WO2019058465A1 - 車両制御装置、車両および車両制御方法 - Google Patents
車両制御装置、車両および車両制御方法 Download PDFInfo
- Publication number
- WO2019058465A1 WO2019058465A1 PCT/JP2017/033959 JP2017033959W WO2019058465A1 WO 2019058465 A1 WO2019058465 A1 WO 2019058465A1 JP 2017033959 W JP2017033959 W JP 2017033959W WO 2019058465 A1 WO2019058465 A1 WO 2019058465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- distance
- target
- setting
- respect
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 31
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 230000003068 static effect Effects 0.000 claims description 106
- 230000008569 process Effects 0.000 claims description 23
- 238000004891 communication Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000010365 information processing Effects 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
- B60W30/162—Speed limiting therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00274—Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a vehicle control device, a vehicle, and a vehicle control method.
- Patent Document 1 discloses a configuration of an operation input unit for the driver to set an arbitrary inter-vehicle distance in inter-vehicle distance control. According to the configuration of Patent Document 1, it is possible for the driver to arbitrarily set the inter-vehicle distance in the vertical direction along the traveling direction as the relative positional relationship between the own vehicle and the other vehicle traveling forward.
- the distance (offset amount) in the lateral direction intersecting the traveling direction of the vehicle is adjusted to the setting of the driver as the relative positional relationship with respect to the target existing around the own vehicle. Cases can occur that can not be controlled.
- the object of the present invention is to control the distance in the lateral direction intersecting the traveling direction of the vehicle according to the setting of the driver as the relative positional relationship to the target existing around the vehicle Vehicle control technology that can be
- a vehicle control device is a vehicle control device that controls the traveling of a vehicle, and a lateral distance intersecting a traveling direction of the vehicle with respect to a target that may exist around the vehicle.
- the present invention it is possible to control the lateral distance intersecting with the traveling direction of the vehicle according to the setting of the driver as the relative positional relationship with respect to the target existing around the vehicle .
- FIG. 7 is a diagram showing an example of setting an offset amount according to the hands-on state or the hands-off state.
- the figure which illustrates the offset control which makes a vehicle move sideways.
- FIG. 1A is a diagram illustrating a basic configuration of a vehicle control device 100 that performs automatic driving control of a vehicle, and the vehicle control device 100 operates a sensor S, a camera CAM, a computer COM, a display device DISP, and a display device DISP. And an operation unit UI.
- the sensor S includes, for example, a radar S1, a rider S2, a gyro sensor S3, a GPS sensor S4, a vehicle speed sensor S5, and the like.
- the computer COM includes a CPU (C1) that performs processing related to automatic driving control of the vehicle, a memory C2, an interface (I / F) C3 with an external device, and the like.
- the sensor S and the camera CAM acquire various information of the vehicle and input them to the computer COM.
- a vehicle on which the computer COM is mounted is also referred to as a host vehicle in the following description, and a two- or four-wheeled vehicle such as a bicycle or a motorcycle existing around the host vehicle is also referred to as another vehicle.
- four types of vehicles include, for example, light vehicles, ordinary vehicles, and large vehicles such as buses and trucks.
- the computer COM performs image processing on the information input from the sensor S (the radar S1, the rider S2) and the camera CAM, and extracts targets (objects) present around the host vehicle.
- Targets include, for example, static targets that do not move with the passage of time (for example, white lines on roads, lanes, road widths, pylons, traffic lights, utility poles supporting traffic lights, curbs, road structures such as signs and guard rails, etc. Stationary objects) and dynamic targets (for example, other vehicles (two or four wheels such as bicycles and bikes) and pedestrians, moving objects such as falling objects on the road) that move with the passage of time .
- the computer COM extracts targets from the image acquired by the sensor S (the radar S1, the lidar S2) and the camera CAM, and analyzes what targets are arranged around the host vehicle. For example, in the same lane in which the vehicle travels, information of other vehicles traveling in front of and behind the vehicle, and in an adjacent lane in which the vehicle travels, information of other vehicles traveling parallel to the vehicle It is possible to get
- the gyro sensor S3 detects rotational motion and posture of the host vehicle.
- the computer COM can determine the course of the host vehicle based on the detection result of the gyro sensor S3, the vehicle speed detected by the vehicle speed sensor S5, and the like.
- the GPS sensor S4 detects the current position (position information) of the vehicle in the map information.
- the interface (I / F) C3 functions as a communication device, performs wireless communication with a server providing map information and traffic information, and acquires these information.
- the computer COM can store the acquired information in the memory C2 functioning as a storage device, access the database of map information and traffic information constructed in the memory C2, and perform route search from the current location to a destination, etc. It is.
- the display device DISP displays, as a relative positional relationship with respect to a target present around the host vehicle, information for setting a lateral distance intersecting the traveling direction of the vehicle 1.
- the operation unit UI functions as a user interface, and receives an operation input of a driver regarding setting of a distance in the lateral direction with respect to a target existing around the host vehicle.
- the display device DISP can be configured as a touch panel to integrally configure the display device DISP and the operation unit UI.
- the operation unit UI can be configured as an input device such as a switch or a button, and an operation from the operation unit UI can be input to the computer COM.
- the computer COM controls, based on the operation input of the operation unit UI, the distance in the lateral direction intersecting the traveling direction with respect to the target existing around the host vehicle in accordance with the setting of the driver.
- the computer COM may be disposed, for example, in an ECU of a recognition processing system that processes information of the sensor S or camera CAM or an ECU of an image processing system.
- the control unit may be disposed in the ECU that controls the input / output device, or may be disposed in the ECU in the control unit that performs drive control of the vehicle, or in the ECU for automatic driving.
- functions for plural ECUs constituting the vehicle control device 100 such as an ECU for a sensor S, an ECU for a camera, an ECU for an input / output device, and an ECU for automatic driving. May be dispersed.
- FIG. 1B is a diagram showing a configuration example of a control block diagram of a vehicle control device 100 for controlling the vehicle 1.
- the vehicle 1 is schematically shown in plan and side views.
- the vehicle 1 is a sedan-type four-wheeled passenger car as an example.
- the control unit 2 of FIG. 1B controls each part of the vehicle 1.
- the control unit 2 includes a plurality of ECUs 20 to 29 communicably connected by an in-vehicle network.
- Each ECU (Engine Control Unit) includes a processor represented by a CPU (Central Processing Unit), a storage device such as a semiconductor memory, an interface with an external device, and the like.
- the storage device stores programs executed by the processor, data used by the processor for processing, and the like.
- Each ECU may include a plurality of processors, storage devices, interfaces, and the like.
- each of the ECUs 20 to 29 takes charge of will be described below.
- the number of ECUs and the functions to be in charge can be appropriately designed for the vehicle 1, and can be subdivided or integrated as compared with the present embodiment.
- the ECU 20 executes vehicle control related to automatic driving of the vehicle 1 (own vehicle) according to the present embodiment.
- automatic driving at least one of steering of the vehicle 1 and acceleration / deceleration is automatically controlled.
- operation is demonstrated in detail later.
- the ECU 21 controls the electric power steering device 3.
- the electric power steering apparatus 3 includes a mechanism for steering the front wheels in response to a driver's driving operation (steering operation) on the steering wheel 31. Further, the electric power steering device 3 includes a motor for assisting a steering operation or a driving force for automatically steering the front wheels, a sensor for detecting a steering angle, and the like.
- the ECU 21 automatically controls the electric power steering device 3 in response to an instruction from the ECU 20 to control the traveling direction of the vehicle 1.
- the ECUs 22 and 23 perform control of detection units 41 to 43 for detecting the surrounding situation of the vehicle and perform information processing of detection results.
- the detection unit 41 is, for example, a camera for photographing the front of the vehicle 1 (hereinafter, may be referred to as a camera 41), and in the case of the present embodiment, two are provided on the roof front of the vehicle 1 .
- analysis (image processing) of the image captured by the camera 41 it is possible to extract the outline of the target and extract the dividing line (white line etc.) of the lane on the road.
- the detection unit 42 (lider detection unit) is, for example, a rider (Light Detection and Ranging (LIDAR)) (hereinafter may be referred to as a rider 42), and detects a target around the vehicle 1 by light. , To measure the distance to the target.
- LIDAR Light Detection and Ranging
- a rider 42 detects a target around the vehicle 1 by light.
- a plurality of riders 42 are provided around the vehicle.
- five lidars 42 are provided, one at each of the front corners of the vehicle 1, one at the center of the rear, and one at each of the rear sides. ing.
- the detection unit 43 (a radar detection unit) is, for example, a millimeter wave radar (hereinafter, may be referred to as a radar 43), detects a target around the vehicle 1 by radio waves, or detects a distance to the target Measure distance.
- a plurality of radars 43 are provided around the vehicle. In the example shown in FIG. 1B, for example, five radars 43 are provided, one at the center of the front of the vehicle 1, one at each of the front corners, and one at each of the rear corners. ing.
- the ECU 22 performs control of one camera 41 and each lidar 42 and information processing of detection results.
- the ECU 23 controls the other camera 41 and each radar 43 and performs information processing of detection results.
- the reliability of the detection results can be improved by providing two sets of devices for detecting the surrounding environment of the vehicle, and by providing different types of detection units such as cameras, lidars and radars, analysis of the environment around the vehicle Can be done in many ways.
- the ECU 22 and the ECU 23 may be integrated into one ECU.
- the ECU 24 controls the gyro sensor 5, the GPS sensor 24b, and the communication device 24c, and performs information processing of a detection result or a communication result.
- the gyro sensor 5 detects the rotational movement of the vehicle 1.
- the course of the vehicle 1 can be determined from the detection result of the gyro sensor 5, the wheel speed, and the like.
- the GPS sensor 24 b detects the current position of the vehicle 1.
- the communication device 24 c performs wireless communication with a server that provides map information and traffic information, and acquires such information.
- the ECU 24 can access a database 24a of map information built in a storage device, and the ECU 24 performs a route search from a current location to a destination.
- the database 24a can be arranged on the network, and the communication device 24c can access the database 24a on the network to obtain information.
- the ECU 25 includes a communication device 25a for inter-vehicle communication.
- the communication device 25a performs wireless communication with other vehicles in the vicinity to exchange information between the vehicles.
- the ECU 26 controls the power plant 6.
- the power plant 6 is a mechanism that outputs a driving force for rotating the drive wheels of the vehicle 1 and includes, for example, an engine and a transmission.
- the ECU 26 controls, for example, the output of the engine in response to the driver's driving operation (acceleration operation or acceleration operation) detected by the operation detection sensor 7a provided on the accelerator pedal 7A, the vehicle speed detected by the vehicle speed sensor 7c, etc.
- the gear position of the transmission is switched based on the information of.
- the ECU 26 automatically controls the power plant 6 in response to an instruction from the ECU 20 to control acceleration / deceleration of the vehicle 1.
- the ECU 27 controls a lamp (headlight, taillight, etc.) including the direction indicator 8.
- the direction indicator 8 is provided at the front, the door mirror and the rear of the vehicle 1.
- the ECU 28 controls the input / output device 9.
- the input / output device 9 outputs information to the driver and accepts input of information from the driver.
- the voice output device 91 reports information to the driver by voice.
- the display device 92 notifies the driver of the information by displaying an image.
- the display device 92 is disposed, for example, on the surface of the driver's seat, and constitutes an instrument panel or the like.
- voice and a display were illustrated here, you may alert
- the input device 93 is arranged at a position where the driver can operate, and is a group of switches for giving an instruction to the vehicle 1. However, a voice input device may also be included.
- the display device 92 corresponds to, for example, the display device DISP of FIG. 1A described above, and the input device 93 corresponds to the configuration of the operation unit UI of FIG. 1A.
- the ECU 29 controls the brake device 10 and a parking brake (not shown).
- the brake device 10 is, for example, a disc brake device, and is provided on each wheel of the vehicle 1 and decelerates or stops the vehicle 1 by adding resistance to the rotation of the wheel.
- the ECU 29 controls the operation of the brake device 10 in response to the driver's driving operation (brake operation) detected by the operation detection sensor 7b provided on the brake pedal 7B, for example.
- the ECU 29 automatically controls the brake device 10 in response to an instruction from the ECU 20 to control the deceleration and stop of the vehicle 1.
- the brake device 10 and the parking brake can also be operated to maintain the vehicle 1 in the stopped state.
- the transmission of the power plant 6 is provided with a parking lock mechanism, it can be operated to maintain the vehicle 1 in the stopped state.
- the ECU 22 shown in FIG. 1B performs information processing on the detection results of one camera 41 and each lidar 42, and the ECU 23 detects the detection results of the other camera 41 and each radar 43.
- the ECU 20 can acquire information of a target (for example, another vehicle, a guardrail, etc.) located around the vehicle 1 (own vehicle) according to the result of the information processing of the ECU 22 and the ECU 23.
- a target for example, another vehicle, a guardrail, etc.
- the ECU 23 For example, in the adjacent lane where the host vehicle travels, it is possible to obtain information on the position, relative distance (interval), speed, etc. of another vehicle traveling parallel to the host vehicle.
