WO2016092795A1 - Cooling device and cooling module - Google Patents

Cooling device and cooling module Download PDF

Info

Publication number
WO2016092795A1
WO2016092795A1 PCT/JP2015/006040 JP2015006040W WO2016092795A1 WO 2016092795 A1 WO2016092795 A1 WO 2016092795A1 JP 2015006040 W JP2015006040 W JP 2015006040W WO 2016092795 A1 WO2016092795 A1 WO 2016092795A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
temperature
opening
engine
duct
Prior art date
Application number
PCT/JP2015/006040
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 前田
位司 安田
幸一 原田
武藤 健
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015076860A external-priority patent/JP6380212B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/525,775 priority Critical patent/US10179509B2/en
Priority to CN201580063942.7A priority patent/CN107000574B/en
Priority to DE112015005526.6T priority patent/DE112015005526B4/en
Publication of WO2016092795A1 publication Critical patent/WO2016092795A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/06Guiding or ducting air to, or from, ducted fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air

Definitions

  • the present disclosure relates to a cooling device and a cooling module.
  • a duct is formed for guiding the air flow introduced from the opening portion of the front grille and passing through the radiator to the lower side of the rear portion of the traveling engine after passing through the periphery of the exhaust manifold. According to this, the exhaust manifold can be cooled by the air flow passing through the radiator passing around the exhaust manifold.
  • the front engine room is reduced and the air passage in the front engine room is narrowed. For this reason, the air permeability in the front engine room may be reduced, and heat may be accumulated on the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room.
  • the present disclosure aims to provide a cooling device and a cooling module for cooling the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room of the automobile.
  • the cooling device includes a front opening that opens the front engine room to the front side in the vehicle traveling direction, and a first blower that is disposed on the front side in the vehicle traveling direction with respect to the traveling engine in the front engine room.
  • the present invention is applied to an automobile including an introduction flow path for guiding an air flow flowing in from the front opening direction of the front opening through the front opening to the first blower side, and travels through the first blower from the introduction flow path.
  • the traveling engine is cooled by the airflow flowing to the engine side.
  • the cooling device includes a first opening that opens into the introduction flow path and a second opening that opens to the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room.
  • a duct is provided that forms an air flow path for allowing an air flow to flow between the openings.
  • the exhaust manifold is a manifold that collects a plurality of exhaust passages connected to the traveling engine into one exhaust pipe that exhausts exhaust gas from the traveling engine.
  • the front engine room is a space that is disposed on the front side in the vehicle traveling direction with respect to the passenger compartment of the automobile and in which the traveling engine is mounted.
  • the heat medium is a substance for transferring heat.
  • the duct causes the air flow sucked through the second opening from the rear side in the vehicle traveling direction to the travel engine in the front engine room in accordance with the operation of the first blower. From the first opening into the introduction channel.
  • the cooling module is applied to an automobile in which an exhaust manifold is disposed on the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room, and is introduced to the cooling device and the first blower.
  • An in-vehicle heat exchanger disposed on the upstream side in the air flow direction in the flow path to dissipate heat from the heat medium that cools the traveling engine to the air flow in the introduction flow path.
  • a 1st opening part opens to the downstream of an air flow direction with respect to a vehicle-mounted heat exchanger among introduction flow paths.
  • the duct can blow out the air flow taken from the downstream side in the air flow direction with respect to the in-vehicle heat exchanger in the introduction flow path to the exhaust manifold. For this reason, the exhaust manifold can be cooled by the air flow.
  • the cooling device includes a first air outlet that blows out an air flow between the first and second openings of the duct.
  • An air flow flowing from the first opening toward the second opening is generated by lowering the air pressure between the first and second openings in the duct by the air flow blown from the first air outlet. The generated air flow and the air flow blown out from the first air outlet flow toward the second opening.
  • the air flow direction in the introduction flow path is the direction of the main flow air flow having the largest air volume among the plurality of air flows flowing in the introduction flow path.
  • FIG. 1 is a perspective view which shows the duct of FIG. 1, a shroud, a valve
  • FIG. 2 is a side view showing a duct, a shroud, a valve, an electric fan, a traveling engine, an introduction flow path, and an exhaust manifold in FIG. 1, and shows a flow of air flow from the introduction flow path side to the exhaust manifold side.
  • FIG. 2 is a side view showing a duct, a valve, an electric fan, an introduction flow path, a traveling engine, and an exhaust manifold in FIG. 1, and shows a flow of air flow from the exhaust manifold side to the introduction flow path.
  • FIG. 9 is a characteristic diagram showing a relationship between the opening degree of a valve used in the cooling control process of FIG. 8 and the temperature of the exhaust manifold. It is a side view which shows the structure of a duct in 3rd Embodiment.
  • FIG. 1 shows a first embodiment of an automotive cooling module 10 to which a cooling device of the present disclosure is applied.
  • the cooling module 10 of the present embodiment is disposed between the front grille opening 2 and the traveling engine 3 in the front engine room 1 of the automobile.
  • the front grill opening 2 is an opening that opens from the front engine room 1 forward of the front grill 4 in the vehicle traveling direction in the front grill 4 of the automobile.
  • the front engine room 1 is a space that is disposed on the front side in the vehicle traveling direction with respect to the passenger compartment of the automobile and in which the traveling engine 3 is mounted.
  • the cooling module 10 includes a capacitor 20, a radiator 30, an electric fan 40, a shroud 50, a duct 60, and a valve 70 as shown in FIG.
  • the capacitor 20 is arranged on the rear side in the vehicle traveling direction with respect to the front grill opening 2.
  • the condenser 20 constitutes a refrigeration cycle device for an air conditioner that circulates refrigerant together with a compressor, a pressure reducing valve, and an evaporator, and heats the high-pressure refrigerant discharged from the compressor with outside air (hereinafter referred to as outside air). It is an exchanger.
  • the radiator 30 is disposed behind the capacitor 20 in the vehicle traveling direction.
  • the radiator 30 is a heat exchanger that cools the cooling water of the traveling engine 3 with outside air.
  • the radiator 30 is disposed upstream of the electric fan 40 in the air flow direction in the introduction flow path 50a.
  • the introduction flow path 50a is an air passage for guiding the air flow sucked from the front grill opening 2 through the condenser 20 and the radiator 30 to the electric fan 40 as shown by an arrow K in FIG.
  • the air flow direction in the introduction flow path 50a is the flow direction of the main flow having the largest air volume among the plurality of air flows flowing through the introduction flow path 50a.
  • the electric fan 40 is arranged on the rear side in the vehicle traveling direction with respect to the radiator 30 in the front engine room 1.
  • the electric fan 40 generates an air flow that allows the condenser 12 and the radiator 11 to pass through the front grille opening 2 from the front in the vehicle traveling direction of the automobile.
  • the shroud 50 is a casing that forms an introduction flow path 50 a for guiding the air flow sucked from the front grill opening 2 through the condenser 20 and the radiator 30 to the electric fan 40.
  • the shroud 50 is formed so as to block between the capacitor 20 and the radiator 30 and between the radiator 30 and the electric fan 40 from the vehicle width direction and the vertical direction.
  • the duct 60 forms an air flow path 60a that allows an air flow to flow between the front opening 61 (first opening) and the rear opening 62 (second opening).
  • the duct 60 is arranged with the traveling engine 3 on the heaven region improvement side.
  • the front opening 61 is directed toward the radiator 30 after the vehicle traveling direction with respect to the radiator 30 in the shroud 50 (that is, the vehicle traveling direction front side in the air flow path 60a). It is open toward.
  • the front opening 61 opens to the downstream side in the air flow direction in the introduction flow path 50a with respect to the radiator 30 in the introduction flow path 50a.
  • the front opening 61 is disposed on the one side in the vehicle width direction with respect to the electric fan 40.
  • the rear opening 62 is open to the exhaust manifold 5 side of the front engine room 1 with respect to the traveling engine 3 (that is, the vehicle traveling direction rear side with respect to the traveling engine 3).
  • the exhaust manifold 5 is a manifold that collects a plurality of exhaust passages connected to the traveling engine 3 into one exhaust pipe that exhausts exhaust gas from the traveling engine 3.
  • the exhaust manifold 5 is arranged behind the traveling engine 3 in the front engine room 1 in the vehicle traveling direction.
  • a turbocharger turbine and a catalyst device are arranged in addition to the exhaust manifold 5 behind the traveling engine 3 in the vehicle traveling direction.
  • the catalyst device is a device that purifies harmful components in exhaust gas blown out from the traveling engine 3 by reduction and oxidation.
  • the turbocharger extracts rotational energy from the internal energy of the exhaust gas blown out from the traveling engine 3 by the turbine, operates the compressor by this rotational energy, generates compressed air, and supplies the compressed air to the intake port of the traveling engine 3.
  • a turbocharger turbine is a device that extracts rotational energy from the internal energy of exhaust gas.
  • the valve 70 is supported on the opening 61 side of the duct 60 so that the opening 61 can be opened and closed. As a result, the valve 70 opens and closes the air flow path 60 a formed by the duct 60.
  • the valve 70 is driven by an electric motor 80 (see FIG. 4) as will be described later.
  • the cooling module 10 includes an electronic control device 90.
  • the electronic control unit 90 includes a microcomputer, a memory, and the like.
  • the electronic control device 90 is a well-known electronic control device that operates with power supplied from the in-vehicle battery 91.
  • the electronic control unit 90 performs cooling control processing and fan control processing according to a computer program stored in the memory.
  • the electronic control unit 90 executes the cooling control process
  • the switch signal of the ignition switch 92, the detection value of the temperature sensor 100, the detection value of the vehicle speed sensor 101, the detection value of the water temperature sensor 102, and the detection of the oil temperature sensor 103 are detected.
  • the valve 70 is controlled via the electric motor 80.
  • the electronic control unit 90 controls the electric fan 40 based on the switch signal of the ignition switch 92 and the detection value of the refrigerant pressure sensor 104.
  • the temperature sensor 100 corresponds to a first temperature sensor.
  • the water temperature sensor 102 and the oil temperature sensor 103 correspond to a second temperature sensor.
  • the temperature sensor 100 detects, for example, the surface temperature of the exhaust manifold 5 as the temperature of the exhaust manifold 5.
  • the vehicle speed sensor 101 detects the speed of the automobile as the rotational speed of the driving wheels of the automobile.
  • the water temperature sensor 102 detects the temperature of engine cooling water that cools the traveling engine 3.
  • the oil temperature sensor 103 detects the temperature of the engine oil.
  • the engine oil is used to lubricate each component constituting the traveling engine 3 and to cool the traveling engine 3.
  • the ignition switch 92 is a power switch that turns the traveling engine 3 on and off (that is, starts and stops).
  • the refrigerant pressure sensor 104 is a sensor that detects the refrigerant pressure between the refrigerant inlet side of the capacitor 20 and the refrigerant outlet side of the compressor. That is, the refrigerant pressure sensor 104 is a sensor that detects the refrigerant pressure on the refrigerant inlet side of the capacitor 20.
  • the electric fan 40 includes, for example, an axial fan, an electric motor that drives the axial fan, and a shroud 50.
  • FIG. 5 is a flowchart showing the cooling control process.
  • FIG. 6 is a flowchart showing the fan control process.
  • the electronic control unit 90 executes the cooling control process and the fan control process in parallel. Hereinafter, the cooling control process will be described prior to the fan control process.
  • the electronic control unit 90 executes a computer program corresponding to the cooling control process according to the flowchart of FIG.
  • next S110 based on the detection value of the vehicle speed sensor 101, it is determined whether or not the vehicle speed is less than a predetermined speed. At this time, if the speed of the automobile is equal to or higher than a predetermined speed (threshold), it is determined that the speed of the automobile is high and NO is determined in S110.
  • a predetermined speed threshold
  • the speed of the automobile is 0 km / h or more and less than 40 km / h, based on the detection value of the vehicle speed sensor 101, the speed of the automobile is determined to be less than a predetermined speed (ie, low speed). It determines with YES.
  • a predetermined speed ie, low speed
  • the electric motor 80 is controlled to close the valve 70 in S130.
  • the valve 70 is driven by the electric motor 80 to close the air flow path 60a. Thereafter, the process returns to S100.
  • the traveling engine 3 when the engine coolant is at a predetermined temperature or higher and when the engine oil is at a predetermined temperature or higher, the traveling engine 3 is hot and cools the traveling engine 3 in S140. It is determined as YES because it should be.
  • next S150 it is determined whether or not the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1 according to the detection value of the temperature sensor 100. At this time, when the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1, it is determined that the exhaust manifold 5 is at a high temperature, and YES is determined in S150.
  • step S160 the electric motor 80 is controlled to place the valve 70 in a half-open state. Specifically, the electric motor 80 is controlled so that the opening degree of the valve 70 is 50%. Thereafter, the process returns to S100.
  • the opening degree of the valve 70 is a ratio indicating the degree of opening of the air flow path 60 a of the duct 60, and is set to 0% when the valve 70 closes the air flow path 60 a of the duct 60. 100% when the channel 60a is fully opened.
  • the state in which the valve 70 opens the air flow path 60a in S162, which will be described later, is a fully opened state (that is, an opening degree of 100%).
  • the electric motor 80 is controlled and the valve 70 is opened in S162. Thereby, the valve 70 opens the air flow path 60 a of the duct 60. That is, the opening degree of the valve 70 is set to 100%. Thereafter, the process returns to S100.
  • the valve 70 is opened and closed by repeating the processes of S100 to 162.
  • the electronic control unit 90 executes a computer program corresponding to the fan control process according to the flowchart of FIG.
  • determination (1) it is determined whether or not the temperature of the engine coolant flowing through the radiator 30 is equal to or higher than a predetermined temperature based on the detection value of the water temperature sensor 102.
  • determination (2) based on the detection value of the refrigerant pressure sensor 104, it is determined whether or not the refrigerant pressure on the refrigerant inlet side of the capacitor 20 is equal to or higher than a predetermined value.
  • the electric fan 40 is operated in S210.
  • the electric fan 40 sucks the airflow introduced through the front grille opening 2, the condenser 20, and the radiator 30 from the front side in the vehicle longitudinal direction of the automobile and blows it out to the traveling engine 3 side.
  • the airflow introduced from the front side in the vehicle longitudinal direction of the automobile through the front grill opening 2 is guided by the shroud 50 and passes through the condenser 20, the radiator 30, and the electric fan 40.
  • the traveling engine 3 is cooled by the airflow that passes through the electric fan 40 from the introduction flow path 50a and flows to the traveling engine 3 side.
  • S220 based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 has transitioned from the operating state to the stopped state. Specifically, it is determined whether or not the ignition switch 92 has changed from an on state to an off state.
  • the electric fan 40 starts to operate according to a combination of the operating state of the traveling engine 3 and other conditions. Thereafter, when the traveling engine 3 stops, the electric fan 40 continues to operate for a certain period of time, but then the electric fan 40 is stopped.
  • NO is determined in S205.
  • the electric motor 80 is controlled to close the valve 70.
  • the valve 70 is driven by the electric motor 80 to close the air flow path 60a. Therefore, even if the electric fan 40 is operated, an air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated. For this reason, the air flow rate of the airflow that flows from the front grill opening 2 through the condenser 20, the radiator 30, and the electric fan 40 to the traveling engine 3 side is increased. Therefore, the condenser 20, the radiator 30, and the traveling engine 3 are cooled by the air flow.
  • the traveling engine 3 is cooled by the airflow that passes through the electric fan 40 from the introduction flow path 50a and flows to the traveling engine 3 side.
  • the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the air flow.
  • an air flow that passes through the front grille opening 2, the condenser 20, the radiator 30, and the electric fan 40 from the front side in the vehicle traveling direction of the automobile is generated.
  • the radiator 30 can be cooled by the air flow. In this way, the exhaust manifold 5 and the like can be cooled while securing the amount of air flowing through the radiator 30.
  • the traveling engine 3 when the traveling engine 3 is stopped, if the traveling engine 3 should be cooled and it is determined NO in S140, the electric motor 80 is controlled to open the valve 70 (S162). In this case, although the amount of air passing through the radiator 30 from the front grill opening 2 is reduced, the air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases with the operation of the electric fan 40. Thereby, the exhaust manifold 5 etc. can be cooled.
  • the exhaust manifold 5 is arranged behind the traveling engine 3 in the front engine room 1 of the automobile in the vehicle traveling direction.
  • the duct 60 has a front opening 61 that opens to the front side in the vehicle traveling direction with respect to the traveling engine 3 and a rear opening 62 that opens to the exhaust manifold 5 side with respect to the traveling engine 3.
  • An air flow is circulated through 60a.
  • the valve 70 opens and closes the air flow path 60 a in the duct 60. If the electronic control unit 90 determines in S130 that the speed is high based on the detection value of the vehicle speed sensor 101 that detects the speed of the automobile, the electronic control unit 90 controls the valve 70 to open the air flow path 60a.
  • the duct 60 takes in the air flow that flows into the front engine room 1 through the front grille opening 2 as the automobile travels from the front opening 61 and exhausts from the rear opening 62. Blow out to the manifold 5 side. Therefore, it is possible to provide the cooling module 10 that cools the traveling engine 3, the exhaust manifold 5, the catalyst device, and the turbocharger turbine. For this reason, it is possible to avoid the occurrence of heat damage to the exhaust manifold 5, the catalyst device, the turbocharger turbine, and its peripheral components.
  • the electronic control unit 90 opens the air flow path 60a by the valve 70 when the temperature of the exhaust manifold is high when the traveling engine 3 is stopped. For this reason, an air flow that flows from the exhaust manifold 5 side to the electric fan 40 side through the duct 60 is generated along with the operation of the electric fan 40 during so-called dead soak. Thereby, the high temperature air heated by the exhaust manifold 5 etc. can be moved from the exhaust manifold 5 side to the introduction flow path 50a side. Therefore, the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the air flow.
  • the valve 70 is opened halfway (S160). For this reason, the opening degree of the valve 70 is made smaller than when it is determined that the traveling engine 3 does not need to be cooled. Therefore, it is possible to increase the air volume of the airflow passing through the radiator 30 and the electric fan 40 from the front grill opening 2 side as compared with the case where it is determined that the traveling engine 3 does not need to be cooled. For this reason, the radiator 30 and by extension, the engine 3 for driving
  • the air flow that has cooled the exhaust manifold 5, the catalyst device, and the turbocharger turbine flows to the bottom side of the exhaust manifold 5. Therefore, the resistance of the airflow that has flowed into the front engine room 1 can be reduced.
  • the front opening 61 of the duct 60 is provided in the shroud 50. For this reason, it is possible to reduce the resistance of the air flow passing through the radiator 30 via the front grill opening 2 when the automobile is traveling at high speed. For this reason, as the amount of air passing through the radiator 30, the amount of air blowing equivalent to that when using the conventional electric fan 40 in which the ram pressure hole is provided in the shroud 50 can be obtained. For this reason, the cooling capacity which cools the radiator 30 can be improved.
  • the electronic control unit 90 determines that the speed of the automobile is low, the electronic control unit 90 controls the valve 70 via the electric motor 80 so as to close the air flow path 60a of the duct 60. Therefore, an air flow that flows from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated. For this reason, in the present embodiment, the amount of air passing through the radiator 30 is the same as that in the case of using the conventional electric fan 40 provided with a ram pressure hole in the shroud 50 and a flap for closing the ram pressure hole. Can be obtained. Further, in the present embodiment, a larger air flow rate can be obtained as compared with the case where the conventional electric fan 40 in which the ram pressure hole is provided in the shroud 50 is used.
  • the cooling control processing of the electronic control device 90 is different. For this reason, the cooling control process of the present embodiment will be described below with reference to FIGS.
  • FIG. 8 is a flowchart of the cooling control process of the present embodiment.
  • the flowchart of FIG. 8 is obtained by adding S190 and 191 to the flowchart of FIG. 8, the same reference numerals as those in FIG. 5 denote the same S, and the description thereof is simplified.
  • the electronic control unit 90 executes the cooling control process according to the flowchart of FIG. 8 instead of FIG.
  • the opening degree of the valve 70 is gradually increased as the temperature of the exhaust manifold 5 becomes higher (see FIG. 9).
  • the graph G in FIG. 9 shows an example in which the opening gradually increases from 0% to 100% as the temperature of the exhaust manifold 5 increases when the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1. .
  • the opening degree is a degree of opening of the air flow path 60a. For this reason, as the temperature of the exhaust manifold 5 becomes higher, the airflow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases. As a result, the amount of air passing through the radiator 30 and the electric fan 40 from the front grill opening 2 decreases.
  • the electronic control unit 90 determines that the speed of the automobile is low and the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1, the temperature of the exhaust manifold 5 increases.
  • the valve 70 is controlled so that the opening degree of the valve 70 is gradually increased. For this reason, as the temperature of the exhaust manifold 5 becomes higher, the airflow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases. Therefore, it is possible to optimize the amount of air passing through the radiator 30 while cooling the exhaust manifold 5.
  • FIG. 10 is a side view of the cooling module 10 of the present embodiment.
  • the cooling module 10 of the present embodiment is obtained by providing holes 60c and 60d in the duct 60 in the cooling module 10 of the first embodiment. For this reason, hereinafter, the holes 60c and 60d of the duct 60 will be described, and description of other configurations will be omitted.
  • the same reference numerals as those in FIG. 3 denote the same components.
  • the holes 60 c and 60 d are opened from the inside of the air flow path 60 a to the outside of the duct 60 between the openings 61 and 62 of the duct 60.
  • the holes 60c and 60d are located on the Tenchi region improvement side with respect to each component to be cooled (not shown). Examples of each component to be cooled include an alternator, a waste gate valve, and other components.
  • the hole 60d is disposed on the rear opening 62 side with respect to the hole 60c.
  • the air flow as the vehicle traveling wind that has passed through the front grill opening 2, the condenser 20, and the radiator 30 from the front side in the vehicle longitudinal direction of the automobile. 10 is introduced into the air flow path 60a of the duct 60 through the front opening 61 and blown out from the rear opening 62 toward the exhaust manifold 5 as indicated by an arrow 200 in FIG.
