WO2019057139A1 - 一种室温超成形性镁或镁合金及其制造方法 - Google Patents

一种室温超成形性镁或镁合金及其制造方法 Download PDF

Info

Publication number
WO2019057139A1
WO2019057139A1 PCT/CN2018/106867 CN2018106867W WO2019057139A1 WO 2019057139 A1 WO2019057139 A1 WO 2019057139A1 CN 2018106867 W CN2018106867 W CN 2018106867W WO 2019057139 A1 WO2019057139 A1 WO 2019057139A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
room temperature
formability
magnesium alloy
extrusion
Prior art date
Application number
PCT/CN2018/106867
Other languages
English (en)
French (fr)
Inventor
聂建峰
曾卓然
徐世伟
波比利斯尼克
戴维斯克瑞斯.H.J.
唐伟能
Original Assignee
宝山钢铁股份有限公司
中国宝武钢铁集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司, 中国宝武钢铁集团有限公司 filed Critical 宝山钢铁股份有限公司
Priority to JP2020537831A priority Critical patent/JP7171735B2/ja
Priority to RU2020113400A priority patent/RU2809648C2/ru
Priority to CA3076849A priority patent/CA3076849C/en
Priority to BR112020005257-4A priority patent/BR112020005257B1/pt
Priority to AU2018337150A priority patent/AU2018337150B2/en
Priority to EP18858299.3A priority patent/EP3690070A1/en
Priority to US16/649,867 priority patent/US20200269297A1/en
Publication of WO2019057139A1 publication Critical patent/WO2019057139A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium

