WO2024062619A1 - 送信装置、受信装置、送信制御方法及び受信制御方法 - Google Patents

送信装置、受信装置、送信制御方法及び受信制御方法 Download PDF

Info

Publication number
WO2024062619A1
WO2024062619A1 PCT/JP2022/035471 JP2022035471W WO2024062619A1 WO 2024062619 A1 WO2024062619 A1 WO 2024062619A1 JP 2022035471 W JP2022035471 W JP 2022035471W WO 2024062619 A1 WO2024062619 A1 WO 2024062619A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam
signals
signal
circuits
circuit
Prior art date
Application number
PCT/JP2022/035471
Other languages
English (en)
French (fr)
Inventor
斗煥 李
裕文 笹木
康徳 八木
皓介 鈴置
淳 増野
健 平賀
知哉 景山
穂乃花 伊藤
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/035471 priority Critical patent/WO2024062619A1/ja
Publication of WO2024062619A1 publication Critical patent/WO2024062619A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a technology for spatially multiplexing and transmitting wireless signals using orbital angular momentum (OAM) of electromagnetic waves.
  • OFAM orbital angular momentum
  • Non-Patent Document 1 In an electromagnetic wave having OAM, equal phase planes are distributed in a spiral shape along the propagation direction with the propagation axis as the center. Electromagnetic waves that have different OAM modes and propagate in the same direction have orthogonal spatial phase distributions in the direction of the rotation axis, so the signals can be multiplexed by separating the signals of each OAM mode modulated with different signal sequences at the receiving station. It is possible to transmit.
  • a wireless communication system using this OAM multiplexing technology generates multiple OAM modes using a uniformly spaced circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which multiple antenna elements are arranged circularly at equal intervals.
  • UCA Uniform Circular Array
  • a Butler circuit Butler matrix circuit
  • signals of the same OAM mode can be multiplexed and transmitted by using a multiple UCA, which is a concentric arrangement of multiple UCAs of different diameters.
  • signals multiplexed in the same OAM mode can be separated using MIMO technology.
  • Wireless communications using millimeter waves, sub-THz bands, etc. utilize transmission bandwidths of several GHz and enable large-capacity transmission.
  • the actual usable bandwidth is limited due to limitations in the digital signal processing ability of baseband signals. For example, even if the transmission bandwidth is 10 GHz, if the digital signal processing capability is 2 GHz or less, the wide bandwidth cannot be used and only the band of 2 GHz or less is used, making large-capacity transmission difficult.
  • an approach that utilizes a wide band by dividing the band into 2 GHz units is also conceivable, but there is a problem in that the device configuration for signal separation and synthesis becomes complicated.
  • the disclosed technology aims to realize the use of wide bandwidth with a simple device configuration.
  • the disclosed technology includes a plurality of frequency conversion circuits each converting an analog signal modulated with a plurality of baseband signals having a bandwidth based on the processing capability of the baseband signal so that the analog signal includes a radio frequency band different from each other;
  • the transmitter includes an OAM signal generation circuit that generates OAM signals in which the analog signals converted to include different radio frequency bands are respectively assigned to different OAM modes.
  • FIG. 1 is a first diagram for explaining a conventional transmitting device and receiving device.
  • FIG. 2 is a second diagram for explaining a conventional transmitting device and receiving device.
  • FIG. 1 is a first diagram for explaining a conventional problem.
  • FIG. 2 is a second diagram for explaining conventional problems.
  • 1 is a diagram showing a configuration example of a communication system according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of UCA phase settings for generating an OAM mode signal.
  • FIG. 3 is a diagram showing an example of a phase distribution and a signal strength distribution of an OAM multiplexed signal.
  • FIG. 2 is a diagram illustrating a configuration example of a transmission device according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration example of a receiving device according to Example 1 of the embodiment of the present invention.
  • FIG. It is a figure showing the example of composition of the transmission device concerning Example 2 of an embodiment of the present invention. It is a figure showing the example of composition of the receiving device concerning Example 2 of an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an antenna configuration including a plurality of UCAs arranged concentrically. It is a figure showing the example of composition of the transmission device concerning Example 3 of an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of a receiving device according to a third embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a configuration example of a transmitting device according to a fourth embodiment of the present invention. It is a figure showing the example of composition of the receiving device concerning Example 4 of an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an OAM signal including polarization division multiplexing. It is a figure showing the example of composition of the transmission device concerning Example 5 of embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a configuration example of a receiving device according to a fifth embodiment of the present invention. It is a figure showing the example of composition of the transmission device concerning Example 6 of an embodiment of the present invention. It is a figure showing the example of composition of the receiving device concerning Example 6 of an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the effects of Example 9 of the embodiment of the present invention.
  • FIG. 3 is a sequence diagram showing an example of the flow of control processing according to pattern 1 of the embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing an example of the flow of control processing according to pattern 2 according to the embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing an example of the flow of control processing according to pattern 3 according to the embodiment of the present invention.
  • FIG. 7 is a sequence diagram showing an example of the flow of control processing according to pattern 4 according to the embodiment of the present invention.
  • FIG. 1 is a first diagram for explaining a conventional transmitting device and receiving device.
  • a conventional transmitter includes a modulation circuit and a frequency conversion circuit.
  • the modulation circuit modulates the baseband signal (digital signal) into an intermediate frequency (IF) analog signal.
  • the frequency conversion circuit converts the frequency of the analog signal from an intermediate frequency to a radio frequency (RF).
  • the transmitting device transmits a radio signal (radio wave) converted into a radio frequency to a receiving device.
  • the conventional receiving device includes a frequency conversion circuit and a demodulation circuit.
  • the receiving device receives a wireless signal (radio wave) transmitted from the transmitting device.
  • the frequency conversion circuit converts the frequency of the received signal from a radio frequency to an intermediate frequency.
  • the demodulation circuit demodulates the intermediate frequency analog signal into a baseband signal.
  • transmitting devices and receiving devices have configurations that do not assume transmission and reception of a bandwidth that exceeds the limit of baseband signal processing capability. For example, if the transmitting device and the receiving device have baseband signal processing capabilities of 2 GHz or less, they can only handle signals with a bandwidth of 2 GHz or less.
  • FIG. 2 is a second diagram for explaining a conventional transmitting device and receiving device.
  • FIG. 2 shows an example of a transmitting device and a receiving device that transmit and receive wideband signals by dividing the bands by bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability.
  • bandwidth for example, 2 GHz
  • the transmitting device modulates digital signals for each bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability, into intermediate frequency analog signals using respective modulation circuits. Then, the transmitting device synthesizes the analog signals before or after conversion by the frequency conversion circuit, that is, at an intermediate frequency or a radio frequency.
  • bandwidth for example, 2 GHz
  • the transmitting device synthesizes the analog signals before or after conversion by the frequency conversion circuit, that is, at an intermediate frequency or a radio frequency.
  • the receiving device separates the analog signal before or after conversion by the frequency conversion circuit, that is, at the intermediate frequency or radio frequency. Then, the receiving device demodulates each separated analog signal into a digital signal using a demodulation circuit, and obtains a baseband signal for each bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability.
  • Fig. 3 is the first diagram for explaining the problems with the conventional technology.
  • a band-pass filter (BPF) is required as a filter for separating signals.
  • BPF band-pass filter
  • Fig. 3 for example, in order to separate signals in consecutive frequency slots, high-precision separation performance capable of separating small differences in frequency is required, which is difficult to achieve.
  • FIG. 4 is a second diagram for explaining the conventional problems. As shown in FIG. 4, this can be realized by providing a guard interval (GI) for each frequency slot in accordance with the separation performance of the bandpass filter. However, if such a guard interval is provided for each frequency slot, the amount of wasted band increases, resulting in a problem that the usable frequency bandwidth becomes narrower.
  • GI guard interval
  • this embodiment uses OAM, which enables the synthesis and separation of multiple signals using analog circuits, and Frequency Division Multiplexing (FDM), which divides and uses a wide band. ) will be explained.
  • FIG. 5 is a diagram showing a configuration example of a communication system according to an embodiment of the present invention.
  • the communication system includes a transmitting device 100 and a receiving device 200.
  • the transmitting device 100 transmits an OAM signal to the receiving device 200.
  • Transmitting device 100 includes an antenna 110, a transmitting section 120, and a transmission control section 130.
  • the antenna 110 includes a uniform circular array antenna (UCA) capable of transmitting OAM signals.
  • Transmitter 120 transmits the OAM signal via antenna 110.
  • UCA uniform circular array antenna
  • the transmission control unit 130 controls the transmission of the OAM signal by the transmission unit 120. For example, the transmission control unit 130 determines the band of the baseband signal to be assigned to each mode of the OAM signal.
  • the receiving device 200 receives the OAM signal transmitted from the transmitting device 100.
  • Receiving device 200 includes an antenna 210, a receiving section 220, and a reception control section 230.
  • the antenna 210 is composed of a UCA or the like that can receive OAM signals.
  • Receiving section 220 receives the OAM signal via antenna 210.
  • the reception control unit 230 controls reception of the OAM signal by the reception unit 220. For example, the reception control unit 230 receives information indicating allocation of each mode of the OAM signal (assignment information) from the transmission control unit 130, and assigns a bandwidth of 2 GHz or the like to the received OAM signal based on the received allocation information. Separate into multiple signals.
  • FIG. 6 is a diagram showing an example of UCA phase settings for generating an OAM mode signal.
  • the UCA shown in FIG. 6 is a UCA consisting of eight antenna elements.
  • OAM mode-n a signal whose phase rotation direction is reversed with respect to the signal of OAM mode n is referred to as OAM mode-n.
  • the rotation direction of the phase of the positive OAM mode signal is counterclockwise
  • the rotation direction of the phase of the negative OAM mode signal is clockwise.
  • the signals to be transmitted in each OAM mode may be generated and combined in advance, and the combined signal for each OAM mode may be transmitted using a single UCA, or multiple UCAs may be used to transmit signals using different UCAs for each OAM mode. Signals for each OAM mode may be transmitted.
  • the phase of each antenna element of the UCA on the receiving side may be set to be in the opposite direction to the phase of the antenna element on the transmitting side.
  • interference between OAM modes means, for example, that a signal transmitted from a transmitter in OAM mode 1 is output as a signal in OAM mode 2 on the receiving side.
  • FIG. 7 is a diagram showing an example of the phase distribution and signal strength distribution of the OAM multiplexed signal.
  • the phase distributions of the signals of OAM mode 1 and OAM mode 2 are represented by arrows when viewed from the transmission side at an end face (propagation orthogonal plane) perpendicular to the propagation direction.
  • the beginning of the arrow is 0 degrees, the phase changes linearly and the end of the arrow is 360 degrees. That is, the signal of OAM mode n propagates while the phase rotates n times (n ⁇ 360 degrees) in the propagation orthogonal plane.
  • the arrows of the phase distribution of the signals in OAM modes -1 and -2 are in opposite directions.
  • Each OAM mode signal has a different signal intensity distribution and a different position where the signal intensity is maximum.
  • the intensity distribution is the same for the same OAM mode with a different sign.
  • the higher the OAM mode the farther the position where the signal intensity is maximum is from the propagation axis (Non-Patent Document 2).
  • the OAM mode with a larger value is called a higher order mode.
  • a signal in OAM mode 3 is a higher order mode than signals in OAM mode 0, OAM mode 1, and OAM mode 2.
  • Figure 7 (3) shows the position where the signal strength is maximum for each OAM mode as a ring.
  • the beam diameter of the OAM mode multiplexed signal expands, and the ring indicating the position where the signal intensity is maximum for each OAM mode becomes larger.
  • Example 1 In this embodiment, an example of a transmitting device that modulates a plurality of baseband signals into analog signals of different RF frequencies and generates signals of different OAM modes to simultaneously transmit signals of a plurality of OAM modes will be described. Also, an example of a receiving device that receives signals of a plurality of OAM modes, separates the signals for each OAM mode, and demodulates each of the separated analog signals into a baseband signal will be described.
  • FIG. 8 is a diagram illustrating a configuration example of a transmitting device according to Example 1 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of modulation circuits 121 (modulation circuits 121-1, 121-2, ..., 121-n) and a plurality of frequency conversion circuits 122 (frequency conversion circuits 122-1, 122). -2, . . . , 122-n) and an OAM signal generation circuit 123.
  • Each modulation circuit receives a digital signal divided by bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability. Modulate to an intermediate frequency analog signal.
  • Each frequency conversion circuit (frequency conversion circuits 122-1, 122-2, ..., 122-n) converts the frequency of each intermediate frequency analog signal into a radio frequency.
  • the converted radio frequencies are different from each other and are input to the OAM signal generation circuit 123 so as to be assigned to different OAM modes (OAM mode #1, OAM mode #2, ..., OAM mode #n).
  • OAM mode #1, OAM mode #2, ..., OAM mode #n For example, different OAM modes may be assigned to multiple frequency band blocks (for example, when 10 GHz is used divided into 2 GHz bands, there are five frequency blocks (F1-F5)).
  • the multiple frequency conversion circuits convert analog signals modulated from multiple baseband signals having a bandwidth (e.g., 2 GHz) based on the processing capacity of the baseband signals, to include radio frequency bands that are different from each other.
  • the multiple frequency conversion circuits convert the modulated analog signals into radio frequency bands that are different from each other.
  • the OAM signal generation circuit 123 is, for example, a Butler circuit (Butler matrix circuit).
  • the OAM signal generation circuit 123 generates an OAM signal by combining input OAM mode signals having mutually different frequencies, and transmits the generated OAM signal to the receiving device 200 via the antenna 110.
  • the OAM signal generation circuit 123 generates OAM signals in which analog signals converted to include different radio frequency bands are assigned to different OAM modes.
  • the OAM signal generation circuit 123 generates OAM signals in which analog signals converted into different radio frequency bands are assigned to different OAM modes.
  • FIG. 9 is a diagram illustrating a configuration example of a receiving device according to Example 1 of the embodiment of the present invention.
  • the receiving unit 220 of the receiving device 200 includes a plurality of demodulation circuits 221 (demodulation circuits 221-1, 221-2, ..., 221-n) and a plurality of frequency conversion circuits 222 (frequency conversion circuits 222-1, 222). -2, . . . , 222-n) and an OAM signal separation circuit 223.
  • the OAM signal separation circuit 223 is, for example, a Butler circuit (Butler matrix circuit).
  • the OAM signal separation circuit 223 separates the OAM signal received via the antenna 210 into signals of each OAM mode having different frequencies.
  • the OAM signal separation circuit 223 separates OAM signals in which analog signals including different radio frequency bands are assigned to different OAM modes.
  • the OAM signal separation circuit 223 separates OAM signals in which analog signals converted into different radio frequency bands are assigned to different OAM modes.
  • Each frequency conversion circuit (frequency conversion circuits 222-1, 222-2, ..., 222-n) converts the frequency of each analog signal, which is a radio frequency, to an intermediate frequency.
  • Each demodulation circuit demodulates the analog signal converted to the intermediate frequency into a digital signal.
  • the receiving device 200 can obtain a plurality of baseband signals divided by bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability.
  • the plurality of demodulation circuits convert the separated OAM signals into multiple baseband signals having bandwidths based on the baseband signal processing capability. Demodulate the signal.
