WO2019058810A1 - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
WO2019058810A1
WO2019058810A1 PCT/JP2018/030090 JP2018030090W WO2019058810A1 WO 2019058810 A1 WO2019058810 A1 WO 2019058810A1 JP 2018030090 W JP2018030090 W JP 2018030090W WO 2019058810 A1 WO2019058810 A1 WO 2019058810A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat exchanger
vehicle
exchange system
heat exchange
Prior art date
Application number
PCT/JP2018/030090
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 剛
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019058810A1 publication Critical patent/WO2019058810A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds

Definitions

  • the present disclosure relates to a heat exchange system mounted on a vehicle.
  • a heat exchange system is mounted in an engine room provided on the front side of the vehicle.
  • the heat exchange system is for exchanging heat between air and a heat medium (for example, a refrigerant for air conditioning).
  • the heat exchange system is configured, for example, as a modularized combination of a single or a plurality of heat exchangers and a fan or the like for sending out air.
  • the fan of the heat exchange system described in Patent Document 1 below has a first operation mode in which outside air is discharged from the outside air opening in front of the vehicle toward the rear engine side, and from the rear engine side to outside air opening in the front It is possible to carry out a second operation mode of delivering air.
  • the fans of the heat exchange system are generally designed such that the flow rate of the delivered air is optimal when rotating in a direction to deliver the air from the front side to the aft side of the vehicle. For this reason, when the fan rotates in such a direction as to send out air from the rear side to the front side as in the second operation mode described above, the flow rate of air passing through the heat exchanger becomes small. As a result, heat recovery from air in the heat exchanger is not efficiently performed, and the load on the compressor for circulating the heat medium may be increased.
  • the present disclosure is a heat exchange system that can prevent the flow rate of air passing through the heat exchanger from being reduced when the fan operates to deliver the air from the rear side to the front side of the vehicle. , Aims to provide.
  • a heat exchange system is a heat exchange system mounted on a vehicle, comprising: a heat exchanger that performs heat exchange between air and a heat medium; and a fan that sends out air so as to pass through the heat exchanger. And.
  • the fan is capable of performing both of a forward rotation operation for delivering air toward the rear side of the vehicle and a reverse rotation operation for delivering air toward the front side of the vehicle.
  • the heat exchange system further includes a suction unit for drawing the air having passed through the heat exchanger such that the flow rate of air passing through the heat exchanger is increased when the fan performs the reverse rotation operation.
  • heat that can prevent the flow rate of air passing through the heat exchanger from being reduced when the fan operates to deliver air from the rear side to the front side of the vehicle A switching system is provided.
  • FIG. 1 is a view schematically showing the heat exchange system according to the first embodiment mounted on a vehicle.
  • FIG. 2 is a figure which shows typically the state by which the heat exchange system which concerns on 1st Embodiment is mounted in a vehicle.
  • FIG. 3 is a flow chart showing the flow of processing performed by the control device of the heat exchange system.
  • FIG. 4 is a figure which shows typically the state by which the heat exchange system which concerns on 2nd Embodiment is mounted in the vehicle.
  • FIG. 5 is a figure which shows typically the state by which the heat exchange system which concerns on 3rd Embodiment is mounted in the vehicle.
  • FIG. 6 is a view schematically showing the heat exchange system according to the fourth embodiment mounted on a vehicle.
  • the heat exchange system 10 includes a heat exchanger 100, a radiator 200, a fan 300, a suction pipe 410, a shutter device 600, and a control device 700, all of which are configured as one module. It has become The control device 700 may be disposed at a position apart from the module.
  • the heat exchanger 100 is a heat exchanger for performing heat exchange between the air flowing outside and the air conditioning refrigerant (heat medium) flowing inside.
  • the heat exchanger 100 is part of an air conditioner (the whole is not shown) provided in the vehicle VC.
  • the air conditioner is configured as a heat pump system.
  • the heat exchanger 100 When cooling the passenger compartment is performed, the heat exchanger 100 functions as a condenser for condensing the refrigerant.
  • the heat exchanger 100 functions as an evaporator for evaporating the refrigerant.
  • the heat exchange system 10 functions as an "outdoor unit" of the heat pump system.
  • the heat exchanger 100 has a configuration in which a plurality of tubes (not shown) through which the refrigerant passes are vertically stacked with fins (not shown) interposed therebetween.
  • the direction in which the air passes between the tubes is along the front-rear direction of the vehicle VC.
  • the heat exchanger 100 When the heat exchanger 100 functions as a condenser, the refrigerant flowing through each tube is cooled and condensed by heat exchange with air, and changes from the gas phase to the liquid phase. Thereby, heat is released from the refrigerant to the air.
  • the heat exchanger 100 functions as an evaporator
  • the refrigerant flowing through each of the tubes is heated by heat exchange with air, and is evaporated to change from the liquid phase to the gas phase. Thereby, heat is recovered from the air to the refrigerant.
  • the radiator 200 is a heat exchanger for cooling the cooling water circulating through the engine EG and the like by heat exchange with air. Radiator 200 is disposed at a position on the rear side of vehicle VC relative to heat exchanger 100.
  • the radiator 200 may be configured as a heat exchanger for cooling cooling water supplied to auxiliary devices such as an inverter (not shown). Further, the radiator 200 is configured as a combination of a heat exchanger for cooling the cooling water circulating through the engine EG etc. and a heat exchanger for cooling the cooling water supplied to the auxiliary machinery etc. It may be an aspect as it is.
  • the fan 300 is a blower that sends out air so as to pass through each of the heat exchanger 100 and the radiator 200.
  • Fan 300 is provided at a position on the rear side of vehicle VC relative to radiator 200.
  • the fan 300 can perform both of a forward rotation operation of delivering air toward the rear side engine EG and a reverse rotation operation of delivering air toward the front side heat exchanger 100 etc. There is. Note that FIG. 1 shows a state in which the fan 300 is rotating in the forward direction, and FIG. 2 shows a state in which the fan 300 is rotating in the reverse direction.
  • the operation of the fan 300 is controlled by a control device 700 described later.
  • the suction pipe 410 is a pipe for sucking the air having passed through the heat exchanger 100 into the intake flow path 400 when the fan 300 performs the above-described reverse rotation operation.
  • the intake flow passage 400 is a flow passage for supplying combustion air to the engine EG, and is provided at a position above the heat exchange system 10.
  • an air filter 430 is provided in the middle of the intake passage 400 for removing foreign matter from the air.
  • FIG. 1 a portion on the upstream side of the air filter 430 in the intake passage 400 is depicted as a cross-sectional view, and the internal structure of the intake passage 400 is shown.
  • the operation of the engine EG generates an air flow inside the intake flow passage 400.
  • An opening 401 formed at the upstream end of the intake flow passage 400 is disposed at a position further forward than a shutter device 600 described later. Therefore, regardless of whether the shutter device 600 is open or closed, the air flowing into the vehicle VC from the opening OP formed in the front grille is sucked from the opening 401 and supplied to the engine EG.
  • the suction pipe 410 connects a portion of the intake passage 400 on the upstream side (front side) of the air filter 430 and a space on the front side of the heat exchanger 100 and on the rear side of the shutter device 600. It is provided as.
  • a control valve 420 is provided at a position in the vicinity of a connection portion of the suction pipe 410 with the intake flow passage 400.
  • the adjustment valve 420 is a valve for adjusting the flow rate of air flowing from the space on the front side of the heat exchanger 100 through the suction pipe 410 and into the intake flow passage 400.
  • the adjusting valve 420 has a valve body 421 and a rotating shaft 422. The valve body portion 421 is rotated about the rotation shaft 422 by an actuator (not shown), whereby the flow rate of air flowing into the intake flow passage 400 through the suction pipe 410 is adjusted.
  • the operation of the regulating valve 420 is controlled by the controller 700.
  • Shutter device 600 is a path through which air flows from the outside of vehicle VC toward heat exchanger 100, specifically, a path through which air passing through opening OP formed in the front grill reaches heat exchanger 100, It is an apparatus which switches opening and closing of.
  • the shutter device 600 in the present embodiment is provided at a position on the front side of the heat exchanger 100.
  • the shutter device 600 has a plurality of blades 610 which are plate-like members, and these are aligned along the vertical direction. Each blade 610 can be rotated about a rotation axis along the left-right direction (in FIG. 1, the depth direction in the drawing) by a driving force from an actuator (not shown). As a result, it is possible to switch between the state in which the shutter device 600 is opened as shown in FIG. 1 and the state in which the shutter device 600 is closed as shown in FIG. The operation of the shutter device 600 is controlled by the controller 700.
  • Control device 700 is a device for controlling the overall operation of heat exchange system 10.
  • the control device 700 is configured as a computer system having a CPU, a ROM, a RAM, and the like. As described above, the control device 700 controls the operation of each of the fan 300, the adjustment valve 420, and the shutter device 600.
  • Control device 700 controls the operation of each part of heat exchange system 10 based on a control signal transmitted from an air conditioning ECU (not shown) that controls the air conditioning device.
  • the control device 700 may be configured as a part of the air conditioning ECU.
  • An under duct 500 is provided at a position below the heat exchanger 100 in the interior of the vehicle VC.
  • the underduct 500 is provided as a flow path connecting the space in which the heat exchanger 100 is disposed and the space on the rear side of the engine EG.
  • Under duct 500 is arranged along the upper surface of under panel UP of vehicle VC.
  • An opening 510 is formed at the front end of the underduct 500, and an opening 520 is formed at the rear end.
  • FIG. 1 shows a state in which the heat exchanger 100 functions as a condenser.
  • the shutter device 600 is in the open state, and the fan 300 performs the forward rotation operation.
  • the air which flowed in from opening OP is supplied to heat exchanger 100 and radiator 200 from the front side.
  • Such an air flow is shown by a plurality of arrows in FIG.
  • the fan 300 is designed so that the flow rate of the delivered air is optimal when rotating in a direction to deliver the air from the front side to the rear side of the vehicle, that is, when performing a forward rotation operation There is. For this reason, in the state shown in FIG. 1, a sufficient flow of air is supplied to each of the heat exchanger 100 and the radiator 200.
  • the opening degree of the adjustment valve 420 is set to 0, and the flow rate of air flowing from the suction pipe 410 into the intake flow path 400 is set to 0. .
  • FIG. 2 shows a state in which the heat exchanger 100 functions as an evaporator.
  • the shutter device 600 is in the closed state, and the fan 300 performs the reverse rotation operation. For this reason, the air flowing toward the front is supplied to the heat exchanger 100 and the radiator 200 from the periphery of the rear engine EG.
  • the underduct 500 functions to guide the air that has passed through the heat exchanger 100 to the engine EG side when the fan 300 performs the reverse rotation operation.
  • the adjusting valve 420 is opened to allow air to flow from the suction pipe 410 into the intake flow path 400.
  • part of the air that has passed through the heat exchanger 100 and flowed into the space on the rear side of the shutter device 600 is drawn into the inside of the suction pipe 410.
  • the air is supplied to the engine EG through the suction pipe 410 and the intake passage 400, respectively.
  • the flow of air as described above is indicated by a plurality of arrows.
  • the heat exchanger 100 is passed so that the flow rate of air passing through the heat exchanger 100 is increased. Air is drawn by the suction line 410. As a result, the flow rate of air passing through the heat exchanger 100 is prevented from decreasing.
  • the suction pipe 410 is connected to an intake flow passage 400 for supplying air to the engine EG of the vehicle VC, and is configured to suction the air having passed through the heat exchanger 100.
  • a suction pipe 410 corresponds to the “suction unit” in the present embodiment.
  • the flow rate of the air drawn by the suction pipe 410 is adjusted by the opening degree of the adjusting valve 420.
  • the air flowing into the intake flow passage 400 through the suction pipe 410 is air after passing through the heat exchanger 100 which is an evaporator, so the temperature is relatively low. For this reason, since the air which is low temperature and high in density is supplied to the engine EG, the output performance of the engine EG is improved.
  • control device 700 adjust the opening degree of the adjustment valve 420 so that the temperature of the air supplied to the engine EG does not fall below the predetermined lower limit value.
  • a flow of processing executed by the control device 700 will be described with reference to FIG.
  • the series of processes shown in FIG. 3 are repeatedly executed by the control device 700 each time a predetermined control cycle elapses while the air conditioner is in operation.
  • step S01 it is determined whether or not cooling of the vehicle compartment is being performed by the air conditioner. If cooling is being performed, the process proceeds to step S02.
  • step S02 processing for opening the shutter device 600 as shown in FIG. 1 is performed.
  • step S03 following step S02, a process of causing fan 300 to perform a forward rotation operation is performed.
  • step S04 following step S03, the opening degree of the adjustment valve 420 is set to 0, and the flow rate of air flowing into the intake passage 400 through the suction pipe 410 is set to 0.
  • the processes from step S02 to step S04 may be performed in an order different from that described above.
  • step S05 the shutter device 600 is closed as shown in FIG.
  • step S06 processing is performed to cause the fan 300 to perform the reverse rotation operation.
  • step S07 the control valve 420 is opened, and the flow rate of air flowing into the intake passage 400 through the suction pipe 410 is adjusted by the opening degree of the control valve 420.
  • the process is performed such that the temperature of the air supplied to the engine EG does not fall below a predetermined lower limit.
  • the processes from step S05 to step S07 may be performed in an order different from that described above.
  • FIG. 4 is a diagram schematically depicting the front side portion of the vehicle VC in top view.
  • the fan 300 performs reverse rotation operation, and the shutter device 600 shown by a dotted line is in a closed state.
  • a pair of front wheels WH provided on the vehicle VC is depicted.
  • Each front wheel WH is housed inside the tire house TH.
  • a flow passage FP is formed inside the bumper BP.
  • the flow path FP is a flow path formed to guide a part of the air flowing in from the opening OP to the tire house TH.
  • the flow path FP is formed to be connected to each of the left and right tire houses TH. While the vehicle VC is traveling, air flows from the opening OP side toward the tire house TH in each of the flow paths FP. Such air flow is generated by the air flow around the vehicle VC, that is, the vehicle speed wind.
  • the heat exchange system 10 includes a suction pipe 450 instead of the suction pipe 410.
  • the suction pipe 450 is a pipe provided so as to connect the space between the heat exchanger 100 and the shutter device 600 and the flow path FP.
  • One suction pipe 450 is provided on each of the left and right sides so as to correspond to each suction pipe 450.
  • the suction pipe 450 has a shape in which a part thereof is curved so as to be closer to the rear side of the vehicle VC as it approaches a connection portion with the flow path FP.
  • the heat exchanger 100 when the fan 300 performs the reverse rotation operation, the air passing through the heat exchanger 100 is drawn by the suction pipe 450, and as a result, the heat exchanger 100 is The flow rate of air passing through increases.
  • the suction pipe 450 is configured to suck the air having passed through the heat exchanger 100 and discharge the air toward the tire house TH by utilizing the flow of air around the vehicle VC.
  • Such a suction pipe 450 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.
  • FIG. 5 is a diagram schematically depicting the front side portion of the vehicle VC in top view.
  • the fan 300 performs reverse rotation operation, and the shutter device 600 shown by a dotted line is in a closed state.
  • the heat exchanger 100 when the fan 300 performs the reverse rotation operation, the air that has passed through the heat exchanger 100 is drawn by the suction pipe 460, and as a result, the heat exchanger 100 is The flow rate of air passing through increases.
  • the suction pipe 460 is configured to suck the air having passed through the heat exchanger 100 using the flow of air around the vehicle VC and discharge the air from the side surface of the vehicle VC to the outside.
  • a suction pipe 460 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.
  • FIG. 6 is a view schematically depicting the front side portion of the vehicle VC according to the present embodiment in a side view similar to FIG. In the figure, the fan 300 performs reverse rotation operation, and the shutter device 600 is in a closed state.
  • the suction pipe 410 and the underduct 500 are not provided in the vehicle VC.
  • the under panel UP of the vehicle VC is formed with an opening 470 that leads to the outside.
  • the opening 470 is formed at a position directly below the space between the heat exchanger 100 and the shutter device 600.
  • FIG. 6 a portion on the front side of the opening 470 of the under panel UP is shown as the under panel UP1, and a portion on the rear side of the opening 470 of the under panel UP is shown as the under panel UP2. .
  • the height of the end on the opening 470 side of the under panel UP1 is lower than the height of the end on the opening 470 side of the under panel UP2. With this configuration, the traveling wind accompanying the traveling of the vehicle VC is prevented from flowing from the outside through the opening 470.
  • a guide wall WL1 is provided at a position near the opening 470 in the upper surface (inner surface) of the under panel UP1.
  • the guide wall WL1 is a wall inclined so as to be higher toward the rear side.
  • the fan 300 when the fan 300 performs the reverse rotation operation, the air having passed through the heat exchanger 100 is drawn to the opening 470, and as a result, the heat exchanger 100 The flow rate of air passing through increases.
  • the opening 470 is configured to draw air that has passed through the heat exchanger 100 using the flow of air around the vehicle VC and discharge the air from the bottom of the vehicle VC to the outside.
  • Such an opening 470 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.