  • the holes 60c and 60d that are opened from the air flow path 60a to the outside of the duct 60 are provided. Therefore, by blowing an air flow from the holes 60c and 60d to each cooled component, various cooled components other than the exhaust manifold 5 can be spot-cooled.
  • FIG. 11 is a perspective view of the internal configuration of the cooling module 10 of the present embodiment as viewed from the front side of the vehicle.
  • FIG. 12 is a perspective view of the cooling module 10 as viewed from the heaven region improvement side.
  • FIG. 13 is a cross-sectional view showing the inside of the air blowing structure 110 of the cooling module 10.
  • the cooling module 10 of the present embodiment is obtained by adding the air blowing structure 110 to the cooling module 10 of the first embodiment and eliminating the valve 70. Therefore, hereinafter, the air blowing structure 110 will be described, and description of other components other than the air blowing structure 110 will be omitted.
  • the air blowing structure 110 is provided in the duct 60 on the front opening 61 side.
  • the air blowing structure 110 includes a suction port 111 (suction port), a blower port 112, and air passages 113 and 114.
  • the suction port 111 is disposed on the lower side of the shroud 50 with respect to the front opening 61 in the vertical direction.
  • the suction port 111 is opened toward the radiator 30 (that is, the front side in the vehicle traveling direction) on the rear side of the shroud 50 with respect to the radiator 30 in the vehicle traveling direction.
  • the air outlet 112 is formed in an annular shape surrounding the front opening 61 of the duct 60 and opens toward the rear opening 62 in the duct 60.
  • the air outlet 112 blows out the air flow sucked from the air inlet 111 toward the rear opening 62 in the duct 60.
  • the air passage 113 is formed so as to guide the air flow sucked from the suction port 111 to the air outlet 112 side.
  • the air passage 113 is formed below the duct 60 in the vertical direction.
  • the air passage 114 is formed in an annular shape so as to surround the air flow path 60a.
  • the air passage 114 guides the airflow flowing through the air passage 113 to the air outlet 112.
  • An electric fan 40 ⁇ / b> A is disposed in the air passage 113.
  • the electric fan 40A includes an axial fan and an electric motor that drives the axial fan.
  • the electronic control device 90 performs fan control processing according to a computer program stored in the memory.
  • the electronic control unit 90 controls the electric fans 40 and 40A based on the switch signal of the ignition switch 92, the detection value of the temperature sensor 105, and the like.
  • the temperature sensor 105 detects the air temperature in the front engine room 1 as the temperature in the front engine room 1. More specifically, the temperature sensor 105 may detect the air temperature on the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1. Alternatively, the air temperature in the duct 60 (specifically, the air temperature on the rear opening 62 side) is detected by the temperature sensor 105, and the detected temperature is detected on the rear side in the vehicle traveling direction with respect to the traveling engine 3. You may detect as air temperature. That is, the air temperature in the duct 60 may be detected instead of the air temperature on the rear side in the vehicle traveling direction with respect to the traveling engine 3.
  • the temperature sensor 105 corresponds to a third temperature sensor.
  • FIG. 15 is a flowchart showing the fan control process.
  • the electronic control unit 90 executes fan control processing according to the flowchart of FIG.
  • the temperature of the engine cooling water is equal to or higher than the water temperature T1
  • the water temperature T1 corresponds to the first temperature.
  • the electric fans 40 and 40A are stopped.
  • the electric fan 40 of the electric fans 40 and 40A is operated.
  • the electric fans 40 and 40A are operated.
  • S350 based on the detection value of the temperature sensor 105, it is determined whether or not the air temperature in the front engine room 1 is equal to or higher than the temperature T3 and lower than the temperature T4.
  • the temperature T3 corresponds to the third temperature
  • the temperature T4 corresponds to the fourth temperature.
  • the front fan opening 2, the capacitor 20, the radiator 30, the introduction flow path 50a, and the electric fan 40 are passed from the front side in the vehicle front-rear direction of the automobile as the electric fan 40 is operated. Air flow is generated.
  • the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the airflow by the airflow blown from the rear opening 62 of the duct 60.
  • an air flow (hereinafter referred to as an entrained air flow) is generated that is wound around the front opening 61 and flows into the air flow path 60a of the duct 60. For this reason, this entrained air flow and the air flow blown out from the blower outlet 112 flow to the rear opening 62 side. Therefore, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases.
  • the air blowing structure 110 includes the air outlet 112 that blows an air flow toward the air flow path 60 a of the duct 60.
  • the air outlet 112 that is, the air flow path 60a
  • the entrainment air flow which flows in the air flow path 60a is generated.
  • this entrained air flow and the air flow blown out from the blower outlet 112 flow to the rear opening 62 side. Therefore, the air volume of the airflow blown out from the rear opening 62 of the duct 60 toward the rear side of the traveling engine 3 can be increased.
  • the ventilation property in the front engine room 1 can be improved by increasing the airflow which flows from the front engine room 1 to the floor lower side. Therefore, heat can be reliably discharged to the outside of the front engine room 1 from the rear side of the traveling engine 3 in the vehicle traveling direction. That is, the exhaust manifold 5, the catalyst device, the turbocharger turbine, and the like can be reliably cooled by the air flow.
  • the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc. are reliably cooled by the airflow even when the vehicle traveling wind flowing in the front engine room 1 cannot be secured sufficiently, such as when the vehicle is traveling uphill. can do.
  • an insulator is used as a heat insulating material that suppresses an adverse effect due to heat applied from the traveling engine 3 to peripheral components arranged around the engine. For this reason, when a lot of heat is generated around the traveling engine 3, a large amount of insulators are used.
  • the rear side of the traveling engine 3 can be reliably cooled by the air flow. For this reason, the amount of heat given to the peripheral parts from the traveling engine 3 can be suppressed. Therefore, the number of insulators used can be reduced. Thereby, the weight reduction and cost reduction of a motor vehicle can be achieved. Furthermore, in the front engine room 1, the degree of freedom of mounting electronic components that are vulnerable to heat can be improved.
  • the floor underside from the front engine room 1 is obtained. Increase the airflow flowing through For this reason, the air temperature in the front engine room 1 can be lowered. Therefore, since the intake air temperature taken in by the traveling engine 3 can be lowered, the occurrence of a knock phenomenon in the traveling engine 3 can be suppressed.
  • idling stop is not performed when the air temperature in the front engine room 1 exceeds a predetermined temperature when the automobile is stopped. For this reason, when the air temperature in the front engine room 1 becomes equal to or higher than a predetermined temperature, the traveling engine 3 is started, and the fuel efficiency is deteriorated.
  • the air temperature in the front engine room 1 can be lowered by the operation of the electric fan 40A as described above, so that the idling stop execution time is lengthened. Can improve fuel efficiency.
  • the air blowing structure 110 increases the air volume of the air flow blown from the rear opening 62 of the duct 60 toward the rear side of the traveling engine 3. Can do. Therefore, the cooling efficiency in the rear side of the traveling engine 3 and thus in the front engine room 1 can be improved without increasing the size of the duct 60.
  • the air blowing structure 110 includes a suction port 111, air outlets 112 and 112a, air passages 113, 114a and 114b, a switching valve 115, and a partition wall 116.
  • the suction port 111 is opened toward the radiator 30 (that is, the front side in the vehicle traveling direction) on the rear side in the vehicle traveling direction with respect to the radiator 30 in the shroud 50.
  • the air outlet 112 is formed in an annular shape surrounding the front opening 61 of the duct 60 and is opened toward the rear opening 62 in the duct 60 as in the fourth embodiment.
  • the air outlet 112 a is formed in an annular shape surrounding the front opening 61 of the duct 60 and opens toward the front opening 61 in the duct 60.
  • the air passage 113 is formed so as to guide the air flow sucked from the suction port 111 to the outlets 112 and 112a.
  • the air passage 114 a is formed in an annular shape so as to surround the air passage 60 a, and guides the air flow flowing through the air passage 113 to the air outlet 112.
  • the air passage 114b is formed in an annular shape so as to surround the air flow path 60a, and guides an air flow flowing through the air passage 113 to the air outlet 112a.
  • the switching valve 115 is rotatably supported between the air passages 114a and 114b.
  • the switching valve 115 communicates between one of the outlets 112 and 112a and the suction port 111 and closes between the other outlet and the suction port 111.
  • the switching valve 115 communicates between one of the outlets 112 and 112a and the inlet 111 and closes the other outlet and the inlet 111, and drives the valve body. And an electric actuator.
  • the partition wall 116 separates the air passages 114a and 114b between the air passages 114a and 114b.
  • the electronic control device 90 of the present modification executes the switching control process according to the computer program stored in the memory.
  • the electronic control unit 90 detects the switch signal of the ignition switch 92, the detected value of the temperature sensor 100, the detected value of the vehicle speed sensor 101, the detected value of the water temperature sensor 102, and the detected value of the oil temperature sensor 103. Based on the value, the switching valve 115 and the electric blower (sub fan) 40A are controlled.
  • FIG. 17 is a flowchart showing the switching control process.
  • the electronic control unit 90 executes the switching control process according to the flowchart of FIG. 17, the same reference numerals as those in FIG. 5 indicate the same contents, and the description thereof is omitted.
  • next S110 based on the detection value of the vehicle speed sensor 101, it is determined whether or not the vehicle speed is less than a predetermined speed. At this time, when the speed of the automobile is equal to or higher than the predetermined speed, it is determined that the speed of the automobile is high and NO is determined in S110.
  • the normal blowing control process of the switching valve 115 is executed in S120A. Specifically, the switching valve 115 is controlled to open between the inlet 111 and the outlet 112 and close between the inlet 111 and the outlet 112a. In addition, the electric fan 40A is operated.
  • YES is determined in S140 because the traveling engine 3 is to be cooled, and YES is determined in S150 because the exhaust manifold 5 is hot.
  • the reverse blowing control process of the switching valve 115 is executed in S160A. Specifically, the switching valve 115 is controlled to open between the inlet 111 and the outlet 112a and close between the inlet 111 and the outlet 112. In addition, the electric fan 40A is operated.
  • the switching valve 115 is controlled to open the space between the suction port 111 and the air outlet 112 and close the space between the air inlet 111 and the air outlet 112a.
  • the electric fan 40A is operated (S120A).
  • the traveling engine 3 when the traveling engine 3 is stopped, the air flow sucked from the exhaust manifold 5 side is blown out through the duct 60 to the introduction flow path 50a as the electric fan 40 is operated. The blown air flow is sucked into the electric fan 40 side. Thereby, the air flow heated by the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be moved to the electric fan 40 side through the duct 60.
  • the switching valve 115 is controlled to close the space between the suction port 111 and the air outlet 112 and open the space between the air inlet 111 and the air outlet 112a.
  • the electric fan 40A is operated (S120A).
  • the air flow sucked from the inlet passage 50a through the suction port 111 is blown out from the outlet 112a to the air passage 60a of the duct 60 through the air passages 113 and 114a.
  • the air volume of the airflow which flows into the front side opening part 61 from the rear side opening part 62 side of the duct 60 increases.
  • the electronic control unit 90 controls the switching valve 115 to close the space between the suction port 111 and the air outlet 112, and the suction port 111 and the air outlet Open between the outlets 112a. For this reason, the air volume of the air flow sucked into the duct 60 from the exhaust manifold 5 side through the rear opening 62 side and blown out from the front opening 61 increases. Thereby, the high temperature air heated by the exhaust manifold 5 etc. can be reliably moved from the exhaust manifold 5 side to the introduction flow path 50a side. Therefore, the exhaust manifold 5 and the like can be cooled while the radiator 30 is cooled by the air flow passing through the radiator 30.
  • the electronic control unit 90 controls the switching valve 115 to open the space between the suction port 111 and the air outlet 112 and close the space between the air inlet 111 and the air outlet 112a. For this reason, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases. Thereby, the exhaust manifold 5 and the like can be cooled by blowing an air flow.
  • FIG. 18 shows a cross-sectional view of the duct 60 of the cooling module 10 of the present embodiment.
  • the air blowing structure 110 is abolished, and the electric fan 40A is arranged not on the air blowing structure 110 but on the front opening 61 side of the duct 60.
  • the electric fan 40 ⁇ / b> A generates an air flow that flows into the air flow path 60 a of the duct 60 by sucking an air flow from the introduction flow path 50 a into the duct 60 through the front opening 61.
  • the electric control device 90 of the present embodiment controls the electric fans 40 and 40A as in the fourth embodiment. Therefore, similarly to the fourth embodiment, the rear side of the traveling engine 3 (for example, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc.) can be reliably cooled by the airflow.
  • FIG. 19 shows a cross-sectional view of the duct 60 of the cooling module 10 of the present embodiment.
  • the air blowing structure 110 is abolished, and the electric fan 40A is arranged not on the air blowing structure 110 but on the rear opening 62 side of the duct 60.
  • the electric fan 40A blows an air flow from the rear opening 62 to the rear side of the traveling engine 3 in the vehicle traveling direction, whereby an air flow flowing from the introduction passage 50a to the air passage 60a of the duct 60 through the front opening 61. Is generated. For this reason, the operation
  • the electronic control unit 90 of the present embodiment controls the electric fans 40 and 40A as in the fourth embodiment. Therefore, similarly to the fourth embodiment, the rear side of the traveling engine 3 (for example, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc.) can be reliably cooled by the airflow.
  • the traveling engine 3 for example, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc.
  • valve 70 for opening and closing the air flow path 60a of the duct 60 is provided has been described, but the valve 70 may be omitted instead.
  • valve 70 is provided on the front opening 61 side of the duct 60 .
  • the valve 70 is provided between the openings 61 and 62 of the duct 60.
  • the valve 70 may be provided on the rear opening 62 side of the duct 60.
  • the example in which the electric fan 40 is operated when the traveling engine 3 is operating has been described, but in addition to this, during high speed traveling in which the speed of the automobile is equal to or higher than a predetermined speed.
  • the electric fan 40 may be stopped.
  • the water temperature sensor 102 for detecting the temperature of the engine coolant as the heat medium, and the engine as the heat medium.
  • the oil temperature sensor 103 for detecting the temperature of the oil. That is, one of the water temperature sensor 102 and the oil temperature sensor 103 may be used.
  • the radiator 30 that cools the engine coolant as the heat medium is used as the in-vehicle heat exchanger. Instead, the engine oil as the heat medium is cooled. An oil cooler may be used.
  • the example in which the duct 60 is disposed in the vehicle width direction of the traveling engine 3 has been described, but instead, the duct 60 is disposed on the heaven region improvement side with respect to the traveling engine 3. You may arrange.
  • the opening degree of the valve 70 is made constant in S160 of FIGS. 5 and 8 has been described, but instead, based on the detected temperature of the temperature sensor 100,
  • the opening degree of the valve 70 may be controlled by controlling the electric motor 80. In this case, the opening degree of the valve 70 is gradually increased as the temperature of the exhaust manifold 5 becomes higher.
  • the example in which the electric fan 40 and the valve 70 are controlled by the common electronic control unit 90 has been described. Instead, the electric fan 40 and the valve 70 are controlled differently. You may control by an apparatus.
  • valve 70 may be manually opened and closed.
  • the example in which the front grille opening 2 is provided on the front side in the vehicle traveling direction with respect to the radiator 30 has been described, but the following may be used instead. That is, if the front grille opening 2 is an opening communicating from the front engine room 1 to the front of the front grille 4 in the vehicle traveling direction, the front grille opening 2 is offset in the vehicle width direction with respect to the radiator 30. May be arranged.
  • the front opening is the front grill opening 2 formed in the front grill 4
  • the front opening is used as the front grill 4 of the automobile.
  • the front opening may be formed in a trunk lit that closes the front engine room 1 from the Tenchi region improvement side.
  • the temperature sensor 100 may detect the internal temperature of the exhaust manifold 5 as the temperature of the exhaust manifold 5.
  • the ambient temperature of the exhaust manifold 5 may be detected by the temperature sensor 100 as the temperature of the exhaust manifold 5.
  • the temperature sensor 100 is arranged in the duct 60 and the temperature inside the duct 60 is detected by the temperature sensor 100.
  • the detected temperature may be the temperature of the exhaust manifold 5.
  • the temperature sensor 100 detects the temperature of the duct 60 on the rear opening 62 side. That is, the air temperature in the duct 60 is detected instead of the temperature of the exhaust manifold 5.
  • the holes 60c and 60d are arranged on the heaven region improvement side with respect to each cooled component. Instead, the holes 60c and 60d are mounted on the vehicle with respect to each cooled component. You may arrange
  • the example in which the two holes (60c, 60d) are used as the holes to be opened from the inside of the air flow path to the outside in the duct 60 has been described.
  • the number of holes opened from the inside of the flow path to the outside thereof may be one or two. Further, the number of the holes may be three or more.
  • the vehicle speed sensor 101 has been described as a sensor that detects the speed of the automobile as the rotational speed of the driving wheels of the automobile. May be.
  • a flow velocity sensor that detects the flow velocity of the airflow flowing in the duct 60 is adopted, and the speed of the automobile is detected based on the flow velocity detected by the flow velocity sensor.
  • the flow velocity sensor as the vehicle speed sensor 101 detects the flow velocity of the air flow in the duct 60 instead of the vehicle speed.
  • the duct 60 may be configured as follows (1) (2) (3) (4) (5).
  • the duct 60 also serves as an engine cover 120 that covers the traveling engine 3 from the Tenchi region improvement side.
  • the duct 60 includes a trunk lit (that is, a hood) 130 that closes the front engine room 1 and an engine cover 120 that covers the traveling engine 3 from the Tenchi region improvement side.
  • a trunk lit that is, a hood 130 that closes the front engine room 1
  • an engine cover 120 that covers the traveling engine 3 from the Tenchi region improvement side.
  • the trunk lit 130 constitutes the heaven region improvement side of the duct 60.
  • the engine cover 120 constitutes the top side of the duct 60 in the vertical direction. Portions of the duct 60 other than the heaven region improvement side and the heaven-down direction lower side are configured by members other than the trunk lit 130 and the engine cover 120.
  • the two ducts 60 are arranged with the electric fan 40 sandwiched from the vehicle width direction. Specifically, one of the two ducts 60 is disposed on the right side in the vehicle width direction with respect to the electric fan 40, and the remaining duct 60 is disposed on the left side in the vehicle width direction with respect to the electric fan 40. Has been.
  • the front openings 61 of the two ducts 60 each open toward the radiator 30.
  • the duct 60 includes two front openings 61 and one rear opening 62 as shown in FIG.
  • the duct 60 includes branch ducts 64a and 64b.
  • Each of the branch ducts 64 a and 64 b has a front opening 61.
  • the air outlet sides of the branch ducts 64a and 64b are combined to be connected to the rear opening 62. That is, the branch ducts 64 a and 64 b merge and are connected to the rear opening 62. For this reason, the branch ducts 64a and 64b join the air flows sucked from the respective front openings 61 as indicated by arrows Kc and guide them to the rear openings 62.
  • the duct 60 may be provided with three or more front side openings 61 (that is, the branch ducts (64a, 64b)).
  • the duct 60 includes one front opening 61 and two rear openings 62 as shown in FIG.
  • the duct 60 includes branch ducts 64d and 64c.
  • Each of the branch ducts 64d and 64c has a rear opening 62.
  • the air inlet sides of the branch ducts 64d and 64c are combined and connected to the front opening 61. That is, the branch ducts 64d and 64c merge and are connected to the front opening 61.
  • branch ducts 64c and 64d divert the air flow sucked from one front opening 61 as indicated by the arrow Kd and guide it to the respective rear openings 62.
  • three or more rear side openings 62 that is, branch ducts (64d, 64c) may be provided in the duct 60.
  • holes 60c and 60d were provided as the blowing part in the duct 60 of the said 1st Embodiment, the example which cools components to be cooled other than the exhaust manifold 5 was demonstrated. Instead, holes 60c and 60d (see FIG. 10) are provided in the duct 60 of the fourth, fifth, and sixth embodiments, and the parts to be cooled other than the rear side (exhaust manifold 5) of the traveling engine 3 are provided. The parts may be cooled by blowing air.
  • the holes 60 c and 60 d are opened from the inside of the air flow path 60 a to the outside of the duct 60 between the openings 61 and 62 of the duct 60.
  • the holes 60 c and 60 d are open to parts other than the rear side of the traveling engine 3. For this reason, an airflow can be blown out and cooled in parts other than the rear side of the traveling engine 3 in the engine room.
  • the number of holes (60c, 60d) provided in the duct 60 may be any number.
  • the blowing portions in the duct 60 are provided.
  • a branch duct may be provided.
  • the air flow from the air flow path 60a of the duct 60 can be blown out to a desired part in the front engine room 1 through the branch duct.
  • the number of branch ducts may be any number.
  • the air blowing structure 110 may be provided on the front opening 61 side of the duct 60, but between the front opening 61 and the rear opening 62 of the duct 60. If the air is blown out, the air blowing structure 110 may be provided in a portion other than the front opening 61 side of the duct 60.
  • the air blowing structure 110 may be provided between the openings 61 and 62 of the duct 60, and the air blowing structure 110 may be provided on the rear opening 62 side of the duct 60.
  • the cooling device is applied to the automobile in which the exhaust manifold 5 is disposed on the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1 .
  • the cooling device may be applied to an automobile in which the exhaust manifold 5 is disposed in a portion other than the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1. That is, in implementing the cooling device, the position of the exhaust manifold 5 in the front engine room 1 may be anywhere.
  • the example in which the axial fan is used as the electric fan 40A has been described, but various fans other than the axial fan (for example, a centrifugal fan) may be used instead. Good.
  • valve 70 of the first to third embodiments is eliminated has been described. Instead, the valve 70 of the first to third embodiments is replaced with the valve 70 of the first to third embodiments. It may be used.
  • the example in which the temperature sensor 105 detects the air temperature in the front engine room 1 as the temperature in the front engine room 1 has been described, but instead, the exhaust manifold 5 and the like are detected. May be detected by the temperature sensor 105, and the determination of S350, S370, and S390 may be performed based on the detected temperature.
  • the vehicle speed determination unit corresponds to S110, the first control unit corresponds to S120, and the second control unit corresponds to S130.
  • the first temperature determination unit corresponds to S190, the third control unit corresponds to S191, and the stop determination unit corresponds to S100.
  • the engine determination unit corresponds to S140, the second temperature determination unit corresponds to S150, and the fourth control unit corresponds to S161.
  • the fifth control unit corresponds to S162, and the sixth control unit corresponds to S160.
  • corresponds to S320, a 2nd ventilation control part respond
  • corresponds to S380
  • corresponds to S400.
  • the third temperature sensor corresponds to the temperature sensor 105
  • the first switching control unit corresponds to S120A
  • the second switching control unit corresponds to S160A.