Definitions

  • the present invention relates to a metal or metal alloy and a method of manufacturing the same, and more particularly to a metal or metal alloy having good formability and a method of manufacturing the same.
  • Magnesium is a widely available metal material in our daily life, accounting for 2.7% of the earth's crust. It can be extracted from ore or seawater and can be purified to a purity of 99.8%. At the same time, magnesium is the lightest metal structural material discovered to date, and its density is only 1.74 g/cm 3 , which is 2/3 of aluminum and 1/4 of steel. This feature makes magnesium a metal that replaces aluminum and steel and is widely used in automotive, aerospace, and rail transportation. The use of magnesium alloys saves energy and reduces operating costs. For example, when the car is reduced by 100kg, the fuel consumption per 100 kilometers will be reduced by 0.38 liters, and the CO 2 emissions per kilometer will be reduced by 8.7g. However, the room temperature formability of profiles and sheets of magnesium and its alloys has not been high. Due to this limitation, magnesium alloy sheets have not been widely used in the industry to date.
  • the difficulty of processing magnesium at room temperature is determined by its nature.
  • the main deformation modes of magnesium are basal slip, cylindrical slip, pyramidal slip and twinning.
  • other slips are difficult to start at room temperature.
  • the start of the twin crystal depends on the grain orientation before magnesium processing is not suitable for the start of the twin crystal, and even if the twin crystal is activated, the amount of strain that can be carried is not large, and the maximum is only 8% of the total strain.
  • aluminum and its aluminum alloys have high room temperature formability, and they can be processed from aluminum sheets into cans at room temperature.
  • magnesium and magnesium alloys break at 30% of the down-pressure during room temperature rolling.
  • magnesium alloying elements has been the primary means of increasing the room temperature formability of magnesium. This is because the addition of some alloying elements can weaken the texture, or it can make other slip systems other than the base slip easier to start at room temperature. Even so, the room temperature formability of magnesium is still poor. Although magnesium is subjected to large deformation processing (such as isometric extrusion), its grain boundary slip can be started at room temperature as an additional deformation mode, but its maximum downforce during compression at room temperature is only 20%. In addition, magnesium alloy samples processed from large deformations tend to be small in size and are not suitable for industrial applications.
  • One of the objects of the present invention is to provide a room temperature superformable magnesium which is prepared by using a simple processing method to obtain room temperature superformed magnesium, in view of the problem of poor room temperature formability of magnesium existing in the prior art.
  • Magnesium which is inherently difficult to form, is formed at room temperature and is easily formed.
  • the present invention proposes a room temperature superformable magnesium having a crystallite size of ⁇ 2 ⁇ m.
  • the inventors of the present invention have found through a large number of experimental studies that when the grain size of magnesium is ⁇ 2 ⁇ m, magnesium or a magnesium alloy which is conventionally difficult to form becomes room-temperature super-formability and is easily formed. This is because, in coarse crystals (grain size much larger than 2 microns), the room temperature deformation mode of magnesium is intragranular deformation, including dislocation sliding and twinning. Affected by the hexagonal structure of magnesium, its intragranular deformation mode is limited, and it is not enough to carry a large amount of plastic deformation, so the room temperature formability of coarse magnesium is poor.
  • the main deformation mode of magnesium changes from intragranular deformation to grain boundary deformation, such as grain boundary sliding and grain.
  • grain boundary deformation such as grain boundary sliding and grain.
  • These grain boundary deformations provide an additional mode of deformation in the plastic deformation of ultrafine grains (grain size ⁇ 2 microns) of magnesium.
  • dynamic recrystallization is more likely to occur during plastic deformation at room temperature, reducing the degree of intragranular strain.
  • the grain boundary deformation mode and the large amount of dynamic recrystallization at room temperature make the intragranular strain of the ultrafine magnesium not accumulate to the extent that it can cause fracture, resulting in the appearance of room temperature superformability.
  • the crystal grain size is ⁇ 1 ⁇ m.
  • Another object of the present invention is to provide a room temperature super-formable magnesium alloy which is excellent in formability at room temperature.
  • the present invention proposes a room temperature super-formability magnesium alloy having a crystal grain size of ⁇ 2 ⁇ m.
  • the crystal grain size is ⁇ 1 ⁇ m.
  • the room temperature super-forming magnesium alloy contains at least one of aluminum, zinc, calcium, tin, silver, cerium, zirconium and a rare earth element, aluminum,
  • the total mass percentage of at least one of the zinc, calcium, dilute, silver, cerium, zirconium and rare earth elements is ⁇ 1.5%.
  • another object of the present invention is to provide a method for producing room temperature ultraformable magnesium described above, wherein the room temperature superformable magnesium obtained by the production method has better room temperature superformability when it is produced into a magnesium form.
  • the present invention provides a method for producing room temperature superformability magnesium, which is processed into a magnesium profile, comprising the steps of: extruding a raw material at 20 ° C to 150 ° C, and extruding The magnesium profile is obtained at a pressure ratio of 10:1 to 100:1.
  • the inventors of the present invention have found through extensive research that dynamic recrystallization occurs in the extrusion process of magnesium at different temperatures.
  • the coarse cast structure will be transformed into recrystallized structure, and the extrusion temperature will affect recrystallization.
  • the main factor of grain size In conventional extrusion (conventional extrusion temperature is generally higher than 300 ° C), the grain boundary of magnesium is easy to move, and the dynamic recrystallized grain of magnesium will rapidly grow to about 10–100 ⁇ m.
  • the size of the size in order to obtain a grain structure of less than 2 micrometers, it is necessary to control the extrusion temperature to dynamically recrystallize a large amount of nucleation, but the grain boundary moves relatively slowly, thereby controlling the recrystallized grains. The size of the size.
  • the extrusion temperature is controlled to be 20 to 150 ° C and the extrusion ratio is 10:1 to 100:1. To obtain the desired microstructure of the magnesium profile.
  • the extrusion ratio is controlled to be 10:1 to 100:1 because the extrusion resistance required when the extrusion ratio is too large is too large, and the equipment is difficult to realize; when the extrusion ratio is too small, the material after extrusion is deformed. Insufficient degree, resulting in insufficient recrystallized grain refinement, does not reach the required grain size.
  • the extrusion ratio refers to the ratio of the cross-sectional area of the material before extrusion (for example, the circular cross-sectional area of the cylindrical cast rod) to the cross-sectional area of the material after extrusion.
  • the extrusion temperature is controlled at 20-80 ° C because the inventors of the present invention have found through extensive experiments that the pure magnesium has a grain size of about 1.2 ⁇ m when the extrusion temperature is lowered to 80 ° C. Further reducing the extrusion temperature, or adding a small amount of alloying elements such as at least one of aluminum, zinc, calcium, tin, silver, cerium, zirconium and rare earth elements, aluminum, zinc, calcium, tin, silver, cerium, zirconium and The total mass percentage of at least one of the rare earth elements ⁇ 1.5%) will further slow the grain boundary moving speed of the recrystallized grains, thereby refining the recrystallized structure to less than 1 micron.
  • alloying elements such as at least one of aluminum, zinc, calcium, tin, silver, cerium, zirconium and rare earth elements, aluminum, zinc, calcium, tin, silver, cerium, zirconium and The total mass percentage of at least one of the rare earth elements ⁇ 1.5%) will further slow the
  • the extrusion pusher speed is from 0.05 mm/s to 50 mm/s.
  • extrusion pusher speed refers to the moving speed of the squeeze pusher to the mold during the extrusion process.
  • the present invention provides a method for producing room temperature superformable magnesium, which is processed into a magnesium sheet, comprising the steps of:
  • the submicron structure of the magnesium or magnesium alloy having a grain size of ⁇ 2 ⁇ m does not change during the cold rolling process, and thus can be rolled into various specifications.
  • the rolling temperature is controlled to be rolled at 20 to 100 °C.
  • the extrusion pusher speed is from 0.05 mm/s to 50 mm/s.
  • the magnesium plate material has a thickness of 0.3 mm to 4 mm or 0.04 mm to 0.3 mm.
  • the preferred magnesium sheet thickness specification in this case is 0.3 mm to 4 mm or 0.04 mm to 0.3 mm.
  • another object of the present invention is to provide a method for producing a room temperature super-formability magnesium alloy as described above, wherein the room temperature super-formability magnesium alloy obtained by the production method has better room temperature super-formability when formed into a magnesium alloy profile. .
  • the present invention provides a method for producing a room temperature super-formability magnesium alloy which is processed into a magnesium alloy profile, comprising the steps of: extruding at 20 ° C to 150 ° C.
  • the raw material has an extrusion ratio of 10:1 to 100:1 to obtain the magnesium alloy profile.
  • the corresponding extrusion ratio is controlled to be 10:1 to 100:1 because the extrusion resistance required when the extrusion ratio is too large is too large, and the equipment is difficult to realize; the extrusion ratio is too small, after extrusion The degree of deformation of the material is insufficient, resulting in insufficient refinement grain refinement and failing to achieve the required grain size.
  • the extrusion pusher speed is from 0.05 mm/s to 50 mm/s.
  • another object of the present invention is to provide a method for producing the room temperature super-formability magnesium alloy described above, wherein the room temperature super-formability magnesium alloy obtained by the production method has a good room temperature super when formed into a magnesium alloy sheet material. Formability.
  • the room temperature super-form magnesium alloy is processed into a magnesium alloy sheet, comprising the steps of:
  • the extrusion pusher speed is from 0.05 mm/s to 50 mm/s.
  • the magnesium alloy sheet material has a thickness of 0.3 mm to 4 mm or 0.04 mm to 0.3 mm.
  • the "raw material” used in the case of producing room temperature superformed magnesium means "magnesium raw material” which is a simple substance of magnesium metal and does not have a grain size of ⁇ 2 ⁇ m. It does not have the required excellent super-formability; for the case of producing a room temperature super-form magnesium alloy, the term “raw material” means "magnesium alloy raw material", and the magnesium alloy raw material is magnesium metal and the alloying element.
  • the magnesium or magnesium alloy feedstock can be of any desired shape, such as a cylindrical, square, cuboid ingot form.
  • the above-mentioned "raw material” is extruded at a temperature of from 20 ° C to 150 ° C at an extrusion ratio of from 10:1 to 100:1 to obtain a magnesium profile or a magnesium alloy profile.
  • the magnesium profile or the magnesium alloy profile after the extrusion operation has a desired room temperature superformability, and the processing mode determines the obtained room temperature superformability magnesium or room temperature superformability magnesium alloy as a profile form.
  • the terms "profile”, “magnesium profile” and “magnesium alloy profile” mean room temperature superformed magnesium having a desired room temperature superformability after extrusion processing and being in the form of a profile or Room temperature superformable magnesium alloy.
  • the extrusion operation of the present invention is carried out using conventional extrusion equipment, and the improvement of the present invention is the fine design of temperature and extrusion ratio in the extrusion operation.
  • the extrusion apparatus can be arbitrarily selected and modified as needed, as long as the temperature and extrusion required for the present invention can be achieved.
  • the temperature of "20 ° C to 150 ° C" described in the present invention is the temperature of the magnesium/magnesium alloy that is undergoing the extrusion processing, by heating the magnesium/magnesium alloy, or by the magnesium alloy block and The extrusion cylinder, the mold and the push rod of the surrounding extrusion device are heated together.
  • the push rod, the extrusion tube and the mold are all made of die steel, and the mold cavity can be determined according to the specific requirements of the product, and has a cavity and a through hole penetrating the mold, and the cavity is used for the cavity