Abstract

The purpose of the present invention is to provide a heat exchange system which makes it possible to prevent a decrease in the flow rate of air that passes through a heat exchanger when a fan operates such that air is blown out from the rear side of a vehicle to the front side. A heat exchange system (10) is installed in a vehicle (VC), is provided with: a heat exchanger (100) for exchanging heat between air and a heating medium; and a fan (300) for blowing out air so as to pass through the heat exchanger. The fan is able to perform both a forward rotation operation where air is blown out toward the rear side of the vehicle and a reverse rotation operation where air is blown out toward the front side of the vehicle. The heat exchange system is further provided with a suction part (410, 450, 460, 470) for suctioning air that has passed through the heat exchanger so as to increase the flow rate of air passing through the heat exchanger when the fan is performing the reverse rotation operation.

Description

熱交換システムHeat exchange system 関連出願の相互参照Cross-reference to related applications
 本出願は、2017年9月19日に出願された日本国特許出願2017-178923号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2017-178923 filed on September 19, 2017, and claims the benefit of its priority, and the entire contents of the patent application are as follows: Incorporated herein by reference.
 本開示は、車両に搭載される熱交換システムに関する。 The present disclosure relates to a heat exchange system mounted on a vehicle.
 車両の前方側部分に設けられたエンジンルームには、熱交換システムが搭載される。熱交換システムは、空気と熱媒体(例えば空調用の冷媒等)との間で熱交換を行うためのものである。熱交換システムは、例えば、単一又は複数の熱交換器に、空気を送り出すためのファン等を組み合わせてモジュール化したもの、として構成される。 A heat exchange system is mounted in an engine room provided on the front side of the vehicle. The heat exchange system is for exchanging heat between air and a heat medium (for example, a refrigerant for air conditioning). The heat exchange system is configured, for example, as a modularized combination of a single or a plurality of heat exchangers and a fan or the like for sending out air.
 下記特許文献1に記載されている熱交換システムのファンは、車両前方の外気開口から後方のエンジン側へ向かって外気を送り出す第1動作モードと、後方のエンジン側から前方の外気開口へ向かって空気を送り出す第2動作モードと、を実行することが可能となっている。 The fan of the heat exchange system described in Patent Document 1 below has a first operation mode in which outside air is discharged from the outside air opening in front of the vehicle toward the rear engine side, and from the rear engine side to outside air opening in the front It is possible to carry out a second operation mode of delivering air.
 第2動作モードにおいては、外気よりも高温で乾燥している空気が、エンジン側から熱交換器へと供給される。このため、熱交換器を凍結させることなく、空気からの熱を効率的に回収することが可能となる。 In the second mode of operation, air that is hotter and dry than ambient air is supplied from the engine side to the heat exchanger. For this reason, it is possible to efficiently recover the heat from the air without freezing the heat exchanger.
特開2015-101333号公報JP, 2015-101333, A
 熱交換システムのファンは、車両の前方側から後方側に向けて空気を送り出すような方向に回転したときに、送り出される空気の流量が最適となるように設計されるのが一般的である。このため、上記の第2動作モードのように、後方側から前方側に向けて空気を送り出すような方向にファンが回転したときには、熱交換器を通過する空気の流量が小さくなってしまう。その結果、熱交換器における空気からの熱の回収が効率的には行われず、熱媒体を循環させるためのコンプレッサの負荷が大きくなってしまう可能性がある。 The fans of the heat exchange system are generally designed such that the flow rate of the delivered air is optimal when rotating in a direction to deliver the air from the front side to the aft side of the vehicle. For this reason, when the fan rotates in such a direction as to send out air from the rear side to the front side as in the second operation mode described above, the flow rate of air passing through the heat exchanger becomes small. As a result, heat recovery from air in the heat exchanger is not efficiently performed, and the load on the compressor for circulating the heat medium may be increased.
 本開示は、車両の後方側から前方側に向けて空気を送り出すようにファンが動作するときに、熱交換器を通過する空気の流量が低下してしまうことを防止することのできる熱交換システム、を提供することを目的とする。 The present disclosure is a heat exchange system that can prevent the flow rate of air passing through the heat exchanger from being reduced when the fan operates to deliver the air from the rear side to the front side of the vehicle. , Aims to provide.
 本開示に係る熱交換システムは、車両に搭載される熱交換システムであって、空気と熱媒体との間で熱交換を行う熱交換器と、熱交換器を通過するように空気を送り出すファンと、を備える。ファンは、車両の後方側に向けて空気を送り出す正回転動作と、車両の前方側に向けて空気を送り出す逆回転動作と、のいずれをも行うことが可能となっている。この熱交換システムは、ファンが逆回転動作を行う際において、熱交換器を通過する空気の流量が増加するように、熱交換器を通過した空気を吸引する吸引部を更に備える。 A heat exchange system according to the present disclosure is a heat exchange system mounted on a vehicle, comprising: a heat exchanger that performs heat exchange between air and a heat medium; and a fan that sends out air so as to pass through the heat exchanger. And. The fan is capable of performing both of a forward rotation operation for delivering air toward the rear side of the vehicle and a reverse rotation operation for delivering air toward the front side of the vehicle. The heat exchange system further includes a suction unit for drawing the air having passed through the heat exchanger such that the flow rate of air passing through the heat exchanger is increased when the fan performs the reverse rotation operation.
 このような構成の熱交換システムでは、ファンが逆回転動作を行う際に、熱交換器を通過した空気が吸引部によって吸引される。その結果、熱交換器を通過する空気の流量が増加する。このように、上記熱交換システムでは、空気を吸引して流量を増加させる吸引部を備えることにより、熱交換器を通過する空気の流量が低下してしまうことが防止される。 In the heat exchange system of such a configuration, when the fan performs the reverse rotation operation, the air passing through the heat exchanger is drawn by the suction unit. As a result, the flow rate of air passing through the heat exchanger is increased. As described above, in the heat exchange system described above, by providing the suction unit that sucks the air to increase the flow rate, the flow rate of the air passing through the heat exchanger is prevented from decreasing.
 本開示によれば、車両の後方側から前方側に向けて空気を送り出すようにファンが動作するときに、熱交換器を通過する空気の流量が低下してしまうことを防止することのできる熱交換システム、が提供される。 According to the present disclosure, heat that can prevent the flow rate of air passing through the heat exchanger from being reduced when the fan operates to deliver air from the rear side to the front side of the vehicle A switching system is provided.
図1は、第1実施形態に係る熱交換システムが車両に搭載されている状態を模式的に示す図である。FIG. 1 is a view schematically showing the heat exchange system according to the first embodiment mounted on a vehicle. 図2は、第1実施形態に係る熱交換システムが車両に搭載されている状態を模式的に示す図である。FIG. 2: is a figure which shows typically the state by which the heat exchange system which concerns on 1st Embodiment is mounted in a vehicle. 図3は、熱交換システムの制御装置によって実行される処理の流れを示すフローチャートである。FIG. 3 is a flow chart showing the flow of processing performed by the control device of the heat exchange system. 図4は、第2実施形態に係る熱交換システムが車両に搭載されている状態を模式的に示す図である。FIG. 4: is a figure which shows typically the state by which the heat exchange system which concerns on 2nd Embodiment is mounted in the vehicle. 図5は、第3実施形態に係る熱交換システムが車両に搭載されている状態を模式的に示す図である。FIG. 5: is a figure which shows typically the state by which the heat exchange system which concerns on 3rd Embodiment is mounted in the vehicle. 図6は、第4実施形態に係る熱交換システムが車両に搭載されている状態を模式的に示す図である。FIG. 6 is a view schematically showing the heat exchange system according to the fourth embodiment mounted on a vehicle.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same constituent elements in the drawings are denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 図1、2を参照しながら、本実施形態に係る熱交換システム10の構成について説明する。熱交換システム10は、車両VCの前方側部分(図1では左側部分)に設けられたエンジンルームのうち、エンジンEGよりも前方側となる位置に搭載されている。尚、本実施形態においては、車両VCは、エンジンEG及び回転電機(不図示)のそれぞれの駆動力によって走行し得るハイブリッド車両として構成されている。 The configuration of the heat exchange system 10 according to the present embodiment will be described with reference to FIGS. The heat exchange system 10 is mounted at a position on the front side of the engine EG in an engine room provided on the front side portion (left side portion in FIG. 1) of the vehicle VC. In the present embodiment, the vehicle VC is configured as a hybrid vehicle that can travel by the respective driving forces of the engine EG and the rotary electric machine (not shown).
 熱交換システム10は、熱交換器100と、ラジエータ200と、ファン300と、吸引配管410と、シャッター装置600と、制御装置700と、を備えており、これらの全体が一つのモジュールとして構成されたものとなっている。尚、制御装置700は、上記モジュールとは離れた位置に配置されていてもよい。 The heat exchange system 10 includes a heat exchanger 100, a radiator 200, a fan 300, a suction pipe 410, a shutter device 600, and a control device 700, all of which are configured as one module. It has become The control device 700 may be disposed at a position apart from the module.
