WO2018123289A1 - Control module - Google Patents

Control module Download PDF

Info

Publication number
WO2018123289A1
WO2018123289A1 PCT/JP2017/040447 JP2017040447W WO2018123289A1 WO 2018123289 A1 WO2018123289 A1 WO 2018123289A1 JP 2017040447 W JP2017040447 W JP 2017040447W WO 2018123289 A1 WO2018123289 A1 WO 2018123289A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
control
refrigerant
superheat
heat exchanger
Prior art date
Application number
PCT/JP2017/040447
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 坂根
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017006541.0T priority Critical patent/DE112017006541T5/en
Publication of WO2018123289A1 publication Critical patent/WO2018123289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • B60K11/085Air inlets for cooling; Shutters or blinds therefor with adjustable shutters or blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present disclosure relates to a control module that controls a heat exchange unit provided in a vehicle.
  • the vehicle is equipped with multiple heat exchangers.
  • a heat exchanger includes an evaporator that is a part of an air conditioner configured as a refrigeration cycle (see, for example, Patent Document 1 below).
  • a heat exchanger provided in a vehicle is often unitized together with a device such as an electric expansion valve that adjusts the flow of refrigerant, and the whole is often configured as one heat exchange unit.
  • the heat exchange unit is arranged at a front portion of the vehicle so that air flowing in from the front grille of the vehicle passes through the heat exchanger.
  • the opening degree of the electric expansion valve is adjusted so that the degree of superheat of the refrigerant at the outlet portion of the evaporator matches a predetermined target value.
  • This disclosure is intended to provide a control module capable of quickly changing the degree of superheat of the refrigerant so that heat exchange in the heat exchange unit is appropriately performed.
  • the control module is a control module that controls a heat exchange unit provided in a vehicle.
  • the heat exchange unit described above has a flow rate of a heat exchanger that evaporates the refrigerant inside by performing heat exchange between the air-conditioning refrigerant and air, and air that flows from the front grill of the vehicle and passes through the heat exchanger.
  • an air control device for adjusting the air pressure.
  • the control module includes a control unit that controls the operation of the air control device, and an acquisition unit that acquires the degree of superheat of the refrigerant discharged from the heat exchanger. The control unit controls the operation of the air control device based on the degree of superheat acquired by the acquisition unit.
  • the operation of the air control device is controlled based on the degree of superheat of the refrigerant discharged from the heat exchanger, thereby adjusting the degree of superheat.
  • the air control device is, for example, a shutter device.
  • control for changing the flow rate of the air passing through the heat exchanger may be performed independently or may be performed together with the control for changing the opening degree of the electric expansion valve.
  • control module capable of quickly changing the degree of superheat of the refrigerant so that heat exchange in the heat exchange unit is appropriately performed.
  • FIG. 1 is a diagram schematically illustrating a state in which a heat exchange unit including a control module according to the first embodiment is mounted on a vehicle.
  • FIG. 2 is a diagram schematically illustrating the heat exchange unit of FIG. 1 as viewed from above.
  • FIG. 3 is a diagram showing an overall configuration of a vehicle air conditioner mounted on the vehicle.
  • FIG. 4 is a diagram illustrating the configuration of the outdoor heat exchanger and the electric expansion valve in the vehicle air conditioner of FIG. 3.
  • FIG. 5 is a block diagram schematically showing the heat exchange unit and the surrounding configuration.
  • FIG. 6 is a block diagram schematically showing the internal configuration of the control module.
  • FIG. 7 is a flowchart showing a flow of processing executed by the control module.
  • FIG. 8 is a graph schematically showing a temporal change in the degree of superheat.
  • FIG. 9 is a flowchart showing a flow of processing executed by the control module according to the second embodiment.
  • FIG. 10 is a diagram illustrating a correspondence relationship between the acquired degree of superheat and the target opening degree of the electric expansion valve.
  • FIG. 11 is a diagram illustrating a correspondence relationship between the acquired degree of superheat and the target opening degree of the shutter device.
  • FIG. 12 is a flowchart showing a flow of processing executed by the control module according to the third embodiment.
  • FIG. 13 is a diagram depicting the contents of the processing shown in FIG. 12 as a block diagram.
  • FIG. 14 is a flowchart showing a flow of processing executed by the control module according to the fourth embodiment.
  • FIG. 15 is a diagram depicting the contents of the processing shown in FIG. 14 as a block diagram.
  • the control module 100 is configured as a device for controlling the heat exchange unit 10 provided in the vehicle 50.
  • the configuration of the heat exchange unit 10 will be described first.
  • the heat exchange unit 10 is a unit obtained by combining a plurality of heat exchangers (outdoor heat exchanger 740 and radiator 31) and devices (such as the shutter device 20).
  • the heat exchange unit 10 is installed in the engine room ER of the vehicle 50.
  • the structure provided with a some heat exchanger like this embodiment may be sufficient as the heat exchange unit 10
  • the structure provided with only one heat exchanger may be sufficient as it.
  • the outdoor heat exchanger 740 is a part of a vehicle air conditioner 70 (see FIG. 3) described later.
  • the outdoor heat exchanger 740 is heat for exchanging heat between the air introduced into the engine room ER from the opening OP of the front grill GR and the air conditioning refrigerant circulating in the vehicle air conditioner 70. It is configured as an exchanger.
  • the radiator 31 is a heat exchanger for cooling the cooling water circulating through the engine 51, which is an internal combustion engine, by heat exchange with air.
  • the radiator 31 is disposed at a position on the rear side of the outdoor heat exchanger 740. For this reason, the air introduced into the engine room ER from the opening OP of the front grill GR is subjected to heat exchange with the refrigerant through the outdoor heat exchanger 740 as described above, and then passes through the radiator 31. It is used for heat exchange with cooling water.
  • the heat exchange unit 10 includes a shutter device 20, an electric fan 40, a shroud 43, an electric expansion valve 730, and a hot water valve 32. .
  • the shutter device 20 is a device for adjusting the flow rate of air introduced into the engine room ER from the opening OP, thereby adjusting the flow rate of air passing through the outdoor heat exchanger 740 and the like.
  • Such a shutter device 20 is a so-called “grill shutter”.
  • the shutter device 20 includes a shutter blade 21 and a shutter actuator 22.
  • a plurality of the shutter blades 21 are arranged in a line at a position on the front side of the outdoor heat exchanger 740.
  • opening degree of the shutter device 20 When the shutter blade 21 rotates and its opening degree (hereinafter referred to as “opening degree of the shutter device 20”) changes, the flow rate of the air passing through the shutter device 20 changes, and the outdoor The flow rate of air passing through each of the heat exchanger 740 and the radiator 31 changes.
  • the shutter actuator 22 is an electric drive device for rotating the shutter blade 21 and adjusting its opening degree.
  • the shutter actuator 22 is provided in the vicinity of the shutter blade 21.
  • the operation of the shutter actuator 22 is controlled by the control module 100 described later.
  • the shutter device 20 adjusts the flow rate of air passing by changing the opening thereof, and adjusts the flow rate of air flowing from the front grill GR and passing through the outdoor heat exchanger 740 and the radiator 31. It is configured as a device for. Such a shutter device 20 corresponds to the “air control device” in the present embodiment.
  • the electric fan 40 is an electric fan for creating a flow of air that passes through the outdoor heat exchanger 740 and the radiator 31.
  • the electric fan 40 is arranged at a position on the rear side of the radiator 31.
  • the electric fan 40 includes a rotating blade 41 for creating an air flow and a fan motor 42 that is a rotating electric machine for rotating the rotating blade 41.
  • a fan motor 42 that is a rotating electric machine for rotating the rotating blade 41.
  • the electric fan 40 includes a sensor (not shown) for measuring the rotation speed of the rotary blade 41 per unit time. The number of rotations measured by the sensor is transmitted to the control module 100.
  • the shroud 43 is a member provided to cover the periphery of the electric fan 40 from the rear side. The air drawn by the electric fan 40 is efficiently guided to the outdoor heat exchanger 740 and the radiator 31 by the shroud 43.
  • the electric expansion valve 730 is a device that forms part of the vehicle air conditioner 70 together with the outdoor heat exchanger 740. As will be described later, the electric expansion valve 730 functions as an expansion valve that reduces the pressure of the refrigerant in the refrigeration cycle. The opening degree of the electric expansion valve 730 is controlled by the control module 100. The electric expansion valve 730 adjusts the flow of the refrigerant that circulates along the path passing through the outdoor heat exchanger 740. Such an electric expansion valve 730 corresponds to the “refrigerant control device” in the present embodiment.
  • the hot water valve 32 is an electric on-off valve provided in the middle of a flow path (not shown) through which cooling water circulates between the radiator 31 and the engine 51.
  • the hot water valve 32 is provided at a position adjacent to the radiator 31. When the hot water valve 32 is closed, the supply of cooling water to the radiator 31 is stopped. The operation of the hot water valve 32 is controlled by the control module 100.
  • the configuration of the vehicle air conditioner 70 will be described with reference to FIG.
  • the vehicle air conditioner 70 is configured as a refrigeration cycle in which refrigerant circulates.
  • the vehicle air conditioner 70 includes a refrigerant flow path 710, a compressor 720, an electric expansion valve 750, an indoor heat exchanger 760, an electric expansion valve 730, and an outdoor heat exchanger 740.
  • a part of the vehicle air conditioner 70 (outdoor heat exchanger 740 etc.) is arranged in the engine room ER of the vehicle 50, and the other part (indoor heat exchanger 760 etc.). ) Is disposed in the cabin IR of the vehicle 50.
  • the refrigerant flow path 710 is a pipe arranged in an annular shape to circulate the refrigerant. All of the compressors 720 and the like described below are arranged along the refrigerant flow path 710.
  • the compressor 720 is a device for pumping the refrigerant and circulating it in the refrigerant flow path 710.
  • the compressor 720 is being driven, the refrigerant that has been compressed in the compressor 720 and becomes high temperature and pressure is sent out toward the electric expansion valve 750 side.
  • the electric expansion valve 750 is provided at a position downstream of the compressor 720 in the refrigerant flow path 710.
  • the electric expansion valve 750 reduces the pressure of the refrigerant passing therethrough by reducing the flow passage cross-sectional area of the refrigerant flow passage 710 at the position.
  • the electric expansion valve 750 operates a valve body (not shown) by an electric actuator (not shown) and changes its opening degree.
  • a bypass flow path 751 for flowing the refrigerant so as to bypass the electric expansion valve 750 is provided at a position near the electric expansion valve 750.
  • An electromagnetic on-off valve 752 is provided in the middle of the bypass flow path 751.
  • the electromagnetic open / close valve 752 When the electromagnetic open / close valve 752 is in the closed state, the refrigerant circulates through the refrigerant flow path 710 through a path passing through the electric expansion valve 750.
  • the electromagnetic on-off valve 752 When the electromagnetic on-off valve 752 is in the open state, the refrigerant hardly circulates through the electric expansion valve 750 and circulates through the refrigerant flow path 710 along a path passing through the bypass flow path 751.
  • the indoor heat exchanger 760 is provided at a position downstream of the electric expansion valve 750 in the refrigerant flow path 710.
  • the indoor heat exchanger 760 is a heat exchanger for exchanging heat between the air blown into the passenger compartment IR and the refrigerant circulating in the refrigerant flow path 710.
  • the vehicle air conditioner 70 performs air conditioning in the passenger compartment IR by heating or cooling air in the indoor heat exchanger 760.
  • the electric expansion valve 730 forms a part of the heat exchange unit 10 as described above, and is provided in the refrigerant channel 710 at a position downstream of the indoor heat exchanger 760.
  • the electric expansion valve 730 reduces the pressure of the refrigerant passing therethrough by reducing the flow passage cross-sectional area of the refrigerant flow passage 710 at the position.
  • the electric expansion valve 730 operates a valve body (not shown) by an electric actuator 730M (not shown in FIG. 3, see FIG. 4), and changes its opening degree.
  • a bypass flow path 731 for flowing the refrigerant so as to bypass the electric expansion valve 730 is provided at a position near the electric expansion valve 730.
  • An electromagnetic on-off valve 732 is provided in the middle of the bypass flow path 731.
  • the electromagnetic on-off valve 732 When the electromagnetic on-off valve 732 is in the closed state, the refrigerant circulates through the refrigerant flow path 710 through a path that passes through the electric expansion valve 730.
  • the electromagnetic open / close valve 732 When the electromagnetic open / close valve 732 is in the open state, the refrigerant hardly circulates through the electric expansion valve 730 and circulates through the refrigerant flow path 710 through a path passing through the bypass flow path 731.
  • the outdoor heat exchanger 740 is a part of the heat exchange unit 10 as described above.
  • the outdoor heat exchanger 740 is provided at a position downstream of the electric expansion valve 730 in the refrigerant flow path 710 and upstream of the compressor 720. A specific configuration of the outdoor heat exchanger 740 will be described later.
  • a pressure sensor 61 and a temperature sensor 62 are provided in a portion of the refrigerant flow path 710 downstream of the outdoor heat exchanger 740, specifically, a portion through which the refrigerant immediately after being discharged from the outdoor heat exchanger 740 passes. And are provided.
  • the pressure sensor 61 is a sensor for measuring the pressure of the refrigerant discharged from the outdoor heat exchanger 740. The refrigerant pressure measured by the pressure sensor 61 is transmitted to the control module 100.
  • the temperature sensor 62 is a sensor for measuring the temperature of the refrigerant discharged from the outdoor heat exchanger 740. The refrigerant temperature measured by the temperature sensor 62 is transmitted to the control module 100.
  • a wind speed sensor 63 for measuring the wind speed of the air passing through the outdoor heat exchanger 740 is provided.
  • the wind speed measured by the wind speed sensor 63 is transmitted to the control module 100.
  • the electromagnetic open / close valve 732 When the vehicle interior IR is heated by the vehicle air conditioner 70, the electromagnetic open / close valve 732 is switched to the closed state, and the electromagnetic open / close valve 752 is switched to the open state.
  • the refrigerant circulates through the refrigerant flow path 710 along a path that passes through the electric expansion valve 730, and reduces its temperature and pressure when passing through the electric expansion valve 730. That is, when the interior of the passenger compartment IR is heated, the electric expansion valve 730 functions as an “expansion valve” of the refrigeration cycle.
  • the low-temperature and low-pressure refrigerant that has passed through the electric expansion valve 730 is supplied to the outdoor heat exchanger 740.
  • the outdoor heat exchanger 740 heat is absorbed from the air by the low-temperature refrigerant, whereby the refrigerant evaporates inside. That is, when the interior of the passenger compartment IR is heated, the outdoor heat exchanger 740 functions as an “evaporator” of the refrigeration cycle.
  • the refrigerant that has passed through the outdoor heat exchanger 740 is compressed by the compressor 720, and is sent downstream with its temperature and pressure increased.
  • the high-temperature and high-pressure refrigerant is supplied to the indoor heat exchanger 760 through the bypass channel 751.
  • the indoor heat exchanger 760 In the indoor heat exchanger 760, heat is released from the refrigerant to the air, thereby condensing the refrigerant inside. That is, when the interior of the passenger compartment IR is heated, the indoor heat exchanger 760 functions as a “condenser” for the refrigeration cycle. After the temperature of the air is increased by heat exchange in the indoor heat exchanger 760, the air is blown into the passenger compartment IR as conditioned air.
  • the refrigerant that has passed through the indoor heat exchanger 760 passes through the refrigerant flow path 710 and reaches the electric expansion valve 730 again.
  • coolant circulates as mentioned above when the inside of vehicle interior IR is performed is shown by the some arrow.
  • the electromagnetic on-off valve 732 When the vehicle interior IR is cooled by the vehicle air conditioner 70, the electromagnetic on-off valve 732 is switched to the open state, and the electromagnetic on-off valve 752 is switched to the closed state. In this state, the refrigerant circulating in the refrigerant flow path 710 flows through the electric expansion valve 730 while passing through the electric expansion valve 750. The refrigerant reduces its temperature and pressure when passing through the electric expansion valve 750. In other words, when the passenger compartment IR is cooled, the electric expansion valve 750 functions as an “expansion valve” of the refrigeration cycle.
  • the low-temperature and low-pressure refrigerant that has passed through the electric expansion valve 730 is supplied to the indoor heat exchanger 760.
  • the indoor heat exchanger 760 heat is absorbed from the air by the low-temperature refrigerant, whereby the refrigerant evaporates inside. That is, when the passenger compartment IR is cooled, the indoor heat exchanger 760 functions as an “evaporator” of the refrigeration cycle.
  • the outdoor heat exchanger 740 heat is radiated from the refrigerant to the air, thereby condensing the refrigerant inside. That is, when the passenger compartment IR is heated, the outdoor heat exchanger 740 functions as a “condenser” for the refrigeration cycle. At this time, the refrigerant flow path is changed in advance by a pipe, a switching valve, or the like (not shown) so that the refrigerant is compressed by the compressor 720 not on the downstream side of the outdoor heat exchanger 740 but on the upstream side. It is good also as a structure.
  • the outdoor heat exchanger 740 includes a pair of tanks 741 and 742 and a core portion 743 disposed therebetween.
  • Each of the tanks 741 and 742 is an elongated container formed to extend in the vertical direction.
  • the refrigerant circulating in the refrigerant flow path 710 is temporarily stored.
  • the core part 743 is a part where heat is exchanged between the refrigerant and air in the outdoor heat exchanger 740.
  • a plurality of tubes and fins are arranged in the core portion 743.
  • the tube is, for example, a tube having a flat cross section, and a flow path through which the refrigerant passes is formed in the tube.
  • Each of the plurality of tubes connects between the tank 741 and the tank 742, and is stacked up and down with the main surfaces facing each other.
  • the fins are formed by bending a metal plate into a wave shape, and are arranged between the stacked tubes.
  • the top of each of the undulating fins is in contact with the outer surface of the tube and brazed. For this reason, the heat of the air passing through the outdoor heat exchanger 740 during heating is not only transmitted to the refrigerant via the tube, but also transmitted to the refrigerant via the fins and the tube. That is, the contact area with the air is increased by the fins, and heat exchange between the refrigerant and the air is performed efficiently.
  • adopted as a structure of the core part 743 which has the above fins and tubes it abbreviate
  • the internal spaces of the tank 741 and the tank 742 are partitioned so as to be divided up and down by a separator (not shown).
  • the refrigerant passing through the outdoor heat exchanger 740 is used for heat exchange in the core portion 743 while going back and forth between the tank 741 and the tank 742 a plurality of times.
  • a modulator tank 770 is provided on the side of the tank 741 (the side opposite to the core portion 743).
  • the modulator tank 770 is an elongated container formed so as to extend in the vertical direction, and is arranged in parallel with the tank 741.
  • the modulator tank 770 and the tank 741 are connected by connection pipes 771, 772, and 773.
  • the refrigerant passing through the outdoor heat exchanger 740 goes back and forth between the tank 741 and the tank 742 a plurality of times through the modulator tank 770 from the connection pipes 771, 772, and 773.
  • the modulator tank 770 stores a liquid phase refrigerant.
  • the refrigerant flowing in the gas-liquid mixed state is in a state where the gas and liquid are separated when passing through the modulator tank 770.
  • the electric actuator 730M of the electric expansion valve 730 is attached to the upper end of the modulator tank 770. Thereby, the electric expansion valve 730 and the modulator tank 770 are integrated.
  • a valve body (not shown) for reducing the cross-sectional area of the flow path in the electric expansion valve 730 is provided at a position directly below the electric actuator 730M, and is disposed inside the modulator tank 770.
  • the electric actuator 730M is provided with a circuit board BD1 for operating the electric actuator 730M.
  • the components of the control module 100 are also arranged on the circuit board BD1. That is, the control module 100 according to the present embodiment is configured integrally with the electric expansion valve 730 that is a refrigerant control device.
  • the heat exchange unit 10 including the control module 100 and the surrounding configuration will be described with reference to FIG. As already described, the heat exchange unit 10 is entirely disposed in the engine room ER of the vehicle 50.
  • a plurality of sensors necessary for controlling the flow of the three fluids (refrigerant, cooling water, air) in the heat exchange unit 10 are arranged.
  • a sensor include an opening sensor that measures the opening of the shutter device 20 in addition to the pressure sensor 61 and the temperature sensor 62 described above.
  • the value measured by each sensor is input to the control module 100 as an electrical signal (detection signal).
  • these multiple sensors are depicted as a single block labeled 60.
  • the plurality of sensors are collectively referred to as “sensor 60”.
  • an engine ECU 200 and an air conditioning ECU 300 are arranged in the passenger compartment IR of the vehicle 50. These are all configured as a computer system having a CPU, a ROM, a RAM, a communication interface, and the like.
  • the engine ECU 200 is a control device for controlling the engine 51.
  • the engine ECU 200 adjusts the flow rate of the cooling water circulated between the engine 51 and the radiator 31, controls the operation of the hot water valve 32, adjusts the opening degree of the shutter device 20, and adjusts the rotational speed of the electric fan 40. Do.
  • a part of the control performed by the engine ECU 200 (for example, the operation control of the shutter actuator 22) is performed via the control module 100.
  • the control module 100 receives a control signal transmitted from the engine ECU 200, and controls operations of various devices (such as the shutter actuator 22) based on the control signal.
  • various devices such as the shutter actuator 22
  • the control module 100 does not always control the operation of various devices according to the control signal, but may control the operation of various devices according to its own judgment.
  • the air conditioning ECU 300 is a control device for controlling the vehicle air conditioner 70.
  • the air conditioning ECU 300 appropriately performs air conditioning in the passenger compartment IR by controlling the operations of various devices (such as the electric expansion valve 730) that constitute the vehicle air conditioner 70.
  • a part of the control performed by the air conditioning ECU 300 (for example, operation control of the electric expansion valve 730) is performed via the control module 100.
  • the control module 100 receives a control signal transmitted from the air conditioning ECU 300, and performs operation control of various devices (such as the electric expansion valve 730) based on the control signal.
  • various devices such as the electric expansion valve 730
  • the control module 100 does not always control the operation of various devices according to the control signal, but may control the operation of various devices according to its own judgment.
  • the vehicle 50 is provided with a plurality of power supply systems for supplying power to various devices. As shown in FIG. 5, the control module 100 is supplied with power from the power supply system PL1, the engine ECU 200 is supplied with power from the power supply system PL2, and the air conditioning ECU 300 is supplied with power from the power supply system PL3. Power is being supplied.
  • the power supply system PL1 is a power supply system to which power from a battery (not shown) provided in the vehicle 50 is directly supplied. Therefore, regardless of whether an ignition switch (not shown) of the vehicle 50 is on or off, the control module 100 is always supplied with power from the power supply system PL1.
  • the power supply system PL2 is a power supply system to which power from an alternator (not shown) provided in the vehicle 50 is supplied. For this reason, when the ignition switch of vehicle 50 is turned on and engine 51 is operating, electric power from power supply system PL2 is supplied to engine ECU 200. On the other hand, when the ignition switch of vehicle 50 is turned off and engine 51 is stopped, electric power from power supply system PL2 is not supplied to engine ECU 200.
  • the power supply system PL3 is a power supply system to which power from a battery provided in the vehicle 50 is directly supplied, like the power supply system PL1. Therefore, regardless of whether the ignition switch of the vehicle 50 is on or off, the air conditioning ECU 300 is always supplied with power from the power supply system PL3.
  • the configuration of the control module 100 will be described with reference to FIG.
  • the control module 100 includes a reception unit 110, an input unit 120, an acquisition unit 125, a control unit 130, drivers 141 and 142, and a HUB 143.
  • the receiving unit 110 is a part that receives control signals for controlling the operation of various devices from the engine ECU 200 and the air conditioning ECU 300.
  • the control signal is a signal for controlling operations of the shutter device 20 and the electric expansion valve 730 described so far.
  • control signals are transmitted from two ECUs including the engine ECU 200 and the air conditioning ECU 300, and the control signals are received by the receiving unit 110.
  • a mode in which a control signal from a single ECU is received by the receiving unit 110 may be employed.
  • a control signal for controlling the operation of the shutter device 20 and a control signal for controlling the operation of the hot water valve 32 are transmitted from the engine ECU 200 and received by the receiving unit 110. Further, a control signal for controlling the operation of the electric expansion valve 730 is transmitted from the air conditioning ECU 300 and received by the receiving unit 110. That is, a control signal for controlling operations of a plurality of devices is received by the receiving unit 110. Instead of such an aspect, the control signal received by the receiving unit may be for controlling the operation of a single device.
  • the input unit 120 is a part to which each detection signal from the sensor 60 is input.
  • the detection signal from the sensor 60 is directly input to the control module 100 from each sensor included in the sensor 60 without passing through another ECU (electronic control unit). Since a time lag due to communication via other ECUs does not occur, the control module 100 can instantly grasp the measured values of various sensors.
  • the control module 100 can also receive a detection signal indicating the vehicle speed (the traveling speed of the vehicle 50) from a vehicle speed sensor 201 provided in the vehicle 50.
  • the detection signal transmitted from the vehicle speed sensor 201 is not directly input to the input unit 120 but is input to the control module 100 via the engine ECU 200. That is, the control module 100 can acquire the traveling speed of the vehicle 50 through communication with the engine ECU 200.
  • a mode in which a detection signal from the vehicle speed sensor 201 is directly input to the input unit 120 may be used.
  • the acquisition unit 125 is a part that acquires the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740.
  • the acquisition unit 125 acquires the refrigerant pressure measured by the pressure sensor 61 and the refrigerant temperature measured by the temperature sensor 62, and based on these, the refrigerant immediately after being discharged from the outdoor heat exchanger 740 is acquired.
  • the “superheat degree” is a temperature difference between the temperature of the refrigerant (superheated steam) discharged from the outdoor heat exchanger 740 and the saturation temperature of the refrigerant at the same pressure as the refrigerant, so-called “superheat”. It is also called.
  • the degree of superheat acquired by the acquisition unit 125 is input to the control unit 130.
  • the relationship between the refrigerant pressure and temperature and the degree of superheat is stored in advance as a map.
