WO2019056713A1 - 激光溶覆装置 - Google Patents

激光溶覆装置 Download PDF

Info

Publication number
WO2019056713A1
WO2019056713A1 PCT/CN2018/078736 CN2018078736W WO2019056713A1 WO 2019056713 A1 WO2019056713 A1 WO 2019056713A1 CN 2018078736 W CN2018078736 W CN 2018078736W WO 2019056713 A1 WO2019056713 A1 WO 2019056713A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
wire feeder
disposed
focusing mirror
bracket
Prior art date
Application number
PCT/CN2018/078736
Other languages
English (en)
French (fr)
Inventor
刘凡
傅戈雁
吉绍山
石拓
石世宏
鲁健
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2019056713A1 publication Critical patent/WO2019056713A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/005Soldering by means of radiant energy
    • B23K1/0056Soldering by means of radiant energy soldering by means of beams, e.g. lasers, E.B.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • B23K3/063Solder feeding devices for wire feeding

Definitions

  • the invention relates to a laser cladding device and belongs to the field of laser processing.
  • Laser cladding is a laser surface modification technology that adds a coating material (powdering, wire feeding, presetting, etc.) to the surface of a workpiece (or a base material).
  • the cladding material and the surface of the substrate are heated by high-energy density laser.
  • the thin metal quickly reaches the molten state, and at this time, the heat of the workpiece itself is rapidly solidified into a coating layer to obtain a modified layer or a repair layer which is metallurgically bonded to the matrix material and has a low dilution rate and various characteristics.
  • Cida Patent Publication No. CN2608209Y discloses a wire feeder for laser cladding, which is characterized in that it comprises a frame (1), a pinch wheel pair (2), a motor (3) and a speed reducer (4), wherein The motor (3) and the speed reducer (4) are fixed on the frame (1), the output shaft of the motor (3) is connected with the input shaft of the speed reducer (4), and the driving wheel of the pinch wheel pair (2) is fixed.
  • the driven wheel On the output shaft of the speed reducer (4), the driven wheel is mounted on the side of the driving wheel, and the wire for laser cladding is fed under the pinch of the driving wheel and the driven wheel, and the slave of the pinch wheel pair (2)
  • the moving wheel is installed on the tail of the upper frame (1) and the feeding wire of the pinch wheel pair (2), which can adjust the distance between the driven wheel and the driving wheel, and can ensure a certain pressure feeding force.
  • the straightening mechanism comprises a plurality of straightening rollers (5) arranged in two rows, wherein the wire feeding conduit (6) is fixed on the frame (1)
  • the upper frame (1) is further provided with an angle adjusting and hanging mechanism (8) for fixedly mounting on the focusing mirror of the laser cladding processor.
  • Protective gas It can only be blown laterally, its blowing pressure on the molten pool is uneven, the airflow is disordered, and the protection effect is poor.
  • Cida Patent Publication No. CN201390782Y discloses a wire feeding device for a laser cladding system, which comprises a bracket (2) and a wire feeder (6), and the carrier (2) is provided with a pinch roller pair
  • the driving wheel (31) of the pinch roller pair is connected to an output shaft of a motor (8), and the motor (8) is fixed on the bracket (2); characterized in that: the motor (8)
  • the stepper motor (8) is connected to the controller of the laser cladding system; the wire feeder (6) is connected to the bracket (2) via a three-dimensional adjuster (5).
  • a laser cladding molding apparatus including a CNC numerical control working platform, the CNC numerical control working platform is provided with a worktable capable of performing X-Y ⁇ Z three-dimensional motion, a laser device is fixed above the workbench, the laser beam output end of the laser device is opposite to the workbench, and further comprises a wire feeding device and a control system;
  • the wire feeding device comprises a bracket and a wire feeder, wherein the bracket a pair of pinch roller wheels is disposed, and the driving wheel of the pinch roller pair is connected to an output shaft of a stepping motor, the stepping motor is fixed to the bracket, and the wire feeder passes through a three-dimensional regulator
  • the bracket is connected;
  • the control system includes a motion control module provided with motion control software, the motion control module is provided with a multi-axis motion control card, and the multi-axis motion control card and the stepper motor and the drive table respectively A drive motor connection of the X-Y-Z three-dimensional
  • a laser cladding synchronous moving universal wire feeding device comprising an optical head and a laser molten pool located under the optical head, characterized in that: one side of the optical head is fixedly connected with a cross bar, and the horizontal The rear end of the rod is hinged with an upper link, the bottom end of the upper link is rotatably connected with a lower link, and the bottom end of the lower link is hinged with a guide nozzle fixing connecting rod, and the guiding nozzle is fixed on the connecting rod There is a laterally disposed guide nozzle through which the wire passes and extends into the laser bath.
  • the above laser coating device has the following problems: an integrated laser coating device that fails to effectively integrate the wire feeding structure and is adjustable, is not conducive to saving space, and increases the wire feeding length, resulting in excessive sliding distance of the wire during the conveying process. Poorness, the cladding work cannot be effectively carried out, and the shape and dimensional accuracy of the cladding layer with high precision cannot be ensured.
  • the object of the present invention is to provide a laser coating device, which integrates the wire feeder, the nozzle and the support base together, which is beneficial to saving the size and space of the entire laser coating device and reducing the wire transmission distance.
  • the wire transmission stability is ensured, and the shape and dimensional accuracy of the cladding layer with high precision are ensured.
  • a laser coating device comprising: a wire feeder and a nozzle, the wire feeder and the nozzle being integrally disposed through a connecting bracket, the nozzle head being disposed under the bracket, The wire feeder is disposed above the bracket through a connecting bracket.
  • the connecting bracket comprises: a body, a first extending portion and a second extending portion, wherein the first extending portion extends along a plane of the body, and the second extending portion extends in a vertical direction along a plane of the body.
  • first extension portion is coupled to the wire feeder
  • body is coupled to the showerhead
  • second extension is coupled to a robot or associated device.
  • connection structure is disposed between the first extension portion and the wire feeder, and the connection structure is a ⁇ type structure portion, and the ⁇ type structure portion is disposed between the wire feeder and the connection bracket.
  • the ⁇ -shaped structure is composed of an opening portion and a connecting portion, and the opening portion has a height higher than a height of the connecting portion.
  • the laser coating device further includes a shockproof gasket disposed between the wire feeder and the connection bracket.
  • the shower head includes a sealing structure and a nozzle
  • the sealing structure includes a support base, a support cover, and a beam splitter and a reflection focusing mirror disposed inside the support base and the support cover, the splitter mirror and the reflective focusing mirror being coaxial
  • the beam splitter includes at least two beam splitting mirrors, the beam splitting mirror surface is a plane or an arc surface; the reflective focusing mirror has a focusing mirror surface facing the beam splitting mirror surface, the focusing mirror surface is an arc mirror surface, or the focusing The mirror surface is composed of a plurality of curved mirrors.
  • the reflective focusing mirrors are three, and the three reflective focusing mirrors are evenly distributed around the beam splitter.
  • the beam splitter receives the incident beam and reflects the incident beam to form a reflected beam
  • the reflective focusing mirror receiving the reflected beam and converting the reflected beam into a focused beam
  • the support base is further provided with a first cooling system for circulating a cooling medium to cool the reflective focusing mirror and a second cooling system for circulating a cooling medium to cool the spectroscope.
  • the wire feeder and the nozzle are arranged up and down, and the entire device takes up less space and is more compact in the process of yaw cladding, which is more favorable for cladding work in a narrow space;
  • the flexible wire is connected between the wire feeder and the bracket to generate additional vibration during the start, stop and movement of the wire feeder, which can be effectively eliminated by using the flexible member;
  • the integrated setting of the wire feeder can avoid the long length of the wire feeding hose, which leads to the relatively large resistance of the wire during the transportation process, which easily leads to the sliding of the wire material, which makes the cladding work unable to be effectively deployed, and cannot guarantee high precision.
  • FIG. 1 is a schematic view showing the three-dimensional structure of a laser coating device of the present invention.
  • FIG. 2 is a schematic view of a wire feeder of the laser coating device of the present invention.
  • FIG. 3 is a schematic view showing the straightening structure and the wire feeding structure of the laser coating device of the present invention.
  • FIG. 4 is a schematic structural view of a connecting bracket of a laser coating device according to the present invention.
  • FIG. 5 is a schematic structural view of a joint gasket of a laser coating device according to the present invention.
  • Figure 6 is a partial view of the support base and the spray head of the laser cladding device of the present invention.
  • Figure 7 is a partially exploded view of a portion of the structure of Figure 6.
  • Figure 8 is a partially exploded view of a portion of the structure of Figure 7.
  • Figure 9 is a partially exploded view of the spray head of Figure 6.
  • Figure 10 is a partially exploded view of the adjustment bracket of Figure 6.
  • Figure 11 is an exploded view of the structure of the support base and the adjustment bracket of Figure 6.
  • Figure 12 is an exploded view showing the structure of the support cover and the adjustment bracket of Figure 6.
