空间相邻,比如对角线相邻,并不限于此。上述波束集合可以 是二维波束的集合,也可以多维波束的集合,比如三维波束的集合,也可以是宽波束和/或窄波束的集合,但并不限于此,对于波束集合中包含的波束的个数可以有实际情况进行确定。
上述测量信息可以是用于表征信道条件的物理量,该物理量可以包括以下至少之一,但并不限于此:接收功率,信噪比(Signal Noise Ratio,简称SNR),信号与干扰加噪声比(Signal to Interference plus Noise Ratio,简称SINR)。在本发明实施例中,该测量信息可以表现为测量值,比如,在该物理量为接收功率的时候,测量信息可以表现为接收功率的功率值。测量信息包含多个物理量时,进行测量信息的比较时,可以包括仅比较一个物理量。
需要说明的是,如果当前层的波束与上一层不止一个指定波束相邻,则步骤104中可以指定波束的测量信息为上一层指定波束测量信息最大的指定波束的测量信息。
在本发明的一个实施例中,在上述步骤102之前,上述实施例方法还包括:在波束搜索的区域中确定第1层对应的波束;其中,该波束搜索的区域被波束集合覆盖。
需要说明的是,本发明实施例方法,可以按照以下之一方式来确定第1层对应的波束:在区域被波束集合360度覆盖的情况下,随机选择波束集合中的一个波束作为第1层对应的波束;将区域中的中心位置对应的波束作为第1层对应的波束。可以根据不同的情况来选择不同的方式来确定第1层所对应的波束,能够尽量节约搜索的时间。
可选的,上述步骤104可以包括:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的测量信息;将小于预定阈值的测量信息设置为0;将大于或者等于预定阈值的测量信息保持不变。
在本发明的一个实施例中,在将小于预定阈值的测量信息设置为0;将大于或者等于预定阈值的测量信息保持不变之后,上述实施例方法还可以包括:在当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所有波束和上一层的指定波束的测量信息都为0的情况下,将当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所有波束设置为下一层执行训练处理的指定波束;这里,设置完指定波束后,当前层更新为第N+2层, 上一层更新为N+1层。
需要说明的是,上述预定阈值可以包括基站根据相关测量信息进行配置的,不同的用户对应不同的预定阈值,但并不限于此。通过该预定阈值的设置,使得搜索结果以较大概率收敛于最优解,进而能够尽快搜索到最优波束。本发明实施例,如果测量信息包括接收功率时,接收功率对应的预定阈值可以包括-140~-80分贝(dBm)范围内的值,如果测量信息包括SNR或者SINR时,预定阈值可以包括:-50~5dB范围内的值。
为了更好的理解本发明,以下结合可选的实施例,对本发明实施例做进一步解释。
图2是本发明可选实施例的波束搜索的方法的流程图,如图2所示,本发明实施例提供的波束搜索方法包括:
步骤202,确定波束搜索的区域,并用特定的波束集合对某一区域进行完全覆盖,选定区域中心位置所对应的波束作为搜索的起始波束(相当于上述实施例中的步骤102),并对波束进行分层,起始波束是第一层对应的波束,和第一层波束相邻(空间相邻包含对角线的情况)的所有波束记为第二层波束,和第二层波束相邻的所有波束记为第三层波束,….,以此类推,直到所有波束分层完毕(相当于上述是实施例中的步骤104)。起始波束为第一层波束的标记波束(相当于上述实施例中的指定波束),训练(训练包括发送端发送数据,接收端接收数据的过程,下同)并测量得到起始波束的测量信息(测量信息包括能够表征信道条件的物理量,包括但不限于接收功率,SNR,SINR),测量信息小于门限值(预定阈值)T1时(T1的取值都是基站根据相关测量信息进行配置的),测量信息被设置为0,下同。第二层波束作为当前层波束。
步骤204,训练并测量当前层波束中和上一层标记波束相邻的所有波束,得到对应的测量信息(相当于上述实施例中的步骤106)。
步骤206,判断当前层测量的所有波束和上一层的标记波束的测量信息是否都为0,在测量信息都为0的情况下,执行步骤208,;在测量信息不都为0的情况下,执行步骤210。