  • the acquisition unit 125 calculates and acquires the degree of superheat of the refrigerant by referring to the measured values of the pressure sensor 61 and the temperature sensor 62 and the map.
  • the control unit 130 is a part that controls the operation of various devices included in the heat exchange unit 10 such as the shutter device 20 and the electric expansion valve 730 via a driver 141 described later.
  • Control signals received from engine ECU 200 and air conditioning ECU 300 are input from receiving unit 110 to control unit 130.
  • Various detection signals input from the sensor 60 are input from the input unit 120 to the control unit 130.
  • the control unit 130 controls the operation of the shutter device 20 and the like based on the input control signal and detection signal.
  • the driver 141 is a part for supplying a driving current to the shutter device 20.
  • the driver 141 is supplied with power from the power supply system PL1 as power for operation.
  • the driver 141 is formed with a circuit for supplying a drive current to the shutter actuator 22.
  • the supply of driving current from the driver 141 to the shutter actuator 22 is controlled by a signal from the control unit 130. Thereby, the operation of the shutter actuator 22 is controlled, and the opening degree of the shutter device 20 is adjusted to be a predetermined opening degree.
  • the driver 142 is a part for supplying a driving current to the electric actuator 730M of the electric expansion valve 730.
  • the driver 142 is supplied with power from the power supply system PL1 as power for operation.
  • the driver 142 is formed with a circuit for adjusting the magnitude of the drive current supplied to the electric actuator 730M.
  • the magnitude of the driving current supplied to the electric actuator 730M is adjusted by a signal from the control unit 130.
  • HUB 143 is a so-called concentrator.
  • the HUB 143 is connected to signal lines connected to some of the various devices included in the heat exchange unit 10.
  • a signal line connected to the hot water valve 32 is connected to the HUB 143.
  • the HUB 143 is supplied with power from the power supply system PL1 as power for operation.
  • the control unit 130 is configured to control the operation of the hot water valve 32 by transmitting only a control signal (not a driving current) to the hot water valve 32.
  • the hot water valve 32 has a built-in driver (not shown) for controlling its operation. The driver operates based on a control signal transmitted from the control unit 130 via the HUB 143 and switches between opening and closing of the hot water valve 32.
  • the hot water valve 32 is in an open state, supply of cooling water to the radiator 31 is started.
  • the hot water valve 32 is closed, the supply of cooling water to the radiator 31 is stopped.
  • the number of devices connected to the HUB 143 may be one as in the present embodiment, or may be two or more. Further, the HUB 143 is not provided, and all the devices included in the heat exchange unit 10 are connected to the control unit 130 via a driver like the shutter device 20 in the present embodiment. May be. Such a configuration is preferable when the time lag of communication between the control unit 130 and various devices becomes a problem.
  • all the devices included in the heat exchange unit 10 may be connected to the control unit 130 via the HUB 143 like the hot water valve 32 in the present embodiment.
  • the control module 100 and the heat exchange unit 10 such a configuration is preferable.
  • the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740 which is an evaporator
  • the liquid phase is transferred to the compressor 720 on the downstream side.
  • the refrigerant may reach and the operation of the compressor 720 may be hindered.
  • the degree of superheat becomes too large, the flow path resistance of the refrigerant passing through the electric expansion valve 730 increases, and the operating efficiency of the refrigeration cycle decreases.
  • the control for matching the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 (that is, the superheat degree acquired by the acquisition unit 125) with a predetermined target value Need to do.
  • this control is also referred to as “superheat degree adjustment control”.
  • the control module 100 controls the operation of the shutter device 20 and the electric expansion valve 730 in a mode different from the mode indicated by the control signal transmitted from the host ECU (engine ECU 200 or air conditioning ECU 300). To do. A specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
  • control 7 is a process repeatedly executed by the control module 100 every time a predetermined control cycle elapses.
  • step S01 the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S02 following step S01 the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S03 the superheat degree of the refrigerant is acquired (calculated) based on the refrigerant temperature acquired in step S01 and the refrigerant pressure acquired in step S02. This processing is performed by the acquisition unit 125 as described above.
  • step S04 it is determined whether or not the deviation amount is smaller than a predetermined value for the degree of superheat acquired in step S03.
  • the “deviation amount” here is an absolute value of a difference between the degree of superheat acquired by the acquisition unit 125 and a target value set for the degree of superheat.
  • the calculation of the deviation amount is performed by the control unit 130.
  • the target value is determined in advance by the air conditioning ECU 300 and transmitted to the control module 100.
  • step S05 the target opening degree of the electric expansion valve 730 is calculated.
  • This target opening is the opening of the electric expansion valve 730 that is necessary to bring the deviation amount close to zero.
  • the target opening is calculated by the control unit 130.
  • Such a target opening can be calculated, for example, by referring to a map prepared in advance. Further, the target opening degree may be calculated by adding a correction value determined based on the map to the target value of the opening degree of the electric expansion valve 730 transmitted from the air conditioning ECU 300.
  • step S06 a process of driving the electric expansion valve 730 (specifically, the electric actuator 730M) is performed so that the opening degree of the electric expansion valve 730 matches the target opening degree calculated in step S05. Is called.
  • This process is performed by the control unit 130.
  • the opening degree of the electric expansion valve 730 becomes equal to the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
  • step S04 when the degree of deviation of the superheat degree is equal to or greater than a predetermined value, the process proceeds to step S07.
  • step S07 the target opening degree of the shutter device 20 is calculated. This target opening is the opening of the shutter device 20 that is necessary to bring the deviation amount close to zero. The target opening is calculated by the control unit 130.
  • Such a target opening can be calculated, for example, by referring to a map prepared in advance. Further, the target opening degree may be calculated by adding a correction value determined based on the map to the target value of the opening degree of the shutter device 20 transmitted from the engine ECU 200.
  • step S08 processing for driving the shutter device 20 (specifically, the shutter actuator 22) is performed so that the opening degree of the shutter device 20 matches the target opening degree calculated in step S07. Thereby, the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
  • the control unit 130 controls the operation of the shutter device 20 (air control device) based on the degree of superheat acquired by the acquisition unit 125, and thereby the degree of superheat. It is possible to adjust. Specifically, the operation of the shutter device 20 can be controlled so that the degree of superheat acquired by the acquisition unit 125 matches the target value (steps S07 and S08).
  • control unit 130 can control the operation of the electric expansion valve 730 (refrigerant control device) based on the degree of superheat acquired by the acquisition unit 125, and thereby adjust the degree of superheat. It has become. Specifically, the operation of the electric expansion valve 730 can be controlled so that the degree of superheat acquired by the acquisition unit 125 matches the target value (steps S05 and S06).
  • the control module 100 it is possible to perform two types of control as the superheat degree adjustment control for adjusting the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740.
  • the degree of superheat is adjusted by controlling the operation of the shutter device 20 which is an air control device (steps S07 and S08).
  • the superheat degree adjustment control in this manner is also referred to as “first control”.
  • the other is to adjust the degree of superheat by controlling the operation of the electric expansion valve 730, which is a refrigerant control device (steps S05, S06).
  • the superheat degree adjustment control in this manner is also referred to as “second control”.
  • the degree of superheat of the refrigerant is adjusted by changing the opening degree of the electric expansion valve 730, that is, by performing the second control, the rate of change of the degree of superheat is relatively small.
  • the degree of superheat of the refrigerant is adjusted by changing the flow rate of the air passing through the outdoor heat exchanger 740, that is, by performing the first control, the change rate of the degree of superheat is relatively large.
  • the superheat degree is adjusted by the second control with a relatively low response speed. I do.
  • the superheat degree is adjusted by the first control having a relatively high response speed.
  • FIG. 8A shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 74 in the heat exchange unit 10 according to the comparative example.
  • the control for adjusting the degree of superheat to the target value SV is performed only by the control for adjusting the opening degree of the electric expansion valve 730.
  • the process for acquiring and adjusting the degree of superheat is performed by the air conditioning ECU 300 instead of the control module 100.
  • the air conditioning ECU 300 performs a process of operating the electric expansion valve 730 so that the opening degree of the electric expansion valve 730 is reduced so that the degree of superheat returns from the value MV to the target value SV.
  • a communication time lag occurs until the control signal from the air conditioning ECU 300 reaches the control module 100 and the opening of the electric expansion valve 730 starts to change. Therefore, in the example of FIG. 8A, the opening degree of the electric expansion valve 730 starts to change at time t10 after time t0.
  • a period TM10 from time t0 to time t10 corresponds to the above time lag.
  • the electric expansion valve 730 After time t10, the electric expansion valve 730 operates and its opening degree changes. Thereby, the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 gradually increases, and coincides with the target value SV at time t20. However, as already described, the change rate of the superheat degree when the opening degree of the electric expansion valve 730 changes is relatively small. For this reason, the period TM21 from time t10 when the electric expansion valve 730 starts to operate to time t20 when the superheat degree matches the target value SV is relatively long.
  • FIG. 8B shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740 in the heat exchange unit 10 according to another comparative example.
  • control for adjusting the degree of superheat to the target value SV is performed only by control for adjusting the opening degree of the shutter device 20.
  • the process for acquiring and adjusting the degree of superheat is performed not by the control module 100 but by the air conditioning ECU 300.
  • the air conditioning ECU 300 performs a process of operating the shutter device 20 so that the opening degree of the shutter device 20 increases so that the degree of superheat returns from the value MV to the target value SV.
  • a communication time lag occurs until the control signal from the air conditioning ECU 300 reaches the control module 100 and the opening degree of the shutter device 20 starts to change. For this reason, the opening degree of the shutter device 20 also starts to change at time t10 after time t0.
  • a period TM10 from time t0 to time t10 corresponds to the above time lag.
  • the shutter device 20 After time t10, the shutter device 20 operates and its opening degree changes. Thereby, the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 gradually increases and matches the target value SV at time t15. As already described, the rate of change of the degree of superheat when the opening degree of the shutter device 20 changes is relatively large. For this reason, the period TM22 from time t10 when the shutter device 20 starts operating to time t15 when the superheat degree matches the target value SV is shorter than the period TM21 in FIG.
  • FIG. 8C shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740 in the heat exchange unit 10 according to this embodiment.
  • the control for adjusting the superheat degree to the target value SV is performed only by the first control, that is, the control for adjusting the opening degree of the shutter device 20.
  • the control module 100 performs processing for acquiring and adjusting the degree of superheat. That is, a time lag due to communication with the air conditioning ECU 300 does not occur. Therefore, it is possible to start changing the opening degree of the shutter device 20 almost at the same time (time t0) as the degree of superheat changes suddenly and decreases to the value MV. Thereafter, at time t5 after time t0, the degree of superheat matches the target value SV.
  • a period TM23 from time t0 to time t5 is the same length as the period TM22 in FIG.
  • control module 100 may be in the form of a host ECU such as the engine ECU 200 or the air conditioning ECU 300. That is, the engine ECU 200 or the like may function as the control module 100.
  • a mode in which the control module 100 is configured as a dedicated device responsible for controlling the heat exchange unit 10 as in the present embodiment is preferable.
  • the second embodiment will be described. Below, only a different point from 1st Embodiment is demonstrated, and description is abbreviate
  • the contents of processing executed by the control module 100 are different from those in the first embodiment, and the other points are the same as those in the first embodiment.
  • a specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
  • the series of processes shown in FIG. 9 is a process that is repeatedly executed by the control module 100 every time a predetermined control period elapses. This process is executed in place of the series of processes shown in FIG.
  • step S11 the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S12 the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S13 the superheat degree of the refrigerant is obtained (calculated) based on the refrigerant temperature obtained in step S11 and the refrigerant pressure obtained in step S12. This processing is performed by the acquisition unit 125 as described above.
  • step S14 the target opening of the electric expansion valve 730 is calculated.
  • This target opening is the opening of the electric expansion valve 730 that is necessary to bring the already described deviation amount close to zero.
  • the target opening is calculated by the control unit 130.
  • FIG. 10 shows a correspondence relationship between the degree of superheat (horizontal axis) acquired in step S13 and the target opening degree (vertical axis) calculated in step S14.
  • the correspondence relationship is created in advance as a map and stored in the storage device of the control module 100.
  • the target opening degree of the electric expansion valve 730 is calculated based on the correspondence relationship of FIG.
  • the target opening is set to be larger (open side) as the degree of superheat acquired by the acquisition unit 125 increases.
  • coolant in the outdoor heat exchanger 740 rises, and the heat absorption amount in the outdoor heat exchanger 740 becomes small.
  • the degree of superheat at the outlet portion of the outdoor heat exchanger 740 is reduced.
  • the target opening is set to be smaller (to the throttle side) as the degree of superheat acquired by the acquisition unit 125 becomes smaller.
  • coolant in the outdoor heat exchanger 740 falls, and the heat absorption amount in the outdoor heat exchanger 740 becomes large.
  • the degree of superheat at the outlet portion of the electric expansion valve 730 increases.
  • step S15 the target opening of the shutter device 20 is calculated.
  • This target opening is the opening of the shutter device 20 that is necessary to bring the already explained difference close to zero.
  • the target opening is calculated by the control unit 130.
  • FIG. 11 shows the correspondence between the degree of superheat (horizontal axis) acquired in step S13 and the target opening (vertical axis) calculated in step S15.
  • the correspondence is created in advance as a map and stored in the storage device of the control module.
  • step S15 the target opening degree of the shutter device 20 is calculated based on the correspondence relationship in FIG.
  • the target opening is set to be smaller (to the throttle side) as the degree of superheat acquired by the acquisition unit 125 increases.
  • the flow rate of the air passing through the outdoor heat exchanger 740 is reduced, and the heat absorption amount in the outdoor heat exchanger 740 is reduced.
  • the degree of superheat at the outlet portion of the outdoor heat exchanger 740 is reduced.
  • the target opening degree is set to be larger (open side) as the degree of superheat acquired by the acquisition unit 125 becomes smaller.
  • the flow rate of air passing through the outdoor heat exchanger 740 increases, and the amount of heat absorbed in the outdoor heat exchanger 740 increases.
  • the degree of superheat at the outlet portion of the electric expansion valve 730 increases.
  • step S16 a process of driving the electric expansion valve 730 (specifically, the electric actuator 730M) is performed so that the opening degree of the electric expansion valve 730 matches the target opening degree calculated in step S14. Is called.
  • This process is performed by the control unit 130.
  • the opening degree of the electric expansion valve 730 becomes equal to the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
  • step S17 following step S16 a process of driving the shutter device 20 (specifically, the shutter actuator 22) is performed so that the opening degree of the shutter device 20 matches the target opening degree calculated in step S15.
  • the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
  • the first control (step S17) for changing the flow rate of the air passing through the outdoor heat exchanger 740, and the first control for changing the opening degree of the electric expansion valve 730. 2 control (step S16) is performed in parallel. Even in such an aspect, the same effects as those described in the first embodiment can be obtained. Moreover, in this embodiment, since 1st control and 2nd control are performed simultaneously, it is possible to change a superheat degree in a wider range. For this reason, the degree of superheat during operation of the vehicle air conditioner 70 can be further stabilized.
  • the third embodiment will be described. Below, only a different point from 1st Embodiment is demonstrated, and description is abbreviate
  • the contents of processing executed by the control module 100 are different from those in the first embodiment, and the other points are the same as those in the first embodiment.
  • a specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
  • step S21 the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S22 following step S21 the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
  • step S23 the superheat degree of the refrigerant is acquired (calculated) based on the refrigerant temperature acquired in step S21 and the refrigerant pressure acquired in step S22. This processing is performed by the acquisition unit 125 as described above.
  • step S24 following step S23 the air volume of the air passing through the outdoor heat exchanger 740 is calculated and acquired based on the wind speed measured by the wind speed sensor 63.
  • step S25 following step S24 the target opening degree of the shutter device 20 is calculated based on the degree of superheat acquired in step S23 and the air volume calculated in step S24.
  • This target opening is the opening of the shutter device 20 that is necessary to bring the degree of superheat close to the target value.
  • the target opening is calculated by the control unit 130.
  • step S26 following step S25, the shutter device 20 (specifically, the shutter actuator 20) is adjusted so that the opening degree of the shutter device 20 coincides with the target opening degree calculated in step S25 (that is, the deviation amount approaches 0). 22) is driven. This process is performed by the control unit 130. Thereby, the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
  • FIG. 13 shows the contents of the processing shown in FIG. 12 as a so-called block diagram.
  • Block B1 shows the target value of the degree of superheat at the outlet of the outdoor heat exchanger 740. As already described, the target value is determined in advance by the air conditioning ECU 300 and transmitted to the control module 100.
  • Block B2 is a so-called adder.
  • a deviation between a target value of the superheat degree input from block B1 and an actual superheat degree input from block B11 described later is calculated, and the deviation is output toward block B3.
  • a target value for the air volume of the air passing through the outdoor heat exchanger 740 is calculated based on the deviation.
  • the target value of the air volume necessary for setting the above deviation to 0 is calculated.
  • the calculated target value of the air volume is output toward the block B4.
  • Block B4 is an adder. In block B4, the deviation between the target value of the air volume input from block B3 and the actual air volume input from block B13, which will be described later, is calculated, and the deviation is output toward block B5.
  • the target opening degree of the shutter device 20 is calculated based on the above deviation.
  • the target opening is the target opening calculated in step S25 of FIG.
  • the target opening degree required to set the deviation input from block B4 to 0 is calculated by calculating a map created in advance.
  • the calculated target opening is output toward the block B7.
  • the target opening is corrected in advance based on the operating state of the electric fan 40 input from the block B6. This process is executed by the control unit 130.
  • the “operating state of the electric fan 40” is the number of rotations of the electric fan 40.
  • the target opening degree is corrected so that the opening degree of the shutter device 20 decreases as the rotational speed of the electric fan 40 increases. For this reason, for example, when the electric fan 40 is over-rotated, the amount of air passing through the outdoor heat exchanger 740 becomes too large, and the degree of superheat is prevented from deviating from the target value. Is done.
  • the parameter used as the “operating state of the electric fan 40” may be the rotational speed of the electric fan 40 as in the present embodiment, but indirectly indicates the rotational speed of the electric fan 40. May be.
  • the current value flowing through the fan motor 42 may be used as the “operating state of the electric fan 40”.
  • control is performed to change the opening degree of the shutter device 20 in accordance with the rotational speed of the electric fan 40 that sends air into the outdoor heat exchanger 740.
  • the control unit 130 performs a process of reducing the opening degree of the shutter device 20 as the rotational speed of the electric fan 40 increases.
  • the target opening degree of the shutter device 20 calculated in block B5 is input to block B7.
  • block B7 a process for matching the opening degree of the shutter device 20 with the target opening degree is performed. That is, the block B7 shows the process shown in step S26 of FIG.
  • Block B8 is a block showing such a change in air volume. Further, when the air volume passing through the outdoor heat exchanger 740 changes, the state (pressure and temperature) of the refrigerant discharged from the outdoor heat exchanger 740 also changes.
  • Block B9 is a block showing the refrigerant state changing in this way.
  • block B10 the refrigerant state changed as described above is acquired. Specifically, the pressure of the refrigerant is acquired by the pressure sensor 61, and the temperature of the refrigerant is acquired by the temperature sensor 62. In this way, the block B10 indicates the processing shown in steps S21 and S22 of FIG. The pressure and temperature of the refrigerant acquired in block B10 are input to block B11.
  • Block B11 based on the pressure and temperature of the refrigerant, the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger 740 is calculated and acquired.
  • Block B11 shows the processing shown in step S23 of FIG.
  • the degree of superheat calculated in block B11 is input to block B2, and is used for calculation of the deviation in superheat degree as already described.
  • the wind speed of the air passing through the outdoor heat exchanger 740 is acquired by the wind speed sensor 63.
  • the acquired wind speed is input to block B13.
  • the wind speed input from block B12 is converted into the “air volume” of the air passing through the outdoor heat exchanger 740.
  • the air volume is input to the block B4 and used for calculating the deviation of the air volume as already described.
  • the process shown in FIG. 13 is a process in which a feedback loop for matching the air volume with the target value is formed inside the feedback loop for matching the degree of superheat with the target value.
  • the degree of superheat can be controlled more accurately by adjusting the air volume.
  • the fourth embodiment will be described. Below, only a different point from 3rd Embodiment is demonstrated, and description is abbreviate
  • part of the processing executed by the control module 100 is different from that of the third embodiment, and the other points are the same as those of the third embodiment.
  • a specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
  • step S24 is replaced with step S31 and replacing step S25 with step S32 in the series of processes shown in FIG.
  • steps common to those shown in FIG. 12 are denoted by the same reference numerals (S ⁇ b> 21 and the like) as those in FIG.
  • step S31 executed subsequent to step S23, the vehicle speed measured by the vehicle speed sensor 201, that is, the traveling speed of the vehicle 50 is acquired.
  • step S32 following step S31, the target opening of the shutter device 20 is calculated based on the degree of superheat acquired in step S23 and the travel speed acquired in step S31. This target opening is the opening of the shutter device 20 that is necessary to bring the degree of superheat close to the target value.
  • the target opening is calculated by the control unit 130.
  • FIG. 15 shows the contents of a series of processes shown in FIG. 14 as a so-called block diagram.
  • those common to the blocks shown in FIG. 13 are denoted by the same reference numerals (B1 etc.) as those in FIG. 13. Only the differences from FIG. 13 will be described below.
  • the block B3 in FIG. 13 is replaced with a block B31.
  • the target value for the air volume of the air passing through the outdoor heat exchanger 740 is calculated as in the block B3.
  • the target value of the air volume is calculated based on the vehicle speed measured by the vehicle speed sensor 201 in addition to the deviation input from block B4.
  • the vehicle speed measured by the vehicle speed sensor 201 is shown as a block B32. It can be said that the block B32 indicates the processing shown in step S31 of FIG.
  • the target value of the calculated air volume is corrected based on the vehicle speed input from block B32, that is, the traveling speed of the vehicle 50.
  • This process is executed by the control unit 130. Specifically, the correction is made so that the target value of the air volume decreases as the traveling speed of the vehicle 50 increases. Further, the target value of the air volume is corrected so as to decrease as the traveling speed of the vehicle 50 decreases.
  • the calculated target value of the air volume is input to the block B33.
  • the block B5 in FIG. 13 is replaced with a block B33.
  • there is no loop (block B12, block B13, and block B4 in FIG. 13) that feeds back the actual measurement value of the air volume.
  • the target opening of the shutter device 20 is calculated according to the target value of the air volume input from block B31. That is, in this embodiment, the target opening degree of the shutter device 20 is determined by feedforward.
  • the target opening degree of the shutter device 20 is calculated as a larger value (open side value). Further, the target opening degree of the shutter device 20 is calculated as a smaller value (a value on the aperture side) as the target value of the input air volume becomes smaller.
  • Such a correspondence relationship is created in advance as a map and stored in the storage device of the control module 100.
  • the calculated target opening is corrected based on the operating state of the electric fan 40 input from the block B6. A specific correction method is the same as that described in FIG.
  • control for changing the opening degree of the shutter device 20 according to the traveling speed of the vehicle 50 is performed. Specifically, the control unit 130 performs control such that the target value of the air volume is set lower as the traveling speed of the vehicle 50 increases (block B31), thereby reducing the opening of the shutter device 20 (block B33). Done. Further, the control unit 130 performs control such that the target value of the air volume is set lower as the traveling speed of the vehicle 50 increases (block B31), thereby reducing the opening of the shutter device 20 (block B33). Thereby, even when the air volume flowing from the front grill GR varies according to the traveling speed of the vehicle 50, the degree of superheat can be reliably brought close to the target value.
  • the shutter device 20 is used as an air control device whose operation is controlled in the superheat degree adjustment control. It may replace with such an aspect and the aspect that the electric fan 40 is used as a control object in superheat degree adjustment control may be sufficient.
  • control for reducing the rotational speed of the electric fan 40 is performed.
  • control for increasing the rotational speed of the electric fan 40 is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