  • Figure 13 is an exploded view of the connector of Figure 6.
  • Figure 14 is an exploded view of the structure of the beam splitter, the support base, and the adjustment bracket of Figure 6.
  • Figure 15 is a diagram showing the relationship between the reflection focusing mirror and the beam splitter in the base surface of Figure 6.
  • Figure 16 is a schematic view showing the sealing structure of the laser cladding device of the present invention.
  • Figure 17 is a schematic view showing the structure of a gasket of a laser cladding device of the present invention.
  • the laser cladding device of the present invention comprises a wire feeder 110 and a spray head 2 , wherein the wire feeder 110 and the spray head are integrally disposed through a connection bracket 140 , and the spray head 2 is disposed.
  • the wire feeder 110 is disposed above the connection bracket 140.
  • the connection bracket 140 connects the wire feeder 110 and the nozzle 2, and the connection bracket 140 includes a body 143, a first extension portion 141, and a second extension.
  • the first extending portion 141 extends along the plane of the body 143, and the second extending portion 142 extends in a vertical direction along the plane of the body 143, wherein the 142 surface is mainly connected with the robot or the cladding device driving device to realize the nozzle.
  • the first extension 141 is coupled to the wire feeder 110
  • the body 143 is coupled to the showerhead
  • the first extension 141 is coupled to the wire feeder 110 to further include a connection structure 130.
  • the connection structure 130 is a ⁇ -shaped structure portion 132.
  • the ⁇ -shaped structure portion 132 is disposed between the wire feeder 110 and the connection bracket 140.
  • the ⁇ -shaped structure 132 is composed of an opening portion 133 and a connection portion 134.
  • the height of the opening portion 133 is higher than the height of the connection portion 134. It also includes a shock pad 135.
  • the anti-vibration pad 135 is disposed at a connection between the wire feeder 110 and the connection bracket 140.
  • the nozzle includes a sealing structure including a support base 1, a support cover 8, a shutter 811, a connector 10, and a light pipe 9.
  • the upper sealing gasket 171 and the lower sealing gasket 172 are sealed, and the light transmitting mirror 170 is formed to form a sealed space inside the nozzle.
  • Related structures such as a spectroscope, a focusing mirror, and a focusing mirror holder are disposed inside the space.
  • the guide wire tube 119 passes through the support base 1 and is sealed by using the upper sealing gasket 171 and the lower sealing gasket 172, and the light outlet 160 disposed on the support base 1 is sealed and disposed at the light exit position, so that the light beam can be Transmitted.
  • the sealing structure effectively prevents the dust and smoke from being splashed into the spectroscope and the focusing mirror inside the nozzle during the welding, thereby effectively improving the service life of the lens and improving the precision of reflection and focusing of the lens.
  • the position of the wire feeder output guide nozzle and the position of the wire receiving flexible wire shaft inside the nozzle change, which easily causes the wire feeding hose to be twisted, resulting in the internal resistance of the wire in the wire feeding hose.
  • the sealing gasket 171 and the lower sealing gasket 172 on the guide wire not only play a role of sealing, but also play a role of fine adjustment, when sent
  • the wire hose is completely docked to the nozzle and the wire feeder, in order to ensure that the wire feeding hose is not twisted, it is necessary to finely adjust the position of the wire feeder or the nozzle relative to the wire feeding hose, and the position of the hose will change accordingly when the position is adjusted. Then, the upper gasket 171 and the lower gasket 172 fixed to the hose are required to be finely adjusted.
  • the wire feeder 110 and the connecting structure 130 are connected by bolts.
  • the connecting structure 130 and the first extending portion 141 of the connecting bracket 140 are connected by bolts.
  • the supporting cover 8 and the body 143 of the connecting bracket 140 are connected.
  • the connections are all bolted, but are not limited to a bolt connection.
  • a laser coating device 100 includes a sealing structure and a shower head 2, and the above-mentioned components are arranged as an integral structure through a connecting bracket 140.
  • a connection structure 130 is further provided at a joint between the wire feeder 120 and the connecting bracket 140, and is connected.
  • the structure 130 is a wedge-shaped structure, and the wedge-shaped structure is a connecting member having a certain inclination angle, so that the wire feeding direction of the wire feeder 120 is along the direction of the head; the beneficial effects are as follows:
  • the laser coating device 100 is an integrated structure, which saves space;
  • the wire feeder 110 is integrally arranged to avoid the long length of the wire feeding hose, which causes the wire material to have a relatively large resistance during the transportation process, which easily causes the wire material to slide unsmoothly, so that the cladding work cannot be effectively deployed, and the high precision cannot be ensured.
  • the wire feeding hose will be bent, resulting in different frictional resistance of the wire during the conveying process, resulting in a change in the speed of the wire after leaving the nozzle. Therefore, the shape and dimensional accuracy of the cladding layer with high precision cannot be ensured. If the bending radius of the hose is small, it is easy to cause the problem of the wire jam, resulting in failure to work properly. Now the nozzle and the wire feeder can be integrated together. The above problems are completely solved, the wire feeding speed is stabilized, the cladding space is reduced, and the cladding work can be performed in a small space.
  • the wire feeder of the laser coating device comprises: a bearing portion 116, a straightening structure 117 and a wire feeding structure 118, which further comprises a wire tray support 112 and a wire disposed on the wire tray support
  • the disc 111, the straightening structure 117, the wire feeding structure 118 and the wire tray support 112 are fixed to the carrying portion 116 by bolts, the wire feeding structure 118 comprising a driving structure 115, a driving wheel 1177 and an adjusting device, the driving structure 115 includes a servo motor and a speed reducer.
  • the driving structure is coupled to the driving wheel 1177.
  • the adjusting device includes a pressing rod 2179, a handle 1178, and a moving pulley 1172.
  • the pressing rod 2179 is a triangular structure including three apex angles.
  • the three top corners are respectively provided with a fixing portion, a movable pulley 1172 and a through hole.
  • the fixing portion is fixedly disposed on the carrying portion 116 by bolts, and the movable pulley 1172 is fixed to one of the top corners of the three top corners by bolts.
  • the through hole is connected to a screw extending on the bearing portion 116 and extending parallel to the plane of the bearing portion 116.
  • the handle 1178 is a hollow structure that fits the fixing bolt; when used, the handle 1178 can be rotated.
  • the length of the screw extending from the handle 1178 and the fixing bolt is increased or decreased, thereby adjusting the position of the movable pulley 1172 provided on the pressing rod 2179.
  • the driving wheel 1177 is opposite to the moving pulley 1172 provided on the pressing rod 2179, and the regulating pressure is adjusted.
  • the position of the movable pulley 1172 provided on the rod 2179 can adjust the distance between the driving wheel 1177 and the movable pulley 1172, effectively fastening the wire to prevent the wire from sliding, and preventing the wire from being uneven.
  • the driving wheel 1177 is provided with two wire feeding grooves, and the fixed pulley 1171 and the movable pulley 1172 are bolted to the carrying portion 116, and the wire feeding passage is adjusted by adjusting the position of the bolt to match the two wire feeding grooves of the driving wheel 1177, thereby adjusting the wire feeding passage. Transmission of different specifications of wire.
  • the wire feeding structure of the laser coating device of the invention can satisfy the use of different wire materials, and has an adjusting structure, so that the wire feeding machine works stably and the wire output is stable.
  • the straightening structure 117 includes a pressing rod 1173, a fixing member 1174, a fixing portion, a movable pulley 1172, a fixed pulley 1171, a screw 1175, and an adjusting nut 1176.
  • the end of the pressing rod 1173 is provided with a movable pulley 1172 at one end.
  • the fixing member 1175 is fixedly disposed on the carrying portion 116.
  • the fixing member 1175 includes a fixing portion and a through hole.
  • the fixing portion is disposed on the carrying portion 116 by a bolt.
  • the screw 1175 passes through the through hole of the fixing member 1174 to connect the pressing rod 1173.
  • the fixing member 1174 and the pressing rod 1173 portion where the screw 1175 is located are provided with an adjusting nut 1176, and the distance between the fixing member 1174 and the pressing rod 1173 is increased by rotating the adjusting nut 1176.
  • One end of the pressing rod 1173 is fixedly disposed at When the distance between the fixing member 1174 and the pressing rod 1173 is increased, the movable pulley 1172 provided at the other end of the pressing rod 1173 is moved away from the fixing member 1174 by the pressing rod 1173, thereby adjusting the movable pulley. 1172 location.
  • the straightening structure comprises three fixed pulleys 1171 arranged in the same straight line along the wire conveying direction, and also includes two pressing bars 1173, fixing members 1174, moving pulleys 1172, screws 1175 and adjustments.
  • the adjustment structure of the nut 1176 after the wire enters the straightening structure 117, the first straightening is realized by the first movable pulley 1172, the two fixed pulleys 1171, and the second time is realized by the second movable pulley 1172 and the two fixed pulleys 1171.
  • Straightening the structure of five pulleys, two moving pulleys 1172 and three fixed pulleys 1171, can effectively improve the straightening efficiency, one pass, the straightening effect is better, further, in this embodiment, the first time
  • the staggered depth of the straightening fixed pulley 1171 and the movable pulley 1172 is greater than the staggered depth of the second straighter fixed pulley 1171 and the movable pulley 1172.