步骤208,将当前层的所有波束设置为标记波束,下一层波束设置为当前层波束,返回步骤204。
步骤210,判断当前层被训练的波束的测量信息是否都不大于和它相邻的前一层标记波束的测量信息(如果当前层的波束和前一层不止一个标记波束相邻,则以前一层标记波束测量信息最大的为准,下同)或者所有层是否都训练结束;在训练结束的情况下,执行步骤212,在训练未结束的情况下,执行步骤214。
步骤212,搜索结束,所有被训练的波束中最大的测量信息对应的波束为最优波束。
步骤214,确定当前层波束中比和它相邻的前一层标记波束的测量信息大的波束,将这些波束设置为标记波束,将下一层波束设置为当前层波束,返回步骤204。
本发明实施例还提供一种计算机存储介质,计算机存储介质中存储有计算机可执行指令,计算机可执行指令用于执行上述波束搜索的方法。
以下结合实施例来说明上述可选实施例。
实施例一
图3是本发明可选实施例的二维波束全向覆盖示意图,如图3所示的波束覆盖图,假设需要对六个水平二维波束进行搜索以确定最优的发射波束。黑色点表示接收端所在的位置,步骤如下:
S1,确定搜索起始位置为波束1(因为此时为360度覆盖,所以起始点位置可以任意选择),对波束进行分层,第一层波束为波束1,第二层波束为波束2、波束6,第三层波束为3、波束5,第4层波束为波束4,首先得到第一层波束1的测量信息P1;
S2,训练测量第二层波束2和波束6,得到测量信息P2和P6,P1>T1,P2>T1,P6<T1,所以P6=0,P1>P6,P2>P1,所以继续训练测量第3层波束3,
S3,波束3对应的测量信息为P3,P3>T1,比较发现P2>P3;
S4,搜索结束最优波束为波束2。
实施例二
假设如图3所示的波束覆盖图,需要对六个水平二维波束进行搜索以确定最优的发射波束。黑色点表示接收端所在的位置,步骤如下:
S1,确定搜索起始位置为波束2(因为此时为360度覆盖,所以起始点位置可以任意选择);对波束进行分层,第一层波束为波束2,第二层波束为波束1、波束3,第三层波束为4、波束6,第四层波束为波束5,首先得到第一层波束2的测量信息P2;
S2,训练测量第二层波束1和波束3,得到测量信息P1,P3,P1>T1,P2>T1,P3>T1,且P2>P1,P2>P3,所以搜索结束,搜索到的最优波束为波束2。
实施例三
假设如图3所示的波束覆盖图,需要对六个水平二维波束进行搜索以确定最优的发射波束。黑色点表示接收端所在的位置,步骤如下:
S1,确定搜索起始位置为波束5(因为此时为360度覆盖,所以起始点位置可以任意选择),对波束进行分层,第一层波束为波束5,第二层波束为波束4、波束6,第三层波束为3、波束1,第四层波束为2,首先得到第一层波束5的测量信息P5;
S2,训练测量第二层波束4和波束6,得到测量信息P4,P6,P4<T1,P5<T1,P6<T1,所以P4=0,P5=0,P6=0;
S3,继续第三层波束1,3的训练搜索,得到测量信息P1和P3,P1>T1,P3>T1所以P1>P6,P3>P4
S4,继续第四层的训练,得到测量信息P2,P2>P1,P2>P3,此时所有层都训练完毕,所以最优波束为波束2;
实施例四
图4是本发明可选实施例的二维波束部分方向示意图,假设如图4所示 的二维波束覆盖图,波束只覆盖平面的某一部分,需要通过波束搜索确定最优波束,黑色点表示接收端所在的位置,步骤如下:
S1,确定搜索起始位置为波束3(因为波束3是覆盖区域的中心位置),对波束进行分层,第一层波束为波束3,第二层波束为波束2、波束4,第三层波束为3、波束5,首先得到第一层波束3的测量信息P3;
S2,训练测量第二层波束2和波束4,P2>T1,P4<T1,P3>T1,所以训练下一层波束1,得到测量信息P1,P1<P2,所以搜索结束,最优波束为波束2。
实施例五
图5是本发明可选实施例的二维宽窄波束覆盖示意图,假设如图5所示的宽窄波束覆盖图(只画出了两个宽波束对应的窄波束),需要通过搜索确定最优窄波束,黑色点表示接收端所在的位置,假设已经通过本文提出的方法或者其他方法确定最优宽波束为6,以下步骤主要是用本方案进行宽波束6对应的7个窄波束进行搜索:
S1,确定搜索起始位置为波束6-4,对波束进行分层,第一层波束为波束6-4,第二层波束为波束6-3、波束6-5,第三层波束为6-2、波束6-6,第四层为6-1、波束6-7,首先得到第一层波束6-4的测量信息P6-4;
S2,训练第二层波束6-3、波束6-5,得到测量信息,P6-3>T1,P6-4>T1,P6-5<T1,且P6-3>P6-4,继续搜索第三层的波束6-2,
S3,得到测量信息P6-2,P6-3>P6-2,所以搜素结束,得到的最优窄波束为6-3。
实施例六
图6是本发明可选实施例的三维波束覆盖示意图一,假设如图6所示的三维波束覆盖图,搜索区域有水平和垂直两个维度,每个区域对应一个波束,需要通过波束搜索确定最优波束,黑色点表示接收端所在的位置。
S1,确定搜索起始位置为波束1-1(因为波束1-1是覆盖区域的中心位置),对波束进行分层,如图所示不同层用不同颜色及不同标号表示,训练测量波束1-1,得到测量信息P1-1,P1-1<T1;
S2,搜索训练第二层波束2-1~2-8,得到测量信息,其中波束2-1、波束2-7、波束2-8的测量信息比T1大,其余波束的测量信息比T1小,所以进行第三层波束的训练测量;
S3,第三层需要测量的波束为3-10~3-16,发现第三层波束测量信息都比和它们相邻的第二层标记波束的测量信息小,所以搜索结束,选择已经训练的最大的测量信息对应的波束2-8为最优波束。
实施例七
图7是本发明可选实施例的三维波束覆盖示意图二,假设如图7所示的3维波束覆盖图,搜索区域有水平和垂直两个维度,每个区域对应一个波束,需要通过波束搜索确定最优波束,黑色点表示接收端所在的位置。
S1,确定搜索起始位置为波束1-1(原则上起始波束也可以是2-3),对波束进行分层,如图所示不同层用不同颜色及不同标号表示,训练测量波束1-1,得到测量信息P1-1,P1-1>T1;
S2,搜索训练第二层波束2-1~2-5,得到测量信息,其中,只有波束2-5的测量信息比T1大,其余的测量信息都比T1小,所以进行第三层波束的训练测量;
S3,训练测量和波束2-5相邻的第三层波束3-3、波束3-4,发现波束3-3和波束3-4的测量信息都比波束2-5小,所以搜索结束,最优波束为波束2-5。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明每一个实施例的方法。
在本实施例中还提供了一种波束搜索装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模 块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图8是本发明实施例的波束搜索装置的结构框图,如图8所示,该装置包括:
测量模块82设置为,测量波束集合中第1层对应的波束的测量信息;其中,波束集合被分为M层;
处理模块84设置为,以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息;其中,当前层为第N+1层时,上一层为第N层;比较当前层对应的波束中与上一层中的指定波束相邻的所有波束的测量信息与指定波束的测量信息的大小;在上一层中的指定波束相邻的所有波束中存在一个或一个以上波束对应的测量信息大于指定波束的测量信息时,将存在的一个或一个以上测量信息大于指定波束的测量信息的波束中的全部设置为下一层执行训练处理的指定波束;将当前层更新为第N+2层,上一层更新为N+1层;其中,搜索终止条件为测量信息都小于或者等于指定波束的测量信息,和/或当前层为第M层;
第一确定模块86设置为,在满足搜索终止条件时,从波束集合中所有被测量的波束中确定最优波束,其中,最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
通过上述装置,采用对覆盖搜索的区域的分层的波束集合,沿着每一层中的波束的测量信息增大的方向对不同层进行波束搜索,直到达到搜索终止条件,即达到当前层的波束的测量信息都小于或者等于上一层指定波束的测量信息,和/或当前层为第M层(所有层都训练结束),解决了相关技术中波束搜索过程开销较大的问题,进而降低了波束搜索开销,节约了搜索时间。