  • the transmitting device 100 assigns multiple frequency-divided baseband signals to different OAM modes and combines them into an OAM signal.
  • the receiving device 200 separates the received OAM signal to obtain multiple frequency-divided baseband signals. This makes it possible to utilize a wide bandwidth with a simple device configuration.
  • Example 2 Example 2 will be described below with reference to the drawings.
  • the second embodiment differs from the first embodiment in that analog signals containing the same radio frequency are assigned to different OAM modes. Therefore, in the following explanation of the second embodiment, the differences from the first embodiment will be mainly explained, and parts having the same functional configuration as the first embodiment will be designated by the same reference numerals as used in the explanation of the first embodiment. A symbol is given and the explanation thereof is omitted.
  • FIG. 10 is a diagram illustrating a configuration example of a transmitting device according to Example 2 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 according to the present embodiment includes a plurality of modulation circuits 121 (modulation circuits 121-1-1, 121-1-2, . . . , 121-n-1, 121-n-2). , a plurality of frequency conversion circuits 122 (frequency conversion circuits 122-1-1, 122-1-2, ..., 122-n-1, 122-n-2), and an OAM signal generation circuit 123. Be prepared.
  • Each modulation circuit (modulation circuit 121-1-1, 121-1-2, ..., 121-n-1, 121-n-2) has a bandwidth ( For example, a digital signal divided into 2 GHz) is modulated into an intermediate frequency analog signal.
  • Each frequency conversion circuit (frequency conversion circuits 122-1-1, 122-1-2, ..., 122-n-1, 122-n-2) converts the frequency of each intermediate frequency analog signal into a radio frequency.
  • the radio frequencies after conversion may be the same (including overlapping) or different.
  • the radio frequencies converted by the frequency conversion circuit 122-1-1 and the frequency conversion circuit 122-1-2 include the same frequency band.
  • the radio frequencies converted by the frequency conversion circuit 122-2-1 and the frequency conversion circuit 122-2-2 include the same frequency band, and the frequency conversion circuit 122-1-1 and the frequency conversion circuit 122-2 -2 is different from the converted radio frequency.
  • the plurality of frequency conversion circuits (frequency conversion circuits 122-1-1, 122-1-2, ..., 122-n-1, 122-n-2) convert the modulated analog signals into the same Convert to include radio frequency bands.
  • the respective converted radio frequency signals are assigned to different OAM modes (OAM mode #1, OAM mode #-1, OAM mode #2, ..., OAM mode #n, OAM mode #0).
  • the signal is input to the signal generation circuit 123.
  • the OAM signal generation circuit 123 generates signals of each input OAM mode, and transmits the generated OAM signals to the receiving device 200 via the antenna 110. That is, the OAM signal generation circuit 123 generates OAM signals in which analog signals converted to include the same radio frequency band are assigned to different OAM modes.
  • the transmission control unit 130 determines which OAM mode is assigned to which frequency slot. For example, the transmission control unit 130 may assign the same frequency band to multiple OAM modes with low interference between them, and assign different frequency bands to multiple OAM modes with high interference between them.
  • the transmission control unit 130 may allocate a corresponding number of OAM modes to the same frequency slot, or may allocate a different number of OAM modes. For example, the transmission control unit 130 may assign OAM modes #-1, 2, 0 to frequency slot #1, and OAM mode #-2 to frequency slot #2. Details of how the transmission control unit 130 allocates OAM modes will be described later.
  • FIG. 11 is a diagram showing a configuration example of a receiving device according to Example 2 of the embodiment of the present invention.
  • the receiving unit 220 of the receiving device 200 includes a plurality of demodulation circuits 221 (demodulation circuits 221-1-1, 221-1-2, ..., 221-n-1, 221-n-2) and a plurality of frequency It includes a conversion circuit 222 (frequency conversion circuits 222-1-1, 222-1-2, . . . , 222-n-1, 222-n-2) and an OAM signal separation circuit 223.
  • the OAM signal separation circuit 223 is, for example, a Butler circuit (Butler matrix circuit).
  • the OAM signal separation circuit 223 separates the OAM signal received via the antenna 210 into signals of each OAM mode.
  • the radio frequencies of the separated signals may be the same (including overlapping) frequencies or may be different frequencies.
  • the OAM signal separation circuit 223 separates OAM signals in which analog signals converted to include the same radio frequency band are assigned to different OAM modes.
  • Each frequency conversion circuit (frequency conversion circuit 222-1-1, 222-1-2, ..., 222-n-1, 222-n-2) converts the frequency of each radio frequency analog signal into an intermediate Convert to frequency.
  • Each demodulation circuit (demodulation circuit 221-1-1, 221-1-2, ..., 221-n-1, 221-n-2) converts the analog signal converted into an intermediate frequency into a digital signal. Demodulate. Thereby, the receiving device 200 can obtain a plurality of baseband signals divided by bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability.
  • a plurality of analog signals having some of the same radio frequencies are assigned to different OAM modes.
  • wideband transmission and reception can be realized by utilizing the phase difference with less interference due to OAM multiplexing, and the bandwidth can be used effectively.
  • the transmission control unit 130 may assign a signal with a high priority among the plurality of signals to a dedicated OAM mode or a dedicated frequency.
  • the transmission control unit 130 may then assign a shared OAM mode or the same (partially overlapping) frequency band to a signal with a low priority among the plurality of signals.
  • OAM mode #1 is a dedicated channel
  • OAM modes #-1, #2 , . . . #0 may be used as a shared channel.
  • OAM mode #1 of the dedicated channel may use a different frequency band from other channels.
  • the plurality of frequency conversion circuits (frequency conversion circuits 222-1-1, 222-1-2, ..., 222-n-1, 222-n-2) convert the modulated analog signals into Depending on the priority of the baseband signal, it is determined whether the radio frequency band is a different radio frequency band from other OAM modes or a radio frequency band including the same radio frequency band as other OAM modes, and the conversion is performed.
  • the transmission control unit 130 may dynamically allocate a dedicated channel or a shared channel to each signal depending on the characteristics of the signal and channel conditions. This makes it possible to realize assignments that match the characteristics of the signal.
  • Example 3 will be described below with reference to the drawings.
  • the third embodiment differs from the first embodiment in that signals are transmitted and received using the OAM multiplexing method. Therefore, in the following explanation of the third embodiment, the differences from the first embodiment will be mainly explained, and parts having the same functional configuration as the first embodiment will be designated by the same reference numerals as those used in the explanation of the first embodiment. A symbol is given and the explanation thereof is omitted.
  • FIG. 12 is a diagram illustrating an example of an antenna configuration including a plurality of UCAs arranged concentrically. As shown in FIG. 12, signals in the same OAM mode can be multiplexed and transmitted using multiple UCAs in which a plurality of UCAs with different diameters are arranged concentrically. On the receiving side, MIMO technology allows signals multiplexed within the same OAM mode to be separated.
  • FIG. 12 is an example of a multiple UCA in which four UCAs of different diameters are arranged concentrically.
  • FIG. 13 is a diagram illustrating a configuration example of a transmitting device according to Example 3 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of modulation circuits 121 (modulation circuits 121-1-1, 121-1-2, ..., 121-n-1, 121-n-2) and a plurality of frequency A conversion circuit 122 (frequency conversion circuit 122-1-1, 122-1-2, ..., 122-n-1, 122-n-2) and a plurality of OAM signal generation circuits 123 (OAM signal generation circuit 123) -1,123-2).
  • Each modulation circuit (modulation circuit 121-1-1, 121-1-2, ..., 121-n-1, 121-n-2) has a bandwidth ( For example, a digital signal divided into 2 GHz) is modulated into an intermediate frequency analog signal.
  • Each frequency conversion circuit (frequency conversion circuit 122-1-1, 122-1-2, ..., 122-n-1, 122-n-2) converts the frequency of each intermediate frequency analog signal into a wireless Convert to frequency.
  • the radio frequencies after each conversion may be the same (including overlapping) frequencies or may be different frequencies.
  • the radio frequencies converted by frequency conversion circuits 122-1-1 and 122-1-2 include the same frequency band.
  • the radio frequencies converted by frequency conversion circuits 122-2-1 and 122-2-2 include the same frequency band and are different from the radio frequencies converted by frequency conversion circuits 122-1-1 and 122-1-2.
  • the respective converted radio frequency signals may include the same OAM mode assigned to different UCAs by OAM multiplexing.
  • signal #1 is assigned to OAM mode #1 of UCA #1.
  • Signal #2 is assigned to OAM mode #1 of UCA #2.
  • Signal #3 is assigned to OAM mode #2 of UCA #1.
  • Signal #4 is assigned to OAM mode #2 of UCA #2.
  • the same UCA has different frequencies and is assigned to different OAM modes.
  • Each OAM signal generation circuit 123 (OAM signal generation circuits 123-1, 123-2) generates signals of respective input OAM modes having mutually different frequencies, and transmits the generated OAM signals to the antenna 110. It is transmitted to the receiving device 200 via each UCA.
  • each OAM signal generation circuit 123 (OAM signal generation circuit 123-1, 123-2) generates an analog signal that is assigned to a plurality of UCAs and converted into a different radio frequency band for each UCA included in the plurality of UCAs. generate OAM multiplex signals, each assigned to a different OAM mode.
  • the antenna 110 is an antenna capable of OAM multiplex transmission, and has, for example, a multiple concentric uniform circular array (M-UCA) including a plurality of UCAs. Note that although FIG. 13 shows an example in which the number of UCAs is two, the number of UCAs may be three or more.
  • M-UCA multiple concentric uniform circular array
  • FIG. 14 is a diagram illustrating a configuration example of a receiving device according to Example 3 of the embodiment of the present invention.
  • the receiving unit 220 of the receiving device 200 includes a plurality of demodulation circuits 221 (demodulation circuits 221-1-1, 221-1-2, ..., 221-n-1, 221-n-2) and a plurality of frequency A conversion circuit 222 (frequency conversion circuits 222-1-1, 222-1-2, ..., 222-n-1, 222-n-2) and a plurality of OAM signal separation circuits 223 (OAM signal separation circuit 223) -1,223-2).
  • the antenna 210 is an antenna capable of OAM multiplex reception, and has, for example, a multiple UCA including a plurality of UCAs. Note that although FIG. 14 shows an example in which the number of UCAs is two, the number of UCAs may be three or more.
  • Each OAM signal separation circuit separates the OAM signals received via each UCA of antenna 210 into signals of each OAM mode having mutually different frequencies.
  • each OAM signal separation circuit (OAM signal separation circuits 223-1, 223-2) is assigned to multiple UCAs, and separates the analog signals that are converted to different radio frequency bands for each UCA included in the multiple UCAs into OAM multiplexed signals that are assigned to different OAM modes.
  • Each frequency conversion circuit (frequency conversion circuit 222-1-1, 222-1-2, ..., 222-n-1, 222-n-2) converts the frequency of each radio frequency analog signal into an intermediate Convert to frequency.
  • Each demodulation circuit (demodulation circuit 221-1-1, 221-1-2, ..., 221-n-1, 221-n-2) converts the analog signal converted into an intermediate frequency into a digital signal. Demodulate. Thereby, the receiving device 200 can obtain a plurality of baseband signals divided by bandwidth (for example, 2 GHz), which is the limit of baseband signal processing ability.
  • the transmitting device 100 transmits and receives signals using the OAM multiplexing method.
  • frequency bands can be used more effectively in wireless communication using a wide bandwidth by using multiplexed OAM mode signals.
  • Example 4 will be described below with reference to the drawings.
  • the fourth embodiment differs from the second embodiment in that signals are transmitted and received using the OAM multiplexing method. Therefore, in the following explanation of the fourth embodiment, the differences from the second embodiment will be mainly explained, and the same reference numerals as used in the explanation of the second embodiment will be used to refer to components having the same functional configuration as the second embodiment. A symbol is given and the explanation thereof is omitted.
  • FIG. 15 is a diagram illustrating a configuration example of a transmitting device according to Example 4 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of transmitter circuits 120-1 and 120-2 having the same configuration as the transmitter 120 shown in the second embodiment. Further, the antenna 110 has a plurality of UCAs (UCA #1, #2).
  • the transmitting circuit 120-1 generates a signal transmitted from UCA #1.
  • Transmission circuit 120-2 generates a signal transmitted from UCA #2.
  • the radio frequencies after conversion by each transmitting circuit may be the same frequency (including overlapping) or different frequencies, as in the second embodiment. good.
  • the OAM signal generation circuit 123 included in each transmitting circuit (transmitting circuits 120-1, 120-2) is assigned to multiple UCAs, and is converted so that each UCA included in the multiple UCAs includes the same radio frequency band.
  • the analog signals thus generated generate OAM multiplex signals each assigned to a different OAM mode.
  • FIG. 16 is a diagram showing a configuration example of a receiving device according to Example 4 of the embodiment of the present invention.
  • the receiving section 220 of the receiving device 200 includes a plurality of receiving circuits 220-1 and 220-2 having the same configuration as the receiving section 220 shown in the second embodiment. Further, the antenna 210 has a plurality of UCAs (UCA #1, #2).
  • the receiving circuit 220-1 processes the signal received by UCA #1.
  • Receiving circuit 220-2 processes the signal received by UCA #2.
  • the radio frequencies of the signals separated by each receiving circuit may be the same (including overlapping) frequencies or different frequencies. It's okay.
  • the OAM signal separation circuit 223 included in the plurality of receiving circuits 220-1 and 220-2 is an analog signal that is assigned to a plurality of UCAs and converted to include the same radio frequency band for each UCA included in the plurality of UCAs.
  • a signal separates OAM multiplex signals each assigned to a different OAM mode.
  • the transmitting device 100 assigns a plurality of analog signals having some of the same radio frequencies to different OAM modes, and transmits and receives the signals using the OAM multiplexing method.
  • frequency bands can be used more effectively in wireless communication using a wide bandwidth.
  • Example 5 will be described below with reference to the drawings.
  • the fifth embodiment differs from the first or second embodiment in that OAM signals are transmitted and received using polarization division multiplexing. Therefore, in the explanation of Example 5 below, the differences from Example 1 or 2 will be mainly explained, and the description of Example 1 or 2 will be used for those having the same functional configuration as Example 1 or 2. The same reference numerals as used will be given, and the explanation thereof will be omitted.
  • An OAM signal using polarization division multiplexing is an OAM signal that is transmitted by multiplexing two polarized waves having a phase difference of 90 degrees into different OAM modes.
  • FIG. 17 is a diagram for explaining an OAM signal including polarization division multiplexing.
  • FIG. 17 shows that antenna element 211 and antenna element 212 included in antenna 210 of receiving device 200 are provided at a specified distance (for example, 1 cm) apart.
  • the phase of the radio wave transmitted from the transmitter 100 and whose OAM mode is 3 is indicated by a circle 901.
  • the center position 902 of the circle 901 is a position on the central axis (propagation axis) 903 of the radio wave in the OAM mode transmitted from the transmitting device 100.
  • the phase difference between the positive-sign OAM mode signals of antenna element 211 and antenna element 212 is 90 degrees
  • the phase difference between the negative-sign OAM mode signals is ⁇ 90 degrees. Therefore, when the reception control unit 230 combines the signal received by the antenna element 211 and the signal obtained by rotating the phase of the signal received by the antenna element 212 by 90 degrees, only the OAM mode signal with a negative sign is output, and the antenna element
  • the signal received by the antenna element 211 and the signal obtained by rotating the phase of the signal received by the antenna element 212 by ⁇ 90 degrees are combined, only a positive-sign OAM mode signal is output.
  • the receiving device 200 does not need to perform a part of signal separation processing between OAM modes, and thus can reduce the amount of calculation.
  • FIG. 18 is a diagram illustrating a configuration example of a transmitting device according to Example 5 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of transmitter circuits 120-1 and 120-2 having the same configuration as the transmitter 120 shown in the first or second embodiment.
  • the antenna 110 has a configuration in which antenna elements for each polarization are arranged alternately. Specifically, in the UCA of the antenna 110, antenna elements for X polarization (XPol) and antenna elements for Y polarization (YPol) are alternately arranged.
  • a UCA configured from an antenna element for X polarization (XPol) may also be referred to as a UCA for X polarization (XPol).
  • a UCA configured from an antenna element for Y polarized waves (YPol) may be referred to as a UCA for Y polarized waves (YPol).
  • the antenna 110 may include an antenna element that can share X polarization (XPol) and Y polarization (YPol).