  • the cross-sectional dimension of the through hole may be tapered or constant, and the specifically defined extrusion ratio of the present invention is determined by adjusting the cross-sectional size of the through-hole and the cross-sectional size of the magnesium raw material or the magnesium alloy raw material.
  • the push rod has an end portion matching the size and shape of the extrusion barrel, the cavity of the mold, and the raw material of the magnesium raw material or the magnesium alloy, and is used for pushing the magnesium raw material or the magnesium alloy raw material through the extrusion during the extrusion process.
  • the barrel, the mold cavity and the through hole achieve the desired room temperature superformability while forming the profile.
  • the magnesium profile or the magnesium alloy profile having room temperature superformability is obtained by the above extrusion operation, it may be further rolled into a magnesium plate material at 20 ° C to 100 ° C as needed.
  • the room temperature super-formability magnesium or magnesium alloy according to the present invention fundamentally overcomes the problem that magnesium is difficult to be formed at room temperature, and the manufacturing method of the room temperature super-formability magnesium or magnesium alloy is low in cost and production efficiency. High, can be directly used in industrial production.
  • Example 2 is a graph showing the true stress-down pressure of the room temperature superformability magnesium of Example 7 and the conventional magnesium of Comparative Example 5 in a room temperature compression test.
  • Fig. 3 is a sample view of the conventional magnesium of Comparative Example 5 before the test in the room temperature compression test.
  • Figure 4 is a sample view of the conventional magnesium of Comparative Example 5 after testing in a room temperature compression test.
  • Figure 5 is a sample view of the room temperature superformable magnesium of Example 7 before testing in a room temperature compression test.
  • Figure 6 is a sample view of the room temperature superformability magnesium of Example 7 after testing in a room temperature compression test.
  • Fig. 7 is a view showing the sample of the room temperature superformable magnesium of Example 8 in a pressed state.
  • Fig. 8 is a sample view of the room temperature superformable magnesium of Example 8 when processed into a magnesium plate having a thickness of 1 mm.
  • Fig. 9 is a bending effect of the room temperature overmolding magnesium of Example 8 when processed into a magnesium plate having a thickness of 0.12 mm.
  • Figure 10 is a sample view of the conventional magnesium extruded state of Comparative Example 5.
  • Figure 11 is a sample view of conventional magnesium of Comparative Example 5 at cold rolling to 33%.
  • Fig. 12 is a view showing the sample of the room temperature super-formability magnesium of Example 8 before being bent into a magnesium plate having a thickness of 1 mm.
  • Fig. 13 is a view showing the sample of the room temperature superformable magnesium of Example 8 after being bent into a magnesium plate having a thickness of 1 mm.
  • Figure 14 is a graph showing the bending effect of the room temperature overmolding magnesium of Example 8 when processed into a magnesium plate having a thickness of 0.12 mm.
  • Fig. 15 is a view showing a sample of the conventional magnesium of Comparative Example 5 after being bent into a magnesium plate having a thickness of 1 mm.
  • Figure 16 is a bending effect of the conventional magnesium of Comparative Example 5 when it was processed into a magnesium plate having a thickness of 0.12 mm.
  • Example 18 is a backscattered electron diffraction (EBSD) picture and a grain orientation spread GOS map picture of room temperature superformability magnesium of Example 7.
  • EBSD backscattered electron diffraction
  • Figure 19 illustrates the texture of Figure 17 under the (0001) pole figure.
  • Figure 20 illustrates the texture of Figure 18 under the (0001) pole figure.
  • Figure 21 is a columnar distribution of grain size of a conventional magnesium of Comparative Example 5 in a pressed state.
  • Figure 22 is a graph showing the grain size distribution of conventional magnesium of Comparative Example 5 at 20% room temperature compression.
  • Figure 23 is a bar graph of grain size of conventional magnesium of Comparative Example 5 after 20% cold rolling.
  • Fig. 24 is a columnar distribution diagram of the grain size of the room temperature superformable magnesium of Example 7 in a pressed state.
  • Figure 25 is a graph showing the grain size distribution of the room temperature superformability magnesium of Example 7 when it was compressed at 50% room temperature.
  • Figure 26 is a graph showing the grain size distribution of the room temperature superformability magnesium of Example 7 after 50% cold rolling.
  • Figure 27 is a backscattered electron diffraction (EBSD) picture of the room temperature superformable magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm.
  • EBSD backscattered electron diffraction
  • Figure 28 is a GOS picture of the room temperature superformable magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm.
  • Fig. 29 is a graph showing the grain size columnar distribution of the room temperature super-formability magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm.
  • Figure 30 is a view showing the texture of the room temperature super-formability magnesium of Example 7 under a (0001) pole figure when processed into a magnesium plate having a thickness of 0.12 mm.
  • Figure 31 is a scanning electron micrograph of twin and slip actuation occurring in the room temperature deformation of Comparative Example 5.
  • Fig. 32 is a view showing the crystal grain change of room temperature superformability magnesium in the room temperature compression in Example 7 of the present invention.
  • Fig. 33 is a view showing the change of the deformed crystal grains of the room temperature super-formability magnesium of Example 7 in a high strain region at room temperature compression.
  • Figure 34 illustrates the microstructure and texture of the dynamically recrystallized grains of Figure 33.
  • Figure 35 is a schematic view showing the change in microstructure of conventional magnesium of Comparative Example 5 before and after compression at room temperature.
  • Figure 36 is a graph showing the change in microstructure of room temperature superformable magnesium of Examples 1-12 before and after compression at room temperature.
  • Figure 37 is a schematic illustration of an exemplary extrusion operation in accordance with one embodiment of the present invention.
  • the manufacturing process of the room temperature super-form magnesium or magnesium alloy profile comprises the steps of: extruding the raw material at 20 ° C to 150 ° C, the extrusion ratio is 10:1 to 100:1, and the extrusion pusher speed is 0.05 mm/s ⁇ 50 mm/s, the magnesium profile was obtained.
  • the manufacturing process of the room temperature superform magnesium plate or the magnesium alloy plate includes the following steps:
  • the extrusion ratio is 10:1 ⁇ 100:1, the extrusion pusher speed is 0.05mm / s ⁇ 50mm / s;
  • the magnesium plate has a thickness of 0.3 mm to 4 mm or 0.04 mm to 0.3 mm.
  • Table 1 lists the specific process parameters in the method of producing the room temperature superformable magnesium or magnesium alloy of Examples 1-12.
  • Table 2 lists the grain sizes of the room temperature superformable magnesium or magnesium alloys of Examples 1-20.
  • Example 1 Numbering Grain size ( ⁇ m) Example 1 0.8 Example 2 0.8 Example 3 1.1 Example 4 1.2 Example 5 1.2 Example 6 1.2 Example 7 1.3 Example 8 1.3 Example 9 1.2 Example 10 1.4 Example 11 1.2
  • Example 12 1.4 Example 13 0.5 Example 14 1.2 Example 15 1.8 Example 16 2 Example 17 1.5 Example 18 0.1 Example 19 0.3 Example 20 0.8
  • extrusion was carried out at an extrusion ratio of 19:1 at different temperatures, wherein the extrusion temperature of Example 1-2 was room temperature (25 ° C), Example 3 The extrusion temperature of -6 was 65 ° C, the extrusion temperature of Example 7-12 was 80 ° C, and the extrusion temperature of Comparative Example 1 was 160 ° C, and the extrusion temperature of Comparative Example 2 was 200 ° C, Comparative Example 3 The extrusion temperature was 250 ° C, the extrusion temperature of Comparative Example 4 was 300 ° C, and the extrusion temperature of Comparative Example 5 was 400 ° C.
  • Examples 1-12 and Comparative Examples 1-5 Prior to extrusion, Examples 1-12 and Comparative Examples 1-5 were applied with graphite coatings on ingots and molds to reduce friction during extrusion. After extrusion, Examples 1-4, 7 and 8 and Comparative Examples 1-5 were rapidly water-cooled, followed by room temperature compression test and cold rolling. In the compression test, the compression speed was 0.6 mm/min, and in the cold rolling process, the single-pass pressing amount was 0.1 mm, and the roll speed was 15 m/min.
  • FIG. 1 is a graph of true stress-true strain down pressure in room temperature compression tests of room temperature superformability magnesium of Examples 1, 3, and 7 and Comparative Examples 1-5 of conventional magnesium at different temperatures. As shown in Fig. 1, curves I to VIII show the true strain conditions of the room temperature superformability magnesium of Examples 1, 3 and 7, and the conventional magnesium of Comparative Examples 1-5 under true stress.
  • FIG. 2 is a graph showing the true stress-down pressure of the room temperature superformability magnesium of Example 7 and the conventional magnesium of Comparative Example 5 in a room temperature compression test, as can be seen from FIG. 2, the example 7 and the curve shown by the curve XI. Comparative Example 5 shown in IX was subjected to a change in the amount of depression under different true stress conditions at room temperature compression test.
  • FIG. 3 to 6 illustrate the topographical changes before and after the test of the room temperature superformability magnesium of Example 7 and the conventional magnesium of Comparative Example 5 in the room temperature compression test.
  • Fig. 3 is a sample view of the conventional magnesium of Comparative Example 5 before the test in the room temperature compression test.
  • Figure 4 is a sample view of the conventional magnesium of Comparative Example 5 after testing in a room temperature compression test.
  • Figure 5 is a sample view of the room temperature superformable magnesium of Example 7 before testing in a room temperature compression test.
  • Figure 6 is a sample view of the room temperature superformability magnesium of Example 7 after testing in a room temperature compression test.
  • Example 7 to 16 are used to verify the bending effect of the room temperature superformability magnesium of Example 8 and the conventional magnesium of Comparative Example 5 in different states.
  • the room temperature superformability magnesium of Example 8 was extruded into a magnesium square rod, and rolled from a pressed state having a thickness of 3 mm to a magnesium plate having a thickness of 1 mm, and the obtained room temperature super-formed magnesium sheet did not cause edge cracking.
  • the magnesium sheet was further rolled into a magnesium sheet having a thickness of 0.12 mm. At this time, the magnesium sheet is rolled from 3mm to 0.12mm, resulting in a 96% reduction and a true strain of 3.2, which is much higher than the conventional cold rolling reduction of conventional magnesium (30%), corresponding to the true strain. 0.4.
  • the magnesium plate having a thickness of 0.12 mm was cut into two sections and folded into the shapes of "m" and "g", respectively. It can be seen that the room temperature superformed magnesium of Example 8 of the present invention was processed into a profile. Or the sheet material has excellent room temperature formability and is less prone to surface cracking.
  • Figure 7 is a sample view of the room temperature superformability magnesium of Example 8 in an extruded state
  • Figure 8 is a sample view of the room temperature superformability magnesium of Example 8 when processed into a magnesium plate having a thickness of 1 mm
  • FIG. 10 is a sample view of the conventional magnesium extruded state of Comparative Example 5
  • FIG. 11 is Comparative Example 5.
  • the room temperature superformability magnesium of Example 8 was processed into a magnesium plate having a thickness of 1 mm, which was bent and bent at 180° without cracking.
  • FIG. 12 is a sample view of the room temperature superformed magnesium of Example 8 before being bent into a magnesium plate having a thickness of 1 mm
  • Figure 13 is a room temperature superformed magnesium of Example 8 processed to a thickness of 1 mm. Sample drawing of the magnesium sheet after bending.
  • Example 8 when the room temperature superformability magnesium of Example 8 was processed into a magnesium plate having a thickness of 0.12 mm, the magnesium plate material was folded twice, and no cracks visible to the naked eye were observed after the development.
  • FIG. 14 is a graph showing the bending effect of the room temperature overmolding magnesium of Example 8 when processed into a magnesium plate having a thickness of 0.12 mm.
  • S1, S2, and S3 respectively indicate different operations
  • S1 means folding twice
  • S2 means first expansion
  • S3 means second expansion.