  • All of the fixed pulleys 1171 and the movable pulleys 1172 described above are both pulley structures provided with V-grooves. Further, each of the pulleys is slid on the screws to conduct different wires, and the pressure-reducing rods 1173 and fixed are adjusted. The distance of piece 1174 to adjust the straightening effect.
  • the carrying portion 116 includes: a carrying panel, further comprising: an upper extending carrying structure 1161 and a lower extending carrying structure 1163 disposed on the carrying panel and perpendicular to the direction of the carrying panel, the upper extending An upper through hole 1162 is disposed on the supporting structure 1161.
  • the lower extending bearing 1163 is provided with a lower through hole 1164.
  • the upper through hole 1162 and the lower through hole 1164 are columnar through holes, and are correspondingly disposed.
  • the wire feeder 110 further includes an upper guide wire 113 and a lower guide wire 114.
  • the upper guide wire 113 and the lower guide wire 114 are hollow bolt structures, and the upper guide wire 113 passes through the upper and lower screws.
  • the cap and the gasket are tightly disposed in the upper through hole 1162.
  • the lower guide wire 114 is disposed in the lower through hole 1164 through the upper and lower nuts and the gasket, and the columnar through hole can be adjusted by adjusting the upper and lower nuts and the gasket.
  • the positions of the upper guide wire 113 and the lower guide wire 114 are adjusted.
  • the V-shaped groove of the fixed pulley 1171 and the movable pulley 1172 of the straightening structure 117 is dealt with, and at the same time, the V-shaped groove of the driving wheel 1177 and the movable pulley 1172 in the wire feeding structure 118 is correspondingly
  • the wire guide 114 is positioned such that the wires are on the same straight line, and the different wire materials are adjusted by adjusting the upper wire guide 114, the movable pulley 1172, the fixed pulley 1171, the driving wheel 1177 and the lower guide wire 114, corresponding to different V-grooves.
  • the width completes the straightening and wire feeding process for different wires.
  • the laser cladding apparatus of the present invention includes a support base 1 and a nozzle 2 located below the support base 1.
  • the support base 1 has a cylindrical shape, and the support base 1 has an upper surface 14 , and the upper surface 14 is provided with an adjustment bracket 5 , and the upper surface 14 is concavely formed with a beam splitter groove for fixing the beam splitter 15.
  • the recess is formed with a bracket recess for fixing each of the adjustment brackets 5 and a light outlet 160 penetrating the support base.
  • the support base 1 is provided with a beam splitter 3 and at least two reflective focusing mirrors 4 arranged in the circumferential direction of the beam splitter 3, and the reflective focusing mirror 4 is fixed on the support base 1 by an adjusting bracket 5 and The adjustment of the bracket 5 is performed by fine adjustment of the position, and the adjustment bracket 5 is fixed on the support base 1 by a bracket groove (not labeled); in the embodiment, the number of the reflection focusing mirror 4 and the adjustment bracket 5 is three. To be explained, three of the reflection focusing mirrors 4 are evenly distributed around the beam splitter 3, and each of the reflected focusing mirrors 4 is disposed corresponding to one adjustment bracket 5. It is true that in other embodiments, the number of the reflection focusing mirror 4 and the adjustment bracket 5 may be two or four and above.
  • a center perpendicular of the support base 1 overlaps with an optical axis of the beam splitter 3, and each of the bracket recesses 16 is uniformly disposed around the upper surface 14 with respect to the beam splitter groove 15.
  • the beam splitter 3 receives an incident beam and reflects the incident beam to form a reflected beam
  • the reflective focusing mirror 4 receives the reflected beam and converts the reflected beam into a focused beam
  • the focused beam passing through the
  • the light exit 160 of the support 1 then forms a cladding focus on a substrate (not shown).
  • the support base 1 is further provided with a first cooling system 6 for circulating a cooling medium to cool the reflective focusing mirror 4, a second cooling system 7 for circulating a cooling medium to cool the spectroscope 3, and A seat cover 8 is provided on the support base 1.
  • a receiving space (not labeled) for accommodating the beam splitter 3 and the reflecting focusing mirror 4 is formed between the support base 1 and the holder cover 8, and the beam splitter is arranged through the support base 1 and the holder cover 8. 3 and the reflection focusing mirror 4 is housed, so that the overall structure of the device is collectiveized, and at the same time, the dustproof effect is achieved.
  • the top of the support cover 8 is provided with an opening (not labeled) for communicating the storage space with the outside, and the support cover 8 is provided with a light pipe 9 for abutting the opening, the support seat 1
  • a connector 10 for fixing the light pipe 9 the connector 10 is movably mounted on the support base 1 , and the connector 10 makes the light pipe 9 opposite to the support 1 Displacement and/or yaw, thereby changing the positional and angular relationship between the incident beam and the beam splitter 3.
  • the first cooling system 6 of the present invention includes a conduit 61 connecting three reflective focusing mirrors 4 and a cooling passage (not shown) formed in each of the reflective focusing mirrors 4, each of which is described.
  • a line 61 interfaces with the cooling passage.
  • Each of the two ends of the pipelines 61 is provided with a water pipe male joint 611; each of the cooling passages is provided with a passage opening 62 on each side thereof, and each of the passage openings 62 is provided with the water pipe male joint 611 Water pipe female connector 621.
  • one end of the two water pipes 61 is defined as a first water inlet 612 and a first water outlet 613, respectively, and the first water inlet 612 and the first water outlet 613 are disposed at the support.
  • the cooling effect of the reflective focusing mirror 4 can be achieved by the first cooling system 6, the thermal deformation of the reflective focusing mirror 4 is reduced, and the service life thereof is improved. Meanwhile, the first water inlet 612 and the first water outlet 613 are disposed at The support cover is convenient for connecting directly to the external water supply system, thereby avoiding the precision of the device due to repeated disassembly and improving work efficiency.
  • the second cooling system 7 of the present invention includes a water inlet passage 71, a water outlet passage 72, and a beam splitter lumen 73 formed in the beam splitter 3, the water inlet passage 71 and the water outlet.
  • the channel 72 interfaces with the beam splitter lumen 73.
  • the water inlet passage 71 and the water outlet passage 72 are opened in the support base 1 , the support base 1 has a support seat side wall 11 , and the water inlet passage 71 has a sidewall formed on the support seat side wall 11 .
  • a second water inlet 711; the water outlet 72 passage has a second water outlet 721 formed on the side wall 11 of the support base.
  • the cooling effect of the beam splitter 3 can be achieved by the second cooling system 7, the thermal deformation of the beam splitter 3 is reduced, and the service life thereof is improved. Meanwhile, the second water inlet 711 and the second water outlet 721 are disposed on the support base.
  • the side wall 11 is convenient for connecting directly to the external water supply system, thereby avoiding the precision of the device due to repeated disassembly and improving work efficiency.
  • the nozzle 2 of the present invention includes a spray head 21, a gun body 22, and a fine adjustment device 23 for finely adjusting the position of the nozzle 2.
  • the spray head 21 is disposed at the bottom of the gun body 22, and the fine adjustment device 23 Disposed on the top of the gun body 22, the fine adjustment device 23 is displaceable relative to the support base (not shown).
  • the fine adjustment device 23 includes at least one spacer 231 and a fixing portion 232 disposed on the top of the gun body 22. In the embodiment, the number of the spacers 231 is 2, which is true.
  • the number of the spacers 231 may also be one or three and above, the main purpose of which is to adjust the distance between the nozzle and the focus of the cladding.
  • the spacer 231 is sandwiched between the fixing portion 232 and the support base; the second through hole 233 is defined in the spacer 231 and the fixing portion 232, and the second through hole 233 is inserted therein.
  • the second via hole 234 has a diameter larger than a diameter of the second via rod 234. Since the diameter of the second through hole 233 is larger than the diameter of the second through hole rod 234, the nozzle 2 can be fastened by the fine adjustment of the fine adjustment device 23 and the second through hole rod 234. The purpose of achieving fine adjustment of the nozzle 2 relative to the support base is achieved.
  • the second through hole rod 234 is a screw, and the second through hole rod 234 is connected with the support base by a thread (not shown), and the second through hole rod is conveniently adjusted by using a threaded connection. 234 connection relationship with the support base. It is true that in other embodiments, the second via rod 234 can also be other fasteners.
  • the nozzle 2 is a guide wire nozzle
  • the gun body 22 has a side wall (not labeled) and a wire feeding chamber (not shown) formed by the side wall.
  • a wire is located within the feed cavity, the wire feed cavity extending along a longitudinal direction of the sidewall.
  • One side of the side wall is provided with an elongated opening 24 that extends along the longitudinal direction of the side wall.
  • the adjustment bracket 5 of the present invention includes a frame body 51 and a first rotating shaft 52 disposed on the frame body 51.
  • the reflection focusing mirror 4 includes a paraboloid 42 that converts the reflected beam into a focused beam, a left side surface (not shown) and a right side surface (not labeled) respectively connected to the paraboloid 42 and through the left side surface
  • the first rotating shaft 52 passes through the through hole 41.
  • the frame body 51 includes two opposite side plates (not labeled), oppositely disposed top plates (not labeled) and a bottom plate (not shown), and a back plate connecting the side plates, the top plate and the bottom plate (not shown)
  • the side plate, the top plate, the bottom plate and the back plate are arranged to form a focusing mirror groove 511.