A control module (100) that controls a heat exchange unit (10) that is provided to a vehicle (50). The heat exchange unit comprises: a heat exchanger (740) that exchanges heat between air and an air-conditioning coolant and thereby internally evaporates the coolant; and an air control device (20) that adjusts the flow of air that flows in from a front grill (GR) of the vehicle and passes through the heat exchanger. The control module comprises: a control unit (130) that controls the operation of the air control device; and an acquisition unit (125) that acquires the degree of superheat of the coolant as discharged from the heat exchanger. The control unit controls the operation of the air control device on the basis of the degree of superheat acquired by the acquisition unit.

Description

制御モジュールControl module 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月26日に出願された日本国特許出願2016-250930号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2016-250930 filed on December 26, 2016, and claims the benefit of its priority. Which is incorporated herein by reference.
 本開示は、車両に設けられる熱交換ユニットの制御を行う制御モジュールに関する。 The present disclosure relates to a control module that controls a heat exchange unit provided in a vehicle.
 車両には複数の熱交換器が備えられる。このような熱交換器には、冷凍サイクルとして構成された空調装置の一部である蒸発器が含まれる(例えば下記特許文献1を参照)。車両に設けられる熱交換器は、例えば冷媒の流れを調整する電動膨張弁等の装置と共にユニット化され、全体が1つの熱交換ユニットとして構成されることが多い。熱交換ユニットは、車両のフロントグリルから流入した空気が熱交換器を通過するように、車両の前方側部分に配置されるのが一般的である。 The vehicle is equipped with multiple heat exchangers. Such a heat exchanger includes an evaporator that is a part of an air conditioner configured as a refrigeration cycle (see, for example, Patent Document 1 below). A heat exchanger provided in a vehicle is often unitized together with a device such as an electric expansion valve that adjusts the flow of refrigerant, and the whole is often configured as one heat exchange unit. Generally, the heat exchange unit is arranged at a front portion of the vehicle so that air flowing in from the front grille of the vehicle passes through the heat exchanger.
 空調装置の運転中において、蒸発器から排出される冷媒の過熱度(スーパーヒート)が小さくなり過ぎてしまうと、蒸発器の下流側にあるコンプレッサに液相の冷媒が到達してしまい、コンプレッサの動作が妨げられてしまう可能性がある。一方、上記過熱度が大きくなり過ぎてしまうと、膨張弁を通過する冷媒の流路抵抗が大きくなり、冷凍サイクルの動作効率が低下してしまうこととなる。そこで、空調装置の運転中においては、蒸発器の出口部分における冷媒の過熱度が所定の目標値に一致するよう、電動膨張弁の開度が調整される。 If the superheat of the refrigerant discharged from the evaporator becomes too small during the operation of the air conditioner, the liquid-phase refrigerant reaches the compressor on the downstream side of the evaporator, and the compressor Operation may be hindered. On the other hand, if the degree of superheat becomes too large, the flow path resistance of the refrigerant passing through the expansion valve increases, and the operating efficiency of the refrigeration cycle decreases. Therefore, during the operation of the air conditioner, the opening degree of the electric expansion valve is adjusted so that the degree of superheat of the refrigerant at the outlet portion of the evaporator matches a predetermined target value.
特開2008-302721号公報JP 2008-302721 A
 しかしながら、電動膨張弁の開度を変化させても、冷媒の過熱度が変化して適切な大きさとなるまでにはある程度の時間がかかることが多い。これは、電動膨張弁が制御信号に追従して動作する際において、一定のタイムラグが生じてしまうこと等に起因している。 However, even if the opening degree of the electric expansion valve is changed, it often takes a certain amount of time for the degree of superheat of the refrigerant to change to an appropriate size. This is due to the occurrence of a certain time lag when the electric expansion valve operates following the control signal.
 本開示は、熱交換ユニットにおける熱交換が適切に行われるよう、冷媒の過熱度を迅速に変化させることのできる制御モジュールを提供することを目的としている。 This disclosure is intended to provide a control module capable of quickly changing the degree of superheat of the refrigerant so that heat exchange in the heat exchange unit is appropriately performed.
 本開示に係る制御モジュールは、車両に設けられる熱交換ユニットの制御を行う制御モジュールである。上記の熱交換ユニットは、空調用の冷媒と空気との熱交換を行うことにより、内部で冷媒を蒸発させる熱交換器と、車両のフロントグリルから流入し熱交換器を通過する空気、の流量を調整する空気制御装置と、を備えるものである。この制御モジュールは、空気制御装置の動作を制御する制御部と、熱交換器から排出される冷媒の過熱度を取得する取得部と、を備える。制御部は、取得部で取得される過熱度に基づいて空気制御装置の動作を制御する。 The control module according to the present disclosure is a control module that controls a heat exchange unit provided in a vehicle. The heat exchange unit described above has a flow rate of a heat exchanger that evaporates the refrigerant inside by performing heat exchange between the air-conditioning refrigerant and air, and air that flows from the front grill of the vehicle and passes through the heat exchanger. And an air control device for adjusting the air pressure. The control module includes a control unit that controls the operation of the air control device, and an acquisition unit that acquires the degree of superheat of the refrigerant discharged from the heat exchanger. The control unit controls the operation of the air control device based on the degree of superheat acquired by the acquisition unit.
 このような構成の制御モジュールを備えた熱交換ユニットでは、熱交換器から排出される冷媒の過熱度に基づいて空気制御装置の動作が制御され、これにより、過熱度の調整が行われる。空気制御装置とは、例えばシャッタ装置である。 In the heat exchange unit including the control module having such a configuration, the operation of the air control device is controlled based on the degree of superheat of the refrigerant discharged from the heat exchanger, thereby adjusting the degree of superheat. The air control device is, for example, a shutter device.
 熱交換器を通過する空気の流量を変化させると、熱交換器において冷媒に加えられる熱量が比較的大きく変化する。このため、電動膨張弁の開度を変化させた場合に比べて、冷媒の過熱度を迅速に変化させることができる。その結果、短期間のうちに過熱度を目標値に一致させ、熱交換ユニットにおける熱交換が適切に行われる状態とすることができる。
ことが可能となる。
When the flow rate of the air passing through the heat exchanger is changed, the amount of heat applied to the refrigerant in the heat exchanger changes relatively greatly. For this reason, compared with the case where the opening degree of an electric expansion valve is changed, the superheat degree of a refrigerant | coolant can be changed rapidly. As a result, the degree of superheat can be matched with the target value within a short period of time, and the heat exchange in the heat exchange unit can be appropriately performed.
It becomes possible.
 尚、熱交換器を通過する空気の流量を変化させる上記制御は、単独で行われてもよく、電動膨張弁の開度を変化させる制御と共に行われてもよい。 It should be noted that the above control for changing the flow rate of the air passing through the heat exchanger may be performed independently or may be performed together with the control for changing the opening degree of the electric expansion valve.
 本開示によれば、熱交換ユニットにおける熱交換が適切に行われるよう、冷媒の過熱度を迅速に変化させることのできる制御モジュールが提供される。 According to the present disclosure, there is provided a control module capable of quickly changing the degree of superheat of the refrigerant so that heat exchange in the heat exchange unit is appropriately performed.
図1は、第1実施形態に係る制御モジュールを備えた熱交換ユニットが、車両に搭載された状態を模式的に描いた図である。FIG. 1 is a diagram schematically illustrating a state in which a heat exchange unit including a control module according to the first embodiment is mounted on a vehicle. 図2は、図1の熱交換ユニットを上方側から見て模式的に描いた図である。FIG. 2 is a diagram schematically illustrating the heat exchange unit of FIG. 1 as viewed from above. 図3は、車両に搭載されている車両用空調装置の全体構成を示す図である。FIG. 3 is a diagram showing an overall configuration of a vehicle air conditioner mounted on the vehicle. 図4は、図3の車両用空調装置のうち、室外用熱交換器と電動膨張弁との構成を示す図である。FIG. 4 is a diagram illustrating the configuration of the outdoor heat exchanger and the electric expansion valve in the vehicle air conditioner of FIG. 3. 図5は、熱交換ユニット及びその周囲の構成を模式的に示すブロック図である。FIG. 5 is a block diagram schematically showing the heat exchange unit and the surrounding configuration. 図6は、制御モジュールの内部構成を模式的に示すブロック図である。FIG. 6 is a block diagram schematically showing the internal configuration of the control module. 図7は、制御モジュールによって実行される処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing a flow of processing executed by the control module. 図8は、過熱度の時間変化を模式的に示すグラフである。FIG. 8 is a graph schematically showing a temporal change in the degree of superheat. 図9は、第2実施形態に係る制御モジュールによって実行される処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing a flow of processing executed by the control module according to the second embodiment. 図10は、取得された過熱度と、電動膨張弁の目標開度との対応関係を示す図である。FIG. 10 is a diagram illustrating a correspondence relationship between the acquired degree of superheat and the target opening degree of the electric expansion valve. 図11は、取得された過熱度と、シャッタ装置の目標開度との対応関係を示す図である。FIG. 11 is a diagram illustrating a correspondence relationship between the acquired degree of superheat and the target opening degree of the shutter device. 図12は、第3実施形態に係る制御モジュールによって実行される処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing a flow of processing executed by the control module according to the third embodiment. 図13は、図12に示される処理の内容をブロック線図として描いた図である。FIG. 13 is a diagram depicting the contents of the processing shown in FIG. 12 as a block diagram. 図14は、第4実施形態に係る制御モジュールによって実行される処理の流れを示すフローチャートである。FIG. 14 is a flowchart showing a flow of processing executed by the control module according to the fourth embodiment. 図15は、図14に示される処理の内容をブロック線図として描いた図である。FIG. 15 is a diagram depicting the contents of the processing shown in FIG. 14 as a block diagram.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.
 第1実施形態に係る制御モジュール100は、車両50に設けられる熱交換ユニット10の制御を行うための装置として構成されている。制御モジュール100の説明に先立ち、先ず熱交換ユニット10の構成について説明する。図1及び図2に示されるように、熱交換ユニット10は複数の熱交換器(室外用熱交換器740とラジエータ31)や装置(シャッタ装置20等)を組み合わせてユニット化したものである。熱交換ユニット10は、車両50のエンジンルームER内に設置されている。尚、熱交換ユニット10は、本実施形態のように複数の熱交換器を備える構成であってもよいが、熱交換器を1つだけ備える構成であってもよい。 The control module 100 according to the first embodiment is configured as a device for controlling the heat exchange unit 10 provided in the vehicle 50. Prior to the description of the control module 100, the configuration of the heat exchange unit 10 will be described first. As shown in FIGS. 1 and 2, the heat exchange unit 10 is a unit obtained by combining a plurality of heat exchangers (outdoor heat exchanger 740 and radiator 31) and devices (such as the shutter device 20). The heat exchange unit 10 is installed in the engine room ER of the vehicle 50. In addition, although the structure provided with a some heat exchanger like this embodiment may be sufficient as the heat exchange unit 10, the structure provided with only one heat exchanger may be sufficient as it.
 室外用熱交換器740は、後に説明する車両用空調装置70(図3を参照)の一部を成すものである。室外用熱交換器740は、フロントグリルGRの開口OPからエンジンルームER内に導入された空気と、車両用空調装置70を循環する空調用の冷媒との間での熱交換を行うための熱交換器として構成されている。 The outdoor heat exchanger 740 is a part of a vehicle air conditioner 70 (see FIG. 3) described later. The outdoor heat exchanger 740 is heat for exchanging heat between the air introduced into the engine room ER from the opening OP of the front grill GR and the air conditioning refrigerant circulating in the vehicle air conditioner 70. It is configured as an exchanger.
 ラジエータ31は、内燃機関であるエンジン51を通って循環する冷却水を、空気との熱交換によって冷却するための熱交換器である。ラジエータ31は、室外用熱交換器740の後方側となる位置に配置されている。このため、フロントグリルGRの開口OPからエンジンルームER内に導入された空気は、上記のように室外用熱交換器740を通って冷媒との熱交換に供された後、ラジエータ31を通って冷却水との熱交換に供される。 The radiator 31 is a heat exchanger for cooling the cooling water circulating through the engine 51, which is an internal combustion engine, by heat exchange with air. The radiator 31 is disposed at a position on the rear side of the outdoor heat exchanger 740. For this reason, the air introduced into the engine room ER from the opening OP of the front grill GR is subjected to heat exchange with the refrigerant through the outdoor heat exchanger 740 as described above, and then passes through the radiator 31. It is used for heat exchange with cooling water.
 熱交換ユニット10は、上記のラジエータ31及び室外用熱交換器740に加えて、シャッタ装置20と、電動ファン40と、シュラウド43と、電動膨張弁730と、温水弁32と、を備えている。 In addition to the radiator 31 and the outdoor heat exchanger 740, the heat exchange unit 10 includes a shutter device 20, an electric fan 40, a shroud 43, an electric expansion valve 730, and a hot water valve 32. .
 シャッタ装置20は、開口OPからエンジンルームER内に導入される空気の流量を調整し、これにより室外用熱交換器740等を通過する空気の流量を調整するための装置である。このようなシャッタ装置20は、所謂「グリルシャッタ」と称されるものである。 The shutter device 20 is a device for adjusting the flow rate of air introduced into the engine room ER from the opening OP, thereby adjusting the flow rate of air passing through the outdoor heat exchanger 740 and the like. Such a shutter device 20 is a so-called “grill shutter”.
 シャッタ装置20は、シャッタブレード21と、シャッタアクチュエータ22とを有している。シャッタブレード21は、室外用熱交換器740よりも前方側となる位置において、複数並ぶように配置されている。シャッタブレード21が回転してその開度(以下では、当該開度のことを「シャッタ装置20の開度」とも表記する)が変化すると、シャッタ装置20を通過する空気の流量が変化し、室外用熱交換器740及びラジエータ31のそれぞれを通る空気の流量が変化する。 The shutter device 20 includes a shutter blade 21 and a shutter actuator 22. A plurality of the shutter blades 21 are arranged in a line at a position on the front side of the outdoor heat exchanger 740. When the shutter blade 21 rotates and its opening degree (hereinafter referred to as “opening degree of the shutter device 20”) changes, the flow rate of the air passing through the shutter device 20 changes, and the outdoor The flow rate of air passing through each of the heat exchanger 740 and the radiator 31 changes.
 シャッタアクチュエータ22は、シャッタブレード21を回転させ、その開度を調整するための電動の駆動装置である。シャッタアクチュエータ22は、シャッタブレード21の近傍に設けられている。シャッタアクチュエータ22の動作は後述の制御モジュール100によって制御される。 The shutter actuator 22 is an electric drive device for rotating the shutter blade 21 and adjusting its opening degree. The shutter actuator 22 is provided in the vicinity of the shutter blade 21. The operation of the shutter actuator 22 is controlled by the control module 100 described later.
 このように、シャッタ装置20は、その開度を変化させることによって通過する空気の流量を調整し、フロントグリルGRから流入し室外用熱交換器740及びラジエータ31を通過する空気の流量を調整するための装置として構成されている。このようなシャッタ装置20は、本実施形態における「空気制御装置」に該当するものである。 As described above, the shutter device 20 adjusts the flow rate of air passing by changing the opening thereof, and adjusts the flow rate of air flowing from the front grill GR and passing through the outdoor heat exchanger 740 and the radiator 31. It is configured as a device for. Such a shutter device 20 corresponds to the “air control device” in the present embodiment.
 電動ファン40は、室外用熱交換器740及びラジエータ31を通過する空気の流れを作り出すための電動のファンである。電動ファン40は、ラジエータ31よりも後方側となる位置に配置されている。電動ファン40は、空気の流れを作り出すための回転翼41と、回転翼41を回転させるための回転電機であるファンモータ42とによって構成されている。ファンモータ42の回転数が変化すると、フロントグリルGRから流入し室外用熱交換器740及びラジエータ31を通る空気の流量が変化する。このような電動ファン40は、先に説明したシャッタ装置20と共に、「空気制御装置」に該当するものである。 The electric fan 40 is an electric fan for creating a flow of air that passes through the outdoor heat exchanger 740 and the radiator 31. The electric fan 40 is arranged at a position on the rear side of the radiator 31. The electric fan 40 includes a rotating blade 41 for creating an air flow and a fan motor 42 that is a rotating electric machine for rotating the rotating blade 41. When the rotational speed of the fan motor 42 changes, the flow rate of air flowing from the front grill GR and passing through the outdoor heat exchanger 740 and the radiator 31 changes. Such an electric fan 40 corresponds to the “air control device” together with the shutter device 20 described above.
 電動ファン40は、単位時間あたりにおける回転翼41の回転数を測定するためのセンサ(不図示)を備えている。当該センサで測定された回転数は、制御モジュール100に送信される。 The electric fan 40 includes a sensor (not shown) for measuring the rotation speed of the rotary blade 41 per unit time. The number of rotations measured by the sensor is transmitted to the control module 100.
 シュラウド43は、電動ファン40の周囲を後方側から覆うように設けられた部材である。電動ファン40によって引き込まれる空気は、シュラウド43によって室外用熱交換器740及びラジエータ31に効率よく導かれる。 The shroud 43 is a member provided to cover the periphery of the electric fan 40 from the rear side. The air drawn by the electric fan 40 is efficiently guided to the outdoor heat exchanger 740 and the radiator 31 by the shroud 43.
 電動膨張弁730は、室外用熱交換器740と共に、車両用空調装置70の一部を成す装置である。後に説明するように、電動膨張弁730は、冷凍サイクルにおいて冷媒の圧力を低下させる膨張弁として機能するものである。電動膨張弁730の開度は制御モジュール100によって制御される。電動膨張弁730によって、室外用熱交換器740を通る経路で循環する冷媒の流れが調整される。このような電動膨張弁730は、本実施形態における「冷媒制御装置」に該当するものである。 The electric expansion valve 730 is a device that forms part of the vehicle air conditioner 70 together with the outdoor heat exchanger 740. As will be described later, the electric expansion valve 730 functions as an expansion valve that reduces the pressure of the refrigerant in the refrigeration cycle. The opening degree of the electric expansion valve 730 is controlled by the control module 100. The electric expansion valve 730 adjusts the flow of the refrigerant that circulates along the path passing through the outdoor heat exchanger 740. Such an electric expansion valve 730 corresponds to the “refrigerant control device” in the present embodiment.
 温水弁32は、ラジエータ31とエンジン51との間で冷却水が循環する流路(不図示)の途中に設けられた電動の開閉弁である。本実施形態では、温水弁32はラジエータ31と隣接する位置に設けられている。温水弁32が閉状態になると、ラジエータ31に対する冷却水の供給が停止される。温水弁32の動作は制御モジュール100によって制御される。 The hot water valve 32 is an electric on-off valve provided in the middle of a flow path (not shown) through which cooling water circulates between the radiator 31 and the engine 51. In the present embodiment, the hot water valve 32 is provided at a position adjacent to the radiator 31. When the hot water valve 32 is closed, the supply of cooling water to the radiator 31 is stopped. The operation of the hot water valve 32 is controlled by the control module 100.
 車両用空調装置70の構成について、図3を参照しながら説明する。車両用空調装置70は、冷媒が循環する冷凍サイクルとして構成されている。車両用空調装置70は、冷媒流路710と、コンプレッサ720と、電動膨張弁750と、室内用熱交換器760と、電動膨張弁730と、室外用熱交換器740と、を備えている。図3に示されるように、車両用空調装置70はその一部(室外用熱交換器740等)が車両50のエンジンルームER内に配置されており、他部(室内用熱交換器760等)が車両50の車室IR内に配置されている。 The configuration of the vehicle air conditioner 70 will be described with reference to FIG. The vehicle air conditioner 70 is configured as a refrigeration cycle in which refrigerant circulates. The vehicle air conditioner 70 includes a refrigerant flow path 710, a compressor 720, an electric expansion valve 750, an indoor heat exchanger 760, an electric expansion valve 730, and an outdoor heat exchanger 740. As shown in FIG. 3, a part of the vehicle air conditioner 70 (outdoor heat exchanger 740 etc.) is arranged in the engine room ER of the vehicle 50, and the other part (indoor heat exchanger 760 etc.). ) Is disposed in the cabin IR of the vehicle 50.
 冷媒流路710は、冷媒を循環させるために環状に配置された配管である。これから説明するコンプレッサ720等は、いずれもこの冷媒流路710に沿って配置されている。 The refrigerant flow path 710 is a pipe arranged in an annular shape to circulate the refrigerant. All of the compressors 720 and the like described below are arranged along the refrigerant flow path 710.
 コンプレッサ720は、冷媒を圧送し冷媒流路710において循環させるための装置である。コンプレッサ720が駆動されているときには、コンプレッサ720において圧縮され高温高圧となった冷媒が電動膨張弁750側に向けて送り出される。 The compressor 720 is a device for pumping the refrigerant and circulating it in the refrigerant flow path 710. When the compressor 720 is being driven, the refrigerant that has been compressed in the compressor 720 and becomes high temperature and pressure is sent out toward the electric expansion valve 750 side.
 電動膨張弁750は、冷媒流路710のうちコンプレッサ720よりも下流側となる位置に設けられている。電動膨張弁750は、当該位置において冷媒流路710の流路断面積を絞ることにより、通過する冷媒の圧力を低下させるものである。電動膨張弁750は不図示の電動アクチュエータによって不図示の弁体を動作させ、その開度を変化させる。 The electric expansion valve 750 is provided at a position downstream of the compressor 720 in the refrigerant flow path 710. The electric expansion valve 750 reduces the pressure of the refrigerant passing therethrough by reducing the flow passage cross-sectional area of the refrigerant flow passage 710 at the position. The electric expansion valve 750 operates a valve body (not shown) by an electric actuator (not shown) and changes its opening degree.