- the ECU 28 that controls the display device 92 and the input device 93 functions as a display control unit, and displays information based on the display of information for setting the distance in the lateral direction crossing the traveling direction of the vehicle and the operation input. Do the processing.
- the ECU 20 which executes vehicle control related to automatic driving, sets a lateral distance intersecting the traveling direction to a target existing around the vehicle 1, based on the set lateral distance, to the driver. Control according to your settings.
- the ECU 20 controls the distance to the dynamic target (for example, a guardrail or the like) while controlling the distance to the dynamic target (for example, the side distance to another vehicle traveling in parallel) based on the set value set by the driver.
- the distance to the structure is controlled based on the set value set by the driver. That is, the ECU 20 controls, based on the setting of the driver, how far apart or how close the various targets existing around the vehicle 1 are allowed to be.
- the lateral distance can be set by a plurality of levels or a plurality of continuously changing levels.
- FIG. 2A is a diagram showing an example of setting of the distance in the lateral direction according to the type of target, and FIG. 2A shows an example of setting in which the distance in the lateral direction is divided into three stages (large, medium, small).
- a dynamic target is a target that moves with the passage of time, and includes, for example, moving objects such as bicycles and motorcycles, such as two or four wheels, pedestrians, falling objects on the road, and the like. It is also possible to further subdivide four wheels into vehicle types, for example, light vehicles, ordinary vehicles, and large vehicles such as buses and trucks.
- a static target is a target that does not move with the passage of time, and is stationary on white roads, lanes, road widths, pylons, traffic lights, utility poles supporting traffic lights, curbs, road structures such as signs and guard rails, etc. Object is included.
- the distance of LD1 is set as the distance (large) to the dynamic target
- the distance of LD2 is set as the distance (middle)
- the distance of LD3 is as the distance (small).
- the distance is set.
- the magnitude relationship of the setting values is LD1> LD2> LD3.
- the distance LS1 is set as the distance (large)
- the distance LS2 is set as the distance (middle)
- the distance LS3 is as the distance (small). It is set.
- the magnitude relationship of the setting values is LS1> LS2> LS3.
- the set value LS1 of the distance (large) of the static target is set to a smaller value than the set value LD3 of the distance (small) of the dynamic target. That is, the magnitude relationship is LS1 ⁇ LD3.
- each target can be further subdivided to set the setting value.
- vehicle types for example, light vehicles, ordinary vehicles, and large vehicles such as buses and trucks. is there.
- subdivide static targets into those with height and those without height.
- FIG. 2A shows an example of setting the distance in the lateral direction corresponding to the type of target, but in addition to this, when there are a plurality of drivers who can drive the vehicle 1, identification information for each driver May be set, and setting values may be held for each driver. Furthermore, it is possible to hold the set value according to the road type such as an expressway or a general road, or the speed range of the vehicle 1, and switch the set value according to the traveling condition of the vehicle 1 or the driver driving. is there.
- the ECU 20 accumulates data on how far away from the target the vehicle travels during manual operation by the driver, and performs learning based on the accumulation result, and based on the learning result, the dynamic target and the static
- the distance to the target may be set. This makes it possible to travel that reflects the distance setting adapted to the driving feeling of the driver in the automatic driving.
- FIG. 3 exemplarily illustrates offset control for laterally moving the vehicle.
- 3a of FIG. 3 is a view for explaining control of the offset amount when the driver sets the distance (large) in FIG. 2A as an example
- 3b of FIG. 3 is a diagram of FIG. 3 c exemplarily illustrates control of the offset amount in the case of setting d)
- 3 c of FIG. 3 exemplarily illustrates control of the offset amount in the case of setting the distance (small) by the driver. .
- the lane 201 is, for example, a target (static target 203) corresponding to a white line or a guardrail, which is a static target, and a lane 202 adjacent to the lane 201. It is separated by a dividing line 205 (white line) indicating a lane boundary.
- the lane 202 adjacent to the lane 201 is divided by a dividing line 205 (white line) and a target 204 corresponding to a white line or a guardrail.
- Vehicle 1 (self-vehicle) shown by a broken line shows a state of traveling along a lane center 208 shown by one-dot chain line
- vehicle 1 (self-vehicle) shown by a solid line is performing offset control Is shown.
- a solid line 207 indicates the movement locus of the vehicle 1 (own vehicle) in the offset control.
- the other vehicle 206 is traveling in the lane 202 adjacent to the lane 201 as a dynamic target existing around the vehicle 1 (the host vehicle) indicated by a solid line.
- An ellipse 209 indicated by a broken line schematically indicates the size of the distance (LD1 to LD3) secured between the vehicle 1 and the other vehicle 206 in the offset control.
- the static target 203 is secured while securing the LD 1 as the distance between the vehicle 1 (own vehicle) and the other vehicle 206 running parallel. It is possible to approach up to LS1.
- the static target 203 is secured while securing the LD 2 as the distance between the vehicle 1 (the own vehicle) and the other vehicle 206 running parallel. It is possible to approach to LS2 on the other hand.
- the road width is set, for example, where the traveling lane is 3.5 m and the overtaking lane is 3.75 m on expressways, and the road width is set in the range of 3.25 to 3.75 m. In some places, the average is about 3.5m. In addition, in the general road, it is set in the range of 2.75 m to 3.5 m.
- the vehicle width is, for example, about 2.1 m for a large one and about 1.9 m for a large sedan.
- offset control can be performed without departing from the lane outside the road. If the vehicle has the same lane width and vehicle width, when the respective vehicles travel at the center of the lane, they travel in parallel at an interval of 1.6 m.
- the static object is secured while securing the LD 1 as the distance between the vehicle 1 (own vehicle) and the other vehicle 206 running parallel. It is possible to approach the mark 203 up to LS1.
- the movement locus of the solid line 207 coincides with the lane center 208, and the vehicle 1 runs parallel even if the offset control is performed.
- the relative positional relationship with the vehicle 206 is movable along the lane center 208.
- the ECU 20 can control the vehicle against the approach of the dynamic target that makes it easy for the driver to feel fear. Offset control is performed to largely avoid 1. Since the ECU 20 performs the offset control based on the setting value of the driver, the automatic driving can be performed in accordance with the driving sense of the driver.
- FIG. 4 and 5 are diagrams illustrating screen displays of the display device 92.
- FIG. 4a of FIG. 4 a slider SLD is displayed on the screen of the display device 92 so that the volume can be adjusted steplessly. By moving the slider SLD on the screen, a horizontal direction can be obtained. It is possible to set the distance (offset amount).
- the driver selects the detail customization button CS1
- the screen display is switched under the display control of the ECU 28, and a detail customization screen for distance setting as shown in 4b of FIG. 4 is displayed.
- a slider SLD that can perform volume adjustment in a stepless manner is displayed in order to perform the distance setting regarding the dynamic target and the static target.
- the dynamic target when the slider SLD is moved to "large”, the value of the distance LD1 (large) shown in FIG. 2A is set, and when the slider SLD is moved to "small", The value of the distance LD3 (small) shown in FIG. 2A is set.
- the ECU 28 interpolates a value obtained by interpolating the values of the distance LD1 (large) and the distance LD3 (small). Calculate and set as the value of LD2 (middle). The same is true for static targets.
- the screen display switches under the display control of the ECU 28, and the detail of the dynamic target as shown in 5a of FIG.
- the customization screen is displayed.
- the screen display is switched under the display control of the ECU 28, and the detailed customization screen of the static target as shown in FIG. 5b is displayed.
- the dynamic target is divided into, for example, pedestrians, bicycles, bikes and four-wheeled vehicles, and different distances are set.
- a slider SLD is displayed so that the volume adjustment can be performed steplessly for each of the subdivided items.
- the value of the distance LD1 (large) shown in FIG. 2A is set as the lateral distance (offset amount) with respect to the pedestrian.
- the value of the distance LD3 (small) shown in FIG. 2A is set as the lateral distance (offset amount).
- the ECU 28 interpolates a value obtained by interpolating the values of the distance LD1 (large) and the distance LD3 (small). Calculate and set as the value of LD2 (middle).
- the setting for a bicycle, a motorcycle or a four-wheeled vehicle in a dynamic target is the same.
- a four-wheel vehicle may be further displayed with a detailed customization screen in which the size is classified according to the size of the vehicle (for example, a light vehicle, an ordinary vehicle, or a large vehicle such as a bus or a truck).
- the distance to the bicycle is set smaller than the distance to the pedestrian
- the distance to the bike is set smaller than the distance to the bicycle
- the distance to the four-wheel vehicle It is set smaller than the distance to the bike.
- the static target has a height relative to the road on which the vehicle travels, and a height relative to the road Set different distances by dividing into static targets without Divide static targets into, for example, those with height such as pylons, traffic lights, utility poles supporting traffic lights, curbs, road structures such as signs and guard rails, or those without height such as white lines on roads , Set different distances.
- a slider SLD is displayed so that the volume adjustment can be performed steplessly for each of the subdivided items.
- the value of the distance LS1 (large) shown in FIG. 2A is obtained for the static target with a height.
- the value of the distance LS3 (small) shown in FIG. 2A is set.
- the ECU 28 interpolates a value obtained by interpolating the values of the distance LS1 (large) and the distance LS3 (small). Calculate and set as LS2 (middle) value.
- the setting of the distance in the static target without height is the same.
- the distance to the static target having no height with respect to the road on which the vehicle travels, and the distance with respect to the static target having the height with respect to the road It is set smaller.
- FIG. 6 is a diagram for explaining the flow of offset control according to the present embodiment.
- the driver sets a lateral distance (offset amount).
- the horizontal distance (offset amount) intersecting with the traveling direction of the vehicle 1 is a dynamic object by adjusting the slider SLD on the screen display of the display device 92 as described in FIGS. 4 and 5. It is settable for the target and the static target.
- the ECU 28 and the display device 92 set the lateral distance (offset amount) intersecting the traveling direction of the vehicle with respect to the target that may exist around the vehicle 1 based on the operation of the driver.
- step S11 while the vehicle 1 is traveling, a target present around the vehicle 1 is detected.
- the ECU 22 performs information processing on detection results of one camera 41 and each lidar 42
- the ECU 23 performs information processing on detection results of the other camera 41 and each radar 43
- step S12 the ECU 20 acquires information of a target located around the vehicle 1 (own vehicle) based on the result of the information processing of the ECU 22 and the ECU 23.
- the ECU 20 controls the other vehicle 206 running parallel to the vehicle 1 (own vehicle) in the adjacent lane to the lane (for example, 201 of 3a to 3c in FIG. 3) in which the vehicle 1 (own vehicle) travels.
- the ECU 20 also provides information on the position, relative distance (interval), etc. of a static target (for example, 203 of 3a to 3c in FIG. 3) such as a guardrail that exists on the side of the vehicle 1 (own vehicle). get.
- the ECU 20 acquires the lateral distance to the detected target (dynamic target, static target).
- step S13 the ECU 20 compares the setting value of the distance to the dynamic target (the distance setting value of the dynamic target) and the distance (lateral distance) to the detected dynamic target. If the distance to the detected dynamic target (the distance in the lateral direction) is equal to or larger than the set value of the distance (S13-No), the ECU 20 does not perform the offset control, and ends this processing.
- step S13 the distance (lateral distance) to the detected dynamic target is smaller than the set value of the distance to the dynamic target in the comparison process of step S13, that is, the parallel running dynamic If the target falls below the set value of the distance to the dynamic target and approaches the vehicle 1 (the host vehicle) (S13-Yes), the ECU 20 advances the process to step S14.
- the ECU 20 sets the distance in the lateral direction to each of the plurality of detected targets and the target And performing offset control to move the vehicle laterally based on the comparison with the determined lateral distance.
- the description in the following step S14 exemplarily illustrates processing of a dynamic target and a static target as a plurality of targets
- the dynamic targets may be one another or a static object.
- the marks may be one another.
- step S14 the ECU 20 moves the vehicle 1 (the vehicle) sideways (offset movement) to secure the set value of the distance with respect to the dynamic target, the vehicle 1 (the vehicle) and the static It is determined whether the lateral distance to the target is less than the set value of the distance to the static target.
- the vehicle 1 (self-vehicle) does not fall below the set value of the distance to the static target even when it moves laterally (offset movement) (S14-No), that is, moves the vehicle 1 (vehicle itself) laterally (offset movement) Even if the vehicle 1 (the subject vehicle) is separated from the static target by the distance setting value or more, the ECU 20 advances the process to step S18.
- step S18 the ECU 20 performs offset control to secure the set value of the distance to the dynamic target, and ends the present process.
- step S15 when the vehicle 1 (vehicle) is moved laterally (offset movement) in order to secure the set value of the distance with respect to the dynamic target in the determination of step S14, the vehicle 1 (vehicle) is When approaching the set value of the distance to the static target (S14-Yes), the ECU 20 advances the process to step S15.
- step S15 the ECU 20 performs deceleration control of the vehicle 1.
- decelerating the speed of the traveling vehicle 1 it is possible to wait in the decelerating state for the other vehicle 206 to move, and change the positional relationship with the other vehicle 206 traveling in parallel.
