WO2019059217A1 - レーダー装置 - Google Patents

レーダー装置 Download PDF

Info

Publication number
WO2019059217A1
WO2019059217A1 PCT/JP2018/034598 JP2018034598W WO2019059217A1 WO 2019059217 A1 WO2019059217 A1 WO 2019059217A1 JP 2018034598 W JP2018034598 W JP 2018034598W WO 2019059217 A1 WO2019059217 A1 WO 2019059217A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
chirp
unit
chirp signal
frequency hopping
Prior art date
Application number
PCT/JP2018/034598
Other languages
English (en)
French (fr)
Inventor
亮 北川
Original Assignee
ミツミ電機株式会社
亮 北川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 亮 北川 filed Critical ミツミ電機株式会社
Publication of WO2019059217A1 publication Critical patent/WO2019059217A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present invention relates to, for example, a radar device mounted on a vehicle and capable of detecting an object in the vicinity.
  • In-vehicle radar devices are widely used to realize an automatic travel control system (ACC) and the like.
  • In-vehicle radar devices generally emit millimeter-wave radio waves toward the front of the vehicle, receive reflected radio waves from the target, and mix the received signal generated from the received radio waves with the transmission signal to obtain a signal with the target. It detects relative distance, relative velocity, etc.
  • a radar using a millimeter wave having a wavelength of 1 to 10 mm (a frequency of 30 to 300 GHz) (so-called millimeter wave radar) is known.
  • the millimeter wave radar uses radio waves, and therefore has the advantage of being able to maintain a certain sensitivity even in bad weather such as rain or fog.
  • the millimeter wave radar transmits a transmission signal (radio wave) around a car and receives and analyzes a reflection signal (reflection wave) reflected by an object to be detected (hereinafter referred to as a target object).
  • Information position of target object (distance, orientation), relative velocity, etc.) is acquired.
  • a high resolution millimeter wave radar using a 79 GHz band (77 to 81 GHz) millimeter wave has been put to practical use in order to separate and detect an artificial object such as a car and a pedestrian (person).
  • an FM-CW (Frequency Modulated-Continuous Wave) system is widely used.
  • a frequency-modulated continuous wave is transmitted, and a reflection signal from a target object is received. Then, based on the frequency difference between the transmission and reception signals, the relative velocity and relative distance of the target object are detected.
  • the FM-CW method is described, for example, in Patent Documents 1 and 2.
  • phased array radar device that electronically scans a beam by controlling the amount of phase supplied to a plurality of antenna elements.
  • the phased array radar device is described, for example, in Patent Documents 3-7.
  • the phased array radar device covers the wide-angle detection area by scanning a narrow-angle beam, and as a result, it is possible to improve the azimuth resolution even without using a reception circuit with a complicated configuration. It is excellent in point.
  • the present invention has been made in consideration of the above points, and in addition to the high azimuth resolution, the present invention reduces interference and interference with other radar devices and improves measurement performance. Provide radar equipment.
  • a chirp signal forming unit for forming a chirp signal
  • a frequency hopping unit for frequency hopping the chirp signal with two or more chirp waveforms as minimum units
  • a phased array antenna unit that receives the frequency-hopped chirp signal and controls the phase of the chirp signal with different hopping frequency to emit from different beams; Equipped with
  • interference and interference with other radar devices can be reduced, and a radar device with improved measurement performance can be realized.
  • FIG. 1 is a block diagram showing the configuration of a radar device according to the present embodiment.
  • the radar apparatus 100 is an FM-CW (Frequency Modulated-Continuous Wave) type radar apparatus, and uses a millimeter wave having a wavelength of 1 to 10 mm (frequency: 30 to 300 GHz) to position (distance, azimuth) of a target object. , And can measure relative velocity and so on.
  • the radar device 100 is mounted on, for example, a vehicle.
  • the radar device 100 includes a transmitting unit 110 and a receiving unit 130.
  • the transmitting unit 110 transmits millimeter waves at a wide angle
