WO2019054214A1 - 重金属処理剤および重金属処理剤の製造方法 - Google Patents

重金属処理剤および重金属処理剤の製造方法 Download PDF

Info

Publication number
WO2019054214A1
WO2019054214A1 PCT/JP2018/032480 JP2018032480W WO2019054214A1 WO 2019054214 A1 WO2019054214 A1 WO 2019054214A1 JP 2018032480 W JP2018032480 W JP 2018032480W WO 2019054214 A1 WO2019054214 A1 WO 2019054214A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
activated carbon
transition metal
treating agent
compound
Prior art date
Application number
PCT/JP2018/032480
Other languages
English (en)
French (fr)
Inventor
達郎 藤田
諒 加藤
真人 稗田
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to JP2019541998A priority Critical patent/JP6922989B2/ja
Publication of WO2019054214A1 publication Critical patent/WO2019054214A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a heavy metal treating agent and also relates to a method of producing a heavy metal treating agent. More particularly, the present invention relates to a heavy metal treating agent for removing heavy metals in a liquid phase, and also relates to a method of producing such a heavy metal treating agent.
  • Water is indispensable as an important resource, and is widely used not only for domestic and industrial water but also for agricultural and miscellaneous water.
  • water which is also a recyclable resource, is returned to the environment as drainage resulting from its use.
  • water pollution and pollution are considered to be a particular problem, and the necessary treatment is performed to obtain the desired water.
  • the heavy metals contained in water are not suitable for the desired water application depending on the type and concentration, and many are harmful to the human body and the like in the first place, and it is required to remove or reduce the heavy metals from water.
  • many heavy metals contained in industrial waste water are highly toxic, and if they are accumulated in the body, poisoning symptoms may occur. Therefore, drainage standards are established in the Basic Environment Act, etc. About domestic use water, there is tap water assuming drinking, and particularly strict water quality standards are defined. Therefore, various treatments such as water purification treatment for removing and reducing heavy metals are performed.
  • Manganese is a heavy metal that can be contained in water together with iron and the like, and is generally contained in natural water such as ground water. Excessive increase of manganese in water causes off-flavor and / or coloration problems so that a water treatment to remove manganese can be done.
  • the inventor of the present invention noticed that there are still problems to be overcome in the conventional heavy metal treatment, and found the need to take measures therefor. Specifically, the inventor has found that the following problems exist.
  • the removing efficiency in particular, the removing efficiency per unit weight of the treating agent may not be suitable.
  • the main object of the present invention is to provide a heavy metal treating agent having a more preferable removal efficiency (in particular, removal efficiency per unit weight of the treating agent).
  • the inventor of the present application has attempted to solve the above-mentioned problems by addressing in a new direction, instead of addressing in the extension of the prior art.
  • the inventors arrived at the invention of a heavy metal treating agent and a method for producing the same, wherein the above main object was achieved.
  • a heavy metal treating agent which comprises an activated carbon on which a compound comprising the first transition metal element is supported, and which is a treating agent for liquid phase.
  • the present invention also provides a method of producing a heavy metal treating agent.
  • the production method of the present invention comprises the step of bringing the metal compound, the polar solvent and the activated carbon into contact with each other, and the metal in the metal compound used in the contact step is the first transition metal, and the polarity used in the contact step
  • the solvent is characterized by having a Snyder's polarity parameter of 3.5 or more.
  • the heavy metal treating agent of the present invention is more suitable for the removal efficiency of heavy metals in the liquid phase, particularly the removal efficiency per unit weight of the treating agent. Further, in the heavy metal treating agent of the present invention, the first transition metal element is more strongly supported on the activated carbon, and in particular, the compound comprising the first transition metal element is more strongly supported on the activated carbon, More suitable for use.
  • Sectional view schematically showing pores of activated carbon Schematic diagram showing the technical concept of the manufacturing method of the present invention
  • the heavy metal removal mechanism of manganese oxyhydroxide supported on activated carbon (FIG. 3 (A)), and iron oxyhydroxide, cobalt oxyhydroxide and nickel oxyhydroxide supported on activated carbon
  • FIG. 3 (B) the heavy metal removal mechanism of manganese oxyhydroxide supported on activated carbon
  • the heavy metal treating agent of the present invention is composed of suitably combined components. More specifically, the heavy metal treating agent for use in a liquid phase system according to the present invention comprises at least an activated carbon on which a first transition metal is supported, preferably a compound comprising the first transition metal element and such The compound is at least composed of activated carbon on which the compound is supported.
  • the heavy metal treating agent of the present invention is characterized in that preferably the “inorganic substance” such as a compound of the first transition metal is a treating agent carried on the “organic matter” of the activated carbon. That is, from the general recognition of those skilled in the art, “metal inorganic substances and activated carbon organic matter" which were considered to be incompatible with each other in terms of bonding or immobilization, etc. are heavy metal treating agents of the present invention (in particular liquid phase such as water) It is a component of the heavy metal treatment agent used in the system).
  • heavy metal treating agent described herein is broadly used together with an object for which removal or reduction of heavy metals is desired, and removal or reduction of heavy metals contained in such objects from the object It refers to a treatment agent for treatment.
  • “heavy metal treatment agent” means a solid treatment agent capable of removing or reducing heavy metals contained in the liquid from the liquid by contacting the liquid such as water where removal or reduction of heavy metals is required. doing.
  • the "heavy metal” in the “heavy metal treating agent” as used herein refers to a metal component contained in the object to be treated which is required to be removed or reduced in a broad sense.
  • “heavy metal” is a metal component contained in a liquid such as water which is required to be removed or reduced, and preferably has a specific gravity (specific gravity when the density of water is 1) of 4 or more.
  • the heavy metals to be removed by the heavy metal treating agent according to the present invention are, for example, scandium (Sc), titanium (Ti), vanadium (V), Cr (chromium), manganese (Mn), iron, which is only an example. Examples include at least one metal selected from the group consisting of (Fe), cobalt (Co), nickel (Ni), and copper (Cu).
  • the heavy metal treating agent of the present invention at least comprises a first transition metal element supported on activated carbon.
  • the heavy metal treating agent of the present invention at least has the "compound comprising the first transition metal element" supported on activated carbon.
  • the "compound containing the first transition metal element” is fixed to the activated carbon serving as the base material.
  • the term “sticking” as used herein refers to a "compound comprising the first transition metal element", preferably due to the mutual affinity between the activated carbon and the "compound comprising the first transition metal element". Substantially means that it can be considered to be present in activated carbon.
  • the terms “support” and “sticking” as used herein refer to a compound comprising the first transition metal element, preferably “the first transition metal element” in the vicinity of the outer surface of the activated carbon and / or the pores. Does not necessarily mean only the embodiment in which the “compound comprising the first transition metal element” is directly attached to the outer surface and / or the pores of the activated carbon. .
  • “support” and “adhesion” means that the first transition metal element, preferably “a compound comprising the first transition metal element” is present on at least part of the surface and / or pores of the activated carbon. It is not necessary for the “compound comprising the first transition metal element” to be present all over the surface and the pores. However, in a preferred embodiment, the “compound comprising the first transition metal element” is present all over the outer surface of the activated carbon and in the pores, and the compound is supported on the activated carbon without being particularly unevenly distributed.
  • the “compound containing the first transition metal element” is preferably an inorganic compound containing the first transition metal element as a component. More preferably, the “compound comprising the first transition metal element” in the present invention is a substance containing the first transition metal element as a constituent element, and is a chemical bond such as covalent bond and / or ionic bond. It refers to an inorganic compound in which the first transition metal element is combined with another constituent element. This means that the qualitative analysis of the activated carbon which is the base material of the heavy metal treating agent of the present invention can identify the presence of the first transition metal element.
  • the heavy metal treating agent of the present invention when subjected to emission spectral analysis of ICP (Inductively Coupled Plasma), the first transition metal element present on activated carbon can be identified. Moreover, the compound supported by activated carbon can be grasped
  • ICP Inductively Coupled Plasma
  • the first transition metal element is supported on the base material of the activated carbon.