  • the reflective focusing mirror 4 is disposed in the focusing mirror groove 511, and the first rotating shaft 52 is penetrated and installed in the On the frame body 51, the reflection focusing mirror 4 rotates relative to the frame body 51 with the first rotating shaft 52 as an axis.
  • the adjustment bracket 5 further includes at least one first adjusting member 53 disposed on the frame body 51.
  • the number of the first adjusting members 53 is 2 based on cost and fine adjustment process. And respectively disposed above and below the first rotating shaft 52.
  • the first adjusting member 53 is disposed on the back plate, and an end of the first adjusting member 53 abuts the reflective focusing mirror 4.
  • the reflective focusing mirror 4 is fastened by the first adjusting member 53 to prevent the reflective focusing mirror 4 from being generated by external force or gravity.
  • the displacement is such that the reflective focusing mirror 4 is rotated up and down with respect to the adjustment bracket 5.
  • the adjusting bracket 5 further includes a second rotating shaft 54 disposed on the frame body 51 , and the supporting base 1 is provided with a second matching shaft 54 Two shaft holes 12.
  • the adjusting bracket 5 further includes a screw 55 disposed at a lower portion of the frame body 51 and a second adjusting member 56 disposed on a side wall of the supporting base, and the second adjusting member 56 is opposite to the second rotating shaft 54. a left side and a right side, and the second adjusting member 56 abuts the adjusting bracket 5; the supporting base 1 is provided with an arcuate groove 13 into which the screw 55 partially protrudes into the arcuate groove 13
  • the adjustment bracket 5 is fixed to the support base 1 by the screw 55.
  • the second rotating shaft 54 is configured to more conveniently adjust the adjusting bracket 5 to finely adjust the circumferential position of the reflecting focusing mirror (not shown), and the rotating focusing mirror 4 is rotated to perform the circumferential position of the reflecting focusing mirror 4.
  • the reflective focusing mirror 4 is fastened by the second adjusting member 56 to prevent the reflective focusing mirror 4 from being displaced by the external force, thereby achieving the circumferential rotation of the reflective focusing mirror 4 relative to the adjusting bracket 5.
  • only the arcuate slot 13 and the second adjustment 56 may be provided to adjust the circumferential position of the reflective focusing mirror.
  • the second adjusting member 56 for finely adjusting the circumferential position of the reflecting focusing mirror 4 is disposed outside the optical path of the laser cladding device, mainly considering that when the position of the reflecting focusing mirror 4 is adjusted, it must be opened. Since the light beam has high energy, if the human body is in contact with the human body, a large safety accident is generated. Therefore, the second adjusting member 56 is disposed outside the device, which has the advantages of convenient user adjustment and reduced safety hazard.
  • the holder cover 8 of the present invention has a seat cover side wall 81, and the seat cover side wall 81 is provided with a shutter 811 and a position corresponding to each of the adjustment brackets 5 for exposing the Adjusting the gate (not labeled) of the bracket 5 to facilitate adjustment of the first adjusting member 53, the shutter 811 sealing the gate; meanwhile, the first adjusting member 53 is disposed outside the optical path of the laser cladding device It is convenient to directly adjust the position of the reflective focusing mirror 4, and reduce the safety hazard existing in the adjustment process.
  • the connector 10 of the present invention includes a fixing ring 102 having oppositely disposed top surfaces (not labeled) and a bottom surface (not labeled), an upper ring 101 on the top surface, and a bottom surface under the bottom surface.
  • a lower ring 103 a mounting hole 104 is formed in the fixing ring 102, the upper ring 101, and the lower ring 103, and the light pipe 9 is sequentially inserted into the mounting hole 104 of the upper ring 101 and the fixing ring 102, and
  • the fixing ring 102 and the upper ring 101 are further provided with at least two threaded holes (not labeled), and an adjusting screw 105 is inserted into each of the threaded holes, and the bottom end of the adjusting screw 105 Resisting the lower ring 103, the adjusting screw 105 can be moved up and down relative to the fixing ring 102 by rotation, thereby achieving yaw adjustment of the fixing ring 102 with respect to the connecting head 10, thereby achieving the purpose of adjusting the incident beam; and the lower ring
  • the main function of 103 is to prevent the bottom end of the adjusting screw 105 from scratching the surface of the holder cover (not shown), resulting in a decrease in accuracy.
  • the number of the threaded holes and the adjusting screw 105 is three, which can fully achieve the purpose of adjusting the incident beam angle. Indeed, in other embodiments, the threaded hole and the adjustment The number of screws 105 can also be two or four and above.
  • a first through hole 106 is defined in the upper ring 101, the fixed ring 102 and the lower ring 103.
  • the support hole (not shown) is provided with a first through hole 107, and the first through hole 107 Inserted into the first via hole 106, and the diameter of the first via hole 106 is larger than the diameter of the first via hole 107.
  • the connector 10 can be fastened by the first via hole 107 after the connector 10 is micro-shifted.
  • the first through hole rod 107 is a first through hole screw, and the first through hole screw 107 is connected to the support base by a thread (not shown).
  • the first via rod 107 can also be other fastening means.
  • the fixing ring 102 includes a protruding portion 1021 and a sandwich portion 1022, and the protruding portion 1021 is disposed through the mounting hole 104 of the upper ring 101 along the height direction of the connecting head 10.
  • the material used in the lower ring 103 has a high hardness and a material used in the support base to prevent the adjusting screw 105 from scratching the support base, resulting in poor positioning accuracy.
  • the beam splitter 3 includes at least two beam splitting mirrors 31 corresponding to the number of the reflecting focusing mirrors 4, and each of the beam splitting mirrors 31 is a flat surface; of course, in other embodiments, the beam splitting mirror surface 21 can also be an arc profile.
  • Each of the reflective focusing mirrors 4 has a reflective focusing mirror 42 facing the beam splitting mirror surface 31; the reflective focusing mirror surface 42 is an arc-shaped mirror surface.
  • the reflective focusing mirror surface 42 may also be a multi-segment curved mirror surface. Connected.
  • a method for setting a paraboloid 42 of a laser cladding device of the present invention may be applied to the laser cladding device, and the structure of the laser cladding device is not described herein. Methods as below:
  • a is the distance from the vertex of the beam splitter 3 to the paraboloid 42
  • b is the distance from the vertex of the beam splitter 3 to the focus of the parabola 20.
  • the above setting method is used for the paraboloid 42 of each of the reflective focusing mirrors 4, and the parabola 20 of each paraboloid 42 must be rotated about the X axis to form a paraboloid.
  • the paraboloid setting method of the laser cladding device obtains the parabola 20 where the paraboloid 42 is located, thereby obtaining the paraboloid.
  • the method is simple and easy to implement, and the method cannot solve the systemicity in the prior art.
  • the choice of the parabolic problem accelerates the assembly of the laser cladding device by applying the setting method, and enables the laser cladding device to obtain the best working effect.
  • the lower guide wire 114 is connected to the guide wire tube 119.
  • FIG. 16 and FIG. 17, is a schematic view of a sealing structure of the present embodiment.
  • the sealing structure includes a support base 1 and a support cover 8.
  • the guide wire tube 119 passes through the support base 1 and the support cover 8, and the guide wire tube 119 and the support
  • the upper cover gasket 171 is provided with a circular sealing structure, and the upper sealing gasket 171 is provided with a bolt fixing hole and a through hole.
  • the bolt fixing hole can fix the upper sealing gasket 171 to the support cover.
  • the guide wire tube 119 extends through the through hole into the inside of the sealing structure; the support cover 8 and the support base 1 are mutually cooperative structure, the support base 1 is provided with a light outlet 160, the guide wire tube 119 and the support base 1
  • the intersection position is provided with a lower gasket 172, which is an elliptical structure, and is provided with a guide wire tube 119 through hole and a column through hole 173, and the columnar through hole 173 is bolted to the support seat 1
  • the lower sealing gasket 172 can be moved in the direction of the columnar through hole 173 through the columnar through hole 173 for adjusting the angle of the guide wire tube 119, so that the wire passes through the wire guide tube 119 more smoothly, and the sealing structure further comprises a support.
  • a light transmitting mirror 170 below the seat 1, the light transmitting mirror 170 can be integrated with the support base 1
  • the light transmissive mirror 170 is disposed in a hollow cylindrical structure, and the hollow portion directly connects the shower head 2 to the support base 1.
  • the guide wire tube 119 is ejected from the hollow portion through the support base 1 and is The light-transmitting mirror 170 is sealed on the surface of the light exit 160, so that the sealing structure is passed through the support cover 8 of the support base 1 and the support base.
  • the upper sealing gasket 171 is used.
  • the lower sealing gasket 172 is sealed, and the light outlet 160 is disposed on the support base 1.
  • the light transmitting mirror 170 is sealed and disposed at the light exiting position, so that the light beam can be transparently exposed, and the dust, smoke and the like can be prevented from splashing when the welding is performed.
  • the spectroscope and focusing mirror inside the nozzle affect the effect of splitting and collecting light, which affects the life of the lens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光溶覆装置,包括:送丝机(110)和喷头(2),所述送丝机(110)和喷头(2)通过连接支架(140)一体设置,所述喷头(2)设置于连接支架下方,所述送丝机(110)通过连接支架(140)设置于连接支架上,所述连接支架(140)连结送丝机(110)和喷头(2)。所述喷头(2)包括密封结构和喷嘴,所述密封结构包括支撑座(1)、支撑盖(8)以及设置于支撑座(1)和支撑盖(8)内部的分光镜与反射聚焦镜,所述分光镜与反射聚焦镜同轴,在喷头内部形成密封空间。送丝机和喷头一体化设置,将丝材直接输送到喷头内部,缩短了送丝机和喷头之间的距离,使得丝材传输稳定性,保证高精度的熔覆层形状和尺寸精度。