- step S16 the ECU 20 determines whether the set value of the distance can be secured for each of the dynamic target and the static target. That is, in a state where the ECU 20 performs deceleration control, the lateral distance (detected lateral distance) to each of the dynamic target and the static target is set to the lateral distance (set distance) ) Or not. The lateral distance (detected lateral distance) to each of the dynamic target and the static target is equal to or more than the set lateral distance (set distance), and the dynamic target and the static object If the set value of the distance can be secured for each of the markers (S16-Yes), the ECU 20 advances the process to step S17. Then, in step S17, the ECU 20 performs offset control, and ends the present process.
- step S16 the ECU 20 sets the detected lateral distance (detected lateral distance) for at least one of the dynamic target and the static target in the lateral direction.
- the distance is less than the set distance (set distance)
- set distance that is, it is determined that the set value of the distance can not be secured for at least one of the dynamic target and the static target (S16-No)
- the ECU 20 advances the process to step S19.
- step S19 the ECU 20 causes the detected lateral distance to be less than the set lateral distance with respect to at least one of the dynamic target and the static target in a state where deceleration control is performed.
- the horizontal distance set for the static target is temporarily changed to be smaller, and the process proceeds to step S20.
- the set values of the distance to the static target include, for example, the set value LS1 of the distance (large) shown in FIG. 2A, the set value LS2 of the distance (medium), and the set value LS3 of the distance (small).
- the set value of the distance When the set value of the distance is changed to a small value, for example, the set value may be changed to a lower limit value smaller than the range of LS1 to LS3 instead of decreasing the set value in the range of LS1 to LS3.
- the distance (LS) to the static target may be set in a range of distance (0 ⁇ LS ⁇ LS3) which is larger than zero and smaller than the set value LS3 of the distance (small).
- step S20 the ECU 20 determines whether the set value of the distance can be secured for each of the dynamic target and the static target. That is, the ECU 20 detects the lateral distance to each of the dynamic target and the static target in a state where the deceleration control is performed and the set distance to the static target is temporarily changed. It is determined whether or not the lateral distance) is equal to or greater than the set lateral distance (set distance). The lateral distance (detected lateral distance) to each of the dynamic target and the static target is equal to or more than the set lateral distance (set distance), and the dynamic target and the static object If the set value of the distance can be secured for each of the markers (S20-Yes), the ECU 20 advances the process to step S17. Then, in step S17, the ECU 20 performs offset control, and ends the present process.
- step S20 the ECU 20 sets the detected lateral distance (detected lateral distance) for at least one of the dynamic target and the static target in the lateral direction.
- the distance is less than the set distance (set distance)
- set distance that is, it is determined that the set value of the distance can not be secured for at least one of the dynamic target and the static target (S20-No)
- the ECU 20 returns the process to step S19, and again changes the setting value of the distance to the static target temporarily to be further smaller, and advances the process to step S20.
- step S20 the ECU 20 again performs the deceleration control on the dynamic target and the static target in a state where the set distance to the static target is further temporarily changed. It is determined whether the lateral distance (detected lateral distance) is greater than or equal to the set lateral distance (set distance).
- the lateral distance (detected lateral distance) to each of the dynamic target and the static target is equal to or more than the set lateral distance (set distance), and the dynamic target and the static object If the set value of the distance can be secured for each of the markers (S20-Yes), the ECU 20 advances the process to step S17. Then, in step S17, the ECU 20 performs offset control, and ends the present process.
- step S20 If it is determined in step S20 that the ECU 20 can not secure the set value of the distance for at least one of the dynamic target and the static target (S20-No), the ECU 20 proceeds to step S19. The same process is repeated, and when the set value of the distance can be secured for each of the dynamic target and the static target (S20-Yes), the ECU 20 advances the process to step S17. Then, in step S17, the ECU 20 performs offset control, and ends the present process.
- the set value of the distance to the static target is changed in step S19, for example, the set value LS1 of the distance (large) and the set value LS2 of the distance (medium) shown in FIG.
- the set value may be changed using a lower limit value smaller than the range of LS1 to LS3.
- the distance (LS) to the static target may be set in a range of distance (0 ⁇ LS ⁇ LS3) which is larger than zero and smaller than the set value LS3 of the distance (small).
- the vehicle control device of the present embodiment can control the automatic driving travel of the vehicle based on the set automatic driving level. For example, there are levels 1 to 4 shown below as automatic operation levels.
- the low level automatic driving level requires the driver to perform peripheral monitoring duty for the driver and the peripheral driving duty for the driver is reduced compared to the low level automatic driving level.
- the ECU 20 can change the offset amount according to the automatic driving level. For example, when the distance (small) is set as the offset amount of the dynamic target or the static target, the ECU 20 performs high-level autonomous driving as compared to the offset amount in low-level autonomous driving. It is possible to set the amount of offset at a large value. For example, it is possible to set the offset amount in automatic driving travel at level 3 larger than the offset amount in automatic driving travel at level 2.
- the change of the offset amount is not limited to this example, and the ECU 20 can set the offset amount according to the levels 1, 2, 3 and 4.
- the offset amount for the dynamic target is LD3, and the offset amount for the static target is LS3.
- the ECU 20 can set the offset amount of the distance (small) as shown in FIG. 2B according to the level 1 to 4 of the automatic operation level. That is, the ECU 20 can set LD3-1, LD3-2, LD3-3, and LD3-4 as the offset amount of the distance (small) with respect to the dynamic target according to the automatic driving level.
- the magnitude relationship of the offset amounts can be set to increase the offset amounts according to the automatic operation levels 1 to 4. That is, the ECU 20 can set LD3-1 ⁇ LD3-2 ⁇ LD3-3 ⁇ LD3-4 as the magnitude relationship of the offset amounts.
- the ECU 20 sets LS3-1, LS3-2, LS3-3, LS3-4 as an offset amount of the distance (small) to the static target according to the automatic operation level. It is possible to set The magnitude relationship of the offset amounts can be set to increase the offset amounts according to the automatic operation levels 1 to 4. That is, the ECU 20 can set LS3-1 ⁇ LS3-2 ⁇ LS3-3 ⁇ LS3-4 as the magnitude relationship of the offset amounts. The magnitude relationship may be reversed. Further, the change of the offset amount is not limited to the case of the distance (small), and the same applies to the case of the distance (large) and the distance (medium).
- the ECU 20 may change the offset amount according to the detection result of the hands-on state in which the driver is holding the steering wheel 31 or the hands-off state (hand-off state) in which the driver is not holding the steering wheel 31. It is possible.
- the ECU 21 that controls the electric power steering device 3 can determine with high accuracy whether it is in the hands-on state or the hands-off state based on the detection result of the sensor provided on the steering wheel 31.
- the sensors include capacitive sensors, resistive sensors, piezoelectric sensors, temperature sensors and the like.
- the piezoelectric sensor generates a voltage signal when compressed, and the voltage is detected by the detection circuit of the ECU 21.
- Another type of sensor relies on electrical or magnetic signals caused by contact, and the sensor signal is detected by the detection circuit of the ECU 21 corresponding to each sensor.
- the ECU 20 can change the offset amount based on the detection result of the hands-on state or the hands-off state by the ECU 21.
- the offset amount for the level 2 dynamic target is LD3-2 and the offset amount for the static target is LS3-2.
- the offset amount for the level 3 dynamic target is LD3-3
- the offset amount for the static target is LS3-3.
- the ECU 20 offsets the distance (small) based on the detection result of the hands-on state or the hands-off state as shown in FIG. It is possible to set as shown in.
- the ECU 20 sets LD3-2-ON as the offset amount of the distance (small) to the dynamic target in the level 2 hands-on state, and LS3-2 as the offset amount of the distance (small) to the static target. It is possible to set -ON. Further, the ECU 20 sets LD3-2-OFF as the offset amount of the distance (small) to the dynamic target in the level 2 hands-off state, and LS3 as the offset amount of the distance (small) to the static target It is possible to set -2-OFF.
- the magnitude relationship of the offset amount sets the offset amount (LD3-2-OFF, LS3-2-OFF) in the hands-off state larger than the offset amount in the hands-on state (LD3-2-ON, LS3-2-ON) It is possible.
- the magnitude relationship may be reversed. Further, the change of the offset amount is not limited to the case of the distance (small), and the same applies to the case of the distance (large) and the distance (medium).
- the ECU 20 sets LD3-3-ON as the offset amount of the distance (small) to the dynamic target in the hands-on state of level 3 and sets the distance (small) to the static target. It is possible to set LS3-3-ON as the offset amount. Further, the ECU 20 sets LD3-3-OFF as the offset amount of the distance (small) to the dynamic target in the level 3 hands-off state, and LS3 as the offset amount of the distance (small) to the static target It is possible to set -3-OFF.
- the magnitude relationship of the offset amount sets the offset amount in hands-off state (LD3-3- OFF, LS3-3- OFF) larger than the offset amount in hands-on state (LD3-3-ON, LS3-3-ON) It is possible. The magnitude relationship may be reversed. Further, the change of the offset amount is not limited to the case of the distance (small), and the same applies to the case of the distance (large) and the distance (medium).
- the level of automatic driving is classified into a plurality of stages according to the degree to which the control unit (for example, the ECU 20) controls the operation related to acceleration, steering, and braking of the vehicle and the degree of involvement of the vehicle operation by the driver operating the vehicle. It is done.
- the control unit for example, the ECU 20
- the degree to which the control unit controls the operation related to acceleration, steering, and braking of the vehicle and the degree of involvement of the vehicle operation by the driver operating the vehicle. It is done.
- the control unit for example, the ECU 20
- Level 1 Separatate type automatic operation
- the travel control device performs operation control of acceleration, steering, or braking of the vehicle.
- the driver's involvement is required for all operations except those for which the travel control device performs operation control, and at level 1, the driver (driver) is required to be able to drive safely at any time. It is necessary to monitor the surrounding area.
- Level 2 (Combined automatic operation) At level 2, the traveling control device performs a plurality of operation control among acceleration, steering, and braking of the vehicle. Although the degree of driver's involvement will be lower than level 1, at level 2 also, the driver (driver) is required to be able to drive safely at any time (surrogate monitoring duty is required).
- Level 3 (advancement of automatic operation) At level 3, the travel control device performs all operations related to acceleration, steering, and braking, and the driver responds to the operation of the vehicle only when the travel control device requests it. At Level 3, the driver's duty to monitor surroundings is relaxed while driving in automatic driving. At level 3, the degree of driver involvement is even lower than at level 2.
- Level 4 Full operation automation
- the travel control device performs all operations related to acceleration, steering, and braking, and the driver has no involvement in the operation of the vehicle.
- the vehicle travels automatically in all the travels, and while driving in automatic driving, the driver's duty to monitor the surroundings is eased, and the degree of driver's involvement becomes lower than that at level 3.
- the vehicle control device of the above embodiment is a vehicle control device (for example, 100) that controls the traveling of a vehicle (for example, 1), and Setting means (for example, 28, 92, 93, DISP, UI) for setting a lateral distance crossing the traveling direction of the vehicle with respect to a target that may exist around the vehicle; Detection means (for example, 22, 23, 42, 43) for detecting targets existing around the vehicle while the vehicle is traveling; Control for executing offset control to move the vehicle in the lateral direction based on comparison of the lateral distance with respect to the detected target and the lateral distance set with respect to the target And (e.g., 20, COM).
- a vehicle control device for example, 100
- Setting means for example, 28, 92, 93, DISP, UI
- Detection means for example, 22, 23, 42, 43
- Control for executing offset control to move the vehicle in the lateral direction based on comparison of the lateral distance with respect to the detected target and the lateral distance set with respect to the target And (
- the vehicle control device of Configuration 1 As the relative positional relationship with respect to the target existing around the vehicle, controlling the lateral distance intersecting with the traveling direction of the vehicle according to the setting of the driver Becomes possible. Further, according to the vehicle control device of Configuration 1, it is possible to perform automatic driving that matches the driving sense of the driver.
- the setting means (28, 92, 93, DISP, UI) moves according to the distance setting for the moving target moving according to the passage of time, and according to the passage of time It is characterized by setting the distance in the lateral direction separately from the distance setting for the static target.
- the lateral distance to the dynamic target and the static target is set separately, that is, secured in the lateral direction with the target
- the detection means (22, 23, 42, 43) detects a plurality of targets existing around the vehicle
- the control means (20, COM) is configured to compare the vehicle with the vehicle based on a comparison of the lateral distance with respect to each of the plurality of detected targets and the lateral distance set with respect to the objects. And offset control for moving the lens in the lateral direction.
- the vehicle control device of configuration 3 as the relative positional relationship with respect to the plurality of targets existing around the vehicle, the lateral distance intersecting with the traveling direction of the vehicle is controlled according to the setting of the driver It will be possible to
- the control means (20, COM) is The lateral distance between the vehicle and another target is less than the set value of the distance to the other target when the lateral distance to one of the plurality of targets is secured. To determine When the set value of the distance to the other target is less than, it is characterized in that the deceleration control of the vehicle is performed.
- the dynamic target waiting in parallel in a decelerating state It can change the positional relationship with.
- the kinetic energy of the vehicle by decelerating the vehicle, it is possible to further reduce the influence of the vehicle that may occur due to interference with the target.