Abstract

This cooling device is applied to an automobile equipped with a front opening part (2) for opening a front engine room (1) from the front side in a vehicle traveling direction, a first blower (40) disposed inside the front engine room to the front of a drive engine (3) in the vehicle traveling direction, and an introduction flow passage (50a) for introducing, toward the first blower, an air flow flowing in through the front opening part from the front side of the front opening part in the vehicle traveling direction, and the cooling device cools the drive engine with an air flow flowing toward the drive engine after having passed through the first blower from the introduction flow passage. The cooling device is provided with a duct (60) having a first opening part (61) which opens into the introduction flow passage and a second opening part (62) which opens toward the rear of the drive engine in the vehicle traveling direction in the front engine room, thereby forming an air flow passage (60a) for circulating the flow of air between the first and second opening parts.

Description

冷却装置、および冷却モジュールCooling device and cooling module 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年12月9日に出願された日本特許出願2014-249101号と2015年4月3日に出願された日本特許出願2015-76860号に基づくもので、ここにそれらの記載内容を援用する。 This application is based on Japanese Patent Application Nos. 2014-249101 filed on Dec. 9, 2014 and Japanese Patent Application No. 2015-76860 filed on Apr. 3, 2015. Is used.
 本開示は、冷却装置、および冷却モジュールに関する。 The present disclosure relates to a cooling device and a cooling module.
 従来、フロントエンジンルームのうち走行用エンジンに対して車両進行方向前側にエキゾーストマニホールドが配置される自動車に適用され、空気流によりエキゾーストマニホールドを冷却する冷却装置が提案されている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, there has been proposed a cooling device that is applied to an automobile in which an exhaust manifold is disposed on the front side in the vehicle traveling direction with respect to a traveling engine in a front engine room, and cools the exhaust manifold by an air flow (for example, Patent Document 1). reference).
 冷却装置では、フロントグリル開口部から導入されてラジエータを通過した空気流をエキゾーストマニホールド周辺を通過させてから走行用エンジン後部の下側に導くためのダクトが形成されている。これによれば、ラジエータを通過した空気流がエキゾーストマニホールド周辺を通過することによりエキゾーストマニホールドを冷却することができる。 In the cooling device, a duct is formed for guiding the air flow introduced from the opening portion of the front grille and passing through the radiator to the lower side of the rear portion of the traveling engine after passing through the periphery of the exhaust manifold. According to this, the exhaust manifold can be cooled by the air flow passing through the radiator passing around the exhaust manifold.
特開平5-169986号公報JP-A-5-169986
 上記特許文献1の冷却装置では、上述の如く、エキゾーストマニホールドが走行用エンジンに対して前側に配置される自動車では、エキゾーストマニホールドを空気流により冷却することができる。しかし、エキゾーストマニホールドが走行用エンジンに対して後側に配置される自動車では、エキゾーストマニホールドを空気流により冷却することができない。 In the cooling device disclosed in Patent Document 1, as described above, in an automobile in which the exhaust manifold is disposed on the front side with respect to the traveling engine, the exhaust manifold can be cooled by an air flow. However, in an automobile in which the exhaust manifold is arranged on the rear side with respect to the traveling engine, the exhaust manifold cannot be cooled by the air flow.
 また、近年、エキゾーストマニホールドが走行用エンジンに対して前側に配置される自動車であっても、フロントエンジンルームが縮小化して、フロントエンジンルーム内の空気通路が狭くなっている。このため、フロントエンジンルーム内の通風性が低下して、フロントエンジンルームのうち走行用エンジンに対して車両進行方向後側に熱が溜まる恐れがある。 Also, in recent years, even in an automobile in which the exhaust manifold is disposed on the front side with respect to the traveling engine, the front engine room is reduced and the air passage in the front engine room is narrowed. For this reason, the air permeability in the front engine room may be reduced, and heat may be accumulated on the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room.
 本開示は、自動車のフロントエンジンルームのうち走行用エンジンに対して車両進行方向後側を冷却する冷却装置、および冷却モジュールを提供することを目的とする。 The present disclosure aims to provide a cooling device and a cooling module for cooling the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room of the automobile.
 本開示の一態様において、冷却装置は、フロントエンジンルームを車両進行方向前側に開口させるフロント開口部と、フロントエンジンルームのうち走行用エンジンに対して車両進行方向前側に配置される第1送風機と、フロント開口部の車両進行方向前側からフロント開口部を通して流入される空気流を第1送風機側に導く導入流路とを備える自動車に適用されて、導入流路から第1送風機を通過して走行用エンジン側に流れる空気流によって走行用エンジンを冷却する。冷却装置は、導入流路内に開口する第1開口部とフロントエンジンルームのうち走行用エンジンに対して車両進行方向後側に開口する第2開口部とを有して、第1、第2開口部の間に空気流を流通させる空気流路を形成するダクトを備える。 In one aspect of the present disclosure, the cooling device includes a front opening that opens the front engine room to the front side in the vehicle traveling direction, and a first blower that is disposed on the front side in the vehicle traveling direction with respect to the traveling engine in the front engine room. The present invention is applied to an automobile including an introduction flow path for guiding an air flow flowing in from the front opening direction of the front opening through the front opening to the first blower side, and travels through the first blower from the introduction flow path. The traveling engine is cooled by the airflow flowing to the engine side. The cooling device includes a first opening that opens into the introduction flow path and a second opening that opens to the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room. A duct is provided that forms an air flow path for allowing an air flow to flow between the openings.
 これによれば、自動車の走行に伴ってフロント開口部を通して導入流路内に流入した空気流をダクトを通して走行用エンジンに対して車両進行方向後側に吹き出すことができる。このため、走行用エンジンに対して車両進行方向後側を空気流によって冷却することができる。 According to this, it is possible to blow out the air flow that has flowed into the introduction flow path through the front opening as the vehicle travels to the rear side in the vehicle traveling direction with respect to the traveling engine through the duct. For this reason, the vehicle traveling direction rear side can be cooled by the air flow with respect to the traveling engine.
 なお、エキゾーストマニホールドは、走行用エンジンから排気ガスを排出する排気管において、走行用エンジンに接続される複数の排気流路を1つにまとめる多岐管である。フロントエンジンルームは、自動車のうち乗員室に対して車両進行方向前側に配置されて走行用エンジンが搭載される空間である。熱媒体とは、熱を移動させるための物質である。 The exhaust manifold is a manifold that collects a plurality of exhaust passages connected to the traveling engine into one exhaust pipe that exhausts exhaust gas from the traveling engine. The front engine room is a space that is disposed on the front side in the vehicle traveling direction with respect to the passenger compartment of the automobile and in which the traveling engine is mounted. The heat medium is a substance for transferring heat.
 具体的には、走行用エンジンの停止時に、ダクトは、第1送風機の作動に伴って、フロントエンジンルームのうち走行用エンジンに対して車両進行方向後側から第2開口部を通して吸い込んだ空気流を第1開口部から導入流路内に吹き出す。 Specifically, when the travel engine is stopped, the duct causes the air flow sucked through the second opening from the rear side in the vehicle traveling direction to the travel engine in the front engine room in accordance with the operation of the first blower. From the first opening into the introduction channel.
 これによれば、走行用エンジンの停止時には、ダクト内を通して走行用エンジンに対して車両進行方向後側から導入流路側に流れる空気流が発生する。このことにより、走行用エンジンに対して車両進行方向後側の熱を導入流路側に移動させることができるので、走行用エンジンに対して車両進行方向後側から熱を導入流路側に吸引することで冷却することができる。 According to this, when the traveling engine is stopped, an air flow that flows from the rear side in the vehicle traveling direction to the introduction flow path side with respect to the traveling engine through the duct is generated. As a result, heat on the rear side in the vehicle traveling direction with respect to the traveling engine can be moved to the introduction flow path side, so heat is sucked from the rear side in the vehicle traveling direction on the traveling engine to the introduction flow path side. Can be cooled.
 本開示の一態様において、冷却モジュールは、フロントエンジンルームのうち走行用エンジンに対して車両進行方向後側にエキゾーストマニホールドが配置される自動車に適用され、冷却装置と、第1送風機に対して導入流路内の空気流れ方向の上流側に配置され、走行用エンジンを冷却する熱媒体から導入流路内の空気流に放熱させる車載熱交換器と、を備える。第1開口部は、導入流路のうち、車載熱交換器に対して空気流れ方向の下流側に開口する。 In one aspect of the present disclosure, the cooling module is applied to an automobile in which an exhaust manifold is disposed on the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room, and is introduced to the cooling device and the first blower. An in-vehicle heat exchanger disposed on the upstream side in the air flow direction in the flow path to dissipate heat from the heat medium that cools the traveling engine to the air flow in the introduction flow path. A 1st opening part opens to the downstream of an air flow direction with respect to a vehicle-mounted heat exchanger among introduction flow paths.
 これによれば、ダクトは、導入流路のうち車載熱交換器に対して空気流れ方向の下流側から取り入れた空気流をエキゾーストマニホールドに吹き出すことができる。このため、エキゾーストマニホールドを空気流によって冷却することができる。 According to this, the duct can blow out the air flow taken from the downstream side in the air flow direction with respect to the in-vehicle heat exchanger in the introduction flow path to the exhaust manifold. For this reason, the exhaust manifold can be cooled by the air flow.
 本開示の一態様において、冷却装置は、ダクトのうち第1、第2の開口部の間に向けて空気流を吹き出する第1吹出口を備える。第1吹出口から吹き出される空気流によってダクトのうち第1、第2の開口部の間の気圧を下げることにより第1開口部から第2の開口部に向かって流れる空気流を発生させて、この発生した空気流と第1吹出口から吹き出される空気流とが第2開口部に向かって流れる。 In one aspect of the present disclosure, the cooling device includes a first air outlet that blows out an air flow between the first and second openings of the duct. An air flow flowing from the first opening toward the second opening is generated by lowering the air pressure between the first and second openings in the duct by the air flow blown from the first air outlet. The generated air flow and the air flow blown out from the first air outlet flow toward the second opening.
 これによれば、ダクトのサイズを大きくすることなく、ダクトの第1開口部から走行用エンジンに対して車両進行方向後側を吹き出す空気流の風量を増やすことができる。これにより、走行用エンジンに対して車両進行方向後側を確実に冷却することができる。 According to this, it is possible to increase the air volume of the airflow that blows out from the first opening of the duct to the traveling engine on the rear side in the vehicle traveling direction without increasing the size of the duct. Thereby, the vehicle traveling direction rear side can be reliably cooled with respect to the traveling engine.
 但し、導入流路内の空気流れ方向とは、導入流路内を流れる複数の空気流のうち最も風量が多い主流の空気流れの方向である。 However, the air flow direction in the introduction flow path is the direction of the main flow air flow having the largest air volume among the plurality of air flows flowing in the introduction flow path.
 本開示についての上記およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態における冷却モジュールの全体構成を天地方向上側から視た模式図である。 図1のダクト、シュラウド、バルブ、電動ファン、および走行用エンジンを示す斜視図である。 図1のダクト、シュラウド、バルブ、電動ファン、走行用エンジン、導入流路、およびエキゾーストマニホールドを示す側面図であって、導入流路側からエキゾーストマニホールド側への空気流の流れを示す図である。 図1の冷却モジュールの電気的構成を示す図である。 図4の電子制御装置による冷却制御処理を示すフローチャートである。 図4の電子制御装置によるファン制御処理を示すフローチャートである。 図1のダクト、バルブ、電動ファン、導入流路、および走行用エンジン、エキゾーストマニホールドを示す側面図であって、エキゾーストマニホールド側から導入流路への空気流の流れを示す図である。 第2実施形態において電子制御装置による冷却制御処理を示すフローチャートである。 図8の冷却制御処理で用いるバルブの開度およびエキゾーストマニホールドの温度の関係を示す特性図である。 第3実施形態においてダクトの構造を示す側面図である。 第4実施形態の冷却モジュールにおいてラジエータ側から視た斜視図である。 上記第4実施形態の冷却モジュールにおいて天地方向上側から視た斜視図である。 上記第4実施形態の空気吹出構造の内部構成を示す断面図である。 上記第4実施形態の冷却モジュールの電気的構成を示す図である。 図14の電子制御装置による冷却制御処理を示すフローチャートである。 上記第4実施形態の変形例の空気吹出構造の内部構成を示す断面図である。 上記変形例の電子制御装置の切替制御処理を示すフローチャートである。 第6実施形態のダクトの内部を示す図である。 第6実施形態の冷却モジュールの内部を示す図である。 第1変形例の冷却モジュールを示す図である。 第2変形例の冷却モジュールを示す図である。 第3変形例の冷却モジュールを示す図である。 第4変形例の冷却モジュールを示す図である。 第5変形例の冷却モジュールを示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is the schematic diagram which looked at the whole structure of the cooling module in 1st Embodiment from the heaven district improvement side. It is a perspective view which shows the duct of FIG. 1, a shroud, a valve | bulb, an electric fan, and the engine for driving | running | working. FIG. 2 is a side view showing a duct, a shroud, a valve, an electric fan, a traveling engine, an introduction flow path, and an exhaust manifold in FIG. 1, and shows a flow of air flow from the introduction flow path side to the exhaust manifold side. It is a figure which shows the electrical structure of the cooling module of FIG. It is a flowchart which shows the cooling control process by the electronic controller of FIG. It is a flowchart which shows the fan control processing by the electronic controller of FIG. FIG. 2 is a side view showing a duct, a valve, an electric fan, an introduction flow path, a traveling engine, and an exhaust manifold in FIG. 1, and shows a flow of air flow from the exhaust manifold side to the introduction flow path. It is a flowchart which shows the cooling control process by an electronic controller in 2nd Embodiment. FIG. 9 is a characteristic diagram showing a relationship between the opening degree of a valve used in the cooling control process of FIG. 8 and the temperature of the exhaust manifold. It is a side view which shows the structure of a duct in 3rd Embodiment. It is the perspective view seen from the radiator side in the cooling module of 4th Embodiment. It is the perspective view seen from the heaven district improvement side in the cooling module of the said 4th Embodiment. It is sectional drawing which shows the internal structure of the air blowing structure of the said 4th Embodiment. It is a figure which shows the electrical constitution of the cooling module of the said 4th Embodiment. It is a flowchart which shows the cooling control process by the electronic controller of FIG. It is sectional drawing which shows the internal structure of the air blowing structure of the modification of the said 4th Embodiment. It is a flowchart which shows the switching control process of the electronic controller of the said modification. It is a figure which shows the inside of the duct of 6th Embodiment. It is a figure which shows the inside of the cooling module of 6th Embodiment. It is a figure which shows the cooling module of a 1st modification. It is a figure which shows the cooling module of a 2nd modification. It is a figure which shows the cooling module of a 3rd modification. It is a figure which shows the cooling module of a 4th modification. It is a figure which shows the cooling module of a 5th modification.
 実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Embodiments will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 図1に本開示の冷却装置が適用される自動車用の冷却モジュール10の第1実施形態を示す。
(First embodiment)
FIG. 1 shows a first embodiment of an automotive cooling module 10 to which a cooling device of the present disclosure is applied.
 本実施形態の冷却モジュール10は、自動車のフロントエンジンルーム1のうち、フロントグリル開口部2および走行用エンジン3の間に配置されている。フロントグリル開口部2は、自動車のフロントグリル4において、フロントエンジンルーム1からフロントグリル4の車両進行方向前方に開口させる開口部である。フロントエンジンルーム1は、自動車のうち乗員室に対して車両進行方向前側に配置されて走行用エンジン3が搭載される空間である。 The cooling module 10 of the present embodiment is disposed between the front grille opening 2 and the traveling engine 3 in the front engine room 1 of the automobile. The front grill opening 2 is an opening that opens from the front engine room 1 forward of the front grill 4 in the vehicle traveling direction in the front grill 4 of the automobile. The front engine room 1 is a space that is disposed on the front side in the vehicle traveling direction with respect to the passenger compartment of the automobile and in which the traveling engine 3 is mounted.
 具体的には、冷却モジュール10は、図1に示すように、コンデンサ20、ラジエータ30、電動ファン40、シュラウド50、ダクト60、およびバルブ70を備える。 Specifically, the cooling module 10 includes a capacitor 20, a radiator 30, an electric fan 40, a shroud 50, a duct 60, and a valve 70 as shown in FIG.
 コンデンサ20は、フロントグリル開口部2に対して車両進行方向後側に配置されている。コンデンサ20は、圧縮機、減圧弁、および蒸発器とともに冷媒を循環させる空調装置用冷凍サイクル装置を構成し、圧縮機から吐出される高圧冷媒を車室外空気(以下、外気という)により冷却する熱交換器である。 The capacitor 20 is arranged on the rear side in the vehicle traveling direction with respect to the front grill opening 2. The condenser 20 constitutes a refrigeration cycle device for an air conditioner that circulates refrigerant together with a compressor, a pressure reducing valve, and an evaporator, and heats the high-pressure refrigerant discharged from the compressor with outside air (hereinafter referred to as outside air). It is an exchanger.
 ラジエータ30は、コンデンサ20に対して車両進行方向後側に配置されている。ラジエータ30は、走行用エンジン3の冷却水を外気により冷却する熱交換器である。ラジエータ30は、電動ファン40に対して、導入流路50a内の空気流れ方向の上流側に配置されている。導入流路50aは、フロントグリル開口部2から吸い込んだ空気流を図1中矢印Kの如くコンデンサ20およびラジエータ30を通過して電動ファン40に導くための空気通路である。導入流路50a内の空気流れ方向とは、導入流路50aを流れる複数の空気流のうち風量が最も多い主流の流れ方向のことである。 The radiator 30 is disposed behind the capacitor 20 in the vehicle traveling direction. The radiator 30 is a heat exchanger that cools the cooling water of the traveling engine 3 with outside air. The radiator 30 is disposed upstream of the electric fan 40 in the air flow direction in the introduction flow path 50a. The introduction flow path 50a is an air passage for guiding the air flow sucked from the front grill opening 2 through the condenser 20 and the radiator 30 to the electric fan 40 as shown by an arrow K in FIG. The air flow direction in the introduction flow path 50a is the flow direction of the main flow having the largest air volume among the plurality of air flows flowing through the introduction flow path 50a.
 電動ファン40は、フロントエンジンルーム1のうちラジエータ30に対して車両進行方向後側に配置されている。電動ファン40は、自動車の車両進行方向前方からフロントグリル開口部2を通してコンデンサ12、およびラジエータ11を通過させる空気流を発生させる。 The electric fan 40 is arranged on the rear side in the vehicle traveling direction with respect to the radiator 30 in the front engine room 1. The electric fan 40 generates an air flow that allows the condenser 12 and the radiator 11 to pass through the front grille opening 2 from the front in the vehicle traveling direction of the automobile.
 シュラウド50は、フロントグリル開口部2から吸い込んだ空気流をコンデンサ20およびラジエータ30を通過して電動ファン40に導くための導入流路50aを形成するケーシングである。シュラウド50は、コンデンサ20およびラジエータ30の間と、ラジエータ30および電動ファン40の間とそれぞれを車両幅方向および天地方向から塞ぐように形成されている。 The shroud 50 is a casing that forms an introduction flow path 50 a for guiding the air flow sucked from the front grill opening 2 through the condenser 20 and the radiator 30 to the electric fan 40. The shroud 50 is formed so as to block between the capacitor 20 and the radiator 30 and between the radiator 30 and the electric fan 40 from the vehicle width direction and the vertical direction.
 ダクト60は、前側開口部61(第1開口部)および後側開口部62(第2開口部)の間にて空気流を流通させる空気流路60aを形成する。ダクト60は、走行用エンジン3を天地方向上側に配置されている。前側開口部61は、図1~図3に示すように、シュラウド50のうちラジエータ30に対して車両進行方向後において、ラジエータ30に向けて(すなわち、空気流路60a内で車両進行方向前側)に向けて開口している。すなわち、前側開口部61は、導入流路50aのうち、ラジエータ30に対して導入流路50a内の空気流れ方向の下流側に開口している。前側開口部61は、電動ファン40に対して車両幅方向一方側に配置されている。後側開口部62は、フロントエンジンルーム1のうち走行用エンジン3に対してエキゾーストマニホールド5側(すなわち、走行用エンジン3に対して車両進行方向後側)に開口している。 The duct 60 forms an air flow path 60a that allows an air flow to flow between the front opening 61 (first opening) and the rear opening 62 (second opening). The duct 60 is arranged with the traveling engine 3 on the heaven region improvement side. As shown in FIGS. 1 to 3, the front opening 61 is directed toward the radiator 30 after the vehicle traveling direction with respect to the radiator 30 in the shroud 50 (that is, the vehicle traveling direction front side in the air flow path 60a). It is open toward. In other words, the front opening 61 opens to the downstream side in the air flow direction in the introduction flow path 50a with respect to the radiator 30 in the introduction flow path 50a. The front opening 61 is disposed on the one side in the vehicle width direction with respect to the electric fan 40. The rear opening 62 is open to the exhaust manifold 5 side of the front engine room 1 with respect to the traveling engine 3 (that is, the vehicle traveling direction rear side with respect to the traveling engine 3).
 エキゾーストマニホールド5は、走行用エンジン3から排気ガスを排出する排気管において、走行用エンジン3に接続される複数の排気流路を1つにまとめる多岐管である。エキゾーストマニホールド5は、フロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後方に配置されている。 The exhaust manifold 5 is a manifold that collects a plurality of exhaust passages connected to the traveling engine 3 into one exhaust pipe that exhausts exhaust gas from the traveling engine 3. The exhaust manifold 5 is arranged behind the traveling engine 3 in the front engine room 1 in the vehicle traveling direction.
 本実施形態のフロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後方には、エキゾーストマニホールド5以外にターボチャージャー用タービンや触媒装置が配置されている。触媒装置は、走行用エンジン3から吹き出される排ガス中の有害成分を還元・酸化によって浄化する装置である。ターボチャージャーは、走行用エンジン3から吹き出される排ガスの内部エネルギーからタービンにより回転エネルギーを取りだし、この回転エネルギーにより圧縮器を作動させて圧縮空気を生成して走行用エンジン3の吸気口に供給する装置である。ターボチャージャー用タービンは、排ガスの内部エネルギーから回転エネルギーを取りだす装置である。 In the front engine room 1 of the present embodiment, a turbocharger turbine and a catalyst device are arranged in addition to the exhaust manifold 5 behind the traveling engine 3 in the vehicle traveling direction. The catalyst device is a device that purifies harmful components in exhaust gas blown out from the traveling engine 3 by reduction and oxidation. The turbocharger extracts rotational energy from the internal energy of the exhaust gas blown out from the traveling engine 3 by the turbine, operates the compressor by this rotational energy, generates compressed air, and supplies the compressed air to the intake port of the traveling engine 3. Device. A turbocharger turbine is a device that extracts rotational energy from the internal energy of exhaust gas.
 バルブ70は、ダクト60のうち開口部61側にて開口部61を開閉自在に支持されている。このことにより、バルブ70は、ダクト60により形成される空気流路60aを開閉する。バルブ70は、後述するように電動モータ80(図4参照)により駆動される。 The valve 70 is supported on the opening 61 side of the duct 60 so that the opening 61 can be opened and closed. As a result, the valve 70 opens and closes the air flow path 60 a formed by the duct 60. The valve 70 is driven by an electric motor 80 (see FIG. 4) as will be described later.
 次に、本実施形態の冷却モジュール10の電気的構成について図4を参照して説明する。 Next, the electrical configuration of the cooling module 10 of this embodiment will be described with reference to FIG.
 冷却モジュール10は、電子制御装置90を備える。電子制御装置90は、マイクロコンピュータやメモリ等から構成されている。電子制御装置90は、車載バッテリ91から電力が供給されて動作する周知の電子制御装置である。 The cooling module 10 includes an electronic control device 90. The electronic control unit 90 includes a microcomputer, a memory, and the like. The electronic control device 90 is a well-known electronic control device that operates with power supplied from the in-vehicle battery 91.
 電子制御装置90は、メモリに記憶されるコンピュータプログラムにしたがって、冷却制御処理およびファン制御処理を実施する。 The electronic control unit 90 performs cooling control processing and fan control processing according to a computer program stored in the memory.
 電子制御装置90は、冷却制御処理を実行する際に、イグニッションスイッチ92のスイッチ信号、温度センサ100の検出値、車速センサ101の検出値、水温センサ102の検出値、および油温センサ103の検出値に基づいて、電動モータ80を介してバルブ70を制御する。電子制御装置90は、ファン制御処理を実行する際に、イグニッションスイッチ92のスイッチ信号、冷媒圧センサ104の検出値に基づいて、電動ファン40を制御する。温度センサ100は、第1温度センサに対応する。水温センサ102と油温センサ103は、第2温度センサに対応する。 When the electronic control unit 90 executes the cooling control process, the switch signal of the ignition switch 92, the detection value of the temperature sensor 100, the detection value of the vehicle speed sensor 101, the detection value of the water temperature sensor 102, and the detection of the oil temperature sensor 103 are detected. Based on the value, the valve 70 is controlled via the electric motor 80. When executing the fan control process, the electronic control unit 90 controls the electric fan 40 based on the switch signal of the ignition switch 92 and the detection value of the refrigerant pressure sensor 104. The temperature sensor 100 corresponds to a first temperature sensor. The water temperature sensor 102 and the oil temperature sensor 103 correspond to a second temperature sensor.
 温度センサ100は、エキゾーストマニホールド5の温度として例えばエキゾーストマニホールド5の表面温度を検出する。車速センサ101は、自動車の駆動輪の回転速度として自動車の速度を検出する。水温センサ102は、走行用エンジン3を冷却するエンジン冷却水の温度を検出する。油温センサ103は、エンジンオイルの温度を検出する。エンジンオイルは、走行用エンジン3を構成する各部品を潤滑したり、走行用エンジン3を冷却するために用いられている。 The temperature sensor 100 detects, for example, the surface temperature of the exhaust manifold 5 as the temperature of the exhaust manifold 5. The vehicle speed sensor 101 detects the speed of the automobile as the rotational speed of the driving wheels of the automobile. The water temperature sensor 102 detects the temperature of engine cooling water that cools the traveling engine 3. The oil temperature sensor 103 detects the temperature of the engine oil. The engine oil is used to lubricate each component constituting the traveling engine 3 and to cool the traveling engine 3.