 冷媒流路710のうち電動膨張弁750の近傍となる位置には、電動膨張弁750を迂回するように冷媒を流すためのバイパス流路751が設けられている。バイパス流路751の途中には電磁開閉弁752が設けられている。電磁開閉弁752が閉状態のときには、冷媒は電動膨張弁750を通る経路で冷媒流路710を循環する。電磁開閉弁752が開状態のときには、冷媒は電動膨張弁750を殆ど通らず、バイパス流路751を通る経路で冷媒流路710を循環する。 In the refrigerant flow path 710, a bypass flow path 751 for flowing the refrigerant so as to bypass the electric expansion valve 750 is provided at a position near the electric expansion valve 750. An electromagnetic on-off valve 752 is provided in the middle of the bypass flow path 751. When the electromagnetic open / close valve 752 is in the closed state, the refrigerant circulates through the refrigerant flow path 710 through a path passing through the electric expansion valve 750. When the electromagnetic on-off valve 752 is in the open state, the refrigerant hardly circulates through the electric expansion valve 750 and circulates through the refrigerant flow path 710 along a path passing through the bypass flow path 751.
 室内用熱交換器760は、冷媒流路710のうち電動膨張弁750よりも下流側となる位置に設けられている。室内用熱交換器760は、車室IRに吹き出される空気と、冷媒流路710を循環する冷媒との間で熱交換を行うための熱交換器である。車両用空調装置70は、室内用熱交換器760において空気を加熱又は冷却することにより車室IR内の空調を行う。 The indoor heat exchanger 760 is provided at a position downstream of the electric expansion valve 750 in the refrigerant flow path 710. The indoor heat exchanger 760 is a heat exchanger for exchanging heat between the air blown into the passenger compartment IR and the refrigerant circulating in the refrigerant flow path 710. The vehicle air conditioner 70 performs air conditioning in the passenger compartment IR by heating or cooling air in the indoor heat exchanger 760.
 電動膨張弁730は、既に述べたように熱交換ユニット10の一部を成すものであって、冷媒流路710のうち室内用熱交換器760よりも下流側となる位置に設けられている。電動膨張弁730は、当該位置において冷媒流路710の流路断面積を絞ることにより、通過する冷媒の圧力を低下させるものである。電動膨張弁730は電動アクチュエータ730M(図3では不図示、図4を参照)によって不図示の弁体を動作させ、その開度を変化させる。 The electric expansion valve 730 forms a part of the heat exchange unit 10 as described above, and is provided in the refrigerant channel 710 at a position downstream of the indoor heat exchanger 760. The electric expansion valve 730 reduces the pressure of the refrigerant passing therethrough by reducing the flow passage cross-sectional area of the refrigerant flow passage 710 at the position. The electric expansion valve 730 operates a valve body (not shown) by an electric actuator 730M (not shown in FIG. 3, see FIG. 4), and changes its opening degree.
 冷媒流路710のうち電動膨張弁730の近傍となる位置には、電動膨張弁730を迂回するように冷媒を流すためのバイパス流路731が設けられている。バイパス流路731の途中には電磁開閉弁732が設けられている。電磁開閉弁732が閉状態のときには、冷媒は電動膨張弁730を通る経路で冷媒流路710を循環する。電磁開閉弁732が開状態のときには、冷媒は電動膨張弁730を殆ど通らず、バイパス流路731を通る経路で冷媒流路710を循環する。 In the refrigerant flow path 710, a bypass flow path 731 for flowing the refrigerant so as to bypass the electric expansion valve 730 is provided at a position near the electric expansion valve 730. An electromagnetic on-off valve 732 is provided in the middle of the bypass flow path 731. When the electromagnetic on-off valve 732 is in the closed state, the refrigerant circulates through the refrigerant flow path 710 through a path that passes through the electric expansion valve 730. When the electromagnetic open / close valve 732 is in the open state, the refrigerant hardly circulates through the electric expansion valve 730 and circulates through the refrigerant flow path 710 through a path passing through the bypass flow path 731.
 室外用熱交換器740は、既に述べたように熱交換ユニット10の一部を成すものである。室外用熱交換器740は、冷媒流路710のうち電動膨張弁730よりも下流側となる位置であり、コンプレッサ720よりも上流側となる位置に設けられている。室外用熱交換器740の具体的な構成については後に説明する。 The outdoor heat exchanger 740 is a part of the heat exchange unit 10 as described above. The outdoor heat exchanger 740 is provided at a position downstream of the electric expansion valve 730 in the refrigerant flow path 710 and upstream of the compressor 720. A specific configuration of the outdoor heat exchanger 740 will be described later.
 冷媒流路710のうち室外用熱交換器740よりも下流側の部分、具体的には、室外用熱交換器740から排出された直後の冷媒が通る部分には、圧力センサ61と温度センサ62とが設けられている。圧力センサ61は、室外用熱交換器740から排出される冷媒の圧力を測定するためのセンサである。圧力センサ61で測定された冷媒の圧力は、制御モジュール100へと送信される。温度センサ62は、室外用熱交換器740から排出される冷媒の温度を測定するためのセンサである。温度センサ62で測定された冷媒の温度は、制御モジュール100へと送信される。 A pressure sensor 61 and a temperature sensor 62 are provided in a portion of the refrigerant flow path 710 downstream of the outdoor heat exchanger 740, specifically, a portion through which the refrigerant immediately after being discharged from the outdoor heat exchanger 740 passes. And are provided. The pressure sensor 61 is a sensor for measuring the pressure of the refrigerant discharged from the outdoor heat exchanger 740. The refrigerant pressure measured by the pressure sensor 61 is transmitted to the control module 100. The temperature sensor 62 is a sensor for measuring the temperature of the refrigerant discharged from the outdoor heat exchanger 740. The refrigerant temperature measured by the temperature sensor 62 is transmitted to the control module 100.
 室外用熱交換器740の近傍には、室外用熱交換器740を通過する空気の風速を測定する風速センサ63が設けられている。風速センサ63で測定された風速は、制御モジュール100へと送信される。 In the vicinity of the outdoor heat exchanger 740, a wind speed sensor 63 for measuring the wind speed of the air passing through the outdoor heat exchanger 740 is provided. The wind speed measured by the wind speed sensor 63 is transmitted to the control module 100.
 車両用空調装置70によって車室IR内の暖房が行われる際には、電磁開閉弁732が閉状態に切り換えられ、電磁開閉弁752が開状態に切り換えられる。冷媒は、電動膨張弁730を通る経路で冷媒流路710を循環し、電動膨張弁730を通る際においてその温度及び圧力を低下させる。つまり、車室IR内の暖房が行われる際には、電動膨張弁730は冷凍サイクルの「膨張弁」として機能する。 When the vehicle interior IR is heated by the vehicle air conditioner 70, the electromagnetic open / close valve 732 is switched to the closed state, and the electromagnetic open / close valve 752 is switched to the open state. The refrigerant circulates through the refrigerant flow path 710 along a path that passes through the electric expansion valve 730, and reduces its temperature and pressure when passing through the electric expansion valve 730. That is, when the interior of the passenger compartment IR is heated, the electric expansion valve 730 functions as an “expansion valve” of the refrigeration cycle.
 室外用熱交換器740には、電動膨張弁730を通過した低温低圧の冷媒が供給される。室外用熱交換器740では、低温の冷媒によって空気からの吸熱が行われ、これにより内部で冷媒が蒸発する。つまり、車室IR内の暖房が行われる際には、室外用熱交換器740は冷凍サイクルの「蒸発器」として機能する。 The low-temperature and low-pressure refrigerant that has passed through the electric expansion valve 730 is supplied to the outdoor heat exchanger 740. In the outdoor heat exchanger 740, heat is absorbed from the air by the low-temperature refrigerant, whereby the refrigerant evaporates inside. That is, when the interior of the passenger compartment IR is heated, the outdoor heat exchanger 740 functions as an “evaporator” of the refrigeration cycle.
 室外用熱交換器740を通過した冷媒は、コンプレッサ720において圧縮され、その温度及び圧力を上昇させた状態で下流側に送り出される。高温高圧となった冷媒は、バイパス流路751を経て室内用熱交換器760に供給される。 The refrigerant that has passed through the outdoor heat exchanger 740 is compressed by the compressor 720, and is sent downstream with its temperature and pressure increased. The high-temperature and high-pressure refrigerant is supplied to the indoor heat exchanger 760 through the bypass channel 751.
 室内用熱交換器760では、冷媒から空気への放熱が行われ、これにより内部で冷媒が凝縮する。つまり、車室IR内の暖房が行われる際には、室内用熱交換器760は冷凍サイクルの「凝縮器」として機能する。空気は、室内用熱交換器760における熱交換によってその温度を上昇させた後、空調風として車室IR内に吹き出される。 In the indoor heat exchanger 760, heat is released from the refrigerant to the air, thereby condensing the refrigerant inside. That is, when the interior of the passenger compartment IR is heated, the indoor heat exchanger 760 functions as a “condenser” for the refrigeration cycle. After the temperature of the air is increased by heat exchange in the indoor heat exchanger 760, the air is blown into the passenger compartment IR as conditioned air.
 室内用熱交換器760を通過した冷媒は、冷媒流路710を通って再び電動膨張弁730に到達する。図3では、車室IR内の暖房が行われる際において上記のように冷媒が循環する経路が、複数の矢印で示されている。 The refrigerant that has passed through the indoor heat exchanger 760 passes through the refrigerant flow path 710 and reaches the electric expansion valve 730 again. In FIG. 3, the path | route through which a refrigerant | coolant circulates as mentioned above when the inside of vehicle interior IR is performed is shown by the some arrow.
 車両用空調装置70によって車室IR内の冷房が行われる際には、電磁開閉弁732が開状態に切り換えられ、電磁開閉弁752が閉状態に切り換えられる。当該状態においては、冷媒流路710を循環する冷媒は電動膨張弁730をバイパスして流れる一方で、電動膨張弁750を通るようになる。冷媒は、電動膨張弁750を通る際においてその温度及び圧力を低下させる。つまり、車室IR内の冷房が行われる際には、電動膨張弁750が冷凍サイクルの「膨張弁」として機能する。 When the vehicle interior IR is cooled by the vehicle air conditioner 70, the electromagnetic on-off valve 732 is switched to the open state, and the electromagnetic on-off valve 752 is switched to the closed state. In this state, the refrigerant circulating in the refrigerant flow path 710 flows through the electric expansion valve 730 while passing through the electric expansion valve 750. The refrigerant reduces its temperature and pressure when passing through the electric expansion valve 750. In other words, when the passenger compartment IR is cooled, the electric expansion valve 750 functions as an “expansion valve” of the refrigeration cycle.
 室内用熱交換器760には、電動膨張弁730を通過した低温低圧の冷媒が供給される。室内用熱交換器760では、低温の冷媒によって空気からの吸熱が行われ、これにより内部で冷媒が蒸発する。つまり、車室IR内の冷房が行われる際には、室内用熱交換器760が冷凍サイクルの「蒸発器」として機能する。 The low-temperature and low-pressure refrigerant that has passed through the electric expansion valve 730 is supplied to the indoor heat exchanger 760. In the indoor heat exchanger 760, heat is absorbed from the air by the low-temperature refrigerant, whereby the refrigerant evaporates inside. That is, when the passenger compartment IR is cooled, the indoor heat exchanger 760 functions as an “evaporator” of the refrigeration cycle.
 また、室外用熱交換器740では、冷媒から空気への放熱が行われわれ、これにより内部で冷媒が凝縮する。つまり、車室IR内の暖房が行われる際には、室外用熱交換器740は冷凍サイクルの「凝縮器」として機能する。このとき、コンプレッサ720よる冷媒の圧縮が、室外用熱交換器740の下流側ではなく上流側において行われるように、冷媒の流れる経路が不図示の配管や切換え弁等によって予め変更されるような構成としてもよい。 Also, in the outdoor heat exchanger 740, heat is radiated from the refrigerant to the air, thereby condensing the refrigerant inside. That is, when the passenger compartment IR is heated, the outdoor heat exchanger 740 functions as a “condenser” for the refrigeration cycle. At this time, the refrigerant flow path is changed in advance by a pipe, a switching valve, or the like (not shown) so that the refrigerant is compressed by the compressor 720 not on the downstream side of the outdoor heat exchanger 740 but on the upstream side. It is good also as a structure.
 室外用熱交換器740の具体的な構成について、図4を参照しながら説明する。室外用熱交換器740は、一対のタンク741、742と、これらの間に配置されたコア部743とを備えている。タンク741、742は、いずれも上下方向に伸びるように形成された細長い形状の容器である。タンク741、742には、冷媒流路710を循環する冷媒が一時的に貯えられる。 A specific configuration of the outdoor heat exchanger 740 will be described with reference to FIG. The outdoor heat exchanger 740 includes a pair of tanks 741 and 742 and a core portion 743 disposed therebetween. Each of the tanks 741 and 742 is an elongated container formed to extend in the vertical direction. In the tanks 741 and 742, the refrigerant circulating in the refrigerant flow path 710 is temporarily stored.
 コア部743は、室外用熱交換器740において冷媒と空気との熱交換が行われる部分である。コア部743には、複数のチューブ及びフィン(いずれも不図示)が配置されている。チューブは、例えば断面が扁平形状の管であって、その内部には冷媒が通る流路が形成されている。複数のチューブは、いずれもタンク741とタンク742との間を繋いでおり、互いの主面を対向させた状態で上下に積層されている。 The core part 743 is a part where heat is exchanged between the refrigerant and air in the outdoor heat exchanger 740. In the core portion 743, a plurality of tubes and fins (both not shown) are arranged. The tube is, for example, a tube having a flat cross section, and a flow path through which the refrigerant passes is formed in the tube. Each of the plurality of tubes connects between the tank 741 and the tank 742, and is stacked up and down with the main surfaces facing each other.
 フィンは、金属板を波状に折り曲げることにより形成されたものであって、積層されたそれぞれのチューブの間に配置されている。波状であるフィンのそれぞれの頂部は、チューブの外表面に対して当接しており、且つろう接されている。このため、暖房時において室外用熱交換器740を通過する空気の熱は、チューブを介して冷媒に伝達されるだけでなく、フィン及びチューブを介しても冷媒に伝達される。つまり、フィンによって空気との接触面積が大きくなっており、冷媒と空気との熱交換が効率よく行われる。尚、上記のようなフィン及びチューブを有するコア部743の構成としては公知のものを採用し得るので、その詳細な図示及び説明については省略する。 The fins are formed by bending a metal plate into a wave shape, and are arranged between the stacked tubes. The top of each of the undulating fins is in contact with the outer surface of the tube and brazed. For this reason, the heat of the air passing through the outdoor heat exchanger 740 during heating is not only transmitted to the refrigerant via the tube, but also transmitted to the refrigerant via the fins and the tube. That is, the contact area with the air is increased by the fins, and heat exchange between the refrigerant and the air is performed efficiently. In addition, since a well-known thing can be employ | adopted as a structure of the core part 743 which has the above fins and tubes, it abbreviate | omits about the detailed illustration and description.
 タンク741及びタンク742の内部空間は、不図示のセパレータによって上下に分かれるように仕切られている。室外用熱交換器740を通る冷媒は、タンク741とタンク742との間を複数回行き来しながら、コア部743における熱交換に供される。 The internal spaces of the tank 741 and the tank 742 are partitioned so as to be divided up and down by a separator (not shown). The refrigerant passing through the outdoor heat exchanger 740 is used for heat exchange in the core portion 743 while going back and forth between the tank 741 and the tank 742 a plurality of times.
 タンク741の側方(コア部743とは反対側)には、モジュレータタンク770が設けられている。モジュレータタンク770は、上下方向に伸びるように形成された細長い形状の容器であって、タンク741と平行に並ぶように配置されている。 A modulator tank 770 is provided on the side of the tank 741 (the side opposite to the core portion 743). The modulator tank 770 is an elongated container formed so as to extend in the vertical direction, and is arranged in parallel with the tank 741.
 モジュレータタンク770とタンク741との間は、接続配管771、772、773によって接続されている。室外用熱交換器740を通る冷媒は、接続配管771、772、773からモジュレータタンク770を経由しながら、上記のようにタンク741とタンク742との間を複数回行き来する。モジュレータタンク770には液相の冷媒が貯えられている。気液混合の状態で流れている冷媒は、モジュレータタンク770を通過する際において気液が分離された状態となる。 The modulator tank 770 and the tank 741 are connected by connection pipes 771, 772, and 773. The refrigerant passing through the outdoor heat exchanger 740 goes back and forth between the tank 741 and the tank 742 a plurality of times through the modulator tank 770 from the connection pipes 771, 772, and 773. The modulator tank 770 stores a liquid phase refrigerant. The refrigerant flowing in the gas-liquid mixed state is in a state where the gas and liquid are separated when passing through the modulator tank 770.
 本実施形態では、電動膨張弁730の電動アクチュエータ730Mが、モジュレータタンク770の上端に取り付けられている。これにより、電動膨張弁730とモジュレータタンク770とが一体となっている。電動膨張弁730のうち流路断面積を絞るための弁体(不図示)は、電動アクチュエータ730Mの直下となる位置に設けられており、モジュレータタンク770の内部に配置されている。 In this embodiment, the electric actuator 730M of the electric expansion valve 730 is attached to the upper end of the modulator tank 770. Thereby, the electric expansion valve 730 and the modulator tank 770 are integrated. A valve body (not shown) for reducing the cross-sectional area of the flow path in the electric expansion valve 730 is provided at a position directly below the electric actuator 730M, and is disposed inside the modulator tank 770.
 電動アクチュエータ730Mには、電動アクチュエータ730Mを動作させるための回路基板BD1が設けられている。回路基板BD1には、電動アクチュエータ730Mを動作させるために必要な構成部品の他、制御モジュール100の構成部品も配置されている。つまり、本実施形態に係る制御モジュール100は、冷媒制御装置である電動膨張弁730と一体に構成されている。 The electric actuator 730M is provided with a circuit board BD1 for operating the electric actuator 730M. In addition to the components necessary for operating the electric actuator 730M, the components of the control module 100 are also arranged on the circuit board BD1. That is, the control module 100 according to the present embodiment is configured integrally with the electric expansion valve 730 that is a refrigerant control device.
 図5を参照しながら、制御モジュール100を含む熱交換ユニット10、及びその周囲の構成について説明する。既に述べたように、熱交換ユニット10はその全体が車両50のエンジンルームER内に配置されている。 The heat exchange unit 10 including the control module 100 and the surrounding configuration will be described with reference to FIG. As already described, the heat exchange unit 10 is entirely disposed in the engine room ER of the vehicle 50.
 エンジンルームER内には、熱交換ユニット10における3流体(冷媒、冷却水、空気)の流れを制御するために必要な複数のセンサが配置されている。このようなセンサとしては、既に説明した圧力センサ61や温度センサ62の他に、例えばシャッタ装置20の開度を測定する開度センサ等が挙げられる。それぞれのセンサで測定された値は、電気信号(検知信号)として制御モジュール100に入力される。図5においては、これら複数のセンサが、符号60が付された単一のブロックとして描かれている。以下では、これら複数のセンサのことを総じて「センサ60」とも表記する。 In the engine room ER, a plurality of sensors necessary for controlling the flow of the three fluids (refrigerant, cooling water, air) in the heat exchange unit 10 are arranged. Examples of such a sensor include an opening sensor that measures the opening of the shutter device 20 in addition to the pressure sensor 61 and the temperature sensor 62 described above. The value measured by each sensor is input to the control module 100 as an electrical signal (detection signal). In FIG. 5, these multiple sensors are depicted as a single block labeled 60. Hereinafter, the plurality of sensors are collectively referred to as “sensor 60”.
 車両50の車室IRには、エンジンECU200と空調ECU300とが配置されている。これらはいずれも、CPU、ROM、RAM、通信インタフェース等を有するコンピュータシステムとして構成されている。 In the passenger compartment IR of the vehicle 50, an engine ECU 200 and an air conditioning ECU 300 are arranged. These are all configured as a computer system having a CPU, a ROM, a RAM, a communication interface, and the like.
 エンジンECU200は、エンジン51の制御を行うための制御装置である。エンジンECU200は、エンジン51とラジエータ31との間で循環する冷却水の流量の調整や、温水弁32の動作制御、シャッタ装置20の開度の調整、及び電動ファン40の回転数の調整等を行う。尚、エンジンECU200によって行われる制御のうち一部の制御(例えばシャッタアクチュエータ22の動作制御)は、制御モジュール100を介して行われる。 The engine ECU 200 is a control device for controlling the engine 51. The engine ECU 200 adjusts the flow rate of the cooling water circulated between the engine 51 and the radiator 31, controls the operation of the hot water valve 32, adjusts the opening degree of the shutter device 20, and adjusts the rotational speed of the electric fan 40. Do. A part of the control performed by the engine ECU 200 (for example, the operation control of the shutter actuator 22) is performed via the control module 100.
 エンジンECU200と制御モジュール100との間では、LIN等のネットワークを介した通信が行われる。制御モジュール100は、エンジンECU200から送信される制御信号を受信し、当該制御信号に基づいて各種機器(シャッタアクチュエータ22等)の動作制御を行う。ただし、制御モジュール100は、常に制御信号の通りに各種機器の動作制御を行うのではなく、自らの判断で各種機器の動作制御を行うこともある。 Communication between the engine ECU 200 and the control module 100 is performed via a network such as LIN. The control module 100 receives a control signal transmitted from the engine ECU 200, and controls operations of various devices (such as the shutter actuator 22) based on the control signal. However, the control module 100 does not always control the operation of various devices according to the control signal, but may control the operation of various devices according to its own judgment.
 空調ECU300は、車両用空調装置70の制御を行うための制御装置である。空調ECU300は、車両用空調装置70を構成する各種の機器(電動膨張弁730等)のそれぞれの動作を制御することにより、車室IR内の空調を適切に行う。尚、空調ECU300によって行われる制御のうち一部の制御(例えば電動膨張弁730の動作制御)は、制御モジュール100を介して行われる。 The air conditioning ECU 300 is a control device for controlling the vehicle air conditioner 70. The air conditioning ECU 300 appropriately performs air conditioning in the passenger compartment IR by controlling the operations of various devices (such as the electric expansion valve 730) that constitute the vehicle air conditioner 70. A part of the control performed by the air conditioning ECU 300 (for example, operation control of the electric expansion valve 730) is performed via the control module 100.
 空調ECU300と制御モジュール100との間では、LIN等のネットワークを介した通信が行われる。制御モジュール100は、空調ECU300から送信される制御信号を受信し、当該制御信号に基づいて各種機器(電動膨張弁730等)の動作制御を行う。ただし、制御モジュール100は、常に制御信号の通りに各種機器の動作制御を行うのではなく、自らの判断で各種機器の動作制御を行うこともある。 Communication between the air conditioning ECU 300 and the control module 100 is performed via a network such as LIN. The control module 100 receives a control signal transmitted from the air conditioning ECU 300, and performs operation control of various devices (such as the electric expansion valve 730) based on the control signal. However, the control module 100 does not always control the operation of various devices according to the control signal, but may control the operation of various devices according to its own judgment.