  • the conventional magnesium of Comparative Example 5 was bent into a magnesium plate having a thickness of 1 mm, and the magnesium plate was bent at 95°, and the conventional magnesium was processed in Comparative Example 5.
  • the magnesium plate is made into 0.12 mm, it is folded once and then expanded to find obvious cracks.
  • FIG. 15 is a sample view of the conventional magnesium of Comparative Example 5 after being bent into a magnesium plate having a thickness of 1 mm
  • Figure 16 is a view of the conventional magnesium of Comparative Example 5 when it was processed into a magnesium plate having a thickness of 0.12 mm. Fold effect. As shown in Fig. 16, S4 indicates folding once and S5 indicates expansion.
  • the room temperature superformability magnesium of the embodiment of the present invention subverts the conventional understanding that magnesium is difficult to process at room temperature, and obtains room temperature superformability by an extrusion process, and the room temperature superformability is passed through A large amount of cold deformation can also be maintained.
  • Example 7 In order to reveal the reason why magnesium has superformability at room temperature, the inventors characterized the microstructure of extruded samples of room temperature superformed magnesium of Comparative Example 5 and Example 7. These two samples consist of equiaxed grains and all have a strong texture.
  • the average crystal grain diameters of Comparative Example 5 and Example 7 were 82 ⁇ m and 1.3 ⁇ m, respectively. After the comparative example 5 of extrusion at 400 ° C was compressed or rolled at room temperature for 20%, the average crystal grain diameter of Comparative Example 5 was lowered to 56 - 61 ⁇ m due to the generation of twin crystals. In stark contrast, in the case of Example 7 after being compressed or rolled at room temperature for 50%, the size and shape of the crystal grains were not significantly changed. Even though the sample microstructure was characterized from different angles, the average grain size of the examples in this example was 1.1 - 1.2 ⁇ m. The texture of Example 7 was slightly stronger after cold deformation.
  • Example 7 Even if the sample of Example 7 was cold rolled to a thickness of 0.12 mm, its grain size and distribution were very similar to those of the extruded state. Further, the deformation amount of the extruded sample of Example 7 was 50%, which was much larger than the deformation amount of 20% of the extruded sample of Comparative Example 5, but the intragranular orientation difference of the extruded sample of Example 7 after 50% deformation The intragranular orientation difference of the extruded sample of Comparative Example 5 was much smaller than 20% after deformation. These phenomena indicate that the intragranular deformation of Example 7 of the present invention is very small during the deformation at room temperature.
  • 17 is a backscattered electron diffraction (EBSD) picture and a grain orientation spread GOS map picture of a conventional magnesium of Comparative Example 5.
  • 18 is a backscattered electron diffraction (EBSD) picture and a grain orientation spread GOS map picture of room temperature superformability magnesium of Example 7.
  • a shows the crystal grain shape and size of Comparative Example 5 in the as-extruded state
  • b represents the crystal grain shape and size of Comparative Example 5 at 20% room temperature compression
  • c represents Comparative Example 5: Grain shape and size after 20% cold rolling
  • d shows the difference in intragranular orientation after compression at room temperature in Comparative Example 5
  • e in the figure shows the difference in intragranular orientation after cold rolling in Comparative Example 5.
  • T indicates the position where twins appear.
  • f shows the crystal grain shape and size of Example 7 in the as-extruded state
  • g in the figure shows the grain shape and size of Example 7 at 50% room temperature compression.
  • the grain shape and size of Example 7 after 50% cold rolling are shown.
  • i shows the difference in intragranular orientation after compression at room temperature in Example 7
  • j in the figure shows the intragranular orientation after cold rolling in Example 7. difference.
  • Figure 19 illustrates the texture of Figure 17 under the (0001) pole figure.
  • Figure 20 illustrates the texture of Figure 18 under the (0001) pole figure.
  • a shows the texture of Comparative Example 5 in the extruded state
  • b shows the texture of Comparative Example 5 at 20% room temperature compression
  • c shows the Comparative Example 5 Texture after 20% cold rolling.
  • d shows the texture in the extruded state of Example 7
  • e shows the texture of Example 7 at 20% room temperature compression
  • f shows Example 7.
  • g in the figure shows the texture of Example 7 at 50% room temperature compression
  • h in the figure shows the texture of Example 7 after 50% cold rolling.
  • Figure 21 is a columnar distribution of grain size of a conventional magnesium of Comparative Example 5 in a pressed state.
  • Figure 22 is a graph showing the grain size distribution of conventional magnesium of Comparative Example 5 at 20% room temperature compression.
  • Figure 23 is a bar graph of grain size of conventional magnesium of Comparative Example 5 after 20% cold rolling.
  • Fig. 24 is a columnar distribution diagram of the grain size of the room temperature superformable magnesium of Example 7 in a pressed state.
  • Figure 25 is a graph showing the grain size distribution of the room temperature superformability magnesium of Example 7 when it was compressed at 50% room temperature.
  • Figure 26 is a graph showing the grain size distribution of the room temperature superformability magnesium of Example 7 after 50% cold rolling.
  • Comparative Example 5 As can be seen in conjunction with Figs. 21 to 26, the average crystal grain diameters of Comparative Example 5 and Example 7 were 82 ⁇ m (see Fig. 21) and 1.3 ⁇ m, respectively (see Fig. 24). Comparative Example 5 at 400 ° C extrusion After compression at room temperature or 20% cold rolling, the average grain diameter of Comparative Example 5 decreased to 56.1 (see Fig. 22) or 60.7 ⁇ m (see Fig. 23) due to twinning. In stark contrast, in the case of Example 7 after compression or rolling at room temperature for 50%, the size and shape of the crystal grains did not change significantly (see Figs. 25 and 26).
  • 27 to 30 are columnar distribution diagrams of EBSD images, GOS images, texture patterns, and grain sizes of the room temperature superformable magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm.
  • 27 is a backscattered electron diffraction (EBSD) picture of the room temperature superformable magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm;
  • FIG. 28 is a room temperature superformed magnesium of Example 7.
  • FIG. 29 is a columnar distribution diagram of the grain size of the room temperature superformed magnesium of Example 7 when processed into a magnesium plate having a thickness of 0.12 mm;
  • FIG. The room temperature superformability magnesium of Example 7 was textured under the (0001) pole figure when processed into a magnesium plate having a thickness of 0.12 mm.
  • the inventors of the present invention characterized the microstructure of the extruded sample of Example 7 before and after compression at room temperature by a method of quasi-in situ EBSD.
  • the inventors of the present invention found that after the sample was pressed down by 6%, a "new" crystal grain appeared (see c and d in Fig. 31, where the "new" crystal grain appears at the cross mark).
  • This "new” grain may be located below the grains 1-4 prior to compression, and this "new” grain rises to the sample surface by grain boundary sliding during compression. Of course, this grain is also likely to be formed by recrystallization. In this "new" grain, the observed difference in intragranular orientation may be due to intragranular deformation after recrystallization.
  • Figure 31 is a scanning electron micrograph of twin and slip actuation occurring in the room temperature deformation of Comparative Example 5. As shown in Fig. 31, a in the figure shows the twin crystals produced after compression of 20% at room temperature, and b in the figure shows the slip band produced by compression of the comparative example 5 at 20% room temperature.
  • Fig. 32 is a view showing the crystal grain change of the room temperature superformed magnesium of Example 7 in the room temperature at room temperature.
  • c in the figure shows the microstructure of Example 7 before compression at room temperature of 6%
  • d in the figure shows the microstructure of the region shown in Figure c after compression at 6% room temperature, in which e
  • KAM Kernel average orientation factor method
  • f represents the compression of the region shown in Fig. c by KAM scanning at 6% room temperature. After each grain.
  • the cross marks in d and f are the same position.
  • FIG. 34 is a view showing the microstructure and texture of the dynamic recrystallized grains in Figure 33
  • Figure 33 is a view showing the variation of the deformed grains in the high strain region of the room temperature superformed magnesium of Example 7 at room temperature. .
  • a is a quasi-in-situ EBSD pattern of Example 7 before compression at room temperature
  • b is an EBSD pattern of Example 7 after compression at room temperature, which reflects the local microstructure after compression.
  • the position of the frame in Figure b indicates that new and low-strained grains appear during compression.
  • c is the KAM pattern before compression at room temperature in Example 7, and the frame positions A1 and A2 in Figure c show compression.
  • the front high strain region, and d is the KAM pattern of Example 7 after compression at room temperature.
  • the inventors of the present invention found that since the crystal grains of Comparative Example 5 are coarse, the main deformation mechanism of Comparative Example 5 is intragranular slip and twinning; and for the present embodiment, the crystal grains of Example 7 are fine, and thus, Example 7
  • the main deformation mechanism is the grain boundary mechanism, including grain boundary sliding, grain rotation and dynamic recrystallization.
  • Figure 35 is a schematic view showing the change in microstructure of conventional magnesium of Comparative Example 5 before and after compression at room temperature.
  • a in the figure shows the microstructure of Comparative Example 5 before compression at room temperature
  • b in the figure shows the microstructure of Comparative Example 5 after compression at room temperature, as can be seen by combining a and b
  • the crystal grains of Comparative Example 5 were coarse, and thus the deformation mechanism was intragranular slip and twinning.
  • D represents intragranular slip
  • GB represents a grain boundary
  • X represents a twin boundary
  • L represents loading.
  • Figure 36 is a graph showing the change in microstructure of room temperature superformable magnesium of Examples 1-12 before and after compression at room temperature.
  • c shows the microstructure of Examples 1-12 before compression at room temperature
  • d shows the microstructure of Examples 1-12 after compression at room temperature, which can be seen by combining c and d.
  • the grain of the embodiment 1-12 is small, and thus the deformation mechanism is a grain boundary mechanism, including grain boundary sliding, grain rotation and dynamic recrystallization.
  • L represents loading
  • Drg dynamic recrystallized grains
  • P1 is a crystal orientation diagram legend
  • P2 is a grain orientation scatter diagram legend
  • P3 is a texture pole diagram
  • ED is a compression direction
  • CD is a compression direction
  • RD is a rolling direction
  • ND represents the normal direction
  • TD represents the lateral direction.
  • the coarse magnesium i.e., the conventional magnesium of the comparative example, the grain size of > 2 ⁇ m
  • the fine-grained magnesium that is, the room temperature superformability of the present case
  • Magnesium its grain size ⁇ 2 ⁇ m
  • its room temperature deformation mode is intragranular slip and twinning. Both of these deformation modes belong to intragranular deformation. In this case, weakening the texture and exciting more room temperature in-crystal deformation modes are important for improving room temperature formability.
  • the grain boundary slip When the grain size is reduced to 2 ⁇ m (i.e., room temperature superformability magnesium in this case), grain boundary slip, accompanied by grain rotation and dynamic recrystallization, becomes the main mode. Therefore, the intragranular strain will not accumulate to the extent that it can cause cracking. In this case, factors affecting the intragranular deformation such as texture, dislocation slip, twinning, etc. will become less important, thus making the room temperature superform magnesium or magnesium alloy and its profiles obtained in this case. Or the sheet material has excellent room temperature super-formability, and can be formed at room temperature, and the method for producing the room temperature super-formable magnesium or magnesium alloy is extremely simple and easy to apply, and can be applied in industrial production.
  • Examples 13-20 show magnesium alloys of several component types.
  • the trial production tests were carried out by using the corresponding process parameters in Table 1, and the average grain size structure listed in Table 2 was obtained, and the corresponding sample products were obtained. Both show better room temperature superformability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)