  • the first transition metal element is contained in the compound supported on the base material of the activated carbon.
  • transition metal elements that can be present on activated carbon are scandium (Sc), titanium (Ti), vanadium (V), Cr (chromium), manganese (Mn), iron (Fe), cobalt (Co), It is at least one selected from the group consisting of nickel (Ni) and copper (Cu). These metal elements are positioned in the same cycle (in particular, the fourth cycle) in the periodic table of the elements. Therefore, in the heavy metal treating agent of the present invention, it can be said that the metal element constituting the compound supported on the activated carbon base material is the transition element of the fourth period.
  • the first transition metal element is a metal element selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) . That is, the first transition metal element of the “compound comprising the first transition metal element” supported by activated carbon which is the base organic porous material is manganese (Mn), iron (Fe), cobalt (Co), It is a metal element selected from the group consisting of nickel (Ni) and copper (Cu).
  • a first transition metal element is contained in activated carbon, and in particular, when the first transition metal element is a constituent element of a compound supported on activated carbon, it is contained in a liquid such as water to be removed or reduced.
  • the metal of the same kind as the element supported on the activated carbon ie, scandium (Sc), titanium (Ti), vanadium (V), Cr (chromium), manganese (Mn)
  • At least one heavy metal selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) and copper (Cu) can be easily removed or reduced from a liquid such as water.
  • the first transition metal element may be a metal element selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) .
  • the first transition metal element of the “compound comprising the first transition metal” supported on activated carbon serving as the organic porous base material is manganese (Mn), iron (Fe), cobalt (Co) and nickel ( It may be a metal element selected from the group consisting of Ni).
  • heavy metals of at least the same kind of metal, manganese (Mn), iron (Fe), cobalt (Co) and / or nickel (Ni) can be removed or reduced from the liquid such as water.
  • the heavy metal treating agent of the present invention has at least manganese supported on activated carbon, preferably, the activated carbon on which the “compound containing manganese element” is supported. At least consists of Also, for example, when the first transition metal element is iron (Fe), at least iron is supported on activated carbon in the heavy metal treating agent of the present invention, and preferably “the compound containing iron element” is supported. At least composed of activated carbon.
  • the heavy metal treating agent of the present invention has at least cobalt supported on activated carbon, preferably a “compound comprising cobalt element” It is at least composed of supported activated carbon.
  • the heavy metal treating agent of the present invention has at least nickel supported on activated carbon, preferably, "activated carbon compound carrying nickel compound”. At least consists of
  • the first transition metal element is copper (Cu)
  • at least copper is supported on the activated carbon of the heavy metal treating agent of the present invention, preferably “the compound containing copper element” is supported. At least composed of activated carbon.
  • the heavy metal treating agent of the present invention comprises the organic carbon material as a base material that constitutes the majority of the treating agent (most of the apparent volume of the treating agent).
  • Activated carbon is an organic porous body having pores (especially fine pores). Therefore, in the present invention, a hybrid type heavy metal treating agent (especially heavy metal used in liquid phase such as water, preferably combined with "inorganic compound comprising a first transition metal” and “organic porous body”) Treatment agent) is provided.
  • a hybrid type heavy metal treating agent especially heavy metal used in liquid phase such as water, preferably combined with "inorganic compound comprising a first transition metal" and “organic porous body" Treatment agent
  • the activated carbon of the heavy metal treatment agent according to the present invention may be provided with pores, which may fall in at least one category of so-called micropores (or micropores), mesopores and macropores.
  • the diameter of the pores constituting the porous body of activated carbon in the present invention may be in the range of 0.01 nm to 500 nm, or in the range of 0.1 nm to 250 nm, or in the range of 0.1 nm to 50 nm.
  • the form of activated carbon may be various forms, for example, powdery, granular, fibrous and / or columnar (for example, cylindrical).
  • Activated carbon which corresponds to the base material of heavy metal treatment, forms the whole form of the treatment. Therefore, the heavy metal treating agent of the present invention also preferably has a form such as powdery, granular, fibrous, columnar (for example, cylindrical) and the like.
  • the type of activated carbon of the heavy metal treatment agent according to the present invention is not particularly limited as long as the above-mentioned pores are provided, and for example, so-called chemical activated or gas activated activated carbon may be used.
  • the raw material of activated carbon itself is not particularly limited as long as the above-mentioned pores are finally provided as activated carbon, and charcoal, coconut shell charcoal, coal (for example, lignite, lignite, bituminous coal and / or anthracite etc.) ), Sawdust, wood chips, grass charcoal (eg, beet), coal pitch and petroleum pitch may be selected (note that rayon, acrylonitrile and / or phenol is a raw material for fibrous activated carbon). May be
  • a first transition metal preferably a "compound comprising the first transition metal element” is at least present in the pores of the activated carbon. That is, preferably, at least the “compound comprising the first transition metal element” is provided in the pores contributing to the increase in the surface area of the activated carbon itself. Therefore, "a compound comprising the first transition metal element” may be present not only in the pores but also on the outer surface of the activated carbon which is outside the pores.
  • a compound comprising the first transition metal element is present in at least one of micropores 12, mesopores 14 and macropores 16 of activated carbon 10 (FIG. 1) reference). More preferably, the first transition metal, especially at least both of micropores 12 and mesopores 14 of activated carbon 10, at least both of mesopores 14 and macropores 16, or at least both of micropores 12 and macropores 16, is particularly preferred.
  • the first transition metal, particularly "a compound comprising the first transition metal element” is present in all the micropores 12, mesopores 14 and macropores 16 of the activated carbon 10.
  • micropores mean those according to the International Union of Pure and Applied Chemistry (IUPAC) classification. More specifically, in the present invention, “micropore” means a pore having a pore size of 2 nm or less, and “mesopore” has a pore size of 2 nm (not including 2 nm) to 50 nm (not including 50 nm) By pores is meant, and “macropores” are pores with a pore size of 50 nm or more.
  • IUPAC International Union of Pure and Applied Chemistry
  • the pore size refers to the size measured by the gas adsorption method or the mercury intrusion method, and in particular, the macro pore means the pore size measured by the mercury intrusion method, and the mesopores and the micropores It means the pore size measured by the gas adsorption method.
  • Activated carbon on which the compound "comprised of the first transition metal element” is supported can be provided. This means that it becomes a heavy metal treating agent containing a larger amount of the first transition metal, particularly "a compound comprising the first transition metal element” per unit weight.
  • the first transition metal supported on activated carbon particularly the “compound comprising the first transition metal element” itself has a high affinity for heavy metals in a liquid such as water
  • the heavy metal treating agent Contribute to the removal or reduction of heavy metals from the liquid by binding or attraction to Therefore, being a heavy metal treating agent containing more “compound comprising the first transition metal element” per unit weight can remove or reduce more heavy metal per unit weight of the treating agent. I mean. Therefore, the heavy metal treating agent of the present invention can have more improved removal efficiency (removing efficiency when captured per unit weight of the treating agent).
  • the "compound comprising the first transition metal element” is a metal hydroxide.
  • metal hydroxide as used herein preferably refers to a form having a hydroxyl group (OH group). Further, in some cases, the metal hydroxide refers not only to a form having a hydroxyl group (OH group) but also to a form having a hydrate form. More specifically, the “metal hydroxide” in the present invention preferably refers to a compound represented by, for example, MOH, M (OH) 2 or M (OH) 3 and the like.
  • the term "metal hydroxide” in the present invention means not only compounds represented by, for example, MOH, M (OH) 2 or M (OH) 3 but also, for example, M 2 O ⁇ H 2 O also encompasses the hydrates of MO ⁇ H 2 O, M 2 O 3 ⁇ H 2 O oxides represented by such news, for example MONa, M (ONa) 2 or M (ONa) 3, MOK , M (OK) 2 or M (OK) 3 and the like, and salts represented by M 2 O, Na 2 O, MO, Na 2 O, M 2 O 3 , Na 2 O, M 2 O, K 2 It may also include a compound understood as a salt of an oxide represented by O, MO ⁇ K 2 O, M 2 O 3 ⁇ K 2 O, etc. (M: first transition metal element). In other words, it can be said that a specific example of the "compound comprising the first transition metal element" may contain the specific compounds listed above.