 車両50には、各種機器に電力を供給するための電源系統が複数設けられている。図5に示されるように、制御モジュール100には電源系統PL1からの電力が供給されており、エンジンECU200には電源系統PL2からの電力が供給されており、空調ECU300には電源系統PL3からの電力が供給されている。 The vehicle 50 is provided with a plurality of power supply systems for supplying power to various devices. As shown in FIG. 5, the control module 100 is supplied with power from the power supply system PL1, the engine ECU 200 is supplied with power from the power supply system PL2, and the air conditioning ECU 300 is supplied with power from the power supply system PL3. Power is being supplied.
 電源系統PL1は、車両50に設けられたバッテリ(不図示)からの電力が直接供給される電源系統である。このため、車両50のイグニッションスイッチ(不図示)がオンであるかオフであるかに拘らず、制御モジュール100には電源系統PL1からの電力が常に供給されている。 The power supply system PL1 is a power supply system to which power from a battery (not shown) provided in the vehicle 50 is directly supplied. Therefore, regardless of whether an ignition switch (not shown) of the vehicle 50 is on or off, the control module 100 is always supplied with power from the power supply system PL1.
 電源系統PL2は、車両50に設けられたオルタネータ(不図示)からの電力が供給される電源系統である。このため、車両50のイグニッションスイッチがオンとされ、エンジン51が動作しているときには、エンジンECU200には電源系統PL2からの電力が供給される。一方、車両50のイグニッションスイッチがオフとされ、エンジン51が停止しているときには、エンジンECU200には電源系統PL2からの電力が供給されない。 The power supply system PL2 is a power supply system to which power from an alternator (not shown) provided in the vehicle 50 is supplied. For this reason, when the ignition switch of vehicle 50 is turned on and engine 51 is operating, electric power from power supply system PL2 is supplied to engine ECU 200. On the other hand, when the ignition switch of vehicle 50 is turned off and engine 51 is stopped, electric power from power supply system PL2 is not supplied to engine ECU 200.
 電源系統PL3は、電源系統PL1と同様に、車両50に設けられたバッテリからの電力が直接供給される電源系統である。このため、車両50のイグニッションスイッチがオンであるかオフであるかに拘らず、空調ECU300には電源系統PL3からの電力が常に供給されている。 The power supply system PL3 is a power supply system to which power from a battery provided in the vehicle 50 is directly supplied, like the power supply system PL1. Therefore, regardless of whether the ignition switch of the vehicle 50 is on or off, the air conditioning ECU 300 is always supplied with power from the power supply system PL3.
 図6を参照しながら、制御モジュール100の構成について説明する。制御モジュール100は、受信部110と、入力部120と、取得部125と、制御部130と、ドライバ141、142と、HUB143とを備えている。 The configuration of the control module 100 will be described with reference to FIG. The control module 100 includes a reception unit 110, an input unit 120, an acquisition unit 125, a control unit 130, drivers 141 and 142, and a HUB 143.
 受信部110は、エンジンECU200及び空調ECU300のそれぞれから、各種機器の動作を制御するための制御信号を受信する部分である。当該制御信号は、これまでに説明したシャッタ装置20や電動膨張弁730等の動作を制御するための信号である。尚、本実施形態では、エンジンECU200及び空調ECU300からなる2つのECUから制御信号が送信され、当該制御信号が受信部110によって受信される。このような態様に替えて、単一のECUからの制御信号が、受信部110によって受信されるような態様であってもよい。 The receiving unit 110 is a part that receives control signals for controlling the operation of various devices from the engine ECU 200 and the air conditioning ECU 300. The control signal is a signal for controlling operations of the shutter device 20 and the electric expansion valve 730 described so far. In the present embodiment, control signals are transmitted from two ECUs including the engine ECU 200 and the air conditioning ECU 300, and the control signals are received by the receiving unit 110. Instead of such a mode, a mode in which a control signal from a single ECU is received by the receiving unit 110 may be employed.
 本実施形態では、シャッタ装置20の動作を制御するための制御信号、及び温水弁32の動作を制御するための制御信号が、エンジンECU200から送信され受信部110によって受信される。また、電動膨張弁730の動作を制御するための制御信号が空調ECU300から送信され、受信部110によって受信される。つまり、複数の装置の動作を制御するための制御信号が受信部110によって受信される。このような態様に替えて、受信部によって受信される制御信号は単一の装置の動作を制御するためのものであってもよい。 In the present embodiment, a control signal for controlling the operation of the shutter device 20 and a control signal for controlling the operation of the hot water valve 32 are transmitted from the engine ECU 200 and received by the receiving unit 110. Further, a control signal for controlling the operation of the electric expansion valve 730 is transmitted from the air conditioning ECU 300 and received by the receiving unit 110. That is, a control signal for controlling operations of a plurality of devices is received by the receiving unit 110. Instead of such an aspect, the control signal received by the receiving unit may be for controlling the operation of a single device.
 入力部120は、センサ60からのそれぞれの検知信号が入力される部分である。センサ60からの検知信号は、他のECU(電子制御ユニット)を介することなく、センサ60に含まれるそれぞれのセンサから制御モジュール100に対して直接入力される。他のECUを介した通信によるタイムラグが生じないので、制御モジュール100は、各種センサにおける測定値を瞬時に把握することができる。 The input unit 120 is a part to which each detection signal from the sensor 60 is input. The detection signal from the sensor 60 is directly input to the control module 100 from each sensor included in the sensor 60 without passing through another ECU (electronic control unit). Since a time lag due to communication via other ECUs does not occur, the control module 100 can instantly grasp the measured values of various sensors.
 尚、制御モジュール100は、車両50に設けられた車速センサ201から、車速(車両50の走行速度)を示す検知信号を受信することも可能となっている。ただし、車速センサ201から送信される検知信号は、入力部120に直接入力されるのではなく、エンジンECU200を介して制御モジュール100に入力される。つまり、制御モジュール100は、エンジンECU200との通信によって車両50の走行速度を取得することが可能となっている。このような態様に替えて、車速センサ201からの検知信号が入力部120に直接入力されるような態様であってもよい。 The control module 100 can also receive a detection signal indicating the vehicle speed (the traveling speed of the vehicle 50) from a vehicle speed sensor 201 provided in the vehicle 50. However, the detection signal transmitted from the vehicle speed sensor 201 is not directly input to the input unit 120 but is input to the control module 100 via the engine ECU 200. That is, the control module 100 can acquire the traveling speed of the vehicle 50 through communication with the engine ECU 200. Instead of such a mode, a mode in which a detection signal from the vehicle speed sensor 201 is directly input to the input unit 120 may be used.
 取得部125は、室外用熱交換器740から排出される冷媒の過熱度を取得する部分である。取得部125は、圧力センサ61で測定される冷媒の圧力、及び温度センサ62で測定される冷媒の温度を取得し、これらに基づいて、室外用熱交換器740から排出された直後の冷媒の過熱度を取得する。「過熱度」とは、室外用熱交換器740から排出された冷媒(過熱蒸気)の温度と、当該冷媒と同じ圧力における冷媒の飽和温度との温度差のことであり、所謂「スーパーヒート」とも称されるものである。取得部125で取得された上記の過熱度は制御部130に入力される。 The acquisition unit 125 is a part that acquires the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740. The acquisition unit 125 acquires the refrigerant pressure measured by the pressure sensor 61 and the refrigerant temperature measured by the temperature sensor 62, and based on these, the refrigerant immediately after being discharged from the outdoor heat exchanger 740 is acquired. Get superheat. The “superheat degree” is a temperature difference between the temperature of the refrigerant (superheated steam) discharged from the outdoor heat exchanger 740 and the saturation temperature of the refrigerant at the same pressure as the refrigerant, so-called “superheat”. It is also called. The degree of superheat acquired by the acquisition unit 125 is input to the control unit 130.
 制御モジュール100が備える記憶装置(不図示)には、冷媒の圧力及び温度と過熱度との関係が、予めマップとして記憶されている。取得部125は、圧力センサ61及び温度センサ62のそれぞれの測定値と上記マップとを参照することにより、冷媒の過熱度を算出し取得する。 In a storage device (not shown) provided in the control module 100, the relationship between the refrigerant pressure and temperature and the degree of superheat is stored in advance as a map. The acquisition unit 125 calculates and acquires the degree of superheat of the refrigerant by referring to the measured values of the pressure sensor 61 and the temperature sensor 62 and the map.
 制御部130は、後述のドライバ141等を介して、シャッタ装置20や電動膨張弁730等、熱交換ユニット10が備える各種機器の動作を制御する部分である。エンジンECU200や空調ECU300から受信された制御信号は、受信部110から制御部130へと入力される。また、センサ60から入力された各種の検知信号は、入力部120から制御部130へと入力される。制御部130は、入力された制御信号及び検知信号に基づいて、シャッタ装置20等の動作を制御する。 The control unit 130 is a part that controls the operation of various devices included in the heat exchange unit 10 such as the shutter device 20 and the electric expansion valve 730 via a driver 141 described later. Control signals received from engine ECU 200 and air conditioning ECU 300 are input from receiving unit 110 to control unit 130. Various detection signals input from the sensor 60 are input from the input unit 120 to the control unit 130. The control unit 130 controls the operation of the shutter device 20 and the like based on the input control signal and detection signal.
 ドライバ141は、シャッタ装置20に駆動用電流を供給するための部分である。ドライバ141には、動作用の電力として電源系統PL1からの電力が供給されている。ドライバ141には、シャッタアクチュエータ22に駆動用電流を供給するための回路が形成されている。ドライバ141からシャッタアクチュエータ22への駆動用電流の供給は、制御部130からの信号によって制御される。これにより、シャッタアクチュエータ22の動作が制御され、シャッタ装置20の開度が所定の開度となるように調整される。 The driver 141 is a part for supplying a driving current to the shutter device 20. The driver 141 is supplied with power from the power supply system PL1 as power for operation. The driver 141 is formed with a circuit for supplying a drive current to the shutter actuator 22. The supply of driving current from the driver 141 to the shutter actuator 22 is controlled by a signal from the control unit 130. Thereby, the operation of the shutter actuator 22 is controlled, and the opening degree of the shutter device 20 is adjusted to be a predetermined opening degree.
 ドライバ142は、電動膨張弁730の電動アクチュエータ730Mに駆動用電流を供給するための部分である。ドライバ142には、動作用の電力として電源系統PL1からの電力が供給されている。ドライバ142には、電動アクチュエータ730Mに供給される駆動用電流の大きさを調整するための回路が形成されている。電動アクチュエータ730Mに供給される駆動用電流の大きさは、制御部130からの信号によって調整される。電動アクチュエータ730Mに供給される駆動用電流が大きくなると、電動膨張弁730の開度が大きくなる。電動アクチュエータ730Mに供給される駆動用電流が小さくなると、電動膨張弁730の開度が小さくなる。 The driver 142 is a part for supplying a driving current to the electric actuator 730M of the electric expansion valve 730. The driver 142 is supplied with power from the power supply system PL1 as power for operation. The driver 142 is formed with a circuit for adjusting the magnitude of the drive current supplied to the electric actuator 730M. The magnitude of the driving current supplied to the electric actuator 730M is adjusted by a signal from the control unit 130. When the drive current supplied to the electric actuator 730M increases, the opening of the electric expansion valve 730 increases. When the drive current supplied to the electric actuator 730M decreases, the opening degree of the electric expansion valve 730 decreases.
 HUB143は所謂集線装置である。HUB143には、熱交換ユニット10が備える各種機器の一部に繋がる信号線が接続される。本実施形態では、温水弁32に繋がる信号線がHUB143に接続されている。また、HUB143には、動作用の電力として電源系統PL1からの電力が供給されている。 HUB 143 is a so-called concentrator. The HUB 143 is connected to signal lines connected to some of the various devices included in the heat exchange unit 10. In the present embodiment, a signal line connected to the hot water valve 32 is connected to the HUB 143. The HUB 143 is supplied with power from the power supply system PL1 as power for operation.
 制御部130は、温水弁32に対して(駆動用の電流ではなく)制御用の信号のみを送信することにより、温水弁32の動作を制御するように構成されている。温水弁32には、その動作を制御するためのドライバ(不図示)が内蔵されている。当該ドライバは、制御部130からHUB143を介して送信される制御用の信号に基づいて動作し、温水弁32の開閉を切り換える。温水弁32が開状態となると、ラジエータ31に対する冷却水の供給が開始される。温水弁32が閉状態となると、ラジエータ31に対する冷却水の供給が停止される。 The control unit 130 is configured to control the operation of the hot water valve 32 by transmitting only a control signal (not a driving current) to the hot water valve 32. The hot water valve 32 has a built-in driver (not shown) for controlling its operation. The driver operates based on a control signal transmitted from the control unit 130 via the HUB 143 and switches between opening and closing of the hot water valve 32. When the hot water valve 32 is in an open state, supply of cooling water to the radiator 31 is started. When the hot water valve 32 is closed, the supply of cooling water to the radiator 31 is stopped.
 HUB143に繋がる機器の数は、本実施形態のように1つであってもよく、2つ以上であってもよい。また、HUB143が設けられておらず、熱交換ユニット10が備える各種機器の全てが、本実施形態におけるシャッタ装置20のように、ドライバを介して制御部130に接続されているような態様であってもよい。制御部130と各種機器との間における通信のタイムラグが問題となるような場合には、このような構成の方が好ましい。 The number of devices connected to the HUB 143 may be one as in the present embodiment, or may be two or more. Further, the HUB 143 is not provided, and all the devices included in the heat exchange unit 10 are connected to the control unit 130 via a driver like the shutter device 20 in the present embodiment. May be. Such a configuration is preferable when the time lag of communication between the control unit 130 and various devices becomes a problem.
 上記とは逆に、熱交換ユニット10が備える各種機器の全てが、本実施形態における温水弁32のように、HUB143を介して制御部130に接続されているような態様であってもよい。制御モジュール100や熱交換ユニット10の拡張性に鑑みれば、このような構成の方が好ましい。 Contrary to the above, all the devices included in the heat exchange unit 10 may be connected to the control unit 130 via the HUB 143 like the hot water valve 32 in the present embodiment. In view of the expandability of the control module 100 and the heat exchange unit 10, such a configuration is preferable.
 ところで、車両用空調装置70の暖房運転中においては、蒸発器である室外用熱交換器740から排出される冷媒の過熱度が小さくなり過ぎてしまうと、下流側にあるコンプレッサ720に液相の冷媒が到達してしまい、コンプレッサ720の動作が妨げられてしまう可能性がある。一方、上記過熱度が大きくなり過ぎてしまうと、電動膨張弁730を通過する冷媒の流路抵抗が大きくなり、冷凍サイクルの動作効率が低下してしまうこととなる。そこで、車両用空調装置70の暖房運転中においては、室外用熱交換器740の出口部分における冷媒の過熱度(つまり、取得部125で取得される過熱度)を所定の目標値に一致させる制御を行う必要がある。以下では、当該制御のことを「過熱度調整制御」とも称する。 By the way, during the heating operation of the vehicle air conditioner 70, if the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740, which is an evaporator, becomes too small, the liquid phase is transferred to the compressor 720 on the downstream side. The refrigerant may reach and the operation of the compressor 720 may be hindered. On the other hand, if the degree of superheat becomes too large, the flow path resistance of the refrigerant passing through the electric expansion valve 730 increases, and the operating efficiency of the refrigeration cycle decreases. Therefore, during the heating operation of the vehicle air conditioner 70, the control for matching the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 (that is, the superheat degree acquired by the acquisition unit 125) with a predetermined target value. Need to do. Hereinafter, this control is also referred to as “superheat degree adjustment control”.
 過熱度調整制御においては、制御モジュール100は、上位のECU(エンジンECU200や空調ECU300)から送信される制御信号に示される態様とは異なる態様で、シャッタ装置20や電動膨張弁730の動作を制御する。本実施形態における過熱度調整制御の具体的な態様について、図7を参照しながら説明する。 In the superheat degree adjustment control, the control module 100 controls the operation of the shutter device 20 and the electric expansion valve 730 in a mode different from the mode indicated by the control signal transmitted from the host ECU (engine ECU 200 or air conditioning ECU 300). To do. A specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
 図7に示される一連の処理は、所定の制御周期が経過する毎に、制御モジュール100によって繰り返し実行される処理である。 7 is a process repeatedly executed by the control module 100 every time a predetermined control cycle elapses.
 最初のステップS01では、温度センサ62で測定された温度、すなわち、室外用熱交換器740から排出される冷媒の温度が取得される。ステップS01に続くステップS02では、圧力センサ61で測定された圧力、すなわち、室外用熱交換器740から排出される冷媒の圧力が取得される。 In the first step S01, the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired. In step S02 following step S01, the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
 ステップS02に続くステップS03では、ステップS01で取得された冷媒の温度、及びステップS02で取得された冷媒の圧力に基づいて、冷媒の過熱度が取得(算出)される。当該処理は、既に述べたように取得部125によって行われる。 In step S03 following step S02, the superheat degree of the refrigerant is acquired (calculated) based on the refrigerant temperature acquired in step S01 and the refrigerant pressure acquired in step S02. This processing is performed by the acquisition unit 125 as described above.
 ステップS03に続くステップS04では、ステップS03で取得された過熱度について偏差量が、予め設定された所定値よりも小さいか否かが判定される。ここでいう「偏差量」とは、取得部125で取得される過熱度と、過熱度について設定された目標値との差、の絶対値のことである。偏差量の算出は制御部130によって行われる。尚、上記の目標値は、予め空調ECU300によって決定され、制御モジュール100へと送信されていたものである。 In step S04 following step S03, it is determined whether or not the deviation amount is smaller than a predetermined value for the degree of superheat acquired in step S03. The “deviation amount” here is an absolute value of a difference between the degree of superheat acquired by the acquisition unit 125 and a target value set for the degree of superheat. The calculation of the deviation amount is performed by the control unit 130. The target value is determined in advance by the air conditioning ECU 300 and transmitted to the control module 100.
 過熱度の偏差量が所定値よりも小さい場合には、ステップS05に移行する。ステップS05では、電動膨張弁730の目標開度の算出が行われる。この目標開度は、上記の偏差量を0に近づけるために必要となる電動膨張弁730の開度のことである。目標開度の算出は制御部130によって行われる。 When the deviation amount of the superheat degree is smaller than the predetermined value, the process proceeds to step S05. In step S05, the target opening degree of the electric expansion valve 730 is calculated. This target opening is the opening of the electric expansion valve 730 that is necessary to bring the deviation amount close to zero. The target opening is calculated by the control unit 130.
 このような目標開度は、例えば、予め作成されたマップを参照することにより算出することができる。また、空調ECU300から送信される電動膨張弁730の開度の目標値に対して、マップに基づき決定された補正値を加算することにより、目標開度が算出されることとしてもよい。 Such a target opening can be calculated, for example, by referring to a map prepared in advance. Further, the target opening degree may be calculated by adding a correction value determined based on the map to the target value of the opening degree of the electric expansion valve 730 transmitted from the air conditioning ECU 300.
 ステップS05に続くステップS06では、電動膨張弁730の開度を、ステップS05で算出された目標開度に一致させるよう、電動膨張弁730(具体的には電動アクチュエータ730M)を駆動する処理が行われる。当該処理は制御部130によって行われる。これにより、電動膨張弁730の開度が目標開度に一致した状態となり、室外用熱交換器740の出口部分における冷媒の過熱度は目標値に近づいて行く。 In step S06 subsequent to step S05, a process of driving the electric expansion valve 730 (specifically, the electric actuator 730M) is performed so that the opening degree of the electric expansion valve 730 matches the target opening degree calculated in step S05. Is called. This process is performed by the control unit 130. As a result, the opening degree of the electric expansion valve 730 becomes equal to the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
 ステップS04において、過熱度の偏差量が所定値以上であった場合には、ステップS07に移行する。ステップS07では、シャッタ装置20の目標開度の算出が行われる。この目標開度は、上記の偏差量を0に近づけるために必要となるシャッタ装置20の開度のことである。目標開度の算出は制御部130によって行われる。 In step S04, when the degree of deviation of the superheat degree is equal to or greater than a predetermined value, the process proceeds to step S07. In step S07, the target opening degree of the shutter device 20 is calculated. This target opening is the opening of the shutter device 20 that is necessary to bring the deviation amount close to zero. The target opening is calculated by the control unit 130.
 このような目標開度は、例えば、予め作成されたマップを参照することにより算出することができる。また、エンジンECU200から送信されるシャッタ装置20の開度の目標値に対して、マップに基づき決定された補正値を加算することにより、目標開度が算出されることとしてもよい。 Such a target opening can be calculated, for example, by referring to a map prepared in advance. Further, the target opening degree may be calculated by adding a correction value determined based on the map to the target value of the opening degree of the shutter device 20 transmitted from the engine ECU 200.
 ステップS07に続くステップS08では、シャッタ装置20の開度を、ステップS07で算出された目標開度に一致させるよう、シャッタ装置20(具体的にはシャッタアクチュエータ22)を駆動する処理が行われる。これにより、シャッタ装置20の開度が目標開度に一致した状態となり、室外用熱交換器740の出口部分における冷媒の過熱度は目標値に近づいて行く。 In step S08 following step S07, processing for driving the shutter device 20 (specifically, the shutter actuator 22) is performed so that the opening degree of the shutter device 20 matches the target opening degree calculated in step S07. Thereby, the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