Abstract

一种室温超成形性镁或镁合金,其晶粒尺寸≤2微米。一种由上述的室温超成形性镁或镁合金的制造方法。该室温超成形性镁或镁合金运用简单的加工手段制备得到,克服室温成形差的问题。

Description

一种室温超成形性镁或镁合金及其制造方法 技术领域
本发明涉及一种金属或金属合金及其制造方法,尤其涉及一种成形性好的金属或金属合金及其制造方法。
背景技术
镁是我们日常生活中广泛可得的金属材料,它占地壳的2.7%。它可以从矿石或者海水中提取,精炼后纯度可以达99.8%。同时,镁是迄今为止发现的最轻的金属结构材料,其密度仅为1.74g/cm 3,为铝的2/3,钢的1/4。这个特征使得镁可以作为一种代替铝和钢的金属,广泛应用于汽车,航空,轨道交通领域。镁合金的使用可以节约能源从而降低运行成本。比如说,当汽车每减低100kg重量,每百公里燃油消耗量将减低0.38升,每公里CO 2排放量降低8.7g。但是,镁以及其合金的型材和板材的室温成形性一直不高。受此限制,镁合金板至今未在工业中广泛应用。
镁在室温下难以加工是由其本质决定的。镁的主要变形模式有基面滑移,柱面滑移,棱锥面滑移以及孪晶。除了基面滑移,其他的滑移系在室温下难以开动。在加工过程中,镁产生的强基面织构的逐渐形成使得基面滑移的开动愈发困难。而孪晶的开动取决于镁加工前的晶粒取向适不适合孪晶的开动,且孪晶即使开动,所能承载的应变量也不大,最大只有总应变量的8%。与此相比,铝及其铝合金具有室温高成形性,它们可以在室温下从铝板加工成易拉罐。与之相比镁及镁合金室温轧制中下压30%即会发生断裂。
迄今为止,添加合适的合金元素是提高镁室温成形性的主要手段。这是因为有些合金元素的添加可以弱化织构,或可以使得除基面滑移外的其他滑移体系在室温下更容易开动。然而即便如此,镁的室温成形性依旧不佳。虽然镁在经过大变形加工(如等角挤压)后,其晶界滑移作为额外变形模式可以在室温开动,但是其在室温压缩过程中最大下压量也仅只有20%。此外,由大变形加工出来的镁合金样品尺寸往往很小,不足以在工业上进行应用。
发明内容
本发明的目的之一在于提供一种室温超成形性镁,该室温超成形性镁针对现有技术中存在的镁室温成形性差的问题,运用简单的加工手段制备获得室温超成形性镁,使得本质上难以成形的镁变得室温成形好、易成形。
为了实现上述目的,本发明提出了一种室温超成形性镁,其晶粒尺寸≤2微米。
本案发明人通过大量实验研究发现,当镁的晶粒尺寸≤2微米时,传统上难以成形的镁或其镁合金变得具有室温超成形性,易成形。这是因为:在粗晶(晶粒尺寸远大于2微米)镁中,镁的室温变形模式为晶内变形,包括位错滑动和孪晶。受镁的六方结构影响,其晶内变形模式有限,不足以承载大量塑性变形,所以粗晶镁的室温成型性较差。而在本发明所述的室温超成形性镁或镁合金中,当镁的晶粒尺寸≤2微米时,镁的主要变形模式由晶内变形转为晶界变形,例如晶界滑动和晶粒的整体转动。在超细晶(晶粒尺寸≤2微米)镁的塑性变形中,这些晶界变形提供了额外的变形模式。与此同时,随着镁的晶粒尺寸的减小,晶界面积的增加,在室温塑性变形中动态再结晶更加容易发生,降低了晶内应变程度。晶界变形模式和室温动态再结晶的大量开动,使得超细晶镁的晶内应变无法累积到可以导致断裂的程度,从而导致了其室温超成形性的出现。
进一步地,在本发明所述的室温超成形性镁中,其晶粒尺寸≤1微米。
此外,本发明的另一目的在于提供一种室温超成形性镁合金,该室温超成形性镁合金在室温下成形性好。
为了实现上述目的,本发明提出了一种室温超成形性镁合金,其晶粒尺寸≤2微米。
进一步地,在本发明所述的室温超成形性镁合金中,其晶粒尺寸≤1微米。
进一步地,在本发明所述的室温超成形性镁合金中,所述室温超成形性镁合金含有铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一,铝、锌、钙、稀、银、锶、锆和稀土元素的至少其中之一的总质量百分含量≤1.5%。
相应地,本发明又一目的在于提供上述的室温超成形性镁的制造方法,通过该制造方法所获得的室温超成形性镁在制作为镁型材时具有较好的室温超 成形性。
为了实现上述目的,本发明提出了一种上述的室温超成形性镁的制造方法,所述室温超成形性镁被加工为镁型材,包括步骤:在20℃~150℃下挤压原料,挤压比为10:1~100:1,得到所述镁型材。
本案发明人通过大量研究发现,镁在不同温度的挤压过程中,均会发生动态再结晶,在此过程中,粗大的铸造组织将会转变为再结晶组织,而挤压温度是影响再结晶晶粒尺寸的主要因素。在常规挤压中(常规挤压温度一般高于300℃),镁的晶界容易移动,镁的动态再结晶晶粒形核后,会迅速长大至10–100微米左右。而在本发明所述的技术方案中,为了获得2微米以下的晶粒组织,需要控制挤压温度,使动态再结晶大量形核,但晶界移动的速度相对缓慢,从而控制再结晶晶粒的尺寸大小。
因此,在本发明所述的技术方案中,为了获得在室温超成形性镁中2微米以下的晶粒组织,控制挤压温度在20~150℃并且挤压比为10:1~100:1,从而获得所需的微观组织结构的镁型材。
上述方案中,将挤压比控制为10:1~100:1,是因为挤压比太大时需要的挤压抗力过大,设备实现困难;挤压比太小时,挤压后的材料变形程度不够,导致再结晶晶粒细化不够,达不到需要的晶粒尺寸。
需要说明的是,挤压比是指挤压前材料的截面积(例如圆柱形铸棒的圆形截面积)和挤压后材料的截面积之比。
在一些实施方式中,挤压温度控制在20-80℃,这是因为:本案发明人通过大量实验发现当挤压温度降低至80℃时,纯镁的晶粒尺寸为1.2微米左右。而进一步降低挤压温度,或者少量添加合金元素(例如铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一,铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一的总质量百分含量≤1.5%),将会进一步减缓再结晶晶粒的晶界移动速度,从而细化再结晶组织至1微米以下。
进一步地,在本发明所述的室温超成形性镁的制造方法中,挤压推杆速度为0.05mm/s~50mm/s。
需要说明的是,挤压推杆速度是指挤压过程中,挤压推杆向模具的运动速度。
相应地,本发明再一目的在于提供上述的室温超成形性镁的制造方法,通 过该制造方法所获得的室温超成形性镁在制作为镁板材时具有较好的室温超成形性。
为了实现上述目的,本发明提出了一种上述的室温超成形性镁的制造方法,所述室温超成形性镁被加工为镁板材,包括步骤:
(1)在20℃~150℃下挤压原料,挤压比为10:1~100:1;
(2)在20℃~100℃下轧制成镁板材。
在本案中,镁或镁合金的晶粒尺寸≤2微米的亚微米组织结构在冷轧过程中不会改变,因而,可以轧制成各种规格板材。但为了防止晶粒在高温下长大,因此,控制轧制温度在20℃~100℃轧制。
进一步地,在本发明所述的室温超成形性镁的制造方法中,在步骤(1)中,挤压推杆速度为0.05mm/s~50mm/s。
进一步地,在本发明所述的室温超成形性镁的制造方法中,所述镁板材的厚度为0.3mm~4mm或0.04mm~0.3mm。
考虑到实际应用产品的尺寸需求,本案中优选的镁板材厚度规格为0.3mm~4mm或0.04mm~0.3mm。
此外,本发明的另一目的在于提供上述的室温超成形性镁合金的制造方法,通过该制造方法所获得的室温超成形性镁合金在制作为镁合金型材时具有较好的室温超成形性。
为了实现上述目的,本发明提出了一种上述的室温超成形性镁合金的制造方法,所述室温超成形性镁合金被加工为镁合金型材,包括步骤:在20℃~150℃下挤压原料,挤压比为10:1~100:1,得到所述镁合金型材。
上述方案中,将相应的挤压比控制为10:1~100:1,是因为挤压比太大时需要的挤压抗力过大,设备实现困难;挤压比太小时,挤压后的材料变形程度不够,导致再结晶晶粒细化不够,达不到需要的晶粒尺寸。
进一步地,在本发明所述的室温超成形性镁合金的制造方法中,挤压推杆速度为0.05mm/s~50mm/s。
此外,本发明的又一目的在于提供一种上述的室温超成形性镁合金的制造方法,通过该制造方法所获得的室温超成形性镁合金在制作为镁合金板材时具有较好的室温超成形性。
为了实现上述目的,在本发明所述的室温超成形性镁合金的制造方法中, 所述室温超成形性镁合金被加工为镁合金板材,包括步骤:
(1)在20℃~150℃下挤压原料,挤压比为10:1~100:1;
(2)在20℃~100℃下轧制成镁合金板材。
进一步地,在本发明所述的室温超成形性镁合金的制造方法中,在步骤(1)中,挤压推杆速度为0.05mm/s~50mm/s。
进一步地,在本发明所述的室温超成形性镁合金的制造方法中,所述镁合金板材的厚度为0.3mm~4mm或0.04mm~0.3mm。
在以上所述的制造方法中,对于制造室温超成形性镁的情况,所用的“原料”是指“镁原料”,此种镁原料是镁金属单质,不具有≤2微米的晶粒尺寸,也不具有所需的优异的超成形性能;对于制造室温超成形性镁合金的情况,所用的“原料”是指“镁合金原料”,此种镁合金原料是镁金属与所述的合金元素(例如铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一,铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一的总质量百分含量≤1.5%)形成的合金,不具有≤2微米的晶粒尺寸,也不具有所需的优异的超成形性能。根据具体的模具和最终产品形状,所述镁原料或镁合金原料可以是任意所需的形状,例如圆柱形、正方体、长方体的锭块形式。
上述的“原料”在20℃~150℃的温度下以10:1~100:1的挤压比进行挤压之后,会得到镁型材或镁合金型材。如上文所述,通过该挤压操作之后的镁型材或镁合金型材具有所需的室温超成形性,其加工方式决定了获得的室温超成形性镁或室温超成形性镁合金为型材的形式。因此,在本发明中,术语“型材”、“镁型材”和“镁合金型材”表示经过挤压加工处理之后,具有所需的室温超成形性、并且为型材形式的室温超成形性镁或室温超成形性镁合金。
本发明所述的挤压操作是使用常规的挤压设备进行的,本发明的改进之处在于挤压操作中对温度和挤压比的精细设计。所述挤压设备可以按照需要进行任意的选择和改进,只要能够实现本发明所需的温度和挤压即可。本发明中所述的“20℃~150℃”的温度是正在经受挤压加工处理的镁/镁合金的温度,通过对该镁/镁合金进行加热来实现,或者通过对该镁合金块及其周围挤压设备的挤压筒、模具和推杆一起进行加热来实现。在本发明的一个实施方式中,所述推杆、挤压筒和模具均为模具钢制,模具型腔可以根据产品具体需求而定,具有凹腔和贯穿该模具的通孔,凹腔用来容纳镁原料或镁合金原料,通孔的截 面尺寸可以为渐减或恒定的,通过调节通孔截面尺寸和镁原料或镁合金原料截面尺寸来决定本发明具体限定的挤压比。所述推杆具有与挤压筒、模具的凹腔以及镁原料或镁合金原料的尺寸和形状相匹配的端部,用来在挤压过程中推挤镁原料或镁合金原料穿过挤压筒、模具凹腔和所述通孔,在形成型材的同时获得所需的室温超成形性。
在上述挤压操作获得具有室温超成形性的镁型材或镁合金型材之后,可以根据需要任选地在20℃~100℃下将其进一步轧制成镁板材。
本发明所述的室温超成形性镁或镁合金从根本上克服了镁在室温下难以成形加工的问题,且制得所述的室温超成形性镁或镁合金的制造方法成本低廉、生产效率高,可以直接应用于工业生产中。
附图说明
图1为不同温度下的实施例1、3以及7的室温超成形性镁和对比例1-5的常规镁在室温压缩测试中的真应力-真应变曲线。
图2为实施例7的室温超成形性镁和对比例5的常规镁在室温压缩测试中的真应力-下压量曲线。
图3为对比例5的常规镁在室温压缩测试中的测试前的样品图。
图4为对比例5的常规镁在室温压缩测试中的测试后的样品图。
图5为实施例7的室温超成形性镁在室温压缩测试中的测试前的样品图。
图6为实施例7的室温超成形性镁在室温压缩测试中的测试后的样品图。
图7为实施例8的室温超成形性镁在挤压态时的样品图。
图8为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材时的样品图。
图9为实施例8的室温超成形性镁在被加工成厚度为0.12mm的镁板材时的折弯效果。
图10为对比例5的常规镁挤压态时的样品图。
图11为对比例5的常规镁在冷轧至33%时的样品图。
图12为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材进行弯折前的样品图。
图13为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材进行 弯折后的样品图。
图14示意了实施例8的室温超成形性镁在被加工成厚度为0.12mm的镁板材时的弯折效果。
图15为对比例5的常规镁在被加工成厚度为1mm的镁板材进行弯折后的样品图。
图16为对比例5的常规镁在被加工成厚度为0.12mm的镁板材时的弯折效果。
图17为对比例5的常规镁的背散射电子衍射(EBSD)图片和晶内取向分布的扫描(grain orientation spread GOS map)图片。
图18为实施例7的室温超成形性镁的背散射电子衍射(EBSD)图片和晶内取向分布的扫描(grain orientation spread GOS map)图片。
图19示意了图17在(0001)极图下的织构。
图20示意了图18在(0001)极图下的织构。
图21为对比例5的常规镁在挤压态时的晶粒尺寸柱状分布图。
图22为对比例5的常规镁在20%室温压缩时的晶粒尺寸柱状分布图。
图23为对比例5的常规镁在20%冷轧后的晶粒尺寸柱状分布图。
图24为实施例7的室温超成形性镁在挤压态时的晶粒尺寸柱状分布图。
图25为实施例7的室温超成形性镁在50%室温压缩时的晶粒尺寸柱状分布图。
图26为实施例7的室温超成形性镁在50%冷轧后的晶粒尺寸柱状分布图。
图27为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的背散射电子衍射(EBSD)图片。
图28为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的GOS图片。
图29为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的晶粒尺寸柱状分布图。
图30示意了实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时在(0001)极图下的织构。
图31为对比例5在室温变形中出现的孪晶和滑移开动的扫描电镜图。
图32示意了本案实施例7的室温超成形性镁在室温压缩中的晶粒变化情 况。
图33示意了实施例7的室温超成形性镁在室温压缩中变形晶粒于高应变区域内的变化情况。
图34示意了图33中的动态再结晶晶粒的显微结构和织构。
图35为对比例5的常规镁在室温压缩前后的显微结构变化示意图。
图36为实施例1-12的室温超成形性镁在室温压缩前后的显微结构变化示意图。
图37为根据本发明一个实施方式示例性的挤压操作的示意图。
具体实施方式
下面将结合具体的实施例以及说明书附图对本发明所述的室温超成形性镁或镁合金及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例1-20以及对比例1-5
室温超成形性镁型材或镁合金型材的制造工艺包括步骤:在20℃~150℃下挤压原料,挤压比为10:1~100:1,挤压推杆速度为0.05mm/s~50mm/s,得到所述镁型材。
室温超成形性镁板材或镁合金板材的制造工艺包括步骤:
(1)在20℃~150℃下挤压原料,挤压比为10:1~100:1,挤压推杆速度为0.05mm/s~50mm/s;
(2)在20℃~100℃下轧制成镁板材。
其中,所述镁板材的厚度为0.3mm~4mm或0.04mm~0.3mm。
表1列出了实施例1-12的室温超成形性镁或镁合金的制造方法中的具体工艺参数。
表1.
Figure PCTCN2018106867-appb-000001
Figure PCTCN2018106867-appb-000002
表2列出了实施例1-20的室温超成形性镁或镁合金的晶粒尺寸。
表2.
编号 晶粒尺寸(μm)
实施例1 0.8
实施例2 0.8
实施例3 1.1
实施例4 1.2