  • the transmitting circuit 120-1 generates an X-polarized (XPol) signal.
  • the signal generated by the transmitting circuit 120-1 is transmitted via the UCA for X polarization (XPol).
  • the transmitting circuit 120-2 generates a Y-polarized (YPol) signal.
  • the signal generated by the transmitting circuit 120-2 is transmitted via the Y-polarized (YPol) UCA.
  • the plurality of transmitting circuits (transmitting circuits 120-1, 120-2) generate OAM signals with different polarizations between each transmitting circuit.
  • FIG. 19 is a diagram illustrating a configuration example of a receiving device according to Example 5 of the embodiment of the present invention.
  • the receiving section 220 of the receiving device 200 includes a plurality of receiving circuits 220-1 and 220-2 having the same configuration as the receiving section 220 shown in the first or second embodiment.
  • antenna elements for X polarization (XPol) and antenna elements for Y polarization (YPol) are arranged alternately.
  • a UCA configured from an antenna element for X polarization (XPol) may also be referred to as a UCA for X polarization (XPol).
  • a UCA configured from an antenna element for Y polarized waves (YPol) may be referred to as a UCA for Y polarized waves (YPol).
  • the antenna 210 may include an antenna element that can share X polarization (XPol) and Y polarization (YPol).
  • the receiving circuit 220-1 processes the signal received by the UCA for X polarization (XPol).
  • the receiving circuit 220-2 processes the signal received by the UCA for Y polarization (YPol). That is, the plurality of receiving circuits (receiving circuits 220-1, 220-2) separate OAM signals of different polarizations between each receiving circuit.
  • OAM signals including polarization division multiplexing are transmitted and received. Thereby, the amount of calculation for signal separation processing performed by the receiving device 200 can be reduced.
  • Example 6 will be described below with reference to the drawings.
  • the sixth embodiment differs from the third or fourth embodiment in that OAM signals including polarization division multiplexing are transmitted and received. Therefore, in the following explanation of Embodiment 6, the differences from Embodiment 3 or 4 will be mainly explained, and the description of Embodiment 3 or 4 will be used for those having the same functional configuration as Embodiment 3 or 4. The same reference numerals as used will be given, and the explanation thereof will be omitted.
  • FIG. 20 is a diagram illustrating a configuration example of a transmitting device according to Example 6 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of transmitter circuits 120-1 and 120-2 having the same configuration as the transmitter 120 shown in the third or fourth embodiment.
  • the antenna 110 is an antenna capable of OAM multiplex transmission, and has, for example, a multiple UCA including a plurality of UCAs. Furthermore, each UCA included in the multiplexed UCA has a configuration in which antenna elements for each polarization are alternately arranged. Specifically, in each UCA included in the multiplexed UCA, antenna elements for X polarization (XPol) and antenna elements for Y polarization (YPol) are arranged alternately.
  • a UCA configured from an antenna element for X polarization (XPol) may also be referred to as a UCA for X polarization (XPol).
  • a UCA configured from an antenna element for Y polarized waves may be referred to as a UCA for Y polarized waves (YPol).
  • the antenna 110 may include an antenna element that can share X polarization (XPol) and Y polarization (YPol).
  • the antenna 110 includes UCA #1 for X polarization (XPol), UCA #1 for Y polarization (YPol), UCA #2 for X polarization (XPol), and UCA #2 for Y polarization (YPol). Contains UCA #2.
  • FIG. 20 shows an example in which the number of UCAs for each polarization is two, the number of UCAs for each polarization may be three or more.
  • the transmitting circuit 120-1 generates an X-polarized (XPol) signal.
  • the signal generated by the transmitting circuit 120-1 is transmitted via UCA #1 for X polarization (XPol) and UCA #2 for X polarization (XPol).
  • the transmitting circuit 120-2 generates a Y-polarized (YPol) signal.
  • the signal generated by the transmitting circuit 120-2 is transmitted via UCA #1 for Y polarization (YPol) and UCA #2 for Y polarization (YPol).
  • the plurality of transmitting circuits (transmitting circuits 120-1, 120-2) generate OAM signals with different polarizations between each transmitting circuit.
  • FIG. 21 is a diagram illustrating a configuration example of a receiving device according to Example 6 of the embodiment of the present invention.
  • the receiving section 220 of the receiving device 200 includes a plurality of receiving circuits 220-1 and 220-2 having the same configuration as the receiving section 220 shown in the third or fourth embodiment.
  • the antenna 210 is an antenna capable of OAM multiplex reception, and has, for example, a multiple UCA including a plurality of UCAs. Furthermore, each UCA included in the multiplexed UCA has a configuration in which antenna elements for each polarization are alternately arranged. Specifically, in each UCA included in the multiplexed UCA, antenna elements for X polarization (XPol) and antenna elements for Y polarization (YPol) are arranged alternately.
  • a UCA configured from an antenna element for X polarization (XPol) may also be referred to as a UCA for X polarization (XPol).
  • a UCA configured from an antenna element for Y polarized waves may be referred to as a UCA for Y polarized waves (YPol).
  • the antenna 210 may include an antenna element that can share X polarization (XPol) and Y polarization (YPol).
  • the antenna 210 includes UCA #1 for X polarization (XPol), UCA #1 for Y polarization (YPol), UCA #2 for X polarization (XPol), and UCA #2 for Y polarization (YPol). Contains UCA #2.
  • the receiving circuit 220-1 processes signals received by UCA #1 for X polarization (XPol) and UCA #2 for X polarization (XPol).
  • the receiving circuit 220-2 processes signals received by UCA #1 for Y polarization (YPol) and UCA #2 for Y polarization (YPol). That is, the plurality of receiving circuits (receiving circuits 220-1, 220-2) separate OAM signals of different polarizations between each receiving circuit.
  • OAM signals are transmitted and received using OAM multiplexing and polarization division multiplexing.
  • OAM multiplexing and polarization division multiplexing it is possible to reduce the amount of calculation for signal separation processing performed by the receiving device 200, and to use the frequency band more effectively in wireless communication using a wide bandwidth.
  • Example 7 will be described below with reference to the drawings.
  • the seventh embodiment differs from the first to sixth embodiments in that signals are transmitted and received using time division multiplexing (TDM). Therefore, in the following explanation of Example 7, the differences from Example 1 to Example 6 will be mainly explained, and those having the same functional configuration as any of Example 1 to Example 6, The same reference numerals as those used in the explanation of Examples 1 to 6 will be given, and the explanation thereof will be omitted.
  • TDM time division multiplexing
  • An OAM signal using time division multiplexing is an OAM signal that is transmitted by multiplexing multiple time-divided signals into different OAM modes.
  • FIG. 22 is a diagram illustrating a configuration example of a transmitting device according to Example 7 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of transmitter circuits 120-1, 120-2, ..., 120- having the same configuration as the transmitter 120 shown in any of the first to sixth embodiments. n, and a signal synthesis circuit 124.
  • Each transmitting circuit (transmitting circuit 120-1, 120-2, . . . , 120-n) generates a signal of n time-divided time slots. For example, transmitting circuit 120-1 generates a signal for time slot #1, transmitting circuit 120-2 generates a signal for time slot #2, and transmitting circuit 120-n generates a signal for time slot #n. generate.
  • the plurality of transmitting circuits (transmitting circuits 120-1, 120-2, . . . , 120-n) generate OAM signals in different time slots between each transmitting circuit.
  • the signal synthesis circuit 124 synthesizes the signals generated by each transmission circuit (transmission circuits 120-1, 120-2, . . . , 120-n).
  • the antenna 110 has the same configuration as the antenna 110 shown in any of the first to sixth embodiments as a configuration corresponding to each transmitting circuit (transmitting circuits 120-1, 120-2, ..., 120-n). It has the following configuration. For example, if each transmitting circuit (transmitting circuits 120-1, 120-2, . . . , 120-n) has a configuration similar to that of the transmitting section 120 shown in the sixth embodiment, the antenna 110 is configured as shown in FIG. As shown, it has the same configuration as the antenna 110 shown in Example 6.
  • the transmission control unit 130 of the transmitting device 100 may dynamically determine the number n of time slots and the length of each time slot depending on channel information or the like, or may determine them using a predetermined method. good.
  • FIG. 23 is a diagram illustrating a configuration example of a receiving device according to Example 7 of the embodiment of the present invention.
  • the receiving section 220 of the receiving device 200 includes a plurality of receiving circuits 220-1, 220-2, . n, and a signal separation circuit 224.
  • the antenna 210 has a configuration corresponding to each receiving circuit (receiving circuits 220-1, 220-2, . . . , 220-n) similar to the antenna 210 shown in any of the first to sixth embodiments. It has the following configuration. For example, when each receiving circuit (receiving circuits 220-1, 220-2, . . . , 220-n) has the same configuration as the receiving section 220 shown in Embodiment 6, the antenna 210 is configured as shown in FIG. As shown in FIG. 2, the antenna 210 has a configuration similar to that of the antenna 210 shown in Example 6.
  • the signal separation circuit 224 separates the signal received by the antenna 210 for each receiving circuit (receiving circuit 220-1, 220-2, . . . , 220-n). Each of the separated signals is a signal of n time-divided time slots.
  • Each receiving circuit processes signals in n time-divided time slots.
  • the receiving circuit 220-1 processes the signal of time slot #1
  • the receiving circuit 220-2 processes the signal of time slot #2
  • the receiving circuit 220-n processes the signal of time slot #n. Process.
  • the plurality of receiving circuits (receiving circuits 220-1, 220-2, . . . , 220-n) separate OAM signals in different time slots between each receiving circuit.
  • OAM signals are transmitted and received using time division multiplexing. This makes it possible to effectively use the time domain in addition to the frequency band in wireless communications using a wide bandwidth.
  • Example 8 will be described below with reference to the drawings.
  • the eighth embodiment differs from the first to seventh embodiments in that signals are transmitted and received using an expanded radio frequency band. Therefore, in the following explanation of Example 8, the differences from Example 1 to Example 7 will be mainly explained, and those having the same functional configuration as any of Example 1 to Example 7, The same reference numerals as those used in the explanations of Embodiment 1 to Embodiment 7 are given, and the explanation thereof will be omitted.
  • FIG. 24 is a diagram illustrating a configuration example of a transmitting device according to Example 8 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 includes a plurality of transmitter circuits 120-1 and 120-2 having the same configuration as the transmitter 120 shown in any of the first to seventh embodiments, and a signal synthesis circuit 124. Equipped with.
  • Each transmission circuit (transmission circuits 120-1, 120-2) generates signals in different radio frequency bands.
  • transmission circuit 120-1 generates signals in a radio frequency band from 140 GHz to 150 GHz (RF band #1).
  • Transmission circuit 120-2 generates signals in a radio frequency band from 150 GHz to 160 GHz (RF band #2).
  • the plurality of transmitting circuits (transmitting circuits 120-1, 120-2) generate OAM signals in different radio frequency bands between each transmitting circuit.
  • the signal synthesis circuit 124 synthesizes the signals generated by each transmission circuit (transmission circuits 120-1, 120-2).
  • the antenna 110 has the same configuration as the antenna 110 shown in any of the first to seventh embodiments as a configuration corresponding to each transmitting circuit (transmitting circuits 120-1, 120-2, ..., 120-n). It has the following configuration. For example, if each transmitting circuit (transmitting circuits 120-1, 120-2, . . . , 120-n) has a configuration similar to that of the transmitting section 120 shown in Embodiment 6, the antenna 110 as shown in FIG. As shown in FIG. 2, the antenna 110 has a configuration similar to that of the antenna 110 shown in Example 6.
  • FIG. 24 shows an example in which the number of radio frequency bands is two, the number of radio frequency bands may be three or more.
  • FIG. 25 is a diagram illustrating a configuration example of a receiving device according to Example 8 of the embodiment of the present invention.
  • the receiving unit 220 of the receiving device 200 includes a plurality of receiving circuits 220-1 and 220-2 having the same configuration as the receiving unit 220 shown in any of the first to seventh embodiments, and a signal separation circuit 224. Equipped with.
  • the antenna 210 has the same configuration as the antenna 210 shown in any of Examples 1 to 7 as a configuration corresponding to each receiving circuit (receiving circuits 220-1, 220-2).
  • each receiving circuit receiving circuits 220-1, 220-2
  • the antenna 210 is configured as shown in FIG. It has a similar configuration to the antenna 210 shown in FIG.
  • the signal separation circuit 224 separates the signal received by the antenna 210 for each receiving circuit (receiving circuit 220-1, 220-2) using a filter such as a band-pass filter.
  • the separated signals are signals in different radio frequency bands.
  • Each receiving circuit processes signals in different radio frequency bands.
  • the receiving circuit 220-1 processes signals in a radio frequency band from 140 GHz to 150 GHz (RF band #1)
  • the receiving circuit 220-2 processes signals in a radio frequency band from 150 GHz to 160 GHz (RF band #2). process the signal.
  • the plurality of receiving circuits (receiving circuits 220-1, 220-2) generate OAM signals in different radio frequency bands between each receiving circuit.
  • FIG. 26 is a diagram showing an example of the configuration of a transmission device according to a modified example of the eighth embodiment of the present invention.
  • the transmission unit 120 of the transmission device 100 according to this modified example further includes an OAM signal generation circuit 125 in addition to the components included in the transmission device 100 according to the eighth embodiment.
  • the OAM signal generation circuit 125 is, for example, a Butler circuit (Butler matrix circuit). OAM signal generation circuit 125 generates signals for each OAM mode from the signals synthesized by signal synthesis circuit 124, and transmits the generated OAM signals to receiving device 200 via antenna 110.
  • Butler circuit Butler matrix circuit
  • FIG. 27 is a diagram showing a configuration example of a receiving device according to a modification of Example 8 of the embodiment of the present invention.
  • the receiving unit 220 of the receiving device 200 according to the present modification further includes an OAM signal separation circuit 225 in addition to the configuration included in the transmitting device 100 according to the eighth embodiment.
  • the OAM signal separation circuit 225 is, for example, a Butler circuit (Butler matrix circuit).
  • the OAM signal separation circuit 225 separates the OAM signal received via the antenna 210 into signals of each OAM mode having different frequencies.
  • the signal separation circuit 224 uses a filter such as a bandpass filter to separate the signals of each OAM mode for each receiving circuit (receiving circuit 220-1, 220-2).
  • the separated signals are signals in different radio frequency bands.
  • OAM signals are transmitted and received using the expanded radio frequency band.
  • a further expanded radio frequency band can be used in wireless communication using a wide bandwidth.
  • Example 9 will be described below with reference to the drawings.
  • the ninth embodiment differs from the first to eighth embodiments in that a conventional transmitting/receiving device and the transmitting/receiving device shown in Examples 1-8 are used together. Therefore, in the following explanation of Example 9, the differences from Example 1 to Example 8 will be mainly explained, and those having the same functional configuration as any of Example 1 to Example 8, The same reference numerals as those used in the explanation of Example 1 to Example 8 are given, and the explanation thereof will be omitted.
  • FIG. 28 is a diagram illustrating a configuration example of a transmitting device according to Example 9 of the embodiment of the present invention.
  • the transmitting unit 120 of the transmitting device 100 includes a plurality of transmitting circuits (transmitting circuits 120-1, 120-2, . . . , 120-n) and a signal combining circuit 124.
  • Each transmission circuit includes a plurality of modulation circuits, a plurality of frequency conversion circuits, and an OAM signal generation circuit.
  • the transmitting circuit 120-1 includes a plurality of modulation circuits (modulation circuits 121-1-1, 121-1-2) and a plurality of frequency conversion circuits (frequency conversion circuits 122-1-1, 122-1-2). ) and an OAM signal generation circuit 123-1.
  • the transmission circuit 120-2 includes multiple modulation circuits (modulation circuits 121-2-1, 121-2-2), multiple frequency conversion circuits (frequency conversion circuits 122-2-1, 122-2-2), and an OAM signal generation circuit 123-2.
  • the transmission circuit 120-n includes multiple modulation circuits (modulation circuits 121-n-1, 121-n-2), multiple frequency conversion circuits (frequency conversion circuits 122-n-1, 122-n-2), and an OAM signal generation circuit 123-n.
  • Each of the transmitting circuits (transmitting circuits 120-1, 120-2, ..., 120-n) has the same configuration as the transmitting section 120 of the transmitting device 100 according to any one of the first to eighth embodiments.
  • OAM signals are generated by allocating signals of a plurality of frequency band blocks having adjacent radio frequency bands to each OAM mode.