 以上のように、本実施形態に係る制御モジュール100では、制御部130が、取得部125で取得される過熱度に基づいてシャッタ装置20(空気制御装置)の動作を制御し、これにより過熱度を調整することが可能となっている。具体的には、取得部125で取得される過熱度が目標値に一致するように、シャッタ装置20の動作を制御することが可能となっている(ステップS07,S08)。 As described above, in the control module 100 according to the present embodiment, the control unit 130 controls the operation of the shutter device 20 (air control device) based on the degree of superheat acquired by the acquisition unit 125, and thereby the degree of superheat. It is possible to adjust. Specifically, the operation of the shutter device 20 can be controlled so that the degree of superheat acquired by the acquisition unit 125 matches the target value (steps S07 and S08).
 また、制御モジュール100では、制御部130が、取得部125で取得される過熱度に基づいて電動膨張弁730(冷媒制御装置)の動作を制御し、これにより過熱度を調整することも可能となっている。具体的には、取得部125で取得される過熱度が目標値に一致するように、電動膨張弁730の動作を制御することが可能となっている(ステップS05,S06)。 Further, in the control module 100, the control unit 130 can control the operation of the electric expansion valve 730 (refrigerant control device) based on the degree of superheat acquired by the acquisition unit 125, and thereby adjust the degree of superheat. It has become. Specifically, the operation of the electric expansion valve 730 can be controlled so that the degree of superheat acquired by the acquisition unit 125 matches the target value (steps S05 and S06).
 つまり、制御モジュール100では、室外用熱交換器740の出口部分における冷媒の過熱度を調整する過熱度調整制御として、2種類の態様の制御を行うことが可能となっている。一つ目の態様は、空気制御装置であるシャッタ装置20の動作を制御することにより、過熱度を調整するものである(ステップS07,S08)。以下では、このような態様の過熱度調整制御のことを「第1制御」とも称する。もう1つは、冷媒制御装置である電動膨張弁730の動作を制御することにより、過熱度を調整するものである(ステップS05,S06)。以下では、このような態様の過熱度調整制御のことを「第2制御」とも称する。 That is, in the control module 100, it is possible to perform two types of control as the superheat degree adjustment control for adjusting the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740. In the first aspect, the degree of superheat is adjusted by controlling the operation of the shutter device 20 which is an air control device (steps S07 and S08). Hereinafter, the superheat degree adjustment control in this manner is also referred to as “first control”. The other is to adjust the degree of superheat by controlling the operation of the electric expansion valve 730, which is a refrigerant control device (steps S05, S06). Hereinafter, the superheat degree adjustment control in this manner is also referred to as “second control”.
 尚、電動膨張弁730の開度を変化させること、すなわち第2制御を行うことによって冷媒の過熱度を調整する場合には、過熱度の変化速度は比較的小さい。これに対し、室外用熱交換器740を通過する空気の流量を変化させること、すなわち第1制御を行うことによって冷媒の過熱度を調整する場合には、過熱度の変化速度は比較的大きい。 Note that when the degree of superheat of the refrigerant is adjusted by changing the opening degree of the electric expansion valve 730, that is, by performing the second control, the rate of change of the degree of superheat is relatively small. On the other hand, when the degree of superheat of the refrigerant is adjusted by changing the flow rate of the air passing through the outdoor heat exchanger 740, that is, by performing the first control, the change rate of the degree of superheat is relatively large.
 本実施形態では、過熱度の偏差量が所定値よりも小さく、過熱度を大きく変化させる必要が無い場合(ステップS04でYes)には、応答速度の比較的小さな第2制御によって過熱度の調整を行う。一方、過熱度の偏差量が所定値以上であり、過熱度を大きく変化させる必要が有る場合(ステップS04でNo)には、応答速度の比較的大きな第1制御によって過熱度の調整を行う。このように、状況に応じて第1制御と第2制御とを適切に使い分けることにより、過熱度を目標値に一致させることができる。 In this embodiment, when the degree of deviation of the superheat degree is smaller than the predetermined value and it is not necessary to change the superheat degree greatly (Yes in step S04), the superheat degree is adjusted by the second control with a relatively low response speed. I do. On the other hand, when the amount of deviation of the superheat degree is equal to or greater than the predetermined value and the superheat degree needs to be changed greatly (No in step S04), the superheat degree is adjusted by the first control having a relatively high response speed. Thus, the superheat degree can be matched with the target value by properly using the first control and the second control according to the situation.
 図8(A)に示されるのは、比較例に係る熱交換ユニット10において、室外用熱交換器74から排出される冷媒の過熱度の時間変化の一例である。この比較例においては、電動膨張弁730の開度を調整する制御のみにより、過熱度を目標値SVに一致させる制御が行われている。また、この比較例では、過熱度の取得や調整のための処理が、制御モジュール100ではなく空調ECU300によって行われる構成となっている。 FIG. 8A shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 74 in the heat exchange unit 10 according to the comparative example. In this comparative example, the control for adjusting the degree of superheat to the target value SV is performed only by the control for adjusting the opening degree of the electric expansion valve 730. In this comparative example, the process for acquiring and adjusting the degree of superheat is performed by the air conditioning ECU 300 instead of the control module 100.
 図8(A)の例では、時刻t0において過熱度が急変しており、目標値SVから値MVまで急激に低下している。このため、空調ECU300は、過熱度が値MVから目標値SVに戻るように、電動膨張弁730の開度が小さくなるよう、電動膨張弁730を動作させる処理を行う。 In the example of FIG. 8 (A), the degree of superheat changes suddenly at time t0, and rapidly decreases from the target value SV to the value MV. For this reason, the air conditioning ECU 300 performs a process of operating the electric expansion valve 730 so that the opening degree of the electric expansion valve 730 is reduced so that the degree of superheat returns from the value MV to the target value SV.
 しかしながら、空調ECU300からの制御信号が制御モジュール100に到達し、電動膨張弁730の開度が変化し始めるまでには、通信のタイムラグが生じる。このため、図8(A)の例では、時刻t0よりも後の時刻t10において、電動膨張弁730の開度が変化し始めている。時刻t0から時刻t10までの期間TM10が、上記のタイムラグに該当する。 However, a communication time lag occurs until the control signal from the air conditioning ECU 300 reaches the control module 100 and the opening of the electric expansion valve 730 starts to change. Therefore, in the example of FIG. 8A, the opening degree of the electric expansion valve 730 starts to change at time t10 after time t0. A period TM10 from time t0 to time t10 corresponds to the above time lag.
 時刻t10以降は、電動膨張弁730が動作してその開度が変化していく。これにより、室外用熱交換器740の出口部分における冷媒の過熱度は次第に上昇して行き、時刻t20において目標値SVに一致する。ただし、既に述べたように、電動膨張弁730の開度が変化する際における過熱度の変化速度は比較的小さい。このため、電動膨張弁730が動作し始めた時刻t10から、過熱度が目標値SVに一致する時刻t20までの期間TM21は、比較的長くなっている。 After time t10, the electric expansion valve 730 operates and its opening degree changes. Thereby, the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 gradually increases, and coincides with the target value SV at time t20. However, as already described, the change rate of the superheat degree when the opening degree of the electric expansion valve 730 changes is relatively small. For this reason, the period TM21 from time t10 when the electric expansion valve 730 starts to operate to time t20 when the superheat degree matches the target value SV is relatively long.
 図8(B)に示されるのは、他の比較例に係る熱交換ユニット10において、室外用熱交換器740から排出される冷媒の過熱度の時間変化の一例である。この比較例においては、シャッタ装置20の開度を調整する制御のみにより、過熱度を目標値SVに一致させる制御が行われている。尚、この比較例でも図8(A)の例と同様に、過熱度の取得や調整のための処理が、制御モジュール100ではなく空調ECU300によって行われる構成となっている。 FIG. 8B shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740 in the heat exchange unit 10 according to another comparative example. In this comparative example, control for adjusting the degree of superheat to the target value SV is performed only by control for adjusting the opening degree of the shutter device 20. In this comparative example, similarly to the example of FIG. 8A, the process for acquiring and adjusting the degree of superheat is performed not by the control module 100 but by the air conditioning ECU 300.
 図8(B)の例でも、時刻t0において過熱度が急変しており、目標値SVから値MVまで急激に低下している。このため、空調ECU300は、過熱度が値MVから目標値SVに戻るように、シャッタ装置20の開度が大きくなるよう、シャッタ装置20を動作させる処理を行う。 Also in the example of FIG. 8B, the degree of superheat changes suddenly at time t0, and rapidly decreases from the target value SV to the value MV. For this reason, the air conditioning ECU 300 performs a process of operating the shutter device 20 so that the opening degree of the shutter device 20 increases so that the degree of superheat returns from the value MV to the target value SV.
 図8(B)の例でも、空調ECU300からの制御信号が制御モジュール100に到達し、シャッタ装置20の開度が変化し始めるまでには、通信のタイムラグが生じる。このため、やはり時刻t0よりも後の時刻t10において、シャッタ装置20の開度が変化し始めている。時刻t0から時刻t10までの期間TM10が、上記のタイムラグに該当する。 8B, a communication time lag occurs until the control signal from the air conditioning ECU 300 reaches the control module 100 and the opening degree of the shutter device 20 starts to change. For this reason, the opening degree of the shutter device 20 also starts to change at time t10 after time t0. A period TM10 from time t0 to time t10 corresponds to the above time lag.
 時刻t10以降は、シャッタ装置20が動作してその開度が変化していく。これにより、室外用熱交換器740の出口部分における冷媒の過熱度は次第に上昇して行き、時刻t15において目標値SVに一致する。既に述べたように、シャッタ装置20の開度が変化する際における過熱度の変化速度は比較的大きい。このため、シャッタ装置20が動作し始めた時刻t10から、過熱度が目標値SVに一致する時刻t15までの期間TM22は、図8(A)における期間TM21よりも短くなっている。 After time t10, the shutter device 20 operates and its opening degree changes. Thereby, the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 gradually increases and matches the target value SV at time t15. As already described, the rate of change of the degree of superheat when the opening degree of the shutter device 20 changes is relatively large. For this reason, the period TM22 from time t10 when the shutter device 20 starts operating to time t15 when the superheat degree matches the target value SV is shorter than the period TM21 in FIG.
 図8(C)に示されるのは、本実施形態に係る熱交換ユニット10において、室外用熱交換器740から排出される冷媒の過熱度の時間変化の一例である。図8(C)の例では、第1制御、すなわちシャッタ装置20の開度を調整する制御のみにより、過熱度を目標値SVに一致させる制御が行われている。 FIG. 8C shows an example of a temporal change in the degree of superheat of the refrigerant discharged from the outdoor heat exchanger 740 in the heat exchange unit 10 according to this embodiment. In the example of FIG. 8C, the control for adjusting the superheat degree to the target value SV is performed only by the first control, that is, the control for adjusting the opening degree of the shutter device 20.
 図8(C)の例では、図8(A)や図8(B)に示される比較例とは異なり、過熱度の取得や調整のための処理が制御モジュール100によって行われる。つまり、空調ECU300との通信によるタイムラグが生じない。従って、過熱度が急変して値MVまで低下するのとほぼ同時(時刻t0)に、シャッタ装置20の開度を変化させ始めることが可能となっている。その後、時刻t0よりも後の時刻t5において、過熱度が目標値SVに一致している。時刻t0から時刻t5までの期間TM23は、図8(B)における期間TM22と同じ長さの期間となっている。 In the example of FIG. 8C, unlike the comparative example shown in FIGS. 8A and 8B, the control module 100 performs processing for acquiring and adjusting the degree of superheat. That is, a time lag due to communication with the air conditioning ECU 300 does not occur. Therefore, it is possible to start changing the opening degree of the shutter device 20 almost at the same time (time t0) as the degree of superheat changes suddenly and decreases to the value MV. Thereafter, at time t5 after time t0, the degree of superheat matches the target value SV. A period TM23 from time t0 to time t5 is the same length as the period TM22 in FIG.
 このように、本実施形態では、図8(A)や図8(B)に示される比較例に比べて、冷媒の過熱度を迅速に変化させ、より短い期間内で目標値SVに一致させることが可能となっている。 Thus, in this embodiment, compared with the comparative example shown by FIG. 8 (A) and FIG. 8 (B), the superheat degree of a refrigerant | coolant is changed rapidly and it is made to correspond with target value SV within a shorter period. It is possible.
 以上に説明したような制御モジュール100の機能を、エンジンECU200や空調ECU300のような上位のECUが有するような態様としてもよい。つまり、エンジンECU200等が制御モジュール100として機能するような態様としてもよい。しかしながら、通信のタイムラグや機器の配置等に鑑みれば、本実施形態のように、熱交換ユニット10の制御を担う専用の装置として制御モジュール100が構成されている態様の方が好ましい。 The functions of the control module 100 as described above may be in the form of a host ECU such as the engine ECU 200 or the air conditioning ECU 300. That is, the engine ECU 200 or the like may function as the control module 100. However, in view of a communication time lag, device arrangement, and the like, a mode in which the control module 100 is configured as a dedicated device responsible for controlling the heat exchange unit 10 as in the present embodiment is preferable.
 第2実施形態について説明する。以下では、第1実施形態と異なる点についてのみ説明し、第1実施形態と共通する点については適宜説明を省略する。本実施形態では、制御モジュール100によって実行される処理の内容について第1実施形態と異なっており、その他の点については第1実施形態と同じである。本実施形態における過熱度調整制御の具体的な態様について、図9を参照しながら説明する。 The second embodiment will be described. Below, only a different point from 1st Embodiment is demonstrated, and description is abbreviate | omitted suitably about the point which is common in 1st Embodiment. In the present embodiment, the contents of processing executed by the control module 100 are different from those in the first embodiment, and the other points are the same as those in the first embodiment. A specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
 図9に示される一連の処理は、所定の制御周期が経過する毎に、制御モジュール100によって繰り返し実行される処理である。当該処理は、図7に示される一連の処理に換えて実行されるものである。 The series of processes shown in FIG. 9 is a process that is repeatedly executed by the control module 100 every time a predetermined control period elapses. This process is executed in place of the series of processes shown in FIG.
 最初のステップS11では、温度センサ62で測定された温度、すなわち、室外用熱交換器740から排出される冷媒の温度が取得される。ステップS11に続くステップS12では、圧力センサ61で測定された圧力、すなわち、室外用熱交換器740から排出される冷媒の圧力が取得される。 In the first step S11, the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired. In step S12 following step S11, the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
 ステップS12に続くステップS13では、ステップS11で取得された冷媒の温度、及びステップS12で取得された冷媒の圧力に基づいて、冷媒の過熱度が取得(算出)される。当該処理は、既に述べたように取得部125によって行われる。 In step S13 following step S12, the superheat degree of the refrigerant is obtained (calculated) based on the refrigerant temperature obtained in step S11 and the refrigerant pressure obtained in step S12. This processing is performed by the acquisition unit 125 as described above.
 ステップS13に続くステップS14では、電動膨張弁730の目標開度の算出が行われる。この目標開度は、既に説明した偏差量を0に近づけるために必要となる電動膨張弁730の開度のことである。目標開度の算出は制御部130によって行われる。 In step S14 following step S13, the target opening of the electric expansion valve 730 is calculated. This target opening is the opening of the electric expansion valve 730 that is necessary to bring the already described deviation amount close to zero. The target opening is calculated by the control unit 130.
 図10に示されるのは、ステップS13で取得された過熱度(横軸)と、ステップS14で算出される目標開度(縦軸)との対応関係である。当該対応関係は、マップとして予め作成され、制御モジュール100の記憶装置に記憶されている。ステップS14では、図10の対応関係に基づいて、電動膨張弁730の目標開度が算出される。 FIG. 10 shows a correspondence relationship between the degree of superheat (horizontal axis) acquired in step S13 and the target opening degree (vertical axis) calculated in step S14. The correspondence relationship is created in advance as a map and stored in the storage device of the control module 100. In step S14, the target opening degree of the electric expansion valve 730 is calculated based on the correspondence relationship of FIG.
 図10に示されるように、取得部125で取得された過熱度が大きくなるほど、目標開度は大きくなる(開放側となる)ように設定される。これにより、室外用熱交換器740における冷媒の温度が上昇し、室外用熱交換器740における吸熱量が小さくなる。その結果、室外用熱交換器740の出口部分における過熱度が小さくなる。 As shown in FIG. 10, the target opening is set to be larger (open side) as the degree of superheat acquired by the acquisition unit 125 increases. Thereby, the temperature of the refrigerant | coolant in the outdoor heat exchanger 740 rises, and the heat absorption amount in the outdoor heat exchanger 740 becomes small. As a result, the degree of superheat at the outlet portion of the outdoor heat exchanger 740 is reduced.
 また、取得部125で取得された過熱度が小さくなるほど、目標開度は小さくなる(絞り側となる)ように設定される。これにより、室外用熱交換器740における冷媒の温度が低下し、室外用熱交換器740における吸熱量が大きくなる。その結果、電動膨張弁730の出口部分における過熱度が大きくなる。 Also, the target opening is set to be smaller (to the throttle side) as the degree of superheat acquired by the acquisition unit 125 becomes smaller. Thereby, the temperature of the refrigerant | coolant in the outdoor heat exchanger 740 falls, and the heat absorption amount in the outdoor heat exchanger 740 becomes large. As a result, the degree of superheat at the outlet portion of the electric expansion valve 730 increases.
 ステップS14に続くステップS15では、シャッタ装置20の目標開度の算出が行われる。この目標開度は、既に説明した差量を0に近づけるために必要となるシャッタ装置20の開度のことである。目標開度の算出は制御部130によって行われる。 In step S15 following step S14, the target opening of the shutter device 20 is calculated. This target opening is the opening of the shutter device 20 that is necessary to bring the already explained difference close to zero. The target opening is calculated by the control unit 130.
 図11に示されるのは、ステップS13で取得された過熱度(横軸)と、ステップS15で算出される目標開度(縦軸)との対応関係である。当該対応関係は、マップとして予め作成され、制御モジュールの記憶装置に記憶されている。ステップS15では、図11の対応関係に基づいて、シャッタ装置20の目標開度が算出される。 FIG. 11 shows the correspondence between the degree of superheat (horizontal axis) acquired in step S13 and the target opening (vertical axis) calculated in step S15. The correspondence is created in advance as a map and stored in the storage device of the control module. In step S15, the target opening degree of the shutter device 20 is calculated based on the correspondence relationship in FIG.
 図11に示されるように、取得部125で取得された過熱度が大きくなるほど、目標開度は小さくなる(絞り側となる)ように設定される。これにより、室外用熱交換器740を通過する空気の流量が低下し、室外用熱交換器740における吸熱量が小さくなる。その結果、室外用熱交換器740の出口部分における過熱度が小さくなる。 As shown in FIG. 11, the target opening is set to be smaller (to the throttle side) as the degree of superheat acquired by the acquisition unit 125 increases. Thereby, the flow rate of the air passing through the outdoor heat exchanger 740 is reduced, and the heat absorption amount in the outdoor heat exchanger 740 is reduced. As a result, the degree of superheat at the outlet portion of the outdoor heat exchanger 740 is reduced.
 また、取得部125で取得された過熱度が小さくなるほど、目標開度は大きくなる(開放側となる)ように設定される。これにより、室外用熱交換器740を通過する空気の流量が増加し、室外用熱交換器740における吸熱量が大きくなる。その結果、電動膨張弁730の出口部分における過熱度が大きくなる。 Also, the target opening degree is set to be larger (open side) as the degree of superheat acquired by the acquisition unit 125 becomes smaller. As a result, the flow rate of air passing through the outdoor heat exchanger 740 increases, and the amount of heat absorbed in the outdoor heat exchanger 740 increases. As a result, the degree of superheat at the outlet portion of the electric expansion valve 730 increases.
 ステップS15に続くステップS16では、電動膨張弁730の開度を、ステップS14で算出された目標開度に一致させるよう、電動膨張弁730(具体的には電動アクチュエータ730M)を駆動する処理が行われる。当該処理は制御部130によって行われる。これにより、電動膨張弁730の開度が目標開度に一致した状態となり、室外用熱交換器740の出口部分における冷媒の過熱度は目標値に近づいて行く。 In step S16 following step S15, a process of driving the electric expansion valve 730 (specifically, the electric actuator 730M) is performed so that the opening degree of the electric expansion valve 730 matches the target opening degree calculated in step S14. Is called. This process is performed by the control unit 130. As a result, the opening degree of the electric expansion valve 730 becomes equal to the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
 ステップS16に続くステップS17では、シャッタ装置20の開度を、ステップS15で算出された目標開度に一致させるよう、シャッタ装置20(具体的にはシャッタアクチュエータ22)を駆動する処理が行われる。これにより、シャッタ装置20の開度が目標開度に一致した状態となり、室外用熱交換器740の出口部分における冷媒の過熱度は目標値に近づいて行く。 In step S17 following step S16, a process of driving the shutter device 20 (specifically, the shutter actuator 22) is performed so that the opening degree of the shutter device 20 matches the target opening degree calculated in step S15. Thereby, the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
 以上のように、本実施形態に係る制御モジュール100では、室外用熱交換器740を通過する空気の流量を変化させる第1制御(ステップS17)と、電動膨張弁730の開度を変化させる第2制御(ステップS16)とが、並行して行われる。このような態様でも、第1実施形態について説明したものと同様の効果を奏する。また、本実施形態では、第1制御と第2制御とが同時に行われるので、過熱度をより広い範囲で変化させることが可能となっている。このため、車両用空調装置70の運転中における過熱度を更に安定させることができる。 As described above, in the control module 100 according to the present embodiment, the first control (step S17) for changing the flow rate of the air passing through the outdoor heat exchanger 740, and the first control for changing the opening degree of the electric expansion valve 730. 2 control (step S16) is performed in parallel. Even in such an aspect, the same effects as those described in the first embodiment can be obtained. Moreover, in this embodiment, since 1st control and 2nd control are performed simultaneously, it is possible to change a superheat degree in a wider range. For this reason, the degree of superheat during operation of the vehicle air conditioner 70 can be further stabilized.