 熱交換器100は、外側を流れる空気と、内側を流れる空調用の冷媒(熱媒体)との間で熱交換を行うための熱交換器である。熱交換器100は、車両VCに設けられた空調装置(全体は不図示)の一部となっている。当該空調装置はヒートポンプシステムとして構成されている。車室内の冷房が行われる際には、熱交換器100は、冷媒を凝縮させるための凝縮器として機能する。車室内の暖房が行われる際には、熱交換器100は、冷媒を蒸発させるための蒸発器として機能する。このように、本実施形態に係る熱交換システム10は、ヒートポンプシステムの「室外機」として機能するものである。 The heat exchanger 100 is a heat exchanger for performing heat exchange between the air flowing outside and the air conditioning refrigerant (heat medium) flowing inside. The heat exchanger 100 is part of an air conditioner (the whole is not shown) provided in the vehicle VC. The air conditioner is configured as a heat pump system. When cooling the passenger compartment is performed, the heat exchanger 100 functions as a condenser for condensing the refrigerant. When heating of the passenger compartment is performed, the heat exchanger 100 functions as an evaporator for evaporating the refrigerant. Thus, the heat exchange system 10 according to the present embodiment functions as an "outdoor unit" of the heat pump system.
 熱交換器100は、冷媒が通る複数本のチューブ(不図示)を、間にフィン(不図示)を挟んだ状態で上下方向に積層した構成となっている。それぞれのチューブ間を空気が通過する方向は、車両VCの前後方向に沿っている。尚、このような熱交換器の構成としては公知のものを採用し得るので、その具体的な図示や説明については省略する。 The heat exchanger 100 has a configuration in which a plurality of tubes (not shown) through which the refrigerant passes are vertically stacked with fins (not shown) interposed therebetween. The direction in which the air passes between the tubes is along the front-rear direction of the vehicle VC. In addition, since a well-known thing can be employ | adopted as a structure of such a heat exchanger, it abbreviate | omits about the specific illustration and description.
 熱交換器100が凝縮器として機能する際には、それぞれのチューブを流れる冷媒は、空気との熱交換によって冷却されて凝縮し、気相から液相へと変化する。これにより、冷媒から空気へと熱が放出される。 When the heat exchanger 100 functions as a condenser, the refrigerant flowing through each tube is cooled and condensed by heat exchange with air, and changes from the gas phase to the liquid phase. Thereby, heat is released from the refrigerant to the air.
 一方、熱交換器100が蒸発器として機能する際には、それぞれのチューブを流れる冷媒は、空気との熱交換によって加熱されて蒸発し、液相から気相へと変化する。これにより、空気から冷媒へと熱が回収される。 On the other hand, when the heat exchanger 100 functions as an evaporator, the refrigerant flowing through each of the tubes is heated by heat exchange with air, and is evaporated to change from the liquid phase to the gas phase. Thereby, heat is recovered from the air to the refrigerant.
 ラジエータ200は、エンジンEG等を循環する冷却水を、空気との熱交換によって冷却するための熱交換器である。ラジエータ200は、熱交換器100よりも車両VCの後方側となる位置に配置されている。尚、ラジエータ200は、インバータ(不図示)等の補機類に供給される冷却水を冷却するための熱交換器として構成されていてもよい。また、エンジンEG等を循環する冷却水を冷却するための熱交換器と、補機類に供給される冷却水を冷却するための熱交換器とを組み合わせたものとして、ラジエータ200が構成されているような態様であってもよい。 The radiator 200 is a heat exchanger for cooling the cooling water circulating through the engine EG and the like by heat exchange with air. Radiator 200 is disposed at a position on the rear side of vehicle VC relative to heat exchanger 100. The radiator 200 may be configured as a heat exchanger for cooling cooling water supplied to auxiliary devices such as an inverter (not shown). Further, the radiator 200 is configured as a combination of a heat exchanger for cooling the cooling water circulating through the engine EG etc. and a heat exchanger for cooling the cooling water supplied to the auxiliary machinery etc. It may be an aspect as it is.
 ファン300は、熱交換器100及びラジエータ200のそれぞれを通過するように空気を送り出す送風機である。ファン300は、ラジエータ200よりも車両VCの後方側となる位置に設けられている。ファン300は、後方側のエンジンEGに向けて空気を送り出す正回転動作と、前方側の熱交換器100等に向けて空気を送り出す逆回転動作と、のいずれをも行うことが可能となっている。尚、図1にはファン300が正回転動作を行っているときの状態が示されており、図2にはファン300が逆回転動作を行っているときの状態が示されている。ファン300の動作は、後述の制御装置700によって制御される。 The fan 300 is a blower that sends out air so as to pass through each of the heat exchanger 100 and the radiator 200. Fan 300 is provided at a position on the rear side of vehicle VC relative to radiator 200. The fan 300 can perform both of a forward rotation operation of delivering air toward the rear side engine EG and a reverse rotation operation of delivering air toward the front side heat exchanger 100 etc. There is. Note that FIG. 1 shows a state in which the fan 300 is rotating in the forward direction, and FIG. 2 shows a state in which the fan 300 is rotating in the reverse direction. The operation of the fan 300 is controlled by a control device 700 described later.
 吸引配管410は、ファン300が上記の逆回転動作を行う際において、熱交換器100を通過した空気を吸気流路400へと吸引するための配管である。吸気流路400は、エンジンEGに燃焼用の空気を供給するための流路であって、熱交換システム10の上方側となる位置に設けられている。吸気流路400の途中には、空気から異物を除去するためのエアフィルタ430が設けられている。図1においては、吸気流路400のうちエアフィルタ430よりも上流側の部分が断面図として描かれており、これにより吸気流路400の内部の構造が示されている。 The suction pipe 410 is a pipe for sucking the air having passed through the heat exchanger 100 into the intake flow path 400 when the fan 300 performs the above-described reverse rotation operation. The intake flow passage 400 is a flow passage for supplying combustion air to the engine EG, and is provided at a position above the heat exchange system 10. In the middle of the intake passage 400, an air filter 430 is provided for removing foreign matter from the air. In FIG. 1, a portion on the upstream side of the air filter 430 in the intake passage 400 is depicted as a cross-sectional view, and the internal structure of the intake passage 400 is shown.
 よく知られているように、エンジンEGの動作によって吸気流路400の内部では空気の流れが生じている。吸気流路400のうち上流側の端部に形成された開口401は、後述のシャッター装置600よりも更に前方側となる位置に配置されている。このため、シャッター装置600の開閉状態に拘らず、フロントグリルに形成された開口OPから車両VCの内部に流入した空気は、開口401から吸引され、エンジンEGへと供給される。 As well known, the operation of the engine EG generates an air flow inside the intake flow passage 400. An opening 401 formed at the upstream end of the intake flow passage 400 is disposed at a position further forward than a shutter device 600 described later. Therefore, regardless of whether the shutter device 600 is open or closed, the air flowing into the vehicle VC from the opening OP formed in the front grille is sucked from the opening 401 and supplied to the engine EG.
 吸引配管410は、吸気流路400のうちエアフィルタ430よりも上流側(前方側)の部分と、熱交換器100よりも前方側且つシャッター装置600よりも後方側の空間と、の間を繋ぐように設けられている。吸引配管410のうち吸気流路400との接続部分の近傍となる位置には、調整弁420が設けられている。調整弁420は、熱交換器100の前方側の空間から、吸引配管410を通り吸気流路400へと流入する空気の流量を調整するための弁である。調整弁420は、弁体部421と回転軸422とを有している。不図示のアクチュエータによって弁体部421が回転軸422の周りに回転することにより、吸引配管410を通り吸気流路400へと流入する空気の流量が調整される。調整弁420の動作は制御装置700によって制御される。 The suction pipe 410 connects a portion of the intake passage 400 on the upstream side (front side) of the air filter 430 and a space on the front side of the heat exchanger 100 and on the rear side of the shutter device 600. It is provided as. A control valve 420 is provided at a position in the vicinity of a connection portion of the suction pipe 410 with the intake flow passage 400. The adjustment valve 420 is a valve for adjusting the flow rate of air flowing from the space on the front side of the heat exchanger 100 through the suction pipe 410 and into the intake flow passage 400. The adjusting valve 420 has a valve body 421 and a rotating shaft 422. The valve body portion 421 is rotated about the rotation shaft 422 by an actuator (not shown), whereby the flow rate of air flowing into the intake flow passage 400 through the suction pipe 410 is adjusted. The operation of the regulating valve 420 is controlled by the controller 700.
 シャッター装置600は、車両VCの外部から熱交換器100に向けて空気が流入する経路、具体的には、フロントグリルに形成された開口OPを通った空気が熱交換器100に到達する経路、の開閉を切り換える装置である。本実施形態におけるシャッター装置600は、熱交換器100よりも前方側となる位置に設けられている。 Shutter device 600 is a path through which air flows from the outside of vehicle VC toward heat exchanger 100, specifically, a path through which air passing through opening OP formed in the front grill reaches heat exchanger 100, It is an apparatus which switches opening and closing of. The shutter device 600 in the present embodiment is provided at a position on the front side of the heat exchanger 100.