  • a guard interval is provided for each frequency slot between signals generated by different transmission circuits.
  • signal #1 and signal #2 generated by transmitting circuit 120-1 are signals in adjacent radio frequency bands.
  • signal #2 generated by transmitting circuit 120-1 and signal #3 generated by transmitting circuit 120-2 are signals in a radio frequency band with a guard interval provided between them.
  • the plurality of transmitting circuits (transmitting circuits 120-1, 120-2, ..., 120-n) operate in adjacent radio frequency bands, and a guard interval is provided between each transmitting circuit.
  • the analog signals converted to the radio frequency band generate OAM signals, each assigned to a different OAM mode.
  • the signal synthesis circuit 124 synthesizes the signals generated by each transmission circuit (transmission circuits 120-1, 120-2, . . . , 120-n).
  • the transmission control unit 130 of the transmitting device 100 may determine the number of consecutive frequency slots, the width of a filter, the width of a guard interval, etc. using predetermined parameters, or may determine the number of consecutive frequency slots, the width of a filter, the width of a guard interval, etc. variably based on channel information, etc. You may decide.
  • FIG. 29 is a diagram showing a configuration example of a receiving device according to Example 9 of the embodiment of the present invention.
  • the receiving section 220 of the receiving device 200 includes a plurality of receiving circuits (receiving circuits 220-1, 220-2, . . . , 220-n) and a signal separation circuit 224.
  • the signal separation circuit 224 separates the signal received by the antenna 210 for each receiving circuit (receiving circuit 220-1, 220-2, . . . , 220-n).
  • the separated signals are signals in adjacent radio frequency bands.
  • Each receiving circuit (receiving circuit 220-1, 220-2, . . . , 220-n) has the same configuration as the receiving section 220 of the receiving device 200 according to any one of the first to eighth embodiments.
  • the OAM signals assigned to each OAM mode are processed using signals of a plurality of frequency band blocks having adjacent radio frequency bands.
  • the plurality of receiving circuits (receiving circuits 220-1, 220-2, . . . , 220-n) operate in adjacent radio frequency bands, and a guard interval is provided between each receiving circuit.
  • An analog signal converted to a radio frequency band separates OAM signals each assigned to a different OAM mode.
  • FIG. 30 is a diagram for explaining the effects of Example 9 of the embodiment of the present invention.
  • signals generated by the OAM signal generation circuit are transmitted and received. This makes it possible to separate signals using the characteristics of OAM signals.
  • signal #1 and signal #2 shown in FIG. 30 are generated by an OAM signal generating circuit included in each transmitting circuit of transmitting device 100, and separated by an OAM signal separating circuit included in each receiving circuit of receiving device 200. be done.
  • a signal synthesized by a conventional signal synthesis circuit is transmitted and separated by a signal separation circuit.
  • signals #2 and #3 shown in FIG. 30 are synthesized by a signal synthesis circuit provided in the transmitting device 100 and separated by a signal separation circuit provided in the receiving device 200.
  • Pattern 1 is an open loop control pattern in which channel information etc. are not fed back from the reception control section 230 to the transmission control section 130.
  • FIG. 31 is a sequence diagram showing an example of the flow of control processing according to pattern 1 of the embodiment of the present invention.
  • the transmission control unit 130 of the transmitting device 100 determines signal allocation (step S101). For example, the transmission control unit 130 determines which band, which OAM mode, which polarization, or which radio frequency bandwidth each signal should be transmitted to based on externally input information, preset values, statistical channel information, etc. Decide what to allocate to. In the following, the determined information will be referred to as allocation information.
  • the transmitter 120 of the transmitter 100 transmits the allocation information to the receiver 200 (step S102).
  • the transmitter 120 of the transmitter 100 transmits the OAM signal (step S103).
  • the reception control unit 230 of the reception device 200 processes the OAM signal based on the allocation information (step S104).
  • the transmission control unit 130 calculates the isolation between OAM modes, and selects an assignment that minimizes the isolation, or an assignment that minimizes the isolation, or makes the isolation smaller than a predetermined reference value. It is also possible to allocate it as follows.
  • Pattern 2 is a closed loop control pattern in which channel information and the like are fed back from the reception control section 230 to the transmission control section 130.
  • FIG. 32 is a sequence diagram showing an example of the flow of control processing related to pattern 2 of an embodiment of the present invention.
  • the transmitter 120 of the transmitting device 100 transmits a known signal to the receiving device 200 (step S201).
  • the known signal is a signal whose type is known in advance to the receiving device 200, and may be a reference signal or some other signal.
  • the reception control unit 230 of the receiving device 200 estimates the channel state based on the known signal (step S202). For example, the reception control unit 230 may estimate each OAM mode, band, radio frequency band, polarization channel, etc. based on the known signal.
  • the receiving device 200 transmits channel information to the transmitting device 100 (step S203).
  • the channel information is information indicating each assumed OAM mode, band, radio frequency band, polarization channel, etc.
  • the transmission control unit 130 determines the signal allocation based on the channel information (step S204). For example, the transmission control unit 130 determines which band, which OAM mode, which polarization, or which radio frequency bandwidth each signal is to be allocated to based on the channel information. Hereinafter, the determined information is referred to as allocation information.
  • the transmitting unit 120 of the transmitting device 100 transmits the allocation information to the receiving device 200 (step S205).
  • the transmitter 120 of the transmitter 100 transmits the OAM signal (step S206).
  • the reception control unit 230 of the reception device 200 processes the OAM signal based on the allocation information (step S207).
  • Pattern 3 is a limited loop control pattern in which part of the information included in the channel information etc. is fed back from the reception control unit 230 to the transmission control unit 130.
  • FIG. 33 is a sequence diagram showing an example of the flow of control processing according to pattern 3 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 transmits the known signal to the receiver 200 (step S301).
  • the reception control unit 230 of the receiving device 200 estimates the communication quality of the channel based on the known signal (step S302).
  • the receiving device 200 transmits communication quality information to the transmitting device 100 (step S303).
  • Communication quality information is an example of a part of information included in channel information, and is information indicating communication quality of a channel.
  • the communication quality information may be information that includes only the received SNR (signal-to-noise ratio) or SINR (signal-to-interference-plus-noise ratio) in each OAM mode, rather than complete channel information. good.
  • the transmission control unit 130 determines signal allocation based on the communication quality information (step S304). For example, the transmission control unit 130 determines which band, which OAM mode, which polarization, or which radio frequency bandwidth each signal is assigned to, based on the communication quality information. In the following, the determined information will be referred to as allocation information.
  • the transmitting unit 120 of the transmitting device 100 transmits the allocation information to the receiving device 200 (step S305).
  • the transmitter 120 of the transmitter 100 transmits the OAM signal (step S306).
  • the reception control unit 230 of the reception device 200 processes the OAM signal based on the allocation information (step S307).
  • Pattern 4 is a reception-oriented control pattern in which signal allocation information is fed back from the reception control unit 230 to the transmission control unit 130 .
  • FIG. 34 is a sequence diagram showing an example of the flow of control processing according to pattern 4 of the embodiment of the present invention.
  • the transmitter 120 of the transmitter 100 transmits the known signal to the receiver 200 (step S401).
  • the reception control unit 230 of the receiving device 200 determines the transmission signal allocation method based on the known signal (step S402). For example, the reception control unit 230 may estimate each OAM mode, band, radio frequency band, polarization channel, etc. based on the known signal, and determine the allocation method that the transmitting device 100 should perform.
  • the receiving device 200 transmits signal allocation information to the transmitting device 100 (step S403).
  • the signal allocation information is information indicating the determined signal allocation method.
  • the transmission control unit 130 allocates signals based on the signal allocation information (step S404). For example, the transmission control unit 130 determines to which band, which OAM mode, which polarization, or which radio frequency bandwidth each signal is allocated, based on the signal allocation information.
  • the transmitter 120 of the transmitter 100 transmits the OAM signal (step S405).
  • the reception control unit 230 of the reception device 200 processes the OAM signal based on the allocation method determined by itself (step S406).
  • This specification describes at least a transmitting device, a receiving device, a transmission control method, and a reception control method described in the following sections.
  • (Section 1) a plurality of frequency conversion circuits that convert analog signals modulated with a plurality of baseband signals having a bandwidth based on the processing capacity of the baseband signals so that they each include different radio frequency bands; an OAM signal generation circuit that generates OAM signals in which the analog signals converted to include different radio frequency bands are respectively assigned to different OAM modes; Transmitting device.
  • (Section 2) The plurality of frequency conversion circuits convert the modulated analog signals into mutually different radio frequency bands,
  • the OAM signal generation circuit generates OAM signals in which the analog signals converted into different radio frequency bands are respectively assigned to different OAM modes.
  • the transmitting device according to item 1. (Section 3) The plurality of frequency conversion circuits convert the modulated analog signals so that they include the same radio frequency band,
  • the OAM signal generation circuit generates OAM signals in which the analog signals converted to include the same radio frequency band are respectively assigned to different OAM modes.
  • the plurality of frequency conversion circuits convert the modulated analog signals into a radio frequency band different from that of other OAM modes or the same radio frequency band as the other OAM modes, depending on the priority of the plurality of baseband signals. determine and convert the radio frequency band containing the The transmitting device according to paragraph 3.
  • the OAM signal generation circuit generates an OAM multiplexed signal in which the analog signal is assigned to a plurality of UCAs and is converted into a different radio frequency band for each UCA included in the plurality of UCAs, and is assigned to a different OAM mode. generate, The transmitting device according to item 2.
  • the OAM signal generation circuit is configured to generate an OAM signal in which the analog signal is assigned to a plurality of UCAs, and the analog signal converted to include the same radio frequency band for each UCA included in the plurality of UCAs is assigned to a different OAM mode. generate multiplexed signals,
  • the transmitting device according to paragraph 3. (Section 7) comprising a plurality of transmitting circuits including the plurality of frequency conversion circuits and the OAM signal generation circuit, The plurality of transmitting circuits generate OAM signals with different polarizations among the transmitting circuits, The transmitting device according to item 1.
  • (Section 8) comprising a plurality of transmitting circuits including the plurality of frequency conversion circuits and the OAM signal generation circuit, The plurality of transmitting circuits generate OAM signals with different polarizations among the transmitting circuits, The transmitting device according to item 5 or 6.
  • (Section 9) comprising a plurality of transmitting circuits including the plurality of frequency conversion circuits and the OAM signal generation circuit, The plurality of transmitting circuits generate OAM signals in different time slots between each transmitting circuit, The transmitting device according to item 1.
  • (Section 10) a plurality of transmitting circuits including the plurality of frequency conversion circuits and the OAM signal generation circuit; a signal synthesis circuit that synthesizes the OAM signals generated by the plurality of transmission circuits; The plurality of transmitting circuits generate OAM signals in mutually different radio frequency bands among the transmitting circuits, The transmitting device according to item 1.
  • (Section 11) a plurality of transmitting circuits including the plurality of frequency conversion circuits and the OAM signal generation circuit; A signal synthesis circuit that synthesizes the generated OAM signals, The plurality of transmitting circuits are in adjacent radio frequency bands, and the analog signals converted to the radio frequency bands with guard intervals provided between the respective transmitting circuits are respectively assigned to different OAM modes.
  • the transmitting device according to item 1.
  • (Section 12) an OAM signal separation circuit that separates OAM signals in which analog signals including mutually different radio frequency bands are assigned to different OAM modes; a plurality of demodulation circuits that demodulate the separated OAM signal into a plurality of baseband signals having a bandwidth based on the processing capability of the baseband signal; Receiving device.
  • the OAM signal separation circuit separates OAM signals in which the analog signals converted into different radio frequency bands are respectively assigned to different OAM modes.
  • the receiving device according to item 12.
  • (Section 14) The OAM signal separation circuit separates OAM signals in which the analog signals converted to include the same radio frequency band are respectively assigned to different OAM modes.
  • the receiving device according to item 12.
  • the OAM signal separation circuit converts the analog signals, which are assigned to a plurality of UCAs and which are converted into different radio frequency bands for each UCA included in the plurality of UCAs, into OAM multiplexed signals assigned to different OAM modes.
  • the receiving device The receiving device according to item 13.
  • the OAM signal separation circuit is an OAM signal that is assigned to a plurality of UCAs, and in which the analog signals that have been converted to include the same radio frequency band for each UCA included in the plurality of UCAs are assigned to different OAM modes. Separate multiplexed signals, 4.
  • the receiving device according to item 1.4 The receiving device according to item 1.4.
  • (Section 1 7) comprising a plurality of receiving circuits including the plurality of demodulation circuits and the OAM signal separation circuit, The plurality of receiving circuits separate OAM signals of different polarizations between each receiving circuit, The receiving device according to item 12.
  • (Section 18) comprising a plurality of receiving circuits including the plurality of demodulation circuits and the OAM signal separation circuit, The plurality of receiving circuits separate OAM signals of different polarizations between each receiving circuit, 17.
  • (Section 19) comprising a plurality of receiving circuits including the plurality of demodulation circuits and the OAM signal separation circuit, The plurality of receiving circuits separate OAM signals in different time slots between each receiving circuit.
  • the receiving device according to item 12.
  • (Section 20) a plurality of receiving circuits including the plurality of demodulation circuits and the OAM signal separation circuit; a signal separation circuit that separates the OAM signals separated by the plurality of reception circuits; The plurality of receiving circuits generate OAM signals in mutually different radio frequency bands between each receiving circuit.
  • the receiving device according to item 12.
  • (Section 21) a plurality of receiving circuits including the plurality of demodulation circuits and the OAM signal separation circuit; a signal separation circuit that separates the OAM signals separated by the plurality of reception circuits;
  • the plurality of receiving circuits are in adjacent radio frequency bands, and the analog signals converted into radio frequency bands with guard intervals provided between the receiving circuits are respectively assigned to different OAM modes.
  • a plurality of frequency conversion circuits each converting an analog signal modulated with a plurality of baseband signals having a bandwidth based on the processing capacity of the baseband signal so as to include mutually different radio frequency bands;
  • a transmission control method executed by a transmitting device comprising: an OAM signal generation circuit that generates OAM signals in which the analog signals converted to include the OAM signals are respectively assigned to different OAM modes, assigning the plurality of baseband signals to mutually different radio frequency bands; transmitting information indicating the assigned result to the receiving device; Transmission control method.
  • Analog signals including mutually different radio frequency bands include an OAM signal separation circuit that separates OAM signals assigned to different OAM modes, and an OAM signal separation circuit that separates the separated OAM signals, and has a bandwidth based on a baseband signal processing capability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える送信装置である。