  • the "metal hydroxide of the first transition metal element” is supported on the activated carbon base material.
  • metal components in a liquid such as water which is required to be removed or reduced are more easily removed / reduced.
  • metals of the same type as elements supported on activated carbon that is, scandium (Sc), titanium (Ti), vanadium (V), Cr (chromium), manganese (Mn), iron (Fe), cobalt (Co)
  • At least one heavy metal selected from the group consisting of nickel (Ni) and copper (Cu) is more likely to be removed or reduced more efficiently from a liquid such as water.
  • OH groups also including OH groups attributed to hydrates
  • OH groups suitably act as active groups for heavy metals in liquids such as water, It is believed that the heavy metal may be bound or attracted to or near the OH group.
  • the metal hydroxide is an oxyhydroxide. That is, in the heavy metal treatment material of a preferred embodiment of the present invention, the "metal hydroxide of the first transition metal element" supported on the activated carbon base material is an oxyhydroxide.
  • oxyhydroxide refers to an independent oxygen atom (which can be regarded as O 2- ) bound to the first transition metal element among compounds as a basic salt consisting of the first transition metal. It points to the hydroxide which it has. It is only an example to the last, but taking the case where the first transition metal element is manganese (Mn) as an example, it is preferable that the hydroxide represented by MnO (OH) 2 be supported on the activated carbon.
  • the hydroxide represented by FeO (OH) is preferably supported on activated carbon, and the first transition metal element is cobalt
  • the hydroxide represented by CoO (OH) is supported on activated carbon
  • the first transition metal element is nickel (Ni)
  • the hydroxide represented by NiO (OH) is supported on activated carbon.
  • a heavy metal treating agent in which such an oxyhydroxide is supported on activated carbon metal components in a liquid such as water which is required to be removed or reduced are more easily removed / reduced.
  • metals of the same type as elements supported on activated carbon that is, scandium (Sc), titanium (Ti), vanadium (V), Cr (chromium), manganese (Mn), iron (Fe), cobalt (Co)
  • At least one heavy metal selected from the group consisting of nickel (Ni) and copper (Cu) is more likely to be removed or reduced more efficiently from a liquid such as water.
  • the OH group in the oxyhydroxide supported on activated carbon acts more effectively as a activating group for heavy metals in liquids such as water, and such OH groups or This is because the action of binding a heavy metal in the vicinity is more effective (for example, an effect may be exerted such that a hydrogen atom of an OH group and a heavy metal in water are substituted and the heavy metal is adsorbed to the treatment agent).
  • the heavy metal treating agent according to the present invention is particularly a treating agent for liquid phase. That is, the heavy metal treating agent of the present invention is a heavy metal treating agent used in a liquid phase, and is a heavy metal treating agent used to remove or reduce heavy metals contained in the liquid phase.
  • the preferred heavy metal treating agent according to the present invention is not a treating agent used in a gas phase system such as an exhaust gas treating agent. Because of the "liquid phase", it can be said that the heavy metal treating agent of the present invention is not preferably a treating agent directly used on solids such as soil and solid waste.
  • the term "for liquid phase” in the present invention means that the object to be treated whose heavy metal is removed or reduced is a liquid such as water, which is directly or indirectly provided thereto. It means that it is a treating agent. Therefore, the heavy metal treatment agent of the present invention can also be referred to as a "liquid use treatment agent”.
  • the present invention is characterized in that it is a heavy metal treating agent for a liquid phase which is preferably composed of a metal inorganic substance (in particular, a metal inorganic substance comprising a first transition metal) and an activated carbon organic matter. That is, from the general recognition of those skilled in the art, it is composed of a metal inorganic substance and an activated carbon organic material which were considered to be incompatible with each other in terms of bonding and immobilization, etc. It is a liquid phase heavy metal treatment agent.
  • the treatment agent for use in the liquid phase system of the present invention is a heavy metal treatment for removing or reducing heavy metals of the same kind as the first transition metal element constituting it (that is, heavy metals of the first transition element) from the liquid phase. It is an agent.
  • the "compound comprising the first transition metal" supported on activated carbon can effectively act to have an active point for heavy metals in the liquid phase, such The action of binding or attracting a heavy metal at or near the activity point can be more effectively exhibited.
  • the treatment agent for liquid phase use is a water treatment agent.
  • the heavy metal treating agent of the present invention is a heavy metal treating agent used in water, and is a heavy metal treating agent used to remove or reduce heavy metals contained in the water.
  • the heavy metal treatment agent of the present invention can be used as a water purification treatment agent.
  • the heavy metal treating agent of the present invention may be used as a first transition metal removing agent for water which removes or reduces the first transition metal contained in water (it is merely illustrative but removing or reducing manganese in water May be used as a manganese remover in water).
  • the production method of the present invention is a method for obtaining the above-mentioned heavy metal treating agent.
  • Such a production method is characterized in that a plurality of raw materials are suitably combined and used. More specifically, the production method of the present invention comprises a combination of raw materials comprising at least a first transition metal, activated carbon and a polar solvent.
  • the production method of the present invention is Contacting the metal compound, the polar solvent and the activated carbon with one another,
  • the metal in the metal compound is the first transition metal, and the polar solvent has a Snyder polarity parameter of 3.5 or more.
  • the first transition metal is formed by bringing the metal compound (especially the compound of the first transition metal), the polar solvent (especially the polar solvent having the Snyder's polar parameter of 3.5 or more) and activated carbon into contact with each other.
  • the activated carbon is supported, preferably a compound comprising the first transition metal is supported on the activated carbon (see FIG. 2). That is, the "inorganic substance" as a compound preferably comprising the first transition metal is supported on the "organic matter" of the activated carbon.
  • the polar solvent used in the present invention is a liquid having a Snyder's polar parameter of 3.5 or more. Due to the polar solvent having at least such polar parameter, the loading of the compound comprising the first transition metal on the activated carbon is promoted.
  • polarity parameter of Snyder means L. R. Snyder, J. Chromatogr., Vol. 32, p. 223 (1974); J. Chromatogr. Sci., Vol. 16, p. 223. It is the polarity parameter being described.
  • the first transition metal element can be provided in the pores of the activated carbon.
  • the "compound containing the first transition metal element” can be suitably provided in the pores of the activated carbon. That is, when the metal compound (especially, the compound of the first transition metal and the activated carbon are brought into contact with each other) via the polar solvent having the Snyder's polar parameter of 3.5 or more, the pores contributing to the surface area increase of the activated carbon It is possible to provide a "compound comprising the first transition metal element", which is not restricted to any particular theory but that polar solvents having a Snyder polar parameter of 3.5 or more are activated carbons.
  • the first transition metal element particularly "a compound comprising the first transition metal element" in the pores of activated carbon
  • the first transition metal element particularly "a compound comprising the first transition metal element" in the pores of activated carbon
  • at least one of the micropores, the mesopores and the macropores of the activated carbon may be provided with the first transition metal element, preferably A "compound comprising the first transition metal element" can be provided.
  • the first transition metal element can be supported on the activated carbon more firmly.
  • the “compound comprising the first transition metal element” can be supported on the activated carbon more firmly.
  • the binder action of the above polar solvent due to Snyder of 3.5 or more is also involved.
  • the first transition metal element, particularly "a compound comprising the first transition metal element” can be supported more firmly by activated carbon.
  • the first transition metal element, particularly "a compound comprising the first transition metal element” is supported more firmly by the activated carbon. be able to.