  • the receiving unit 130 receives and analyzes a reflected signal (reflected wave) reflected by a target object at a wide angle. Thereby, the radar device 100 acquires the position (distance, azimuth), relative velocity, etc. of the target object present in the surroundings.
  • the transmission unit 110 has a fractional N synthesizer 120 and forms a baseband transmission signal by the fractional N synthesizer 120.
  • the configuration itself of the fractional N synthesizer 120 will be briefly described because it is a known configuration.
  • the fractional N synthesizer 120 includes a phase comparator 121, a low pass filter (LPF) 122, a voltage controlled oscillator (VCO) 123, and a fractional N divider 124.
  • the phase comparator 121 compares the phase of the reference signal output from the reference clock oscillator 111 with the phase of the output signal of the fractional N divider 124, and delays the phase of the divider output compared to the reference signal. In this case, a pulse for raising the frequency is outputted, and conversely, a pulse for lowering the frequency is outputted if the phase of the divider output is advanced compared to the reference signal.
  • the output of the phase comparator 121 is input to the VCO 123 via the LPF 122.
  • the oscillation frequency of the VCO 123 is controlled by the output from the LPF 122.
  • An output signal from the VCO 123 is output as an output signal of the fractional N synthesizer 120 and is also input to the fractional N divider 124.
  • the fractional N frequency divider 124 divides the output signal of the VCO 123 into 1 / N and outputs it to the phase comparator 121.
  • the radar apparatus 100 includes a chirp control unit 112 and a frequency hopping control unit 113, and controls the frequency division number N of the fractional N frequency divider 124 using these components.
  • the frequency division number N of the fractional N frequency divider 124 is controlled so that an output signal as shown in the example of FIG. 2 can be obtained from the fractional N synthesizer 120.
  • the lower limit value and the upper limit value of the up-chirp cycle Tramp and the up-chirp frequency within one cycle Tramp (that is, the up-chirp bandwidth BWc) Is decided.
  • the number of repetitions of the up-chirp within the unit repetition period Tpri is determined by the control of the division number N by the chirp control unit 112.
  • frequency hopping is performed for each unit repetition period Tpri by controlling the frequency division number N by the frequency hopping control unit 113.
  • the frequency is hopped at the boundary of each period of the periods t1-t2, t2-t3, t3-t4, t4-t5,.
  • the two or more chirp waveforms are minimized.
  • Frequency hopping of the chirp signal is performed as a unit. That is, two or more chirp signals are included in the unit repetition period Tpri.
  • the output signal as shown in FIG. 2 obtained by the fractional N synthesizer 120 is upconverted by the upconverter 114 and then supplied to the antenna 116 through the phase shifter 115.
  • the phase shifter 115 and the antenna 116 constitute a phased array antenna unit. That is, the antenna 116 is composed of a plurality of antenna elements, and the phase shifter 115 shifts the amount of phase for feeding the plurality of antenna elements.
  • the transmitter 110 can scan beams from the antenna 116 in a plurality of directions.
  • the antenna 116 is composed of eight antenna elements
  • the phase shifter 115 is composed of eight phase shifters
  • the phase of the output signal of the fractional N synthesizer 120 is made up of eight phase shifters.
  • the signal of period t1-t2 shown in FIG. 2 is emitted from the leftmost beam in FIG. 1, and the signal of period t2-t3 is emitted from the beam to its right, period t3-t3.
  • the signal of t4 is further emitted from the beam to the right of the right, and the signal of the period t4 to t5 is further emitted from the beam to the right of the right.
  • the transmission unit 110 is configured to transmit a chirp signal frequency-hopped between beams.
  • the reception signal (that is, the reflection signal reflected by the target object) received by the antenna 131 in the reception unit 130 is input to the mixer 133 via the low noise amplifier 132.
  • the mixer 133 downconverts the received signal by multiplying the output signal of the low noise amplifier 132 and the output signal of the up converter 114 to obtain a baseband signal.
  • An output signal of the mixer 133 is input to the control / calculation unit 136 via a band pass filter (BPF) 134 and an analog-to-digital converter (ADC) 135.
  • BPF band pass filter
  • ADC analog-to-digital converter