 シャッター装置600は、板状の部材であるブレード610を複数枚有しており、これらが上下方向に沿って並んでいる。それぞれのブレード610は、不図示のアクチュエータからの駆動力により、左右方向(図1では紙面奥行方向)に沿った回転軸の周りに回転することができる。これにより、図1のようにシャッター装置600が開かれている状態と、図2のようにシャッター装置600が閉じられている状態と、を切り換えることができる。シャッター装置600の動作は制御装置700によって制御される。 The shutter device 600 has a plurality of blades 610 which are plate-like members, and these are aligned along the vertical direction. Each blade 610 can be rotated about a rotation axis along the left-right direction (in FIG. 1, the depth direction in the drawing) by a driving force from an actuator (not shown). As a result, it is possible to switch between the state in which the shutter device 600 is opened as shown in FIG. 1 and the state in which the shutter device 600 is closed as shown in FIG. The operation of the shutter device 600 is controlled by the controller 700.
 シャッター装置600が開かれている状態(図1)においては、それぞれのブレード610が互いに離間しており、ブレード610間に隙間が形成されている状態となる。このとき、開口OPからの空気はブレード610間の上記隙間を通過し、熱交換器100に到達する。 When the shutter device 600 is open (FIG. 1), the blades 610 are separated from each other, and a gap is formed between the blades 610. At this time, air from the opening OP passes through the gap between the blades 610 and reaches the heat exchanger 100.
 シャッター装置600が閉じられている状態(図2)においては、それぞれのブレード610が互いに当接しており、ブレード610間に隙間が形成されていない状態となる。このとき、開口OPからの空気は各ブレード610によって遮られるため、熱交換器100には到達しない。 When the shutter device 600 is closed (FIG. 2), the blades 610 are in contact with each other, and no gap is formed between the blades 610. At this time, the air from the opening OP is blocked by the blades 610 and therefore does not reach the heat exchanger 100.
 制御装置700は、熱交換システム10の全体の動作を制御するための装置である。制御装置700は、CPU、ROM、RAM等を有するコンピュータシステムとして構成されている。既に述べたように、制御装置700は、ファン300、調整弁420、シャッター装置600、のそれぞれの動作を制御する。 Control device 700 is a device for controlling the overall operation of heat exchange system 10. The control device 700 is configured as a computer system having a CPU, a ROM, a RAM, and the like. As described above, the control device 700 controls the operation of each of the fan 300, the adjustment valve 420, and the shutter device 600.
 制御装置700は、空調装置の制御を司る不図示の空調ECUから送信される制御信号に基づいて、熱交換システム10の各部の動作を制御する。このような態様に換えて、制御装置700が空調ECUの一部として構成されているような態様であってもよい。 Control device 700 controls the operation of each part of heat exchange system 10 based on a control signal transmitted from an air conditioning ECU (not shown) that controls the air conditioning device. Instead of such an aspect, the control device 700 may be configured as a part of the air conditioning ECU.
 その他の構成について説明する。車両VCの内部のうち、熱交換器100よりも下方側となる位置には、アンダーダクト500が設けられている。アンダーダクト500は、熱交換器100が配置されている空間と、エンジンEGよりも後方側の空間と、の間を繋ぐ流路として設けられたものである。アンダーダクト500は、車両VCのアンダーパネルUPの上面に沿って配置されている。アンダーダクト500のうち前方側の端部には開口510が形成されており、後方側の端部には開口520が形成されている。 Other configurations will be described. An under duct 500 is provided at a position below the heat exchanger 100 in the interior of the vehicle VC. The underduct 500 is provided as a flow path connecting the space in which the heat exchanger 100 is disposed and the space on the rear side of the engine EG. Under duct 500 is arranged along the upper surface of under panel UP of vehicle VC. An opening 510 is formed at the front end of the underduct 500, and an opening 520 is formed at the rear end.
 熱交換システム10の動作について説明する。車室内の冷房が行われる際には、既に述べたように熱交換器100が凝縮器として機能する。図1には、熱交換器100が凝縮器として機能する際の状態が示されている。当該状態においては、シャッター装置600は開かれた状態となっており、ファン300は正回転動作を行っている。このため、熱交換器100やラジエータ200には、開口OPから流入した空気が前方側から供給される。図1には、このような空気の流れが複数の矢印で示されている。 The operation of the heat exchange system 10 will be described. When cooling the passenger compartment is performed, the heat exchanger 100 functions as a condenser as described above. FIG. 1 shows a state in which the heat exchanger 100 functions as a condenser. In this state, the shutter device 600 is in the open state, and the fan 300 performs the forward rotation operation. For this reason, the air which flowed in from opening OP is supplied to heat exchanger 100 and radiator 200 from the front side. Such an air flow is shown by a plurality of arrows in FIG.
 ファン300は、車両の前方側から後方側に向けて空気を送り出すような方向に回転するとき、すなわち正回転動作を行っているときに、送り出される空気の流量が最適となるように設計されている。このため、図1に示される状態においては、十分な流量の空気が熱交換器100及びラジエータ200のそれぞれに供給される。 The fan 300 is designed so that the flow rate of the delivered air is optimal when rotating in a direction to deliver the air from the front side to the rear side of the vehicle, that is, when performing a forward rotation operation There is. For this reason, in the state shown in FIG. 1, a sufficient flow of air is supplied to each of the heat exchanger 100 and the radiator 200.
 また、図1のようにファン300が正回転動作を行っているときには、調整弁420の開度が0とされ、吸引配管410から吸気流路400へと流入する空気の流量が0とされる。 Further, as shown in FIG. 1, when the fan 300 is performing the forward rotation operation, the opening degree of the adjustment valve 420 is set to 0, and the flow rate of air flowing from the suction pipe 410 into the intake flow path 400 is set to 0. .
 車室内の暖房が行われる際には、既に述べたように熱交換器100が蒸発器として機能する。図2には、熱交換器100が蒸発器として機能する際の状態が示されている。当該状態においては、シャッター装置600は閉じられた状態となっており、ファン300は逆回転動作を行っている。このため、熱交換器100やラジエータ200には、後方のエンジンEGの周囲から、前方に向かって流れる空気が供給される。 When heating the passenger compartment, as described above, the heat exchanger 100 functions as an evaporator. FIG. 2 shows a state in which the heat exchanger 100 functions as an evaporator. In this state, the shutter device 600 is in the closed state, and the fan 300 performs the reverse rotation operation. For this reason, the air flowing toward the front is supplied to the heat exchanger 100 and the radiator 200 from the periphery of the rear engine EG.
 熱交換器100を通過した空気の一部は、閉じられた状態のシャッター装置600に沿って下方側に向かって流れる。その後、開口510からアンダーダクト500の内部に流入し、アンダーダクト500によってエンジンEGよりも後方側の空間へと導かれる。当該空気は、エンジンEGによって加熱された後、再び熱交換器100へと供給され、冷媒との熱交換に供される。このように、アンダーダクト500は、ファン300が逆回転動作を行っているときに、熱交換器100を通過した空気をエンジンEG側に導くためのものとして機能する。 Part of the air that has passed through the heat exchanger 100 flows downward along the shutter device 600 in the closed state. Thereafter, the gas flows from the opening 510 into the inside of the underduct 500 and is guided by the underduct 500 to a space on the rear side of the engine EG. After the air is heated by the engine EG, the air is again supplied to the heat exchanger 100 and subjected to heat exchange with the refrigerant. As described above, the underduct 500 functions to guide the air that has passed through the heat exchanger 100 to the engine EG side when the fan 300 performs the reverse rotation operation.
 図2のようにファン300が逆回転動作を行っているときには、調整弁420が開かれて、吸引配管410から吸気流路400へと空気が流入し得る状態となる。これにより、熱交換器100を通過してシャッター装置600の後方側の空間へと流入した空気の一部が、吸引配管410の内部へと引き込まれるようになる。当該空気は、吸引配管410及び吸気流路400をそれぞれ通ってエンジンEGへと供給される。図2には、以上のような空気の流れが複数の矢印で示されている。 As shown in FIG. 2, when the fan 300 performs the reverse rotation operation, the adjusting valve 420 is opened to allow air to flow from the suction pipe 410 into the intake flow path 400. As a result, part of the air that has passed through the heat exchanger 100 and flowed into the space on the rear side of the shutter device 600 is drawn into the inside of the suction pipe 410. The air is supplied to the engine EG through the suction pipe 410 and the intake passage 400, respectively. In FIG. 2, the flow of air as described above is indicated by a plurality of arrows.
 図2に示される状態においては、ファン300から送り出される空気の流量は逆回転動作によって低下しているのであるが、吸引配管410へと空気が吸引されることによって、熱交換器100を十分な流量の空気が通過している。これにより、熱交換器100においては十分な熱交換が行われ、空調装置において冷媒を循環させるためのコンプレッサ(不図示)の動作負荷が小さくなるので、車両VCの燃費性能を向上させることができる。 In the state shown in FIG. 2, the flow rate of the air sent out from fan 300 is reduced by the reverse rotation operation, but heat is drawn into suction pipe 410 so that heat exchanger 100 can be sufficiently operated. A flow of air is passing through. As a result, sufficient heat exchange is performed in heat exchanger 100, and the operating load of a compressor (not shown) for circulating the refrigerant in the air conditioner is reduced, so that the fuel consumption performance of vehicle VC can be improved. .
 以上のように、本実施形態に係る熱交換システム10では、ファン300が逆回転動作を行う際に、熱交換器100を通過する空気の流量が増加するように、熱交換器100を通過した空気が吸引配管410によって吸引される。その結果、熱交換器100を通過する空気の流量が低下してしまうことが防止される。 As described above, in the heat exchange system 10 according to the present embodiment, when the fan 300 performs the reverse rotation operation, the heat exchanger 100 is passed so that the flow rate of air passing through the heat exchanger 100 is increased. Air is drawn by the suction line 410. As a result, the flow rate of air passing through the heat exchanger 100 is prevented from decreasing.