实施例5 1.2
实施例6 1.2
实施例7 1.3
实施例8 1.3
实施例9 1.2
实施例10 1.4
实施例11 1.2
实施例12 1.4
实施例13 0.5
实施例14 1.2
实施例15 1.8
实施例16 2
实施例17 1.5
实施例18 0.1
实施例19 0.3
实施例20 0.8
为了验证本案的室温超成形性镁或镁合金的性能,在不同温度下采用挤压比19:1进行挤压,其中实施例1-2的挤压温度采用室温(25℃),实施例3-6的挤压温度采用65℃,实施例7-12的挤压温度采用80℃下,而对比例1的挤压温度采用160℃,对比例2的挤压温度采用200℃,对比例3的挤压温度采用250℃,对比例4的挤压温度采用300℃,对比例5的挤压温度采用400℃。在挤压前,实施例1-12和对比例1-5采用铸锭和模具上喷涂石墨涂料,用来降低挤压过程中的摩擦力。挤压后,对实施例1-4、7以及8和对比例1-5迅速水冷,随后进行室温压缩测试和冷轧。压缩测试中,压缩速度为0.6mm/min,冷轧过程中,单道次下压量为0.1mm,轧辊速度为15m/min。
经测试发现,当本案实施例1-4、7以及8的纯镁铸锭挤压后,这些多晶镁型材具有了室温超成形性。与之相对比的是,当对比例1-5的纯镁铸锭挤压后加工为型材,其型材的室温成形性差。对比例1-5在室温压缩测试中,最大的下压量为20–30%,且有很强的加工硬化现象。而本案各实施例的室温超成形性镁在加工成镁型材时在室温压缩中没有断裂,且未出现加工硬化现象,测试样品随着应变量逐渐增大而软化,这种软化现象意味着在室温压缩过程中,滑移和孪晶并不是主要的变形模式。这种软化现象往往和晶界滑移和/或动态再结晶有关,而在镁合金中,晶界滑移和动态再结晶往往发生在高温而非室温。
图1为不同温度下的实施例1、3以及7的室温超成形性镁和对比例1-5的常规镁在室温压缩测试中的真应力-真应变下压量曲线。如图1所示,曲线I至VIII显示了实施例1、3以及7的室温超成形性镁和对比例1-5的常规镁在真应力下的真应变情况。
图2为实施例7的室温超成形性镁和对比例5的常规镁在室温压缩测试中的真应力-下压量曲线,由图2可以看出,曲线XI所示的实施例7和曲线IX所示的对比例5在室温压缩测试时的受不同真应力情况下的下压量情况变化。
图3至图6示意了实施例7的室温超成形性镁和对比例5的常规镁在室温压缩测试中的测试前后形貌变化。图3为对比例5的常规镁在室温压缩测试中的测试前的样品图。图4为对比例5的常规镁在室温压缩测试中的测试后的样品图。图5为实施例7的室温超成形性镁在室温压缩测试中的测试前的样品图。图6为实施例7的室温超成形性镁在室温压缩测试中的测试后的样品图。
对比图3和图4可以看出,对比例5的常规没在室温压缩测试时发生了明显断裂现象,而结合图5和图6中可以看出,本案实施例7的室温超成形性镁在测试中没有断裂,且下压量显著大于对比例5,未出现加工硬化现象。
由此可以看出,本案实施例7的室温超成形性镁的室温成形性显著优于对比例5的常规镁。
图7至图16则用于验证实施例8的室温超成形性镁以及对比例5的常规镁在不同状态下的弯折效果。
将实施例8的室温超成形性镁挤压成镁方棒,并从厚度为3mm的挤压态轧制至厚度为1mm的镁板材,所获得的室温超成形性镁板材不产生边裂,而将该镁板材进一步轧制成厚度为0.12mm的镁板材。此时,镁板材从3mm轧制至0.12mm,导致了96%的下压量和3.2的真应变,大大高于传统的常规镁的最大冷轧下压量(30%),对应真应变为0.4。将该厚度为0.12mm的镁板材被剪成两段,分别被折成“m”和“g”的形状,由此可以看出,本案实施例8的室温超成形性镁在被加工为型材或板材时,均具有极佳的室温成形性,不易出现表面裂纹。
图7为实施例8的室温超成形性镁在挤压态时的样品图;图8为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材时的样品图;图9为实施例8的室温超成形性镁在被加工成厚度为0.12mm的镁板材时的折弯效果;图10为对比例5的常规镁挤压态时的样品图;图11为对比例5的常规镁在冷轧至33%时的样品图。
对比图8和图11可以看出,对比例5的常规镁在冷轧轧至33%时产生了大量边裂,并发生了断裂,而本案实施例8的室温超成形性镁却并无边裂,也没有任何断裂。
为了进一步验证本案实施例的室温超成形性,对实施例8的室温超成形性镁加工成厚度为1mm的镁板材进行弯折,弯折180°而不会发生断裂。
本案实施例8的室温超成形性镁加工成厚度为1mm的镁板材的弯折情况可参见图12和图13。图12为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材进行弯折前的样品图;图13为实施例8的室温超成形性镁在被加工成厚度为1mm的镁板材进行弯折后的样品图。
此外,将实施例8的室温超成形性镁加工成厚度为0.12mm的镁板材时,该镁板材可进行两次折叠,而展开后却无肉眼可见的裂纹。
本案实施例8的室温超成形性镁加工成厚度为0.12mm的镁板材时的弯折情况可参见图14。图14示意了实施例8的室温超成形性镁在被加工成厚度为0.12mm的镁板材时的弯折效果。如图14所示,图中S1、S2、S3分别表示不同操作,S1表示折叠两次,S2表示第一次展开,S3表示第二次展开。
相较于本案的实施例,对比例5的常规镁在被加工成厚度为1mm镁板材时,对该镁板材进行弯折,弯折95°即发生裂纹,而将对比例5的常规镁加工成0.12mm的镁板材时,折叠一次后,随后展开即可发现明显裂纹。
对比例5的常规镁加工成厚度为1mm的镁板材时的弯折情况可参见图15,而对比例5的常规镁加工成厚度为0.12mm的镁板材的弯折情况可参见图16。图15为对比例5的常规镁在被加工成厚度为1mm的镁板材进行弯折后的样品图;图16为对比例5的常规镁在被加工成厚度为0.12mm的镁板材时的弯折效果。如图16所示,S4表示折叠一次,S5表示展开。
由图7至图16可见,本案实施例的室温超成形性镁颠覆了对于镁在室温下难以加工的传统认识,通过挤压工艺从而获得了室温超成形性,且该室温超成形性在经过大量冷变形也可以得到保持。
为了揭示镁在室温下具有超成形性的原因,发明人表征了对比例5和实施例7的室温超成形性镁的挤压样品的显微结构。这两个样品由等轴晶组成,且都具有强织构。对比例5和实施例7的平均晶粒直径分别为82μm和1.3μm。400℃挤压的对比例5在室温被压缩或轧制20%后,由于孪晶的产生,对比例5 的平均晶粒直径降至56–61μm。与之截然不同的是,本案实施例7在室温被压缩或轧制50%后,晶粒的尺寸和形状均无显著改变。即使从不同的角度来表征样品显微结构,本案实施例的平均晶粒直径都是1.1–1.2μm。当冷变形过后,实施例7的织构稍微变强。
此外,即使实施例7的样品被冷轧至厚度为0.12mm后,其晶粒尺寸和分布与挤压态非常类似。另外,实施例7的挤压样品的变形量为50%,远大于对比例5的挤压的样品20%的变形量,但是50%变形后实施例7的挤压的样品的晶内取向差远小于20%变形后对比例5的挤压的样品的晶内取向差。这些现象说明在室温变形过程中,本案实施例7的晶内变形非常小。
关于对比例5和实施例7的显微结构变化可以参考图10至图12。而实施例7在被加工为厚度0.12mm的镁板材时的显微结构可参见图13。
图17为对比例5的常规镁的背散射电子衍射(EBSD)图片和晶内取向分布的扫描(grain orientation spread GOS map)图片。图18为实施例7的室温超成形性镁的背散射电子衍射(EBSD)图片和晶内取向分布的扫描(grain orientation spread GOS map)图片。
如图17所示,图中a示意了对比例5在挤压态时的晶粒形状和尺寸,图中b表示对比例5在20%室温压缩时的晶粒形状和尺寸,图中c表示对比例5在20%冷轧后的晶粒形状和尺寸,图中d表示了对比例5室温压缩后的晶内取向差,图中e表示了对比例5冷轧后的晶内取向差。图中T表示了孪晶出现位置。
如图18所示,图中f示意了实施例7在挤压态时的晶粒形状和尺寸,图中g表示了实施例7在50%室温压缩时的晶粒形状和尺寸,图中h表示了实施例7在50%冷轧后的晶粒形状和尺寸,图中i表示了实施例7室温压缩后的晶内取向差,图中j表示了实施例7冷轧后的晶内取向差。
图19示意了图17在(0001)极图下的织构。图20示意了图18在(0001)极图下的织构。
如图19所示,图中a表示了对比例5在挤压态时的织构,图中b表示了对比例5在20%室温压缩时的织构,图中c表示了对比例5在20%冷轧后的织构。
而如图20所示,图中d表示了实施例7的挤压态时的织构,图中e表示 了实施例7在20%室温压缩时的织构,图中f表示了实施例7在20%冷轧后的织构,图中g表示了实施例7在50%室温压缩时的织构,图中h表示了实施例7在50%冷轧后的织构。
图21为对比例5的常规镁在挤压态时的晶粒尺寸柱状分布图。图22为对比例5的常规镁在20%室温压缩时的晶粒尺寸柱状分布图。图23为对比例5的常规镁在20%冷轧后的晶粒尺寸柱状分布图。
图24为实施例7的室温超成形性镁在挤压态时的晶粒尺寸柱状分布图。图25为实施例7的室温超成形性镁在50%室温压缩时的晶粒尺寸柱状分布图。图26为实施例7的室温超成形性镁在50%冷轧后的晶粒尺寸柱状分布图。
结合图21至图26可以看出,对比例5和实施例7的平均晶粒直径分别为82μm(参见图21)和1.3μm(参见图24)。400℃挤压的对比例5在室温被压缩或20%冷轧后,由于孪晶的产生,对比例5的平均晶粒直径降至56.1(参见图22)或60.7μm(参见图23)。与之截然不同的是,本案实施例7在室温被压缩或轧制50%后,晶粒的尺寸和形状均无显著改变(参见图25和图26)。
图27至图30为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的EBSD图像、GOS图片、织构图以及晶粒尺寸的柱状分布图。其中,图27为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的背散射电子衍射(EBSD)图片;图28为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的GOS图片;图29为实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时的晶粒尺寸柱状分布图;图30示意了实施例7的室温超成形性镁在被加工为厚度为0.12mm的镁板材时在(0001)极图下的织构。
为了研究对比例5和实施例7的挤压样品在室温成形中的变形模式,本案发明人分别把它们的侧面(即平行于挤压方向的面)抛光,并将上述的样品分别在室温下进行压缩测试。本案发明人发现当对比例5的挤压的样品在下压20%后,其侧面出现了大量的孪晶和滑移开动的痕迹(参见图31中的a和b中,T和S标记处可观察到该现象)。而在压缩过的实施例7的挤压的样品的侧面,这些孪晶和滑移带没有被观测到。
为了探究实施例7的挤压样品在室温下的变形机制,本案发明人用准原位EBSD的方法,表征了实施例7的挤压样品在室温压缩前与压缩后的显微结构。 本案发明人发现在样品被下压6%后,出现了一个“新”的晶粒(参见图31中的c和d,d十字标记处显示了该“新”的晶粒出现位置)。这个“新”的晶粒在压缩之前可能位于晶粒1-4的下面,在压缩过程中,这个“新”的晶粒通过晶界滑动的方式升至样品表面。当然,这个晶粒也有可能通过再结晶形成。在这个“新”的晶粒中,所观察到的晶内取向差可能是由再结晶后的晶内变形所产生的。
图31为对比例5在室温变形中出现的孪晶和滑移开动的扫描电镜图。如图31所示,图中a示意了对比例5在20%室温压缩后产生的孪晶,而图中b示意了对比例5在20%室温压缩后产生的滑移带。
此外,图32示意了本案实施例7的室温超成形性镁在室温压缩中的晶粒变化情况。如图32所示,图中c示意了实施例7在6%室温压缩前的显微结构,而图中d示意了图c所示区域在6%室温压缩后的显微结构,图中e表示了对图c所示区域采用Kernel平均取向因子方法(以下简称KAM)扫描在6%室温压缩前的各个晶粒,图中f表示了对图c所示区域采用KAM扫描在6%室温压缩后的各个晶粒。图中d和f中的十字标记处为相同位置。
为了进一步研究实施例7的变形机制,在变形晶粒的高应变区域中出现的两个新晶粒,与所述的“新”的晶粒(即图32中d和f标示的十字标记处位置的晶粒)进行比较。在高应变区域中出现的两个新晶粒的晶内取向差非常低,意味着这两个新晶粒和他们周围的变形晶粒相比,晶内变形程度很低。而这种现象是动态再结晶发生的典型特征。在室温挤压纯镁的过程中,动态再结晶把晶粒尺寸从2mm细化至0.8μm,这个发现从侧面支持了实施例7的挤压样品在室温压缩过程中动态再结晶的发生。
而所述的两个晶粒的显微结构和织构可参见图34,经测定该晶粒直径为0.8微米。图34示意了图33中的动态再结晶晶粒的显微结构和织构,而图33示意了实施例7的室温超成形性镁在室温压缩中变形晶粒于高应变区域内的变化情况。
如图33所示,图中a为实施例7在室温压缩前的准原位EBSD图,图中b为实施例7在室温压缩后的EBSD图,其反映了压缩后的局部显微结构,图b中的框线位置表示新的并且具有低应变的晶粒在压缩过程中出现,图中c为实施例7在室温压缩前的KAM图,图c中框线位置A1和A2显示了压缩前的高应 变区域,而图中d为实施例7在室温压缩后的KAM图。
基于此,本案发明人发现由于对比例5的晶粒粗大,因而,对比例5的主要变形机制是晶内滑移和孪晶;而对于本案实施例7的晶粒细小,因而,实施例7主要变形机制为晶界机制,包括晶界滑动,晶粒转动和动态再结晶。
图35为对比例5的常规镁在室温压缩前后的显微结构变化示意图。
如图35所示,图中a示意了对比例5在室温压缩前的显微结构,而图中b示意了对比例5在室温压缩后的显微结构,结合a和b可以看出,由于对比例5的晶粒粗大,因而其变形机制为晶内滑移和孪晶。
图35中D表示晶内滑移,GB表示晶界,X表示孪晶界,L表示加载。
图36为实施例1-12的室温超成形性镁在室温压缩前后的显微结构变化示意图。
如图36所示,图中c示意了实施例1-12在室温压缩前的显微结构,图中d示意了实施例1-12在室温压缩后的显微结构,结合c和d可以看出,本案实施例1-12的晶粒细小,因而其变形机制为晶界机制,包括晶界滑动,晶粒转动和动态再结晶。
图36中L表示加载,Drg表示动态再结晶晶粒。
需要说明的是,上述图中P1为晶体取向图图例,P2为晶粒取向散布图图例,P3为织构极图图示,ED表示挤压方向,CD表示压缩方向,RD表示轧制方向,ND表示法向方向,TD表示横向方向。
此外,还需要说明的是,在上述方案中,所涉及的“20%室温压缩”中的“20%”是指压缩后的样品比压缩前的样品沿压缩方向高度减小20%,同样,“50%室温压缩”中的“50%”是指压缩后的样品比压缩前的样品沿压缩方向高度减小50%,而“20%冷轧”中的“20%”是指冷轧后的样品比冷轧前的样品沿下压方向高度减小20%,同样,“50%冷轧”中的“50%”是指冷轧后的样品比冷轧前的样品沿下压方向高度减小50%。
综上所述,结合本案各实施例和图1至图36可以看出,粗晶镁(即对比例的常规镁,其晶粒尺寸>2μm)和细晶镁(即本案的室温超成形性镁,其晶粒尺寸≤2μm)在室温变形过程中,即便二者有着类似的织构,也会由不同的变形机制所主导。对于粗晶镁来说,它的室温变形模式是晶内滑移和孪晶。这两种变形模式都属于晶内变形。在这种情况下,弱化织构和激发更多室温晶内 变形模式对于提高室温成形性非常重要。当晶粒尺寸减小到2μm(即本案的室温超成形性镁)时,晶界滑移,伴随着晶粒转动和动态再结晶,成为主要模式。因此,晶内应变将无法累积到可以导致断裂的程度。在这种情况下,那些影响晶内变形的因素如织构、位错滑移、孪晶等将变得不那么重要,因而使得本案的室温超成形性镁或镁合金及其制得的型材或板材均具有极佳的室温超成形性,在室温下即可进行成形加工,且该室温超成形性镁或镁合金的制造方法极其简单易行,可在工业生产上应用。
实施例13-20给出了几种成分类型的镁合金,通过采用表1中相应工艺参数进行了试制试验,获得了表2中列出的特征平均晶粒尺寸组织,其相应的样件产品均表现出具有较佳的室温超成形性。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (9)