Description

激光溶覆装置
本申请要求了申请日为2017年9月20日,申请号为:2017108495504,发明名称为“激光溶覆装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种激光熔覆装置,属于激光加工领域。
背景技术
激光熔覆是一种激光表面改性技术,是在工件(或基体材料)表面加入溶覆材料(送粉、送丝、预置等),通过高能密度激光加热,使熔覆材料和基体表面薄层金属迅速达到溶融状态,此时靠工件本身的导热,快速凝固结晶为溶覆层,以获得与基体材料之间冶金结合且稀释率低并具有各种特性的改性层或修复层。与堆焊、热喷涂、电镀等传统表面处理技术相比,它具有诸多优点,如适用的材料体系广泛、熔覆层稀释率可控、熔覆层与基体为冶金结合、基体热变形小、工艺易于实现自动化等。因此,20世纪80年代以来,激光熔覆技术得到了国内外的广泛重视,并已在诸多工业领域获得应用。
中国专利公开号,CN2608209Y公开了一种:激光熔覆用送丝机,其特征在于包括有机架(1)、夹送轮对(2)、电机(3)、减速器(4),其中电机(3)、减速器(4)固装在机架(1)上,电机(3)的输出轴与减速器(4)的输入轴连接,夹送轮对(2)的主动轮固装在减速器(4)的输出轴上,从动轮安装在主动轮的旁侧,激光熔覆用的金属丝在主动轮与从动轮的夹送下送进,夹送轮对(2)的从动轮安装在既可调节从动轮与主动轮间的间距,又可保证一定的压送力的弹簧调压滑座机构上机架(1)的尾部、与夹送轮对(2)的进丝方向相一致的前方位置上还设有校直机构,校直机构包括有若干个分两排交错布置的校直辊轮(5),其中其送丝导管(6)固装在机架(1)上,机架(1)上还设有用于固定安装在激光熔覆处理机聚焦镜上的角度调节和吊挂机构(8),在现有技术侧向送丝装置中,由于结构限制,保护气体也只能侧向吹送,其对熔池的吹压力不均匀,气流紊乱,保护效果差。
中国专利公开号:CN201390782Y公开了一种:一种激光熔覆系统的送丝装置,它包括支架(2)和送丝嘴(6),所述支架(2)内设置有夹送辊轮对,所述夹送辊轮对的主动轮(31)与一电机(8)的输出轴连接,该电机(8)固设在所述支架(2)上;其特征在于:所述电机(8)为步进电机, 该步进电机(8)与激光熔覆系统的控制器连接;所述送丝嘴(6)通过一三维调节器(5)与所述支架(2)连接。
中国专利公开号:CN201817550U本发明采用如下技术方案:一种激光熔覆成型设备,包括CNC数控工作平台,所述CNC数控工作平台设置有可做X‐Y‐Z三维运动的工作台,所述工作台上方固设有激光器装置,所述激光器装置的激光束输出端正对所述工作台,它还包括送丝装置和控制系统;所述送丝装置包括支架和送丝嘴,所述支架内设置有夹送辊轮对,所述夹送辊轮对的主动轮与一步进电机的输出轴连接,该步进电机固设于所述支架,所述送丝嘴通过一三维调节器与所述支架连接;所述控制系统包括设置有运动控制软件的运动控制模块,所述运动控制模块设置有多轴运动控制卡,该多轴运动控制卡分别与所述步进电机和驱动工作台X‐Y‐Z三维运动的驱动电机连接,所述多轴运动控制卡亦与所述激光装置的激光头转动驱动装置连接。
中国专利公开号:CN203999820U一种激光熔覆同步移动万向送丝装置,包括有光头和位于光头下方的激光熔池,其特征在于:所述光头的一侧固定连接有横杆,所述横杆的后端铰接有上连杆,所述上连杆的底端转动连接有下连杆,所述下连杆的底端铰接有导向嘴固定连接杆,所述导向嘴固定连接杆上固定有横向设置的导向嘴,有金属丝穿过所述的导向嘴并延伸到所述激光熔池内。
以上激光溶覆装置存在如下问题:未能有效的将送丝结构一体化可调控的集成激光溶覆装置,不利于节省空间,会增加送丝长度,导致丝材在传送过程中距离过长滑动不畅,导致熔覆工作无法有效展开,无法保证高精度的熔覆层形状和尺寸精度的情况。
发明内容
本发明的目的在于提供一种激光溶覆装置,一体化的将送丝机、喷头和支撑座设置于一起,既有利于节约整个激光溶覆装置的大小空间,又可以减少丝材传输距离,保证丝材传输稳定性,保证高精度的熔覆层形状和尺寸精度的情况。
为达到上述目的,本发明提供如下技术方案:一种激光溶覆装置,包括:送丝机和喷头,所述送丝机和喷头通过连接支架一体设置,所述喷头头设置于支架下方,所述送丝机通过连接支架设置于支架上方。
进一步的,所述连接支架,包括:本体、第一延伸部及第二延伸部,所述第一延伸部沿本体所在平面延伸,所述第二延伸部沿本体所在平面垂直方向延伸。
进一步的,所述第一延伸部连结送丝机,所述本体连结喷头,所述第二延伸部连接机 械手或相关设备。
进一步的,所述第一延伸部与送丝机之间设置有连接结构,所述连接结构为ㄇ型结构部,所述ㄇ型结构部设置于送丝机与连接支架之间。
进一步的,所述ㄇ型结构由开口部和连接部组成,所述开口部高度高于连接部高度。
进一步的,所述激光溶覆装置还包括防震垫片,所述防震垫片设置于送丝机与连接支架之间。
进一步的,所述喷头包括密封结构和喷嘴,所述密封结构包括支撑座、支撑盖以及设置于支撑座和支撑盖内部的分光镜与反射聚焦镜,所述分光镜与反射聚焦镜同轴,所述分光镜包括至少两个分光镜面,所述分光镜面为平面或弧型面;所述反射聚焦镜具有朝向分光镜面的聚焦镜面,所述聚焦镜面为一弧型镜面,或者,所述聚焦镜面由多个弧型镜面构成。
进一步的,所述反射聚焦镜为三个,三个所述反射聚焦镜均匀分布在所述分光镜的四周。
进一步的,所述分光镜接收入射光束并将所述入射光束反射形成反射光束,所述反射聚焦镜接收所述反射光束并将所述反射光束转化为聚焦光束。
进一步的,所述支撑座上还设有供冷却介质循环流动以给所述反射聚焦镜降温的第一冷却系统和供冷却介质循环流动以给所述分光镜降温的第二冷却系统。
本发明的有益效果在于:
第一,送丝机和喷头成上下布置,整个装置在进行偏摆熔覆过程中,所占用的空间更小,结构更加紧凑,更有利于在狭小空间中进行熔覆工作;
第二,送丝机和支架之间采用柔性件连接,在送丝机启动、停止以及运动过程中产生额外的震动,可以采用此柔性件有效消除;
第三,送丝机一体设置可避免送丝软管长,导致丝材在传输过程中的阻力比较大,很容易导致丝材滑动不畅,导致熔覆工作无法有效展开,无法保证高精度的熔覆层形状和尺寸精度的情况;
第四:克服了现有技术中喷头在移动熔覆的过程中,送丝软管会产生弯曲,导致丝材在输送过程中的摩擦阻力不一样,导致丝材离开喷头后的速度变化,从而无法保证高精度的熔覆层形状和尺寸精度,如果软管弯曲半径很小,很容易导致堵丝的问题点存在,导致无法正常工作而现在将喷头和送丝机集成在一起,就可以完全解决上述问题,保证了送丝速度的稳定,减少熔覆空间,可以在狭小的空间内进行熔覆工作。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明激光溶覆装置立体结构示意图。
图2为本发明激光溶覆装置的送丝机示意图。
图3为本发明激光溶覆装置的校直结构和送丝结构示意图。
图4为本发明激光溶覆装置的连接支架结构示意图。
图5为本发明激光溶覆装置的连结垫片结构示意图。
图6为本发明激光熔覆装置的支撑座和喷头部分分图。
图7为图6中的部分结构的部分分解图。
图8为图7中的部分结构的部分分解图。
图9为图6中喷头的部分分解图。
图10为图6中调节支架的部分分解图。
图11为图6中支撑座、调节支架部分结构的分解图。
图12为图6中支座盖、调节支架部分结构的分解图。
图13为图6中连接头的分解图。
图14为图6中分光镜、支撑座、调节支架部分结构的分解图。
图15为图6中反射聚焦镜、分光镜在基座面内的关系图。
图16为本发明激光熔覆装置的密封结构示意图。
图17为本发明激光熔覆装置的密封垫片结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
请参见图1、图4、图5及图6,本发明的激光熔覆装置包括送丝机110和喷头2,所述送丝机110和喷头通过连接支架140一体设置,所述喷头2设置于连结支架下方,所述送丝机110设置于连接支架140上方,所述连接支架140连结送丝机110及喷头2,所述连接支架140包括本体143、第一延伸部141及第二延伸部142,所述第一延伸部141沿本体143所在平面延伸,所述第二延伸部142沿本体143所在平面垂直方向延伸,其中142面主要与机械手或熔覆设备驱动装置连接,实现喷头的移动,所述第一延伸141连结送丝机110,所 述本体143连结喷头,所述第一延伸141连结送丝机110部位还包括连接结构130,所述连接结构130为ㄇ型结构部132,所述ㄇ型结构部132设置于送丝机110与连接支架140之间,所述ㄇ型结构132由开口部133和连接部134组成,所述开口部133高度高于连接部134高度,其还包括防震垫片135,所述防震垫片135设置于送丝机110与连接支架140连接处,所述喷头包括密封结构,其包括支撑座1、支撑盖8,闸板811,连接头10、光通管9、上密封垫片171、下密封垫片172密封,透光镜170等组成,在喷头内部形成密封空间。在此空间的内部布置分光镜、聚焦镜以及聚焦镜支架等相关结构。
导丝管119穿过支撑座1并通过采用上密封垫片171及下密封垫片172密封,支撑座1上设置的光出口160,透光镜170密封设置于光出口位置,使得光束既可以透出。
上述密封结构有效防止熔覆时灰尘、烟雾等炸物飞溅到喷头内部的分光镜和聚焦镜,有效提高镜片的使用寿命,也提高了镜片反射和聚焦的精度。
由于制造误差以及装配误差的存在,送丝机输出导丝嘴的位置和喷头内部接收送丝软轴的位置发生变化,很容易导致送丝软管扭曲,造成丝材在送丝软管内部阻力加大,导致丝材输送不畅,影响熔覆质量,为了解决此问题,导丝上密封垫片171和下密封垫片172不但起到密封的作用,而且还起到微调的作用,当送丝软管完全对接喷头和送丝机时,为了保证送丝软管不发生扭曲,需要微调送丝机或喷头相对送丝软管的位置,调节位置时,软管位置也会相应发生变化,那就需要固定在软管上的上密封垫片171及下密封垫片172实现微调。
其中所述送丝机110与连接结构130之间通过螺栓连接,所述连接结构130与连接支架140的第一延伸部141之间通过螺栓连结,所述支撑盖8与连接支架140的本体143之间通过螺栓连接,在本实施例中所述连接皆为螺栓连接方式,但并不仅限于螺栓一种连接方式。
在本结构中,一种激光溶覆装置100,包括密封结构和喷头2,通过连接支架140将上述组件设置为一体结构,送丝机120与连接支架140连接处还设置有连接结构130,连接结构130为楔形结构,楔形结构为具有一定倾斜角的连接部件,使得送丝机120的送丝方向沿喷头方向;其有益效果为:
第一,激光溶覆装置100为一体结构,节约空间;
第二,送丝机110一体设置可避免送丝软管长,导致丝材在传输过程中的阻力比较大,很容易导致丝材滑动不畅,导致熔覆工作无法有效展开,无法保证高精度的熔覆层形状和尺寸精度的情况;