 第3実施形態について説明する。以下では、第1実施形態と異なる点についてのみ説明し、第1実施形態と共通する点については適宜説明を省略する。本実施形態では、制御モジュール100によって実行される処理の内容について第1実施形態と異なっており、その他の点については第1実施形態と同じである。本実施形態における過熱度調整制御の具体的な態様について、図12を参照しながら説明する。 The third embodiment will be described. Below, only a different point from 1st Embodiment is demonstrated, and description is abbreviate | omitted suitably about the point which is common in 1st Embodiment. In the present embodiment, the contents of processing executed by the control module 100 are different from those in the first embodiment, and the other points are the same as those in the first embodiment. A specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
 図12に示される一連の処理は、所定の制御周期が経過する毎に、制御モジュール100によって繰り返し実行される処理である。当該処理は、図7に示される一連の処理に換えて実行されるものである。 12 is a process that is repeatedly executed by the control module 100 every time a predetermined control cycle elapses. This process is executed in place of the series of processes shown in FIG.
 最初のステップS21では、温度センサ62で測定された温度、すなわち、室外用熱交換器740から排出される冷媒の温度が取得される。ステップS21に続くステップS22では、圧力センサ61で測定された圧力、すなわち、室外用熱交換器740から排出される冷媒の圧力が取得される。 In the first step S21, the temperature measured by the temperature sensor 62, that is, the temperature of the refrigerant discharged from the outdoor heat exchanger 740 is acquired. In step S22 following step S21, the pressure measured by the pressure sensor 61, that is, the pressure of the refrigerant discharged from the outdoor heat exchanger 740 is acquired.
 ステップS22に続くステップS23では、ステップS21で取得された冷媒の温度、及びステップS22で取得された冷媒の圧力に基づいて、冷媒の過熱度が取得(算出)される。当該処理は、既に述べたように取得部125によって行われる。 In step S23 following step S22, the superheat degree of the refrigerant is acquired (calculated) based on the refrigerant temperature acquired in step S21 and the refrigerant pressure acquired in step S22. This processing is performed by the acquisition unit 125 as described above.
 ステップS23に続くステップS24では、風速センサ63で測定された風速に基づいて、室外用熱交換器740を通過する空気の風量が算出され取得される。 In step S24 following step S23, the air volume of the air passing through the outdoor heat exchanger 740 is calculated and acquired based on the wind speed measured by the wind speed sensor 63.
 ステップS24に続くステップS25では、ステップS23で取得された過熱度と、ステップS24で算出された風量とに基づいて、シャッタ装置20の目標開度の算出が行われる。この目標開度は、過熱度をその目標値に近づけるために必要となるシャッタ装置20の開度のことである。目標開度の算出は制御部130によって行われる。 In step S25 following step S24, the target opening degree of the shutter device 20 is calculated based on the degree of superheat acquired in step S23 and the air volume calculated in step S24. This target opening is the opening of the shutter device 20 that is necessary to bring the degree of superheat close to the target value. The target opening is calculated by the control unit 130.
 ステップS25に続くステップS26では、シャッタ装置20の開度を、ステップS25で算出された目標開度に一致させるよう(つまり偏差量を0に近づけるよう)、シャッタ装置20(具体的にはシャッタアクチュエータ22)を駆動する処理が行われる。当該処理は制御部130によって行われる。これにより、シャッタ装置20の開度が目標開度に一致した状態となり、室外用熱交換器740の出口部分における冷媒の過熱度は目標値に近づいて行く。 In step S26 following step S25, the shutter device 20 (specifically, the shutter actuator 20) is adjusted so that the opening degree of the shutter device 20 coincides with the target opening degree calculated in step S25 (that is, the deviation amount approaches 0). 22) is driven. This process is performed by the control unit 130. Thereby, the opening degree of the shutter device 20 matches the target opening degree, and the superheat degree of the refrigerant at the outlet portion of the outdoor heat exchanger 740 approaches the target value.
 図13に示されるのは、図12で示される上記処理の内容を、所謂ブロック線図として描いたものである。ブロックB1は、室外用熱交換器740の出口部分における過熱度の目標値を示すものである。既に述べたように、当該目標値は空調ECU300によって予め決定され、制御モジュール100に送信されたものである。 FIG. 13 shows the contents of the processing shown in FIG. 12 as a so-called block diagram. Block B1 shows the target value of the degree of superheat at the outlet of the outdoor heat exchanger 740. As already described, the target value is determined in advance by the air conditioning ECU 300 and transmitted to the control module 100.
 ブロックB2は所謂加算器である。ブロックB2では、ブロックB1から入力される過熱度の目標値と、後述のブロックB11から入力される実際の過熱度との偏差が算出され、当該偏差がブロックB3に向けて出力される。 Block B2 is a so-called adder. In block B2, a deviation between a target value of the superheat degree input from block B1 and an actual superheat degree input from block B11 described later is calculated, and the deviation is output toward block B3.
 ブロックB3では、上記の偏差に基づいて、室外用熱交換器740を通過する空気の風量についての目標値が算出される。ここでは、予め作成されたマップを算出することにより、上記の偏差を0とするために必要な風量の目標値が算出される。算出された風量の目標値は、ブロックB4に向けて出力される。 In block B3, a target value for the air volume of the air passing through the outdoor heat exchanger 740 is calculated based on the deviation. Here, by calculating a map prepared in advance, the target value of the air volume necessary for setting the above deviation to 0 is calculated. The calculated target value of the air volume is output toward the block B4.
 ブロックB4は加算器である。ブロックB4では、ブロックB3から入力される風量の目標値と、後述のブロックB13から入力される実際の風量との偏差が算出され、当該偏差がブロックB5に向けて出力される。 Block B4 is an adder. In block B4, the deviation between the target value of the air volume input from block B3 and the actual air volume input from block B13, which will be described later, is calculated, and the deviation is output toward block B5.
 ブロックB5では、上記の偏差に基づいて、シャッタ装置20の目標開度が算出される。当該目標開度は、図12のステップS25で算出される目標開度のことである。ブロックB5では、予め作成されたマップを算出することにより、ブロックB4から入力される偏差を0とするために必要な目標開度が算出される。算出された目標開度は、ブロックB7に向けて出力される。 In block B5, the target opening degree of the shutter device 20 is calculated based on the above deviation. The target opening is the target opening calculated in step S25 of FIG. In block B5, the target opening degree required to set the deviation input from block B4 to 0 is calculated by calculating a map created in advance. The calculated target opening is output toward the block B7.
 尚、上記のブロックB5では、ブロックB6から入力される電動ファン40の作動状態に基づいて、目標開度が予め補正される。当該処理は制御部130により実行される。「電動ファン40の作動状態」とは、電動ファン40の回転数のことである。ブロックB5では、電動ファン40の回転数が大きくなるほど、シャッタ装置20の開度が小さくなるように、上記の目標開度が補正される。このため、例えば電動ファン40が過回転となっているときに、室外用熱交換器740を通過する空気の風量が大きくなり過ぎてしまい、過熱度が目標値からずれてしまうようなことが防止される。 In the block B5, the target opening is corrected in advance based on the operating state of the electric fan 40 input from the block B6. This process is executed by the control unit 130. The “operating state of the electric fan 40” is the number of rotations of the electric fan 40. In block B5, the target opening degree is corrected so that the opening degree of the shutter device 20 decreases as the rotational speed of the electric fan 40 increases. For this reason, for example, when the electric fan 40 is over-rotated, the amount of air passing through the outdoor heat exchanger 740 becomes too large, and the degree of superheat is prevented from deviating from the target value. Is done.
 尚、「電動ファン40の作動状態」として用いられるパラメータは、本実施形態のように電動ファン40の回転数そのものであってもよいが、電動ファン40の回転数を間接的に示すものであってもよい。例えば、ファンモータ42を流れる電流値が、「電動ファン40の作動状態」として用いられてもよい。 The parameter used as the “operating state of the electric fan 40” may be the rotational speed of the electric fan 40 as in the present embodiment, but indirectly indicates the rotational speed of the electric fan 40. May be. For example, the current value flowing through the fan motor 42 may be used as the “operating state of the electric fan 40”.
 このように、本実施形態における制御部130では、室外用熱交換器740に空気を送り込む電動ファン40の回転数に応じて、シャッタ装置20の開度を変化させる制御が行われる。具体的には、制御部130は、電動ファン40の回転数が大きくなるほどシャッタ装置20の開度を小さくするような処理を行う。これにより、電動ファン40の作動状態が変化して空気の風量が変動した場合であっても、過熱度を確実に目標値に近づけることが可能となっている。 Thus, in the control unit 130 according to the present embodiment, control is performed to change the opening degree of the shutter device 20 in accordance with the rotational speed of the electric fan 40 that sends air into the outdoor heat exchanger 740. Specifically, the control unit 130 performs a process of reducing the opening degree of the shutter device 20 as the rotational speed of the electric fan 40 increases. Thus, even when the operating state of the electric fan 40 changes and the air volume varies, the degree of superheat can be reliably brought close to the target value.
 ブロックB5で算出されたシャッタ装置20の目標開度は、ブロックB7に入力される。ブロックB7では、シャッタ装置20の開度を目標開度に一致させる処理が行われる。つまり、ブロックB7は、図12のステップS26に示される処理を示すものである。 The target opening degree of the shutter device 20 calculated in block B5 is input to block B7. In block B7, a process for matching the opening degree of the shutter device 20 with the target opening degree is performed. That is, the block B7 shows the process shown in step S26 of FIG.
 ブロックB7においてシャッタ装置20の開度が調整された結果、シャッタ装置20及び室外用熱交換器740を通過する空気の風量が変化する。ブロックB8は、このような風量の変化を示すブロックである。また、室外用熱交換器740を通過する空気の風量が変化すると、室外用熱交換器740から排出される冷媒の状態(圧力及び温度)も変化する。ブロックB9は、このように変化する冷媒状態を示すブロックである。 As a result of the opening degree of the shutter device 20 being adjusted in the block B7, the amount of air passing through the shutter device 20 and the outdoor heat exchanger 740 changes. Block B8 is a block showing such a change in air volume. Further, when the air volume passing through the outdoor heat exchanger 740 changes, the state (pressure and temperature) of the refrigerant discharged from the outdoor heat exchanger 740 also changes. Block B9 is a block showing the refrigerant state changing in this way.
 ブロックB10では、上記のように変化した冷媒状態が取得される。具体的には、圧力センサ61によって冷媒の圧力が取得され、温度センサ62によって冷媒の温度が取得される。このように、ブロックB10は、図12のステップS21、S22に示される処理を示すものである。ブロックB10で取得された冷媒の圧力及び温度は、ブロックB11に入力される。 In block B10, the refrigerant state changed as described above is acquired. Specifically, the pressure of the refrigerant is acquired by the pressure sensor 61, and the temperature of the refrigerant is acquired by the temperature sensor 62. In this way, the block B10 indicates the processing shown in steps S21 and S22 of FIG. The pressure and temperature of the refrigerant acquired in block B10 are input to block B11.
 ブロックB11では、冷媒の圧力及び温度に基づいて、室外用熱交換器740の出口部分における冷媒の過熱度が算出され取得される。ブロックB11は、図12のステップS23に示される処理を示すものである。ブロックB11で算出された過熱度はブロックB2に入力され、既に述べたように過熱度の偏差の算出に供される。 In block B11, based on the pressure and temperature of the refrigerant, the degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger 740 is calculated and acquired. Block B11 shows the processing shown in step S23 of FIG. The degree of superheat calculated in block B11 is input to block B2, and is used for calculation of the deviation in superheat degree as already described.
 ブロックB12では、室外用熱交換器740を通過する空気の風速が、風速センサ63によって取得される。取得された風速はブロックB13に入力される。ブロックB13では、ブロックB12から入力された風速が、室外用熱交換器740を通過する空気の「風量」に変換される。当該風量はブロックB4に入力され、既に述べたように風量の偏差の算出に供される。 In block B12, the wind speed of the air passing through the outdoor heat exchanger 740 is acquired by the wind speed sensor 63. The acquired wind speed is input to block B13. In block B13, the wind speed input from block B12 is converted into the “air volume” of the air passing through the outdoor heat exchanger 740. The air volume is input to the block B4 and used for calculating the deviation of the air volume as already described.
 以上のように、図13に示される処理は、過熱度を目標値に一致させるためのフィードバックループの内側に、風量を目標値に一致させるためのフィードバックループが形成された処理となっている。このような処理では、風量についての調整が行われることにより、過熱度を更に精度よく制御することが可能となっている。 As described above, the process shown in FIG. 13 is a process in which a feedback loop for matching the air volume with the target value is formed inside the feedback loop for matching the degree of superheat with the target value. In such processing, the degree of superheat can be controlled more accurately by adjusting the air volume.
 第4実施形態について説明する。以下では、第3実施形態と異なる点についてのみ説明し、第3実施形態と共通する点については適宜説明を省略する。本実施形態では、制御モジュール100によって実行される処理の一部について第3実施形態と異なっており、その他の点については第3実施形態と同じである。本実施形態における過熱度調整制御の具体的な態様について、図14を参照しながら説明する。 The fourth embodiment will be described. Below, only a different point from 3rd Embodiment is demonstrated, and description is abbreviate | omitted suitably about the point which is common in 3rd Embodiment. In the present embodiment, part of the processing executed by the control module 100 is different from that of the third embodiment, and the other points are the same as those of the third embodiment. A specific aspect of the superheat degree adjustment control in the present embodiment will be described with reference to FIG.
 図14に示される一連の処理は、所定の制御周期が経過する毎に、制御モジュール100によって繰り返し実行される処理である。当該処理は、図12に示される一連の処理に換えて実行されるものである。図14に示される一連の処理は、図12に示される一連の処理のうち、ステップS24をステップS31に置き換えて、ステップS25をステップS32に置き換えたものとなっている。図14に示される各ステップのうち、図12に示されるステップと共通するものについては、図12と同一の符号(S21等)が付してある。 14 is a process that is repeatedly executed by the control module 100 every time a predetermined control cycle elapses. This process is executed in place of the series of processes shown in FIG. The series of processes shown in FIG. 14 is obtained by replacing step S24 with step S31 and replacing step S25 with step S32 in the series of processes shown in FIG. Of the steps shown in FIG. 14, the steps common to those shown in FIG. 12 are denoted by the same reference numerals (S <b> 21 and the like) as those in FIG.
 ステップS23に続いて実行されるステップS31では、車速センサ201で測定された車速、すなわち、車両50の走行速度が取得される。ステップS31に続くステップS32では、ステップS23で取得された過熱度と、ステップS31で取得された走行速度とに基づいて、シャッタ装置20の目標開度の算出が行われる。この目標開度は、過熱度をその目標値に近づけるために必要となるシャッタ装置20の開度のことである。目標開度の算出は制御部130によって行われる。 In step S31 executed subsequent to step S23, the vehicle speed measured by the vehicle speed sensor 201, that is, the traveling speed of the vehicle 50 is acquired. In step S32 following step S31, the target opening of the shutter device 20 is calculated based on the degree of superheat acquired in step S23 and the travel speed acquired in step S31. This target opening is the opening of the shutter device 20 that is necessary to bring the degree of superheat close to the target value. The target opening is calculated by the control unit 130.
 図15に示されるのは、図14で示される一連の処理の内容を、所謂ブロック線図として描いたものである。図15に示される各ブロックのうち、図13に示されるブロックと共通するものについては、図13と同一の符号(B1等)が付してある。以下では、図13との相違点についてのみ説明する。 FIG. 15 shows the contents of a series of processes shown in FIG. 14 as a so-called block diagram. Of the blocks shown in FIG. 15, those common to the blocks shown in FIG. 13 are denoted by the same reference numerals (B1 etc.) as those in FIG. 13. Only the differences from FIG. 13 will be described below.
 本実施形態では、図13のブロックB3が、ブロックB31に置き換えられている。ブロックB31では、ブロックB3と同様に、室外用熱交換器740を通過する空気の風量についての目標値が算出される。ただし、ブロックB31では、ブロックB4から入力される偏差に加えて、車速センサ201で測定された車速にも基づいて風量の目標値が算出される。図15では、車速センサ201で測定された車速がブロックB32として示されている。ブロックB32は、図14のステップS31に示される処理を示すもの、ということができる。 In this embodiment, the block B3 in FIG. 13 is replaced with a block B31. In the block B31, the target value for the air volume of the air passing through the outdoor heat exchanger 740 is calculated as in the block B3. However, in block B31, the target value of the air volume is calculated based on the vehicle speed measured by the vehicle speed sensor 201 in addition to the deviation input from block B4. In FIG. 15, the vehicle speed measured by the vehicle speed sensor 201 is shown as a block B32. It can be said that the block B32 indicates the processing shown in step S31 of FIG.
 ブロックB31では、ブロックB32から入力される車速、すなわち車両50の走行速度に基づいて、算出される風量の目標値が補正される。当該処理は制御部130により実行される。具体的には、車両50の走行速度が大きくなるほど、風量の目標値が小さくなるように補正される。また、車両50の走行速度が小さくなるほど、風量の目標値が大きくなるように補正される。算出された風量の目標値は、ブロックB33に入力される。 In block B31, the target value of the calculated air volume is corrected based on the vehicle speed input from block B32, that is, the traveling speed of the vehicle 50. This process is executed by the control unit 130. Specifically, the correction is made so that the target value of the air volume decreases as the traveling speed of the vehicle 50 increases. Further, the target value of the air volume is corrected so as to decrease as the traveling speed of the vehicle 50 decreases. The calculated target value of the air volume is input to the block B33.
 本実施形態では、図13のブロックB5が、ブロックB33に置き換えられている。本実施形態では、風量の実測値をフィードバックするようなループ(図13のブロックB12、ブロックB13、及びブロックB4)が存在しない。ブロックB33では、ブロックB31から入力される風量の目標値に応じて、シャッタ装置20の目標開度が算出される。つまり、本実施形態では、シャッタ装置20の目標開度がフィードフォワードにより決定される。 In this embodiment, the block B5 in FIG. 13 is replaced with a block B33. In the present embodiment, there is no loop (block B12, block B13, and block B4 in FIG. 13) that feeds back the actual measurement value of the air volume. In block B33, the target opening of the shutter device 20 is calculated according to the target value of the air volume input from block B31. That is, in this embodiment, the target opening degree of the shutter device 20 is determined by feedforward.
 ブロックB33では、入力される風量の目標値が大きくなるほど、シャッタ装置20の目標開度が大きな値(開放側の値)として算出される。また、入力される風量の目標値が小さくなるほど、シャッタ装置20の目標開度が小さな値(絞り側の値)として算出される。このような対応関係は、予めマップとして作成され、制御モジュール100の記憶装置に記憶されている。尚、ブロックB33においても、ブロックB6から入力される電動ファン40の作動状態に基づいて、算出される目標開度が補正される。具体的な補正の方法は、図13において説明したものと同じである。 In block B33, as the target value of the input air volume increases, the target opening degree of the shutter device 20 is calculated as a larger value (open side value). Further, the target opening degree of the shutter device 20 is calculated as a smaller value (a value on the aperture side) as the target value of the input air volume becomes smaller. Such a correspondence relationship is created in advance as a map and stored in the storage device of the control module 100. In the block B33 as well, the calculated target opening is corrected based on the operating state of the electric fan 40 input from the block B6. A specific correction method is the same as that described in FIG.
 以上のように、本実施形態における制御部130では、車両50の走行速度に応じてシャッタ装置20の開度を変化させる制御が行われる。具体的には、制御部130では、車両50の走行速度が大きくなるほど風量の目標値を低く設定し(ブロックB31)、これによりシャッタ装置20の開度を小さくする(ブロックB33)ような制御が行われる。また、制御部130では、車両50の走行速度が大きくなるほど風量の目標値を低く設定し(ブロックB31)、これによりシャッタ装置20の開度を小さくする(ブロックB33)ような制御が行われる。これにより、車両50の走行速度に応じてフロントグリルGRから流入する風量が変動した場合であっても、過熱度を確実に目標値に近づけることが可能となっている。 As described above, in the control unit 130 according to the present embodiment, control for changing the opening degree of the shutter device 20 according to the traveling speed of the vehicle 50 is performed. Specifically, the control unit 130 performs control such that the target value of the air volume is set lower as the traveling speed of the vehicle 50 increases (block B31), thereby reducing the opening of the shutter device 20 (block B33). Done. Further, the control unit 130 performs control such that the target value of the air volume is set lower as the traveling speed of the vehicle 50 increases (block B31), thereby reducing the opening of the shutter device 20 (block B33). Thereby, even when the air volume flowing from the front grill GR varies according to the traveling speed of the vehicle 50, the degree of superheat can be reliably brought close to the target value.
 以上の説明においては、過熱度調整制御においてその動作が制御される空気制御装置として、シャッタ装置20が用いられる場合の例について説明した。このような態様に替えて、過熱度調整制御における制御対象として電動ファン40が用いられるような態様であってもよい。この場合、過熱度を小さくする必要が有るときは、電動ファン40の回転数を減少させる制御が行われることとなる。逆に、過熱度を大きくする必要が有るときは、電動ファン40の回転数を増加させる制御が行われることとなる。 In the above description, an example in which the shutter device 20 is used as an air control device whose operation is controlled in the superheat degree adjustment control has been described. It may replace with such an aspect and the aspect that the electric fan 40 is used as a control object in superheat degree adjustment control may be sufficient. In this case, when it is necessary to reduce the degree of superheat, control for reducing the rotational speed of the electric fan 40 is performed. On the contrary, when it is necessary to increase the degree of superheat, control for increasing the rotational speed of the electric fan 40 is performed.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