  • the control / calculation unit 136 performs a predetermined calculation using the output of the ADC 135 to calculate the distance to the reflecting object (target object) and the speed.
  • a known calculation by a radar device using a conventional chirp signal may be used, and the description thereof is omitted here.
  • control / calculation unit 136 controls the chirp control unit 112 and the frequency hopping control unit 113.
  • the control / calculation unit 136 sets the period Tramp of the up-chirp and the period Tramp within the one-period Tramp via the chirp control unit 112 according to the distance to the reflective object (target object) obtained by the calculation and the speed.
  • the lower limit value and the upper limit value of the frequency of the up-chirp (that is, the bandwidth BWc of the up-chirp) are determined.
  • the control / calculation unit 136 controls a hopping pattern or the like via the frequency hopping control unit 113 according to the distance to the reflective object (target object) obtained by the calculation and the speed. By doing this, the chirp signal and / or the frequency hopping pattern can be made more suitable for measurement according to the condition of the target object.
  • the radar device 100 of the present embodiment in addition to the phased array antenna unit configured by the phase shifter 115 and the antenna 116, the fractional N synthesizer 120 and the frequency hopping control unit 113 are configured. And frequency hopping the chirp signal with the two or more chirp waveforms as the minimum unit by the frequency hopping unit, and controlling the phase of the chirp signal having different hopping frequencies by the phased array antenna unit.
  • the radar apparatus 100 can reduce interference and interference with other radar devices and suppress deterioration in measurement performance by emitting beams from different beams. Can be realized.
  • angular resolution is enhanced by having a phased array portion, and furthermore, when the radar device 100 is mounted on a vehicle by hopping frequencies randomly for each direction of a beam, the periphery of an oncoming vehicle etc. Even if the radar apparatus uses the same system band, the probability of using the same frequency in the same direction can be reduced, so that the effect of reducing interference and interference can be reduced.
  • the bandwidth BWc of the chirp signal is BWc
  • the total bandwidth after frequency-hopping the chirp signal is BWsys
  • the number of hoppings of frequency hopping is P
  • the bandwidth BWc of the chirp signal is It is preferable that BWc> BWsys ⁇ 1 / P.
  • the bandwidth BWc of the chirp signal can be prevented from becoming too narrow, and the degradation of the distance resolution due to the measurement can be prevented. That is, it is desirable to give priority to securing the bandwidth BWc of the chirp signal over the dispersion of the frequency due to the frequency hopping.
  • the width of the beam and / or the direction of the beam may be controlled according to the speed of the vehicle on which the radar device 100 is mounted. For example, as the speed of the vehicle increases, it is preferable to perform control such as narrowing the beam width and / or controlling the direction of the beam to narrow in the traveling direction of the vehicle.
  • a phased array may be provided on the receiving side, carrier sensing may be performed for each receiving direction, and frequency hopping frequency allocation may be determined based on the result of carrier sensing. That is, it may be determined that interference or the like is generated for a frequency with poor reception quality, and the frequency may be allocated to a transmission beam different from that at the previous transmission.
  • phased array antennas may be provided on both the transmitting side and the receiving side, and control may be performed such that the directions of the transmission beam and the reception beam become random.
  • the period and the band of the chirp signal and the hopping frequency are controlled by controlling the frequency division number of the frequency divider 124 of the fractional N synthesizer 120 . Is not limited to this, and other configurations may be used to control the period and band of the chirp signal and the hopping frequency.
  • the up-chirp signal is used as the chirp signal
  • the down-chirp signal may be used, and both the up-chirp signal and the down-chirp signal may be used. Good.
  • the present invention can be applied to, for example, an on-vehicle radar device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