需要说明的是,上述当前层与上一层是相邻的,该相邻可以包括平面相邻,也可以是空间相邻,比如对角线相邻,并不限于此。上述波束集合可以是二维波束的集合,也可以多维波束的集合,比如三维波束的集合,但并不 限于此。
上述测量信息可以是用于表征信道条件的物理量,该物理量可以包括以下至少之一,但并不限于此:接收功率,信噪比(SNR),信号与干扰加噪声比(SINR)。在本发明实施例中,该测量信息可以表现为测量值,比如,在该物理量为接收功率的时候,测量信息可以表现为接收功率的功率值。
需要说明的是,如果当前层的波束与上一层不止一个指定波束相邻,则处理模块84执行的动作中的指定波束的测量信息为上一层指定波束测量信息最大的指定波束的测量信息。
在本发明的一个实施例中,上述装置还可以包括:第二确定模块设置为,在波束搜索的区域中确定第1层对应的波束;其中,波束搜索的区域被波束集合覆盖。
需要说明的是,上述第二确定模块,可以按照以下之一方式确定第1层对应的波束:在区域被波束集合360度覆盖的情况下,随机选择波束集合中的一个波束作为第1层对应的波束;将区域中的中心位置对应的波束作为第1层对应的波束。上述第二确定模块可以根据不同的情况来选择不同的方式来确定起始位置,能够尽量节约搜索的时间。
上述测量模块82还设置为,测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的测量信息;处理模块还设置为,将小于预定阈值的测量信息设置为0;将大于或者等于预定阈值的测量信息保持不变;将设置为0的测量信息和保持不变的测量信息作为当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息。
需要说明的是,上述处理模块84还设置为。在当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所有波束和上一层的指定波束的测量信息都为0的情况下,将当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所有波束设置为下一层执行训练处理的指定波束。
需要说明的是,上述预定阈值可以是基站根据相关测量信息进行配置的,不同的用户对应不同的预定阈值,但并不限于此。通过该预定阈值的设置,使得搜索结果以较大概率收敛于最优解,进而能够尽快搜索到最优波束。
需要说明的是,上述每一个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述每一个模块均位于同一处理器中;或者,上述每一个模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,测量波束集合中第1层对应的波束的测量信息;其中,波束集合被分为M层;
S2,以第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:
测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所有波束对应的测量信息;其中,当前层为第N+1层时,上一层为第N层;
比较当前层对应的波束中与上一层中的指定波束相邻的所有波束的测量信息与指定波束的测量信息的大小;
在上一层中的指定波束相邻的所有波束中存在一个或一个以上波束对应的测量信息大于指定波束的测量信息时,将存在的一个或一个以上测量信息大于指定波束的测量信息的波束中的全部设置为下一层执行训练处理的指定波束;
其中,搜索终止条件为测量信息都小于或者等于指定波束的测量信息,和/或当前层为第M层;
S3,在满足搜索终止条件时,从波束集合中所有被测量的波束中确定最优波束,其中,最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等可以存储程序代码的介质。
可选地,本实施例中的示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例的模块或步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成相应的集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
上述技术方案降低了波束搜索开销,节约了搜索时间。