 また、吸引配管410は、車両VCのエンジンEGに空気を供給するための吸気流路400につながっており、熱交換器100を通過した空気を吸引するように構成されている。このような吸引配管410は、本実施形態における「吸引部」に該当するものである。 Further, the suction pipe 410 is connected to an intake flow passage 400 for supplying air to the engine EG of the vehicle VC, and is configured to suction the air having passed through the heat exchanger 100. Such a suction pipe 410 corresponds to the “suction unit” in the present embodiment.
 吸引配管410によって吸引される空気の流量は、調整弁420の開度によって調整される。吸引配管410を通って吸気流路400へと流入する空気は、蒸発器である熱交換器100を通過した後の空気であるから、その温度が比較的低温となっている。このため、エンジンEGには低温であり密度の高い空気が供給されることとなるので、エンジンEGの出力性能が向上することとなる。 The flow rate of the air drawn by the suction pipe 410 is adjusted by the opening degree of the adjusting valve 420. The air flowing into the intake flow passage 400 through the suction pipe 410 is air after passing through the heat exchanger 100 which is an evaporator, so the temperature is relatively low. For this reason, since the air which is low temperature and high in density is supplied to the engine EG, the output performance of the engine EG is improved.
 ただし、エンジンEGに供給される空気の温度が低下し過ぎると、エンジンEGにおける燃焼効率低下し、ノッキング等が生じてしまう。このため、エンジンEGに供給される空気の温度が所定の下限値を下回ることの無いように、制御装置700が調整弁420の開度を調整することが好ましい。 However, if the temperature of the air supplied to the engine EG is excessively lowered, the combustion efficiency in the engine EG is lowered and knocking or the like occurs. For this reason, it is preferable that the control device 700 adjust the opening degree of the adjustment valve 420 so that the temperature of the air supplied to the engine EG does not fall below the predetermined lower limit value.
 制御装置700によって実行される処理の流れについて、図3を参照しながら説明する。図3に示される一連の処理は、空調装置が動作している間において、所定の制御周期が経過する毎に制御装置700によって繰り返し実行されるものである。 A flow of processing executed by the control device 700 will be described with reference to FIG. The series of processes shown in FIG. 3 are repeatedly executed by the control device 700 each time a predetermined control cycle elapses while the air conditioner is in operation.
 最初のステップS01では、空調装置によって車室内の冷房が行われているか否かが判定される。冷房が行われている場合にはステップS02に移行する。ステップS02では、シャッター装置600を図1のように開く処理が行われる。ステップS02に続くステップS03では、ファン300に正回転動作を行わせる処理が行われる。ステップS03に続くステップS04では、調整弁420の開度を0とし、吸引配管410を通って吸気流路400へと流入する空気の流量を0とする処理が行われる。尚、以上のステップS02からステップS04までの処理は、上記とは異なる順序で行われてもよい。 In the first step S01, it is determined whether or not cooling of the vehicle compartment is being performed by the air conditioner. If cooling is being performed, the process proceeds to step S02. In step S02, processing for opening the shutter device 600 as shown in FIG. 1 is performed. In step S03 following step S02, a process of causing fan 300 to perform a forward rotation operation is performed. In step S04 following step S03, the opening degree of the adjustment valve 420 is set to 0, and the flow rate of air flowing into the intake passage 400 through the suction pipe 410 is set to 0. The processes from step S02 to step S04 may be performed in an order different from that described above.
 ステップS01において、車室内の冷房が行われていない場合、すなわち車室内の暖房が行われている場合には、ステップS05に移行する。ステップS05では、シャッター装置600を図2のように閉じる処理が行われる。ステップS05に続くステップS06では、ファン300に逆回転動作を行わせる処理が行われる。ステップS06に続くステップS07では、調整弁420を開いた状態とし、吸引配管410を通って吸気流路400へと流入する空気の流量を、調整弁420の開度によって調整する処理が行われる。既に述べたように、当該処理は、エンジンEGに供給される空気の温度が所定の下限値を下回ることの無いように行われる。尚、以上のステップS05からステップS07までの処理は、上記とは異なる順序で行われてもよい。 If it is determined in step S01 that cooling of the passenger compartment is not being performed, that is, if heating of the passenger compartment is being performed, the process proceeds to step S05. In step S05, the shutter device 600 is closed as shown in FIG. In step S06 following step S05, processing is performed to cause the fan 300 to perform the reverse rotation operation. In step S07 following step S06, the control valve 420 is opened, and the flow rate of air flowing into the intake passage 400 through the suction pipe 410 is adjusted by the opening degree of the control valve 420. As already mentioned, the process is performed such that the temperature of the air supplied to the engine EG does not fall below a predetermined lower limit. The processes from step S05 to step S07 may be performed in an order different from that described above.
 第2実施形態について、図4を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図4は、車両VCの前方側部分を上面視で模式的に描いた図である。同図においては、ファン300は逆回転動作を行っており、点線で示されるシャッター装置600は閉じられた状態となっている。 The second embodiment will be described with reference to FIG. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate. FIG. 4 is a diagram schematically depicting the front side portion of the vehicle VC in top view. In the figure, the fan 300 performs reverse rotation operation, and the shutter device 600 shown by a dotted line is in a closed state.
 同図においては、車両VCに設けられた一対の前輪WHが描かれている。それぞれの前輪WHは、タイヤハウスTHの内側に収められている。本実施形態における車両VCには、バンパーBPの内側に流路FPが形成されている。流路FPは、開口OPから流入した空気の一部を、タイヤハウスTHへと導くように形成された流路である。図4に示されるように、流路FPは左右のタイヤハウスTHのそれぞれに繋がるように形成されている。車両VCの走行中において、それぞれの流路FPでは、開口OP側からタイヤハウスTHに向かうような空気の流れが生じている。このような空気の流れは、車両VCの周囲における空気の流れ、すなわち車速風によって生じるものである。 In the figure, a pair of front wheels WH provided on the vehicle VC is depicted. Each front wheel WH is housed inside the tire house TH. In the vehicle VC in the present embodiment, a flow passage FP is formed inside the bumper BP. The flow path FP is a flow path formed to guide a part of the air flowing in from the opening OP to the tire house TH. As shown in FIG. 4, the flow path FP is formed to be connected to each of the left and right tire houses TH. While the vehicle VC is traveling, air flows from the opening OP side toward the tire house TH in each of the flow paths FP. Such air flow is generated by the air flow around the vehicle VC, that is, the vehicle speed wind.
 本実施形態に係る熱交換システム10は、吸引配管410に替えて吸引配管450を備えている。吸引配管450は、熱交換器100とシャッター装置600との間の空間と、上記の流路FPとの間を繋ぐように設けられた配管である。吸引配管450は、それぞれの吸引配管450に対応するよう、左右両側に1つずつ設けられている。吸引配管450は、流路FPとの接続部に近づくほど車両VC後方側に向かうよう、その一部が湾曲した形状となっている。 The heat exchange system 10 according to the present embodiment includes a suction pipe 450 instead of the suction pipe 410. The suction pipe 450 is a pipe provided so as to connect the space between the heat exchanger 100 and the shutter device 600 and the flow path FP. One suction pipe 450 is provided on each of the left and right sides so as to correspond to each suction pipe 450. The suction pipe 450 has a shape in which a part thereof is curved so as to be closer to the rear side of the vehicle VC as it approaches a connection portion with the flow path FP.
 図4に示される状態においては、上記のように流路FPではタイヤハウスTHに向かうような空気の流れが生じている。このため、吸引配管450のうち流路FPとの接続部の近傍においては、当該空気の流れによって負圧が生じている。熱交換器100を通過してシャッター装置600の後方側に流入した空気は、上記の負圧によって吸引配管450へと引き込まれ、流路FPにおける空気の流れに合流する。その後、流路FPを通ってタイヤハウスTHに向けて排出される。 In the state shown in FIG. 4, as described above, in the flow path FP, an air flow toward the tire house TH is generated. For this reason, in the vicinity of the connection portion with the flow path FP in the suction pipe 450, a negative pressure is generated by the flow of the air. The air passing through the heat exchanger 100 and flowing into the rear side of the shutter device 600 is drawn into the suction pipe 450 by the above-described negative pressure, and joins the air flow in the flow path FP. Thereafter, it is discharged toward the tire house TH through the flow path FP.
 以上のように、本実施形態に係る熱交換システムでは、ファン300が逆回転動作を行う際に、熱交換器100を通過した空気が吸引配管450によって吸引され、その結果として熱交換器100を通過する空気の流量が増加する。 As described above, in the heat exchange system according to the present embodiment, when the fan 300 performs the reverse rotation operation, the air passing through the heat exchanger 100 is drawn by the suction pipe 450, and as a result, the heat exchanger 100 is The flow rate of air passing through increases.
 吸引配管450は、車両VCの周囲における空気の流れを利用して、熱交換器100を通過した空気を吸引し、タイヤハウスTHに向けて排出するように構成されている。このような吸引配管450は、本実施形態における「吸引部」に該当するものである。このような態様でも、第1実施形態と同様に、熱交換器100を通過する空気の流量が低下してしまうことを防止することができる。 The suction pipe 450 is configured to suck the air having passed through the heat exchanger 100 and discharge the air toward the tire house TH by utilizing the flow of air around the vehicle VC. Such a suction pipe 450 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.