  • the polar solvent used in the present invention is selected from the group consisting of water, ethers, alcohols, ketones, acetates, amides, nitriles and halogenated hydrocarbons. It may be a solvent having a Snyder's polarity parameter of 5 or more. That is, not only using Snyder having a polar parameter of 3.5 or more as a single solvent, but using a solvent having Snyder having a polar parameter of 3.5 or more as a mixed solvent consisting of various combinations of these media. It is also good.
  • the “polarity parameter of Snyder” is, as described above, L. R. Snyder, J. Chromatogr., Vol. 32, 223 (1974); J. Chromatogr.
  • a solvent having a Snyder polarity parameter value of 3.5 or more may be selected and used from solvents in which Snyder parameter values are known as polarity parameters.
  • Wako Analytical Circle No. 11 the Internet, ⁇ URL: http://www.wako-chem.co.jp/siyaku/info/ It may be selected based on the Snyder's polarity parameter value described in “chroma”.
  • the “polar solvent having a Snyder polar parameter of 3.5 or more” used in the present invention is an amount capable of filling all or all of the pore surfaces of activated carbon subjected to the contacting step. It is preferred to use. That is, it is preferable to carry out the contacting step using a polar solvent corresponding to the amount of the total pore volume or more of the activated carbon used in the contacting step.
  • the metal compound used in the production method of the present invention is a compound of a first transition metal element.
  • such first transition metal element is a metal element selected from the group consisting of manganese (Mn), Fe (iron), Co (cobalt), Ni (nickel) and copper (Cu).
  • the polar solvent a polar solvent having a Snyder's polar parameter of 3.5 or more
  • the metal compound brought into contact with the activated carbon are manganese (Mn), Fe (iron), Co (cobalt), Ni (nickel) and copper ( It is preferable that it is a compound of a first transition metal element selected from the group consisting of Cu).
  • the first transition metal element in the compound of the first transition metal element used in the production method of the present invention is selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni) It may be a metal element.
  • the first transition metal element derived from the compound can be supported on the activated carbon, and in particular, the compound including the first transition metal element can be supported on the activated carbon. This means that the substance derived at least from the first transition metal element contained in the raw material is supported on the activated carbon.
  • the production method of the present invention brings a manganese compound, a polar solvent (a polar solvent having a Snyder's polar parameter of 3.5 or more) and activated carbon into contact with each other. It will be. Thereby, a heavy metal treating agent composed at least of activated carbon on which a compound containing manganese element is supported can be finally obtained.
  • a polar solvent a polar solvent having a Snyder's polar parameter of 3.5 or more
  • manganese compound to be used for example, potassium permanganate (KMnO 4 ), manganese fluoride (MnF 2 ), manganese chloride (MnCl 2 ), manganese bromide (MnBr 2 ), manganese iodide (MnI 2 ), hydroxylated It may be manganese (Mn (OH) 2 ), manganese nitrate (Mn (NO 3 ) 2 ), manganese sulfate (MnSO 4 ), manganese acetate (Mn (CH 3 COO) 2 ) or a combination thereof.
  • the iron compound is iron (Fe)
  • the activated carbon are brought into contact with each other.
  • a heavy metal treating agent composed at least of activated carbon on which a compound comprising iron element is supported can be finally obtained.
  • ferric chloride for example, FeCl 3
  • iron fluoride FeF 2
  • ferrous chloride FeCl 2
  • FeBr 2 iron bromide
  • iron iodide iron iodide
  • the cobalt compound to be used is, by way of example only, cobalt chloride (CoCl 2 ), cobalt bromide (CoBr 2 ), cobalt iodide (CoI 2 ), cobalt hydroxide (Co (OH) 2 ), cobalt nitrate Co (NO 3 ) 2 ), cobalt sulfate (CoSO 4 ), cobalt acetate (Co (CH 3 COO) 2 ), cobalt carbonate (CoCO 3 ), or a combination thereof.
  • the first transition metal element is nickel (Ni)
  • a nickel compound, a polar solvent a polar solvent having a Snyder's polar parameter of 3.5 or more
  • activated carbon are brought into contact with each other.
  • the nickel compounds to be used are, for example, nickel chloride (NiCl 2 ), nickel bromide (NiBr 2 ), nickel iodide (NiI 2 ), nickel hydroxide (Ni (OH) 2 ), nickel nitrate (Ni (OH) 2 ). It may be Ni (NO 3 ) 2 ), nickel sulfate (NiSO 4 ), nickel acetate (Ni (CH 3 COO) 2 ), nickel carbonate (NiCO 3 ), or a combination thereof.
  • the said 1st transition metal element is copper (Cu)
  • activated carbon will be mutually contacted.
  • a heavy metal treating agent composed at least of activated carbon on which a compound containing copper element is supported can be finally obtained.
  • the polar parameter of the Snyder in polar solvents is greater than 3.5 and less than 11.0.
  • polar solvents (the values in parentheses indicate Snyder's polarity parameters, and the same applies in the following), ethylene dichloride (3.5), isopropyl alcohol (3.9), tetrahydrofuran (4.0), n-propanol (4.0) ), Chloroform (4.1), ethanol (4.3), ethyl acetate (4.4), methyl ethyl ketone (4.7), dioxane (4.8), acetone (5.1), methanol (5.1), acetonitrile (5.8), acetic acid (6.0), dimethylformamide It may be at least one selected from the group consisting of (6.4), ethylene glycol (6.9), dimethyl sulfoxide (7.2) and water (10.2).
  • the polar solvent is tetrahydrofuran (4.0), ethyl acetate (4.4), dioxane (4.8), acetone (5.1) And at least one selected from the group consisting of methanol (5.1) and acetonitrile (5.8).
  • the polar solvent is tetrahydrofuran (4.0), ethyl acetate (4.4), dioxane (4.8), acetone ( 5.1), and may be at least one selected from the group consisting of methanol (5.1) and acetonitrile (5.8).
  • the polar parameter of Snyder in the polar solvent is 3.5 or more and 5.5 or less, and therefore, the polar solvent is tetrahydrofuran (4.0), ethyl acetate (4.4), dioxane (4.8), acetone (5.1) and at least one member selected from the group consisting of methanol (5.1), or the polarity parameter of Snyder in the polar solvent is 4.5 or more and 5.5 or less, and hence the polarity
  • the solvent may be at least one selected from the group consisting of dioxane (4.8), acetone (5.1) and methanol (5.1).
  • the activated carbon used in the production method of the present invention may be, for example, powdery, granular, fibrous and / or columnar (for example, cylindrical).
  • the type of activated carbon is not particularly limited as long as it has pores, and may be, for example, so-called chemical activated or gas activated activated carbon.
  • the raw material from which activated carbon is derived is also not particularly limited, and charcoal, coconut shell charcoal, coal (eg lignite, lignite, bituminous coal and / or anthracite etc), sawdust, wood chips, grass charcoal (eg beet), coal It may be a raw material selected from the group consisting of pitch and petroleum pitch (note that, for fibrous activated carbon, rayon, acrylonitrile and / or phenol may be a raw material).
  • the activated carbon 10 used in the production method of the present invention contains at least one of micropores 12, mesopores 14 and macropores 16 (see FIG. 1).
  • a polar solvent having a Snyder's polar parameter of 3.5 or more and "a compound of the first transition metal”
  • the compound "comprised of an element" can be supported.
  • micropores 12, the mesopores 14 and the macropores 16 of the activated carbon 10 can all be loaded with the first transition metal element, particularly the "compound containing the first transition metal element".
  • the terms "micropores”, “mesopores” and “macropores” are in accordance with the International Pure Applied Chemistry Association (IUPAC) classification as described above. More specifically, "micropores" in the activated carbon used in the production method of the present invention mean pores having a pore size (particularly, a size measured by gas adsorption method) of 2 nm or less, and “mesopores" are fine.
  • Pore size (specifically, the size measured by gas adsorption method) means a pore of 2 nm (not including 2 nm) to 50 nm (not including 50 nm), and "macropore” is a pore size (especially by mercury intrusion method)
  • the size to be measured means a pore of 50 nm or more.