方位角分解能が高いことに加えて、他のレーダー装置との間での与干渉及び被干渉を低減し、測定性能の向上したレーダー装置。レーダー装置100は、位相シフター115とアンテナ116とによって構成されるフェーズドアレイアンテナ部に加えて、フラクショナルNシンセサイザー120と周波数ホッピング制御部113とによって構成される周波数ホッピング部とを有し、周波数ホッピング部によって、2以上のチャープ波形を最小単位としてチャープ信号を周波数ホッピングするとともに、フェーズドアレイアンテナ部によって、ホッピング周波数の異なるチャープ信号の位相を制御することで異なるビームから放射する。

Description

レーダー装置
 本発明は、例えば車両に搭載されて周辺の物体を検出可能なレーダー装置に関する。
 従来より、自動走行制御システム(ACC)などを実現するために、レーダー装置が広く用いられている。車載のレーダー装置は、一般に、ミリ波の電波を車両の前方に向けて出射し、ターゲットからの反射電波を受信し、受信電波より生成した受信信号を送信信号と混合することにより、ターゲットとの相対距離、相対速度などを検出するようになっている。
 具体的に説明する。車載用のレーダー装置としては、波長が1~10mm(周波数が30~300GHz)のミリ波を使用するレーダー(いわゆるミリ波レーダー)が知られている。ミリ波レーダーは電波を使用するため、雨や霧などの悪天候下でも一定の感度を確保できるという利点がある。ミリ波レーダーは、自動車の周囲に送信信号(電波)を送信し、検出対象の物体(以下、目標物体と呼ぶ)で反射した反射信号(反射波)を受信して解析することにより、周囲環境に関する情報(目標物体の位置(距離、方位)、相対速度など)を取得するようになっている。さらに近年では、自動車などの人工物と歩行者(人)を分離して検出すべく、79GHz帯(77~81GHz)のミリ波を使用した高分解能のミリ波レーダーも実用化されている。
 この種のミリ波レーダーとして、FM-CW(Frequency Modulated-Continuous Wave)方式が広く用いられている。FM-CW方式では、周波数変調した連続波を送信し、目標物体による反射信号を受信する。そして、送受信信号間での周波数差に基づき、目標物体の相対速度、相対距離を検出する。このFM-CW方式については、例えば特許文献1、2に記載されている。
 また、従来、複数のアンテナ素子に給電する位相量を制御することで、ビームを電子的に走査するフェーズドアレイレーダー装置がある。フェーズドアレイレーダー装置については、例えば特許文献3-7に記載されている。
特開2010-112879号公報 特開2000-206234号公報 特開2016-109456号公報 特開2015-194448号公報 特開平10-197629号公報 特開平7-55916号公報 特表平11-509000号公報
 ところで、フェーズドアレイレーダー装置は、狭角のビームを走査することで広角の検知アリアをカバーしており、その結果、複雑な構成の受信回路を用いなくても、方位角分解能を高めることができる点で優れている。
 しかしながら、フェーズドアレイアンテナを用いたとしても、例えばレーダー装置が搭載された車両が密集しているような環境では、他のレーダー装置との間で与干渉及び被干渉が起こり、その結果、レーダー装置の測定性能が低下する問題が生じる。
 本発明は、以上の点を考慮してなされたものであり、方位角分解能が高いことに加えて、他のレーダー装置との間での与干渉及び被干渉を低減し、測定性能の向上したレーダー装置を提供する。
 本発明のレーダー装置の一つの態様は、
 チャープ信号を形成するチャープ信号形成部と、
 2以上のチャープ波形を最小単位として前記チャープ信号を周波数ホッピングする周波数ホッピング部と、
 周波数ホッピングされた前記チャープ信号を入力し、ホッピング周波数の異なるチャープ信号の位相を制御することで異なるビームから放射するフェーズドアレイアンテナ部と、
 を具備する。
 本発明によれば、方位角分解能が高いことに加えて、他のレーダー装置との間での与干渉及び被干渉を低減し、測定性能の向上したレーダー装置を実現できる。
実施の形態に係るレーダー装置の構成を示すブロック図 実施の形態のフラクショナルNシンセサイザーから出力される出力信号の様子を示す図
 以下、本発明の実施の形態を、図面を参照して説明する。
 図1は、本実施の形態に係るレーダー装置の構成を示すブロック図である。レーダー装置100は、FM-CW(Frequency Modulated-Continuous Wave)方式のレーダー装置であり、波長が1~10mm(周波数:30~300GHz)のミリ波を用いて、目標物体の位置(距離、方位)、相対速度などを測定できるようになっている。レーダー装置100は、例えば車両に搭載される。
 レーダー装置100は、送信部110と受信部130とから構成されている。送信部110は広角にミリ波を送信し、受信部130は目標物体で反射した反射信号(反射波)を広角で受信して解析する。これにより、レーダー装置100は、周囲に存在する目標物体の位置(距離、方位)、相対速度などを取得する。