Claims (12)

  1. 一种波束搜索的方法,所述方法包括:
    测量波束集合中第1层对应的波束的测量信息;其中,所述波束集合被分为M层;
    以所述第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:
    测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息;其中,所述当前层为第N+1层时,所述上一层为第N层;
    比较当前层对应的波束中与上一层中的指定波束相邻的所述所有波束的测量信息与所述指定波束的测量信息的大小;
    在上一层中的指定波束相邻的所述所有波束中存在一个或一个以上波束对应的测量信息大于所述指定波束的测量信息时,将存在的一个或一个以上测量信息大于所述指定波束的测量信息的波束中的全部设置为下一层执行训练处理的所述指定波束;
    其中,所述搜索终止条件为所述测量信息都小于或者等于所述指定波束的测量信息,和/或所述当前层为第M层;
    在满足所述搜索终止条件时,从所述波束集合中所有被测量的波束中确定最优波束,其中,所述最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
  2. 根据权利要求1所述的方法,在测量波束集合中第1层对应的波束的测量信息之前,所述方法还包括:
    在波束搜索的区域中确定所述第1层对应的波束;其中,所述波束搜索的区域被所述波束集合覆盖。
  3. 根据权利要求1所述的方法,其中,测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息包括:
    测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的所述测量信息;
    将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变;
    将设置为0的测量信息和保持不变的测量信息作为所述当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息。
  4. 根据权利要求3所述的方法,在将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变之后,所述方法还包括:
    在所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束和所述上一层的所述指定波束的所述测量信息都为0的情况下,将所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束设置为下一层执行训练处理的所述指定波束。
  5. 根据权利要求2所述的方法,其中,按照以下之一方式确定所述第1层对应的波束:
    在所述区域被所述波束集合360度覆盖的情况下,随机选择所述波束集合中的一个波束作为所述第1层对应的波束;
    将所述区域中的中心位置对应的波束作为所述第1层对应的波束。
  6. 根据权利要求1至5中任一项所述的方法,其中,测量信息包括用于表征信道条件的物理量。
  7. 根据权利要求6所述的方法,其中,所述物理量包括以下至少之一:
    接收功率,信噪比SNR,信号与干扰加噪声比SINR。
  8. 一种波束搜索的装置,所述装置包括:
    测量模块设置为,测量波束集合中第1层对应的波束的测量信息;其中,所述波束集合被分为M层;
    处理模块设置为,以所述第1层对应的波束作为搜索起点,逐层执行以下训练处理,直到满足搜索终止条件为止:测量当前层对应的波束中,与上 一层中的指定波束相邻的所有波束,得到当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息;其中,所述当前层为第N+1层时,所述上一层为第N层;比较当前层对应的波束中与上一层中的指定波束相邻的所述所有波束的测量信息与所述指定波束的测量信息的大小;在上一层中的指定波束相邻的所述所有波束中存在一个或一个以上波束对应的测量信息大于所述指定波束的测量信息时,将存在的一个或一个以上测量信息大于所述指定波束的测量信息的波束中的全部设置为下一层执行训练处理的所述指定波束;将所述当前层更新为第N+2层,所述上一层更新为所述N+1层;其中,所述搜索终止条件为所述测量信息都小于或者等于所述指定波束的测量信息,和/或所述当前层为第M层;
    第一确定模块设置为,在满足所述搜索终止条件时,从所述波束集合中所有被测量的波束中确定最优波束,其中,所述最优波束为测量信息最大的波束;其中,M为大于1的正整数,N为正整数。
  9. 根据权利要求8所述的装置,所述装置还包括:
    第二确定模块设置为,在波束搜索的区域中确定所述第1层对应的波束;其中,所述波束搜索的区域被所述波束集合覆盖。
  10. 根据权利要求8所述的装置,所述测量模块还设置为,测量当前层对应的波束中,与上一层中的指定波束相邻的所有波束的所述测量信息;所述处理模块还设置为,将小于预定阈值的测量信息设置为0;将大于或者等于所述预定阈值的测量信息保持不变;将设置为0的测量信息和保持不变的测量信息作为所述当前层对应的波束中与上一层中的指定波束相邻的所述所有波束对应的测量信息。
  11. 根据权利要求10所述的装置,所述处理模块还设置为,在所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束和所述上一层的所述指定波束的所述测量信息都为0的情况下,将所述当前层测量的当前层对应的波束中与上一层中的指定波束相邻的所述所有波束设置为下一层执行训练处理的所述指定波束。
  12. 根据权利要求9所述的装置,其中,所述第二确定模块是设置为,按照以下至少之一方式确定所述第1层对应的波束:
    在所述区域被所述波束集合360度覆盖的情况下,随机选择所述波束集合中的一个波束所述第1层对应的波束;
    将所述区域中的中心位置对应的波束作为所述第1层对应的波束。
PCT/CN2016/083345 2016-03-09 2016-05-25 波束搜索的方法及装置 WO2017152504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610134378.X 2016-03-09
CN201610134378.XA CN107181517B (zh) 2016-03-09 2016-03-09 波束搜索方法及装置