Description

送信装置、受信装置、送信制御方法及び受信制御方法
 本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送する技術に関連するものである。
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術の検討が進められている。(例えば、非特許文献1)。OAMを持つ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面がらせん状に分布する。異なるOAMモードを持ち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信局において分離することにより、信号を多重伝送することが可能である。
 このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を実現できる(例えば、非特許文献2)。複数のOAMモードの信号生成には、例えば、バトラー回路(バトラーマトリクス回路)が使用される。
 また、異径の複数のUCAを同心円状に配置した多重UCAにより、同一OAMモードの信号を多重して送信することができる。受信側では、MIMO技術により、同一OAMモード内で多重された信号を分離することができる。
J. Wang et al., "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol.6, pp.488-496, July 2012. Y. Yan et al., "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., vol.5, p.4876, Sep. 2014.
 ミリ波、sub-THz帯などを用いる無線通信は、数GHzとなる伝送帯域幅を活用し、大容量伝送を可能にする。しかしながら、ベースバンド信号のデジタル信号処理能力の限界により、実際に使える帯域幅が制限される問題がある。例えば、伝送帯域幅が10GHzであっても、デジタル信号処理能力が2GHz以下である場合、広帯域幅の利用ができず、2GHz以下の帯域のみを利用することで、大容量伝送が困難となる。また、2GHzごとに帯域を分けることで広帯域を利用するアプローチも考えられるが、信号分離および合成のための装置構成が複雑となるという問題がある。
 開示の技術は、広帯域幅の利用を簡易な装置構成で実現させることを目的とする。
 開示の技術は、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える送信装置である。
 広帯域幅の利用を簡易な装置構成で実現させることができる。
従来の送信装置および受信装置について説明するための第一の図である。 従来の送信装置および受信装置について説明するための第二の図である。 従来の問題点について説明するための第一の図である。 従来の問題点について説明するための第二の図である。 本発明の実施の形態に係る通信システムの構成例を示す図である。 OAMモードの信号を生成するためのUCAの位相設定例を示す図である。 OAM多重信号の位相分布と信号強度分布の例を示す図である。 本発明の実施の形態の実施例1に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例1に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例2に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例2に係る受信装置の構成例を示す図である。 複数のUCAを同心円状に備えるアンテナ構成の例を示す図である。 本発明の実施の形態の実施例3に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例3に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例4に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例4に係る受信装置の構成例を示す図である。 偏波分割多重を含むOAM信号について説明するための図である。 本発明の実施の形態の実施例5に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例5に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例6に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例6に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例7に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例7に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例8に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例8に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例8の変形例に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例8の変形例に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例9に係る送信装置の構成例を示す図である。 本発明の実施の形態の実施例9に係る受信装置の構成例を示す図である。 本発明の実施の形態の実施例9の効果について説明するための図である。 本発明の実施の形態のパターン1に係る制御処理の流れの一例を示すシーケンス図である。 本発明の実施の形態のパターン2に係る制御処理の流れの一例を示すシーケンス図である。 本発明の実施の形態のパターン3に係る制御処理の流れの一例を示すシーケンス図である。 本発明の実施の形態のパターン4に係る制御処理の流れの一例を示すシーケンス図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 (従来の問題点)
 まず、従来の問題点について説明する。
 図1は、従来の送信装置および受信装置について説明するための第一の図である。従来の送信装置は、変調回路と周波数変換回路とを備える。変調回路は、ベースバンド信号(デジタル信号)を中間周波数(IF:Intermediate Frequency)のアナログ信号に変調する。また、周波数変換回路は、アナログ信号の周波数を中間周波数から無線周波数(RF:Radio Frequency)に変換する。送信装置は、無線周波数に変換された無線信号(電波)を受信装置に送信する。
 また、従来の受信装置は、周波数変換回路と復調回路とを備える。受信装置は、送信装置から送信された無線信号(電波)を受信する。周波数変換回路は、受信した信号の周波数を無線周波数から中間周波数に変換する。復調回路は、中間周波数のアナログ信号をベースバンド信号に復調する。
 従来の送信装置および受信装置は、ベースバンド信号の処理能力の限界を超える帯域幅の送受信が想定されていない構成となっている。例えば、送信装置および受信装置は、ベースバンド信号の処理能力が2GHz以下である場合、帯域幅が2GHz以下の信号のみ対応可能となっている。
 図2は、従来の送信装置および受信装置について説明するための第二の図である。図2は、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに帯域を分けることによって、広帯域の信号を送受信する送信装置および受信装置の例を示している。
 例えば、送信装置は、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとのデジタル信号を、それぞれ変調回路で中間周波数のアナログ信号に変調する。そして、送信装置は、周波数変換回路による変換前または変換後、すなわち中間周波数または無線周波数において、アナログ信号を合成する。
 また、受信装置は、周波数変換回路による変換前または変換後、すなわち中間周波数または無線周波数において、アナログ信号を分離する。そして、受信装置は、分離されたそれぞれのアナログ信号を復調回路でデジタル信号に復調して、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとのベースバンド信号を得る。
 このように、送信装置による信号の合成と、受信装置による信号の分離によって、図2に示される送受信が実現されるが、回路が複雑化するという問題があり、特に信号の分離のために必要なフィルタの実現が困難である。
 図3は、従来の問題点について説明するための第一の図である。図2に示す構成では、例えば受信装置において、信号の分離のためのフィルタとして、例えばバンドパスフィルタ(BPF:Band-pass filter)が必要となる。しかしながら、例えば図3に示すように、連続する周波数スロットの信号を分離するためには、周波数の小さい差分を分離可能な高精度の分離性能が必要であり、実現が困難である。
 図4は、従来の問題点について説明するための第二の図である。図4に示すように、バンドパスフィルタの分離性能に合わせて、周波数スロットごとにガードインターバル(GI:Guard interval)を設けることによって実現させることが考えられる。しかし、このようなガードインターバルを周波数スロットごとに設けると無駄な帯域が増えるため、利用可能な周波数の帯域幅が狭くなってしまうという問題がある。
 (本実施の形態の概要)
 上述した従来の問題を解決するため、本実施の形態では、アナログ回路により複数の信号の合成および分離を可能とするOAMと、広い帯域を分割して利用する周波数分割多重(FDM:Frequency Division Multiplexing)とを組み合わせる方法について説明する。
 (通信システムの構成)
 まず、本実施の形態に係る通信システムの構成について説明する。
 図5は、本発明の実施の形態に係る通信システムの構成例を示す図である。通信システムは、送信装置100と、受信装置200とを備える。
 送信装置100は、受信装置200にOAM信号を送信する。送信装置100は、アンテナ110と、送信部120と、送信制御部130とを備える。アンテナ110は、OAM信号を送信可能な等間隔円形アレーアンテナ(UCA:Uniform Circular Array)等から構成されている。送信部120は、OAM信号を、アンテナ110を介して送信する。
 送信制御部130は、送信部120によるOAM信号の送信を制御する。例えば、送信制御部130は、OAM信号の各モードに割り当てるベースバンド信号の帯域等を決定する。
 受信装置200は、送信装置100から送信されるOAM信号を受信する。受信装置200は、アンテナ210と、受信部220と、受信制御部230とを備える。アンテナ210は、OAM信号を受信可能なUCA等から構成されている。受信部220は、OAM信号を、アンテナ210を介して受信する。受信制御部230は、受信部220によるOAM信号の受信を制御する。例えば、受信制御部230は、OAM信号の各モードの割当を示す情報(割当情報)を送信制御部130から受信して、受信した割当情報に基づいて受信したOAM信号を2GHz等の帯域幅を有する複数の信号に分離する。
 (OAM信号の概要)
 次に、本実施の形態に係るOAM信号の概要について説明する。
 図6は、OAMモードの信号を生成するためのUCAの位相設定例を示す図である。図6に示すUCAは、8つのアンテナ素子からなるUCAである。
 図6において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)に供給される信号の位相差により生成される。すなわち、OAMモードnの信号は、位相がn回転(n×360度)になるように各アンテナ素子に供給する信号の位相を設定して生成する。例えば、図6に示すようにUCAがm=8個のアンテナ素子で構成される場合で、OAMモードn=2の信号を生成する場合は、図6(3)に示すように、位相が2回転するように、各アンテナ素子に反時計回りに360n/m=90度の位相差(0度,90度,180度,270度,0度,90度,180度,270度)を設定する。
 なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。
 異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信を行うことができる。送信側では、各OAMモードで伝送する信号を予め生成・合成し、単一UCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。
 受信側でOAM多重信号を分離するためには、受信側のUCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定すればよい。
 ただし、送信アンテナと受信アンテナとの間の軸ずれ等により、OAMモード間で干渉が生じた場合、チャネル等化処理や逐次干渉除去処理等のデジタル信号処理により、干渉で混ざったOAMモード間の信号を分離することが必要になる。なお、OAMモード間の干渉とは、例えば、送信装置からOAMモード1で送信した信号が、受信側でOAMモード2の信号として出力されるといったことである。
 図7は、OAM多重信号の位相分布と信号強度分布の例を示す図である。図7(1),(2)において、送信側から伝搬方向に直交する端面(伝搬直交平面)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。
 各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。
 図7(3)は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。
 以下、本実施の形態の具体的な実施例として、実施例1から実施例9までについて説明する。
 (実施例1)
 本実施例では、複数のベースバンド信号を異なるRF周波数のアナログ信号に変調し、異なるOAMモードの信号を生成することによって、複数のOAMモードの信号を同時に送信する送信装置の例について説明する。また、複数のOAMモードの信号を受信し、OAMモードごとに信号を分離し、分離したアナログ信号をそれぞれベースバンド信号に復調する受信装置の例について説明する。
 図8は、本発明の実施の形態の実施例1に係る送信装置の構成例を示す図である。送信装置100の送信部120は、複数の変調回路121(変調回路121-1,121-2,・・・,121-n)と、複数の周波数変換回路122(周波数変換回路122-1,122-2,・・・,122-n)と、OAM信号生成回路123と、を備える。
 各変調回路(変調回路121-1,121-2,・・・,121-n)は、それぞれベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられたデジタル信号を、中間周波数のアナログ信号に変調する。
 各周波数変換回路(周波数変換回路122-1,122-2,・・・,122-n)は、それぞれ中間周波数の各アナログ信号の周波数を、無線周波数に変換する。それぞれの変換後の無線周波数は、互いに異なる周波数であり、異なるOAMモード(OAMモード#1,OAMモード#2,・・・,OAMモード#n)に割り当てるように、OAM信号生成回路123に入力される。例えば、複数の周波数帯域ブロック(例えば、10GHzを2GHzごとに分けて使う場合は、5個の周波数ブロック(F1-F5))に異なるOAMモードが割り当てられてもよい。
 すなわち、複数の周波数変換回路(周波数変換回路122-1,122-2,・・・,122-n)は、ベースバンド信号の処理能力に基づく帯域幅(例えば2GHz)を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する。ここで、複数の周波数変換回路(周波数変換回路122-1,122-2,・・・,122-n)は、変調されたアナログ信号を互いに異なる無線周波数帯域に変換する。
 OAM信号生成回路123は、例えばバトラー回路(バトラーマトリクス回路)である。OAM信号生成回路123は、入力された互いに異なる周波数を有する各OAMモードの信号を合成したOAM信号を生成して、生成されたOAM信号を、アンテナ110を介して受信装置200に送信する。
 すなわち、OAM信号生成回路123は、互いに異なる無線周波数帯域を含むように変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する。ここで、OAM信号生成回路123は、互いに異なる無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する。
 図9は、本発明の実施の形態の実施例1に係る受信装置の構成例を示す図である。受信装置200の受信部220は、複数の復調回路221(復調回路221-1,221-2,・・・,221-n)と、複数の周波数変換回路222(周波数変換回路222-1,222-2,・・・,222-n)と、OAM信号分離回路223と、を備える。
 OAM信号分離回路223は、例えばバトラー回路(バトラーマトリクス回路)である。OAM信号分離回路223は、アンテナ210を介して受信したOAM信号を、互いに異なる周波数を有する各OAMモードの信号に分離する。
 すなわち、OAM信号分離回路223は、互いに異なる無線周波数帯域を含むアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する。ここで、OAM信号分離回路223は、互いに異なる無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する。
 各周波数変換回路(周波数変換回路222-1,222-2,・・・,222-n)は、それぞれ無線周波数の各アナログ信号の周波数を、中間周波数に変換する。
 各復調回路(復調回路221-1,221-2,・・・,221-n)は、それぞれ中間周波数に変換されたアナログ信号を、デジタル信号に復調する。これによって、受信装置200は、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられた複数のベースバンド信号を得ることができる。
 すなわち、複数の復調回路(復調回路221-1,221-2,・・・,221-n)は、分離されたOAM信号を、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号に復調する。
 本実施例によれば、送信装置100は、周波数分割された複数のベースバンド信号を、互いに異なるOAMモードに割り当てて、OAM信号に合成する。受信装置200は、受信したOAM信号を分離して、周波数分割された複数のベースバンド信号を得る。これによって、広帯域幅の利用を簡易な装置構成で実現させることができる。
 (実施例2)
 以下に図面を参照して、実施例2について説明する。実施例2は、同じ無線周波数を含むアナログ信号を異なるOAMモードに割り当てる点が、実施例1と相違する。よって、以下の実施例2の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図10は、本発明の実施の形態の実施例2に係る送信装置の構成例を示す図である。本実施例に係る送信装置100の送信部120は、複数の変調回路121(変調回路121-1-1,121-1-2,・・・,121-n-1,121-n-2)と、複数の周波数変換回路122(周波数変換回路122-1-1,122-1-2,・・・,122-n-1,122-n-2)と、OAM信号生成回路123と、を備える。
 各変調回路(変調回路121-1-1,121-1-2,・・・,121-n-1,121-n-2)は、それぞれベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられたデジタル信号を、中間周波数のアナログ信号に変調する。
 各周波数変換回路(周波数変換回路122-1-1,122-1-2,・・・,122-n-1,122-n-2)は、それぞれ中間周波数の各アナログ信号の周波数を、無線周波数に変換する。それぞれの変換後の無線周波数は、互いに同一の(重なりを含む)周波数であっても、互いに異なる周波数であってもよい。
 例えば、周波数変換回路122-1-1および周波数変換回路122-1-2によって変換された無線周波数は、互いに同一の周波数帯域を含む。また、周波数変換回路122-2-1および周波数変換回路122-2-2によって変換された無線周波数は、互いに同一の周波数帯域を含み、周波数変換回路122-1-1および周波数変換回路122-1-2によって変換された無線周波数とは異なる。
 すなわち、複数の周波数変換回路(周波数変換回路122-1-1,122-1-2,・・・,122-n-1,122-n-2)は、変調されたアナログ信号を互いに同一の無線周波数帯域を含むように変換する。
 それぞれ変換された無線周波数の信号は、異なるOAMモード(OAMモード#1,OAMモード#-1,OAMモード#2,・・・,OAMモード#n,OAMモード#0)に割り当てるように、OAM信号生成回路123に入力される。
 OAM信号生成回路123は、入力された各OAMモードの信号を生成して、生成されたOAM信号を、アンテナ110を介して受信装置200に送信する。すなわち、OAM信号生成回路123は、同一の無線周波数帯域を含むように変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する。
 なお、送信制御部130は、どの周波数スロットにどのOAMモードを割り当てるかを決定する。例えば、送信制御部130は、OAMモード間の干渉が小さい複数のOAMモードに、同じ周波数帯域を割り当て、OAMモード間の干渉が大きい複数のOAMモードに、異なる周波数帯域を割り当てるようにしてもよい。
 なお、送信制御部130は、同じ周波数スロットに対応する数のOAMモードを割り当ててもよいし、異なる数のOAMモードに割り当ててもよい。例えば、送信制御部130は、周波数スロット#1にOAMモード#-1,2,0を割り当て、周波数スロット#2にOAMモード#-2を割り当ててもよい。送信制御部130によるOAMモードの割当方法についての詳細は後述する。
 図11は、本発明の実施の形態の実施例2に係る受信装置の構成例を示す図である。受信装置200の受信部220は、複数の復調回路221(復調回路221-1-1,221-1-2,・・・,221-n-1,221-n-2)と、複数の周波数変換回路222(周波数変換回路222-1-1,222-1-2,・・・,222-n-1,222-n-2)と、OAM信号分離回路223と、を備える。
 OAM信号分離回路223は、例えばバトラー回路(バトラーマトリクス回路)である。OAM信号分離回路223は、アンテナ210を介して受信したOAM信号を、各OAMモードの信号に分離する。分離された信号の無線周波数は、互いに同一の(重なりを含む)周波数であっても、互いに異なる周波数であってもよい。
 すなわち、OAM信号分離回路223は、同一の無線周波数帯域を含むように変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する。
 各周波数変換回路(周波数変換回路222-1-1,222-1-2,・・・,222-n-1,222-n-2)は、それぞれ無線周波数の各アナログ信号の周波数を、中間周波数に変換する。
 各復調回路(復調回路221-1-1,221-1-2,・・・,221-n-1,221-n-2)は、それぞれ中間周波数に変換されたアナログ信号を、デジタル信号に復調する。これによって、受信装置200は、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられた複数のベースバンド信号を得ることができる。