 送信部110は、フラクショナルNシンセサイザー120を有し、このフラクショナルNシンセサイザー120によってベースバンドの送信信号を形成する。フラクショナルNシンセサイザー120の構成自体は、既知の構成なので簡単に説明する。フラクショナルNシンセサイザー120は、位相比較器121、ローパスフィルタ(LPF)122、電圧制御発振器(VCO)123及びフラクショナルN分周器124を有する。位相比較器121は、基準クロック発振器111から出力される基準信号の位相と、フラクショナルN分周器124の出力信号の位相と、を比較し、基準信号に比べて分周器出力の位相が遅れている場合には周波数を上げるパルスを出力し、逆に基準信号に比べて分周器出力の位相が進んでいる場合には周波数を下げるパルスを出力する。
 位相比較器121の出力は、LPF122を介してVCO123に入力される。VCO123はLPF122からの出力によって発振周波数が制御される。VCO123からの出力信号は、フラクショナルNシンセサイザー120の出力信号として出力されるとともに、フラクショナルN分周器124に入力される。フラクショナルN分周器124は、VCO123の出力信号を1/Nに分周して位相比較器121に出力する。
 かかる構成に加えて、本実施の形態のレーダー装置100は、チャープ制御部112及び周波数ホッピング制御部113を有し、これらによってフラクショナルN分周器124の分周数Nを制御する。
 本実施の形態の場合、フラクショナルNシンセサイザー120から図2の例に示したような出力信号が得られるように、フラクショナルN分周器124の分周数Nが制御される。具体的には、チャープ制御部112による分周数Nの制御によって、アップチャープの周期Trampと、1周期Tramp内でのアップチャープの周波数の下限値及び上限値(つまりアップチャープの帯域幅BWc)とが決まる。また、チャープ制御部112による分周数Nの制御によって、単位繰り返し周期Tpri内でのアップチャープの繰り返し回数が決まる。
 加えて、本実施の形態の場合、周波数ホッピング制御部113による分周数Nの制御によって、単位繰り返し周期Tpri毎に周波数ホッピングを行うようになっている。これにより、期間t1-t2,t2-t3,t3-t4,t4-t5,………の各期間の境界で周波数がホッピングされる。
 本実施の形態では、目標物体の位置(距離、方位)、相対速度など計測するためには、実際上2つ以上のチャープ波形が必要であることを考慮して、2以上のチャープ波形を最小単位としてチャープ信号を周波数ホッピングするようになっている。つまり、単位繰り返し周期Tpri内には2つ以上のチャープ信号が含まれる。
 フラクショナルNシンセサイザー120により得られた図2に示すような出力信号は、アップコンバーター114によってアップコンバートされた後、位相シフター115を介してアンテナ116に供給される。位相シフター115及びアンテナ116は、フェーズドアレイアンテナ部を構成している。つまり、アンテナ116は複数のアンテナ素子から構成されており、位相シフター115は複数のアンテナ素子に給電する位相量をシフトする。これにより、送信部110は、アンテナ116から複数方向にビームを走査することができる。実施の形態の例では、アンテナ116は8個のアンテナ素子から構成され、位相シフター115は8個の位相シフターから構成されており、フラクショナルNシンセサイザー120の出力信号の位相を8個の位相シフターによってそれぞれシフトした後に各アンテナ素子に供給することにより、8方向のビームを形成するようになっている。
 具体的に説明すると、図2に示した期間t1-t2の信号は図1中の一番左端のビームから放射され、期間t2-t3の信号はその右隣のビームから放射され、期間t3-t4の信号はさらにその右隣のビームから放射され、期間t4-t5の信号はさらにその右隣のビームから放射される。
 このように、本実施の形態の送信部110は、ビーム間で周波数ホッピングされたチャープ信号を送信するようになっている。
 受信部130をアンテナ131で受信した受信信号(すなわち目標物体で反射した反射信号)をローノイズアンプ132を介してミキサー133に入力する。ミキサー133は、ローノイズアンプ132の出力信号とアップコンバーター114の出力信号とを乗算することで、受信信号をダウンコンバートしてベースバンド信号を得る。
 ミキサー133の出力信号は、バンドパスフィルター(BPF)134及びアナログディジタル変換器(ADC)135を介して制御・演算部136に入力される。
 制御・演算部136は、ADC135の出力を用いて所定の演算を行うことにより、反射物体(目標物体)までの距離や速度を算出する。この演算については、従来のチャープ信号を用いたレーダー装置による既知の演算を用いればよいのでここでの説明は省略する。