  • the raw materials used are preferably subjected to a water environment.
  • the water may be, for example, purified water such as distilled water, pure water, ultrapure water or deionized water or tap water.
  • the activated carbon obtained after contacting the metal compound, the polar solvent and the activated carbon with one another may be contacted with water.
  • the step of bringing the metal compound, the polar solvent and the activated carbon into contact with each other to obtain the heavy metal treating agent precursor, and the step of contacting the precursor with water can be included.
  • a heavy metal treating agent comprising activated carbon carrying the “compound comprising the first transition metal element” is obtained.
  • the formation of the “compound comprising the first transition metal element” is more aggressive as the compound of the first transition metal of the raw material and the water substantially react with each other. And the formation of activated carbon supported by the “compound comprising the first transition metal element” can be further promoted.
  • the polar solvent in the step of contacting the activated carbon with the metal compound may contain a water component.
  • a heavy metal treating agent comprising activated carbon on which a compound comprising the first transition metal element is supported can be obtained.
  • the polar solvent comprising the water component may be formed by actively adding water to the polar solvent, or the solvent may spontaneously form water in the air due to the polar solvent being placed in the air environment, etc. You may use what is obtained by absorbing.
  • water may be added to the mixture during the contacting step of activated carbon, metal compound and polar solvent.
  • the polar solvent in the contact process of activated carbon and a metal compound will contain a water component. From such a point of view, the metal compound used for contact with the polar solvent may have an aqueous solution form, or the activated carbon used for contact with the polar solvent may contain water. It can be said.
  • a heavy metal treating agent which preferably comprises activated carbon on which the "metal hydroxide comprising the first transition metal element" is supported. While not being limited by a specific theory, a reaction involving a first transition metal contained in a compound of a first transition metal used as a raw material and a hydroxyl group attributable to water occurs. The formation of the hydroxide comprising an element can be more positively brought about, which can further promote the formation of the activated carbon carrying the “hydroxide comprising a first transition metal element”.
  • metal hydroxide broadly means not only in the form having a hydroxyl group (OH group) but also in the form having a hydrate form, the first metal having such a hydroxyl group Activated carbon carrying a transition metal compound and / or a first transition metal compound in the form of a hydrate can be obtained in the present invention.
  • the water may be made alkaline. For example, it may be exposed to a water environment using water in which a base such as sodium hydroxide (caustic soda), potassium hydroxide (caustic potassium), calcium hydroxide and / or barium hydroxide is dissolved.
  • a base such as sodium hydroxide (caustic soda), potassium hydroxide (caustic potassium), calcium hydroxide and / or barium hydroxide is dissolved.
  • the activated carbon obtained after bringing the metal compound, the polar solvent and the activated carbon into contact with each other is an alkaline solution (eg, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution and / or barium hydroxide aqueous solution) , And thereby obtain “a metal hydroxide comprising a first transition metal element” supported on activated carbon.
  • an alkaline solution eg, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution and / or barium hydroxide aqueous solution
  • the metal hydroxide supported on activated carbon is an oxyhydroxide. That is, the raw material to be used is subjected to a water environment to obtain an activated carbon on which "a metal oxyhydroxide containing a first transition metal element" is supported as a heavy metal treating agent.
  • a metal oxyhydroxide containing a first transition metal element is supported as a heavy metal treating agent.
  • the first transition metal element is manganese (Mn)
  • Mn manganese
  • a polar solvent a polar solvent having a Snyder polar parameter of 3.5 or more
  • the activated carbon obtained after contact with an iron compound and a polar solvent (a polar solvent having a Snyder polar parameter of 3.5 or more) is contacted with water An activated carbon on which FeO (OH) is supported as a heavy metal treating agent may be obtained.
  • the first transition metal element is cobalt (Co)
  • the activated carbon obtained after contact with a cobalt compound and a polar solvent (a polar solvent having a Snyder polar parameter of 3.5 or more) is contacted with water An activated carbon on which CoO (OH) is supported as a heavy metal treating agent may be obtained.
  • the activated carbon obtained after contact with a nickel compound and a polar solvent (a polar solvent having a Snyder polar parameter of 3.5 or more) is contacted with water
  • a polar solvent a polar solvent having a Snyder polar parameter of 3.5 or more
  • An activated carbon on which NiO (OH) is supported as a heavy metal treating agent may be obtained.
  • the activated carbon obtained after the contacting step may be subjected to a drying treatment. That is, the activated carbon obtained after the contact treatment with a metal compound (especially a compound of the first transition metal) and a polar solvent (especially a polar solvent having a Snyder polar parameter of 3.5 or more) may be subjected to drying. Thereby, the excess polar solvent adhering to the activated carbon can be vaporized and removed.
  • the activated carbon after the contacting step may be subjected to heat treatment conditions at a drying temperature of about 50 to 200 ° C. under atmospheric pressure.
  • the activated carbon obtained after the contacting step may be placed under reduced pressure or under vacuum. When placed under reduced pressure or under vacuum, the polar solvent is evaporated by maintaining the degree of reduced pressure or vacuum below the saturation vapor pressure of the polar solvent. If necessary, "heat treatment” and "under reduced pressure or under vacuum” may be combined.
  • the metal compound solution obtained by dissolving the metal compound in a polar solvent may be brought into contact with the activated carbon. That is, the contacting liquid may be prepared from the metal compound and the polar solvent, and then the contacting liquid and the activated carbon may be brought into contact with each other.
  • the contacting step of the production method of the present invention may be carried out by filling activated carbon in a container and providing the contact liquid to such an activated carbon-filled container.
  • the invention is based on the case where the first transition metal element is manganese (Mn) and acetone is used as a polar solvent having a Snyder's polar parameter of 3.5 or more.
  • the manufacturing method is more specifically illustrated.
  • a liquid for contacting activated carbon is prepared from potassium permanganate and acetone.
  • a solution in which potassium permanganate is dissolved in acetone is prepared through stirring, and the prepared liquid is brought into contact with activated carbon.
  • the contact treatment may be performed by providing "a preparation solution obtained by dissolving potassium permanganate in acetone" in a container filled with granular activated carbon.
  • the activated carbon after the contact treatment may be subjected to drying treatment, for example, may be subjected to vacuum drying.
  • the activated carbon obtained after the contact treatment or after the drying treatment is then brought into contact with water.
  • water contact may be performed by performing an operation of impregnating the activated carbon after the contact treatment or the dry treatment with water. After such impregnation, excess water may be filtered off.
  • a heavy metal treating agent comprising a "compound containing manganese element" (preferably a hydroxide compound of manganese, more preferably manganese oxyhydroxide) and activated carbon on which it is supported. You can get it.
  • the heavy metal treating agent thus obtained can particularly effectively remove manganese in water.
  • a heavy metal treating agent in which manganese oxyhydroxide is supported on activated carbon is used for water treatment
  • manganese in water is adsorbed and removed by a mechanism as shown in FIG. be able to.
  • other heavy metal treating agents For example, when a heavy metal treating agent in which iron oxyhydroxide is supported on activated carbon is used for water treatment, it is not restricted to a specific theory, but iron in water is adsorbed and removed by a mechanism as shown in FIG. It can be done.
  • activated carbon is used as the constituent element, if there is a material that can be regarded as a similar organic porous material, it can be used as a base material of the heavy metal treatment agent.
  • a material that can be regarded as a similar organic porous material it can be used as a base material of the heavy metal treatment agent.
  • it is replaced with a “water” environment (ie, contact with water).
  • it may be subjected to an "alcohols" environment represented by ethanol or methanol (i.e. contacted with alcohols).
  • First embodiment A heavy metal treating agent obtained by bringing a metal compound of a first transition metal element, a polar solvent having a Snyder's polar parameter of 3.5 or more, and activated carbon into contact with each other.
  • Second aspect The heavy metal treating agent according to the first aspect, wherein the activated carbon obtained after the contacting is brought into contact with water and / or the polar solvent in the contacting contains a water component.