 本実施例によれば、一部の無線周波数が同じ複数のアナログ信号を、異なるOAMモードに割り当てる。これによって、OAM多重による干渉の少ない位相差を利用して、広帯域の送受信を実現させるとともに、帯域幅を有効に利用することができる。
 (実施例2-2)
 また、送信制御部130は、複数の信号のうち、優先度の高い信号を専用のOAMモード又は専用の周波数に割り当ててもよい。そして、送信制御部130は、複数の信号のうち、優先度の低い信号を、共用のOAMモードまたは同一(一部が重なる)周波数帯域を割り当ててもよい。例えば、図8に示される例において、信号#1を信号#2、#3、・・・、#2nよりも優先させる場合、OAMモード#1を専用チャネルとし、OAMモード#-1、#2、・・・、#0を共用チャネルとしてもよい。この場合、専用チャネルのOAMモード#1は、他のチャネルと異なる周波数帯域を使用することとしてもよい。
 この場合、複数の周波数変換回路(周波数変換回路222-1-1,222-1-2,・・・,222-n-1,222-n-2)は、変調されたアナログ信号を、複数のベースバンド信号の優先度に応じて、他のOAMモードと異なる無線周波数帯域か、他のOAMモードと同一の無線周波数帯域を含む無線周波数帯域かを決定して変換する。
 送信制御部130は、信号の性質とチャネル状況に応じて、動的に専用チャネルか共用チャネルかを各信号に割り当ててもよい。これによって、信号の性質に合わせた割り当てを実現させることができる。
 (実施例3)
 以下に図面を参照して、実施例3について説明する。実施例3は、OAM多重方式を使用して信号を送受信する点が、実施例1と相違する。よって、以下の実施例3の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 まず、OAM多重方式におけるUCAについて説明する。図12は、複数のUCAを同心円状に備えるアンテナ構成の例を示す図である。図12に示すように、異径の複数のUCAを同心円状に配置した多重UCAにより、同一OAMモードの信号を多重して送信することができる。受信側では、MIMO技術により、同一OAMモード内で多重された信号を分離することができる。図12は、4つの異径のUCAが同心円に配置された多重UCAの例である。
 図13は、本発明の実施の形態の実施例3に係る送信装置の構成例を示す図である。送信装置100の送信部120は、複数の変調回路121(変調回路121-1-1,121-1-2,・・・,121-n-1,121-n-2)と、複数の周波数変換回路122(周波数変換回路122-1-1,122-1-2,・・・,122-n-1,122-n-2)と、複数のOAM信号生成回路123(OAM信号生成回路123-1,123-2)と、を備える。
 各変調回路(変調回路121-1-1,121-1-2,・・・,121-n-1,121-n-2)は、それぞれベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられたデジタル信号を、中間周波数のアナログ信号に変調する。
 各周波数変換回路(周波数変換回路122-1-1,122-1-2,・・・,122-n-1,122-n-2)は、それぞれ中間周波数の各アナログ信号の周波数を、無線周波数に変換する。それぞれの変換後の無線周波数は、互いに同一の(重なりを含む)周波数であっても、互いに異なる周波数であってもよい。
 例えば、周波数変換回路122-1-1および周波数変換回路122-1-2によって変換された無線周波数は、互いに同一の周波数帯域を含む。また、周波数変換回路122-2-1および周波数変換回路122-2-2によって変換された無線周波数は、互いに同一の周波数帯域を含み、周波数変換回路122-1-1および周波数変換回路122-1-2によって変換された無線周波数とは異なる。
 それぞれ変換された無線周波数の信号は、OAM多重によって、異なるUCAに割り当てる同一のOAMモードを含んでもよい。例えば、信号#1は、UCA#1のOAMモード#1に割り当てられる。信号#2は、UCA#2のOAMモード#1に割り当てられる。信号#3は、UCA#1のOAMモード#2に割り当てられる。信号#4は、UCA#2のOAMモード#2に割り当てられる。これらのうち、同一のUCAに対しては、それぞれ互いに異なる周波数であり、異なるOAMモードに割り当てられる。
 各OAM信号生成回路123(OAM信号生成回路123-1,123-2)は、それぞれ入力された互いに異なる周波数を有する各OAMモードの信号を生成して、生成されたOAM信号を、アンテナ110の各UCAを介して受信装置200に送信する。
 すなわち、各OAM信号生成回路123(OAM信号生成回路123-1,123-2)は、複数のUCAに割り当てられ、複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する。
 アンテナ110は、OAM多重送信可能なアンテナであって、例えば複数のUCAを含む多重UCA(M-UCA:multiple concentric uniform circular array)を有する。なお、図13は、UCAの数が2つである例を示しているが、UCAの数は3つ以上であってもよい。
 図14は、本発明の実施の形態の実施例3に係る受信装置の構成例を示す図である。受信装置200の受信部220は、複数の復調回路221(復調回路221-1-1,221-1-2,・・・,221-n-1,221-n-2)と、複数の周波数変換回路222(周波数変換回路222-1-1,222-1-2,・・・,222-n-1,222-n-2)と、複数のOAM信号分離回路223(OAM信号分離回路223-1,223-2)と、を備える。
 アンテナ210は、OAM多重受信可能なアンテナであって、例えば複数のUCAを含む多重UCAを有する。なお、図14は、UCAの数が2つである例を示しているが、UCAの数は3つ以上であってもよい。
 各OAM信号分離回路(OAM信号分離回路223-1,223-2)は、それぞれアンテナ210の各UCAを介して受信したOAM信号を、互いに異なる周波数を有する各OAMモードの信号に分離する。
 すなわち、各OAM信号分離回路(OAM信号分離回路223-1,223-2)は、複数のUCAに割り当てられ、複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する。
 各周波数変換回路(周波数変換回路222-1-1,222-1-2,・・・,222-n-1,222-n-2)は、それぞれ無線周波数の各アナログ信号の周波数を、中間周波数に変換する。
 各復調回路(復調回路221-1-1,221-1-2,・・・,221-n-1,221-n-2)は、それぞれ中間周波数に変換されたアナログ信号を、デジタル信号に復調する。これによって、受信装置200は、ベースバンド信号の処理能力の限界となる帯域幅(例えば2GHz)ごとに分けられた複数のベースバンド信号を得ることができる。
 本実施例によれば、送信装置100は、OAM多重方式を使用して信号を送受信する。これによって、多重されたOAMモード信号を利用して、広帯域幅を利用した無線通信において、周波数帯域をさらに有効に利用することができる。
 (実施例4)
 以下に図面を参照して、実施例4について説明する。実施例4は、OAM多重方式を使用して信号を送受信する点が、実施例2と相違する。よって、以下の実施例4の説明では、実施例2との相違点を中心に説明し、実施例2と同様の機能構成を有するものには、実施例2の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図15は、本発明の実施の形態の実施例4に係る送信装置の構成例を示す図である。送信装置100の送信部120は、実施例2に示される送信部120と同様の構成を有する複数の送信回路120-1,120-2を備える。また、アンテナ110は、複数のUCA(UCA#1、#2)を有する。
 送信回路120-1は、UCA#1から送信される信号を生成する。送信回路120-2は、UCA#2から送信される信号を生成する。各送信回路(送信回路120-1,120-2)による変換後の無線周波数は、実施例2と同様に、互いに同一の(重なりを含む)周波数であっても、互いに異なる周波数であってもよい。
 各送信回路(送信回路120-1,120-2)に含まれるOAM信号生成回路123は、複数のUCAに割り当てられ、複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する。
 図16は、本発明の実施の形態の実施例4に係る受信装置の構成例を示す図である。受信装置200の受信部220は、実施例2に示される受信部220と同様の構成を有する複数の受信回路220-1,220-2を備える。また、アンテナ210は、複数のUCA(UCA#1、#2)を有する。
 受信回路220-1は、UCA#1によって受信される信号を処理する。受信回路220-2は、UCA#2によって受信される信号を処理する。各受信回路(受信回路220-1,220-2)によって分離された信号の無線周波数は、実施例2と同様に、互いに同一の(重なりを含む)周波数であっても、互いに異なる周波数であってもよい。
 複数の受信回路220-1,220-2に含まれるOAM信号分離回路223は、複数のUCAに割り当てられ、複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する。
 本実施例によれば、送信装置100は、一部の無線周波数が同じ複数のアナログ信号を、異なるOAMモードに割り当てるとともに、OAM多重方式を使用して信号を送受信する。これによって、広帯域幅を利用した無線通信において、周波数帯域をさらに有効に利用することができる。
 (実施例5)
 以下に図面を参照して、実施例5について説明する。実施例5は、偏波分割多重を使用してOAM信号を送受信する点が、実施例1または2と相違する。よって、以下の実施例5の説明では、実施例1または2との相違点を中心に説明し、実施例1または2と同様の機能構成を有するものには、実施例1または2の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 まず、本実施例に係る偏波分割多重(PDM:Polarization Division Multiplexing)を使用したOAM信号について説明する。偏波分割多重を使用したOAM信号は、位相差が90度の位相差を有する2つの偏波を、異なるOAMモードに多重して送信されるOAM信号である。
 図17は、偏波分割多重を含むOAM信号について説明するための図である。図17は、受信装置200のアンテナ210に含まれるアンテナ素子211およびアンテナ素子212が、規定された距離(例えば、1cm)離れた位置に設けられていることを示している。
 例えば、図17では、送信装置100から送信された、OAMモードが3である電波の位相が円901に示されている。なお、円901の中心位置902は、送信装置100から送信された当該OAMモードの電波の中心軸(伝搬軸)903上の位置である。
 図17の例では、アンテナ素子211とアンテナ素子212とは、中心位置902を基準として30度離れた方向に位置している。そのため、OAMモードが+3である電波について、位相の回転数が3であるため、アンテナ素子211の位置における位相とアンテナ素子212の位置における位相との差は90度(=30度×3)となっている。そして、受信装置200の受信制御部230は、このような位相差が90度となる2つの信号を合成することによって、それぞれの信号の特徴を抽出するようにしてもよい。
 例えば、アンテナ素子211とアンテナ素子212の正符号のOAMモードの位相差が90度の場合、負符号のOAMモードの信号の位相差は、-90度となる。そこで、受信制御部230は、アンテナ素子211で受信した信号と、アンテナ素子212で受信した信号を90度位相回転した信号とを合成すると、負符号のOAMモードの信号のみが出力され、アンテナ素子211で受信した信号と、アンテナ素子212で受信した信号を-90度位相回転した信号とを合成すると、正符号のOAMモードの信号のみが出力される。
 これによって、受信装置200は、OAMモード間の信号の分離処理が一部不要となるため、演算量を軽減させることができる。
 図18は、本発明の実施の形態の実施例5に係る送信装置の構成例を示す図である。送信装置100の送信部120は、実施例1または2に示される送信部120と同様の構成を有する複数の送信回路120-1,120-2を備える。
 アンテナ110は、偏波ごとのアンテナ素子が交互に配置された構成を有する。具体的には、アンテナ110のUCAには、X偏波(XPol)用のアンテナ素子と、Y偏波(YPol)用のアンテナ素子とが交互に配置されている。X偏波(XPol)用のアンテナ素子から構成されるUCAをX偏波(XPol)用のUCAと呼んでもよい。また、Y偏波(YPol)用のアンテナ素子から構成されるUCAをY偏波(YPol)用のUCAと呼んでもよい。なお、アンテナ110は、X偏波(XPol)とY偏波(YPol)を共用できるアンテナ素子を有していてもよい。
 送信回路120-1は、X偏波(XPol)の信号を生成する。送信回路120-1で生成された信号は、X偏波(XPol)用のUCAを介して送信される。他方、送信回路120-2は、Y偏波(YPol)の信号を生成する。送信回路120-2で生成された信号は、Y偏波(YPol)用のUCAを介して送信される。
 すなわち、複数の送信回路(送信回路120-1,120-2)は、各送信回路の間で互いに異なる偏波のOAM信号を生成する。
 図19は、本発明の実施の形態の実施例5に係る受信装置の構成例を示す図である。受信装置200の受信部220は、実施例1または2に示される受信部220と同様の構成を有する複数の受信回路220-1,220-2を備える。
 また、アンテナ210のUCAには、X偏波(XPol)用のアンテナ素子と、Y偏波(YPol)用のアンテナ素子とが交互に配置されている。X偏波(XPol)用のアンテナ素子から構成されるUCAをX偏波(XPol)用のUCAと呼んでもよい。また、Y偏波(YPol)用のアンテナ素子から構成されるUCAをY偏波(YPol)用のUCAと呼んでもよい。なお、アンテナ210は、X偏波(XPol)とY偏波(YPol)を共用できるアンテナ素子を有していてもよい。
 受信回路220-1は、X偏波(XPol)用のUCAによって受信される信号を処理する。受信回路220-2は、Y偏波(YPol)用のUCAによって受信される信号を処理する。すなわち、複数の受信回路(受信回路220-1,220-2)は、各受信回路の間で互いに異なる偏波のOAM信号を分離する。
 本実施例によれば、偏波分割多重を含むOAM信号を送受信する。これによって、受信装置200による信号の分離処理の演算量を軽減させることができる。
 (実施例6)
 以下に図面を参照して、実施例6について説明する。実施例6は、偏波分割多重を含むOAM信号を送受信する点が、実施例3または4と相違する。よって、以下の実施例6の説明では、実施例3または4との相違点を中心に説明し、実施例3または4と同様の機能構成を有するものには、実施例3または4の説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図20は、本発明の実施の形態の実施例6に係る送信装置の構成例を示す図である。送信装置100の送信部120は、実施例3または4に示される送信部120と同様の構成を有する複数の送信回路120-1,120-2を備える。
 アンテナ110は、OAM多重送信可能なアンテナであって、例えば複数のUCAを含む多重UCAを有する。また、多重UCAに含まれる各UCAは、偏波ごとのアンテナ素子が交互に配置された構成を有する。具体的には多重UCAに含まれる各UCAは、X偏波(XPol)用のアンテナ素子と、Y偏波(YPol)用のアンテナ素子とが交互に配置されている。X偏波(XPol)用のアンテナ素子から構成されるUCAをX偏波(XPol)用のUCAと呼んでもよい。また、Y偏波(YPol)用のアンテナ素子から構成されるUCAをY偏波(YPol)用のUCAと呼んでもよい。なお、アンテナ110は、X偏波(XPol)とY偏波(YPol)を共用できるアンテナ素子を有していてもよい。
 例えば、アンテナ110は、X偏波(XPol)用のUCA#1、Y偏波(YPol)用のUCA#1、X偏波(XPol)用のUCA#2、およびY偏波(YPol)用のUCA#2を含む。
 なお、図20は、各偏波ごとのUCAの数が2つである例を示しているが、各偏波ごとのUCAの数は3つ以上であってもよい。
 送信回路120-1は、X偏波(XPol)の信号を生成する。送信回路120-1で生成された信号は、X偏波(XPol)用のUCA#1およびX偏波(XPol)用のUCA#2を介して送信される。他方、送信回路120-2は、Y偏波(YPol)の信号を生成する。送信回路120-2で生成された信号は、Y偏波(YPol)用のUCA#1およびY偏波(YPol)用のUCA#2を介して送信される。
 すなわち、複数の送信回路(送信回路120-1,120-2)は、各送信回路の間で互いに異なる偏波のOAM信号を生成する。
 図21は、本発明の実施の形態の実施例6に係る受信装置の構成例を示す図である。受信装置200の受信部220は、実施例3または4に示される受信部220と同様の構成を有する複数の受信回路220-1,220-2を備える。
 アンテナ210は、OAM多重受信可能なアンテナであって、例えば複数のUCAを含む多重UCAを有する。また、多重UCAに含まれる各UCAは、偏波ごとのアンテナ素子が交互に配置された構成を有する。具体的には多重UCAに含まれる各UCAは、X偏波(XPol)用のアンテナ素子と、Y偏波(YPol)用のアンテナ素子とが交互に配置されている。X偏波(XPol)用のアンテナ素子から構成されるUCAをX偏波(XPol)用のUCAと呼んでもよい。また、Y偏波(YPol)用のアンテナ素子から構成されるUCAをY偏波(YPol)用のUCAと呼んでもよい。なお、アンテナ210は、X偏波(XPol)とY偏波(YPol)を共用できるアンテナ素子を有していてもよい。
 例えば、アンテナ210は、X偏波(XPol)用のUCA#1、Y偏波(YPol)用のUCA#1、X偏波(XPol)用のUCA#2、およびY偏波(YPol)用のUCA#2を含む。
 受信回路220-1は、X偏波(XPol)用のUCA#1およびX偏波(XPol)用のUCA#2によって受信される信号を処理する。受信回路220-2は、Y偏波(YPol)用のUCA#1およびY偏波(YPol)用のUCA#2によって受信される信号を処理する。すなわち、複数の受信回路(受信回路220-1,220-2)は、各受信回路の間で互いに異なる偏波のOAM信号を分離する。
 本実施例によれば、OAM多重方式と偏波分割多重とを利用してOAM信号を送受信する。これによって、受信装置200による信号の分離処理の演算量を軽減させつつ、広帯域幅を利用した無線通信において、周波数帯域をさらに有効に利用することができる。
 (実施例7)
 以下に図面を参照して、実施例7について説明する。実施例7は、時分割多重(TDM:Time Division Multiplexing)を使用して信号を送受信する点が、実施例1から実施例6までと相違する。よって、以下の実施例7の説明では、実施例1から実施例6までとの相違点を中心に説明し、実施例1から実施例6までのいずれかと同様の機能構成を有するものには、実施例1から実施例6までの説明で用いた符号と同様の符号を付与し、その説明を省略する。
 時分割多重を使用したOAM信号は、時間に分割された複数の信号を、異なるOAMモードに多重して送信されるOAM信号である。
 図22は、本発明の実施の形態の実施例7に係る送信装置の構成例を示す図である。送信装置100の送信部120は、実施例1から実施例6までのいずれかに示される送信部120と同様の構成を有する複数の送信回路120-1,120-2,・・・,120-nと、信号合成回路124とを備える。
 各送信回路(送信回路120-1,120-2,・・・,120-n)は、それぞれn個に時分割された時間スロットの信号を生成する。例えば、送信回路120-1は、時間スロット#1の信号を生成し、送信回路120-2は、時間スロット#2の信号を生成し、送信回路120-nは、時間スロット#nの信号を生成する。
 すなわち、複数の送信回路(送信回路120-1,120-2,・・・,120-n)は、各送信回路の間で互いに異なる時間スロットのOAM信号を生成する。
 信号合成回路124は、各送信回路(送信回路120-1,120-2,・・・,120-n)で生成された信号を合成する。
 アンテナ110は、各送信回路(送信回路120-1,120-2,・・・,120-n)に対応する構成として、実施例1から実施例6までのいずれかに示されるアンテナ110と同様の構成を有する。例えば、各送信回路(送信回路120-1,120-2,・・・,120-n)がそれぞれ実施例6に示される送信部120と同様の構成を有する場合、アンテナ110は、図22に示されるように、実施例6に示されるアンテナ110と同様の構成を有する。
 送信装置100の送信制御部130は、時間スロットの数nおよび各時間スロットの長さを、チャネル情報等に応じて動的に決定してもよいし、あらかじめ決められた方法で決定してもよい。
 図23は、本発明の実施の形態の実施例7に係る受信装置の構成例を示す図である。受信装置200の受信部220は、実施例1から実施例6までのいずれかに示される受信部220と同様の構成を有する複数の受信回路220-1,220-2,・・・,220-nと、信号分離回路224とを備える。
 アンテナ210は、各受信回路(受信回路220-1,220-2,・・・,220-n)に対応する構成として、実施例1から実施例6までのいずれかに示されるアンテナ210と同様の構成を有する。例えば、各受信回路(受信回路220-1,220-2,・・・,220-n)がそれそれ実施例6に示される受信部220と同様の構成を有する場合、アンテナ210は、図23に示されるように、実施例6に示されるアンテナ210と同様の構成を有する。
 信号分離回路224は、アンテナ210で受信された信号を、各受信回路(受信回路220-1,220-2,・・・,220-n)用に分離する。分離された信号は、それぞれn個に時分割された時間スロットの信号である。
 各受信回路(受信回路220-1,220-2,・・・,220-n)は、それぞれn個に時分割された時間スロットの信号を処理する。例えば、受信回路220-1は、時間スロット#1の信号を処理し、受信回路220-2は、時間スロット#2の信号を処理し、受信回路220-nは、時間スロット#nの信号を処理する。
 すなわち、複数の受信回路(受信回路220-1,220-2,・・・,220-n)は、各受信回路の間で互いに異なる時間スロットのOAM信号を分離する。
 本実施例によれば、時分割多重を利用してOAM信号を送受信する。これによって、広帯域幅を利用した無線通信において、周波数帯域に加えて、時間領域を有効に利用することができる。
 (実施例8)
 以下に図面を参照して、実施例8について説明する。実施例8は、拡張された無線周波数帯域を使用して信号を送受信する点が、実施例1から実施例7までと相違する。よって、以下の実施例8の説明では、実施例1から実施例7までとの相違点を中心に説明し、実施例1から実施例7までのいずれかと同様の機能構成を有するものには、実施例1から実施例7までの説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図24は、本発明の実施の形態の実施例8に係る送信装置の構成例を示す図である。送信装置100の送信部120は、実施例1から実施例7までのいずれかに示される送信部120と同様の構成を有する複数の送信回路120-1,120-2と、信号合成回路124とを備える。