  1. 一种室温超成形性镁或室温超成形性镁合金,其特征在于,其晶粒尺寸≤2微米。
  2. 如权利要求1所述的室温超成形性镁或室温超成形性镁合金,其特征在于,其晶粒尺寸≤1微米。
  3. 如权利要求1所述的室温超成形性镁或室温超成形性镁合金,其特征在于,所述室温超成形性镁合金含有铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一,铝、锌、钙、锡、银、锶、锆和稀土元素的至少其中之一的总质量百分含量≤1.5%。
  4. 如权利要求1所述的室温超成形性镁或室温超成形性镁合金,其特征在于,所述室温超成形性镁或室温超成形性镁合金通过权利要求5所述的方法制造。
  5. 一种制造方法,用来制造如权利要求1-3中任一项所述的室温超成形性镁或室温超成形性镁合金,
    所述室温超成形性镁或室温超成形性镁合金被加工为镁型材或镁合金型材,其特征在于,包括步骤:在20℃~150℃下挤压原料,挤压比为10:1~100:1,得到所述镁型材或所述镁合金型材。
  6. 如权利要求5所述的制造方法,其特征在于,挤压推杆速度为0.05mm/s~50mm/s。
  7. 如权利要求5所述的制造方法,其特征在于,所述室温超成形性镁或室温超成形性镁合金被加工为镁板材或镁合金板材,其特征在于,包括步骤:
    (1)在20℃~150℃下挤压原料,挤压比为10:1~100:1,得到所述镁 型材或所述镁合金型材;
    (2)在20℃~100℃下轧制成镁板材或镁合金板材。
  8. 如权利要求7所述的制造方法,其特征在于,所述镁板材或镁合金板材的厚度为0.3mm~4mm或0.04mm~0.3mm。
  9. 如权利要求5所述的制造方法,其特征在于,挤压温度为20℃~80℃。
PCT/CN2018/106867 2017-09-25 2018-09-21 一种室温超成形性镁或镁合金及其制造方法 WO2019057139A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020537831A JP7171735B2 (ja) 2017-09-25 2018-09-21 超高室温成形性を有するマグネシウムまたはマグネシウム合金およびその製造方法
RU2020113400A RU2809648C2 (ru) 2017-09-25 2018-09-21 Магний или магниевый сплав, обладающий сверхвысокой формуемостью при комнатной температуре, и способ его изготовления
CA3076849A CA3076849C (en) 2017-09-25 2018-09-21 Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
BR112020005257-4A BR112020005257B1 (pt) 2017-09-25 2018-09-21 Magnésio ou liga de magnésio tendo ultra-alta capacidade de conformação à temperatura ambiente e método de produção dos mesmos
AU2018337150A AU2018337150B2 (en) 2017-09-25 2018-09-21 Magnesium or magnesium alloy having ultra-high formability at room temperature and manufacturing method thereof
EP18858299.3A EP3690070A1 (en) 2017-09-25 2018-09-21 Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof
US16/649,867 US20200269297A1 (en) 2017-09-25 2018-09-21 Magnesium or magnesium alloy having high formability at room temperature and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710875802.0A CN109554645B (zh) 2017-09-25 2017-09-25 一种室温超成形性镁或镁合金及其制造方法
CN201710875802.0 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019057139A1 true WO2019057139A1 (zh) 2019-03-28