- Configuration 5 The vehicle control device (100) according to the above embodiment, wherein the control means (20, COM) sets the distance between the vehicle and the other target in the lateral direction to the distance to the other target.
- the offset control is performed when not less than.
- the plurality of targets include a dynamic target that moves with the passage of time, and a static target that does not move with the passage of time.
- the control means (20, COM) When the detected lateral distance of at least one of the dynamic target and the static target is less than the set lateral distance in the state where the deceleration control is performed, The static target may be temporarily changed to reduce the set lateral distance.
- the temporary target value of the distance to the dynamic target is temporarily secured by changing the setting value of the distance to the static target temporarily.
- the setting means (for example, 28, 92, 93, DISP, UI) is for setting the distance to the dynamic target with respect to the static target.
- the distance setting is set to be small.
- the vehicle control device of configuration 7 by setting the dynamic target and the static target in accordance with the driving sense of the driver, it is possible to perform the automatic driving in accordance with the driving sense of the driver.
- the setting unit (for example, 28, 92, 93, DISP, UI) is configured to transmit the dynamic target to a pedestrian, a bicycle, a motorcycle, and a four-wheeled vehicle. Divide and set different distances, Dividing the static target into a static target having a height with respect to a road on which the vehicle travels and a static target without a height with respect to the road to set different distances. It is characterized by
- the setting means (for example, 28, 92, 93, DISP, UI) is configured to calculate a distance to the bicycle with respect to the bicycle with respect to the dynamic target. Set smaller, set the distance to the motorcycle smaller than the distance to the bicycle, and set the distance to the four-wheeled vehicle smaller than the distance to the motorcycle With respect to the static target, the distance to the static target having no height with respect to the road on which the vehicle travels is set smaller than the distance to the static target having a height with respect to the road I assume.
- the vehicle (for example, 1) of the said embodiment is characterized by having the vehicle control apparatus as described in any one of the structure 1 thru
- the vehicle control device of the vehicle sets the distance in the lateral direction intersecting the traveling direction of the vehicle as the relative positional relationship with respect to the target existing around the vehicle. It becomes possible to run controlled according to. Further, according to the vehicle of configuration 10, a vehicle capable of automatic driving in accordance with the driving sense of the driver is provided.
- the vehicle control method of the above embodiment is a vehicle control method executed by a vehicle control device that controls the traveling of the vehicle, A setting step (e.g., S10) of setting a lateral distance intersecting the traveling direction of the vehicle with respect to a target that may exist around the vehicle; Detecting a target present around the vehicle (for example, S11) while the vehicle is traveling; Control for executing offset control to move the vehicle in the lateral direction based on comparison of the lateral distance with respect to the detected target and the lateral distance set with respect to the target And (e.g., S12 to S20).
- a setting step e.g., S10
- Detecting a target present around the vehicle for example, S11
- Control for executing offset control to move the vehicle in the lateral direction based on comparison of the lateral distance with respect to the detected target and the lateral distance set with respect to the target
- And e.g., S12 to S20.
- the vehicle control method of configuration 11 as the relative positional relationship with respect to the target existing around the vehicle, controlling the lateral distance intersecting with the traveling direction of the vehicle according to the setting of the driver Becomes possible. Further, according to the vehicle control method of configuration 11, it is possible to perform the automatic driving in accordance with the driving sense of the driver.
- Vehicle own vehicle
- 20 ECU
- 100 vehicle control device
- 206 other vehicle
- 42 lidar
- 43 radar
- 92 display device
- 93 input device
- COM computer
- DISP display device
- UI Operation unit
- CAM Camera
- S Sensor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
車両の走行を制御する車両制御装置は、車両の周囲に存在し得る物標に対して、車両の走行方向に交差する横方向の距離を設定する設定部と、車両の走行中において、車両の周囲に存在している物標を検出する検出部と、検出された物標に対する横方向の距離と、物標に対して設定された横方向の距離との比較に基づいて、車両を横方向に移動させるオフセット制御を実行する制御部と、を備える。
Description
本発明は、車両制御装置、車両および車両制御方法に関する。
特許文献1には、車間距離制御において、ドライバーが任意の車間距離を設定するための操作入力部の構成が開示されている。特許文献1の構成によれば、自車両と前方を走行する他車両との相対的な位置関係として、走行方向に沿った縦方向の車間距離をドライバーが任意に設定することは可能である。
しかしながら、特許文献1の構成では、自車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離(オフセット量)を、ドライバーの設定に合わせて制御できない場合が生じ得る。
本発明の目的は、上記の課題に鑑み、車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御することが可能な車両制御技術を提供することにある。
本発明の一態様による車両制御装置は、車両の走行を制御する車両制御装置であって、前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定手段と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出手段と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御手段と、を備えることを特徴とする。
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出手段と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御手段と、を備えることを特徴とする。
本発明によれば、車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御することが可能になる。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
車両制御装置の基本構成を例示する図。
車両制御装置の制御ブロック図の構成例を示す図。
物標の種別に応じた横方向の距離の設定例を示す図。
自動運転レベルに応じたオフセット量の設定例を示す図。
ハンズオン状態またはハンズオフ状態に応じたオフセット量の設定例を示す図。
車両を横方向に移動させるオフセット制御を例示的に説明する図。
表示装置の画面表示を例示する図。
表示装置の画面表示を例示する図。
実施形態に係るオフセット制御の流れを説明する図。
以下、図面を参照しながら本発明の実施形態について説明する。この実施形態に記載されている構成要素はあくまで例示であり、以下の実施形態によって限定されるわけではない。
(車両制御装置の構成)
図1Aは、車両の自動運転制御を行う車両制御装置100の基本構成を例示する図であり、車両制御装置100は、センサS、カメラCAM、コンピュータCOM、表示装置DISP、表示装置DISPを操作するための操作部UIを有する。センサSは、例えば、レーダS1、ライダS2、ジャイロセンサS3、GPSセンサS4、車速センサS5等を含む。
図1Aは、車両の自動運転制御を行う車両制御装置100の基本構成を例示する図であり、車両制御装置100は、センサS、カメラCAM、コンピュータCOM、表示装置DISP、表示装置DISPを操作するための操作部UIを有する。センサSは、例えば、レーダS1、ライダS2、ジャイロセンサS3、GPSセンサS4、車速センサS5等を含む。
また、コンピュータCOMは、車両の自動運転制御に関する処理を司るCPU(C1)、メモリC2、外部デバイスとのインタフェース(I/F)C3等を含む。センサSおよびカメラCAMは、車両の各種情報を取得し、コンピュータCOMに入力する。ここで、コンピュータCOMが搭載されている車両を以下の説明では自車両ともいい、自車両の周囲に存在する自転車およびバイク等の二輪または四輪の車両を他車両ともいう。ここで、四輪には、車両種別として、例えば、軽自動車、普通自動車、バスやトラック等の大型車両などが含まれる。
コンピュータCOMは、センサS(レーダS1、ライダS2)およびカメラCAMから入力された情報に画像処理を行い、自車両の周囲に存在する物標(オブジェクト)を抽出する。物標には、例えば、時間の経過に従い移動しない静的物標(例えば、道路上の白線、車線、道路幅、パイロン、信号機、信号機を支える電柱、縁石、標識やガードレールなどの道路構造物等の静止物体)と、時間の経過に従い移動する動的物標(例えば、他車両(自転車およびバイク等の二輪または四輪)や歩行者、道路上の落下物等の移動物体)とが含まれる。
コンピュータCOMは、センサS(レーダS1、ライダS2)およびカメラCAMにより取得された画像から、物標を抽出し、自車両の周囲にどのような物標が配置されているかを解析する。例えば、自車両の走行する同一車線において、自車両の前方および後方を走行している他車両、および、自車両の走行する隣接車線において、自車両に対して並走している他車両の情報を取得することが可能である。
ジャイロセンサS3は自車両の回転運動や姿勢を検知する。コンピュータCOMは、ジャイロセンサS3の検知結果や、車速センサS5により検出された車速等により自車両の進路を判定することができる。GPSセンサS4は、地図情報における自車両の現在位置(位置情報)を検知する。インタフェース(I/F)C3は、通信装置として機能して、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。コンピュータCOMは、取得した情報を記憶装置として機能するメモリC2に記憶し、メモリC2に構築された地図情報や交通情報のデータベースにアクセスし、現在地から目的地へのルート探索等を行うことが可能である。