第三:克服了现有技术中喷头2在移动熔覆的过程中,送丝软管会产生弯曲,导致丝材在输 送过程中的摩擦阻力不一样,导致丝材离开喷头后的速度变化,从而无法保证高精度的熔覆层形状和尺寸精度,如果软管弯曲半径很小,很容易导致堵丝的问题点存在,导致无法正常工作而现在将喷头和送丝机集成在一起,就可以完全解决上述问题,保证了送丝速度的稳定,减少熔覆空间,可以在狭小的空间内进行熔覆工作。
请参见图2和图3,所述激光溶覆装置的送丝机包括:承载部116、校直结构117和送丝结构118,其还包括丝盘支架112和设置于丝盘支架上的丝盘111,所述校直结构117、送丝结构118和丝盘支架112通过螺栓固定于承载部116上,所述送丝结构118包括驱动结构115、主动轮1177和调节装置,所述驱动结构115包括伺服电机和减速器,所述驱动结构连结主动轮1177,所述调节装置包括压杆二1179、手柄1178以及动滑轮1172,所述压杆二1179为包含三个顶角的三角形结构,其三个顶角分别设置有固定部、动滑轮1172和通孔,所述固定部通过螺栓固定设置于承载部116上,所述动滑轮1172通过螺栓固定于所述三个顶角的其中一个顶角上,所述通孔连接于承载部116上固定螺栓延伸的平行于承载部116所在平面延伸一螺杆上,所述手柄1178为配合固定螺栓的中空结构;使用时可通过旋转手柄1178使得手柄1178与固定螺栓所延伸的螺杆长度增加或减少,从而调节压杆二1179上设置的动滑轮1172的位置,所述主动轮1177与压杆二1179上设置的动滑轮1172为相对设置,调节压杆二1179上设置的动滑轮1172的位置即可调整主动轮1177和动滑轮1172之间的距离,有效紧固丝材防止丝材滑动,防止出现送丝不均匀的情况。
主动轮1177上设置有两个送丝凹槽,定滑轮1171与动滑轮1172为螺栓固定于承载部116上,通过调整螺栓位置配合主动轮1177的两个送丝凹槽,实现调节送丝通道,传输不同规格丝材的传输。
故本发明激光溶覆装置的送丝结构可以满足不同丝材使用,具有调节结构,使得送丝机工作稳定,丝材输出稳定。
所述校直结构117包括压杆一1173、固定件1174、固定部、动滑轮1172、定滑轮1171、螺杆1175及调节螺母1176,其特征在于:所述压杆一1173一端设置有动滑轮1172另一端固定设置在承载部116上,所述固定件1175包括固定部和通孔,所述固定部通过螺栓设置于承载部116上,所述螺杆1175穿过固定件1174的通孔连结压杆一1173,所述螺杆1175所在的固定件1174与压杆一1173部分设置有调节螺母1176,通过旋转调节螺母1176增加固定件1174与压杆一1173之间的距离,压杆一1173的一端固定设置在承载部116上,故,当固定件1174与压杆一1173之间的距离增加时,压杆一1173另一端设置的动滑轮1172随压 杆一1173向远离固定件1174方向移动,即可调节动滑轮1172位置。
在本实施例中,本校直结构包括三个设置于同一直线上的沿丝材传输方向的定滑轮1171,同时还包括两个具有压杆一1173、固定件1174、动滑轮1172、螺杆1175及调节螺母1176的调节结构组成,丝材进入校直结构117后,通过第一动滑轮1172、两个定滑轮1171实现第一次校直,再通过第二动滑轮1172、两个定滑轮1171实现第二次校直,本结构五个滑轮,两个动滑轮1172及三个定滑轮1171,可有效提高校直效率,一次通过,校直效果更好,进一步的,在本实施方案中,所述第一次校直的定滑轮1171与动滑轮1172的交错深度大于第二次较直的定滑轮1171与动滑轮1172的交错深度。
以上所描述所有定滑轮1171与动滑轮1172均为设置有V槽的滑轮结构,进一步的,所述每个滑轮通过在螺钉上实现滑动,从而传导不同的丝材,通过调整压杆一1173与固定件1174的距离,来调整校直效果。
有益效果,第一,通过设置三个固定轮,两个张紧轮,使得丝材在通过较直结构时,至少三次次较直施压,且先接触丝材部分辊轮矫正量大于后接触丝材部分辊轮矫正量,较直效果明显。
第二,通过五个一组的辊轮结构,至少组成两个三点定位矫正,使得矫正效果更均匀平顺。
在本实施例中,所述承载部116包括:承载面板,其特征在于:还包括设置于承载面板上且垂直于承载面板方向的上延伸承载结构1161及下延伸承载结构1163,所述上延伸承载结构1161上设置有上通孔1162,所述下延伸承载结构1163上设置有下通孔1164,所述上通孔1162、下通孔1164为柱状通孔,且为相对应设置。
本实施例中送丝机110还包括上导丝嘴113及下导丝嘴114,所述上导丝嘴113及下导丝嘴114为中空螺栓结构,所述上导丝嘴113通过上下螺帽及垫片压紧设置于上通孔1162中,所述下导丝嘴114通过上下螺帽及垫片设置于下通孔1164中,所述柱状通孔通过调节上下螺帽及垫片可调节上导丝嘴113及下导丝嘴114位置。
使用时,通过调节上导丝嘴113位置,应对校直结构117中定滑轮1171、动滑轮1172的V型槽,同时对应送丝结构118中主动轮1177和动滑轮1172的V型槽,同时对应下导丝嘴114位置来使得丝材位于同一直线上,通过对上导丝嘴114、动滑轮1172、定滑轮1171、主动轮1177及下导丝嘴114的调节应对不同丝材,对应不同V型槽宽度完成对不同丝材的校直与送丝过程。
请参见图6和图14,本发明的激光熔覆装置包括支撑座1和位于所述支撑座1下方的喷嘴2。所述支撑座1呈圆柱体,所述支撑座1具有上表面14,所述上表面14设置有调节支架5,所述上表面14上内凹形成有固定所述分光镜的分光镜凹槽15、内凹形成有固定每个所述调节支架5的支架凹槽以及贯通所述支撑座的光出口160。所述支撑座1上设有分光镜3和排布在所述分光镜3周向上的至少两个反射聚焦镜4,所述反射聚焦镜4通过调节支架5固定在所述支撑座1上并通过调节支架5进行位置的微调,所述调节支架5通过支架凹槽(未标号)固定在所述支撑座1上;在本实施例中,以反射聚焦镜4和调节支架5的数目为三进行说明,三个所述反射聚焦镜4均匀分布在所述分光镜3的四周,每个所反射聚焦镜4对应一个调节支架5设置。诚然,在其他实施例中,该反射聚焦镜4和调节支架5的个数还可为两个或四个及以上。所述支撑座1的中心垂线与所述分光镜3的光轴重叠,每个所述支架凹槽16相对于所述分光镜凹槽15均匀设置在所述上表面14的四周。所述分光镜3接收入射光束并将所述入射光束反射形成反射光束,所述反射聚焦镜4接收所述反射光束并将所述反射光束转化为聚焦光束,所述聚焦光束穿过贯通所述支撑座1的光出口160然后在基材(未图示)上形成熔覆焦点。所述支撑座1上还设有供冷却介质循环流动以给所述反射聚焦镜4降温的第一冷却系统6、供冷却介质循环流动以给所述分光镜3降温的第二冷却系统7以及设置在所述支撑座1上的支座盖8。所述支撑座1与所述支座盖8之间形成有收纳所述分光镜3和反射聚焦镜4的收纳空间(未标号),通过该支撑座1和支座盖8将所述分光镜3和反射聚焦镜4收纳,从而使得装置整体结构集体化,同时起到防尘效果。所述支座盖8的顶部开设有使所述收纳空间与外部连通的开口(未标号),所述支座盖8上设有与所述开口对接的光通管9,所述支撑座1上设有将所述光通管9固定的连接头10,所述连接头10活动安装在所述支撑座1上,且所述连接头10使所述光通管9相对所述支撑座1位移和/或偏摆,进而改变所述入射光束与所述分光镜3之间的位置和角度关系。
请参见图7,本发明的第一冷却系统6包括连接三个反射聚焦镜4的管路61和形成在每个所述反射聚焦镜4内的冷却通道(未图示),每个所述管路61与所述冷却通道对接。每个所述管路61的两端设置有水管公接头611;每个所述冷却通道的两侧设有通道口62,每个所述通道口62上设有与所述水管公接头611对接的水管母接头621。在本实施例中,其中两根所述水管61的一端分别被定义为第一进水口612和第一出水口613,所述第一进水口612和第一出水口613设置在所述支座盖(未图示)上。通过该第一冷却系统6可以实现对所述反射聚焦镜4的降温效果,减少反射聚焦镜4的热变形,提高其使用寿命;同时,将第一进 水口612和第一出水口613设置在支座盖上,方便其直接与外部的供水系统连接,避免因反复拆卸而影响装置的精密性,并且提高了工作效率。
请参见图8,本发明的第二冷却系统7包括进水口通道71、出水口通道72和形成在所述分光镜3中的分光镜内腔73,所述进水口通道71和所述出水口通道72与所述分光镜内腔73对接。所述进水口通道71和出水口通道72开设在所述支撑座1内,所述支撑座1具有支撑座侧壁11,所述进水口通道71具有形成在所述支撑座侧壁11上的第二进水口711;所述出水口72通道具有形成在所述支撑座侧壁11上的第二出水口721。通过该第二冷却系统7可以实现对所述分光镜3的降温效果,减少分光镜3的热变形,提高其使用寿命;同时,将第二进水口711和第二出水口721设置在支撑座侧壁11上,方便其直接与外部的供水系统连接,避免因反复拆卸而影响装置的精密性,并且提高了工作效率。
请参见图9,本发明的喷嘴2包括喷头21、枪身22以及用于微调所述喷嘴2位置的微调装置23,所述喷头21设置在所述枪身22的底部,所述微调装置23设置在所述枪身22的顶部,所述微调装置23可相对所述支撑座(未图示)位移。在本实施例中,所述微调装置23包括至少一个垫片231以及设置在所述枪身22顶部的固定部232,本实施例中,以所述垫片231的数量为2进行说明,诚然,在其他实施例中,该垫片231的数量还可为一或三个及以上,其主要目的是调节喷嘴与熔覆焦点之间的距离。所述垫片231夹持在所述固定部232与所述支撑座之间;所述垫片231和固定部232上均开设有第二过孔233,所述第二过孔233内插入有第二过孔杆234,所述第二过孔233的直径大于所述第二过孔杆234的直径。由于所述第二过孔233的直径大于所述第二过孔杆234的直径,所以,可通过微移所述微调装置23再通过所述第二过孔杆234紧固所述喷嘴2从而达到喷嘴2相对支撑座实现周向微调的目的。本实施例中,所述第二过孔杆234为螺钉,所述第二过孔杆234与所述支撑座通过螺纹(未图示)连接,通过采用螺纹连接以方便调节第二过孔杆234与支撑座的连接关系。诚然,在其他实施例中,该第二过孔杆234还能为其他紧固件。
在本实施例中,所述喷嘴2为导丝喷嘴,所述枪身22具有侧壁(未标号)和由所述侧壁围设形成的送丝腔(未图示)。丝材位于所述送料腔内,所述送丝腔沿所述侧壁的纵长方向延伸。所述侧壁的一侧设置有纵长开口24,所述纵长开口24沿所述侧壁的纵长方向延伸。