 また、制御・演算部136は、チャープ制御部112及び周波数ホッピング制御部113を制御する。例えば、制御・演算部136は、演算により得られた反射物体(目標物体)までの距離や速度に応じて、チャープ制御部112を介して、アップチャープの周期Trampと、1周期Tramp内でのアップチャープの周波数の下限値及び上限値(つまりアップチャープの帯域幅BWc)とを決定する。また、例えば、制御・演算部136は、演算により得られた反射物体(目標物体)までの距離や速度に応じて、周波数ホッピング制御部113を介して、ホッピングするパターンなどを制御する。このようにすることで、目標物体の状況に応じて、チャープ信号及び又は周波数ホッピングパターンをより計測に適したものとすることができる。
 以上説明したように、本実施の形態のレーダー装置100によれば、位相シフター115とアンテナ116とによって構成されるフェーズドアレイアンテナ部に加えて、フラクショナルNシンセサイザー120と周波数ホッピング制御部113とによって構成される周波数ホッピング部とを有し、周波数ホッピング部によって、2以上のチャープ波形を最小単位としてチャープ信号を周波数ホッピングするとともに、フェーズドアレイアンテナ部によって、ホッピング周波数の異なるチャープ信号の位相を制御することで異なるビームから放射するようにしたことにより、方位角分解能が高いことに加えて、他のレーダー装置との間での与干渉及び被干渉を低減し、測定性能の低下を抑制できるレーダー装置100を実現できる。
 具体的には、フェーズドアレイ部を有することにより角度分解能が高まり、さらに、ビームの方位毎にランダムに周波数をホッピングしたことにより、レーダー装置100を車両に搭載した場合に、対向車両などの周辺のレーダー装置が同一のシステム帯域を使用していたとしても、同一方向で同一の周波数を使用している確率を低減できるので、与干渉及び被干渉の影響を低減する効果が得られる。
 また、ビームの方位毎に周波数をホッピングしたことにより、システムの送信帯域幅(図2におけるBWsys)が広がるため、電波法で規制される送信電力上限を上げることができる効果も得られる。
 図2に示したように、チャープ信号の帯域幅をBWcとし、チャープ信号を周波数ホッピングした後の全帯域幅をBWsys、周波数ホッピングのホッピング数をPとしたときに、チャープ信号の帯域幅BWcを、 BWc > BWsys ×1/P とすることが好ましい。このようにすると、周波数ホッピング後に一部の周波数がオーバーラップすることになるので、他のレーダー装置との間で与干渉及び被干渉が生じる可能性は若干大きくなるが、チャープ信号の帯域幅BWcが狭くなりすぎることを防止して、測定による距離分解能の低下を防止できるようになる。つまり、周波数ホッピングによる周波数の分散よりも、チャープ信号の帯域幅BWcを確保することを優先することが望ましい。
 上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。
 例えば上述の実施の形態の構成に加えて、レーダー装置100が搭載された車両の速度に従って、ビームの幅及び又はビームの方向を制御してもよい。例えば、車両の速度が速くなるほど、ビーム幅を狭くし、及び又は、ビームの方向を車両の進行方向に絞るように制御するなどの制御を行うことが好ましい。
 また、上述の実施の形態の構成に加えて、受信側にもフェーズドアレイを設け、受信方向毎にキャリアセンスを行い、キャリアセンスの結果に基づいて周波数ホッピングの周波数割り当てを決定してもよい。つまり、受信品質の悪い周波数については干渉などが発生していると判断して、その周波数を前回送信時とは別の送信ビームに割り当てるようにしてもよい。
 また、上述の実施の形態の構成に加えて、送信側及び受信側の両方にフェーズドアレイアンテナを設け、送信ビーム及び受信ビームの方向がランダムになるように制御してもよい。このようにすることで、実施の形態の効果に加えて、マルチパスの影響を低減できるといった効果を得ることができる。
 また、上述の実施の形態では、フラクショナルNシンセサイザー120の分周器124の分周数を制御することで、チャープ信号の周期及び帯域と、ホッピング周波数とを制御する場合について述べたが、本発明はこれに限らず、他の構成を用いて、チャープ信号の周期及び帯域と、ホッピング周波数とを制御してもよい。
 さらに、上述の実施の形態では、チャープ信号としてアップチャープ信号を用いた場合を例に説明したが、勿論、ダウンチャープ信号を用いてもよく、アップチャープ信号とダウンチャープ信号の両方を用いてもよい。
 2017年9月22日出願の特願2017-182497の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、例えば車載のレーダー装置に適用し得る。
 100 レーダー装置
 110 送信部
 112 チャープ制御部
 113 周波数ホッピング制御部
 115 位相シフター
 116、131 アンテナ
 120 フラクショナルNシンセサイザー
 124 フラクショナルN分周器
 130 受信部
 136 制御・演算部
 