 イグニッションスイッチ92は、走行用エンジン3をオン・オフ(すなわち、始動・停止)させる電源スイッチである。冷媒圧センサ104は、コンデンサ20の冷媒入口側および圧縮機の冷媒出口側の間の冷媒圧力を検出するセンサである。すなわち、冷媒圧センサ104は、コンデンサ20の冷媒入口側の冷媒圧力を検出するセンサである。電動ファン40は、例えば、軸流ファンとこの軸流ファンを駆動する電動モータとシュラウド50から構成されている。 The ignition switch 92 is a power switch that turns the traveling engine 3 on and off (that is, starts and stops). The refrigerant pressure sensor 104 is a sensor that detects the refrigerant pressure between the refrigerant inlet side of the capacitor 20 and the refrigerant outlet side of the compressor. That is, the refrigerant pressure sensor 104 is a sensor that detects the refrigerant pressure on the refrigerant inlet side of the capacitor 20. The electric fan 40 includes, for example, an axial fan, an electric motor that drives the axial fan, and a shroud 50.
 次に、電子制御装置90の制御処理について図5~図7を参照して説明する。 Next, control processing of the electronic control unit 90 will be described with reference to FIGS.
 図5は、冷却制御処理を示すフローチャートである。図6は、ファン制御処理を示すフローチャートである。電子制御装置90は、冷却制御処理およびファン制御処理を並列的に実行する。以下、ファン制御処理に先だって冷却制御処理について説明する。 電子制御装置90は、図5のフローチャートにしたがって、冷却制御処理に対応するコンピュータプログラムを実行する。 FIG. 5 is a flowchart showing the cooling control process. FIG. 6 is a flowchart showing the fan control process. The electronic control unit 90 executes the cooling control process and the fan control process in parallel. Hereinafter, the cooling control process will be described prior to the fan control process. The electronic control unit 90 executes a computer program corresponding to the cooling control process according to the flowchart of FIG.
 まず、S100において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3(図5中ENGと記す)が稼働しているか否かを判定する。具体的には、イグニッションスイッチ92がオンしているか否かを判定する。このとき、イグニッションスイッチ92がオンしている場合には、走行用エンジン3が稼働(ON)しているとして、S100においてYESと判定する。 First, in S100, based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 (denoted as ENG in FIG. 5) is operating. Specifically, it is determined whether or not the ignition switch 92 is on. At this time, if the ignition switch 92 is on, it is determined that the traveling engine 3 is operating (ON), and YES is determined in S100.
 次のS110において、車速センサ101の検出値に基づいて、自動車の速度が所定速度未満であるか否かを判定する。このとき、自動車の速度が所定速度(閾値)以上である場合には、自動車の速度が高速であるとして、S110において、NOと判定する。 In the next S110, based on the detection value of the vehicle speed sensor 101, it is determined whether or not the vehicle speed is less than a predetermined speed. At this time, if the speed of the automobile is equal to or higher than a predetermined speed (threshold), it is determined that the speed of the automobile is high and NO is determined in S110.
 本実施形態では、所定速度としては、例えば、40km/hを用いる。このため、自動車の速度が40km/h以上あるときには、S110において、YESと判定する。この場合、S120において、電動モータ80を制御してバルブ70を開弁させる。このため、バルブ70は、電動モータ80によって駆動されて空気流路60aを開く。その後、S100に戻る。 In this embodiment, for example, 40 km / h is used as the predetermined speed. For this reason, when the speed of the automobile is 40 km / h or higher, YES is determined in S110. In this case, in S120, the electric motor 80 is controlled to open the valve 70. For this reason, the valve 70 is driven by the electric motor 80 to open the air flow path 60a. Thereafter, the process returns to S100.
 一方、自動車の速度が0km/h以上で、かつ40km/h未満であるときには、車速センサ101の検出値に基づいて、自動車の速度が所定速度未満(すなわち、低速)であるとして、S110において、YESと判定する。 On the other hand, when the speed of the automobile is 0 km / h or more and less than 40 km / h, based on the detection value of the vehicle speed sensor 101, the speed of the automobile is determined to be less than a predetermined speed (ie, low speed). It determines with YES.
 この場合、S130において、電動モータ80を制御してバルブ70を閉弁させる。このため、バルブ70は、電動モータ80によって駆動されて空気流路60aを閉じる。その後、S100に戻る。 In this case, the electric motor 80 is controlled to close the valve 70 in S130. For this reason, the valve 70 is driven by the electric motor 80 to close the air flow path 60a. Thereafter, the process returns to S100.
 さらに、上記S100において、イグニッションスイッチ92がオフされているときには、走行用エンジン3が停止(OFF)しているとして、NOと判定する。このとき、S140において、走行用エンジン3を冷却すべきか否かを判定する。具体的には、水温センサ102の検出値、および油温センサ103の検出値に基づいて、以下の(1)(2)の判定を実施する。(1)水温センサ102の検出値に基づいて、エンジン冷却水が所定温度以上であるか否かを判定する。(2)油温センサ103の検出値に基づいてエンジンオイルが所定温度以上であるか否かを判定する。 Furthermore, in S100, when the ignition switch 92 is turned off, it is determined that the traveling engine 3 is stopped (OFF) and NO. At this time, in S140, it is determined whether or not the traveling engine 3 should be cooled. Specifically, the following determinations (1) and (2) are performed based on the detection value of the water temperature sensor 102 and the detection value of the oil temperature sensor 103. (1) Based on the detection value of the water temperature sensor 102, it is determined whether or not the engine coolant is at a predetermined temperature or higher. (2) Based on the detection value of the oil temperature sensor 103, it is determined whether or not the engine oil is above a predetermined temperature.
 例えば、エンジン冷却水が所定温度以上であるとき、およびエンジンオイルが所定温度以上であるのうちいずれか一方であるときには、S140において、走行用エンジン3が高温であり、走行用エンジン3を冷却すべきであるとしてYESと判定する。 For example, when the engine coolant is at a predetermined temperature or higher and when the engine oil is at a predetermined temperature or higher, the traveling engine 3 is hot and cools the traveling engine 3 in S140. It is determined as YES because it should be.
 次のS150において、温度センサ100の検出値に応じてエキゾーストマニホールド5の温度が所定温度P1以上であるか否かを判定する。このとき、エキゾーストマニホールド5の温度が所定温度P1以上であるときには、エキゾーストマニホールド5が高温であるとして、S150においてYESと判定する。 In the next S150, it is determined whether or not the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1 according to the detection value of the temperature sensor 100. At this time, when the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1, it is determined that the exhaust manifold 5 is at a high temperature, and YES is determined in S150.
 これに伴い、S160において、電動モータ80を制御してバルブ70を半開状態にする。具体的には、バルブ70の開度を50%とするように電動モータ80を制御する。その後、S100に戻る。 Accordingly, in step S160, the electric motor 80 is controlled to place the valve 70 in a half-open state. Specifically, the electric motor 80 is controlled so that the opening degree of the valve 70 is 50%. Thereafter, the process returns to S100.
 ここで、バルブ70の開度とは、ダクト60の空気流路60aの開き具合を示す比率であって、バルブ70がダクト60の空気流路60aを閉じたとき0%とし、バルブ70が空気流路60aを全開したとき100%とする。なお、本実施形態では、後述するS162でバルブ70が空気流路60aを開けた状態を全開した状態(すなわち、開度100%)としている。 Here, the opening degree of the valve 70 is a ratio indicating the degree of opening of the air flow path 60 a of the duct 60, and is set to 0% when the valve 70 closes the air flow path 60 a of the duct 60. 100% when the channel 60a is fully opened. In the present embodiment, the state in which the valve 70 opens the air flow path 60a in S162, which will be described later, is a fully opened state (that is, an opening degree of 100%).
 また、上記S150において、温度センサ100の検出値に応じてエキゾーストマニホールド5の温度が所定温度P1未満であるときにはS150においてNOと判定する。つまり、エキゾーストマニホールド5の低温であるときには、S150においてNOと判定する。これに伴い、S161において、電動モータ80を制御してバルブ70を閉弁する。これにより、バルブ70がダクト60の空気流路60aを閉じる。つまり、バルブ70の開度を0%にする。その後、S100に戻る。 In S150, when the temperature of the exhaust manifold 5 is lower than the predetermined temperature P1 according to the detection value of the temperature sensor 100, NO is determined in S150. That is, when the exhaust manifold 5 is at a low temperature, NO is determined in S150. Accordingly, in S161, the electric motor 80 is controlled to close the valve 70. Thereby, the valve 70 closes the air flow path 60 a of the duct 60. That is, the opening degree of the valve 70 is set to 0%. Thereafter, the process returns to S100.
 さらに、上記S140において、エンジン冷却水が所定温度未満であるとき、および、エンジンオイルが所定温度未満であるときのうち少なくとも一方であるとき、走行用エンジン3を冷却する必要がないとしてNOと判定する。 Furthermore, in S140, when the engine cooling water is lower than the predetermined temperature and / or when the engine oil is lower than the predetermined temperature, it is determined as NO because the traveling engine 3 does not need to be cooled. To do.
 このように走行用エンジン3を冷却する必要がないとして上記S140において、NOと判定すると、S162において、電動モータ80を制御してバルブ70を開弁する。これにより、バルブ70がダクト60の空気流路60aを開ける。つまり、バルブ70の開度を100%にする。その後、S100に戻る。 If it is determined that the traveling engine 3 does not need to be cooled as described above in S140, the electric motor 80 is controlled and the valve 70 is opened in S162. Thereby, the valve 70 opens the air flow path 60 a of the duct 60. That is, the opening degree of the valve 70 is set to 100%. Thereafter, the process returns to S100.
 このようなS100~162の処理を繰り返してバルブ70の開閉させることになる。 The valve 70 is opened and closed by repeating the processes of S100 to 162.
 電子制御装置90は、図6のフローチャートにしたがって、ファン制御処理に対応するコンピュータプログラムを実行する。 The electronic control unit 90 executes a computer program corresponding to the fan control process according to the flowchart of FIG.
 まず、S200において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3(図6中ENGと記す)が稼働しているか否かを判定する。イグニッションスイッチ92がオンしている場合には、走行用エンジン3が稼働(ON)しているとして、S200においてYESと判定する。 First, in S200, based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 (denoted as ENG in FIG. 6) is operating. When the ignition switch 92 is on, it is determined that the traveling engine 3 is operating (ON), and YES is determined in S200.
 次に、S205において、次の判定(1)、判定(2)を実施する。判定(1)では、水温センサ102の検出値に基づいて、ラジエータ30に流れるエンジン冷却水の温度が所定温度以上であるか否かを判定する。判定(2)では、冷媒圧センサ104の検出値に基づいて、コンデンサ20の冷媒入口側の冷媒圧力が所定値以上であるか否かを判定する。 Next, in S205, the following determination (1) and determination (2) are performed. In determination (1), it is determined whether or not the temperature of the engine coolant flowing through the radiator 30 is equal to or higher than a predetermined temperature based on the detection value of the water temperature sensor 102. In determination (2), based on the detection value of the refrigerant pressure sensor 104, it is determined whether or not the refrigerant pressure on the refrigerant inlet side of the capacitor 20 is equal to or higher than a predetermined value.
 ここで、エンジン冷却水の温度が所定温度以上であるとき、およびコンデンサ20の冷媒入口側の冷媒圧力が所定値以上であるときのうち少なくとも一方であるときには、上記S205でYESと判定する。これに伴い、S210において、電動ファン40を作動させる。このため、電動ファン40は、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、およびラジエータ30を通して導入される空気流を吸い込んで走行用エンジン3側に吹き出す。このことにより、自動車の車両前後方向前側からフロントグリル開口部2を通して導入される空気流は、シュラウド50によって導かれて、コンデンサ20、ラジエータ30、および電動ファン40を通過する。このため、導入流路50aから電動ファン40を通過して走行用エンジン3側に流れる空気流により走行用エンジン3を冷却することになる。 Here, when the temperature of the engine cooling water is equal to or higher than the predetermined temperature and when the refrigerant pressure on the refrigerant inlet side of the capacitor 20 is equal to or higher than the predetermined value, YES is determined in S205. Accordingly, the electric fan 40 is operated in S210. For this reason, the electric fan 40 sucks the airflow introduced through the front grille opening 2, the condenser 20, and the radiator 30 from the front side in the vehicle longitudinal direction of the automobile and blows it out to the traveling engine 3 side. As a result, the airflow introduced from the front side in the vehicle longitudinal direction of the automobile through the front grill opening 2 is guided by the shroud 50 and passes through the condenser 20, the radiator 30, and the electric fan 40. For this reason, the traveling engine 3 is cooled by the airflow that passes through the electric fan 40 from the introduction flow path 50a and flows to the traveling engine 3 side.
 次に、S220において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3が稼働している状態から停止した状態に遷移したか否かを判定する。具体的には、イグニッションスイッチ92がオン状態からオフ状態に変化したか否かを判定する。 Next, in S220, based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 has transitioned from the operating state to the stopped state. Specifically, it is determined whether or not the ignition switch 92 has changed from an on state to an off state.
 ここで、イグニッションスイッチ92がオン状態からオフ状態に変化したとき、S220においてYESと判定する。このとき、S230において、一定期間後に電動ファン40を停止させる。つまり、走行用エンジン3が停止すると、その後一定期間の間に亘って電動ファン40の動作を継続して、その後、電動ファン40を停止することになる。その後、S200に戻る。 Here, when the ignition switch 92 changes from the on state to the off state, it is determined YES in S220. At this time, in S230, the electric fan 40 is stopped after a certain period. That is, when the traveling engine 3 stops, the operation of the electric fan 40 is continued for a certain period thereafter, and then the electric fan 40 is stopped. Thereafter, the process returns to S200.
 また、上記S200において、イグニッションスイッチ92がオフしている場合には、走行用エンジン3が停止しているとしてNOと判定する。その後、S200に戻る。 In S200, when the ignition switch 92 is off, it is determined as NO because the traveling engine 3 is stopped. Thereafter, the process returns to S200.
 さらに、上記S220において、イグニッションスイッチ92がオン状態を維持して、走行用エンジン3が稼働している状態を継続している場合には、NOと判定する。この場合、電動ファン40の動作を継続させて、S200に戻る。 Further, in S220, when the ignition switch 92 is kept on and the running engine 3 is still operating, it is determined as NO. In this case, the operation of the electric fan 40 is continued and the process returns to S200.
 このようなS200~230の処理が繰り返されることにより、走行用エンジン3の稼働状態と他の条件の組み合わせにより、電動ファン40が作動を開始する。その後、走行用エンジン3が停止すると、その後一定期間の間に亘って電動ファン40の作動を継続するものの、その後電動ファン40を停止することになる。 By repeating the processes of S200 to S230, the electric fan 40 starts to operate according to a combination of the operating state of the traveling engine 3 and other conditions. Thereafter, when the traveling engine 3 stops, the electric fan 40 continues to operate for a certain period of time, but then the electric fan 40 is stopped.
 なお、エンジン冷却水の温度が所定温度未満であり、かつコンデンサ20の冷媒入口側の冷媒圧力が所定値未満であるときには、上記S205でNOと判定する。 When the engine coolant temperature is lower than the predetermined temperature and the refrigerant pressure on the refrigerant inlet side of the condenser 20 is lower than the predetermined value, NO is determined in S205.
 次に、本実施形態の冷却モジュール10の具体的な動作について説明する。 Next, a specific operation of the cooling module 10 of this embodiment will be described.
 まず、S110において自動車の車速が低速としてYESと判定したとき、電動モータ80を制御してバルブ70を閉弁する(S130)。 First, when it is determined YES in S110 that the vehicle speed is low, the electric motor 80 is controlled to close the valve 70 (S130).
 ここで、自動車の速度が低速であるときに、バルブ70が空気流路60aを開けると、電動ファン40の作動に伴って、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生する。このため、フロントグリル開口部2からコンデンサ20およびラジエータ30を通過する送風量が低下する。 Here, when the speed of the automobile is low and the valve 70 opens the air flow path 60a, an air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is caused by the operation of the electric fan 40. appear. For this reason, the air volume which passes the capacitor | condenser 20 and the radiator 30 from the front grill opening part 2 falls.
 これに対して、S130では、電動モータ80を制御してバルブ70を閉弁させる。このため、バルブ70は、電動モータ80によって駆動されて空気流路60aを閉じる。したがって、電動ファン40が作動しても、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生しなくなる。このため、フロントグリル開口部2からコンデンサ20およびラジエータ30、および電動ファン40を通過して走行用エンジン3側に流れる空気流の送風量を増加する。したがって、コンデンサ20、ラジエータ30、および走行用エンジン3を空気流により冷却することになる。 In contrast, in S130, the electric motor 80 is controlled to close the valve 70. For this reason, the valve 70 is driven by the electric motor 80 to close the air flow path 60a. Therefore, even if the electric fan 40 is operated, an air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated. For this reason, the air flow rate of the airflow that flows from the front grill opening 2 through the condenser 20, the radiator 30, and the electric fan 40 to the traveling engine 3 side is increased. Therefore, the condenser 20, the radiator 30, and the traveling engine 3 are cooled by the air flow.
 また、S110において自動車の車速が高速であるとしてNOと判定したとき、電動モータ80を制御してバルブ70を開弁する(S120)。 If it is determined NO in S110 because the vehicle speed is high, the electric motor 80 is controlled to open the valve 70 (S120).
 自動車が高速で走行しているときには、自動車の走行に伴って、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30、および電動ファン40を通過する車両走行風としての空気流が発生する。 When the automobile is traveling at a high speed, an air flow as a vehicle traveling wind passing through the front grill opening 2, the capacitor 20, the radiator 30, and the electric fan 40 from the front side in the vehicle longitudinal direction of the automobile as the automobile travels. Will occur.
 このため、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、およびラジエータ30を通過した車両走行風としての空気流の一部が、図3中矢印200の如く、前側開口部61を通してダクト60に導入されて後側開口部62からエキゾーストマニホールド5側に吹き出される。このため、ダクト60の後側開口部62から吹き出される空気流により、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを空気流により冷却することができる。 For this reason, a part of the air flow as the vehicle running wind that has passed through the front grille opening 2, the condenser 20, and the radiator 30 from the front side in the vehicle longitudinal direction of the automobile passes through the front opening 61 as indicated by an arrow 200 in FIG. It is introduced into the duct 60 and blown out from the rear opening 62 to the exhaust manifold 5 side. For this reason, the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the airflow by the airflow blown out from the rear opening 62 of the duct 60.
 このようにエキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを冷却した空気流は、エキゾーストマニホールド5の床下側に流れる。このことにより、フロントグリル開口部2、コンデンサ20、ラジエータ30、ダクト60、およびエキゾーストマニホールド5の周辺を通過して自動車の床下側に流れる空気流が発生する。 Thus, the air flow that has cooled the exhaust manifold 5, the catalyst device, and the turbocharger turbine flows below the floor of the exhaust manifold 5. As a result, an air flow is generated that passes through the periphery of the front grill opening 2, the condenser 20, the radiator 30, the duct 60, and the exhaust manifold 5 and flows to the under floor of the automobile.
 また、自動車の車両前後方向前側からフロントグリル開口部2を通して導入流路50a内に導入された空気流のうち、ダクト60に流入された空気流以外の残りの空気流は、電動ファン40に吸い込まれる。この電動ファン40によって吸い込まれた残りの空気は、走行用エンジン3周辺を通過して床下側に流れる。このため、導入流路50aから電動ファン40を通過して走行用エンジン3側に流れる空気流により走行用エンジン3を冷却することになる。 Of the air flow introduced into the introduction flow path 50 a through the front grille opening 2 from the front side in the vehicle front-rear direction, the remaining air flow other than the air flow flowing into the duct 60 is sucked into the electric fan 40. It is. The remaining air sucked in by the electric fan 40 passes around the traveling engine 3 and flows below the floor. For this reason, the traveling engine 3 is cooled by the airflow that passes through the electric fan 40 from the introduction flow path 50a and flows to the traveling engine 3 side.
 さらに、走行用エンジン3の停止時に、走行用エンジン3を冷却すべきであるとしてS140でYESと判定し、かつ、エキゾーストマニホールド5が高温であるとしてS150でYESと判定する。この場合、電動モータ80を制御してバルブ70を半開状態にする(S160)。このため、電動ファン40の作動に伴って、図7の矢印210の如く、エキゾーストマニホールド5側から吸い込んだ空気流をダクト60を通して導入流路50aに吹き出す。そして、この吹き出した空気流が電動ファン40側に吸い込まれる。これにより、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンにより加熱された空気流をダクト60を通して電動ファン40側に移動させることができる。 Furthermore, when the traveling engine 3 is stopped, YES is determined in S140 because the traveling engine 3 is to be cooled, and YES is determined in S150 because the exhaust manifold 5 is hot. In this case, the electric motor 80 is controlled to bring the valve 70 into a half-open state (S160). For this reason, with the operation of the electric fan 40, the air flow sucked from the exhaust manifold 5 side is blown out through the duct 60 to the introduction flow path 50a as indicated by an arrow 210 in FIG. The blown air flow is sucked into the electric fan 40 side. Thereby, the air flow heated by the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be moved to the electric fan 40 side through the duct 60.
 これにより、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを空気流により冷却することができる。これに加えて、自動車の車両進行方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30および電動ファン40を通過する空気流が発生する。このため、空気流によってラジエータ30を冷却することができる。このように、ラジエータ30を通過する送風量を確保しつつ、エキゾーストマニホールド5等を冷却することができる。 Thus, the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the air flow. In addition, an air flow that passes through the front grille opening 2, the condenser 20, the radiator 30, and the electric fan 40 from the front side in the vehicle traveling direction of the automobile is generated. For this reason, the radiator 30 can be cooled by the air flow. In this way, the exhaust manifold 5 and the like can be cooled while securing the amount of air flowing through the radiator 30.
 走行用エンジン3の停止時に、走行用エンジン3を冷却すべきであるとしてS140でYESと判定し、かつ、エキゾーストマニホールド5が低温であるとしてS150でNOと判定する。この場合、電動モータ80を制御してバルブ70を閉弁する(S161)。したがって、電動ファン40の作動に関係なく、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生しなくなる。このため、フロントグリル開口部2からラジエータ30を通過する送風量を確保することができる。 When the traveling engine 3 is stopped, YES is determined in S140 because the traveling engine 3 is to be cooled, and NO is determined in S150 because the exhaust manifold 5 is at a low temperature. In this case, the electric motor 80 is controlled to close the valve 70 (S161). Therefore, regardless of the operation of the electric fan 40, an air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated. For this reason, it is possible to ensure the amount of air flowing from the front grill opening 2 through the radiator 30.
 さらに、走行用エンジン3の停止時に、走行用エンジン3を冷却すべきであるとしてS140でNOと判定すると、電動モータ80を制御してバルブ70を開弁する(S162)。この場合、フロントグリル開口部2からラジエータ30を通過する送風量が低下するものの、電動ファン40の作動に伴ってエキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が増加する。これにより、エキゾーストマニホールド5等を冷却することができる。 Furthermore, when the traveling engine 3 is stopped, if the traveling engine 3 should be cooled and it is determined NO in S140, the electric motor 80 is controlled to open the valve 70 (S162). In this case, although the amount of air passing through the radiator 30 from the front grill opening 2 is reduced, the air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases with the operation of the electric fan 40. Thereby, the exhaust manifold 5 etc. can be cooled.
 以上説明した本実施形態によれば、自動車のフロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後方にエキゾーストマニホールド5が配置されている。ダクト60は、走行用エンジン3に対して車両進行方向前側に開口する前側開口部61と走行用エンジン3に対してエキゾーストマニホールド5側に開口する後側開口部62とを有して空気流路60aに空気流を流通させる。バルブ70は、ダクト60のうち空気流路60aを開閉する。電子制御装置90は、自動車の速度を検出する車速センサ101の検出値に基づいて速度が高速であるとしてS130で判定すると、空気流路60aを開けるようにバルブ70を制御する。自動車の高速走行時には、ダクト60は、自動車の走行に伴ってフロントエンジンルーム1内にそのフロントグリル開口部2を介して流入した空気流を前側開口部61から取り込んで後側開口部62からエキゾーストマニホールド5側に吹き出す。したがって、走行用エンジン3、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを冷却する冷却モジュール10を提供することができる。このため、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービン、その周辺部品に熱害が生じることを避けることができる。 According to the present embodiment described above, the exhaust manifold 5 is arranged behind the traveling engine 3 in the front engine room 1 of the automobile in the vehicle traveling direction. The duct 60 has a front opening 61 that opens to the front side in the vehicle traveling direction with respect to the traveling engine 3 and a rear opening 62 that opens to the exhaust manifold 5 side with respect to the traveling engine 3. An air flow is circulated through 60a. The valve 70 opens and closes the air flow path 60 a in the duct 60. If the electronic control unit 90 determines in S130 that the speed is high based on the detection value of the vehicle speed sensor 101 that detects the speed of the automobile, the electronic control unit 90 controls the valve 70 to open the air flow path 60a. When the automobile travels at high speed, the duct 60 takes in the air flow that flows into the front engine room 1 through the front grille opening 2 as the automobile travels from the front opening 61 and exhausts from the rear opening 62. Blow out to the manifold 5 side. Therefore, it is possible to provide the cooling module 10 that cools the traveling engine 3, the exhaust manifold 5, the catalyst device, and the turbocharger turbine. For this reason, it is possible to avoid the occurrence of heat damage to the exhaust manifold 5, the catalyst device, the turbocharger turbine, and its peripheral components.
 本実施形態では、電子制御装置90は、走行用エンジン3の停止時に、エキゾーストマニホールドの温度が高いときバルブ70によって空気流路60aを開ける。このため、いわゆるデットソーク時に、電動ファン40の作動に伴って、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生する。これにより、エキゾーストマニホールド5等により加熱された高温空気をエキゾーストマニホールド5側から導入流路50a側に移動させることができる。このため、空気流によって、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを冷却することができる。 In this embodiment, the electronic control unit 90 opens the air flow path 60a by the valve 70 when the temperature of the exhaust manifold is high when the traveling engine 3 is stopped. For this reason, an air flow that flows from the exhaust manifold 5 side to the electric fan 40 side through the duct 60 is generated along with the operation of the electric fan 40 during so-called dead soak. Thereby, the high temperature air heated by the exhaust manifold 5 etc. can be moved from the exhaust manifold 5 side to the introduction flow path 50a side. Therefore, the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the air flow.