 第3実施形態について、図5を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図5は、車両VCの前方側部分を上面視で模式的に描いた図である。同図においては、ファン300は逆回転動作を行っており、点線で示されるシャッター装置600は閉じられた状態となっている。 The third embodiment will be described with reference to FIG. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate. FIG. 5 is a diagram schematically depicting the front side portion of the vehicle VC in top view. In the figure, the fan 300 performs reverse rotation operation, and the shutter device 600 shown by a dotted line is in a closed state.
 本実施形態に係る熱交換システム10は、吸引配管410に替えて吸引配管460を備えている。吸引配管460は、熱交換器100とシャッター装置600との間の空間と、車両VCの外部の空間との間を繋ぐように設けられた配管である。吸引配管460のうち熱交換器100とは反対側の端部は、車両VCの側面に形成された開口461に繋がっている。開口461は車両VCの左右両側に形成されている。吸引配管460は、それぞれの開口461に対応するよう、左右両側に1つずつ設けられている。吸引配管460は、開口461に近づくほど車両VC後方側に向かうよう、その一部が湾曲した形状となっている。本実施形態において開口461が形成されている位置は、バンパー(不図示)の端部よりも後方側となる位置なのであるが、開口461がバンパーに形成されているような態様であってもよい。 The heat exchange system 10 according to the present embodiment includes a suction pipe 460 instead of the suction pipe 410. The suction pipe 460 is a pipe provided to connect the space between the heat exchanger 100 and the shutter device 600 and the space outside the vehicle VC. The end of the suction pipe 460 opposite to the heat exchanger 100 is connected to an opening 461 formed in the side surface of the vehicle VC. The openings 461 are formed on the left and right sides of the vehicle VC. One suction pipe 460 is provided on each of the left and right sides to correspond to the respective openings 461. The suction pipe 460 is shaped such that a portion thereof is curved so as to be closer to the rear side of the vehicle VC as it approaches the opening 461. Although the position where the opening 461 is formed in this embodiment is the position on the rear side of the end of the bumper (not shown), the opening 461 may be formed in the bumper. .
 図5に示される状態においては、車両VCの外側では、車両VCの走行に伴って後方に向かう空気の流れ、すなわち車速風が生じている。このため、吸引配管460のうち開口461の近傍においては、当該空気の流れによって負圧が生じている。熱交換器100を通過してシャッター装置600の後方側に流入した空気は、上記の負圧によって吸引配管460へと引き込まれ、吸引配管460を通って開口461から(つまり車両VCの側面から)外部へと排出される。 In the state shown in FIG. 5, a flow of air toward the rear, that is, a vehicle speed wind is generated outside the vehicle VC as the vehicle VC travels. Therefore, in the vicinity of the opening 461 in the suction pipe 460, a negative pressure is generated by the flow of the air. The air that has passed through the heat exchanger 100 and has flowed into the rear side of the shutter device 600 is drawn into the suction pipe 460 by the above-described negative pressure and passes through the suction pipe 460 from the opening 461 (ie, from the side of the vehicle VC) It is discharged to the outside.
 以上のように、本実施形態に係る熱交換システムでは、ファン300が逆回転動作を行う際に、熱交換器100を通過した空気が吸引配管460によって吸引され、その結果として熱交換器100を通過する空気の流量が増加する。 As described above, in the heat exchange system according to the present embodiment, when the fan 300 performs the reverse rotation operation, the air that has passed through the heat exchanger 100 is drawn by the suction pipe 460, and as a result, the heat exchanger 100 is The flow rate of air passing through increases.
 吸引配管460は、車両VCの周囲における空気の流れを利用して、熱交換器100を通過した空気を吸引し、車両VCの側面から外部に排出するように構成されている。このような吸引配管460は、本実施形態における「吸引部」に該当するものである。このような態様でも、第1実施形態と同様に、熱交換器100を通過する空気の流量が低下してしまうことを防止することができる。 The suction pipe 460 is configured to suck the air having passed through the heat exchanger 100 using the flow of air around the vehicle VC and discharge the air from the side surface of the vehicle VC to the outside. Such a suction pipe 460 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.
 第4実施形態について、図6を参照しながら説明する。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。図6は、本実施形態に係る車両VCの前方側部分を、図2と同様の側面視で模式的に描いた図である。同図においては、ファン300は逆回転動作を行っており、シャッター装置600は閉じられた状態となっている。 The fourth embodiment will be described with reference to FIG. In the following, differences from the first embodiment will be mainly described, and descriptions of points in common with the first embodiment will be omitted as appropriate. FIG. 6 is a view schematically depicting the front side portion of the vehicle VC according to the present embodiment in a side view similar to FIG. In the figure, the fan 300 performs reverse rotation operation, and the shutter device 600 is in a closed state.
 本実施形態においては、車両VCに吸引配管410及びアンダーダクト500が設けられていない。替わりに、車両VCのアンダーパネルUPには、外部に通じる開口470が形成されている。開口470は、熱交換器100とシャッター装置600との間の空間、の直下となる位置に形成されている。図6においては、アンダーパネルUPのうち開口470よりも前方側の部分がアンダーパネルUP1として示されており、アンダーパネルUPのうち開口470よりも後方側の部分がアンダーパネルUP2として示されている。 In the present embodiment, the suction pipe 410 and the underduct 500 are not provided in the vehicle VC. Instead, the under panel UP of the vehicle VC is formed with an opening 470 that leads to the outside. The opening 470 is formed at a position directly below the space between the heat exchanger 100 and the shutter device 600. In FIG. 6, a portion on the front side of the opening 470 of the under panel UP is shown as the under panel UP1, and a portion on the rear side of the opening 470 of the under panel UP is shown as the under panel UP2. .
 アンダーパネルUP1のうち開口470側の端部の高さは、アンダーパネルUP2のうち開口470側の端部の高さよりも低くなっている。この構成により、車両VCの走行に伴う走行風が、開口470を通じて外部から流入することが防止されている。 The height of the end on the opening 470 side of the under panel UP1 is lower than the height of the end on the opening 470 side of the under panel UP2. With this configuration, the traveling wind accompanying the traveling of the vehicle VC is prevented from flowing from the outside through the opening 470.
 アンダーパネルUP1の上面(内側の面)のうち、開口470の近傍となる位置には、ガイド壁WL1が設けられている。ガイド壁WL1は、後方側に行くほど高くなるように傾斜した壁となっている。このようなガイド壁WL1が設けられていることにより、開口OPから流入した空気の一部が、熱交換器100を通ることなく開口470から外部へと排出されてしまうことが抑制されている。 A guide wall WL1 is provided at a position near the opening 470 in the upper surface (inner surface) of the under panel UP1. The guide wall WL1 is a wall inclined so as to be higher toward the rear side. By providing such a guide wall WL1, it is suppressed that a part of the air which flowed in from opening OP is discharged outside from opening 470 without passing through heat exchanger 100.
 図6に示される状態においては、車両VCの外側では、車両VCの走行に伴って後方に向かう空気の流れ、すなわち車速風が生じている。このため、開口470の外側においては、当該空気の流れによって負圧が生じている。熱交換器100を通過してシャッター装置600の後方側に流入した空気は、上記の負圧によって開口470へと引き込まれ、開口470から(つまり車両VCの底面から)外部へと排出される。 In the state shown in FIG. 6, a flow of air toward the rear, that is, a vehicle speed wind is generated outside the vehicle VC as the vehicle VC travels. Therefore, negative pressure is generated outside the opening 470 by the flow of the air. The air passing through the heat exchanger 100 and flowing to the rear side of the shutter device 600 is drawn into the opening 470 by the above-described negative pressure, and is discharged from the opening 470 (that is, from the bottom of the vehicle VC) to the outside.
 以上のように、本実施形態に係る熱交換システムでは、ファン300が逆回転動作を行う際に、熱交換器100を通過した空気が開口470へと吸引され、その結果として熱交換器100を通過する空気の流量が増加する。 As described above, in the heat exchange system according to the present embodiment, when the fan 300 performs the reverse rotation operation, the air having passed through the heat exchanger 100 is drawn to the opening 470, and as a result, the heat exchanger 100 The flow rate of air passing through increases.
 開口470は、車両VCの周囲における空気の流れを利用して、熱交換器100を通過した空気を吸引し、車両VCの底面から外部に排出するように構成されている。このような開口470は、本実施形態における「吸引部」に該当するものである。このような態様でも、第1実施形態と同様に、熱交換器100を通過する空気の流量が低下してしまうことを防止することができる。 The opening 470 is configured to draw air that has passed through the heat exchanger 100 using the flow of air around the vehicle VC and discharge the air from the bottom of the vehicle VC to the outside. Such an opening 470 corresponds to the “suction unit” in the present embodiment. Also in such an aspect, it is possible to prevent the flow rate of the air passing through the heat exchanger 100 from being reduced, as in the first embodiment.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to the specific example. However, the present disclosure is not limited to these specific examples. Those appropriately modified in design by those skilled in the art are also included in the scope of the present disclosure as long as the features of the present disclosure are included. The elements included in the above-described specific examples, and the arrangement, conditions, and shapes thereof are not limited to those illustrated, but can be appropriately modified. The elements included in the above-described specific examples can be appropriately changed in combination as long as no technical contradiction arises.