 各送信回路(送信回路120-1,120-2)は、互いに異なる無線周波数帯域の信号を生成する。例えば、送信回路120-1は、140GHzから150GHzまでの無線周波数帯域(RF帯域#1)の信号を生成する。送信回路120-2は、150GHzから160GHzまでの無線周波数帯域(RF帯域#2)の信号を生成する。
 すなわち、複数の送信回路(送信回路120-1,120-2)は、各送信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する。
 信号合成回路124は、各送信回路(送信回路120-1,120-2)で生成された信号を合成する。
 アンテナ110は、各送信回路(送信回路120-1,120-2,・・・,120-n)に対応する構成として、実施例1から実施例7までのいずれかに示されるアンテナ110と同様の構成を有する。例えば、各送信回路(送信回路120-1,120-2,・・・,120-n)がそれそれ実施例6に示される送信部120と同様の構成を有する場合、アンテナ110は、図24に示されるように、実施例6に示されるアンテナ110と同様の構成を有する。
 なお、図24は、無線周波数帯域の数が2つである例を示しているが、無線周波数帯域の数は3つ以上であってもよい。
 図25は、本発明の実施の形態の実施例8に係る受信装置の構成例を示す図である。受信装置200の受信部220は、実施例1から実施例7までのいずれかに示される受信部220と同様の構成を有する複数の受信回路220-1,220-2と、信号分離回路224とを備える。
 アンテナ210は、各受信回路(受信回路220-1,220-2)に対応する構成として、実施例1から実施例7までのいずれかに示されるアンテナ210と同様の構成を有する。例えば、各受信回路(受信回路220-1,220-2)がそれそれ実施例6に示される受信部220と同様の構成を有する場合、アンテナ210は、図25に示されるように、実施例6に示されるアンテナ210と同様の構成を有する。
 信号分離回路224は、例えばバンドパスフィルタ等のフィルタを用いて、アンテナ210で受信された信号を、各受信回路(受信回路220-1,220-2)用に分離する。分離された信号は、それぞれ互いに異なる無線周波数帯域の信号である。
 各受信回路(受信回路220-1,220-2)は、それぞれ互いに異なる無線周波数帯域の信号を処理する。例えば、受信回路220-1は、140GHzから150GHzまでの無線周波数帯域(RF帯域#1)の信号を処理し、受信回路220-2は、150GHzから160GHzまでの無線周波数帯域(RF帯域#2)の信号を処理する。
 すなわち、複数の受信回路(受信回路220-1,220-2)は、各受信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する。
 (実施例8の変形例)
 実施例8の変形例として、各無線周波数帯域の信号を従来の合成方法で合成してから、OAM信号生成回路(例えばバトラー回路)に入力する構成であってもよい。
 図26は、本発明の実施の形態の実施例8の変形例に係る送信装置の構成例を示す図である。本変形例に係る送信装置100の送信部120は、実施例8に係る送信装置100が備える構成に加えて、OAM信号生成回路125をさらに備える。
 OAM信号生成回路125は、例えばバトラー回路(バトラーマトリクス回路)である。OAM信号生成回路125は、信号合成回路124によって合成された信号から各OAMモードの信号を生成して、生成されたOAM信号を、アンテナ110を介して受信装置200に送信する。
 図27は、本発明の実施の形態の実施例8の変形例に係る受信装置の構成例を示す図である。本変形例に係る受信装置200の受信部220は、実施例8に係る送信装置100が備える構成に加えて、OAM信号分離回路225をさらに備える。
 OAM信号分離回路225は、例えばバトラー回路(バトラーマトリクス回路)である。OAM信号分離回路225は、アンテナ210を介して受信したOAM信号を、互いに異なる周波数を有する各OAMモードの信号に分離する。
 信号分離回路224は、例えばバンドパスフィルタ等のフィルタを用いて、各OAMモードの信号を、各受信回路(受信回路220-1,220-2)用に分離する。分離された信号は、それぞれ互いに異なる無線周波数帯域の信号である。
 本実施例によれば、拡張された無線周波数帯域を使用してOAM信号を送受信する。これによって、広帯域幅を利用した無線通信において、さらに拡張された無線周波数帯域を利用することができる。
 (実施例9)
 以下に図面を参照して、実施例9について説明する。実施例9は、従来の送受信装置と実施例1-8に示される送受信装置とを併用する点が、実施例1から実施例8までと相違する。よって、以下の実施例9の説明では、実施例1から実施例8までとの相違点を中心に説明し、実施例1から実施例8までのいずれかと同様の機能構成を有するものには、実施例1から実施例8までの説明で用いた符号と同様の符号を付与し、その説明を省略する。
 図28は、本発明の実施の形態の実施例9に係る送信装置の構成例を示す図である。送信装置100の送信部120は、複数の送信回路(送信回路120-1,120-2,・・・,120-n)と、信号合成回路124とを備える。
 各送信回路(送信回路120-1,120-2,・・・,120-n)は、それぞれ複数の変調回路と、複数の周波数変換回路と、OAM信号生成回路と、を備える。例えば、送信回路120-1は、複数の変調回路(変調回路121-1-1,121-1-2)と、複数の周波数変換回路(周波数変換回路122-1-1,122-1-2)と、OAM信号生成回路123-1と、を備える。
 同様に、送信回路120-2は、複数の変調回路(変調回路121-2-1,121-2-2)と、複数の周波数変換回路(周波数変換回路122-2-1,122-2-2)と、OAM信号生成回路123-2と、を備える。送信回路120-nは、複数の変調回路(変調回路121-n-1,121-n-2)と、複数の周波数変換回路(周波数変換回路122-n-1,122-n-2)と、OAM信号生成回路123-nと、を備える。
 各送信回路(送信回路120-1,120-2,・・・,120-n)は、それぞれ実施例1から実施例8までのいずれかに係る送信装置100の送信部120と同様の構成を有し、無線周波数帯域が隣接する複数の周波数帯域ブロックの信号を、各OAMモードに割り当ててOAM信号を生成する。他方、異なる送信回路で生成される信号間では、ガードインターバルを周波数スロットごとに設ける。
 例えば、送信回路120-1で生成される信号#1と信号#2とは、隣接する無線周波数帯域の信号である。他方、送信回路120-1で生成される信号#2と送信回路120-2で生成される信号#3とは、互いにガードインターバルが設けられた無線周波数帯域の信号である。
 すなわち、複数の送信回路(送信回路120-1,120-2,・・・,120-n)は、互いに隣接する無線周波数帯域であって、各送信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する。
 信号合成回路124は、各送信回路(送信回路120-1,120-2,・・・,120-n)で生成された信号を合成する。
 なお、送信装置100の送信制御部130は、連続する周波数スロットの数、フィルタの幅、ガードインターバルの幅等を、あらかじめ決められたパラメータにより決定してもよいし、チャネル情報等により可変的に決定してもよい。
 図29は、本発明の実施の形態の実施例9に係る受信装置の構成例を示す図である。受信装置200の受信部220は、複数の受信回路(受信回路220-1,220-2,・・・,220-n)と、信号分離回路224とを備える。
 信号分離回路224は、アンテナ210で受信された信号を、各受信回路(受信回路220-1,220-2,・・・,220-n)用に分離する。分離された信号は、それぞれ隣接する無線周波数帯域の信号である。
 各受信回路(受信回路220-1,220-2,・・・,220-n)は、それぞれ実施例1から実施例8までのいずれかに係る受信装置200の受信部220と同様の構成を有し、無線周波数帯域が隣接する複数の周波数帯域ブロックの信号を、各OAMモードに割り当てられたOAM信号を処理する。
 すなわち、複数の受信回路(受信回路220-1,220-2,・・・,220-n)は、互いに隣接する無線周波数帯域であって、各受信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換されたアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する。
 図30は、本発明の実施の形態の実施例9の効果について説明するための図である。本実施例によれば、無線周波数帯域が隣接する複数の周波数帯域ブロックの信号については、OAM信号生成回路によって生成された信号を送受信する。これによって、OAM信号の特性を利用した信号の分離が可能となる。例えば、図30に示される信号#1と信号#2とが送信装置100の各送信回路に含まれるOAM信号生成回路によって生成され、受信装置200の各受信回路に含まれるOAM信号分離回路によって分離される。
 また、本実施例によれば、ガードインターバルが設けられた複数の周波数帯域ブロックの信号については、従来の信号合成回路によって合成された信号が送信され、信号分離回路によって分離される。例えば、図30に示される信号#2と信号#3とが送信装置100が備える信号合成回路によって合成され、受信装置200が備える信号分離回路によって分離される。
 したがって、本実施例によれば、特に隣接する複数の周波数帯域ブロックについてはOAM信号の特性を利用することによって、より柔軟な装置構成で、広帯域幅を利用した無線通信を実現させることができる。
 (通信システムの動作)
 次に、実施例1から実施例9までの各実施例に共通する通信システムの動作について、図面を参照して説明する。通信システムは、以下の4つのパターンのいずれかの動作をしてもよい。
 (パターン1)
 パターン1は、受信制御部230から送信制御部130に、チャネル情報等をフィードバックしないオープンループ制御のパターンである。
 図31は、本発明の実施の形態のパターン1に係る制御処理の流れの一例を示すシーケンス図である。送信装置100の送信制御部130は、信号の割当を決定する(ステップS101)。例えば、送信制御部130は、外部から入力される情報、あらかじめ設定された値、統計的なチャネル情報等に基づいて、各信号をどの帯域、どのOAMモード、どの偏波またはどの無線周波数帯域幅に割り当てるかを決定する。以下では、決定された情報を、割当情報と呼ぶ。
 そして、送信装置100の送信部120は、割当情報を受信装置200に送信する(ステップS102)。
 その後、送信装置100の送信部120は、OAM信号を送信する(ステップS103)。受信装置200の受信制御部230は、割当情報に基づいてOAM信号を処理する(ステップS104)。
 なお、送信制御部130は、上述したステップS101において、OAMモード間のアイソレーションを計算し、アイソレーションが最小化される割り当てとするか、またはアイソレーションがあらかじめ決められた一定の基準値より小さくなるように割り当てるようにしてもよい。
 (パターン2)
 パターン2は、受信制御部230から送信制御部130に、チャネル情報等をフィードバックするクローズドループ制御のパターンである。
 図32は、本発明の実施の形態のパターン2に係る制御処理の流れの一例を示すシーケンス図である。送信装置100の送信部120は、既知信号を受信装置200に送信する(ステップS201)。既知信号は、受信装置200にとってあらかじめどのような信号かが既知である信号であって、参照信号であってもよいし、その他の信号であってもよい。
 受信装置200の受信制御部230は、既知信号に基づいてチャネルの状態を推定する(ステップS202)。例えば、受信制御部230は、既知信号に基づいて、各OAMモード、帯域、無線周波数帯域、偏波のチャネル等を推定してもよい。
 受信装置200は、送信装置100にチャネル情報を送信する(ステップS203)。チャネル情報は、想定された各OAMモード、帯域、無線周波数帯域、偏波のチャネル等を示す情報である。
 送信制御部130は、チャネル情報に基づいて信号の割当を決定する(ステップS204)。例えば、送信制御部130は、チャネル情報に基づいて、各信号をどの帯域、どのOAMモード、どの偏波またはどの無線周波数帯域幅に割り当てるかを決定する。以下では、決定された情報を、割当情報と呼ぶ。
 そして、送信装置100の送信部120は、割当情報を受信装置200に送信する(ステップS205)。
 その後、送信装置100の送信部120は、OAM信号を送信する(ステップS206)。受信装置200の受信制御部230は、割当情報に基づいてOAM信号を処理する(ステップS207)。
 (パターン3)
 パターン3は、受信制御部230から送信制御部130に、チャネル情報等に含まれる一部の情報をフィードバックするリミテッドループ制御のパターンである。
 図33は、本発明の実施の形態のパターン3に係る制御処理の流れの一例を示すシーケンス図である。送信装置100の送信部120は、既知信号を受信装置200に送信する(ステップS301)。
 受信装置200の受信制御部230は、既知信号に基づいてチャネルの通信品質を推定する(ステップS302)。
 受信装置200は、送信装置100に通信品質情報を送信する(ステップS303)。通信品質情報は、チャネル情報に含まれる一部の情報の一例であって、チャネルの通信品質を示す情報である。例えば、通信品質情報は、完全なチャネル情報でなく、各OAMモードにおける受信SNR(signal-to-noise ratio)またはSINR(signal-to-interference-plus-noise ratio)のみを含む情報であってもよい。
 送信制御部130は、通信品質情報に基づいて信号の割当を決定する(ステップS304)。例えば、送信制御部130は、通信品質情報に基づいて、各信号をどの帯域、どのOAMモード、どの偏波またはどの無線周波数帯域幅に割り当てるかを決定する。以下では、決定された情報を、割当情報と呼ぶ。
 そして、送信装置100の送信部120は、割当情報を受信装置200に送信する(ステップS305)。
 その後、送信装置100の送信部120は、OAM信号を送信する(ステップS306)。受信装置200の受信制御部230は、割当情報に基づいてOAM信号を処理する(ステップS307)。
 (パターン4)
 パターン4は、受信制御部230から送信制御部130に、信号割当情報をフィードバックする受信志向制御のパターンである。
 図34は、本発明の実施の形態のパターン4に係る制御処理の流れの一例を示すシーケンス図である。送信装置100の送信部120は、既知信号を受信装置200に送信する(ステップS401)。
 受信装置200の受信制御部230は、既知信号に基づいて送信信号の割当方法を決定する(ステップS402)。例えば、受信制御部230は、既知信号に基づいて、各OAMモード、帯域、無線周波数帯域、偏波のチャネル等を推定し、送信装置100が行うべき割当方法を決定してもよい。
 受信装置200は、送信装置100に信号割当情報を送信する(ステップS403)。信号割当情報は、決定された信号の割当方法を示す情報である。
 送信制御部130は、信号割当情報に基づいて信号を割り当てる(ステップS404)。例えば、送信制御部130は、信号割当情報に基づいて、各信号をどの帯域、どのOAMモード、どの偏波またはどの無線周波数帯域幅に割り当てるかを決定する。
 その後、送信装置100の送信部120は、OAM信号を送信する(ステップS405)。受信装置200の受信制御部230は、自身が決定した割当方法に基づいてOAM信号を処理する(ステップS406)。
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した送信装置、受信装置、送信制御方法及び受信制御方法が記載されている。
(第1項)
 ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、
 互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える、
 送信装置。
(第2項)
 前記複数の周波数変換回路は、変調された前記アナログ信号を互いに異なる無線周波数帯域に変換し、
 前記OAM信号生成回路は、互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
 第1項に記載の送信装置。
(第3項)
 前記複数の周波数変換回路は、変調された前記アナログ信号を互いに同一の無線周波数帯域を含むように変換し、
 前記OAM信号生成回路は、同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
 第1項に記載の送信装置。
(第4項)
 前記複数の周波数変換回路は、変調された前記アナログ信号を、前記複数のベースバンド信号の優先度に応じて、他のOAMモードと異なる無線周波数帯域か、他のOAMモードと同一の無線周波数帯域を含む無線周波数帯域かを決定して変換する、
 第3項に記載の送信装置。
(第5項)
 前記OAM信号生成回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する、
 第2項に記載の送信装置。
(第6項)
 前記OAM信号生成回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する、
 第3項に記載の送信装置。
(第7項)
 前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
 前記複数の送信回路は、各送信回路の間で互いに異なる偏波のOAM信号を生成する、
 第1項に記載の送信装置。
(第8項)
 前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
 前記複数の送信回路は、各送信回路の間で互いに異なる偏波のOAM信号を生成する、
 第5項または第6項に記載の送信装置。
(第9項)
 前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
 前記複数の送信回路は、各送信回路の間で互いに異なる時間スロットのOAM信号を生成する、
 第1項に記載の送信装置。
(第10項)
 前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路と、
 前記複数の送信回路で生成された前記OAM信号を合成する信号合成回路と、を備え、
 前記複数の送信回路は、各送信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する、
 第1項に記載の送信装置。
(第11項)
 前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路と、
 生成されたOAM信号を合成する信号合成回路と、を備え、
 前記複数の送信回路は、互いに隣接する無線周波数帯域であって、各送信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
 第1項に記載の送信装置。
(第12項)
 互いに異なる無線周波数帯域を含むアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離するOAM信号分離回路と、
 分離された前記OAM信号を、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号に復調する複数の復調回路と、を備える、
 受信装置。
(第13項)
 前記OAM信号分離回路は、互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
 第12項に記載の受信装置。
(第14項)
 前記OAM信号分離回路は、同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
 第12項に記載の受信装置。
(第15項)
 前記OAM信号分離回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する、
 第13項に記載の受信装置。
(第16項)
 前記OAM信号分離回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する、
 第1項4に記載の受信装置。
(第1項7 )
 前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
 前記複数の受信回路は、各受信回路の間で互いに異なる偏波のOAM信号を分離する、
 第12項に記載の受信装置。
(第18項)
 前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
 前記複数の受信回路は、各受信回路の間で互いに異なる偏波のOAM信号を分離する、
 第1項5または16に記載の受信装置。
(第19項)
 前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
 前記複数の受信回路は、各受信回路の間で互いに異なる時間スロットのOAM信号を分離する、
 第12項に記載の受信装置。
(第20項)
 前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路と、
 前記複数の受信回路で分離された前記OAM信号を分離する信号分離回路と、を備え、
 前記複数の受信回路は、各受信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する、
 第12項に記載の受信装置。
(第21項)
 前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路と、
 前記複数の受信回路で分離された前記OAM信号を分離する信号分離回路と、を備え、
 前記複数の受信回路は、互いに隣接する無線周波数帯域であって、各受信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
 第12項に記載の受信装置。
(第22項)
 ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える送信装置が実行する送信制御方法であって、
 前記複数のベースバンド信号を、互いに異なる前記無線周波数帯域に割り当てるステップと、
 割り当てた結果を示す情報を受信装置に送信するステップと、を備える、
 送信制御方法。
(第23項)
 互いに異なる無線周波数帯域を含むアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離するOAM信号分離回路と、分離された前記OAM信号を、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号に復調する複数の復調回路と、を備える受信装置が実行する受信制御方法であって、
 前記複数のベースバンド信号を、互いに異なる前記無線周波数帯域に割り当てた結果を示す情報を送信装置から受信するステップと、
 受信した前記情報に基づいて前記OAM信号を処理するステップと、を備える、
 受信制御方法。
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 100 送信装置
 110 アンテナ
 120 送信部
 121 変調回路
 122 周波数変換回路
 123 OAM信号生成回路
 124 信号合成回路
 125 OAM信号生成回路
 130 送信制御部
 200 受信装置
 210 アンテナ
 220 受信部
 221 復調回路
 222 周波数変換回路
 223 OAM信号分離回路
 224 信号分離回路
 225 OAM信号分離回路
 230 受信制御部