 特に、走行用エンジン3を冷却すべきであり、かつエキゾーストマニホールド5の温度が所定温度以上であると判定したときには、バルブ70を半開状態にする(S160)。このため、走行用エンジン3を冷却する必要がないと判定する場合に比べて、バルブ70の開度を小さくする。したがって、走行用エンジン3を冷却する必要がないと判定する場合に比べて、フロントグリル開口部2側から、ラジエータ30および電動ファン40を通過する空気流の風量を増大化することができる。このため、ラジエータ30、ひいては走行用エンジン3も適切に冷却することができる。 In particular, when it is determined that the traveling engine 3 should be cooled and the temperature of the exhaust manifold 5 is equal to or higher than a predetermined temperature, the valve 70 is opened halfway (S160). For this reason, the opening degree of the valve 70 is made smaller than when it is determined that the traveling engine 3 does not need to be cooled. Therefore, it is possible to increase the air volume of the airflow passing through the radiator 30 and the electric fan 40 from the front grill opening 2 side as compared with the case where it is determined that the traveling engine 3 does not need to be cooled. For this reason, the radiator 30 and by extension, the engine 3 for driving | running | working can also be cooled appropriately.
 本実施形態では、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを冷却した空気流は、エキゾーストマニホールド5の床下側に流れる。したがって、フロントエンジンルーム1内に流入した空気流の抵抗を低減することができる。 In the present embodiment, the air flow that has cooled the exhaust manifold 5, the catalyst device, and the turbocharger turbine flows to the bottom side of the exhaust manifold 5. Therefore, the resistance of the airflow that has flowed into the front engine room 1 can be reduced.
 本実施形態では、ダクト60の前側開口部61はシュラウド50に設けられている。このため、自動車の高速走行時にてフロントグリル開口部2を介してラジエータ30を通過する空気流の抵抗を低減することができる。このため、ラジエータ30を通過する送風量としては、シュラウド50にラム圧孔を設けた従来の電動ファン40を用いた場合と同等の送風量を得られる。このため、ラジエータ30を冷却する冷却能力を向上することができる。 In the present embodiment, the front opening 61 of the duct 60 is provided in the shroud 50. For this reason, it is possible to reduce the resistance of the air flow passing through the radiator 30 via the front grill opening 2 when the automobile is traveling at high speed. For this reason, as the amount of air passing through the radiator 30, the amount of air blowing equivalent to that when using the conventional electric fan 40 in which the ram pressure hole is provided in the shroud 50 can be obtained. For this reason, the cooling capacity which cools the radiator 30 can be improved.
 電子制御装置90は、自動車の速度が低速であると判定した場合には、ダクト60の空気流路60aを閉じるように電動モータ80を介してバルブ70を制御する。よって、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生しなくなる。このため、本実施形態では、ラジエータ30を通過する送風量としては、シュラウド50にラム圧孔を設け、かつラム圧孔を閉じるフラップを設けた従来の電動ファン40を用いた場合と比べて同等の送風量を得られる。さらに、本実施形態では、シュラウド50にラム圧孔を設けた従来の電動ファン40を用いた場合と比べて大きな送風量を得られる。 When the electronic control unit 90 determines that the speed of the automobile is low, the electronic control unit 90 controls the valve 70 via the electric motor 80 so as to close the air flow path 60a of the duct 60. Therefore, an air flow that flows from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated. For this reason, in the present embodiment, the amount of air passing through the radiator 30 is the same as that in the case of using the conventional electric fan 40 provided with a ram pressure hole in the shroud 50 and a flap for closing the ram pressure hole. Can be obtained. Further, in the present embodiment, a larger air flow rate can be obtained as compared with the case where the conventional electric fan 40 in which the ram pressure hole is provided in the shroud 50 is used.
 (第2実施形態)
 上記第1実施形態において、自動車の速度が低速であるときにバルブ70を閉弁した例について説明したが、これに代えて、本第2実施形態では、自動車の速度が低速であるときには、エキゾーストマニホールド5の温度に応じて、バルブ70の開度を制御する例ついて説明する。
(Second Embodiment)
In the first embodiment, the example in which the valve 70 is closed when the speed of the automobile is low has been described. Instead, in the second embodiment, when the speed of the automobile is low, the exhaust is exhausted. An example of controlling the opening degree of the valve 70 in accordance with the temperature of the manifold 5 will be described.
 本実施形態と上記第1実施形態では、電子制御装置90の冷却制御処理が相違する。このため、以下、本実施形態の冷却制御処理について図7、図8を参照して説明する。 In this embodiment and the first embodiment, the cooling control processing of the electronic control device 90 is different. For this reason, the cooling control process of the present embodiment will be described below with reference to FIGS.
 図8は、本実施形態の冷却制御処理のフローチャートである。図8のフローチャートは、図5のフローチャートにS190、191を追加したものである。図8において、図5と同一符号は同一Sを示し、その説明を簡素化する。電子制御装置90は、図5に代わる図8のフローチャートにしたがって、冷却制御処理を実行する。 FIG. 8 is a flowchart of the cooling control process of the present embodiment. The flowchart of FIG. 8 is obtained by adding S190 and 191 to the flowchart of FIG. 8, the same reference numerals as those in FIG. 5 denote the same S, and the description thereof is simplified. The electronic control unit 90 executes the cooling control process according to the flowchart of FIG. 8 instead of FIG.
 S100において、車速センサ101の検出値に基づいて、自動車の速度が所定速度未満であるときには、自動車の速度が低速であるとして、YESと判定する。 In S100, based on the detection value of the vehicle speed sensor 101, when the speed of the automobile is less than the predetermined speed, it is determined that the speed of the automobile is low and YES is determined.
 この場合、S190において、温度センサ100の検出値に応じてエキゾーストマニホールド5の温度が所定温度P1以上であるか否かを判定する。 In this case, in S190, it is determined according to the detection value of the temperature sensor 100 whether or not the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1.
 ここで、エキゾーストマニホールド5の温度が所定温度P1未満であるときには、S190においてNOと判定する。この場合、S130において、電動モータ80を制御してバルブ70を閉弁させる。このため、バルブ70は、電動モータ80によって駆動されて空気流路60aを閉じる。したがって、電動ファン40が作動しても、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が発生しなくなる。 Here, when the temperature of the exhaust manifold 5 is lower than the predetermined temperature P1, NO is determined in S190. In this case, in S130, the electric motor 80 is controlled to close the valve 70. For this reason, the valve 70 is driven by the electric motor 80 to close the air flow path 60a. Therefore, even if the electric fan 40 is operated, an air flow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side is not generated.
 一方、エキゾーストマニホールド5の温度が所定温度P1以上であるときには、S190においてYESと判定する。この場合、S191において、温度センサ100の検出温度に基づいて、電動モータ80を制御してバルブ70の開度を制御する。 On the other hand, when the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1, YES is determined in S190. In this case, in S191, based on the temperature detected by the temperature sensor 100, the electric motor 80 is controlled to control the opening degree of the valve 70.
 具体的には、エキゾーストマニホールド5の温度が高くなるほど、バルブ70の開度を徐々に大きくする(図9参照)。 Specifically, the opening degree of the valve 70 is gradually increased as the temperature of the exhaust manifold 5 becomes higher (see FIG. 9).
 図9中のグラフGは、エキゾーストマニホールド5の温度が所定温度P1以上であるときに、エキゾーストマニホールド5の温度が高くなるほど、開度が0%から100%まで徐々に大きくなる例を示している。開度とは、空気流路60aの開け具合のことである。このため、エキゾーストマニホールド5の温度が高くなるほど、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が増加する。これに伴い、フロントグリル開口部2からラジエータ30および電動ファン40を通過する空気量が低下する。 The graph G in FIG. 9 shows an example in which the opening gradually increases from 0% to 100% as the temperature of the exhaust manifold 5 increases when the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1. . The opening degree is a degree of opening of the air flow path 60a. For this reason, as the temperature of the exhaust manifold 5 becomes higher, the airflow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases. As a result, the amount of air passing through the radiator 30 and the electric fan 40 from the front grill opening 2 decreases.
 以上説明した本実施形態によれば、電子制御装置90は、自動車の速度が低速であり、かつエキゾーストマニホールド5の温度が所定温度P1以上であると判定したときには、エキゾーストマニホールド5の温度が高くなるほどバルブ70の開度を徐々に大きくするようにバルブ70を制御する。このため、エキゾーストマニホールド5の温度が高くなるほど、エキゾーストマニホールド5側からダクト60を通して電動ファン40側に流れる空気流が増加する。したがって、エキゾーストマニホールド5を冷却しつつ、ラジエータ30を通過する送風量を最適化することができる。 According to the present embodiment described above, when the electronic control unit 90 determines that the speed of the automobile is low and the temperature of the exhaust manifold 5 is equal to or higher than the predetermined temperature P1, the temperature of the exhaust manifold 5 increases. The valve 70 is controlled so that the opening degree of the valve 70 is gradually increased. For this reason, as the temperature of the exhaust manifold 5 becomes higher, the airflow flowing from the exhaust manifold 5 side through the duct 60 to the electric fan 40 side increases. Therefore, it is possible to optimize the amount of air passing through the radiator 30 while cooling the exhaust manifold 5.
 (第3実施形態)
 本第3実施形態では、上記第1実施形態の冷却モジュール10のダクト60に孔60c、60dを設けて、エキゾーストマニホールド5以外の被冷却部品を冷却する例について説明する。
(Third embodiment)
In the third embodiment, an example in which holes 60c and 60d are provided in the duct 60 of the cooling module 10 of the first embodiment to cool a component to be cooled other than the exhaust manifold 5 will be described.
 図10は、本実施形態の冷却モジュール10の側面図である。本実施形態の冷却モジュール10は、上記第1実施形態の冷却モジュール10において、ダクト60に孔60c、60dを設けたものである。このため、以下、ダクト60の孔60c、60dについて説明し、その他の構成の説明を省略する。なお、図10において、図3と同一の符号は、同一のものを示している。 FIG. 10 is a side view of the cooling module 10 of the present embodiment. The cooling module 10 of the present embodiment is obtained by providing holes 60c and 60d in the duct 60 in the cooling module 10 of the first embodiment. For this reason, hereinafter, the holes 60c and 60d of the duct 60 will be described, and description of other configurations will be omitted. In FIG. 10, the same reference numerals as those in FIG. 3 denote the same components.
 孔60c、60dは、ダクト60の開口部61、62の間において空気流路60a内からダクト60の外側に開口されている。孔60c、60dは、各被冷却部品(図示省略)に対して天地方向上側に位置する。各被冷却部品として、例えば、オルタネータ、ウエストゲートバルブ、その他の部品がある。孔60dは、孔60cに対して後側開口部62側に配置されている。 The holes 60 c and 60 d are opened from the inside of the air flow path 60 a to the outside of the duct 60 between the openings 61 and 62 of the duct 60. The holes 60c and 60d are located on the Tenchi region improvement side with respect to each component to be cooled (not shown). Examples of each component to be cooled include an alternator, a waste gate valve, and other components. The hole 60d is disposed on the rear opening 62 side with respect to the hole 60c.
 このように構成される本実施形態では、自動車が高速で走行しているときには、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、およびラジエータ30を通過した車両走行風としての空気流の一部が、図10中矢印200の如く、前側開口部61を通してダクト60の空気流路60aに導入されて後側開口部62からエキゾーストマニホールド5側に吹き出される。 In the present embodiment configured as described above, when the automobile is traveling at a high speed, the air flow as the vehicle traveling wind that has passed through the front grill opening 2, the condenser 20, and the radiator 30 from the front side in the vehicle longitudinal direction of the automobile. 10 is introduced into the air flow path 60a of the duct 60 through the front opening 61 and blown out from the rear opening 62 toward the exhaust manifold 5 as indicated by an arrow 200 in FIG.
 このとき、空気流路60aから孔60c、60dを通してダクト60の外側に空気流が矢印201、202の如く吹き出される。このため、各被冷却部品に対して孔60c、60dから空気流を吹き出すことができる。このため、各被冷却部品をスポット冷却することができる。 At this time, an air flow is blown out from the air flow path 60a through the holes 60c and 60d to the outside of the duct 60 as indicated by arrows 201 and 202. For this reason, an air flow can be blown out from the holes 60c and 60d with respect to each component to be cooled. For this reason, each component to be cooled can be spot-cooled.
 以上説明した本実施形態によれば、ダクト60のうち開口部61、62の間には、空気流路60a内からダクト60の外側に開口させる孔60c、60dが設けられている。したがって、孔60c、60dから各被冷却部品に対して空気流を吹き出すことにより、エキゾーストマニホールド5以外の各種の各被冷却部品をスポット冷却することができる。 According to the present embodiment described above, between the openings 61 and 62 of the duct 60, the holes 60c and 60d that are opened from the air flow path 60a to the outside of the duct 60 are provided. Therefore, by blowing an air flow from the holes 60c and 60d to each cooled component, various cooled components other than the exhaust manifold 5 can be spot-cooled.
(第4実施形態)
 本第4実施形態では、上記第1の実施形態の冷却モジュール10において、ダクト60のうち前側開口部61から後側開口部62に向けて流れる空気流を増加させるために、ダクト60のうち開口部61、62の間に空気流を吹き出す空気吹出構造110を設けた例について、図11~図15を用いて説明する。
(Fourth embodiment)
In the fourth embodiment, in the cooling module 10 of the first embodiment, in order to increase the air flow flowing from the front opening 61 toward the rear opening 62 in the duct 60, the opening in the duct 60 is opened. An example in which an air blowing structure 110 for blowing an air flow between the portions 61 and 62 will be described with reference to FIGS.
 図11は、本実施形態の冷却モジュール10の内部構成を車両前側から視た斜視図である。図12は、冷却モジュール10を天地方向上側から視た斜視図である。図13は、冷却モジュール10の空気吹出構造110の内部を示す断面図である。 FIG. 11 is a perspective view of the internal configuration of the cooling module 10 of the present embodiment as viewed from the front side of the vehicle. FIG. 12 is a perspective view of the cooling module 10 as viewed from the heaven region improvement side. FIG. 13 is a cross-sectional view showing the inside of the air blowing structure 110 of the cooling module 10.
 本実施形態の冷却モジュール10は、上記第1実施形態の冷却モジュール10に対して空気吹出構造110が追加されて、かつバルブ70が廃止されたものである。そこで、以下、空気吹出構造110について説明し空気吹出構造110以外の他の構成の説明を省略する。 The cooling module 10 of the present embodiment is obtained by adding the air blowing structure 110 to the cooling module 10 of the first embodiment and eliminating the valve 70. Therefore, hereinafter, the air blowing structure 110 will be described, and description of other components other than the air blowing structure 110 will be omitted.
 空気吹出構造110は、ダクト60のうち前側開口部61側に設けられている。空気吹出構造110は、吸込口111(吸入口)、吹出口112、および空気通路113、114から構成されている。 The air blowing structure 110 is provided in the duct 60 on the front opening 61 side. The air blowing structure 110 includes a suction port 111 (suction port), a blower port 112, and air passages 113 and 114.
 吸込口111は、シュラウド50のうち前側開口部61に対して天地方向下側に配置されている。吸込口111は、シュラウド50のうちラジエータ30に対して車両進行方向後側において、ラジエータ30に向けて(すなわち、車両進行方向前側)に向けて開口されている。 The suction port 111 is disposed on the lower side of the shroud 50 with respect to the front opening 61 in the vertical direction. The suction port 111 is opened toward the radiator 30 (that is, the front side in the vehicle traveling direction) on the rear side of the shroud 50 with respect to the radiator 30 in the vehicle traveling direction.
 吹出口112は、ダクト60の前側開口部61を囲む環状に形成されて、ダクト60内の後側開口部62側に向けて開口されている。吹出口112は、吸込口111から吸い込んだ空気流をダクト60内の後側開口部62側に吹き出す。 The air outlet 112 is formed in an annular shape surrounding the front opening 61 of the duct 60 and opens toward the rear opening 62 in the duct 60. The air outlet 112 blows out the air flow sucked from the air inlet 111 toward the rear opening 62 in the duct 60.
 空気通路113は、吸込口111から吸い込んだ空気流を吹出口112側に導くように形成されている。空気通路113は、ダクト60に対して天地方向下側に形成されている。 The air passage 113 is formed so as to guide the air flow sucked from the suction port 111 to the air outlet 112 side. The air passage 113 is formed below the duct 60 in the vertical direction.
 空気通路114は、空気流路60aを囲むように環状に形成されている。空気通路114は、空気通路113を流れる空気流を吹出口112に導く。空気通路113内には、電動ファン40Aが配置されている。電動ファン40Aは、軸流ファンとこの軸流ファンを駆動する電動モータとから構成されている。 The air passage 114 is formed in an annular shape so as to surround the air flow path 60a. The air passage 114 guides the airflow flowing through the air passage 113 to the air outlet 112. An electric fan 40 </ b> A is disposed in the air passage 113. The electric fan 40A includes an axial fan and an electric motor that drives the axial fan.
 次に、本実施形態の冷却モジュール10の電気的構成について図14を参照して説明する。 Next, the electrical configuration of the cooling module 10 of this embodiment will be described with reference to FIG.
 本実施形態の電子制御装置90は、メモリに記憶されるコンピュータプログラムにしたがって、ファン制御処理を実施する。電子制御装置90は、ファン制御処理を実行する際に、イグニッションスイッチ92のスイッチ信号、温度センサ105の検出値などに基づいて、電動ファン40、40Aをそれぞれ制御する。温度センサ105は、フロントエンジンルーム1内の温度として、フロントエンジンルーム1内の空気温度を検出する。より具体的には、温度センサ105は、フロントエンジンルーム1内のうち走行用エンジン3に対して車両進行方向後側の空気温度を検出してもよい。或いは、ダクト60内の空気温度(具体的には、後側開口部62側の空気温度)を温度センサ105によって検出し、この検出した温度を走行用エンジン3に対して車両進行方向後側の空気温度として検出してもよい。つまり、走行用エンジン3に対して車両進行方向後側の空気温度の代替えにダクト60内の空気温度を検出してもよい。温度センサ105は、第3温度センサに対応する。 The electronic control device 90 according to the present embodiment performs fan control processing according to a computer program stored in the memory. When executing the fan control process, the electronic control unit 90 controls the electric fans 40 and 40A based on the switch signal of the ignition switch 92, the detection value of the temperature sensor 105, and the like. The temperature sensor 105 detects the air temperature in the front engine room 1 as the temperature in the front engine room 1. More specifically, the temperature sensor 105 may detect the air temperature on the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1. Alternatively, the air temperature in the duct 60 (specifically, the air temperature on the rear opening 62 side) is detected by the temperature sensor 105, and the detected temperature is detected on the rear side in the vehicle traveling direction with respect to the traveling engine 3. You may detect as air temperature. That is, the air temperature in the duct 60 may be detected instead of the air temperature on the rear side in the vehicle traveling direction with respect to the traveling engine 3. The temperature sensor 105 corresponds to a third temperature sensor.
 次に、電子制御装置90の制御処理について図15を参照して説明する。 Next, control processing of the electronic control unit 90 will be described with reference to FIG.
 図15は、ファン制御処理を示すフローチャートである。電子制御装置90は、図15のフローチャートにしたがって、ファン制御処理を実行する。 FIG. 15 is a flowchart showing the fan control process. The electronic control unit 90 executes fan control processing according to the flowchart of FIG.
 まず、S300において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3(図15中ENGと記す)が稼働しているか否かを判定する。 First, in S300, based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 (denoted as ENG in FIG. 15) is operating.
 イグニッションスイッチ92がオンしている場合には、走行用エンジン3が稼働(ON)しているとして、S300においてYESと判定する。 If the ignition switch 92 is on, it is determined that the traveling engine 3 is operating (ON), and YES is determined in S300.
 次に、S300において、水温センサ102の検出値に基づいて、ラジエータ30に流れるエンジン冷却水の温度が水温T1以上であるか否かを判定する。 Next, in S300, based on the detection value of the water temperature sensor 102, it is determined whether or not the temperature of the engine cooling water flowing through the radiator 30 is equal to or higher than the water temperature T1.
 このとき、エンジン冷却水の温度が水温T1以上であるときには、S320でYESと判定して、電動ファン(図中メインファンと記す)40を作動させる(S320)。水温T1は、第1温度に対応する。 At this time, when the temperature of the engine cooling water is equal to or higher than the water temperature T1, it is determined YES in S320, and the electric fan (denoted as a main fan in the figure) 40 is operated (S320). The water temperature T1 corresponds to the first temperature.
 次に、S330において、水温センサ102の検出値に基づいて、ラジエータ30に流れるエンジン冷却水の温度が水温T2(>T1)以上であるか否かを判定する。水温T2は、第2温度に対応する。 Next, in S330, based on the detected value of the water temperature sensor 102, it is determined whether or not the temperature of the engine cooling water flowing through the radiator 30 is equal to or higher than the water temperature T2 (> T1). The water temperature T2 corresponds to the second temperature.
 このとき、エンジン冷却水の温度が水温T2以上であるときには、S330でYESと判定して、電動ファン40A(サブファンと記す)を作動させる(S340)。 At this time, when the temperature of the engine cooling water is equal to or higher than the water temperature T2, it is determined YES in S330, and the electric fan 40A (referred to as a sub fan) is operated (S340).
 一方、エンジン冷却水の温度が水温T1未満であるときには、S320でNOと判定して、S300に戻る。このため、電動ファン40、40Aをそれぞれ停止させる。 On the other hand, when the temperature of the engine cooling water is lower than the water temperature T1, NO is determined in S320, and the process returns to S300. For this reason, the electric fans 40 and 40A are stopped.
 このように、エンジン冷却水の温度が水温T1未満であると判定したときには、電動ファン40、40Aを停止させる。エンジン冷却水の温度が水温T1以上で、かつ水温T2未満であると判定したときには、電動ファン40、40Aのうち電動ファン40を作動させる。エンジン冷却水の温度が水温T2以上であると判定したときには、電動ファン40、40Aをそれぞれ作動させる。 Thus, when it is determined that the temperature of the engine cooling water is lower than the water temperature T1, the electric fans 40 and 40A are stopped. When it is determined that the temperature of the engine cooling water is equal to or higher than the water temperature T1 and lower than the water temperature T2, the electric fan 40 of the electric fans 40 and 40A is operated. When it is determined that the temperature of the engine cooling water is equal to or higher than the water temperature T2, the electric fans 40 and 40A are operated.
 また、上記S300において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3が停止しているとしてNOと判定した場合には、次のS350、370、390において次のように判定を行う。 If it is determined in S300 that the traveling engine 3 is stopped based on the output signal of the ignition switch 92 as NO, the following determination is performed in the following S350, 370, and 390.
 S350では、温度センサ105の検出値に基づいて、フロントエンジンルーム1内の空気温度が気温T3以上で、かつ気温T4未満であるか否かを判定する。気温T3は第3温度に対応し、気温T4は第4温度に対応する。 In S350, based on the detection value of the temperature sensor 105, it is determined whether or not the air temperature in the front engine room 1 is equal to or higher than the temperature T3 and lower than the temperature T4. The temperature T3 corresponds to the third temperature, and the temperature T4 corresponds to the fourth temperature.
 S370では、温度センサ105の検出値に基づいて、フロントエンジンルーム1内の空気温度が気温T4以上で、かつ気温T5未満であるか否かを判定する。気温T5は第5温度に対応する。 In S370, based on the detection value of the temperature sensor 105, it is determined whether or not the air temperature in the front engine room 1 is equal to or higher than the temperature T4 and lower than the temperature T5. The temperature T5 corresponds to the fifth temperature.
 S390では、温度センサ105の検出値に基づいて、フロントエンジンルーム1内の空気温度が気温T5以上であるか否かを判定する。 In S390, based on the detection value of the temperature sensor 105, it is determined whether or not the air temperature in the front engine room 1 is equal to or higher than the temperature T5.
 例えば、フロントエンジンルーム1内の空気温度が気温T3以上で、かつ気温T4未満であるときには、S350でYESと判定して、電動ファン40Aを作動させる(S360)。 For example, when the air temperature in the front engine room 1 is equal to or higher than the temperature T3 and lower than the temperature T4, it is determined YES in S350 and the electric fan 40A is operated (S360).
 フロントエンジンルーム1内の空気温度が気温T4以上で、かつ気温T5未満であるときには、S370でYESと判定して、S380において、電動ファン40を作動させる。 When the air temperature in the front engine room 1 is equal to or higher than the temperature T4 and lower than the temperature T5, it is determined YES in S370, and the electric fan 40 is operated in S380.
 フロントエンジンルーム1内の空気温度が気温T5以上であるときには、S390でYESと判定して、S400において、電動ファン40、40Aをそれぞれ作動させる。 When the air temperature in the front engine room 1 is equal to or higher than the temperature T5, it is determined YES in S390, and the electric fans 40 and 40A are operated in S400, respectively.
 このように走行用エンジン3の停止時には、フロントエンジンルーム1内の空気温度が高くなると、電動ファン40、40Aのいずれかを作動させる。 Thus, when the traveling engine 3 is stopped, when the air temperature in the front engine room 1 becomes high, one of the electric fans 40 and 40A is operated.
 次に、本実施形態の冷却モジュール10の具体的な動作について説明する。 Next, a specific operation of the cooling module 10 of this embodiment will be described.
 まず、自動車が走行しているときには、自動車の走行に伴って、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30、および電動ファン40を通過する車両走行風としての空気流が発生する。 First, when the automobile is traveling, an air flow as a vehicle traveling wind passing through the front grill opening 2, the capacitor 20, the radiator 30, and the electric fan 40 from the front side in the vehicle front-rear direction of the automobile as the automobile travels. Will occur.
 また、電動ファン40を作動させると、電動ファン40の作動に伴って、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30、導入流路50a、および電動ファン40を通過する空気流が発生する。 Further, when the electric fan 40 is operated, the front fan opening 2, the capacitor 20, the radiator 30, the introduction flow path 50a, and the electric fan 40 are passed from the front side in the vehicle front-rear direction of the automobile as the electric fan 40 is operated. Air flow is generated.