Claims (9)

  1.  車両(VC)に搭載される熱交換システム(10)であって、
     空気と熱媒体との間で熱交換を行う熱交換器(100)と、
     前記熱交換器を通過するように空気を送り出すファン(300)と、を備え、
     前記ファンは、前記車両の後方側に向けて空気を送り出す正回転動作と、前記車両の前方側に向けて空気を送り出す逆回転動作と、のいずれをも行うことが可能となっており、
     前記ファンが前記逆回転動作を行う際において、前記熱交換器を通過する空気の流量が増加するように、前記熱交換器を通過した空気を吸引する吸引部(410,450,460,470)を更に備える熱交換システム。
    A heat exchange system (10) mounted on a vehicle (VC),
    A heat exchanger (100) for exchanging heat between air and a heat carrier;
    And (d) a fan (300) for sending out air to pass through the heat exchanger.
    The fan can perform both of a forward rotation operation of delivering air toward the rear side of the vehicle and a reverse rotation operation of delivering air toward the front side of the vehicle.
    A suction unit (410, 450, 460, 470) for sucking the air having passed through the heat exchanger so that the flow rate of the air passing through the heat exchanger increases when the fan performs the reverse rotation operation. A heat exchange system further comprising
  2.  前記吸引部は、前記車両のエンジン(EG)に空気を供給するための吸気流路(400)につながっており、前記熱交換器を通過した空気を吸引するように構成されている、請求項1に記載の熱交換システム。 The apparatus according to claim 1, wherein the suction unit is connected to an intake flow passage (400) for supplying air to an engine (EG) of the vehicle, and configured to suction air which has passed through the heat exchanger. The heat exchange system according to 1.
  3.  前記吸引部によって吸引される空気の流量を調整するための調整弁(420)を更に備える、請求項2に記載の熱交換システム。 The heat exchange system according to claim 2, further comprising a control valve (420) for adjusting the flow rate of air drawn by the suction unit.
  4.  前記吸引部は、前記車両の周囲における空気の流れを利用して、前記熱交換器を通過した空気を吸引するように構成されている、請求項1に記載の熱交換システム。 The heat exchange system according to claim 1, wherein the suction unit is configured to suction air that has passed through the heat exchanger using a flow of air around the vehicle.
  5.  前記吸引部は、吸引した空気を、前記車両のタイヤハウス(TH)に向けて排出するように構成されている、請求項4に記載の熱交換システム。 The heat exchange system according to claim 4, wherein the suction unit is configured to discharge the sucked air toward a tire house (TH) of the vehicle.
  6.  前記吸引部は、吸引した空気を、前記車両の側面から外部に排出するように構成されている、請求項4に記載の熱交換システム。 The heat exchange system according to claim 4, wherein the suction unit is configured to discharge the suctioned air from the side surface of the vehicle to the outside.
  7.  前記吸引部は、吸引した空気を、前記車両の底面から外部に排出するように構成されている、請求項4に記載の熱交換システム。 The heat exchange system according to claim 4, wherein the suction unit is configured to discharge the sucked air from the bottom surface of the vehicle to the outside.
  8.  前記熱交換器よりも前記車両の前方側となる位置には、前記熱交換器に空気が到達する経路の開閉を切り換えるシャッター装置(600)が設けられている、請求項1乃至7のいずれか1項に記載の熱交換システム。 The shutter apparatus (600) which switches opening and closing of the path | route which air reaches the said heat exchanger is provided in the position which becomes the front side of the said vehicle rather than the said heat exchanger. Heat exchange system according to claim 1.
  9.  制御装置(700)を更に備えており、前記制御装置は、
     前記ファンが前記逆回転動作を行う際には、前記熱交換器に空気が到達しない状態となるように前記シャッター装置を動作させる、請求項8に記載の熱交換システム。
    It further comprises a controller (700), said controller comprising
    The heat exchange system according to claim 8, wherein when the fan performs the reverse rotation operation, the shutter device is operated so that air does not reach the heat exchanger.
PCT/JP2018/030090 2017-09-19 2018-08-10 Heat exchange system WO2019058810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-178923 2017-09-19
JP2017178923A JP6834874B2 (en) 2017-09-19 2017-09-19 Heat exchange system