Claims (4)

  1.  チャープ信号を形成するチャープ信号形成部と、
     2以上のチャープ波形を最小単位として前記チャープ信号を周波数ホッピングする周波数ホッピング部と、
     周波数ホッピングされた前記チャープ信号を放射するアンテナ部と、
     を具備するレーダー装置。
  2.  前記アンテナ部は、前記周波数ホッピングされた前記チャープ信号を入力し、ホッピング周波数の異なるチャープ信号の位相を制御することで異なるビームから放射するフェーズドアレイアンテナ部からなる、
     請求項1に記載のレーダー装置。
  3.  前記チャープ信号形成部及び前記周波数ホッピング部は、
     フラクショナルNシンセサイザーと、
     前記フラクショナルNシンセサイザーの分周器の分周数を制御することでチャープ信号の周期及び帯域を制御するチャープ制御部と、
     前記フラクショナルNシンセサイザーの分周器の分周数を制御することでホッピング周波数を制御する周波数ホッピング制御部と、
     により具現化されている、
     請求項1に記載のレーダー装置。
  4.  前記チャープ信号の帯域幅をBWcとし、前記チャープ信号を周波数ホッピングした後の全帯域幅をBWsys、周波数ホッピングのホッピング数をPとしたとき、前記チャープ信号の帯域幅BWcは、BWc > BWsys ×1/P とされている、
     請求項1に記載のレーダー装置。
PCT/JP2018/034598 2017-09-22 2018-09-19 レーダー装置 WO2019059217A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182497A JP2019056670A (ja) 2017-09-22 2017-09-22 レーダー装置
JP2017-182497 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059217A1 true WO2019059217A1 (ja) 2019-03-28

Family

ID=65809901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034598 WO2019059217A1 (ja) 2017-09-22 2018-09-19 レーダー装置

Country Status (2)