  • Third aspect The heavy metal treating agent according to the first or second aspect, wherein the polarity parameter is 3.5 or more and 11.0 or less.
  • the polar solvent is a solvent selected from the group consisting of water, ethers, alcohols, ketones, acetates, amides, nitriles and halogenated hydrocarbons.
  • a heavy metal treating agent characterized by being.
  • Fifth aspect The heavy metal treating agent according to any one of the first to fourth aspects, wherein the activated carbon obtained after the contact is subjected to a drying treatment.
  • Heavy metal processing agent characterized by Seventh Embodiment: The heavy metal treating agent according to any one of the first to sixth embodiments, wherein the polar solvent is acetone.
  • the first transition metal element is an element selected from the group consisting of manganese (Mn), iron (Fe) and copper (Cu).
  • Heavy metal treating agent characterized by -Ninth aspect In any of the first to seventh aspects, the first transition metal element is selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co) and nickel (Ni).
  • Heavy metal treating agent characterized by being an element to be
  • Tenth aspect The heavy metal treating agent according to any one of the first to ninth aspects, wherein the first transition metal element is manganese (Mn).
  • -11th aspect It is a heavy metal processing agent, Comprising: The heavy metal processing agent which has activated carbon by which the 1st transition metal element was carry
  • the first transition metal compound was added to each 10 mL of the polar solvent. Specifically, 10 mL of polar solvent is charged in a beaker (material: borosilicate glass, capacity: 50 mL) under the conditions of room temperature (about 25 ° C.) and atmospheric pressure, and about 0.1 g of the first transition metal compound is added Stir for about 10 minutes. Thereafter, by visually confirming the inside of the beaker from the outside, it was judged whether or not the first transition metal compound was completely dissolved in the polar solvent. In particular, the solubility was determined by visually confirming whether the powder state of the first transition metal compound before addition remains in the polar solvent.
  • the activated carbon is contacted with a metal compound solution (compound concentration: 1 to 4% by weight) obtained by dissolving the first transition metal compound in acetone, water, and methanol used as polar solvents, respectively. We did it and examined the effect by it.
  • a metal compound solution compound concentration: 1 to 4% by weight
  • the metal compound solution obtained by mixing the polar solvent and the metal compound was applied to 100 g of activated carbon to contact the activated carbon with the metal compound solution (that is, activated carbon and metal)
  • the compound and the polar solvent are brought into contact with one another).
  • the activated carbon used was granular activated carbon (manufactured by Kuraray Chemical, product number: Kuraray coal GW 40/20).
  • the above contact is carried out for about 10 minutes under conditions of room temperature (about 25 ° C.) and atmospheric pressure, and then the activated carbon is subjected to vacuum drying in a vacuum dryer (manufactured by As One, type AVO-250NB) at a temperature of 70 ° C. And obtained “contact treated activated carbon”.
  • each “contact treated activated carbon” is quantified, packed in a column (cylindrical column made of polypropylene (PP) material, column inner diameter 20 mm, column height 60 mm), and 10 mL of 1 N hydrochloric acid is passed Collected.
  • the first transition metal is Mn
  • add 100 ⁇ L of 67.5% nitric acid (manufactured by Tokyo Chemical Industry, product number: N0806) and 3 mg of sodium bismuthate (manufactured by Wako Pure Chemical Industries, product number: 198-01332) to the recovery solution The mixture was stirred, and the solution was colored in reddish purple to confirm that Mn was supported.
  • the first transition metal is Fe
  • 100 mg of 2-2′-bipyridyl (manufactured by Tokyo Chemical Industry Co., Ltd., product number: B0468) is added to the recovered solution and stirred, and the color of the solution becomes red.
  • the loading was confirmed.
  • the first transition metal is Co
  • 2 mL of a 28% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, product number: 010-03166) is added to the recovered solution and the mixture is stirred, and the color of the solution becomes bluish green Confirmed the loading of Co.
  • the first transition metal is Ni
  • 100 mg of sodium sulfide (manufactured by Wako Pure Chemical Industries, product number: 195-15632) is added to the recovery solution, and the mixture is stirred, and black precipitation occurs in the solution to support Ni. confirmed.
  • the first transition metal is Cu
  • 2 mL of a 28% aqueous ammonia solution (manufactured by Wako Pure Chemical Industries, product number: 010-03166) is added to the recovery solution, and the mixture is stirred, and the color of the solution becomes blue.
  • the first transition metal supported on the activated carbon is at least due to a reaction with the water or the like and / or an oxidation reaction or the like. It is considered that it is a compound. Therefore, from the above test, it was possible to grasp the support of the compound containing the first transition element on the activated carbon.
  • the heavy metal treating agents A and B used as examples were prepared as follows.
  • Activated carbon 105g (Kuraray Chemical, product number: KURARECOR GW 40/20) is packed in a column (cylindrical column made of polypropylene (PP), column inner diameter 20 mm, column height 60 mm), and the obtained treatment solution is at room temperature (about The treatment solution was applied to a column filled with activated carbon by dropping under conditions of 25 ° C. and atmospheric pressure, and allowed to stand for 10 minutes. Then, the activated carbon was transferred to a vat and dried at 70 ° C. for 3 hours in a vacuum dryer (manufactured by As One, type AVO-250NB). Next, the dried activated carbon was impregnated with ultrapure water purified with Organo Purelight PRO-0100, and the ultrapure water was removed by runoff. A heavy metal treating agent A was obtained by the above steps.
  • the amount of Mn means the amount of Mn (mg) per 1 g of activated carbon, as can be understood from the unit "mg / g".
  • activated carbon made by Kuraray Chemical: KURARECOL GW40 / 20
  • a column cylindrical column made of polypropylene (PP), column inner diameter 20 mm, column height 60 mm), potassium permanganate / acetone solution at room temperature (approximately
  • the treatment solution was added to the activated carbon packed column by dropping under conditions of 25 ° C.) and atmospheric pressure and allowed to stand for 10 minutes.
  • the activated carbon was transferred to a vat and dried at 70 ° C. for 3 hours in a vacuum dryer (manufactured by As One, type AVO-250NB).
  • the dried activated carbon was impregnated with ultrapure water purified with Organo Purelight PRO-0100, and the ultrapure water was removed by runoff.
  • a heavy metal treating agent B was obtained by the above steps.
  • the amount of Mn means the amount of Mn (mg) per 1 g of activated carbon, as can be understood from the unit "mg / g".
  • Example 1 (Heavy metal removal test) A 1000 ppm MnCl 2 aqueous solution was used as a test solution.
  • the MnCl 2 aqueous solution was prepared by dissolving manganese chloride tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd., product number: 134-15302) in ultrapure water purified with Organo Purelight PRO-0100.
  • Heavy metal treating agent A is packed into a column (cylindrical column made of polypropylene (PP), column inner diameter 20 mm, column height 60 mm) to 10 g, and the conditions of room temperature (about 25 ° C.) and atmospheric pressure for such packed column
  • the heavy metal removal test was carried out by dropping the test solution below.
  • the manganese concentration of the recovered solution was measured by absorption spectrophotometry. That is, the recovered solution was colored using a reagent, and the manganese concentration was calculated from the absorbance. Specifically, 4.90 mL of ultrapure water purified with Organo Purelight PRO-0100 is added to 100 ⁇ L of the recovered solution, and 100 ⁇ L of 67.5% nitric acid (manufactured by Tokyo Chemical Industry Co., Ltd., product number: N0806) and 3 mg of Sodium bismuthate (manufactured by Wako Pure Chemical Industries, product number: 198-01332) was added and stirred.