 このように、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30、および導入流路50aを通過した空気流の一部が、前側開口部61を通してダクト60に導入されて後側開口部62からエキゾーストマニホールド5側に吹き出される。 As described above, a part of the air flow that has passed through the front grille opening 2, the condenser 20, the radiator 30, and the introduction flow path 50a from the front side in the vehicle longitudinal direction of the automobile is introduced into the duct 60 through the front opening 61 and the rear. The air is blown out from the side opening 62 to the exhaust manifold 5 side.
 このため、ダクト60の後側開口部62から吹き出される空気流により、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンを空気流により冷却することができる。 Therefore, the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be cooled by the airflow by the airflow blown from the rear opening 62 of the duct 60.
 さらに、電動ファン40Aを作動させると、電動ファン40Aの作動に伴って、空気吹出構造110には、導入流路50aから吸込口111を通して空気流が吸い込まれる。この吸い込まれた空気流が空気通路113、114を通して吹出口112からダクト60の空気流路60a(矢印Kb参照)に吹き出される。このため、空気流路60a内の空気圧力が低下する。 Further, when the electric fan 40A is operated, an air flow is sucked into the air blowing structure 110 from the introduction flow path 50a through the suction port 111 as the electric fan 40A is operated. The sucked air flow is blown out from the air outlet 112 to the air flow path 60a (see arrow Kb) of the duct 60 through the air passages 113 and 114. For this reason, the air pressure in the air flow path 60a falls.
 これに伴って、導入流路50aから前側開口部61を通してダクト60の空気流路60aに流れる空気流の流速が増大する。よって、矢印Kaの如く、前側開口部61の周囲から巻き込んでダクト60の空気流路60a内に流れる空気流(以下、巻き込み空気流)が発生する。このため、この巻き込み空気流と吹出口112から吹き出される空気流とが後側開口部62側に流れる。したがって、ダクト60の後側開口部62からエキゾーストマニホールド5側に吹き出される空気流の風量が増大する。 Along with this, the flow velocity of the air flow flowing from the introduction channel 50a through the front opening 61 to the air channel 60a of the duct 60 increases. Therefore, as indicated by the arrow Ka, an air flow (hereinafter referred to as an entrained air flow) is generated that is wound around the front opening 61 and flows into the air flow path 60a of the duct 60. For this reason, this entrained air flow and the air flow blown out from the blower outlet 112 flow to the rear opening 62 side. Therefore, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases.
 以上説明した本実施形態によれば、冷却モジュール10では、空気吹出構造110は、ダクト60の空気流路60a内に向けて空気流を吹き出する吹出口112を備える。吹出口112からダクト60の開口部61、62の間(すなわち、空気流路60a)に吹き出される空気流により空気流路60aの気圧を下げることにより、前側開口部61の周囲からダクト60の空気流路60a内に流れる巻き込み空気流が発生する。このため、この巻き込み空気流と吹出口112から吹き出される空気流とが後側開口部62側に流れる。したがって、ダクト60の後側開口部62から、走行用エンジン3の後方側に向けて吹き出される空気流の風量を増やすことができる。このため、フロントエンジンルーム1内からその床下側に流れる空気流を増大させることにより、フロントエンジンルーム1内の通風性を向上することができる。よって、走行用エンジン3の車両進行方向後側から熱を確実にフロントエンジンルーム1の外側に排出することができる。つまり、エキゾーストマニホールド5、触媒装置、および、ターボチャージャー用タービン等を空気流により確実に冷却することができる。 According to the present embodiment described above, in the cooling module 10, the air blowing structure 110 includes the air outlet 112 that blows an air flow toward the air flow path 60 a of the duct 60. By reducing the air pressure of the air flow path 60a by the air flow blown between the openings 61 and 62 of the duct 60 from the air outlet 112 (that is, the air flow path 60a), The entrainment air flow which flows in the air flow path 60a is generated. For this reason, this entrained air flow and the air flow blown out from the blower outlet 112 flow to the rear opening 62 side. Therefore, the air volume of the airflow blown out from the rear opening 62 of the duct 60 toward the rear side of the traveling engine 3 can be increased. For this reason, the ventilation property in the front engine room 1 can be improved by increasing the airflow which flows from the front engine room 1 to the floor lower side. Therefore, heat can be reliably discharged to the outside of the front engine room 1 from the rear side of the traveling engine 3 in the vehicle traveling direction. That is, the exhaust manifold 5, the catalyst device, the turbocharger turbine, and the like can be reliably cooled by the air flow.
 このため、自動車の登坂走行時などの、フロントエンジンルーム1内に流れる車両走行風が十分に確保できない場合などでも、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービン等を空気流により確実に冷却することができる。 For this reason, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc. are reliably cooled by the airflow even when the vehicle traveling wind flowing in the front engine room 1 cannot be secured sufficiently, such as when the vehicle is traveling uphill. can do.
 一般的に、走行用エンジン3からその周辺に配置される周辺部品に対して与える熱による悪影響を抑制する断熱材としてインシュレータが用いられる。このため、走行用エンジン3からその周辺に多くの熱が発生する場合には、大量のインシュレータが用いられる。 Generally, an insulator is used as a heat insulating material that suppresses an adverse effect due to heat applied from the traveling engine 3 to peripheral components arranged around the engine. For this reason, when a lot of heat is generated around the traveling engine 3, a large amount of insulators are used.
 これに対して、本実施形態では、上述の如く、走行用エンジン3の後方側を空気流により確実に冷却することができる。このため、走行用エンジン3から周辺部品に与える熱量を抑制することができる。したがって、インシュレータの使用個数を減らすことができる。これにより、自動車の軽量化やコストダウンを図ることができる。さらに、フロントエンジンルーム1内において、熱に弱い電子部品の搭載自由度を向上することができる。 In contrast, in the present embodiment, as described above, the rear side of the traveling engine 3 can be reliably cooled by the air flow. For this reason, the amount of heat given to the peripheral parts from the traveling engine 3 can be suppressed. Therefore, the number of insulators used can be reduced. Thereby, the weight reduction and cost reduction of a motor vehicle can be achieved. Furthermore, in the front engine room 1, the degree of freedom of mounting electronic components that are vulnerable to heat can be improved.
 本実施形態では、ダクト60の後側開口部62から、上述の如く、走行用エンジン3の後方側に向けて吹き出される空気流の風量を増やすことにより、フロントエンジンルーム1内からその床下側に流れる空気流を増大させる。このため、フロントエンジンルーム1内の空気温度を低下させることができる。したがって、走行用エンジン3の吸気される吸気温度を下げることができるので、走行用エンジン3にノック現象が生じることを抑制することができる。 In the present embodiment, as described above, by increasing the air volume of the air flow blown toward the rear side of the traveling engine 3 from the rear opening 62 of the duct 60, the floor underside from the front engine room 1 is obtained. Increase the airflow flowing through For this reason, the air temperature in the front engine room 1 can be lowered. Therefore, since the intake air temperature taken in by the traveling engine 3 can be lowered, the occurrence of a knock phenomenon in the traveling engine 3 can be suppressed.
 本実施形態では、走行用エンジン3の停止時において、電動ファン40Aの作動によって、ダクト60の後側開口部62からエキゾーストマニホールド5側に空気流を吹き出す。このため、フロントエンジンルーム1内からその床下側に流れる空気流を発生させることにより、フロントエンジンルーム1内の空気温度を下げることができる。 In the present embodiment, when the traveling engine 3 is stopped, an air flow is blown from the rear opening 62 of the duct 60 toward the exhaust manifold 5 by the operation of the electric fan 40A. For this reason, the air temperature in the front engine room 1 can be lowered by generating an air flow that flows from the inside of the front engine room 1 to the floor side.
 一般的に、自動車の停止時に、アイドリングストップは、フロントエンジンルーム1内の空気温度が所定温度以上になると実施されない。このため、フロントエンジンルーム1内の空気温度が所定温度以上になると、走行用エンジン3が始動されて、燃費が悪くなる。 Generally, idling stop is not performed when the air temperature in the front engine room 1 exceeds a predetermined temperature when the automobile is stopped. For this reason, when the air temperature in the front engine room 1 becomes equal to or higher than a predetermined temperature, the traveling engine 3 is started, and the fuel efficiency is deteriorated.
 これに対して、本実施形態では、自動車の停止時に、上述の如く、電動ファン40Aの作動によって、フロントエンジンルーム1内の空気温度を下げることができるので、アイドリングストップの実施時間を長くすることができるので、燃費が良くなる。 On the other hand, in the present embodiment, when the automobile is stopped, the air temperature in the front engine room 1 can be lowered by the operation of the electric fan 40A as described above, so that the idling stop execution time is lengthened. Can improve fuel efficiency.
 近年、フロントエンジンルーム1が縮小化されて、ダクト60を搭載するスペースに余裕がなく、ダクト60のサイズを大きくすることができない。これに対して、本実施形態では、上述の如く、空気吹出構造110によって、ダクト60の後側開口部62から、走行用エンジン3の後方側に向けて吹き出される空気流の風量を増やすことができる。したがって、ダクト60のサイズを大きくすることなく、走行用エンジン3の後方側、ひいては、フロントエンジンルーム1内の冷却効率を向上することができる。 In recent years, the front engine room 1 has been reduced, there is no room for mounting the duct 60, and the size of the duct 60 cannot be increased. In contrast, in the present embodiment, as described above, the air blowing structure 110 increases the air volume of the air flow blown from the rear opening 62 of the duct 60 toward the rear side of the traveling engine 3. Can do. Therefore, the cooling efficiency in the rear side of the traveling engine 3 and thus in the front engine room 1 can be improved without increasing the size of the duct 60.
 上記第4実施形態では、前側開口部61から後側開口部62に流れる空気流を増加させるため吹出口112を設けた例について説明したが、これに加えて、後側開口部62から前側開口部61に流れる空気流を増加させるため吹出口112aを設ける変形例について図16、図17を参照して説明する。 In the fourth embodiment, the example in which the air outlet 112 is provided in order to increase the airflow flowing from the front opening 61 to the rear opening 62 has been described. In addition to this, the front opening is provided from the rear opening 62. The modification which provides the blower outlet 112a in order to increase the airflow which flows into the part 61 is demonstrated with reference to FIG. 16, FIG.
 本変形例の空気吹出構造110は、吸込口111、吹出口112、112a、空気通路113、114a、114b、切替弁115、および仕切壁116から構成されている。 The air blowing structure 110 according to the present modification includes a suction port 111, air outlets 112 and 112a, air passages 113, 114a and 114b, a switching valve 115, and a partition wall 116.
 吸込口111は、上記第4実施形態と同様、シュラウド50のうちラジエータ30に対して車両進行方向後側において、ラジエータ30に向けて(すなわち、車両進行方向前側)に向けて開口されている。 Similarly to the fourth embodiment, the suction port 111 is opened toward the radiator 30 (that is, the front side in the vehicle traveling direction) on the rear side in the vehicle traveling direction with respect to the radiator 30 in the shroud 50.
 吹出口112は、上記第4実施形態と同様、ダクト60の前側開口部61を囲む環状に形成されて、ダクト60内の後側開口部62側に向けて開口されている。 The air outlet 112 is formed in an annular shape surrounding the front opening 61 of the duct 60 and is opened toward the rear opening 62 in the duct 60 as in the fourth embodiment.
 吹出口112aは、ダクト60の前側開口部61を囲む環状に形成されて、ダクト60内の前側開口部61側に向けて開口されている。 The air outlet 112 a is formed in an annular shape surrounding the front opening 61 of the duct 60 and opens toward the front opening 61 in the duct 60.
 空気通路113は、吸込口111から吸い込んだ空気流を吹出口112、112a側に導くように形成されている。 The air passage 113 is formed so as to guide the air flow sucked from the suction port 111 to the outlets 112 and 112a.
 空気通路114aは、空気流路60aを囲むように環状に形成されたもので、空気通路113を流れる空気流を吹出口112に導く。空気通路114bは、空気流路60aを囲むように環状に形成されたもので、空気通路113を流れる空気流を吹出口112aに導く。 The air passage 114 a is formed in an annular shape so as to surround the air passage 60 a, and guides the air flow flowing through the air passage 113 to the air outlet 112. The air passage 114b is formed in an annular shape so as to surround the air flow path 60a, and guides an air flow flowing through the air passage 113 to the air outlet 112a.
 切替弁115は、空気通路114a、114bの間において回転自在に支持されている。切替弁115は、吹出口112、112aのうち一方の吹出口と吸込口111との間を連通して他方の吹出口と吸込口111との間を閉じる。 The switching valve 115 is rotatably supported between the air passages 114a and 114b. The switching valve 115 communicates between one of the outlets 112 and 112a and the suction port 111 and closes between the other outlet and the suction port 111.
 切替弁115は、吹出口112、112aのうち一方の吹出口と吸込口111との間を連通して他方の吹出口と吸込口111との間を閉じる弁体と、およびこの弁体を駆動する電動アクチュエータとを備える。仕切壁116は、空気通路114a、114bの間において空気通路114a、114bを分離する。 The switching valve 115 communicates between one of the outlets 112 and 112a and the inlet 111 and closes the other outlet and the inlet 111, and drives the valve body. And an electric actuator. The partition wall 116 separates the air passages 114a and 114b between the air passages 114a and 114b.
 本変形例の電子制御装置90は、メモリに記憶されるコンピュータプログラムにしたがって、切替制御処理を実行する。電子制御装置90は、切替制御処理を実行する際に、イグニッションスイッチ92のスイッチ信号、温度センサ100の検出値、車速センサ101の検出値、水温センサ102の検出値、および油温センサ103の検出値に基づいて、切替弁115および電動送風機(サブファン)40Aを制御する。 The electronic control device 90 of the present modification executes the switching control process according to the computer program stored in the memory. When executing the switching control process, the electronic control unit 90 detects the switch signal of the ignition switch 92, the detected value of the temperature sensor 100, the detected value of the vehicle speed sensor 101, the detected value of the water temperature sensor 102, and the detected value of the oil temperature sensor 103. Based on the value, the switching valve 115 and the electric blower (sub fan) 40A are controlled.
 次に、本変形例における電子制御装置90の切替制御処理について説明する。 Next, the switching control process of the electronic control unit 90 in this modification will be described.
 図17は、切替制御処理を示すフローチャートである。電子制御装置90は、図17のフローチャートにしたがって、切替制御処理を実行する。図17において、図5と同一符号は、同一内容を示し、その説明を省略する。 FIG. 17 is a flowchart showing the switching control process. The electronic control unit 90 executes the switching control process according to the flowchart of FIG. 17, the same reference numerals as those in FIG. 5 indicate the same contents, and the description thereof is omitted.
 まず、S100において、イグニッションスイッチ92の出力信号に基づいて、走行用エンジン3(図5中ENGと記す)が稼働しているか否かを判定する。 First, in S100, based on the output signal of the ignition switch 92, it is determined whether or not the traveling engine 3 (denoted as ENG in FIG. 5) is operating.
 このとき、イグニッションスイッチ92がオンしている場合には、走行用エンジン3が稼働(ON)しているとして、S100においてYESと判定する。 At this time, if the ignition switch 92 is on, it is determined that the traveling engine 3 is operating (ON), and YES is determined in S100.
 次のS110において、車速センサ101の検出値に基づいて、自動車の速度が所定速度未満であるか否かを判定する。このとき、自動車の速度が所定速度以上である場合には、自動車の速度が高速であるとして、S110において、NOと判定する。 In the next S110, based on the detection value of the vehicle speed sensor 101, it is determined whether or not the vehicle speed is less than a predetermined speed. At this time, when the speed of the automobile is equal to or higher than the predetermined speed, it is determined that the speed of the automobile is high and NO is determined in S110.
 この場合、S120Aにおいて、切替弁115の正吹出制御処理を実行する。具体的には、切替弁115を制御して、吸込口111および吹出口112の間を開けて、かつ吸込口111および吹出口112aの間を閉じる。これに加えて、電動ファン40Aを作動させる。 In this case, the normal blowing control process of the switching valve 115 is executed in S120A. Specifically, the switching valve 115 is controlled to open between the inlet 111 and the outlet 112 and close between the inlet 111 and the outlet 112a. In addition, the electric fan 40A is operated.
 すると、電動ファン40Aの作動に伴って、空気吹出構造110には、導入流路50aから吸込口111を通して空気流が吸い込まれる。この吸い込まれた空気流が空気通路113、114aを通して吹出口112からダクト60の空気流路60aのうち後側開口部62側(矢印Kb参照)に吹き出される。このため、空気流路60a内の空気圧力が低下する。 Then, with the operation of the electric fan 40A, an air flow is sucked into the air blowing structure 110 from the introduction flow path 50a through the suction port 111. The sucked air flow is blown out from the outlet 112 to the rear opening 62 side (see arrow Kb) of the air flow path 60a of the duct 60 through the air passages 113 and 114a. For this reason, the air pressure in the air flow path 60a falls.
 これに伴って、上記第4実施形態と同様、前側開口部61の周囲から矢印Kaの如く巻き込んでダクト60の空気流路60a内に流れる巻き込み空気流が発生する。このため、巻き込み空気流と吹出口112から吹き出される空気流とが矢印Kcの如く空気流路60aに流れる。したがって、ダクト60の後側開口部62からエキゾーストマニホールド5側に吹き出される空気流の風量が増大する。 Along with this, as in the fourth embodiment, an entrained air flow that entrains from the periphery of the front opening 61 and flows into the air flow path 60a of the duct 60 is generated. For this reason, the entrained air flow and the air flow blown out from the air outlet 112 flow to the air flow path 60a as indicated by the arrow Kc. Therefore, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases.
 また、上記S110において、車速センサ101の検出値に基づいて、自動車の速度が所定速度未満であると判定した場合には、自動車の速度が低速であるとして、S110において、YESと判定する。この場合、S130Aにおいて、電動ファン40Aの作動を停止する。このため、吹出口112aから空気流が吹き出されることが停止される。 In S110, when it is determined that the speed of the automobile is less than the predetermined speed based on the detection value of the vehicle speed sensor 101, it is determined that the speed of the automobile is low and YES is determined in S110. In this case, the operation of the electric fan 40A is stopped in S130A. For this reason, blowing off the airflow from the outlet 112a is stopped.
 さらに、上記S100において、イグニッションスイッチ92がオフされているときには、走行用エンジン3が停止(OFF)しているとして、NOと判定する。このとき、S140において、走行用エンジン3を冷却すべきか否かを判定する。 Furthermore, in S100, when the ignition switch 92 is turned off, it is determined that the traveling engine 3 is stopped (OFF) and NO. At this time, in S140, it is determined whether or not the traveling engine 3 should be cooled.
 ここで、走行用エンジン3を冷却すべきであるとしてS140でYESと判定し、かつ、エキゾーストマニホールド5が高温であるとしてS150でYESと判定する。 Here, YES is determined in S140 because the traveling engine 3 is to be cooled, and YES is determined in S150 because the exhaust manifold 5 is hot.
 この場合、S160Aにおいて、切替弁115の逆吹出制御処理を実行する。具体的には、切替弁115を制御して、吸込口111および吹出口112aの間を開けて、かつ吸込口111および吹出口112の間を閉じる。これに加えて、電動ファン40Aを作動させる。 In this case, the reverse blowing control process of the switching valve 115 is executed in S160A. Specifically, the switching valve 115 is controlled to open between the inlet 111 and the outlet 112a and close between the inlet 111 and the outlet 112. In addition, the electric fan 40A is operated.
 すると、電動ファン40Aの作動に伴って、空気吹出構造110には、導入流路50aから吸込口111を通して空気流が吸い込まれる。この吸い込まれた空気流が空気通路113、114bを通して吹出口112aからダクト60の空気流路60aのうち前側開口部61側に吹き出される。このため、空気流路60a内の空気圧力が低下する。 Then, with the operation of the electric fan 40A, an air flow is sucked into the air blowing structure 110 from the introduction flow path 50a through the suction port 111. The sucked air flow is blown out through the air passages 113 and 114b from the outlet 112a to the front opening 61 side in the air flow path 60a of the duct 60. For this reason, the air pressure in the air flow path 60a falls.
 これに伴って、後側開口部62の周囲から巻き込んでダクト60の空気流路60a内に流れる巻き込み空気流が発生する。このため、巻き込み空気流と吹出口112aから吹き出される空気流とが矢印Keの如く空気流路60aに流れる。したがって、ダクト60の後側開口部62側から前側開口部61に流れる空気流の風量が増大する。 Along with this, an entrained air flow that entrains from around the rear opening 62 and flows into the air flow path 60a of the duct 60 is generated. For this reason, the entrained air flow and the air flow blown out from the outlet 112a flow into the air flow path 60a as indicated by an arrow Ke. Therefore, the air volume of the airflow flowing from the rear opening 62 side of the duct 60 to the front opening 61 is increased.
 また、上記S150において、温度センサ100の検出値に応じてエキゾーストマニホールド5の温度が所定温度P1未満であるときにはS150においてNOと判定する。この場合、S161Aにおいて、電動ファン40Aの作動を停止する。このため、吹出口112aから空気流が吹き出されることが停止される。 In S150, when the temperature of the exhaust manifold 5 is lower than the predetermined temperature P1 according to the detection value of the temperature sensor 100, NO is determined in S150. In this case, the operation of the electric fan 40A is stopped in S161A. For this reason, blowing off the airflow from the outlet 112a is stopped.
 さらに、上記S140において、走行用エンジン3を冷却する必要がないとしてNOと判定したときには、S162Aにおいて、電動ファン40Aの作動を停止する。このため、吹出口112aから空気流が吹き出されることが停止される。 Furthermore, when it is determined in S140 that the traveling engine 3 does not need to be cooled, the operation of the electric fan 40A is stopped in S162A. For this reason, blowing off the airflow from the outlet 112a is stopped.
 次に、本変形例の冷却モジュール10の具体的な動作について説明する。 Next, a specific operation of the cooling module 10 of this modification will be described.
 まず、自動車が走行しているときには、上記第4実施形態と同様に、自動車の車両前後方向前側からフロントグリル開口部2、コンデンサ20、ラジエータ30、および導入流路50aを通過した空気流の一部が、前側開口部61を通してダクト60に導入されて後側開口部62からエキゾーストマニホールド5側に吹き出される。 First, when the automobile is running, as in the fourth embodiment, one of the airflows passing through the front grill opening 2, the condenser 20, the radiator 30, and the introduction flow path 50a from the front side in the vehicle longitudinal direction of the automobile. The part is introduced into the duct 60 through the front opening 61 and blown out from the rear opening 62 to the exhaust manifold 5 side.
 さらに、切替弁115を制御して吸込口111および吹出口112の間を開けて、かつ吸込口111および吹出口112aの間を閉じる。これに加えて、電動ファン40Aを作動させる(S120A)。 Further, the switching valve 115 is controlled to open the space between the suction port 111 and the air outlet 112 and close the space between the air inlet 111 and the air outlet 112a. In addition to this, the electric fan 40A is operated (S120A).
 この場合、上述の如く、導入流路50aから吸込口111を通して吸い込まれた空気流が空気通路113、114aを通して吹出口112からダクト60の空気流路60aに吹き出される。このため、空気流路60a内の空気圧力が低下して、ダクト60の後側開口部62からエキゾーストマニホールド5側に吹き出される空気流の風量が増大する。 In this case, as described above, the air flow sucked from the inlet channel 50a through the suction port 111 is blown out from the outlet 112 to the air channel 60a of the duct 60 through the air passages 113 and 114a. For this reason, the air pressure in the air flow path 60a decreases, and the air volume of the air flow blown from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases.
 一方、走行用エンジン3の停止時に、電動ファン40の作動に伴って、エキゾーストマニホールド5側から吸い込んだ空気流をダクト60を通して導入流路50aに吹き出す。そして、この吹き出した空気流が電動ファン40側に吸い込まれる。これにより、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービンにより加熱された空気流をダクト60を通して電動ファン40側に移動させることができる。 On the other hand, when the traveling engine 3 is stopped, the air flow sucked from the exhaust manifold 5 side is blown out through the duct 60 to the introduction flow path 50a as the electric fan 40 is operated. The blown air flow is sucked into the electric fan 40 side. Thereby, the air flow heated by the exhaust manifold 5, the catalyst device, and the turbocharger turbine can be moved to the electric fan 40 side through the duct 60.
 さらに、切替弁115を制御して吸込口111および吹出口112の間を閉じて、かつ吸込口111および吹出口112aの間を開ける。これに加えて、電動ファン40Aを作動させる(S120A)。 Further, the switching valve 115 is controlled to close the space between the suction port 111 and the air outlet 112 and open the space between the air inlet 111 and the air outlet 112a. In addition to this, the electric fan 40A is operated (S120A).
 この場合、上述の如く、導入流路50aから吸込口111を通して吸い込まれた空気流が空気通路113、114aを通して吹出口112aからダクト60の空気流路60aに吹き出される。これにより、ダクト60の後側開口部62側から前側開口部61に流れる空気流の風量が増大する。 In this case, as described above, the air flow sucked from the inlet passage 50a through the suction port 111 is blown out from the outlet 112a to the air passage 60a of the duct 60 through the air passages 113 and 114a. Thereby, the air volume of the airflow which flows into the front side opening part 61 from the rear side opening part 62 side of the duct 60 increases.
 以上説明した本変形例によれば、走行用エンジン3の停止時に、電子制御装置90は、切替弁115を制御して吸込口111および吹出口112の間を閉じて、かつ吸込口111および吹出口112aの間を開ける。このため、エキゾーストマニホールド5側から後側開口部62側を通してダクト60内に吸入して前側開口部61から吹き出される空気流の風量が増大する。これにより、エキゾーストマニホールド5等により加熱された高温空気を確実にエキゾーストマニホールド5側から導入流路50a側に移動させることができる。このため、ラジエータ30を通過する空気流によりラジエータ30を冷却させつつ、エキゾーストマニホールド5等を冷却することができる。 According to the present modification described above, when the traveling engine 3 is stopped, the electronic control unit 90 controls the switching valve 115 to close the space between the suction port 111 and the air outlet 112, and the suction port 111 and the air outlet Open between the outlets 112a. For this reason, the air volume of the air flow sucked into the duct 60 from the exhaust manifold 5 side through the rear opening 62 side and blown out from the front opening 61 increases. Thereby, the high temperature air heated by the exhaust manifold 5 etc. can be reliably moved from the exhaust manifold 5 side to the introduction flow path 50a side. Therefore, the exhaust manifold 5 and the like can be cooled while the radiator 30 is cooled by the air flow passing through the radiator 30.
 一方、自動車の走行時に、電子制御装置90は、切替弁115を制御して吸込口111および吹出口112の間を開けて、かつ吸込口111および吹出口112aの間を閉じる。このため、ダクト60の後側開口部62からエキゾーストマニホールド5側に吹き出される空気流の風量が増大する。これにより、エキゾーストマニホールド5等を空気流を吹き出して冷却することができる。 On the other hand, when the automobile is running, the electronic control unit 90 controls the switching valve 115 to open the space between the suction port 111 and the air outlet 112 and close the space between the air inlet 111 and the air outlet 112a. For this reason, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 increases. Thereby, the exhaust manifold 5 and the like can be cooled by blowing an air flow.
 (第5実施形態)