Country Link
JP (1) JP2019056670A (ja)
WO (1) WO2019059217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267751A (zh) * 2021-06-29 2021-08-17 珠海上富电技股份有限公司 一种车载毫米波雷达抗干扰的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212410A1 (zh) * 2020-04-23 2021-10-28 华为技术有限公司 用于控制雷达跳频的方法和装置以及雷达测速方法和雷达
CN113238194B (zh) * 2021-07-13 2021-10-08 中国人民解放军火箭军工程大学 基于分数域-频域处理的宽带相控阵雷达抗诱骗干扰方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292264A (ja) * 2007-05-24 2008-12-04 Fujitsu Ten Ltd レーダ装置、及びその制御方法
KR20120000322A (ko) * 2010-06-25 2012-01-02 현대모비스 주식회사 Fmcw 간섭 억제 방법
JP2014095689A (ja) * 2012-09-10 2014-05-22 Honeywell Internatl Inc 結合されたfmcwおよびfmパルス−圧縮レーダー・システム及び方法
JP2015194448A (ja) * 2014-03-31 2015-11-05 富士通株式会社 フェーズドアレイ送信機,送受信機およびレーダー装置
JP2016525209A (ja) * 2013-06-25 2016-08-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 角度分解型fmcwレーダセンサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045987A (ja) * 2006-08-15 2008-02-28 Fujitsu Ten Ltd レーダ装置、及びレーダ装置の近距離ターゲットの検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292264A (ja) * 2007-05-24 2008-12-04 Fujitsu Ten Ltd レーダ装置、及びその制御方法
KR20120000322A (ko) * 2010-06-25 2012-01-02 현대모비스 주식회사 Fmcw 간섭 억제 방법
JP2014095689A (ja) * 2012-09-10 2014-05-22 Honeywell Internatl Inc 結合されたfmcwおよびfmパルス−圧縮レーダー・システム及び方法
JP2016525209A (ja) * 2013-06-25 2016-08-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 角度分解型fmcwレーダセンサ
JP2015194448A (ja) * 2014-03-31 2015-11-05 富士通株式会社 フェーズドアレイ送信機,送受信機およびレーダー装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267751A (zh) * 2021-06-29 2021-08-17 珠海上富电技股份有限公司 一种车载毫米波雷达抗干扰的方法

Also Published As

Publication number Publication date
JP2019056670A (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
JP2665834B2 (ja) Fmレーダ
JP4551145B2 (ja) レーダ装置、レーダ装置の制御方法
JP2567332B2 (ja) 時分割型レーダシステム
KR100597343B1 (ko) Fm-cw 레이더 장치
US8077076B2 (en) FMCW radar sensor
KR102111905B1 (ko) 각도 해상도가 개선된 이미징 레이더 센서 및 이를 통한 위치 결정 방법.
JP2768439B2 (ja) Fm−cw方式マルチビームレーダー装置
US6940447B2 (en) Radar device and method for operating a radar device
JP4656144B2 (ja) レーダ装置
JP4045041B2 (ja) レーダ装置及びレーダ装置の異常検出方法
US20120169525A1 (en) Fmcw radar sensor for motor vehicles
EP1548458A2 (en) Vehicle-mounted radar
WO2019059217A1 (ja) レーダー装置
JP5552212B2 (ja) レーダー装置
JP2012159349A (ja) アンテナ装置、レーダ装置、車載レーダシステム
JP5576340B2 (ja) 周波数ホッピングによる高度方向スキャンを使用するマイクロ波システム
JP5182645B2 (ja) レーダ装置、及び障害物検知方法
JP2010175471A (ja) レーダ装置
JP5029045B2 (ja) レーダシステム及びそれに用いる送信機並びに受信機
CN112740072A (zh) 电子设备、电子设备的控制方法以及电子设备的控制程序
US6043773A (en) Vehicle-mounted radar apparatus
JPH1164500A (ja) レーダ装置
JP2003167048A (ja) 2周波cw方式のレーダ
JP3500629B2 (ja) Dbfレーダ装置
JP2964947B2 (ja) 時分割型レーダシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859892

Country of ref document: EP

Kind code of ref document: A1