表示装置DISPは、自車両の周囲に存在する物標に対する相対的な位置関係として、車両1の走行方向に対して交差する横方向の距離を設定するための情報を表示する。また、操作部UIは、ユーザインタフェースとして機能して、自車両の周囲に存在する物標に対し、横方向の距離の設定に関するドライバーの操作入力を受け付ける。
例えば、表示装置DISPをタッチパネルとして構成して、表示装置DISPと操作部UIとを一体に構成することが可能である。この場合、表示装置DISPを介して、操作部UIからの操作をコンピュータCOMに入力することが可能である。また、操作部UIを、スイッチ、ボタン等の入力装置として構成し、操作部UIからの操作をコンピュータCOMに入力することも可能である。コンピュータCOMは、操作部UIの操作入力に基づいて、自車両の周囲に存在する物標に対し、走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御する。
図1Aに示す車両制御装置100を車両に搭載する場合、コンピュータCOMを、例えば、センサSやカメラCAMの情報を処理する認識処理系のECUや画像処理系のECU内に配置してもよいし、入出力装置を制御するECU内に配置してもよいし、車両の駆動制御を行う制御ユニット内のECUや、自動運転用のECU内に配置してもよい。例えば、以下に説明する図1Bのように、センサS用のECU、カメラ用のECU、入出力装置用のECU、および自動運転用のECU等、車両制御装置100を構成する複数のECUに機能を分散させてもよい。
図1Bは、車両1を制御するための車両制御装置100の制御ブロック図の構成例を示す図である。図1Bにおいて、車両1はその概略が平面図と側面図とで示されている。車両1は一例としてセダンタイプの四輪の乗用車である。
図1Bの制御ユニット2は、車両1の各部を制御する。制御ユニット2は車内ネットワークにより通信可能に接続された複数のECU20~29を含む。各ECU(Engine Control Unit)は、CPU(Central Processing Unit)に代表されるプロセッサ、半導体メモリ等の記憶デバイス、外部デバイスとのインタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。各ECUはプロセッサ、記憶デバイスおよびインタフェース等を複数備えていてもよい。
以下、各ECU20~29が担当する機能等について説明する。なお、ECUの数や、担当する機能については、車両1の適宜設計可能であり、本実施形態よりも細分化したり、あるいは、統合することが可能である。
ECU20は、本実施形態に係る車両1(自車両)の自動運転に関わる車両制御を実行する。自動運転においては、車両1の操舵と、加減速の少なくともいずれか一方を自動制御する。自動運転に関わる具体的な制御に関する処理については後に詳細に説明する。
ECU21は、電動パワーステアリング装置3を制御する。電動パワーステアリング装置3は、ステアリングホイール31に対する運転者の運転操作(操舵操作)に応じて前輪を操舵する機構を含む。また、電動パワーステアリング装置3は操舵操作をアシストしたり、あるいは、前輪を自動操舵するための駆動力を発揮するモータや、操舵角を検知するセンサ等を含む。車両1の運転状態が自動運転の場合、ECU21は、ECU20からの指示に対応して電動パワーステアリング装置3を自動制御し、車両1の進行方向を制御する。
ECU22および23は、車両の周囲状況を検知する検知ユニット41~43の制御および検知結果の情報処理を行う。検知ユニット41は、例えば、車両1の前方を撮影するカメラであり(以下、カメラ41と表記する場合がある。)、本実施形態の場合、車両1のルーフ前部に2つ設けられている。カメラ41が撮影した画像の解析(画像処理)により、物標の輪郭抽出や、道路上の車線の区分線(白線等)を抽出可能である。
検知ユニット42(ライダ検出部)は、例えば、ライダ(Light Detection and Ranging(LIDAR))であり(以下、ライダ42と表記する場合がある)、光により車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、ライダ42は車両の周囲に複数設けられている。図1Bに示す例では、ライダ42は、例えば、5つ設けられており、車両1の前部の各隅部に1つずつ、後部中央に1つ、後部各側方に1つずつ設けられている。検知ユニット43(レーダ検出部)は、例えば、ミリ波レーダであり(以下、レーダ43と表記する場合がある)、電波により車両1の周囲の物標を検知したり、物標との距離を測距する。本実施形態の場合、レーダ43は車両の周囲に複数設けられている。図1Bに示す例では、レーダ43は、例えば、5つ設けられており、車両1の前部中央に1つ、前部各隅部に1つずつ、後部各隅部に一つずつ設けられている。
ECU22は、一方のカメラ41と、各ライダ42の制御および検知結果の情報処理を行う。ECU23は、他方のカメラ41と、各レーダ43の制御および検知結果の情報処理を行う。車両の周囲状況を検知する装置を二組備えたことで、検知結果の信頼性を向上でき、また、カメラ、ライダ、レーダといった種類の異なる検知ユニットを備えたことで、車両の周辺環境の解析を多面的に行うことができる。尚、ECU22およびECU23を一つのECUにまとめてもよい。
ECU24は、ジャイロセンサ5、GPSセンサ24b、通信装置24cの制御および検知結果あるいは通信結果の情報処理を行う。ジャイロセンサ5は車両1の回転運動を検知する。ジャイロセンサ5の検知結果や、車輪速等により車両1の進路を判定することができる。GPSセンサ24bは、車両1の現在位置を検知する。通信装置24cは、地図情報や交通情報を提供するサーバと無線通信を行い、これらの情報を取得する。ECU24は、記憶デバイスに構築された地図情報のデータベース24aにアクセス可能であり、ECU24は現在地から目的地へのルート探索等を行う。データベース24aはネットワーク上に配置可能であり、通信装置24cがネットワーク上のデータベース24aにアクセスして、情報を取得することが可能である。
ECU25は、車車間通信用の通信装置25aを備える。通信装置25aは、周辺の他車両と無線通信を行い、車両間での情報交換を行う。
ECU26は、パワープラント6を制御する。パワープラント6は車両1の駆動輪を回転させる駆動力を出力する機構であり、例えば、エンジンと変速機とを含む。ECU26は、例えば、アクセルペダル7Aに設けた操作検知センサ7aにより検知した運転者の運転操作(アクセル操作あるいは加速操作)に対応してエンジンの出力を制御したり、車速センサ7cが検知した車速等の情報に基づいて変速機の変速段を切り替える。車両1の運転状態が自動運転の場合、ECU26は、ECU20からの指示に対応してパワープラント6を自動制御し、車両1の加減速を制御する。
ECU27は、方向指示器8を含む灯火器(ヘッドライト、テールライト等)を制御する。図1Bの例の場合、方向指示器8は車両1の前部、ドアミラーおよび後部に設けられている。
ECU28は、入出力装置9の制御を行う。入出力装置9は運転者に対する情報の出力と、運転者からの情報の入力の受け付けを行う。音声出力装置91は運転者に対して音声により情報を報知する。表示装置92は運転者に対して画像の表示により情報を報知する。表示装置92は例えば運転席表面に配置され、インストルメントパネル等を構成する。なお、ここでは、音声と表示を例示したが振動や光により情報を報知してもよい。また、音声、表示、振動または光のうちの複数を組み合わせて情報を報知してもよい。更に、報知すべき情報のレベル(例えば緊急度)に応じて、組み合わせを異ならせたり、報知態様を異ならせてもよい。
入力装置93は運転者が操作可能な位置に配置され、車両1に対する指示を行うスイッチ群であるが、音声入力装置も含まれてもよい。表示装置92は、例えば、先に説明した図1Aの表示装置DISPに対応し、入力装置93は、図1Aの操作部UIの構成に対応する。
ECU29は、ブレーキ装置10やパーキングブレーキ(不図示)を制御する。ブレーキ装置10は例えばディスクブレーキ装置であり、車両1の各車輪に設けられ、車輪の回転に抵抗を加えることで車両1を減速あるいは停止させる。ECU29は、例えば、ブレーキペダル7Bに設けた操作検知センサ7bにより検知した運転者の運転操作(ブレーキ操作)に対応してブレーキ装置10の作動を制御する。車両1の運転状態が自動運転の場合、ECU29は、ECU20からの指示に対応してブレーキ装置10を自動制御し、車両1の減速および停止を制御する。ブレーキ装置10やパーキングブレーキは車両1の停止状態を維持するために作動することもできる。また、パワープラント6の変速機がパーキングロック機構を備える場合、これを車両1の停止状態を維持するために作動することもできる。
本実施形態の車両制御において、図1Bに示すECU22は、一方のカメラ41と、各ライダ42との検知結果について情報処理を行い、ECU23は、他方のカメラ41と、各レーダ43との検知結果について情報処理を行う。ECU20は、ECU22およびECU23の情報処理の結果により、車両1(自車両)の周囲に位置する物標(例えば、他車両やガードレール等)の情報を取得することができる。例えば、自車両の走行する隣接車線において、自車両に対して並走している他車両の位置、相対的な距離(間隔)および速度等に関する情報を取得することができる。また、自車両の側方に存在するガードレール等の構造物との相対的な距離を取得することができる。
また、表示装置92および入力装置93を制御するECU28は、表示制御部として機能して、車両の走行方向に対して交差する横方向の距離を設定するための情報の表示と操作入力に基づく情報処理を行う。
自動運転に関わる車両制御を実行するECU20は、設定された横方向の距離に基づいて、車両1の周囲に存在する物標に対して、走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御する。ECU20は、動的物標に対する距離(例えば、並走する他車両に対する側方の距離)を、ドライバーが設定した設定値に基づいて制御しつつ、静的物標に対する距離(例えば、ガードレール等の構造物に対する距離)をドライバーが設定した設定値に基づいて制御する。すなわち、ECU20は、車両1の周囲に存在する各種物標に対して、どこまで離れるか、若しくは、どこまで接近することを許容するかを、ドライバーの設定に基づいて制御する。
(横方向の距離の設定)
本実施形態では、横方向の距離は、複数段階、または、連続的に変化する複数のレベルにより設定することができる。図2Aは、物標の種別に応じた横方向の距離の設定例を示す図であり、図2Aでは、横方向の距離を、3段階(大中小)に分けた設定例を示している。
本実施形態では、横方向の距離は、複数段階、または、連続的に変化する複数のレベルにより設定することができる。図2Aは、物標の種別に応じた横方向の距離の設定例を示す図であり、図2Aでは、横方向の距離を、3段階(大中小)に分けた設定例を示している。
ここで、動的物標とは、時間の経過に従い移動する物標であり、例えば、自転車およびバイク等の二輪または四輪、歩行者、道路上の落下物等の移動物体が含まれる。また、四輪を更に、車両種別、例えば、軽自動車、普通自動車、バスやトラック等の大型車両に細分化することも可能である。
静的物標とは、時間の経過に従い移動しない物標であり、道路上の白線、車線、道路幅、パイロン、信号機、信号機を支える電柱、縁石、標識やガードレールなどの道路構造物等の静止物体が含まれる。
尚、静的物標のうち、高さの有るもの(例えば、パイロン、信号機、信号機を支える電柱、縁石、標識やガードレールなどの道路構造物)や、高さの無いもの(道路上の白線、車線、道路幅等)を分けることも可能である。
図2Aにおいて、動的物標に対して、距離(大)では、LD1の距離が設定されており、距離(中)では、LD2の距離が設定されており、距離(小)では、LD3の距離が設定されている。設定値の大小関係は、LD1>LD2>LD3となる。
また、静的物標に対して、距離(大)では、LS1の距離が設定されており、距離(中)では、LS2の距離が設定されており、距離(小)では、LS3の距離が設定されている。設定値の大小関係は、LS1>LS2>LS3となる。更に、静的物標の距離(大)の設定値LS1は、動的物標の距離(小)の設定値LD3に比べて小さい値が設定されている。すなわち、大小関係は、LS1<LD3となる。
動的物標の距離(大)の設定値、距離(中)の設定値、距離(小)の設定値は、静的物標の距離(大)の設定値、距離(中)の設定値、距離(小)の設定値に比べて、それぞれ大きい値が設定されている。動的物標および静的物標のそれぞれに対しては、図2Aに示す例のような設定値が適用されるが、各物標を更に細分化して設定値を定めることが可能である。例えば、歩行者、自転車、バイク、四輪車両等に細分化したり、四輪車両を更に、車両種別、例えば、軽自動車、普通自動車、バスやトラック等の大型車両に細分化することも可能である。また、静的物標を、高さの有るものと無いものに細分化することも可能である。
図2Aに示す例では、物標の種別に対応した横方向の距離の設定例を示しているが、この他、車両1を運転し得るドライバーが複数人の場合、各ドライバーに対して識別情報を設定し、ドライバーごとに設定値を保持するようにしてもよい。更に、高速道や一般道などの道路種別や、車両1の速度域に応じて、設定値を保持し、車両1の走行状況や、運転するドライバーに応じて、設定値を切り替えることも可能である。
尚、ECU20は、ドライバーによる手動運転の際に、物標に対してどのくらい離れて走行するかデータを蓄積し、蓄積結果に基づいて学習を行い、学習結果に基づいて、動的物標および静的物標に対する距離を設定してもよい。これにより、ドライバーの運転感覚により適合した距離設定を自動運転に反映した走行が可能になる。
図3は、車両を横方向に移動させるオフセット制御を例示的に説明する図である。図3の3aは、図2Aにおいて、ドライバーが距離(大)を設定した場合のオフセット量の制御を例示的に説明する図であり、図3の3bは、図2Aにおいて、ドライバーが距離(中)を設定した場合のオフセット量の制御を例示的に説明する図であり、図3の3cは、ドライバーが距離(小)を設定した場合のオフセット量の制御を例示的に説明する図である。
図3の3a~3cにおいて、車線201は、例えば、静的物標である、白線またはガードレールなどに対応する物標(静的物標203)と、車線201に対して隣接する車線202との車線境界を示す区分線205(白線)とにより区切られている。また、車線201に対して隣接する車線202は、区分線205(白線)と、白線またはガードレールなどに対応する物標204とにより区切られている。
破線で示す車両1(自車両)は、一点鎖線で示す車線中心208に沿って走行している状態を示しており、実線で示す車両1(自車両)は、オフセット制御を実行している状態を示している。実線207は、オフセット制御の際の車両1(自車両)の移動軌跡を示している。実線で示す車両1(自車両)の周囲に存在する動的物標として、他車両206は、車線201に隣接する車線202を走行している。破線で示す楕円209は、オフセット制御において、車両1と他車両206との間で確保される距離(LD1~LD3)の大きさを模式的に示している。
図3の3aに示すように、距離(大)の設定に基づくオフセット制御では、車両1(自車両)と並走する他車両206との距離として、LD1を確保しつつ、静的物標203に対してLS1まで接近することが可能である。
また、図3の3bにおいて、距離(中)の設定に基づくオフセット制御では、車両1(自車両)と並走する他車両206との距離として、LD2を確保しつつ、静的物標203に対してLS2まで接近することが可能である。
道路幅は、例えば、高速道路では、走行車線は3.5m、追越車線は3.75m等と設定されているところや、3.25~3.75mの範囲で道路幅が設定されているところもあり、平均化するとほぼ3.5mとなる。また、一般道では、2.75m~3.5mの範囲で設定されている。車幅は、例えば、大きいもので2.1m程度、大型セダンでも1.9m程度である。
道路幅の例として、3.5m、車幅の例を1.9mとすると、3.5mの道路幅の車線に対して、1.9m幅の車両が通過する際に、車両が車線中心で走行した場合に、車両幅側方から車線際までの隙間は、左右それぞれ0.8m(=(3.5-1.9)×0.5)となる。
したがって、横方向の距離(オフセット量)としては、車線中心(例えば、図3の3bの一点鎖線で示す車線中心208)を基準に、±0.8mの振り幅(図3の3bに示す-LD2/2からLD2/2の範囲)であれば車線外(路外)に逸脱しない範囲でのオフセット制御が可能となる。互いに同じ車線幅と車幅であれば、夫々の車両が車線中心で走行した場合には、1.6mの間隔で並走することとなる。
そして、図3の3cに示すように、距離(小)の設定に基づくオフセット制御では、車両1(自車両)と並走する他車両206との距離として、LD1を確保しつつ、静的物標203に対してLS1まで接近することが可能である。図3の3cに示すように、距離(小)の設定に基づくオフセット制御では、実線207の移動軌跡と車線中心208とが一致し、車両1はオフセット制御を実行しても、並走する他車両206との相対的な位置関係では、車線中心208に沿って移動可能である。