Publications (1)

Publication Number Publication Date
WO2017152504A1 true WO2017152504A1 (zh) 2017-09-14

Family

ID=59788871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083345 WO2017152504A1 (zh) 2016-03-09 2016-05-25 波束搜索的方法及装置

Country Status (2)

Country Link
CN (1) CN107181517B (zh)
WO (1) WO2017152504A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478724A (zh) * 2020-04-15 2020-07-31 南京航空航天大学 一种面向无人机毫米波平台的三维波束搜索方法
CN111555786B (zh) * 2020-04-24 2022-08-19 深圳清华大学研究院 最优波束对搜索方法、装置、计算机设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052086A (zh) * 2013-01-22 2013-04-17 华为技术有限公司 一种毫米波相控阵波束对准方法及通信设备
CN104168046A (zh) * 2014-08-13 2014-11-26 电子科技大学 利用压缩感知的单端频域波束搜索方法
CN104218984A (zh) * 2014-08-27 2014-12-17 电子科技大学 利用压缩感知的双端频域波束搜索方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7340279B2 (en) * 2001-03-23 2008-03-04 Qualcomm Incorporated Wireless communications with an adaptive antenna array
US20100068993A1 (en) * 2008-09-12 2010-03-18 Rahil Khan System and method for satellite-long term evolution (s-lte) air interface
EP2443762B1 (en) * 2009-06-19 2016-08-10 BlackBerry Limited Transparent relay using dual-layer beam forming association procedures
CN101616472B (zh) * 2009-07-28 2011-04-13 深圳大学 一种发射波束跟踪方法、系统及发射端设备
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
CN102291727B (zh) * 2011-09-21 2013-07-31 东南大学 一种分布式协作波束成形设计方法
US9225478B2 (en) * 2012-07-02 2015-12-29 Intel Corporation Supporting measurments and feedback for 3D MIMO with data transmission optimization
KR101573342B1 (ko) * 2014-06-24 2015-12-03 중앙대학교 산학협력단 빔 트레이닝 장치 및 방법
CN105337650B (zh) * 2014-08-01 2018-12-18 上海诺基亚贝尔股份有限公司 确定波束成形器的向量的方法和装置
CN104168047B (zh) * 2014-08-13 2017-04-12 电子科技大学 利用压缩感知的单端时域波束搜索方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052086A (zh) * 2013-01-22 2013-04-17 华为技术有限公司 一种毫米波相控阵波束对准方法及通信设备
CN104168046A (zh) * 2014-08-13 2014-11-26 电子科技大学 利用压缩感知的单端频域波束搜索方法
CN104218984A (zh) * 2014-08-27 2014-12-17 电子科技大学 利用压缩感知的双端频域波束搜索方法

Also Published As

Publication number Publication date
CN107181517A (zh) 2017-09-19
CN107181517B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US8229506B2 (en) Enhanced connection acquisition using an array antenna
KR102654497B1 (ko) 무선 라디오 액세스 네트워크들 (wireless radio access networks) 에 머신 러닝 기법들을 적용하기 위한 라디오 맵핑 아키텍처 (radio mapping architecture)
CN106717082A (zh) 减轻信号噪声的基于指纹的室内定位
KR101770911B1 (ko) 5세대 이동통신용 공간 채널 모델 파라미터 획득 방법 및 장치
KR20180072402A (ko) 무선 통신 시스템에서 단말의 빔 결정 방법 및 이를 위한 단말
CN110912630B (zh) 一种基于多天线的空域频谱感知方法
CN113873651B (zh) 通信方法和通信装置
JP7307825B2 (ja) 再構成可能なスマートサーフェスによって反射された無線信号を使用する、ユーザの位置特定及びトラッキングのための方法及び装置
EP4009537A1 (en) Beamforming method and apparatus, radio access network device, and readable storage medium
CN105530598B (zh) 基于wlan室内定位的ap选择方法
CN1685749A (zh) 无线局域网天线操控方法及装置
He et al. Analytical evaluation of higher order sectorization, frequency reuse, and user classification methods in OFDMA networks
Machaj et al. Impact of optimization algorithms on hybrid indoor positioning based on GSM and Wi‐Fi signals
WO2017152504A1 (zh) 波束搜索的方法及装置
CN111385039B (zh) 一种小区广播波束参数的调整方法及装置
Banday et al. SINR analysis and interference management of macrocell cellular networks in dense urban environments
CN113438733A (zh) 基于5g和wifi实现室内定位的系统、方法及电子设备
Ishihara et al. Distributed smart antenna system for high‐density WLAN system
CN101848045A (zh) 一种测量双极化智能天线业务波束的基准方向的方法
Sheikh et al. Analysis of indoor solutions for provision of indoor coverage at 3.5 GHz and 28 GHz for 5G system
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
Izydorczyk et al. Angular distribution of cellular signals for UAVs in urban and rural scenarios
KR20200005002A (ko) 무선 네트워크 디자인 방법, 저장매체 및 전자 장치
WO2017185994A1 (zh) 分簇的方法、装置及系统
CN115378521A (zh) 一种无线信道多径信息的确定方法、装置及相关设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893152

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893152

Country of ref document: EP

Kind code of ref document: A1