Claims (23)

  1.  ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、
     互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える、
     送信装置。
  2.  前記複数の周波数変換回路は、変調された前記アナログ信号を互いに異なる無線周波数帯域に変換し、
     前記OAM信号生成回路は、互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
     請求項1に記載の送信装置。
  3.  前記複数の周波数変換回路は、変調された前記アナログ信号を互いに同一の無線周波数帯域を含むように変換し、
     前記OAM信号生成回路は、同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
     請求項1に記載の送信装置。
  4.  前記複数の周波数変換回路は、変調された前記アナログ信号を、前記複数のベースバンド信号の優先度に応じて、他のOAMモードと異なる無線周波数帯域か、他のOAMモードと同一の無線周波数帯域を含む無線周波数帯域かを決定して変換する、
     請求項3に記載の送信装置。
  5.  前記OAM信号生成回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する、
     請求項2に記載の送信装置。
  6.  前記OAM信号生成回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を生成する、
     請求項3に記載の送信装置。
  7.  前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
     前記複数の送信回路は、各送信回路の間で互いに異なる偏波のOAM信号を生成する、
     請求項1に記載の送信装置。
  8.  前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
     前記複数の送信回路は、各送信回路の間で互いに異なる偏波のOAM信号を生成する、
     請求項5または6に記載の送信装置。
  9.  前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路を備え、
     前記複数の送信回路は、各送信回路の間で互いに異なる時間スロットのOAM信号を生成する、
     請求項1に記載の送信装置。
  10.  前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路と、
     前記複数の送信回路で生成された前記OAM信号を合成する信号合成回路と、を備え、
     前記複数の送信回路は、各送信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する、
     請求項1に記載の送信装置。
  11.  前記複数の周波数変換回路と前記OAM信号生成回路とを含む複数の送信回路と、
     生成されたOAM信号を合成する信号合成回路と、を備え、
     前記複数の送信回路は、互いに隣接する無線周波数帯域であって、各送信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成する、
     請求項1に記載の送信装置。
  12.  互いに異なる無線周波数帯域を含むアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離するOAM信号分離回路と、
     分離された前記OAM信号を、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号に復調する複数の復調回路と、を備える、
     受信装置。
  13.  前記OAM信号分離回路は、互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
     請求項12に記載の受信装置。
  14.  前記OAM信号分離回路は、同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
     請求項12に記載の受信装置。
  15.  前記OAM信号分離回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに互いに異なる無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する、
     請求項13に記載の受信装置。
  16.  前記OAM信号分離回路は、複数のUCAに割り当てられ、前記複数のUCAに含まれるUCAごとに同一の無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM多重信号を分離する、
     請求項14に記載の受信装置。
  17.  前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
     前記複数の受信回路は、各受信回路の間で互いに異なる偏波のOAM信号を分離する、
     請求項12に記載の受信装置。
  18.  前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
     前記複数の受信回路は、各受信回路の間で互いに異なる偏波のOAM信号を分離する、
     請求項15または16に記載の受信装置。
  19.  前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路を備え、
     前記複数の受信回路は、各受信回路の間で互いに異なる時間スロットのOAM信号を分離する、
     請求項12に記載の受信装置。
  20.  前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路と、
     前記複数の受信回路で分離された前記OAM信号を分離する信号分離回路と、を備え、
     前記複数の受信回路は、各受信回路の間で互いに異なる無線周波数帯域のOAM信号を生成する、
     請求項12に記載の受信装置。
  21.  前記複数の復調回路と前記OAM信号分離回路とを含む複数の受信回路と、
     前記複数の受信回路で分離された前記OAM信号を分離する信号分離回路と、を備え、
     前記複数の受信回路は、互いに隣接する無線周波数帯域であって、各受信回路の間で互いにガードインターバルが設けられた無線周波数帯域に変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離する、
     請求項12に記載の受信装置。
  22.  ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号が変調されたアナログ信号を、互いに異なる無線周波数帯域を含むようにそれぞれ変換する複数の周波数変換回路と、互いに異なる無線周波数帯域を含むように変換された前記アナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を生成するOAM信号生成回路と、を備える送信装置が実行する送信制御方法であって、
     前記複数のベースバンド信号を、互いに異なる前記無線周波数帯域に割り当てるステップと、
     割り当てた結果を示す情報を受信装置に送信するステップと、を備える、
     送信制御方法。
  23.  互いに異なる無線周波数帯域を含むアナログ信号が、それぞれ異なるOAMモードに割り当てられたOAM信号を分離するOAM信号分離回路と、分離された前記OAM信号を、ベースバンド信号の処理能力に基づく帯域幅を有する複数のベースバンド信号に復調する複数の復調回路と、を備える受信装置が実行する受信制御方法であって、
     前記複数のベースバンド信号を、互いに異なる前記無線周波数帯域に割り当てた結果を示す情報を送信装置から受信するステップと、
     受信した前記情報に基づいて前記OAM信号を処理するステップと、を備える、
     受信制御方法。
PCT/JP2022/035471 2022-09-22 2022-09-22 送信装置、受信装置、送信制御方法及び受信制御方法 WO2024062619A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035471 WO2024062619A1 (ja) 2022-09-22 2022-09-22 送信装置、受信装置、送信制御方法及び受信制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035471 WO2024062619A1 (ja) 2022-09-22 2022-09-22 送信装置、受信装置、送信制御方法及び受信制御方法

Publications (1)

Publication Number Publication Date
WO2024062619A1 true WO2024062619A1 (ja) 2024-03-28

Family

ID=90454038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035471 WO2024062619A1 (ja) 2022-09-22 2022-09-22 送信装置、受信装置、送信制御方法及び受信制御方法

Country Status (1)

Country Link
WO (1) WO2024062619A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059405A1 (ja) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059405A1 (ja) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam多重通信システム、oam多重送信装置、oam多重受信装置およびoam多重通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DJORDJEVIC IVAN B.: "Multidimensional OAM-Based Secure High-Speed Wireless Communications", IEEE ACCESS, IEEE, USA, vol. 5, 1 January 1900 (1900-01-01), USA , pages 16416 - 16428, XP011660000, DOI: 10.1109/ACCESS.2017.2735994 *

Similar Documents

Publication Publication Date Title
US20190069343A1 (en) Master unit, remote unit and multiband transmission system
US7706787B2 (en) Multi-beam communication system and method
EP3691149B1 (en) Oam multiplexing communication system and oam multiplexing communication method
CN102378368B (zh) 发送或接收测距信号的方法、用户设备和基站
HUT73121A (en) Mobile radio aerial installation
US11463160B2 (en) Flexible intra-satellite signal pathways
CN116368743A (zh) 用于正交流空间复用和波束成形的方法和装置
US11973550B2 (en) Beamforming communication system with flexibility and modularity
JP2022543292A (ja) 送信アンテナダイバーシティ無線オーディオシステム
WO2024062619A1 (ja) 送信装置、受信装置、送信制御方法及び受信制御方法
JP4703171B2 (ja) 移動衛星通信システムおよび無線リソース割り当て装置
JP2007184860A (ja) デジタル信号伝送装置
TW402838B (en) Method for improving inter-beam capacity switching for multiple spot beam satellite systems
TWI807758B (zh) 複數個傳輸點的方法及使用者設備
US10425214B2 (en) Method and apparatus for millimeter-wave hybrid beamforming to form subsectors
EP3111583B1 (en) Method and apparatus for high data rate communication
US11115088B2 (en) Antenna array operation control
RU2131642C1 (ru) Система с базовой станцией для цифровой сотовой мобильной радиосети
US7835733B1 (en) Satellite telecommunication system
WO2023286163A1 (ja) 無線通信システム、送信装置、及び受信装置
RU2812855C1 (ru) Способы и устройства для ортогонального пространственного мультиплексирования и формирования диаграммы направленности потока
WO2023162007A1 (ja) 送信装置
KR100340032B1 (ko) 원편파를 이용한 기지국 송신장치 및 가입자 수신장치와 그를 이용한 셀 설계 및 확장 방법
WO2017090467A1 (ja) 通信装置及び通信方法
JP7252873B2 (ja) 光送信装置及び無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959583

Country of ref document: EP

Kind code of ref document: A1