動的物標に対する距離の設定値を静的物標に対する距離の設定値に比べて大きい値を設定することにより、ECU20は、ドライバーが恐怖を感じやすい動的物標の接近に対しては車両1を大きく回避するようにオフセット制御を行う。ドライバーの設定値に基づいて、ECU20はオフセット制御を行うため、ドライバーの運転感覚に合致した自動運転が可能となる。
図4、図5は、表示装置92の画面表示を例示する図である。図4の4aに示すように、表示装置92の画面上には、無段階でボリューム調整ができるようなスライダーSLDが表示されており、このスライダーSLDを画面上で移動させることにより、横方向の距離(オフセット量)を設定することが可能である。ドライバーが詳細カスタマイズボタンCS1を選択すると、ECU28の表示制御の下に画面表示が切り換わり、図4の4bのような距離設定の詳細カスタマイズ画面が表示される。
図4の4bに示すように距離設定の詳細カスタマイズ画面では、動的物標と静的物標に関する距離設定を行うため、無段階でボリューム調整ができるようなスライダーSLDが表示されている。例えば、動的物標において、スライダーSLDを「大」のところに移動させると、図2Aに示した距離LD1(大)の値が設定され、スライダーSLDを「小」のところに移動させると、図2Aに示した距離LD3(小)の値が設定される。ドライバーが、スライダーSLDの位置を、「大」と「小」との間の任意の位置に合わせると、ECU28は、距離LD1(大)と、距離LD3(小)との値を補間した値を計算し、LD2(中)の値として設定する。静的物標に対しても同様である。
図4の4bの画面表示において、ドライバーが動的物標の詳細カスタマイズボタンCS2を選択すると、ECU28の表示制御の下に画面表示が切り換わり、図5の5aのような動的物標の詳細カスタマイズ画面が表示される。
また、ドライバーが静的物標の詳細カスタマイズボタンCS3を選択すると、ECU28の表示制御の下に画面表示が切り換わり、図5の5bのような静的物標の詳細カスタマイズ画面が表示される。
図5の5aに示すような動的物標の詳細カスタマイズ画面では、動的物標を、例えば、歩行者、自転車、バイクおよび四輪車両に分けて、異なる距離を設定している。細分化したそれぞれの項目について、無段階でボリューム調整ができるようなスライダーSLDが表示されている。
例えば、歩行者において、スライダーSLDを「大」のところに移動させると、歩行者に対する横方向の距離(オフセット量)として、図2Aに示した距離LD1(大)の値が設定され、スライダーSLDを「小」のところに移動させると、横方向の距離(オフセット量)として、図2Aに示した距離LD3(小)の値が設定される。
ドライバーが、スライダーSLDの位置を、「大」と「小」との間の任意の位置に合わせると、ECU28は、距離LD1(大)と、距離LD3(小)との値を補間した値を計算し、LD2(中)の値として設定する。動的物標における、自転車、バイクや四輪車両に対する設定も同様である。また、四輪車両を更に、車両のサイズ(例えば、軽自動車、普通自動車、バスやトラック等の大型車両など)に応じて分類した詳細カスタマイズ画面を表示するようにしてもよい。
図5の5aに示す設定例では、動的物標に関して、自転車に対する距離を、歩行者に対する距離より小さく設定し、バイクに対する距離を、自転車に対する距離より小さく設定し、四輪車両に対する距離を、バイクに対する距離よりも小さく設定している。5aに示す設定例のように設定することで、交通弱者である歩行者や自転車に対する距離を、バイクや四輪車両に比べて大きく設定することで、より一層安全性の配慮した自動運転が可能になる。
また、図5の5bに示すような静的物標の詳細カスタマイズ画面では、静的物標を、車両が走行する道路に対して高さを有する静的物標と、道路に対して高さの無い静的物標とに分けて、異なる距離を設定する。静的物標を、例えば、パイロン、信号機、信号機を支える電柱、縁石、標識やガードレールなどの道路構造物などの高さの有るもの、または、道路上の白線など高さの無いものに分けて、異なる距離を設定する。細分化したそれぞれの項目について、無段階でボリューム調整ができるようなスライダーSLDが表示されている。
例えば、高さのある静的物標について、スライダーSLDを「大」のところに移動させると、高さのある静的物標に対して、図2Aに示した距離LS1(大)の値が設定され、スライダーSLDを「小」のところに移動させると、図2Aに示した距離LS3(小)の値が設定される。
ドライバーが、スライダーSLDの位置を、「大」と「小」との間の任意の位置に合わせると、ECU28は、距離LS1(大)と、距離LS3(小)との値を補間した値を計算し、LS2(中)の値として設定する。高さの無い静的物標における距離の設定も同様である。
図5の5bに示す設定例では、静的物標に関して、車両が走行する道路に対して高さの無い静的物標に対する距離を、道路に対して高さを有する静的物標に対する距離より小さく設定している。5bに示す設定例のように設定することで、高さを有する静的物標については、より大きい距離を設定することで、ドライバーにとって違和感の無い軌道での自動運転が可能となる。
図6は、本実施形態に係るオフセット制御の流れを説明する図である。ステップS10において、ドライバーが横方向の距離(オフセット量)を設定する。車両1の走行方向に対して交差する横方向の距離(オフセット量)は、図4、図5で説明したように、表示装置92の画面表示上におけるスライダーSLDを調整することにより、動的物標および静的物標について、設定可能である。ECU28および表示装置92は、ドライバーの操作に基づいて、車両1の周囲に存在し得る物標に対して、車両の走行方向に交差する横方向の距離(オフセット量)を設定する。
ステップS11において、車両1の走行中において、車両1の周囲に存在している物標を検出する。ECU22は、一方のカメラ41と、各ライダ42との検知結果について情報処理を行い、ECU23は、他方のカメラ41と、各レーダ43との検知結果について情報処理を行い、ECU22およびECU23は処理結果をECU20に入力する。
ステップS12において、ECU20は、ECU22およびECU23の情報処理の結果により、車両1(自車両)の周囲に位置する物標の情報を取得する。例えば、ECU20は、車両1(自車両)の走行する車線(例えば、図3の3a~3cの201)に対する隣接車線において、車両1(自車両)に対して並走している他車両206の位置、相対的な距離(間隔)等に関する情報を取得する。また、ECU20は、車両1(自車両)の側方に存在するガードレール等の静的物標(例えば、図3の3a~3cの203)の位置、相対的な距離(間隔)等に関する情報を取得する。以上の処理により、ECU20は、検出された物標(動的物標、静的物標)に対する横方向の距離を取得する。
ステップS13において、ECU20は、動的物標に対する距離の設定値(動的物標の距離設定値)と、検出された動的物標に対する距離(横方向の距離)とを比較する。検出された動的物標に対する距離(横方向の距離)が距離の設定値以上である場合(S13-No)、ECU20は、オフセット制御を行わず、本処理を終了する。
一方、ステップS13の比較処理で、動的物標に対する距離の設定値に比べて、検出された動的物標に対する距離(横方向の距離)が小さい場合、すなわち、並走している動的物標が、動的物標に対する距離の設定値を下回り、車両1(自車両)に接近している場合(S13-Yes)、ECU20は、処理をステップS14に進める。
ライダ42やレーダ43が、車両1の周囲に存在している複数の物標を検出した場合において、ECU20は、検出された複数の物標それぞれに対する横方向の距離と、物標に対して設定された横方向の距離との比較に基づいて、車両を横方向に移動させるオフセット制御を実行する。以下のステップS14での説明は、複数の物標として動的物標と静的物標に関する処理を例示的に説明しているが、動的物標同士であってもよいし、静的物標同士であってもよい。
ステップS14において、ECU20は、動的物標に対して、距離の設定値を確保するために、車両1(自車両)を横移動(オフセット移動)させた場合、車両1(自車両)と静的物標との横方向の距離が、静的物標に対する距離の設定値を下回るか判定する。横移動(オフセット移動)しても車両1(自車両)が静的物標に対する距離の設定値を下回らない場合(S14-No)、すなわち、車両1(自車両)を横移動(オフセット移動)させても、車両1(自車両)が距離の設定値以上、静的物標から離れている場合、ECU20は、処理をステップS18に進める。
ステップS18において、ECU20は、動的物標に対する距離の設定値を確保するためにオフセット制御を行い、本処理を終了する。
一方、ステップS14の判定で、動的物標に対して、距離の設定値を確保するために、車両1(自車両)を横移動(オフセット移動)させた場合、車両1(自車両)が静的物標に対する距離の設定値を超えて接近する場合(S14-Yes)、ECU20は、処理をステップS15に進める。
ステップS15において、ECU20は、車両1の減速制御を行う。走行している車両1の速度を減速させることにより、他車両206が移動していくのを減速状態で待ち、並走している他車両206との位置関係を変えることができる。
そして、ステップS16において、ECU20は、動的物標および静的物標のそれぞれについて、距離の設定値が確保できているか判定する。すなわち、ECU20は、減速制御を行った状態で、動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であるか判定する。動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であり、動的物標および静的物標のそれぞれについて、距離の設定値が確保できている場合(S16-Yes)、ECU20は、処理をステップS17に進める。そして、ステップS17において、ECU20は、オフセット制御を行い、本処理を終了する。
一方、ステップS16の判定で、ECU20は、動的物標および静的物標の少なくともいずれか一方について、検出された横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)未満であると判定した場合、すなわち、動的物標および静的物標の少なくともいずれか一方について、距離の設定値が確保できていないと判定した場合(S16-No)、ECU20は処理をステップS19に進める。
ステップS19において、ECU20は、減速制御を行った状態で、動的物標および静的物標の少なくともいずれか一方について、検出された横方向の距離が、設定された横方向の距離未満となる場合、一時的に静的物標に対して設定された横方向の距離を小さくするように変更して、処理をステップS20に進める。
静的物標に対する距離の設定値としては、例えば、図2Aに示した距離(大)の設定値LS1、距離(中)の設定値LS2、距離(小)の設定値LS3などがある。距離の設定値を小さく変更する場合、例えば、LS1~LS3の範囲で設定値を小さくする場合に限らず、LS1~LS3の範囲よりも小さな下限値に変更してもよい。例えば、ゼロより大きく、距離(小)の設定値LS3よりも小さい距離の範囲(0<LS<LS3)で、静的物標に対する距離(LS)を設定してもよい。このように、一時的に静的物標に対する距離の設定値を変更することにより、動的物標に対する距離の設定値を確保するため、一時的に静的物標に対して設定された距離を下回ることを許容することで、減速しすぎず、より安全な距離感で走行することが可能になる。
そして、ステップS20において、ECU20は、動的物標および静的物標のそれぞれについて、距離の設定値が確保できているか判定する。すなわち、ECU20は、減速制御を行った状態で、かつ、一時的に静的物標に対する設定距離を変更した状態で、動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であるか判定する。動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であり、動的物標および静的物標のそれぞれについて、距離の設定値が確保できている場合(S20-Yes)、ECU20は、処理をステップS17に進める。そして、ステップS17において、ECU20は、オフセット制御を行い、本処理を終了する。
一方、ステップS20の判定で、ECU20は、動的物標および静的物標の少なくともいずれか一方について、検出された横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)未満であると判定した場合、すなわち、動的物標および静的物標の少なくともいずれか一方について、距離の設定値が確保できていないと判定した場合(S20-No)、ECU20は処理をステップS19に戻し、再度、ECU20は、一時的に静的物標に対する距離の設定値を更に小さくするように更に変更して、処理をステップS20に進める。
そして、ステップS20において、再度、ECU20は、減速制御を行った状態で、かつ、一時的に静的物標に対する設定距離を更に変更した状態で、動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であるか判定する。
動的物標および静的物標のそれぞれに対する横方向の距離(検出された横方向の距離)が、設定された横方向の距離(設定距離)以上であり、動的物標および静的物標のそれぞれについて、距離の設定値が確保できている場合(S20-Yes)、ECU20は、処理をステップS17に進める。そして、ステップS17において、ECU20は、オフセット制御を行い、本処理を終了する。
ステップS20の判定で、ECU20が、動的物標および静的物標の少なくともいずれか一方について、距離の設定値が確保できていないと判定した場合(S20-No)、ECU20は処理をステップS19に戻して同様の処理を繰り返し、動的物標および静的物標のそれぞれについて、距離の設定値が確保できた場合(S20-Yes)、ECU20は、処理をステップS17に進める。そして、ステップS17において、ECU20は、オフセット制御を行い、本処理を終了する。
尚、ステップS19において、静的物標に対する距離の設定値を変更する場合、例えば、図2Aに示した距離(大)の設定値LS1、距離(中)の設定値LS2、距離(小)の設定値LS3に基づく範囲(LS1~LS3の範囲)の他、LS1~LS3の範囲よりも小さな下限値を用いて設定値を変更してもよい。例えば、ゼロより大きく、距離(小)の設定値LS3よりも小さい距離の範囲(0<LS<LS3)で、静的物標に対する距離(LS)を設定してもよい。ゼロよりも大きい値にすることで、例えば、パイロン、信号機、信号機を支える電柱、縁石、標識やガードレールなどの道路構造物など、高さを有する静的物標との干渉(接触)を回避しつつ、動的物標に対して設定された横方向の距離を確保するようにオフセット制御を行うことで、減速しすぎず、より安全な距離感で走行することが可能になる。
本実施形態の車両制御装置は、車両の自動運転走行を、設定されている自動運転レベルに基づいて制御することが可能である。自動運転レベルとしては、例えば、以下に示すレベル1~4がある。ドライバーに対して周辺監視義務が求められる自動運転レベルを低レベルの自動運転レベルとし、ドライバーに対する周辺監視義務が、低レベルの自動運転レベルに比べて緩和された自動運転レベルを高レベルの自動運転レベルとする。
設定されている自動運転レベルによる自動運転走行中において、ECU20は、自動運転レベルに応じて、オフセット量を変更することが可能である。例えば、動的物標または静的物標のオフセット量として、距離(小)が設定されている場合に、ECU20は、低レベルの自動運転走行におけるオフセット量に比べて、高レベルの自動運転走行におけるオフセット量を大きく設定することが可能である。例えば、レベル2による自動運転走行におけるオフセット量に比べて、レベル3による自動運転走行におけるオフセット量を大きく設定することが可能である。
オフセット量の変更は、この例に限定されず、ECU20は、レベル1、2、3、4に応じて、オフセット量を設定することが可能である。図2Aで示すように距離(小)の場合、動的物標に対するオフセット量はLD3であり、静的物標に対すオフセット量はLS3である。このオフセット量(LD3、LS3)を基準として、ECU20は、レベル1~4の自動運転レベルに応じて、距離(小)のオフセット量を、図2Bに示すように設定することができる。すなわち、ECU20は、自動運転レベルに応じて、動的物標に対する距離(小)のオフセット量として、LD3-1、LD3-2、LD3-3、LD3-4を設定することが可能である。各オフセット量の大小関係は、自動運転レベル1~4に応じて、各オフセット量を大きくするように設定することが可能である。すなわち、ECU20は、各オフセット量の大小関係として、LD3-1<LD3-2<LD3-3<LD3-4と設定することが可能である。