Publications (1)

Publication Number Publication Date
WO2019058810A1 true WO2019058810A1 (en) 2019-03-28

Family

ID=65811421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030090 WO2019058810A1 (en) 2017-09-19 2018-08-10 Heat exchange system

Country Status (2)

Country Link
JP (1) JP6834874B2 (en)
WO (1) WO2019058810A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316509B2 (en) * 2019-07-25 2023-07-28 マツダ株式会社 engine intake system
JP7435137B2 (en) 2020-03-26 2024-02-21 日産自動車株式会社 Air intake and rain/snow exhaust structure in vehicles
JP2022047416A (en) * 2020-09-11 2022-03-24 株式会社デンソー vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169986A (en) * 1991-12-24 1993-07-09 Nissan Motor Co Ltd Engine room structure
US6390217B1 (en) * 2001-04-02 2002-05-21 Delphi Technologies, Inc. Vehicle front end air control
JP2016097802A (en) * 2014-11-21 2016-05-30 株式会社デンソー Engine room ventilation structure
WO2016092795A1 (en) * 2014-12-09 2016-06-16 株式会社デンソー Cooling device and cooling module
WO2017077811A1 (en) * 2015-11-03 2017-05-11 株式会社デンソー Air current control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128923A (en) * 2014-01-06 2015-07-16 本田技研工業株式会社 Vehicle cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169986A (en) * 1991-12-24 1993-07-09 Nissan Motor Co Ltd Engine room structure
US6390217B1 (en) * 2001-04-02 2002-05-21 Delphi Technologies, Inc. Vehicle front end air control
JP2016097802A (en) * 2014-11-21 2016-05-30 株式会社デンソー Engine room ventilation structure
WO2016092795A1 (en) * 2014-12-09 2016-06-16 株式会社デンソー Cooling device and cooling module
WO2017077811A1 (en) * 2015-11-03 2017-05-11 株式会社デンソー Air current control system

Also Published As

Publication number Publication date
JP6834874B2 (en) 2021-02-24
JP2019051900A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5655952B2 (en) Vehicle front structure
JP6138427B2 (en) Heat pump air conditioning system for vehicles
US10875384B2 (en) Air flow circulation structure for vehicle
JP2019142299A (en) Cooling device for vehicle
WO2014203476A1 (en) Vehicular heat management system
WO2019058810A1 (en) Heat exchange system
JP6663676B2 (en) Vehicle heat management device
JPWO2017169501A1 (en) Heat exchange unit
JP5314462B2 (en) Outside air introduction device for vehicles
CN111201149A (en) Damper structure of heat exchanger for vehicle
US20210252943A1 (en) Air conditioning device for vehicle
WO2018123289A1 (en) Control module
WO2019058809A1 (en) Heat exchange system
JP2009184377A (en) Roof mounted vehicular air conditioner
JP2008247341A (en) Cooling device of in-vehicle heating element
JP2019189083A (en) Cooling device
JP6610220B2 (en) Vehicle cooling system
JP2018034759A (en) Front structure of vehicle
JP2011111129A (en) Cooling air introducing structure
JPH0510125A (en) Cooling device of water cooling type engine for vehicle
JP6401652B2 (en) Air conditioner for vehicles
JP2006248337A (en) Roof installing type air conditioner for vehicle
JP2011102068A (en) Cooling air introducing structure
WO2018123325A1 (en) Control module
JP2016190534A (en) Cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858326

Country of ref document: EP

Kind code of ref document: A1