 上記第4実施形態では、ダクト60を流れる空気流の風量を増加させるために、空気吹出構造110を設けた例について説明したが、これに代えて、図18に示すように、電動ファン40Aをダクト60内に配置した本第5実施形態について説明する。
(Fifth embodiment)
In the fourth embodiment, the example in which the air blowing structure 110 is provided in order to increase the air volume of the airflow flowing through the duct 60 has been described. However, instead of this, as shown in FIG. The fifth embodiment arranged in the duct 60 will be described.
 図18に本実施形態の冷却モジュール10のダクト60の断面図を示す。 FIG. 18 shows a cross-sectional view of the duct 60 of the cooling module 10 of the present embodiment.
 本実施形態の冷却モジュール10では、空気吹出構造110が廃止されており、電動ファン40Aは、空気吹出構造110内ではなく、ダクト60のうち前側開口部61側に配置されている。電動ファン40Aは、導入流路50aから前側開口部61を通してダクト60内に空気流を吸い込むことにより、ダクト60の空気流路60aに流れる空気流を発生させる。 In the cooling module 10 of the present embodiment, the air blowing structure 110 is abolished, and the electric fan 40A is arranged not on the air blowing structure 110 but on the front opening 61 side of the duct 60. The electric fan 40 </ b> A generates an air flow that flows into the air flow path 60 a of the duct 60 by sucking an air flow from the introduction flow path 50 a into the duct 60 through the front opening 61.
 このため、電動ファン40Aの作動によって、導入流路50aから前側開口部61を通してダクト60の空気流路60aに流れる空気流の風量を増大させることができる。したがって、ダクト60の後側開口部62からエキゾーストマニホールド5側に吹き出される空気流の風量を増大させることができる。これに加えて、本実施形態の電子制御装置90は、上記第4実施形態と同様に、電動ファン40、40Aを制御する。このため、上記第4実施形態と同様に、走行用エンジン3の後方側(例えば、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービン等)を空気流により確実に冷却することができる。 For this reason, by the operation of the electric fan 40A, it is possible to increase the air volume of the air flow flowing from the introduction flow path 50a through the front opening 61 to the air flow path 60a of the duct 60. Therefore, the air volume of the air flow blown out from the rear opening 62 of the duct 60 toward the exhaust manifold 5 can be increased. In addition to this, the electronic control device 90 of the present embodiment controls the electric fans 40 and 40A as in the fourth embodiment. Therefore, similarly to the fourth embodiment, the rear side of the traveling engine 3 (for example, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc.) can be reliably cooled by the airflow.
 (第6実施形態)
 上記第4実施形態では、電動ファン40Aをダクト60の前側開口部61側に配置した例について説明したが、これに代えて、電動ファン40Aをダクト60の後側開口部62側に配置した本第6実施形態について説明する。
(Sixth embodiment)
In the fourth embodiment, the example in which the electric fan 40A is disposed on the front opening 61 side of the duct 60 has been described. Instead, the electric fan 40A is disposed on the rear opening 62 side of the duct 60. A sixth embodiment will be described.
 図19に本実施形態の冷却モジュール10のダクト60の断面図を示す。 FIG. 19 shows a cross-sectional view of the duct 60 of the cooling module 10 of the present embodiment.
 本実施形態の冷却モジュール10では、空気吹出構造110が廃止されており、電動ファン40Aは、空気吹出構造110内ではなく、ダクト60のうち後側開口部62側に配置されている。電動ファン40Aは、後側開口部62から走行用エンジン3の車両進行方向後側に空気流を吹き出すことにより、導入流路50aから前側開口部61を通してダクト60の空気流路60aに流れる空気流を発生させる。このため、電動ファン40Aの作動によって、導入流路50aから前側開口部61を通してダクト60の空気流路60aに流れる空気流の風量を増大させることができる。 In the cooling module 10 of the present embodiment, the air blowing structure 110 is abolished, and the electric fan 40A is arranged not on the air blowing structure 110 but on the rear opening 62 side of the duct 60. The electric fan 40A blows an air flow from the rear opening 62 to the rear side of the traveling engine 3 in the vehicle traveling direction, whereby an air flow flowing from the introduction passage 50a to the air passage 60a of the duct 60 through the front opening 61. Is generated. For this reason, the operation | movement of 40 A of electric fans can increase the air volume of the airflow which flows into the air flow path 60a of the duct 60 through the front side opening part 61 from the introduction flow path 50a.
 これに加えて、本実施形態の電子制御装置90は、上記第4実施形態と同様に、電動ファン40、40Aを制御する。このため、上記第4実施形態と同様に、走行用エンジン3の後方側(例えば、エキゾーストマニホールド5、触媒装置、およびターボチャージャー用タービン等)を空気流により確実に冷却することができる。 In addition to this, the electronic control unit 90 of the present embodiment controls the electric fans 40 and 40A as in the fourth embodiment. Therefore, similarly to the fourth embodiment, the rear side of the traveling engine 3 (for example, the exhaust manifold 5, the catalyst device, the turbocharger turbine, etc.) can be reliably cooled by the airflow.
 (他の実施形態)
 上記第1~第3の実施形態では、ダクト60の空気流路60aを開閉するバルブ70を設けた例について説明したが、これに代えて、バルブ70を削除してもよい。
(Other embodiments)
In the first to third embodiments, the example in which the valve 70 for opening and closing the air flow path 60a of the duct 60 is provided has been described, but the valve 70 may be omitted instead.
 上記第1~第3の実施形態では、ダクト60の前側開口部61側にバルブ70を設けた例について説明したが、これに代えて、ダクト60の開口部61、62の間にバルブ70を設けてもよく、或いはダクト60の後側開口部62側にバルブ70を設けてもよい。 In the first to third embodiments, the example in which the valve 70 is provided on the front opening 61 side of the duct 60 has been described. Instead, the valve 70 is provided between the openings 61 and 62 of the duct 60. Alternatively, the valve 70 may be provided on the rear opening 62 side of the duct 60.
 上記第1~第3の実施形態では、走行用エンジン3が稼働しているとき電動ファン40を作動させる例について説明したが、これに加えて、自動車の速度が所定速度以上である高速走行時に電動ファン40を停止させるようにしてもよい。 In the first to third embodiments, the example in which the electric fan 40 is operated when the traveling engine 3 is operating has been described, but in addition to this, during high speed traveling in which the speed of the automobile is equal to or higher than a predetermined speed. The electric fan 40 may be stopped.
 上記第1~第3の実施形態では、走行用エンジン3を冷却する熱媒体の温度を検出するセンサとして、熱媒体としてのエンジン冷却水の温度を検出する水温センサ102と、熱媒体としてのエンジンオイルの温度を検出する油温センサ103とを用いた例について説明したが、これに代えて、次のようにしてもよい。すなわち、水温センサ102および油温センサ103のうち一方を用いてもよい。 In the first to third embodiments, as a sensor for detecting the temperature of the heat medium for cooling the traveling engine 3, the water temperature sensor 102 for detecting the temperature of the engine coolant as the heat medium, and the engine as the heat medium. Although the example using the oil temperature sensor 103 for detecting the temperature of the oil has been described, the following may be used instead. That is, one of the water temperature sensor 102 and the oil temperature sensor 103 may be used.
 例えば、水温センサ102を用いてS140の判定を実施する場合には、エンジン冷却水が所定温度以上であるとき、走行用エンジン3を冷却すべきであるとしてS140にてYESと判定する。エンジン冷却水が所定温度未満であるとき、走行用エンジン3を冷却する必要がないとしてS140にてNOと判定する。 For example, when the determination of S140 is performed using the water temperature sensor 102, when the engine coolant is equal to or higher than a predetermined temperature, it is determined YES in S140 that the traveling engine 3 should be cooled. When the engine coolant is lower than the predetermined temperature, NO is determined in S140 because it is not necessary to cool the traveling engine 3.
 一方、油温センサ103の検出値を用いてS140の判定を実施する場合には、エンジンオイルが所定温度以上であるときには、走行用エンジン3を冷却すべきであるとしてS140にてYESと判定する。エンジンオイルが所定温度未満であるときには、走行用エンジン3を冷却する必要がないとしてS140にてNOと判定する。 On the other hand, when the determination in S140 is performed using the detection value of the oil temperature sensor 103, it is determined YES in S140 that the traveling engine 3 should be cooled when the engine oil is at a predetermined temperature or higher. . When the engine oil is lower than the predetermined temperature, NO is determined in S140 because it is not necessary to cool the traveling engine 3.
 上記第1~第6の実施形態では、熱媒体としてのエンジン冷却水を冷却するラジエータ30を車載熱交換器として用いた例について説明したが、これに代えて、熱媒体としてのエンジンオイルを冷却するオイルクーラを用いてもよい。 In the first to sixth embodiments, the example in which the radiator 30 that cools the engine coolant as the heat medium is used as the in-vehicle heat exchanger has been described. Instead, the engine oil as the heat medium is cooled. An oil cooler may be used.
 上記第1~第6の実施形態では、走行用エンジン3の車両幅方向にダクト60を配置した例について説明したが、これに代えて、走行用エンジン3に対して天地方向上側にダクト60を配置してもよい。 In the first to sixth embodiments, the example in which the duct 60 is disposed in the vehicle width direction of the traveling engine 3 has been described, but instead, the duct 60 is disposed on the heaven region improvement side with respect to the traveling engine 3. You may arrange.
 上記第1~第3の実施形態では、図5、図8のS160において、バルブ70の開度を一定にした例について説明したが、これに代えて、温度センサ100の検出温度に基づいて、電動モータ80を制御してバルブ70の開度を制御してもよい。この場合、エキゾーストマニホールド5の温度が高くなるほど、バルブ70の開度を徐々に大きくすることになる。 In the first to third embodiments, the example in which the opening degree of the valve 70 is made constant in S160 of FIGS. 5 and 8 has been described, but instead, based on the detected temperature of the temperature sensor 100, The opening degree of the valve 70 may be controlled by controlling the electric motor 80. In this case, the opening degree of the valve 70 is gradually increased as the temperature of the exhaust manifold 5 becomes higher.
 上記第1~第6の実施形態では、電動ファン40とバルブ70とを共通の電子制御装置90で制御した例について説明したが、これに代えて、電動ファン40とバルブ70とを異なる電子制御装置で制御してもよい。 In the first to sixth embodiments, the example in which the electric fan 40 and the valve 70 are controlled by the common electronic control unit 90 has been described. Instead, the electric fan 40 and the valve 70 are controlled differently. You may control by an apparatus.
 上記第1~第3の実施形態では、電子制御装置90がバルブ70を自動制御で開閉させる例について説明したが、これに代えて、バルブ70を手動で開閉させるようにしてもよい。 In the first to third embodiments, the example in which the electronic control unit 90 opens and closes the valve 70 by automatic control has been described, but instead, the valve 70 may be manually opened and closed.
 上記第1~第6の実施形態では、ラジエータ30に対して車両進行方向前側にフロントグリル開口部2を設けた例について説明したが、これに代えて、次のようにしてもよい。すなわち、フロントグリル開口部2としては、フロントエンジンルーム1からフロントグリル4の車両進行方向前方に連通する開口部であるならば、ラジエータ30に対して車両幅方向にフロントグリル開口部2をオフセットして配置してもよい。 In the first to sixth embodiments, the example in which the front grille opening 2 is provided on the front side in the vehicle traveling direction with respect to the radiator 30 has been described, but the following may be used instead. That is, if the front grille opening 2 is an opening communicating from the front engine room 1 to the front of the front grille 4 in the vehicle traveling direction, the front grille opening 2 is offset in the vehicle width direction with respect to the radiator 30. May be arranged.
 上記第1~第6の実施形態では、フロント開口部をフロントグリル4に形成したフロントグリル開口部2とした例について説明したが、これに代えて、フロント開口部を、自動車のうちフロントグリル4以外の部位に形成してもよい。つまり、フロントエンジンルーム1に対して車両進行方向前側以外の部位にフロント開口部を配置してもよい。例えば、フロントエンジンルーム1を天地方向上側から閉じるトランクリットにフロント開口部を形成してもよい。 In the first to sixth embodiments described above, the example in which the front opening is the front grill opening 2 formed in the front grill 4 has been described, but instead the front opening is used as the front grill 4 of the automobile. You may form in site | parts other than. That is, the front opening may be disposed at a portion other than the front side in the vehicle traveling direction with respect to the front engine room 1. For example, the front opening may be formed in a trunk lit that closes the front engine room 1 from the Tenchi region improvement side.
 上記第1~第3の実施形態では、温度センサ100によって、エキゾーストマニホールド5の温度としてエキゾーストマニホールド5の表面温度を検出した例について説明したが、これに代えて、次のようにしてもよい。 In the first to third embodiments, the example in which the surface temperature of the exhaust manifold 5 is detected as the temperature of the exhaust manifold 5 by the temperature sensor 100 has been described, but the following may be used instead.
 すなわち、温度センサ100によって、エキゾーストマニホールド5の温度としてエキゾーストマニホールド5の内部温度を検出してもよい。或いは、温度センサ100によって、エキゾーストマニホールド5の温度としてエキゾーストマニホールド5の周囲温度を検出してもよい。 That is, the temperature sensor 100 may detect the internal temperature of the exhaust manifold 5 as the temperature of the exhaust manifold 5. Alternatively, the ambient temperature of the exhaust manifold 5 may be detected by the temperature sensor 100 as the temperature of the exhaust manifold 5.
 或いは、ダクト60内に温度センサ100を配置して、ダクト60の内部の温度を温度センサ100によって検出する。そして、この検出した温度をエキゾーストマニホールド5の温度としてもよい。この場合、ダクト60のうち後側開口部62側の温度を温度センサ100によって検出することが好ましい。つまり、エキゾーストマニホールド5の温度の代替えにダクト60内の空気温度を検出する。 Alternatively, the temperature sensor 100 is arranged in the duct 60 and the temperature inside the duct 60 is detected by the temperature sensor 100. The detected temperature may be the temperature of the exhaust manifold 5. In this case, it is preferable that the temperature sensor 100 detects the temperature of the duct 60 on the rear opening 62 side. That is, the air temperature in the duct 60 is detected instead of the temperature of the exhaust manifold 5.
 上記第3の実施形態では、孔60c、60dを各被冷却部品に対して天地方向上側に配置した例について説明したが、これに代えて、孔60c、60dを各被冷却部品に対して車両幅方向に配置してもよい。 In the third embodiment, the example in which the holes 60c and 60d are arranged on the heaven region improvement side with respect to each cooled component has been described. Instead, the holes 60c and 60d are mounted on the vehicle with respect to each cooled component. You may arrange | position in the width direction.
 上記第3の実施形態では、ダクト60において空気流路内からその外側に開口させる孔として、2つの孔(60c、60d)を用いた例について説明したが、これに限らず、ダクト60において空気流路内からその外側に開口させる孔の個数は、1つでもよく、或いは、2つでもよい。さらには、上記孔の個数は、3つ以上でもよい。 In the third embodiment, the example in which the two holes (60c, 60d) are used as the holes to be opened from the inside of the air flow path to the outside in the duct 60 has been described. The number of holes opened from the inside of the flow path to the outside thereof may be one or two. Further, the number of the holes may be three or more.
 上記第1~第6の実施形態、および各変形例において、車速センサ101として、自動車の駆動輪の回転速度として自動車の速度を検出するセンサについて説明したが、これに代えて、次のようにしてもよい。 In the first to sixth embodiments and the modified examples, the vehicle speed sensor 101 has been described as a sensor that detects the speed of the automobile as the rotational speed of the driving wheels of the automobile. May be.
 ダクト60内を流れる空気流の流速を検出する流速センサを採用し、この流速センサにより検出した流速に基づいて自動車の速度を検出する。つまり、車速センサ101としての流速センサによって、ダクト60内の空気流の流速を自動車の速度の代替えに検出する。 A flow velocity sensor that detects the flow velocity of the airflow flowing in the duct 60 is adopted, and the speed of the automobile is detected based on the flow velocity detected by the flow velocity sensor. In other words, the flow velocity sensor as the vehicle speed sensor 101 detects the flow velocity of the air flow in the duct 60 instead of the vehicle speed.
 上記第1~第6の実施形態において、ダクト60を次の(1)(2)(3)(4)(5)のようにしてもよい。 In the first to sixth embodiments, the duct 60 may be configured as follows (1) (2) (3) (4) (5).
 (1)ダクト60は、図20に示すように、走行用エンジン3を天地方向上側からカバーするエンジンカバー120を兼ねて構成する。 (1) As shown in FIG. 20, the duct 60 also serves as an engine cover 120 that covers the traveling engine 3 from the Tenchi region improvement side.
 (2)ダクト60は、図21に示すように、フロントエンジンルーム1を閉じるトランクリット(すなわち、フード)130と走行用エンジン3を天地方向上側からカバーするエンジンカバー120とによって構成されている。 (2) As shown in FIG. 21, the duct 60 includes a trunk lit (that is, a hood) 130 that closes the front engine room 1 and an engine cover 120 that covers the traveling engine 3 from the Tenchi region improvement side.
 この場合、トランクリット130がダクト60のうち天地方向上側を構成している。そして、エンジンカバー120は、ダクト60のうち天地方向下側を構成している。ダクト60のうち天地方向上側および天地方向下側以外の部位は、トランクリット130およびエンジンカバー120以外の部材によって構成されている。 In this case, the trunk lit 130 constitutes the heaven region improvement side of the duct 60. The engine cover 120 constitutes the top side of the duct 60 in the vertical direction. Portions of the duct 60 other than the heaven region improvement side and the heaven-down direction lower side are configured by members other than the trunk lit 130 and the engine cover 120.
 (3)2つのダクト60は、図22に示すように、車両幅方向から電動ファン40を挟んで配置されている。具体的には、2つのダクト60のうち一方のダクト60は、電動ファン40に対して車両幅方向右側に配置されて、残りのダクト60は、電動ファン40に対して車両幅方向左側に配置されている。2つのダクト60の前側開口部61は、それぞれ、ラジエータ30に向けて開口している。 (3) As shown in FIG. 22, the two ducts 60 are arranged with the electric fan 40 sandwiched from the vehicle width direction. Specifically, one of the two ducts 60 is disposed on the right side in the vehicle width direction with respect to the electric fan 40, and the remaining duct 60 is disposed on the left side in the vehicle width direction with respect to the electric fan 40. Has been. The front openings 61 of the two ducts 60 each open toward the radiator 30.
 (4)ダクト60は、図23に示すように、2つの前側開口部61と1つの後側開口部62とを備える。 (4) The duct 60 includes two front openings 61 and one rear opening 62 as shown in FIG.
 具体的には、ダクト60は、分岐ダクト64a、64bを備えている。分岐ダクト64a、64bは、それぞれ、前側開口部61を有する。分岐ダクト64a、64bの空気出口側が合わさって1つになり後側開口部62に接続されている。つまり、分岐ダクト64a、64bが合流して後側開口部62に接続されている。このため、分岐ダクト64a、64bは、それぞれの前側開口部61から吸い込んだ空気流を矢印Kcの如く合流させて後側開口部62に導くことになる。この場合、ダクト60において、前側開口部61(すなわち、分岐ダクト(64a、64b))を3つ以上設けてもよい。 Specifically, the duct 60 includes branch ducts 64a and 64b. Each of the branch ducts 64 a and 64 b has a front opening 61. The air outlet sides of the branch ducts 64a and 64b are combined to be connected to the rear opening 62. That is, the branch ducts 64 a and 64 b merge and are connected to the rear opening 62. For this reason, the branch ducts 64a and 64b join the air flows sucked from the respective front openings 61 as indicated by arrows Kc and guide them to the rear openings 62. In this case, the duct 60 may be provided with three or more front side openings 61 (that is, the branch ducts (64a, 64b)).
 (5)ダクト60は、図24に示すように、1つの前側開口部61と2つの後側開口部62とを備える。 (5) The duct 60 includes one front opening 61 and two rear openings 62 as shown in FIG.
 具体的には、ダクト60は、分岐ダクト64d、64cを備える。分岐ダクト64d、64cは、それぞれ、後側開口部62を有する。分岐ダクト64d、64cの空気入口側が合わさって1つになり前側開口部61に接続されている。つまり、分岐ダクト64d、64cが合流して前側開口部61に接続されている。 Specifically, the duct 60 includes branch ducts 64d and 64c. Each of the branch ducts 64d and 64c has a rear opening 62. The air inlet sides of the branch ducts 64d and 64c are combined and connected to the front opening 61. That is, the branch ducts 64d and 64c merge and are connected to the front opening 61.
 この場合、分岐ダクト64c、64dは、1つの前側開口部61から吸い込んだ空気流を矢印Kdの如く分流させてそれぞれの後側開口部62に導くことになる。また、ダクト60において後側開口部62(すなわち、分岐ダクト(64d、64c))を3つ以上設けてもよい。 In this case, the branch ducts 64c and 64d divert the air flow sucked from one front opening 61 as indicated by the arrow Kd and guide it to the respective rear openings 62. Further, three or more rear side openings 62 (that is, branch ducts (64d, 64c)) may be provided in the duct 60.
 上記第3実施形態では、上記第1実施形態のダクト60において吹出部としての孔60c、60d(図10参照)を設けて、エキゾーストマニホールド5以外の被冷却部品を冷却する例について説明したが、これに代えて、上記第4、第5、第6の実施形態のダクト60に孔60c、60d(図10参照)を設けて、走行用エンジン3の後方側(エキゾーストマニホールド5)以外の被冷却部品に空気を吹き出して冷却してもよい。 In the said 3rd Embodiment, although the holes 60c and 60d (refer FIG. 10) were provided as the blowing part in the duct 60 of the said 1st Embodiment, the example which cools components to be cooled other than the exhaust manifold 5 was demonstrated. Instead, holes 60c and 60d (see FIG. 10) are provided in the duct 60 of the fourth, fifth, and sixth embodiments, and the parts to be cooled other than the rear side (exhaust manifold 5) of the traveling engine 3 are provided. The parts may be cooled by blowing air.
 孔60c、60dは、ダクト60の開口部61、62の間において空気流路60a内からダクト60の外側に開口されている。孔60c、60dは、走行用エンジン3の後方側以外の部位に対して開口している。このため、エンジンルーム内のうち走行用エンジン3の後方側以外の部位に空気流を吹き出して冷却することができる。この場合、ダクト60に設けられる孔(60c、60d)の個数は幾つでもよい。 The holes 60 c and 60 d are opened from the inside of the air flow path 60 a to the outside of the duct 60 between the openings 61 and 62 of the duct 60. The holes 60 c and 60 d are open to parts other than the rear side of the traveling engine 3. For this reason, an airflow can be blown out and cooled in parts other than the rear side of the traveling engine 3 in the engine room. In this case, the number of holes (60c, 60d) provided in the duct 60 may be any number.
 上記第3、第4、第5、第6の実施形態では、ダクト60において吹出部としての孔(60c、60d)を設けた例について説明したが、これに代えて、ダクト60において吹出部としての分岐ダクトを設けてもよい。この場合、ダクト60の空気流路60aからの空気流を分岐ダクトを通してフロントエンジンルーム1内の所望の部位に吹き出すことができる。このため、フロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後側だけでなく、フロントエンジンルーム1の全体を冷却することができる。この場合、分岐ダクトの個数は幾つでもよい。 In the third, fourth, fifth, and sixth embodiments, the example in which the holes (60c, 60d) as the blowing portions are provided in the duct 60 has been described, but instead, the blowing portions in the duct 60 are provided. A branch duct may be provided. In this case, the air flow from the air flow path 60a of the duct 60 can be blown out to a desired part in the front engine room 1 through the branch duct. For this reason, not only the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1 but also the entire front engine room 1 can be cooled. In this case, the number of branch ducts may be any number.
 上記第4実施形態、およびその変形例において、ダクト60の前側開口部61側に空気吹出構造110を設けた例について説明したが、ダクト60の前側開口部61および後側開口部62の間に空気を吹き出すのであれば、ダクト60の前側開口部61側以外の部位に空気吹出構造110を設けてもよい。例えば、ダクト60の開口部61、62の間に空気吹出構造110を設けてもよく、ダクト60の後側開口部62側に空気吹出構造110を設けてもよい。 In the fourth embodiment and the modification thereof, the example in which the air blowing structure 110 is provided on the front opening 61 side of the duct 60 has been described, but between the front opening 61 and the rear opening 62 of the duct 60. If the air is blown out, the air blowing structure 110 may be provided in a portion other than the front opening 61 side of the duct 60. For example, the air blowing structure 110 may be provided between the openings 61 and 62 of the duct 60, and the air blowing structure 110 may be provided on the rear opening 62 side of the duct 60.
 上記第1~6の実施形態において、エキゾーストマニホールド5をフロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後側に配置した自動車に冷却装置を適用した例について説明したが、これに限らず、フロントエンジンルーム1のうち走行用エンジン3に対して車両進行方向後側以外の部位にエキゾーストマニホールド5を配置した自動車に冷却装置を適用してもよい。つまり、冷却装置を実施するにあたり、フロントエンジンルーム1のうちエキゾーストマニホールド5の位置は何処でもよい。 In the first to sixth embodiments, the example in which the cooling device is applied to the automobile in which the exhaust manifold 5 is disposed on the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1 has been described. The cooling device may be applied to an automobile in which the exhaust manifold 5 is disposed in a portion other than the rear side in the vehicle traveling direction with respect to the traveling engine 3 in the front engine room 1. That is, in implementing the cooling device, the position of the exhaust manifold 5 in the front engine room 1 may be anywhere.
 上記第4~6の実施形態において、電動ファン40Aとして、軸流ファンを用いた例について説明したが、これに代えて、軸流ファン以外の各種のファン(例えば、遠心ファン)を用いてもよい。 In the fourth to sixth embodiments, the example in which the axial fan is used as the electric fan 40A has been described, but various fans other than the axial fan (for example, a centrifugal fan) may be used instead. Good.
 上記第4~第6の実施形態では、上記第1~第3の実施形態のバルブ70を廃止した例について説明したが、これに代えて、上記第1~第3の実施形態のバルブ70を用いてもよい。 In the fourth to sixth embodiments, the example in which the valve 70 of the first to third embodiments is eliminated has been described. Instead, the valve 70 of the first to third embodiments is replaced with the valve 70 of the first to third embodiments. It may be used.
 上記第4~第6の実施形態では、ラジエータ30を流れる冷却水の水温を用いて図15のS310、S330の判定を実施した例について説明したが、これに代えて、オイルクーラを流れるエンジンオイルの温度を用いて図15のS310、S330の判定を実施してもよい。 In the fourth to sixth embodiments, the example in which the determination of S310 and S330 in FIG. 15 is performed using the temperature of the cooling water flowing through the radiator 30 has been described. Instead, engine oil flowing through the oil cooler is described. The determinations of S310 and S330 in FIG.
 上記第4~第6の実施形態では、温度センサ105がフロントエンジンルーム1内の温度として、フロントエンジンルーム1内の空気温度を検出した例ついて説明したが、これに代えて、エキゾーストマニホールド5等の温度を温度センサ105によって検出して、この検出した温度によってS350、S370、S390の判定を実施してもよい。 In the fourth to sixth embodiments, the example in which the temperature sensor 105 detects the air temperature in the front engine room 1 as the temperature in the front engine room 1 has been described, but instead, the exhaust manifold 5 and the like are detected. May be detected by the temperature sensor 105, and the determination of S350, S370, and S390 may be performed based on the detected temperature.
 なお、本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope described in the claims. Further, the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.
 車速判定部がS110に対応し、第1制御部がS120に対応し、第2制御部がS130に対応する。第1温度判定部がS190に対応し、第3制御部がS191に対応し、停止判定部がS100に対応する。エンジン判定部がS140に対応し、第2温度判定部がS150に対応し、第4制御部がS161に対応する。第5制御部がS162に対応し、第6制御部がS160に対応する。第1送風制御部がS320に対応し、第2送風制御部がS340に対応し、第3送風制御部がSS360に対応している。第4送風制御部がS380に対応し、第5送風制御部がS400に対応している。第3温度センサが温度センサ105に対応し、第1切替制御部がS120Aに対応し、第2切替制御部がS160Aに対応している。