また、静的物標についても同様に、ECU20は、自動運転レベルに応じて、静的物標に対する距離(小)のオフセット量として、LS3-1、LS3-2、LS3-3、LS3-4を設定することが可能である。各オフセット量の大小関係は、自動運転レベル1~4に応じて、各オフセット量を大きくするように設定することが可能である。すなわち、ECU20は、各オフセット量の大小関係として、LS3-1<LS3-2<LS3-3<LS3-4と設定することが可能である。尚、大小関係としては、この逆であってもよい。また、オフセット量の変更は、距離(小)の場合に限らず、距離(大)、距離(中)の場合であっても同様である。
また、ECU20は、運転者がステアリングホイール31を握っているハンズオン状態、または、運転者がステアリングホイール31を握っていないハンズオフ状態(手放し状態)の検知結果に応じて、オフセット量を変更することが可能である。
電動パワーステアリング装置3を制御するECU21は、ステアリングホイール31に設けられているセンサの検出結果に基づいて、ハンズオン状態であるか、ハンズオフ状態であるかを高精度に判定できる。センサとしては、静電容量型センサ、抵抗型センサ、圧電センサ、温度センサなどが含まれる。例えば、圧電センサは圧縮されると電圧信号を発生し、電圧はECU21の検出回路によって検出される。他の種類のセンサは、接触によって引き起こされる電気的または磁気的な信号に依存するものであり、各センサに対応したECU21の検出回路によってセンサの信号が検出される。
ECU21による、ハンズオン状態またはハンズオフ状態の検出結果に基づいて、ECU20は、オフセット量を変更することが可能である。図2Bで示すように距離(小)の場合、レベル2の動的物標に対するオフセット量はLD3-2であり、静的物標に対すオフセット量はLS3-2である。また、レベル3の動的物標に対するオフセット量はLD3-3であり、静的物標に対すオフセット量はLS3-3である。このオフセット量(LD3-2、LS3-2、LD3-3、LS3-3)を基準として、ECU20は、ハンズオン状態またはハンズオフ状態の検出結果に基づいて、距離(小)のオフセット量を、図2Cに示すように設定することが可能である。
ECU20は、レベル2のハンズオン状態において、動的物標に対する距離(小)のオフセット量として、LD3-2-ONを設定し、静的物標に対する距離(小)のオフセット量として、LS3-2-ONを設定することが可能である。また、ECU20は、レベル2のハンズオフ状態において、動的物標に対する距離(小)のオフセット量として、LD3-2-OFFを設定し、静的物標に対する距離(小)のオフセット量として、LS3-2-OFFを設定することが可能である。
オフセット量の大小関係は、ハンズオン状態のオフセット量(LD3-2-ON、LS3-2-ON)に比べて、ハンズオフ状態のオフセット量(LD3-2-OFF、LS3-2-OFF)を大きく設定することが可能である。尚、大小関係としては、この逆であってもよい。また、オフセット量の変更は、距離(小)の場合に限らず、距離(大)、距離(中)の場合であっても同様である。
レベル3に関しても同様に、ECU20は、レベル3のハンズオン状態において、動的物標に対する距離(小)のオフセット量として、LD3-3-ONを設定し、静的物標に対する距離(小)のオフセット量として、LS3-3-ONを設定することが可能である。また、ECU20は、レベル3のハンズオフ状態において、動的物標に対する距離(小)のオフセット量として、LD3-3-OFFを設定し、静的物標に対する距離(小)のオフセット量として、LS3-3-OFFを設定することが可能である。
オフセット量の大小関係は、ハンズオン状態のオフセット量(LD3-3-ON、LS3-3-ON)に比べて、ハンズオフ状態のオフセット量(LD3-3-OFF、LS3-3-OFF)を大きく設定することが可能である。尚、大小関係としては、この逆であってもよい。また、オフセット量の変更は、距離(小)の場合に限らず、距離(大)、距離(中)の場合であっても同様である。
(自動運転レベル)
自動運転レベルは、車両の加速、操舵、制動に関する操作に関して制御部(例えば、ECU20)が制御する度合と、車両を操作する運転者における車両操作の関与度と、に応じて複数の段階に分類されている。例えば、自動運転レベルとして、以下のものが挙げられる。尚、以下の分類は、例示的なものであり、本発明の趣旨は、この例に限定されるものではない。
自動運転レベルは、車両の加速、操舵、制動に関する操作に関して制御部(例えば、ECU20)が制御する度合と、車両を操作する運転者における車両操作の関与度と、に応じて複数の段階に分類されている。例えば、自動運転レベルとして、以下のものが挙げられる。尚、以下の分類は、例示的なものであり、本発明の趣旨は、この例に限定されるものではない。
(1)レベル1(単独型の自動運転)
レベル1では、車両の加速、操舵、制動のいずれかの操作制御を走行制御装置が行う。走行制御装置が操作制御を行うもの除いた全ての操作については、運転者の関与が必要とされ、レベル1において、運転者(ドライバー)には、いつでも安全に運転できる態勢にあることが要求される(周辺監視義務が要求される)。
レベル1では、車両の加速、操舵、制動のいずれかの操作制御を走行制御装置が行う。走行制御装置が操作制御を行うもの除いた全ての操作については、運転者の関与が必要とされ、レベル1において、運転者(ドライバー)には、いつでも安全に運転できる態勢にあることが要求される(周辺監視義務が要求される)。
(2)レベル2(自動運転の複合化)
レベル2では、車両の加速、操舵、制動のうち、複数の操作制御を走行制御装置が行う。運転者の関与の度合いはレベル1より低くなるが、レベル2においても、運転者(ドライバー)には、いつでも安全に運転できる態勢にあることが要求される(周辺監視義務が要求される)。
レベル2では、車両の加速、操舵、制動のうち、複数の操作制御を走行制御装置が行う。運転者の関与の度合いはレベル1より低くなるが、レベル2においても、運転者(ドライバー)には、いつでも安全に運転できる態勢にあることが要求される(周辺監視義務が要求される)。
(3)レベル3(自動運転の高度化)
レベル3では、加速、操舵、制動に関する全ての操作を走行制御装置が行い、走行制御装置が要請したときのみドライバーが車両の操作対応を行う。レベル3では、自動運転で走行中、ドライバーに対する周辺監視義務は緩和される。レベル3では、運転者の関与の度合いはレベル2より更に低くなる。
レベル3では、加速、操舵、制動に関する全ての操作を走行制御装置が行い、走行制御装置が要請したときのみドライバーが車両の操作対応を行う。レベル3では、自動運転で走行中、ドライバーに対する周辺監視義務は緩和される。レベル3では、運転者の関与の度合いはレベル2より更に低くなる。
(4)レベル4(完全運転自動化)
レベル4では、加速、操舵、制動に関する全ての操作を走行制御装置が行い、ドライバーは車両の操作に全く関与しない。レベル4では、車両が走行する全ての行程で自動走行を行い、自動運転で走行中において、ドライバーに対する周辺監視義務は緩和され、運転者の関与の度合いはレベル3より更に低くなる。
レベル4では、加速、操舵、制動に関する全ての操作を走行制御装置が行い、ドライバーは車両の操作に全く関与しない。レベル4では、車両が走行する全ての行程で自動走行を行い、自動運転で走行中において、ドライバーに対する周辺監視義務は緩和され、運転者の関与の度合いはレベル3より更に低くなる。
<実施形態のまとめ>
構成1.上記実施形態の車両制御装置は、車両(例えば、1)の走行を制御する車両制御装置(例えば、100)であって、
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定手段(例えば、28、92、93、DISP、UI)と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出手段(例えば、22、23、42、43)と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御手段(例えば、20、COM)と、を備えることを特徴とする。
構成1.上記実施形態の車両制御装置は、車両(例えば、1)の走行を制御する車両制御装置(例えば、100)であって、
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定手段(例えば、28、92、93、DISP、UI)と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出手段(例えば、22、23、42、43)と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御手段(例えば、20、COM)と、を備えることを特徴とする。
構成1の車両制御装置によれば、車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御することが可能になる。また、構成1の車両制御装置によれば、ドライバーの運転感覚に合致した自動運転が可能となる。
構成2.上記実施形態の車両制御装置(100)であって、前記設定手段(28、92、93、DISP、UI)は、時間の経過に従い移動する動的物標に対する距離設定と、時間の経過に従い移動しない静的物標に対する距離設定とに分けて、前記横方向の距離を設定することを特徴とする。
構成2の車両制御装置によれば、ドライバーの運転感覚に合わせて、動的物標および静的物標に対する横方向の距離を分けて設定する、すなわち、横方向において物標との間で確保すべき間隔を物標の種別に分けて設定することで、ドライバーにとって違和感の無い軌道での自動運転が可能となる。
構成3.上記実施形態の車両制御装置(100)であって、前記検出手段(22、23、42、43)が、前記車両の周囲に存在している複数の物標を検出した場合において、
前記制御手段(20、COM)は、前記検出された複数の物標それぞれに対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行することを特徴とする。
前記制御手段(20、COM)は、前記検出された複数の物標それぞれに対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行することを特徴とする。
構成3の車両制御装置によれば、車両の周囲に存在する複数の物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御することが可能になる。
構成4.上記実施形態の車両制御装置(100)であって、前記制御手段(20、COM)は、
前記複数の物標のうち一の物標に対する横方向の距離を確保した場合に、前記車両と他の物標との前記横方向の距離が、前記他の物標に対する距離の設定値を下回るか判定し、
前記他の物標に対する距離の設定値を下回る場合に、前記車両の減速制御を行うことを特徴とする。
前記複数の物標のうち一の物標に対する横方向の距離を確保した場合に、前記車両と他の物標との前記横方向の距離が、前記他の物標に対する距離の設定値を下回るか判定し、
前記他の物標に対する距離の設定値を下回る場合に、前記車両の減速制御を行うことを特徴とする。
構成4の車両制御装置によれば、走行している車両の速度を減速させることにより、周囲の動的物標が移動していくのを減速状態で待ち、並走している動的物標との位置関係を変えることができる。また、車両を減速して車両の運動エネルギーを低下させることにより、物標との干渉で生じ得る車両の影響を、より一層低減することが可能になる。
構成5.上記実施形態の車両制御装置(100)であって、前記制御手段(20、COM)は、前記車両と他の物標との前記横方向の距離が、前記他の物標に対する距離の設定値を下回らない場合に、前記オフセット制御を行うことを特徴とする。
構成5の車両制御装置によれば、検出された一の物標に対する距離の設定値を確保することが可能になる。
構成6.上記実施形態の車両制御装置(100)であって、前記複数の物標には、時間の経過に従い移動する動的物標と、時間の経過に従い移動しない静的物標とが含まれ、
前記制御手段(20、COM)は、
前記減速制御を行った状態で、前記動的物標および静的物標の少なくともいずれか一方について、検出された前記横方向の距離が、前記設定された前記横方向の距離未満となる場合、一時的に前記静的物標に対して前記設定された前記横方向の距離を小さくするように変更することを特徴とする。
前記制御手段(20、COM)は、
前記減速制御を行った状態で、前記動的物標および静的物標の少なくともいずれか一方について、検出された前記横方向の距離が、前記設定された前記横方向の距離未満となる場合、一時的に前記静的物標に対して前記設定された前記横方向の距離を小さくするように変更することを特徴とする。
構成6の車両制御装置によれば、一時的に静的物標に対する距離の設定値を変更することにより、動的物標に対する距離の設定値を確保するため、一時的に静的物標に対して設定された距離を下回ることを許容することで、減速しすぎず、より安全な距離感で走行することが可能になる。
構成7.上記実施形態の車両制御装置(100)であって、前記設定手段(例えば、28、92、93、DISP、UI)は、前記動的物標に対する距離設定に対して、前記静的物標に対する距離設定を小さく設定することを特徴とする。
構成7の車両制御装置によれば、ドライバーの運転感覚に合わせて、動的物標および静的物標に対する設定を行うことで、ドライバーの運転感覚に合致した自動運転が可能となる。
構成8.上記実施形態の車両制御装置(100)であって、前記設定手段(例えば、28、92、93、DISP、UI)は、前記動的物標を、歩行者、自転車、バイクおよび四輪車両に分けて、異なる距離を設定し、
前記静的物標を、前記車両が走行する道路に対して高さを有する静的物標と、前記道路に対して高さの無い静的物標とに分けて、異なる距離を設定することを特徴とする。
前記静的物標を、前記車両が走行する道路に対して高さを有する静的物標と、前記道路に対して高さの無い静的物標とに分けて、異なる距離を設定することを特徴とする。
構成9.上記実施形態の車両制御装置(100)であって、前記設定手段(例えば、28、92、93、DISP、UI)は、前記動的物標に関して、前記自転車に対する距離を、前記歩行者に対する距離より小さく設定し、前記バイクに対する距離を、前記自転車に対する距離より小さく設定し、前記四輪車両に対する距離を、前記バイクに対する距離よりも小さく設定し、
前記静的物標に関して、前記車両が走行する道路に対して高さの無い静的物標に対する距離を、前記道路に対して高さを有する静的物標に対する距離より小さく設定することを特徴とする。
前記静的物標に関して、前記車両が走行する道路に対して高さの無い静的物標に対する距離を、前記道路に対して高さを有する静的物標に対する距離より小さく設定することを特徴とする。
構成8および構成9の車両制御装置によれば、動的物標および静的物標の内容を細分化して、それぞれ異なる距離を設定することによって、よりドライバーの運転感覚に合致した自動運転が可能になる。
構成10.上記実施形態の車両(例えば、1)は、構成1乃至構成9のいずれか1つの構成に記載の車両制御装置を有することを特徴とする。
構成10の車両によれば、車両が有する車両制御装置により、車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御した走行が可能になる。また、構成10の車両によれば、ドライバーの運転感覚に合致した自動運転が可能な車両が提供される。
構成11.上記実施形態の車両制御方法は、車両の走行を制御する車両制御装置で実行する車両制御方法であって、
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定工程(例えば、S10)と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出工程(例えば、S11)と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御工程(例えば、S12~S20)と、を有することを特徴とする。
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定工程(例えば、S10)と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出工程(例えば、S11)と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御工程(例えば、S12~S20)と、を有することを特徴とする。
構成11の車両制御方法によれば、車両の周囲に存在する物標に対する相対的な位置関係として、車両の走行方向に対して交差する横方向の距離を、ドライバーの設定に合わせて制御することが可能になる。また、構成11の車両制御方法によれば、ドライバーの運転感覚に合致した自動運転が可能となる。