Claims (9)

  1.  車両(50)に設けられる熱交換ユニット(10)の制御を行う制御モジュール(100)であって、
     前記熱交換ユニットは、
     空調用の冷媒と空気との熱交換を行うことにより、内部で冷媒を蒸発させる熱交換器(740)と、
     前記車両のフロントグリル(GR)から流入し前記熱交換器を通過する空気、の流量を調整する空気制御装置(20)と、を備えるものであり、
     前記空気制御装置の動作を制御する制御部(130)と、
     前記熱交換器から排出される冷媒の過熱度を取得する取得部(125)と、を備え、
     前記制御部は、前記取得部で取得される前記過熱度に基づいて前記空気制御装置の動作を制御する制御モジュール。
    A control module (100) for controlling a heat exchange unit (10) provided in a vehicle (50),
    The heat exchange unit is
    A heat exchanger (740) for evaporating the refrigerant inside by performing heat exchange between the air-conditioning refrigerant and air;
    An air control device (20) for adjusting a flow rate of air flowing in from the front grill (GR) of the vehicle and passing through the heat exchanger,
    A control unit (130) for controlling the operation of the air control device;
    An acquisition unit (125) for acquiring the degree of superheat of the refrigerant discharged from the heat exchanger,
    The said control part is a control module which controls operation | movement of the said air control apparatus based on the said superheat degree acquired by the said acquisition part.
  2.  前記制御部は、
     前記取得部で取得される前記過熱度が目標値に一致するように前記空気制御装置の動作を制御する、請求項1に記載の制御モジュール。
    The controller is
    The control module according to claim 1, wherein operation of the air control device is controlled so that the degree of superheat acquired by the acquisition unit matches a target value.
  3.  前記制御部は、
     前記空気制御装置の動作を制御する第1制御と、
     前記熱交換器を通る冷媒の流れを調整するための装置である冷媒制御装置(730)、の動作を制御する第2制御と、を行うことにより、
     前記取得部で取得される前記過熱度を前記目標値に一致させる、請求項2に記載の制御モジュール。
    The controller is
    A first control for controlling the operation of the air control device;
    By performing a second control for controlling the operation of the refrigerant control device (730), which is a device for adjusting the flow of the refrigerant passing through the heat exchanger,
    The control module according to claim 2, wherein the degree of superheat acquired by the acquisition unit matches the target value.
  4.  前記制御部は、
     前記取得部で取得される前記過熱度と前記目標値との差、の絶対値である偏差量を算出し、
     前記偏差量が所定値よりも大きいときには前記第1制御を行い、
     前記偏差量が前記所定値よりも小さいときには前記第2制御を行う、請求項3に記載の制御モジュール。
    The controller is
    Calculating a deviation amount that is an absolute value of a difference between the degree of superheat and the target value acquired by the acquisition unit;
    When the deviation amount is larger than a predetermined value, the first control is performed,
    The control module according to claim 3, wherein the second control is performed when the deviation amount is smaller than the predetermined value.
  5.  前記空気制御装置は、その開度を変化させることによって通過する空気の流量を調整するシャッタ装置である、請求項1乃至4のいずれか1項に記載の制御モジュール。 The control module according to any one of claims 1 to 4, wherein the air control device is a shutter device that adjusts a flow rate of air passing therethrough by changing an opening degree thereof.
  6.  前記制御部は、
     前記熱交換器に空気を送り込む電動ファン(40)の回転数に応じて、前記シャッタ装置の開度を変化させる、請求項5に記載の制御モジュール。
    The controller is
    The control module according to claim 5, wherein the opening degree of the shutter device is changed according to the number of rotations of the electric fan (40) that feeds air into the heat exchanger.
  7.  前記制御部は、前記回転数が大きくなるほど前記シャッタ装置の開度を小さくする、請求項6に記載の制御モジュール。 The control module according to claim 6, wherein the control unit decreases the opening degree of the shutter device as the rotation speed increases.
  8.  前記制御部は、
     前記車両の走行速度に応じて前記シャッタ装置の開度を変化させる、請求項5に記載の制御モジュール。
    The controller is
    The control module according to claim 5, wherein the opening degree of the shutter device is changed according to a traveling speed of the vehicle.
  9.  前記制御部は、
     前記車両の走行速度が大きくなるほど前記シャッタ装置の開度を小さくする、請求項8に記載の制御モジュール。
    The controller is
    The control module according to claim 8, wherein the opening degree of the shutter device is decreased as the traveling speed of the vehicle increases.
PCT/JP2017/040447 2016-12-26 2017-11-09 Control module WO2018123289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017006541.0T DE112017006541T5 (en) 2016-12-26 2017-11-09 control module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-250930 2016-12-26
JP2016250930A JP6673187B2 (en) 2016-12-26 2016-12-26 Control module

Publications (1)

Publication Number Publication Date
WO2018123289A1 true WO2018123289A1 (en) 2018-07-05

Family

ID=62707984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040447 WO2018123289A1 (en) 2016-12-26 2017-11-09 Control module

Country Status (3)

Country Link
JP (1) JP6673187B2 (en)
DE (1) DE112017006541T5 (en)
WO (1) WO2018123289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113858910A (en) * 2021-08-26 2021-12-31 智马达汽车有限公司 Method and system for controlling opening of electronic expansion valve of battery plate type heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393289B2 (en) 2020-04-13 2023-12-06 株式会社Subaru vehicle
CN114454687A (en) * 2022-02-08 2022-05-10 浙江吉利控股集团有限公司 Air electric heater protection method, device, equipment and storage medium
WO2024009860A1 (en) * 2022-07-05 2024-01-11 株式会社デンソー Refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168915U (en) * 1986-03-25 1987-10-27
JP2003182349A (en) * 2001-12-14 2003-07-03 Denso Corp Refrigeration cycle device
JP2004150277A (en) * 2002-10-28 2004-05-27 Calsonic Kansei Corp Ventilator for heat exchanger for vehicle, and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302721A (en) 2007-06-05 2008-12-18 Calsonic Kansei Corp Vehicular air-conditioning control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168915U (en) * 1986-03-25 1987-10-27
JP2003182349A (en) * 2001-12-14 2003-07-03 Denso Corp Refrigeration cycle device
JP2004150277A (en) * 2002-10-28 2004-05-27 Calsonic Kansei Corp Ventilator for heat exchanger for vehicle, and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113858910A (en) * 2021-08-26 2021-12-31 智马达汽车有限公司 Method and system for controlling opening of electronic expansion valve of battery plate type heat exchanger
CN113858910B (en) * 2021-08-26 2023-08-29 浙江智马达智能科技有限公司 Electronic expansion valve opening control method and system for battery plate type heat exchanger

Also Published As

Publication number Publication date
JP6673187B2 (en) 2020-03-25
DE112017006541T5 (en) 2019-09-26
JP2018103717A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US11413931B2 (en) Vehicle-mounted temperature controller
US11364767B2 (en) Vehicle-mounted temperature controller
US10837348B2 (en) Thermal management device for vehicle
WO2018123289A1 (en) Control module
EP2634021B1 (en) Heat pump system for vehicle and method of controlling the same
WO2013175863A1 (en) Heat pump air-conditioning system for vehicle
EP3534090B1 (en) Heat pump cycle apparatus
JP2019119437A (en) Vehicular cooling system
US10611212B2 (en) Air conditioner for vehicle
JP2018109397A (en) Control module
US9522589B2 (en) Vehicular heat pump system and control method
CN110398082B (en) Thermal management system and control method thereof
JP2017013561A (en) Heat pump system for vehicle
JP6583217B2 (en) Control module
WO2017135223A1 (en) Vehicle air conditioning device, vehicle provided with same, and method for controlling vehicle grill device
CN110398043B (en) Thermal management system and control method thereof
JP2017137012A (en) Vehicular air conditioner, vehicle including the same and control method for vehicular air conditioner
JP7233953B2 (en) Vehicle air conditioner
JP2011230659A (en) Air conditioning system for vehicle and control method of the same
US20230070430A1 (en) Refrigerant circuit system and control method therefor
WO2018123325A1 (en) Control module
WO2023140210A1 (en) Vehicle air-conditioning device
US11325446B2 (en) Method for operating a refrigeration system for a vehicle and a corresponding refrigeration system
US20220097476A1 (en) Control device and control method
JP2014204576A (en) Cooling system of electrical apparatus for driving vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886062

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17886062

Country of ref document: EP

Kind code of ref document: A1