Family

ID=65810996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106867 WO2019057139A1 (zh) 2017-09-25 2018-09-21 一种室温超成形性镁或镁合金及其制造方法

Country Status (8)

Country Link
US (1) US20200269297A1 (zh)
EP (1) EP3690070A1 (zh)
JP (1) JP7171735B2 (zh)
CN (1) CN109554645B (zh)
AU (1) AU2018337150B2 (zh)
BR (1) BR112020005257B1 (zh)
CA (1) CA3076849C (zh)
WO (1) WO2019057139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527550B2 (en) 2018-11-02 2022-12-13 Micron Technology, Inc. Memory array and a method used in forming a memory array

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157966B (zh) * 2019-05-09 2021-04-23 宁夏中太镁业科技有限公司 一种镁合金锅及其制造方法
CN110284033B (zh) * 2019-08-05 2020-11-24 深圳市爱斯特新材料科技有限公司 一种高强度的Mg-Zn-Al基微合金化镁合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073152A (ja) * 1998-08-28 2000-03-07 Univ Osaka 繰り返し重ね接合圧延による超微細組織高強度金属板の製造方法
CN1981064A (zh) * 2004-06-30 2007-06-13 独立行政法人物质·材料研究机构 高强度和高延展性的镁合金及其制造方法
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法
CN102388157A (zh) * 2009-02-13 2012-03-21 荷兰应用自然科学研究组织Tno 生产镁合金基产品的方法
CN102703785A (zh) * 2012-04-27 2012-10-03 太原理工大学 一种高强度反向挤压Mg-Sn基合金及其制备方法
JP2014152361A (ja) * 2013-02-08 2014-08-25 National Institute For Materials Science 延性を備えた超高強度マグネシウム展伸合金
CN105142687A (zh) * 2013-02-15 2015-12-09 波士顿科学国际有限公司 用于内假体的生物溶蚀性镁合金微结构
CN105483484A (zh) * 2016-02-04 2016-04-13 哈尔滨工业大学(威海) 制造各向同性高强度变形镁合金的方法
CN106282623A (zh) * 2016-11-18 2017-01-04 扶绥县科学技术情报研究所 耐高温稀土镁合金的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096549A (ja) * 2001-09-25 2003-04-03 Kenji Azuma 機械的性質及び衝撃延性に優れた合金及びその製造方法
WO2008117890A1 (ja) 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha Mg合金およびその製造方法
KR20100106137A (ko) * 2009-03-23 2010-10-01 주식회사 지알로이테크놀로지 저온에서 고속 성형능이 우수한 가공재 마그네슘-아연계 마그네슘 합금과 그 합금 판재의 제조방법
JP6099257B2 (ja) * 2013-02-07 2017-03-22 国立研究開発法人物質・材料研究機構 マグネシウム基合金薄板及び箔材並びにそれらの製造方法
CN103706666B (zh) 2013-12-27 2015-10-28 常熟致圆微管技术有限公司 一种超细晶粒医用高纯镁管制造方法
CN103892884B (zh) * 2014-04-17 2016-02-24 苏州奥芮济医疗科技有限公司 一种可定向降解吸收的金属血管夹及其制备方法
CN104018050B (zh) 2014-06-18 2016-09-28 中国科学院长春应用化学研究所 一种稀土镁合金的制备方法
JP2016017183A (ja) 2014-07-04 2016-02-01 国立研究開発法人物質・材料研究機構 マグネシウム基合金展伸材及びその製造方法
JP6489576B2 (ja) 2014-11-06 2019-03-27 国立研究開発法人物質・材料研究機構 マグネシウム基合金伸展材の製造方法
CN105603341B (zh) * 2016-02-04 2017-08-04 哈尔滨工业大学(威海) 制造高塑性/成形性变形镁合金板材的方法
JP6803574B2 (ja) * 2016-03-10 2020-12-23 国立研究開発法人物質・材料研究機構 マグネシウム基合金伸展材及びその製造方法
CN106048269B (zh) * 2016-07-25 2018-02-23 北京工业大学 一种小变形量制备大块纳米晶镁合金的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073152A (ja) * 1998-08-28 2000-03-07 Univ Osaka 繰り返し重ね接合圧延による超微細組織高強度金属板の製造方法
CN1981064A (zh) * 2004-06-30 2007-06-13 独立行政法人物质·材料研究机构 高强度和高延展性的镁合金及其制造方法
CN102388157A (zh) * 2009-02-13 2012-03-21 荷兰应用自然科学研究组织Tno 生产镁合金基产品的方法
CN101768689A (zh) * 2010-01-28 2010-07-07 西安理工大学 一种高强超韧低密度镁合金及其制备方法
CN102703785A (zh) * 2012-04-27 2012-10-03 太原理工大学 一种高强度反向挤压Mg-Sn基合金及其制备方法
JP2014152361A (ja) * 2013-02-08 2014-08-25 National Institute For Materials Science 延性を備えた超高強度マグネシウム展伸合金
CN105142687A (zh) * 2013-02-15 2015-12-09 波士顿科学国际有限公司 用于内假体的生物溶蚀性镁合金微结构
CN105483484A (zh) * 2016-02-04 2016-04-13 哈尔滨工业大学(威海) 制造各向同性高强度变形镁合金的方法
CN106282623A (zh) * 2016-11-18 2017-01-04 扶绥县科学技术情报研究所 耐高温稀土镁合金的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAGNESIUM ALLOY FABRICATION AND PROCESSING TECHNOLOGY, 31 May 2007, ISBN: 978-7-5024-4229-3, article XU HE ET AL.: "Passages, Magnesium alloy preparation and processing technology", pages: 11,211 - 212, XP009519760 *
See also references of EP3690070A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11527550B2 (en) 2018-11-02 2022-12-13 Micron Technology, Inc. Memory array and a method used in forming a memory array

Also Published As

Publication number Publication date
BR112020005257B1 (pt) 2023-11-14
JP2020534443A (ja) 2020-11-26
RU2020113400A3 (zh) 2022-04-04
AU2018337150A1 (en) 2020-03-26
CN109554645A (zh) 2019-04-02
JP7171735B2 (ja) 2022-11-15
AU2018337150B2 (en) 2021-11-04
EP3690070A4 (en) 2020-08-05
CA3076849A1 (en) 2019-03-28
RU2020113400A (ru) 2021-10-27
CN109554645B (zh) 2021-04-13
BR112020005257A2 (pt) 2020-09-15
US20200269297A1 (en) 2020-08-27
CA3076849C (en) 2024-01-16
EP3690070A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
Li et al. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures
Terada et al. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process
Feng et al. Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging
Konkova et al. Microstructural response of pure copper to cryogenic rolling
WO2019057139A1 (zh) 一种室温超成形性镁或镁合金及其制造方法
Oñorbe et al. High-temperature mechanical behavior of extruded Mg-Y-Zn alloy containing LPSO phases
Balog et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network
Huang et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate
Stolyarov et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing
Wang et al. Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation
CN102933730B (zh) 镁合金
Jia et al. Role of pre-width reduction in deformation behavior of AZ31B alloy during break-down rolling and finish rolling
Fatemi-Varzaneh et al. EBSD characterization of repetitive grain refinement in AZ31 magnesium alloy
Wu et al. Microstructure and mechanical properties of ZK21 magnesium alloy fabricated by multiple forging at different strain Rates
Kim et al. Synthesis of high-strain-rate superplastic magnesium alloy sheets using a high-ratio differential speed rolling technique
Chen et al. The influence of cryoECAP on microstructure and property of commercial pure aluminum
Zheng et al. Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning
Zhang et al. Influence of anisotropy of the magnesium alloy AZ31 sheets on warm negative incremental forming
Shi et al. Reduction effect of final-pass heavy reduction rolling on the texture development, tensile property and stretch formability of ZWK100 alloy plates
Wu et al. Effect of rolling temperature on the microstructure and mechanical properties of AZ31 alloy sheet processed through variable-plane rolling
WO2018030231A1 (ja) 純チタン金属材料薄板の製造方法およびスピーカ振動板の製造方法
RU2809648C2 (ru) Магний или магниевый сплав, обладающий сверхвысокой формуемостью при комнатной температуре, и способ его изготовления
Fatemi-Varzaneh et al. Discontinuous dynamic recrystallization during accumulative back extrusion of a magnesium alloy
Li et al. The influence of annealing temperature on the compressive deformation and damage behavior of ultrafine grained iron
Mingler et al. TEM investigations of Titanium processed by ECAP followed by cold rolling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3076849

Country of ref document: CA

Ref document number: 2020537831

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018337150

Country of ref document: AU

Date of ref document: 20180921

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858299

Country of ref document: EP

Effective date: 20200428

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005257

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005257

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200317