本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
1:車両(自車両)、20:ECU、100:車両制御装置、206:他車両、42:ライダ、43:レーダ、92:表示装置、93:入力装置、COM:コンピュータ、DISP:表示装置、UI:操作部、CAM:カメラ、S:センサ
Claims (11)
- 車両の走行を制御する車両制御装置であって、
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定手段と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出手段と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御手段と、
を備えることを特徴とする車両制御装置。 - 前記設定手段は、時間の経過に従い移動する動的物標に対する距離設定と、時間の経過に従い移動しない静的物標に対する距離設定とに分けて、前記横方向の距離を設定することを特徴とする請求項1に記載の車両制御装置。
- 前記検出手段が、前記車両の周囲に存在している複数の物標を検出した場合において、
前記制御手段は、前記検出された複数の物標それぞれに対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行することを特徴とする請求項1または2に記載の車両制御装置。 - 前記制御手段は、
前記複数の物標のうち一の物標に対する横方向の距離を確保した場合に、前記車両と他の物標との前記横方向の距離が、前記他の物標に対する距離の設定値を下回るか判定し、
前記他の物標に対する距離の設定値を下回る場合に、前記車両の減速制御を行うことを特徴とする請求項3に記載の車両制御装置。 - 前記制御手段は、前記車両と他の物標との前記横方向の距離が、前記他の物標に対する距離の設定値を下回らない場合に、前記オフセット制御を行うことを特徴とする請求項4に記載の車両制御装置。
- 前記複数の物標には、時間の経過に従い移動する動的物標と、時間の経過に従い移動しない静的物標とが含まれ、
前記制御手段は、
前記減速制御を行った状態で、前記動的物標および静的物標の少なくともいずれか一方について、検出された前記横方向の距離が、前記設定された前記横方向の距離未満となる場合、一時的に前記静的物標に対して前記設定された前記横方向の距離を小さくするように変更することを特徴とする請求項4に記載の車両制御装置。 - 前記設定手段は、前記動的物標に対する距離設定に対して、前記静的物標に対する距離設定を小さく設定することを特徴とする請求項2または6に記載の車両制御装置。
- 前記設定手段は、
前記動的物標を、歩行者、自転車、バイクおよび四輪車両に分けて、異なる距離を設定し、
前記静的物標を、前記車両が走行する道路に対して高さを有する静的物標と、前記道路に対して高さの無い静的物標とに分けて、異なる距離を設定することを特徴とする請求項2または6に記載の車両制御装置。 - 前記設定手段は、
前記動的物標に関して、前記自転車に対する距離を、前記歩行者に対する距離より小さく設定し、前記バイクに対する距離を、前記自転車に対する距離より小さく設定し、前記四輪車両に対する距離を、前記バイクに対する距離よりも小さく設定し、
前記静的物標に関して、前記車両が走行する道路に対して高さの無い静的物標に対する距離を、前記道路に対して高さを有する静的物標に対する距離より小さく設定することを特徴とする請求項8に記載の車両制御装置。 - 請求項1乃至9のいずれか1項に記載の車両制御装置を有することを特徴とする車両。
- 車両の走行を制御する車両制御装置で実行する車両制御方法であって、
前記車両の周囲に存在し得る物標に対して、前記車両の走行方向に交差する横方向の距離を設定する設定工程と、
前記車両の走行中において、前記車両の周囲に存在している物標を検出する検出工程と、
前記検出された物標に対する前記横方向の距離と、前記物標に対して設定された前記横方向の距離との比較に基づいて、前記車両を前記横方向に移動させるオフセット制御を実行する制御工程と、
を有することを特徴とする車両制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033959 WO2019058465A1 (ja) | 2017-09-20 | 2017-09-20 | 車両制御装置、車両および車両制御方法 |
JP2019542875A JP6871397B2 (ja) | 2017-09-20 | 2017-09-20 | 車両制御装置、車両および車両制御方法 |
CN201780094790.6A CN111066073A (zh) | 2017-09-20 | 2017-09-20 | 车辆控制装置、车辆以及车辆控制方法 |
US16/807,551 US20200198634A1 (en) | 2017-09-20 | 2020-03-03 | Vehicle control apparatus, vehicle, and vehicle control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/033959 WO2019058465A1 (ja) | 2017-09-20 | 2017-09-20 | 車両制御装置、車両および車両制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/807,551 Continuation US20200198634A1 (en) | 2017-09-20 | 2020-03-03 | Vehicle control apparatus, vehicle, and vehicle control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058465A1 true WO2019058465A1 (ja) | 2019-03-28 |
Family
ID=65810271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033959 WO2019058465A1 (ja) | 2017-09-20 | 2017-09-20 | 車両制御装置、車両および車両制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200198634A1 (ja) |
JP (1) | JP6871397B2 (ja) |
CN (1) | CN111066073A (ja) |
WO (1) | WO2019058465A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021046040A (ja) * | 2019-09-17 | 2021-03-25 | 本田技研工業株式会社 | 車両制御システム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102374916B1 (ko) * | 2017-09-29 | 2022-03-16 | 주식회사 만도모빌리티솔루션즈 | 차선 유지 제어장치 및 제어방법 |
DE102019125245A1 (de) * | 2019-09-19 | 2021-03-25 | Ford Global Technologies, Llc | System und Verfahren zum bedarfsorientierten Anpassen eines Durchlasses zwischen zwei Fahrzeugen |
JP7303153B2 (ja) * | 2020-05-18 | 2023-07-04 | トヨタ自動車株式会社 | 車両用運転支援装置 |
CN112537298A (zh) * | 2020-11-30 | 2021-03-23 | 南通路远科技信息有限公司 | 一种车道的自动生成方法、装置及交通载具 |
CN112537299A (zh) * | 2020-11-30 | 2021-03-23 | 南通路远科技信息有限公司 | 一种基于目标物的车道保持方法、装置及交通载具 |
CN113815608B (zh) * | 2021-09-24 | 2023-08-29 | 上汽通用五菱汽车股份有限公司 | 车道保持方法、装置和计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535765A (ja) * | 2000-06-20 | 2003-12-02 | ダイムラークライスラー アーゲー | 車両とその前を走行する別の車両との間の距離を調整する方法および距離調整システム |
JP2013224094A (ja) * | 2012-04-23 | 2013-10-31 | Nissan Motor Co Ltd | 車両走行制御装置 |
WO2016027349A1 (ja) * | 2014-08-21 | 2016-02-25 | 日産自動車株式会社 | 走行制御装置および走行制御方法 |
WO2016031011A1 (ja) * | 2014-08-28 | 2016-03-03 | 日産自動車株式会社 | 走行制御装置および走行制御方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5249525B2 (ja) * | 2007-05-28 | 2013-07-31 | 本田技研工業株式会社 | 車両操作支援装置 |
JP5527382B2 (ja) * | 2012-10-12 | 2014-06-18 | トヨタ自動車株式会社 | 走行支援システム及び制御装置 |
DE102013214308B4 (de) * | 2013-07-22 | 2024-07-11 | Robert Bosch Gmbh | Abstandsregler für Kraftfahrzeuge |
DE102013223989A1 (de) * | 2013-11-25 | 2015-05-28 | Robert Bosch Gmbh | Verfahren zum Detektieren des Aufmerksamkeitszustands des Fahrers eines Fahrzeugs |
US9809219B2 (en) * | 2014-01-29 | 2017-11-07 | Continental Automotive Systems, Inc. | System for accommodating a pedestrian during autonomous vehicle operation |
JP6311625B2 (ja) * | 2015-02-17 | 2018-04-18 | トヨタ自動車株式会社 | 車線追従制御装置 |
KR102374921B1 (ko) * | 2015-10-30 | 2022-03-16 | 주식회사 만도모빌리티솔루션즈 | 차량 제어 시스템 및 방법 |
-
2017
- 2017-09-20 CN CN201780094790.6A patent/CN111066073A/zh active Pending
- 2017-09-20 JP JP2019542875A patent/JP6871397B2/ja active Active
- 2017-09-20 WO PCT/JP2017/033959 patent/WO2019058465A1/ja active Application Filing
-
2020
- 2020-03-03 US US16/807,551 patent/US20200198634A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003535765A (ja) * | 2000-06-20 | 2003-12-02 | ダイムラークライスラー アーゲー | 車両とその前を走行する別の車両との間の距離を調整する方法および距離調整システム |
JP2013224094A (ja) * | 2012-04-23 | 2013-10-31 | Nissan Motor Co Ltd | 車両走行制御装置 |
WO2016027349A1 (ja) * | 2014-08-21 | 2016-02-25 | 日産自動車株式会社 | 走行制御装置および走行制御方法 |
WO2016031011A1 (ja) * | 2014-08-28 | 2016-03-03 | 日産自動車株式会社 | 走行制御装置および走行制御方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021046040A (ja) * | 2019-09-17 | 2021-03-25 | 本田技研工業株式会社 | 車両制御システム |
JP7121714B2 (ja) | 2019-09-17 | 2022-08-18 | 本田技研工業株式会社 | 車両制御システム |
US11745785B2 (en) | 2019-09-17 | 2023-09-05 | Honda Motor Co., Ltd. | Vehicle control system |
Also Published As
Publication number | Publication date |
---|---|
CN111066073A (zh) | 2020-04-24 |
US20200198634A1 (en) | 2020-06-25 |
JP6871397B2 (ja) | 2021-05-12 |
JPWO2019058465A1 (ja) | 2020-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110281930B (zh) | 车辆控制装置、车辆、车辆控制方法以及存储介质 | |
JP6871397B2 (ja) | 車両制御装置、車両および車両制御方法 | |
US12060073B2 (en) | Control system for vehicle and control method for vehicle | |
JP6801116B2 (ja) | 走行制御装置、車両および走行制御方法 | |
JP2019119296A (ja) | 車両制御装置、車両制御方法、プログラム、および情報取得装置 | |
US11151871B2 (en) | Autonomous driving vehicle information presentation apparatus | |
JP2021157449A (ja) | 車両及びその制御装置 | |
CN112172818B (zh) | 车辆的控制系统、车辆的控制方法以及存储介质 | |
CN112046477B (zh) | 车辆控制装置及其动作方法、车辆以及存储介质 | |
JP7183438B2 (ja) | 運転支援装置、運転支援方法及びプログラム | |
JP6852107B2 (ja) | 車両制御装置、車両制御方法、車両およびプログラム | |
US20210170942A1 (en) | Autonomous driving vehicle information presentation apparatus | |
US20210171064A1 (en) | Autonomous driving vehicle information presentation apparatus | |
CN112046474B (zh) | 车辆控制装置及其动作方法、车辆以及存储介质 | |
JP7383532B2 (ja) | 制御装置及び車両 | |
JP2022140032A (ja) | 運転支援装置及び車両 | |
JPWO2019038918A1 (ja) | 走行制御装置、および車両 | |
JP7393258B2 (ja) | 制御装置及び車両 | |
JP6953575B2 (ja) | 車両制御装置、車両、車両制御方法およびプログラム | |
JP7138132B2 (ja) | 制御装置及び車両 | |
JP2020199811A (ja) | 車両制御装置、車両、車両制御装置の動作方法およびプログラム | |
JP2019043246A (ja) | 車両制御装置、車両、車両制御方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17926057 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019542875 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17926057 Country of ref document: EP Kind code of ref document: A1 |