 
The vehicle speed determination unit corresponds to S110, the first control unit corresponds to S120, and the second control unit corresponds to S130. The first temperature determination unit corresponds to S190, the third control unit corresponds to S191, and the stop determination unit corresponds to S100. The engine determination unit corresponds to S140, the second temperature determination unit corresponds to S150, and the fourth control unit corresponds to S161. The fifth control unit corresponds to S162, and the sixth control unit corresponds to S160. A 1st ventilation control part respond | corresponds to S320, a 2nd ventilation control part respond | corresponds to S340, and a 3rd ventilation control part respond | corresponds to SS360. The 4th ventilation control part respond | corresponds to S380, and the 5th ventilation control part respond | corresponds to S400. The third temperature sensor corresponds to the temperature sensor 105, the first switching control unit corresponds to S120A, and the second switching control unit corresponds to S160A.

Claims (31)

  1.  フロントエンジンルーム(1)を車両進行方向前側に開口させるフロント開口部(2)と、前記フロントエンジンルームのうち走行用エンジン(3)に対して車両進行方向前側に配置される第1送風機(40)と、前記フロント開口部の車両進行方向前側から前記フロント開口部を通して流入される空気流を前記第1送風機側に導く導入流路(50a)とを備える自動車に適用されて、前記導入流路から前記第1送風機を通過して前記走行用エンジン側に流れる空気流によって前記走行用エンジンを冷却する冷却装置であって、
     前記導入流路内に開口する第1開口部(61)と前記フロントエンジンルームのうち前記走行用エンジンに対して車両進行方向後側に開口する第2開口部(62)とを有して、前記第1、第2開口部の間に空気流を流通させる空気流路(60a)を形成するダクト(60)を備える冷却装置。
    A front opening (2) that opens the front engine room (1) to the front side in the vehicle traveling direction, and a first blower (40) disposed on the front side in the vehicle traveling direction with respect to the traveling engine (3) in the front engine room ) And an introduction flow path (50a) for guiding an air flow flowing from the front opening front side of the front opening through the front opening to the first blower side, and the introduction flow path A cooling device that cools the traveling engine by an air flow that flows to the traveling engine side through the first blower,
    A first opening (61) that opens into the introduction flow path, and a second opening (62) that opens to the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room, A cooling device comprising a duct (60) that forms an air flow path (60a) for allowing an air flow to flow between the first and second openings.
  2.  前記第1開口部は、前記空気流路(60a)内に車両進行方向前側に向けて開口されている請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the first opening is opened toward the front side in the vehicle traveling direction in the air flow path (60a).
  3.  前記ダクトのうち前記第1、第2の開口部の間には、前記空気流路から空気流を前記ダクトの外側に吹き出す吹出部(60c、60d)が設けられている請求項1または2に記載の冷却装置。 The blowout part (60c, 60d) which blows off an airflow from the said air flow path to the outer side of the said duct is provided between the said 1st, 2nd opening part in the said duct. The cooling device described.
  4.  前記走行用エンジンの停止時に、前記ダクトは、前記第1送風機の作動に伴って、前記フロントエンジンルームのうち前記走行用エンジンに対して車両進行方向後側から前記第2開口部を通して吸い込んだ空気流を前記第1開口部から前記導入流路内に吹き出す請求項1ないし3のいずれか1つに記載の冷却装置。 When the traveling engine is stopped, the duct sucks air through the second opening from the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room in accordance with the operation of the first blower. The cooling device according to any one of claims 1 to 3, wherein a flow is blown from the first opening into the introduction flow path.
  5.  前記空気流路を開閉するバルブ(70)をさらに備える請求項1ないし4のいずれか1つに記載の冷却装置。 The cooling device according to any one of claims 1 to 4, further comprising a valve (70) for opening and closing the air flow path.
  6.  前記フロントエンジンルームのうち前記走行用エンジンに対して車両進行方向後側にエキゾーストマニホールド(5)が配置される自動車に適用され、
     請求項5に記載の冷却装置(60、70)と、
     前記第1送風機に対して前記導入流路内の空気流れ方向の上流側に配置され、前記走行用エンジンを冷却する熱媒体から前記導入流路内の空気流に放熱させる車載熱交換器(30)と、を備え、
     前記第1開口部は、前記導入流路のうち、前記車載熱交換器に対して前記空気流れ方向の下流側に開口する冷却モジュール。
    Applied to an automobile in which an exhaust manifold (5) is disposed on the rear side in the vehicle traveling direction with respect to the traveling engine in the front engine room,
    A cooling device (60, 70) according to claim 5,
    An in-vehicle heat exchanger (30) that is disposed upstream of the first blower in the direction of air flow in the introduction passage and radiates heat from the heat medium that cools the traveling engine to the air flow in the introduction passage. ) And
    The first opening is a cooling module that opens to the downstream side in the air flow direction with respect to the in-vehicle heat exchanger in the introduction flow path.
  7.  前記自動車の速度を検出する車速センサ(101)の検出値に基づいて前記速度が閾値以上であるか否かを判定する車速判定部(S110)と、
     前記自動車の速度が前記閾値以上であると前記車速判定部が判定したとき、前記空気流路を開けるように前記バルブを制御する第1制御部(S120)と、を備える請求項6に記載の冷却モジュール。
    A vehicle speed determination unit (S110) that determines whether the speed is equal to or higher than a threshold value based on a detection value of a vehicle speed sensor (101) that detects the speed of the automobile;
    7. The first control unit (S <b> 120) that controls the valve to open the air flow path when the vehicle speed determination unit determines that the speed of the automobile is equal to or higher than the threshold. Cooling module.
  8.  前記自動車の速度が前記閾値未満であると前記車速判定部が判定したとき、前記空気流路を閉じるように前記バルブを制御する第2制御部(S130)を備える請求項7に記載の冷却モジュール。 The cooling module according to claim 7, further comprising a second control unit (S130) configured to control the valve so as to close the air flow path when the vehicle speed determination unit determines that the speed of the automobile is less than the threshold. .
  9.  前記エキゾーストマニホールドの温度を検出する第1温度センサ(100)の検出値に基づいて、前記エキゾーストマニホールドの温度が所定値(P1)以上であるか否かを判定する第1温度判定部(S190)と、
     前記自動車の速度が前記閾値未満であると前記車速判定部が判定し、かつ前記エキゾーストマニホールドの温度が前記所定値以上であると前記第1温度判定部が判定した場合には、前記エキゾーストマニホールドの温度が高くなるほど、前記バルブの開度を大きくするように前記バルブを制御する第3制御部(S191)と、を備える請求項8に記載の冷却モジュール。
    A first temperature determination unit (S190) that determines whether or not the temperature of the exhaust manifold is equal to or higher than a predetermined value (P1) based on a detection value of a first temperature sensor (100) that detects the temperature of the exhaust manifold. When,
    When the vehicle speed determination unit determines that the speed of the vehicle is less than the threshold value and the first temperature determination unit determines that the temperature of the exhaust manifold is equal to or higher than the predetermined value, the exhaust manifold The cooling module according to claim 8, further comprising: a third control unit (S <b> 191) that controls the valve so that the opening degree of the valve increases as the temperature increases.
  10.  前記走行用エンジンが停止しているか否かを判定する停止判定部(S100)と、
     前記熱媒体の温度を検出する第2温度センサ(102、103)の検出値に基づいて、前記走行用エンジンを冷却すべきか否かを判定するエンジン判定部(S140)と、
     前記エキゾーストマニホールドの温度を検出する第1温度センサ(100)の検出値に基づいて、前記エキゾーストマニホールドの温度が所定値(P1)以上であるか否かを判定する第2温度判定部(S150)と、
     前記走行用エンジンが停止していると前記停止判定部が判定し、かつ前記走行用エンジンを冷却すべきであると前記エンジン判定部が判定し、さらに前記エキゾーストマニホールドの温度が前記所定値未満であると前記第2温度判定部が判定したとき、前記空気流路を閉じるように前記バルブを制御する第4制御部(S161)を備える請求項6ないし9のいずれか1つに記載の冷却モジュール。
    A stop determination unit (S100) for determining whether or not the traveling engine is stopped;
    An engine determination unit (S140) for determining whether or not the travel engine should be cooled based on detection values of the second temperature sensors (102, 103) for detecting the temperature of the heat medium;
    A second temperature determination unit (S150) that determines whether or not the temperature of the exhaust manifold is equal to or higher than a predetermined value (P1) based on a detection value of a first temperature sensor (100) that detects the temperature of the exhaust manifold. When,
    The stop determination unit determines that the traveling engine is stopped, the engine determination unit determines that the traveling engine should be cooled, and the temperature of the exhaust manifold is less than the predetermined value. The cooling module according to any one of claims 6 to 9, further comprising a fourth control unit (S161) that controls the valve so as to close the air flow path when the second temperature determination unit determines that there is one. .
  11.  前記走行用エンジンが停止していると前記停止判定部が判定し、かつ前記走行用エンジンを冷却する必要がないと前記エンジン判定部が判定したとき、前記空気流路を開けるように前記バルブを制御する第5制御部(S162)を備える請求項10に記載の冷却モジュール。 When the stop determination unit determines that the travel engine is stopped, and the engine determination unit determines that the travel engine does not need to be cooled, the valve is configured to open the air flow path. The cooling module according to claim 10, further comprising a fifth control unit (S162) for controlling.
  12.  前記走行用エンジンが停止していると前記停止判定部が判定し、かつ前記走行用エンジンを冷却すべきであると前記エンジン判定部が判定し、さらに前記エキゾーストマニホールドの温度が前記所定値以上であると前記第2温度判定部が判定したとき、前記空気流路を開けるように前記バルブを制御する第6制御部(S160)を備える請求項11に記載の冷却モジュール。 The stop determination unit determines that the traveling engine is stopped, the engine determination unit determines that the traveling engine should be cooled, and the temperature of the exhaust manifold is equal to or higher than the predetermined value. The cooling module according to claim 11, further comprising a sixth control unit (S160) configured to control the valve so as to open the air flow path when the second temperature determination unit determines that there is one.
  13.  前記第6制御部は、前記第5制御部に比べて、前記バルブの開度を小さくするように前記バルブを制御する請求項12に記載の冷却モジュール。 The cooling module according to claim 12, wherein the sixth control unit controls the valve so that the opening degree of the valve is smaller than that of the fifth control unit.
  14.  前記ダクトのうち前記第1、第2開口部の間に向けて空気流を吹き出す吹出口(112)を備え、
     前記吹出口から吹き出される空気流によって前記ダクトのうち前記第1、第2開口部の間の気圧を下げることにより前記第1開口部から前記第2開口部に向かって流れる空気流を発生させて、この発生した空気流と前記吹出口から吹き出される空気流とが前記第2開口部に向かって流れるようになっている請求項1ないし4のいずれか1つに記載の冷却装置。
    A blower outlet (112) for blowing out an air flow between the first and second openings of the duct,
    An air flow flowing from the first opening toward the second opening is generated by lowering an air pressure between the first and second openings in the duct by an air flow blown from the blower outlet. The cooling device according to any one of claims 1 to 4, wherein the generated air flow and the air flow blown out from the air outlet flow toward the second opening.
  15.  前記吹出口から前記ダクトのうち前記第1、第2開口部の間に向けて吹き出される空気流を発生させる第2送風機(40A)をさらに備える請求項14に記載の冷却装置。 The cooling device according to claim 14, further comprising a second blower (40A) that generates an air flow that is blown out between the first and second openings of the duct from the outlet.
  16.  吸入口(111)から吸い込んだ空気流を前記ダクトのうち前記第1、第2開口部の間に向けて吹き出す第1吹出口(112)と第2吹出口(112a)を備え、
     前記第1吹出口から吹き出される空気流によって前記ダクトのうち前記第1、第2開口部の間の気圧を下げることにより前記第1開口部から前記第2開口部に向かって流れる空気流を発生させて、この発生した空気流と前記第1吹出口から吹き出される空気流とが前記第2開口部に向かって流れるようになっており、
     前記第2吹出口から吹き出される空気流によって前記ダクトのうち前記第1、第2開口部の間の気圧を下げることにより前記第2開口部から前記第1開口部に向かって流れる空気流を発生させて、この発生した空気流と前記第2吹出口から吹き出される空気流とが前記第1開口部に向かって流れるようになっており、
     前記第1、第2吹出口のうち一方の吹出口および前記吸入口の間を開けて、他方の吹出口および前記吸入口の間を閉じる切替弁(130)を備える請求項1ないし4のいずれか1つに記載の冷却装置。
    A first air outlet (112) and a second air outlet (112a) for blowing out the air flow sucked from the inlet (111) toward the space between the first and second openings in the duct;
    An air flow that flows from the first opening toward the second opening by lowering the air pressure between the first and second openings in the duct by the air flow blown from the first air outlet. And the generated air flow and the air flow blown out from the first air outlet flow toward the second opening,
    An air flow that flows from the second opening toward the first opening by lowering an air pressure between the first and second openings in the duct by an air flow blown out from the second outlet. The generated air flow and the air flow blown out from the second air outlet flow toward the first opening,
    The switching valve according to any one of claims 1 to 4, further comprising a switching valve (130) that opens between one of the first and second outlets and the inlet and closes the other outlet and the inlet. The cooling device according to any one of the above.
  17.  前記第1、第2吹出口から前記ダクトのうち前記第1、第2開口部の間に向けて吹き出される空気流を発生させる第2送風機(40A)を備える請求項16に記載の冷却装置。 The cooling device according to claim 16, further comprising a second blower (40A) that generates an air flow that is blown out from the first and second outlets toward the first and second openings of the duct. .
  18.  前記ダクトの前記第1開口部側には、前記導入流路から前記第1開口部を介して前記ダクト内に空気流を吸い込んでこの吸い込んだ空気流を前記第2開口部に向けて吹き出す第2送風機(40A)を備える請求項1ないし4のいずれか1つに記載の冷却装置。 On the first opening portion side of the duct, an air flow is sucked into the duct from the introduction flow path through the first opening portion, and the sucked air flow is blown out toward the second opening portion. A cooling device given in any 1 paragraph of Claims 1 thru / or 4 provided with 2 fans (40A).
  19.  前記ダクトの前記第2開口部側には、前記導入流路から前記第1開口部を介して前記ダクト内に吸い込んだ空気流を前記第2開口部から吹き出す第2送風機(40A)を備える請求項1ないし4のいずれか1つに記載の冷却装置。 A second blower (40A) that blows out from the second opening the air flow sucked into the duct from the introduction channel through the first opening on the second opening side of the duct. Item 5. The cooling device according to any one of Items 1 to 4.
  20.  請求項14ないし19のいずれか1つに記載の冷却装置(60、70)と、
     前記第1送風機に対して前記導入流路内の空気流れ方向の上流側に配置され、前記走行用エンジンを冷却する熱媒体から前記導入流路内の空気流に放熱させる車載熱交換器(30)と、を備え
     前記第1開口部は、前記導入流路のうち、前記車載熱交換器に対して前記空気流れ方向の下流側に開口する冷却モジュール。
    A cooling device (60, 70) according to any one of claims 14 to 19, and
    An in-vehicle heat exchanger (30) that is disposed upstream of the first blower in the direction of air flow in the introduction passage and radiates heat from the heat medium that cools the traveling engine to the air flow in the introduction passage. The first opening is a cooling module that opens to the downstream side in the air flow direction with respect to the in-vehicle heat exchanger in the introduction flow path.
  21.  前記走行用エンジンが稼働している場合に、前記熱媒体の温度を検出する第2温度センサ(102)の検出値に基づいて前記熱媒体の温度が第1温度(T1)以上、かつ第2温度(T2)未満であると判定したときには、前記第1、第2送風機のうち前記第1送風機を稼働させる第1送風制御部(S320)と、
     前記走行用エンジンが稼働している場合に、前記第2温度センサの検出値に基づいて前記熱媒体の温度が前記第2温度(T2)以上であると判定したときには、前記第1、第2送風機をそれぞれ稼働させる第2送風制御部(S340)と、
     を備える請求項20に記載の冷却モジュール。
    When the traveling engine is operating, the temperature of the heat medium is equal to or higher than the first temperature (T1) based on the detection value of the second temperature sensor (102) that detects the temperature of the heat medium, and the second temperature sensor (102). When it is determined that the temperature is lower than (T2), a first air blow control unit (S320) that operates the first blower among the first and second blowers, and
    When it is determined that the temperature of the heat medium is equal to or higher than the second temperature (T2) based on the detection value of the second temperature sensor when the traveling engine is operating, the first and second A second air blowing control unit (S340) for operating each of the blowers;
    The cooling module according to claim 20.
  22.  前記走行用エンジンが停止している場合に、前記フロントエンジンルーム内の温度を検出する第3温度センサ(105)の検出値に基づいて、前記フロントエンジンルーム内の温度が第3温度(T3)以上で、かつ第4温度(T4)未満であると判定したときに、前記第1、第2送風機のうち前記第2送風機を稼働させる第3送風制御部(S360)と、
     前記走行用エンジンが停止している場合に、前記第3温度センサの検出値に基づいて、前記フロントエンジンルーム内の温度が第4温度以上で、かつ第5温度(T5)未満であると判定したときに、前記第1、第2送風機のうち前記第1送風機を稼働させる第4送風制御部(S380)と、
     前記走行用エンジンが停止している場合に、前記第3温度センサの検出値に基づいて、前記フロントエンジンルーム内の温度が前記第5温度以上であると判定したときに、前記第1、第2送風機を稼働させる第5送風制御部(S400)と、
     を備える請求項20または21に記載の冷却モジュール。
    Based on the detected value of the third temperature sensor (105) for detecting the temperature in the front engine room when the traveling engine is stopped, the temperature in the front engine room is set to the third temperature (T3). When it is determined that the temperature is lower than the fourth temperature (T4), the third air blow control unit (S360) that operates the second blower among the first and second blowers,
    When the traveling engine is stopped, it is determined that the temperature in the front engine room is equal to or higher than the fourth temperature and lower than the fifth temperature (T5) based on the detection value of the third temperature sensor. A fourth blower control unit (S380) that operates the first blower out of the first and second blowers,
    When it is determined that the temperature in the front engine room is equal to or higher than the fifth temperature based on the detection value of the third temperature sensor when the traveling engine is stopped, the first and second A fifth blower control unit (S400) for operating two blowers;
    The cooling module according to claim 20 or 21, further comprising:
  23.  請求項16または17に記載の冷却装置と、
     前記走行用エンジンの停止時に、前記第2吹出口および前記吸入口の間を開けるように前記切替弁を制御する第1切替制御部(S120A)と、
     前記自動車の速度を検出する車速センサ(101)の検出値に基づいて前記速度が閾値以上であるか否かを判定する車速判定部(S110)と、
     前記自動車の速度が前記閾値以上であると前記車速判定部が判定したとき、前記第1吹出口および前記吸入口の間を開けるように前記切替弁を制御する第2切替制御部(S160A)と、
     を備える冷却モジュール。
    A cooling device according to claim 16 or 17,
    A first switching control unit (S120A) for controlling the switching valve so as to open a space between the second outlet and the inlet when the traveling engine is stopped;
    A vehicle speed determination unit (S110) that determines whether the speed is equal to or higher than a threshold value based on a detection value of a vehicle speed sensor (101) that detects the speed of the automobile;
    A second switching control unit (S160A) for controlling the switching valve so as to open a space between the first outlet and the inlet when the vehicle speed determining unit determines that the speed of the automobile is equal to or higher than the threshold; ,
    A cooling module comprising.
  24.  前記ダクトは、前記フロントエンジンルームを閉じるトランクリット(130)と前記走行用エンジンを天地方向上側からカバーするエンジンカバー(120)とによって構成されている請求項1ないし5、14ないし17のいずれか1つに記載の冷却装置。 The duct is constituted by a trunk lit (130) that closes the front engine room and an engine cover (120) that covers the traveling engine from the Tenchi region improvement side. The cooling device according to one.
  25.  前記ダクトは、前記走行用エンジンを天地方向上側からカバーするエンジンカバー(120)を兼ねて構成している請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。 The cooling device according to any one of claims 1 to 5, and 14 to 19, wherein the duct also serves as an engine cover (120) that covers the traveling engine from the Tenchi region improvement side.
  26.  前記ダクトとしての第1、第2のダクト(60)を備え、
     前記第1、第2のダクトは、前記第1送風機を挟むように配置されている請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。
    Comprising first and second ducts (60) as the ducts;
    The cooling device according to any one of claims 1 to 5, and 14 to 19, wherein the first and second ducts are disposed so as to sandwich the first blower.
  27.  前記ダクトは、前記第1開口部(61)を有する複数の分岐ダクト(64a、64b)を、備えており、
     前記複数の分岐ダクトの空気出口側が合流して前記第2開口部(62)に接続されている請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。
    The duct includes a plurality of branch ducts (64a, 64b) having the first opening (61),
    The cooling device according to any one of claims 1 to 5, and 14 to 19, wherein air outlet sides of the plurality of branch ducts merge and are connected to the second opening (62).
  28.  前記ダクトは、前記第2開口部(62)を有する複数の分岐ダクト(64d、64c)を、備えており、
     前記複数の分岐ダクトの空気入口側が合流して前記第1開口部(61)に接続されている請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。
    The duct includes a plurality of branch ducts (64d, 64c) having the second opening (62),
    The cooling device according to any one of claims 1 to 5, and 14 to 19, wherein air inlet sides of the plurality of branch ducts merge to be connected to the first opening (61).
  29.  前記ダクト内を流れる空気流の流速を前記自動車の速度の代替えに検出するセンサ(101)を備える請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。 The cooling device according to any one of claims 1 to 5, 14 to 19, further comprising a sensor (101) for detecting a flow velocity of an air flow flowing in the duct instead of the speed of the automobile.
  30.  前記フロントエンジンルームのうち前記走行用エンジンに対して車両進行方向後側の温度の代替えに前記ダクト内の温度を検出するセンサ(100)を備える請求項1ないし5、14ないし19のいずれか1つに記載の冷却装置。 The sensor (100) which detects the temperature in the said duct instead of the temperature of the vehicle traveling direction back side with respect to the said driving | running | working engine among the said front engine rooms is provided. The cooling device according to one.
  31.  前記車載熱交換器は、前記走行用エンジンを冷却する前記熱媒体としての冷却水から前記導入流路内の空気流に放熱させるラジエータである請求項6ないし13、20ないし23のいずれか1つに記載の冷却モジュール。 The on-vehicle heat exchanger is a radiator that radiates heat from cooling water as the heat medium for cooling the traveling engine to an air flow in the introduction flow path. The cooling module as described in.
PCT/JP2015/006040 2014-12-09 2015-12-04 Cooling device and cooling module WO2016092795A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/525,775 US10179509B2 (en) 2014-12-09 2015-12-04 Cooling device and cooling module
CN201580063942.7A CN107000574B (en) 2014-12-09 2015-12-04 Cooling device and cooling component
DE112015005526.6T DE112015005526B4 (en) 2014-12-09 2015-12-04 Cooling device and cooling module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014249101 2014-12-09
JP2014-249101 2014-12-09
JP2015076860A JP6380212B2 (en) 2014-12-09 2015-04-03 Cooling device and cooling module
JP2015-076860 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016092795A1 true WO2016092795A1 (en) 2016-06-16

Family

ID=56107020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006040 WO2016092795A1 (en) 2014-12-09 2015-12-04 Cooling device and cooling module

Country Status (1)

Country Link
WO (1) WO2016092795A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170432A1 (en) * 2016-04-01 2017-10-05 株式会社デンソー Cooling module
WO2018055943A1 (en) * 2016-09-22 2018-03-29 株式会社デンソー Cooling module
WO2019058810A1 (en) * 2017-09-19 2019-03-28 株式会社デンソー Heat exchange system
US10688861B1 (en) 2019-03-19 2020-06-23 Cnh Industrial America Llc Engine airflow adjustment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110326U (en) * 1983-01-18 1984-07-25 トヨタ自動車株式会社 Cooling system for parts inside automobile engine room
JPS59182427U (en) * 1983-05-25 1984-12-05 日本自動車エンジニアリング株式会社 Engine room ventilation system
JPH0350523U (en) * 1989-09-26 1991-05-16
JPH08100646A (en) * 1994-09-30 1996-04-16 Nissan Motor Co Ltd Cooling device for engine room
JPH1067340A (en) * 1996-08-27 1998-03-10 Toyota Motor Corp Cooling structure using enginehood for vehicle
JP2007055274A (en) * 2005-08-22 2007-03-08 Mazda Motor Corp Front structure of vehicle body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110326U (en) * 1983-01-18 1984-07-25 トヨタ自動車株式会社 Cooling system for parts inside automobile engine room
JPS59182427U (en) * 1983-05-25 1984-12-05 日本自動車エンジニアリング株式会社 Engine room ventilation system
JPH0350523U (en) * 1989-09-26 1991-05-16
JPH08100646A (en) * 1994-09-30 1996-04-16 Nissan Motor Co Ltd Cooling device for engine room
JPH1067340A (en) * 1996-08-27 1998-03-10 Toyota Motor Corp Cooling structure using enginehood for vehicle
JP2007055274A (en) * 2005-08-22 2007-03-08 Mazda Motor Corp Front structure of vehicle body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170432A1 (en) * 2016-04-01 2017-10-05 株式会社デンソー Cooling module
JPWO2017170432A1 (en) * 2016-04-01 2018-07-05 株式会社デンソー Cooling module
WO2018055943A1 (en) * 2016-09-22 2018-03-29 株式会社デンソー Cooling module
JPWO2018055943A1 (en) * 2016-09-22 2019-02-28 株式会社デンソー Cooling module
WO2019058810A1 (en) * 2017-09-19 2019-03-28 株式会社デンソー Heat exchange system
US10688861B1 (en) 2019-03-19 2020-06-23 Cnh Industrial America Llc Engine airflow adjustment system

Similar Documents

Publication Publication Date Title
JP6380212B2 (en) Cooling device and cooling module
JP5655952B2 (en) Vehicle front structure
JP5131410B2 (en) Vehicle cooling structure
US10875384B2 (en) Air flow circulation structure for vehicle
JP6610802B2 (en) Cooling module
JP5314462B2 (en) Outside air introduction device for vehicles
JP5447733B2 (en) Cooling air introduction structure
WO2016092795A1 (en) Cooling device and cooling module
JP2016109114A5 (en)
JP5533640B2 (en) Battery cooling structure
US20140069604A1 (en) Vehicle heat exchange structure
WO2017030079A1 (en) Cooling device
JP2007099194A (en) Airflow guiding structure of vehicular cooling system
JP2013180614A (en) Vehicle battery temperature control structure
JPWO2017010396A1 (en) Air guide unit and cooling module
JP5440826B2 (en) Outside air introduction grill
JP6489282B2 (en) Cooling module
JP2013107469A (en) Cooling air introduction structure
JP2001090538A (en) Cooler
KR20150073322A (en) Roof type Air Conditioning Apparatus for Motor Vehicle
JP5780176B2 (en) Ventilation structure for vehicles
JP2011168214A (en) Air conditioning device for vehicle
JPH0825982A (en) Cooling fan device
JP2014113976A (en) Cooling air introduction structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15525775

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005526

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867901

Country of ref document: EP

Kind code of ref document: A1