  • Mn concentration (i) Mn concentration (i) in Table 3
  • HITACHI HITACHI
  • Mn concentration (ii) Mn concentration (i)
  • the manganese concentration was determined for the recovered solution recovered after passing sodium hypochlorite . Specifically, 1 mL of 10% sodium sulfide (manufactured by Wako Pure Chemical Industries, product number: 195-15632) is added to the recovered solution to precipitate manganese sulfide and measure the absorbance at 600 nm to determine the Mn concentration from the turbidity. ("Mn concentration (ii)" in Table 3). For the measurement of the absorbance, a tester of type U-1800 manufactured by HITACHI was used.
  • the manganese concentration of the recovered solution was determined (“Mn concentration (iii)” in Table 3). The calculation itself of the manganese concentration is the same as the heavy metal removal test described above.
  • Example 2 Except that “10 g of heavy metal treating agent B was used instead of 10 g of heavy metal treating agent A” and “the amount of drop of the test solution in the heavy metal removal test and the confirmation test of regeneration effect was changed to 20 mL instead of 20 mL” The same “heavy metal removal test” and "regeneration test” were conducted as in Example 1.
  • Comparative Example 1 The same "heavy metal removal test" as Example 1 was conducted except that 10 g of manganese sand (manufactured by Tokemi Co., Ltd., product number MS0) was used instead of 10 g of the heavy metal treating agent A.
  • the amount of Mn (unit: mg / g) in the manganese sand, that is, the amount of Mn (mg) per 1 g of activated carbon was obtained from the catalog value.
  • Comparative Example 2 The same "heavy metal removal test" as Example 1 was conducted except that 10 g of heavy metal treating agent A was replaced with 10 g of ferrolite MC (manufactured by Tokemi Co., Ltd., product number MC3).
  • Example 1 and 2 of the present invention the removal efficiency, particularly the removal efficiency per unit weight of the treating agent is higher than in Comparative Examples 1 and 2 of the prior art. -Comparing Example 1 with Example 2, even when scaled up, the removal effect and regeneration ability of the treatment agent of the present invention are maintained unchanged.
  • Comparative Examples 1 and 2 of the prior art the support is separated due to the regeneration treatment, whereas in Examples 1 and 2 of the present invention, the manganese compound supported on the activated carbon is separated during the regeneration treatment. Hateful. That is, the heavy metal treating agent of Examples 1 and 2 of the present invention is more strongly supported in the "compound containing the first transition metal element".
  • the first transition metal element was based on "manganese”. A confirmation test was conducted as to whether or not the same removal effect can be obtained for other first transition metal elements.
  • the solution is impregnated with 50 mL of a 10% sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., product number: 191-11555), and 10 mL of a 12% sodium hypochlorite solution (manufactured by Wako Pure Chemical Industries, Ltd., product number: 197-02206) was added, and allowed to stand for 1 hour, after which the effluent was removed with ultrapure water purified with Organo Purelight PRO-0100.
  • a heavy metal treating agent C was obtained by the above steps.
  • Fe amount Fe molecular weight / FeCl 2 .4H 2 O molecular weight x supported FeCl 2 .4H 2 It calculated
  • Example 3 A 1000 ppm FeCl 2 aqueous solution was used as a test solution.
  • the FeCl 2 aqueous solution was prepared by dissolving iron (II) chloride tetrahydrate (manufactured by Wako Pure Chemical Industries, product number: 099-00915) in ultrapure water purified with Organo Purelight PRO-0100.
  • Heavy metal treating agent C is packed in 5 g in a column (cylindrical column made of material PP, column inner diameter 20 mm, column height 60 mm), and the packed column is subjected to the conditions of room temperature (about 25 ° C.) and atmospheric pressure. The heavy metal removal test was carried out by dropping the test solution.
  • the iron concentration of the recovered solution was measured by absorptiometry. Specifically, 10 mL of ultrapure water purified with Organo Purelight PRO-0100 is added to 100 ⁇ L of the recovered solution, and 10 mg of (2, 2-bipyridil) (manufactured by Tokyo Chemical Industry Co., Ltd., product number: 366-18-7) ) was added and stirred. Thereby, iron (II) contained in the recovered solution was colored in red. The absorbance at 524 nm was measured for this color recovery solution, and the iron concentration level was confirmed indirectly. ("Iron concentration" in Table 4). For the measurement of absorbance, a tester manufactured by HITACHI, model U-1800 was used. The higher the value of the absorbance (dimensionless), the higher the iron concentration, while the lower the value of the absorbance, the lower the iron concentration. Further, when the absorbance is "0", it indicates that iron is not present in the recovery solution.
  • Comparative Example 3 The same “heavy metal removal test” as Example 3 was conducted except that 5 g of the heavy metal treating agent C was used instead of 5 g of activated carbon (manufactured by Kuraray Chemical Co., Ltd .: Kuraray Chemical GW 40/20).
  • the dried activated carbon is impregnated into 50 mL of a 10% sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., product number: 191-11555), and then 10 mL of a 12% sodium hypochlorite solution (Wako Pure Chemical Industries ( Co., Ltd., product number: 197-02206), allowed to stand for 1 hour, and removed by flowing out with ultrapure water purified with Organo Purelight PRO-0100.
  • a heavy metal treating agent D was obtained by the above steps.
  • Example 4 As a test solution, a 1000 ppm CoCl 2 aqueous solution was used.
  • the CoCl 2 aqueous solution was prepared by dissolving cobalt chloride hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., product number: 030-03685) in ultrapure water purified with Organo Purelight PRO-0100.
  • Heavy metal treating agent D is packed in 5 g in a column (cylindrical column made of material PP, column inner diameter 20 mm, column height 60 mm), and the packed column is subjected to the conditions of room temperature (about 25 ° C.) and atmospheric pressure. The heavy metal removal test was carried out by dropping the test solution.
  • the cobalt concentration of the recovered solution was measured by absorption spectrophotometry. Specifically, the absorbance at 510 nm was measured on the recovered solution to determine the Co concentration ("Co concentration" in Table 5). For the measurement of the absorbance, a tester of type U-1800 manufactured by HITACHI was used.
  • Comparative Example 4 The same "heavy metal removal test" as Example 4 was conducted except that 5 g of heavy metal treating agent D was replaced with 5 g of activated carbon (manufactured by Kuraray Chemical Co., Ltd .: KURARECOL GW40 / 20).
  • the solution is impregnated with 50 mL of a 10% sodium hydroxide solution (manufactured by Wako Pure Chemical Industries, Ltd., product number: 191-11555), and 10 mL of a 12% sodium hypochlorite solution (manufactured by Wako Pure Chemical Industries, Ltd., product number: 197)
  • the reaction mixture was allowed to stand for 1 hour, and the resultant was drained and removed with ultrapure water purified with Organo Purelight PRO-0100.
  • a heavy metal treating agent E was obtained by the above steps.
  • Ni amount Ni molecular weight / NiCl 2 ⁇ 6H 2 O molecular weight ⁇ supported NiCl 2 ⁇ 6H 2 It calculated
  • Example 5 A 1000 ppm aqueous solution of NiCl 2 was used as a test solution.
  • the NiCl 2 aqueous solution was prepared by dissolving nickel chloride (II) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., product number: 141-08365) in ultrapure water purified with Organo Purelight PRO-0100.
  • Heavy metal treating agent E is packed in 5 g in a column (cylindrical column made of material PP, column inner diameter 20 mm, column height 60 mm), and the packed column is subjected to the conditions of room temperature (about 25 ° C.) and atmospheric pressure. The heavy metal removal test was carried out by dropping the test solution.
  • the concentration of nickel in the recovered solution was determined.
  • Ni concentration of the recovered solution was measured by absorptiometry. Specifically, 10 mL of ultrapure water purified with Organo Purelight PRO-0100 is added to 100 ⁇ L of the recovered solution, and 10 mg of dimethylglyoxime (Wako Pure Chemical Industries, product number: 048-02962) is further added and the mixture is stirred. I was attached to. As a result, Ni (II) contained in the recovered solution is colored in red. The absorbance at 520 nm was measured for the color recovery solution to indirectly confirm the nickel concentration level. ("Nickel concentration" in Table 6). For the measurement of absorbance, a tester manufactured by HITACHI, model U-1800 was used. The higher the value of the absorbance (dimensionless), the higher the nickel concentration, while the lower the value of the absorbance, the lower the nickel concentration. In addition, when the absorbance is "0", it indicates that nickel is not present in the recovery solution.