请参见图10并结合图14,本发明的调节支架5包括架体51和设置在所述架体51上的第一转轴52。所述反射聚焦镜4包括将反射光束转化成聚焦光束的抛物面42、分别与所述抛物面42连接的左侧面(未图示)和右侧面(未标号)以及贯通所述左侧面和右侧面的通孔 41。所述第一转轴52穿过所述通孔41。所述架体51包括两个相对设置的侧板(未标号)、相对设置的顶板(未标号)和底板(未图示)以及连接所述侧板、顶板及底板的背板(未图示),所述侧板、顶板、底板和背板围设形成聚焦镜凹槽511,所述反射聚焦镜4设置在所述聚焦镜凹槽511内,所述第一转轴52贯通并安装在所述架体51上,所述反射聚焦镜4以所述第一转轴52为轴心相对所述架体51转动。所述调节支架5还包括设置在所述架体51上的至少一个第一调节件53,在本实施例中,基于成本以及微调工艺的考虑,该第一调节件53的个数为2,且分别相对于所述第一转轴52的上方和下方设置。所述第一调节件53设置在所述背板上,且所述第一调节件53的端部抵持所述反射聚焦镜4。通过转动所述反射聚焦镜4进行反射聚焦镜4位置的微调后,再以所述第一调节件53紧固所述反射聚焦镜4以防止所述反射聚焦镜4因外力或者重力作用而发生位移,从而实现反射聚焦镜4相对所述调节支架5上下转动。
请结合图11,在本实施例中,所述调节支架5还包括设置在所述架体51上的第二转轴54,所述支撑座1上设有与所述第二转轴54配合的第二轴孔12。所述调节支架5还包括设置在所述架体51下部的螺杆55以及设置在所述支撑座侧壁的第二调节件56,所述第二调节件56相对设置所述第二转轴54的左侧和右侧,且所述第二调节件56抵持所述调节支架5;所述支撑座1上开设有弧形槽13,所述螺杆55部分伸入至所述弧形槽13内,所述调节支架5通过所述螺杆55固定在所述支撑座1上。本实施例中,配置第二转轴54能更方便地调节调节支架5从而微调反射聚焦镜(未图示)的周向位置,通过转动所述反射聚焦镜4进行反射聚焦镜4周向位置的微调后,再以所述第二调节件56紧固所述反射聚焦镜4以防止所述反射聚焦镜4因外力作用而发生位移,从而实现反射聚焦镜4相对所述调节支架5周向转动。诚然,在其他实施例中,可以仅设置弧形槽13和第二调节56件来对反射聚焦镜的周向位置进行调节。
本实施例中,将微调反射聚焦镜4周向位置的第二调节件56设置在该激光熔覆装置中光路的外侧,主要考虑到,当调节所述反射聚焦镜4的位置时,必须打开光束,由于光束具有很高的能量,如果接触到人体,就会产生很大的安全事故,所以将第二调节件56设置在装置外侧,具有方便用户调节,减少安全隐患的优点。
请结合图12,本发明的支座盖8具有支座盖侧壁81,所述支座盖侧壁81上设有闸板811和对应每个所述调节支架5位置且用以暴露所述调节支架5的闸口(未标号),从而便于调节所述第一调节件53,所述闸板811密封所述闸口;同时,将第一调节件53设置在所述 激光熔覆装置的光路外侧,方便直接调节所述反射聚焦镜4的位置,减少调节过程中存在的安全隐患。
请参见图13,本发明的连接头10包括具有相对设置的顶面(未标号)和底面(未标号)的固定环102、位于所述顶面上的上环101以及位于所述底面下的下环103;所述固定环102、上环101和下环103内均形成有安装孔104,所述光通管9依次插入至所述上环101、固定环102的安装孔104内,并通过固定环102固定;所述固定环102和上环101上还开设有至少两个螺纹孔(未标号),每个所述螺纹孔内插入有调节螺钉105,所述调节螺钉105的底端抵持所述下环103,通过旋转可以实现调节螺钉105相对于固定环102上下移动,从而实现固定环102相对于连接头10偏摆调节,从而使入射光束实现角度调节的目的;而下环103的主要作用是避免调节螺钉105的底端刮损支座盖(未图示)的表面,导致其精度下降。本实施例中,基于制造工艺以及微调作用的考虑,所述螺纹孔和调节螺钉105的数量为三,能充分达到调节入射光束角度的目的,诚然,在其他实施例中,该螺纹孔和调节螺钉105的数量还能为二或四个及以上。所述上环101、固定环102和下环103上均开设有第一过孔106,所述支撑座(未图示)上设有第一过孔杆107,所述第一过孔杆107插入至所述第一过孔106内,且所述第一过孔106的直径大于所述第一过孔杆107的直径。由于所述第一过孔106的直径大于所述第一过孔杆107的直径,可通过微移所述连接头10后,再通过所述第一过孔杆107紧固所述连接头10,从而达到入射光束相对支撑座实现周向微调的目的。本实施例中,所述第一过孔杆107为第一过孔螺钉,所述第一过孔螺钉107通过螺纹(未图示)与所述支撑座连接,诚然,在其他实施例中,该第一过孔杆107还能为其他紧固装置。
在本实施例中,所述固定环102包括伸出部1021和夹层部1022,所述伸出部1021穿过所述上环101的安装孔104沿所述连接头10的高度方向设置。并且,所述下环103所采用的材料硬度高与所述支撑座所采用的材料,以防止调节螺钉105刮伤支撑座,从而导致定位精度差。
在本实施例中,所述分光镜3包括对应所述反射聚焦镜4数量设置的至少两个分光镜面31,每个所述分光镜面31为平面;诚然,在其他实施例中,该分光镜面21还可为弧型面。每个所述反射聚焦镜4具有朝向分光镜面31的反射聚焦镜面42;所述反射聚焦镜面42为一弧型镜面,诚然,在其他实施例中,该反射聚焦镜面42还可由多段弧型镜面连接而成。
请参见图15并结合图6及图14,本发明的一种激光熔覆装置的抛物面42的设定方法可用以上述激光熔覆装置,该激光熔覆装置的结构不在赘述,所述设定方法如下:
S1、定义所述抛物面42于激光熔覆装置的高度方向上的剖面为基准面,定义所述激光熔覆装置的高度方向为基准面的y轴(对应的,在基准面中与y轴垂直的另外一个方向为x轴),定义在所述基准面内的所述抛物面42的抛物线20为右开口抛物线,且该抛物线20经过该基准面的原点O(0,0),所述抛物线的焦点F落在基准面的x轴上;
S2、定义所述分光镜3的顶点到抛物面42的距离为a,定义所述分光镜3的顶点到抛物线20焦点F的距离为b,进而获得:在该抛物线20上,所述分光镜3顶点的水平延伸线与该抛物线20之间的交点的坐标:p/2‐a,b;
S3、将所述交点坐标代入至抛物线20方程式中以计算获得抛物面42的抛物线20,根据所获得的抛物线20绕着基准面的x轴旋转形成抛物面42。该抛物线20方程式为y 2=b 2/(p/2‐a)*x,其推倒方式如下:
确定交点的坐标:p/2‐a,b
由于右开口抛物线20公式为:y 2=2Px
故,推导出P=b 2/2(p/2‐a)
进而,抛物线20方程为:y 2=2Px=2*b 2/2(p/2‐a)*x=b 2/(p/2‐a)*x
其中,a为分光镜3的顶点到抛物面42的距离,b为分光镜3的顶点到抛物线20焦点的距离。
上述设定方法用于每个反射聚焦镜4的抛物面42,每个抛物面42的抛物线20必须绕着X轴旋转形成抛物面。
综上所述,上述激光熔覆装置的抛物面的设定方法通过计算获得抛物面42所在的抛物线20,从而获得该抛物面,该方法简单,易实施,通过该方法解决了现有技术中无法系统性的选择抛物面的难题,通过运用设定方法加快了激光熔覆装置的组装,且使激光熔覆装置能够获得最佳的工作效果。
在本实施例中下导丝嘴114连接有导丝管119。
参照图16及图17,为本实施例密封结构示意图,所述密封结构包括支撑座1及支座盖8,导丝管119穿过支撑座1及支座盖8,导丝管119与支座盖8相交位置设置有上密封垫片171,所述上密封垫片171为圆形结构,且设置有螺栓固定孔和通孔,螺栓固定孔可将上密封垫片171固定于支座盖8上,导丝管119穿过通孔延伸入密封结构内部;所述支座盖8与支撑座1为互相配合结构,支承座1上设置有光出口160,导丝管119与支撑座1相交位置设置有下密封垫片172,所述下密封垫片172为椭圆形结构,且设置有导丝管119通孔和柱状通孔173,所述柱状通孔173为用螺栓连结支撑座1,通过柱状通孔173使得下密封垫片 172可以沿柱状通孔173方向移动,用以调节导丝管119角度,使得丝材更顺利通过导丝管119,所述密封结构还包括设置于支撑座1下方的透光镜170,所述透光镜170可以和支撑座1一体设置于光出口160表面,所述透光镜170为设置有中空部圆柱形结构,所述中空部使喷头2直接连接于支撑座1,导丝管119通过支撑座1后从中空部射出,透光镜170密封于光出口160表面,故密封结构,通过支撑座1与支撑座配合的支座盖8,导丝管119穿过支撑座1与支座盖8时使用上密封垫片171及下密封垫片172密封,支撑座1上设置的光出口160,透光镜170密封设置于光出口位置,使得光束既可以透出,有能防止熔覆时灰尘、烟雾等炸物飞溅到喷头内部的分光镜和聚焦镜,影响分光和聚光的效果,影响镜片的寿命。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种激光溶覆装置,包括:送丝机和喷头,其特征在于:所述送丝机和喷头通过连接支架一体设置,所述喷头头设置于支架下方,所述送丝机通过连接支架设置于支架上方。
  2. 如权利要求1所述的一种激光溶覆装置,其特征在于:所述连接支架,包括:本体、第一延伸部及第二延伸部,所述第一延伸部沿本体所在平面延伸,所述第二延伸部沿本体所在平面垂直方向延伸。
  3. 如权利要求2所述的一种激光溶覆装置,其特征在于:所述第一延伸部连结送丝机,所述本体连结喷头,所述第二延伸部连接机械手或相关设备。
  4. 如权利要求2所述的一种激光溶覆装置,其特征在于:所述第一延伸部与送丝机之间设置有连接结构,所述连接结构为ㄇ型结构部,所述ㄇ型结构部设置于送丝机与连接支架之间。
  5. 如权利要求4所述的一种激光溶覆装置,其特征在于:所述ㄇ型结构由开口部和连接部组成,所述开口部高度高于连接部高度。
  6. 如权利要求1所述的一种激光溶覆装置,其特征在于:所述激光溶覆装置还包括防震垫片,所述防震垫片设置于送丝机与连接支架之间。
  7. 如权利要求1所述的一种激光溶覆装置,其特征在于:所述喷头,包括:密封结构和喷嘴,所述密封结构,包括:支撑座、支撑盖以及设置于支撑座和支撑盖内部的分光镜与反射聚焦镜,所述分光镜与反射聚焦镜同轴,所述分光镜包括至少两个分光镜面,所述分光镜面为平面或弧型面;所述反射聚焦镜具有朝向分光镜面的聚焦镜面,所述聚焦镜面为一弧型镜面,或者,所述聚焦镜面由多个弧型镜面构成。
  8. 如权利要求7所述的一种激光溶覆装置,其特征在于:所述反射聚焦镜为三个,三个所述反射聚焦镜均匀分布在所述分光镜的四周。
  9. 如权利要求7所述的一种激光溶覆装置,其特征在于:所述分光镜接收入射光束并将所述入射光束反射形成反射光束,所述反射聚焦镜接收所述反射光束并将所述反射光束转化为聚焦光束。
  10. 如权利要求7所述的一种激光溶覆装置,其特征在于:所述支撑座上还设有供冷却介质循环流动以给所述反射聚焦镜降温的第一冷却系统和供冷却介质循环流动以给所述分光镜降温的第二冷却系统。
PCT/CN2018/078736 2017-09-20 2018-03-12 激光溶覆装置 WO2019056713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710849550.4A CN107363357A (zh) 2017-09-20 2017-09-20 激光溶覆装置
CN201710849550.4 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019056713A1 true WO2019056713A1 (zh) 2019-03-28

Family

ID=60302736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078736 WO2019056713A1 (zh) 2017-09-20 2018-03-12 激光溶覆装置

Country Status (2)

Country Link
CN (1) CN107363357A (zh)
WO (1) WO2019056713A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110434482B (zh) * 2019-08-06 2024-04-09 苏州创轩激光科技有限公司 一种旋转切冰激光机
CN113118578B (zh) * 2019-12-31 2022-09-16 台州高知科技有限公司 一种保险丝焊接机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020249A2 (en) * 1999-01-14 2000-07-19 Mitsubishi Heavy Industries, Ltd. Laser beam machining head
CN101386111A (zh) * 2007-09-14 2009-03-18 苏州大学 激光光内送丝熔覆方法与光内送丝装置
CN201713577U (zh) * 2010-06-02 2011-01-19 安徽米特吉激光科技有限公司 激光熔覆同步送丝装置
CN205614211U (zh) * 2016-02-03 2016-10-05 苏州大学 一种用于激光熔覆的激光光内送丝装置
CN107627002A (zh) * 2017-09-20 2018-01-26 苏州大学 激光溶覆装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936657A (en) * 1974-07-05 1976-02-03 Acf Industries, Incorporated Universal positioning welding torch
JP3268248B2 (ja) * 1997-11-25 2002-03-25 三菱重工業株式会社 複合溶接ヘッド
US6064036A (en) * 1998-09-18 2000-05-16 Mk Products, Inc. Welding gun filler wire spool brake and wire position regulator
JP2007007697A (ja) * 2005-06-30 2007-01-18 Mitsubishi Heavy Ind Ltd レーザロウ付け加工方法、加工ヘッド及び加工装置
CN201471065U (zh) * 2009-07-10 2010-05-19 江苏双良锅炉有限公司 小直径筒体的埋弧焊机头
DE202012004806U1 (de) * 2012-05-08 2013-08-09 Scansonic Mi Gmbh Düse und Vorrichtung zur Materialbearbeitung mittels Energiestrahlen und Zusatzwerkstoff
CN202684344U (zh) * 2012-08-16 2013-01-23 宁波市拓新焊接技术有限公司 激光焊接送丝装置
CN102962542A (zh) * 2012-12-06 2013-03-13 广州亨龙机电股份有限公司 一种自动送钎丝装置
CN104259461B (zh) * 2014-07-31 2016-08-24 中国科学院重庆绿色智能技术研究院 基于同轴送丝的激光三维制造方法与同轴送丝装置
CN104874497B (zh) * 2015-06-12 2017-06-16 中国人民解放军装甲兵工程学院 拉丝式高速电弧喷涂枪
CN105499791A (zh) * 2015-12-22 2016-04-20 中国航空工业集团公司北京航空制造工程研究所 分束激光聚焦同轴熔丝激光头和激光同轴熔丝成形设备
CN106392314B (zh) * 2016-11-01 2018-05-22 苏州大学 激光熔覆送料装置
CN207139049U (zh) * 2017-09-20 2018-03-27 苏州大学 激光溶覆装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020249A2 (en) * 1999-01-14 2000-07-19 Mitsubishi Heavy Industries, Ltd. Laser beam machining head
CN101386111A (zh) * 2007-09-14 2009-03-18 苏州大学 激光光内送丝熔覆方法与光内送丝装置
CN201713577U (zh) * 2010-06-02 2011-01-19 安徽米特吉激光科技有限公司 激光熔覆同步送丝装置
CN205614211U (zh) * 2016-02-03 2016-10-05 苏州大学 一种用于激光熔覆的激光光内送丝装置
CN107627002A (zh) * 2017-09-20 2018-01-26 苏州大学 激光溶覆装置

Also Published As

Publication number Publication date
CN107363357A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN100436031C (zh) 激光精密熔覆光粉同轴装置
CN107414305B (zh) 送丝机及激光熔覆装置
WO2019056713A1 (zh) 激光溶覆装置
US20210252637A1 (en) Laser-jet liquid beam self-generated abrasive particle flow composite processing device and method
CN110681992A (zh) 一种可调变的宽带激光加工光学系统及加工方法
CN214768946U (zh) 一种三光束丝粉混合激光熔覆系统
CN101695752A (zh) 一种激光精密微成形送粉方法及其光粉同轴装置
CN107627002B (zh) 激光熔覆装置
CN107385436B (zh) 激光熔覆装置密封结构、激光熔覆装置喷头及激光熔覆装置
CN106868503B (zh) 一种可调粉末汇聚性的激光同轴粉管式送粉喷嘴
CN106216849A (zh) 导光板激光精密微细加工装置及方法
CN107442940B (zh) 导丝微调结构及激光熔覆装置
JPS6250094A (ja) レ−ザ光線による切断機械
CN109604091B (zh) 一种喷涂装置和玻璃面板喷涂设备
KR102250986B1 (ko) 3d 프린터용 노즐유닛의 레이저 헤드
CN107457484A (zh) 可调节丝盘结构及送丝机及激光溶覆装置
CN207479791U (zh) 激光溶覆装置
CN207547886U (zh) 可调节丝盘结构及送丝机及激光溶覆装置
CN114643410B (zh) 一种同轴送丝激光制造方法及装置
CN217193382U (zh) 一种随焊水冷激光拼焊装置
CN207139049U (zh) 激光溶覆装置
CN207435545U (zh) 激光熔覆装置密封结构、激光熔覆装置喷头及激光熔覆装置
CN207189005U (zh) 导丝微调结构及激光溶覆装置
CN107460478B (zh) 激光熔覆装置
CN210024153U (zh) 一种双摆三维激光切割机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857797

Country of ref document: EP

Kind code of ref document: A1