  • Comparative Example 5 The same "heavy metal removal test" as in Example 5 was conducted except that 5 g of the heavy metal treating agent E was replaced with 5 g of activated carbon (Kuraray Chemical Co., Ltd .: KURARECOL GW40 / 20).
  • Example 5 The results of Example 5 and Comparative Example 5 are shown in Table 6 below. [Table 6]
  • the first transition metal element in the heavy metal treating agent of the present invention is iron (Fe), cobalt (Co) and nickel (Ni), it exhibits the heavy metal removing effect as in the case of manganese (Mn).
  • a heavy metal treating agent for liquid phase comprising an activated carbon on which a compound comprising iron (Fe) as a first transition metal element is supported, the same kind of metal as the metal supported on the activated carbon It has been found that metals, ie at least iron, can be removed and reduced from the liquid.
  • a heavy metal treating agent for liquid phase comprising an activated carbon carrying a compound comprising cobalt (Co) as a first transition metal element
  • a metal of the same kind as the metal carried by the activated carbon That is, it has been found that at least cobalt can be removed / reduced from the liquid.
  • a heavy metal treating agent for liquid phase comprising an activated carbon carrying a compound comprising nickel (Ni) as a first transition metal element
  • Ni nickel
  • the heavy metal treating agent according to the present invention can be used in various fields where removal or reduction of heavy metals is required.
  • it can be used in the field of water treatment, and the heavy metal treating agent of the present invention can be used to obtain desired water as household water and industrial water as well as agricultural water and miscellaneous water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

第一遷移金属元素を含んで成る化合物が担持された活性炭を有して成り、液相用である、重金属処理剤。

Description

重金属処理剤および重金属処理剤の製造方法
 本発明は、重金属処理剤に関すると共に、重金属処理剤の製造方法にも関する。より詳細には、本発明は、液相中の重金属を除去するための重金属処理剤に関すると共に、かかる重金属処理剤を製造する方法にも関する。
 重要な資源として水は欠かすことができないものであり、生活用水および工業用水のみならず、農業用水および雑用水などとして広く利用されている。特に循環資源でもある水は、その利用の結果として生じる排水などが環境に戻される。
 水利用に際し、水質汚濁・汚染などは特に問題とされ、所望の水を得るべく必要な処理が行われる。水中に含まれる重金属は、その種類および濃度によって所望の水用途に適さず、また、そもそも人体などに有害性を示すものが多く、水中から重金属を除去または低減することが求められる。例えば、工場排水に含まれる重金属は毒性が強いものが多く体内に蓄積されると中毒症状などがもたらされる虞がある。よって、環境基本法等では排水基準が定められている。生活用水については、飲用を前提とした水道水などがあり、特に厳しい水質基準が定められている。このため、重金属を除去・低減するための浄水処理など各種処理が行われる。
 あくまでも一つの例示にすぎないが、マンガンは、鉄などとともに水中に含まれ得る重金属であって、地下水などの天然水などに一般的に含まれている。水中のマンガンが過度に増すと、異臭味および/または着色化の問題を引き起こすので、マンガンを除去するための浄水処理がなされ得る。
特公昭47-33631号公報 特許第3953970号公報
 本願発明者は、従前の重金属処理では克服すべき課題が依然あることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
 重金属の一般的な処理として、水中に溶解している重金属を沈殿法、共沈法、硫化物法などで処理する方法の他には、処理剤との接触作用などで重金属を除去する方法がある。特に後者の接触を通じて重金属を除去する処理法では、処理剤と水中の重金属との互いの接触が重要であるところ、処理剤が必ずしも十分な除去性能を呈するといえないことを本願発明者は見出した。
 具体的には、処理剤との接触を通じて重金属の除去を行ったとしても、除去効率、特に処理剤の単位重量当たりの除去効率が好適であるといえない場合があることを見出した。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、除去効率(特に処理剤の単位重量当たりの除去効率)がより好適な重金属処理剤を提供することである。
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された重金属処理剤およびその製造方法の発明に至った。
 本発明では、第一遷移金属元素を含んで成る化合物が担持された活性炭を有して成り、液相用の処理剤である重金属処理剤が提供される。
 また、本発明では、重金属処理剤の製造方法も提供される。かかる本発明の製造方法は、金属化合物と極性溶媒と活性炭とを互いに接触させる工程を含んで成り、かかる接触工程に用いる金属化合物における金属が第一遷移金属となっており、接触工程に用いる極性溶媒が3.5以上のSnyderの極性パラメータを有することを特徴とする。
 本発明の重金属処理剤は、液相中の重金属に対する除去効率、特に処理剤の単位重量当りの除去効率がより好適となっている。また、本発明の重金属処理剤では、第一遷移金属元素がより強固に活性炭に担持されており、特に第一遷移金属元素を含んで成る化合物がより強固に活性炭に担持されているので、繰り返しの使用により適している。
活性炭の細孔を模式的に示した断面図 本発明の製造方法の技術思想を表した模式図 本発明の1つの例示として、活性炭に担持されたオキシ水酸化マンガンの重金属除去機構(図3(A))、ならびに、活性炭に担持されたオキシ水酸化鉄、オキシ水酸化コバルトおよびオキシ水酸化ニッケルの重金属除去機構(図3(B))を模式的に示した図
 以下、本発明に係る重金属処理剤およびその製造方法を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
(本発明の重金属処理剤)
 本発明の重金属処理剤は、好適に組み合わされた構成要素から成っている。より具体的には、本発明に係る液相系使用の重金属処理剤は、第一遷移金属が担持された活性炭から少なくとも構成されており、好ましくは第一遷移金属元素を含んで成る化合物およびかかる化合物が担持された活性炭から少なくとも構成されている。
 本発明の重金属処理剤は、好ましくは第一遷移金属の化合物といった“無機物”が活性炭の“有機物”に担持された処理剤となっていることを特徴の1つとする。つまり、当業者の一般認識からすると相互の接合または固定化などの点で相性が互いに良くないと考えられていた「金属無機物および活性炭有機物」が本発明の重金属処理剤(特に水などの液相系使用の重金属処理剤)における構成要素となっている。
 本明細書で説明される「重金属処理剤」とは、広義には、重金属の除去または低減が求められる対象物と共に使用され、かかる対象物中に含まれる重金属をその対象物から除去処理または低減処理するための処理剤のことを指している。狭義には、「重金属処理剤」は、重金属の除去または低減が求められる水などの液体と接触させることで、その液体中に含まれる重金属を当該液体から除去または低減できる固形状処理剤を意味している。
 また、本明細書でいう「重金属処理剤」における“重金属”とは、広義には、除去または低減が求められる処理対象物中に含まれる金属成分を指している。狭義には、「重金属」は、除去または低減が求められる水などの液体中に含まれている金属成分であって、好ましくは比重(水の密度を1とした場合の比重)が4以上となる金属成分のことを指している。したがって、あくまでも例示にすぎないが、本発明の重金属処理剤で除去対象となる重金属としては、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、Cr(クロム)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)から成る群から選択される少なくとも1種の金属などを挙げることができる。
 本発明の重金属処理剤は、活性炭に担持された第一遷移金属元素を少なくとも有する。好ましくは、本発明の重金属処理剤は、活性炭に担持された「第一遷移金属元素を含んで成る化合物」を少なくとも有する。換言すれば、本発明の好適な重金属処理剤では、ベース材となる活性炭に対して「第一遷移金属元素を含んで成る化合物」が固着されている。ここでいう「固着」とは、活性炭と「第一遷移金属元素を含んで成る化合物」との間の相互の親和性などに好ましくは起因して「第一遷移金属元素を含んで成る化合物」が活性炭に存在していると考えられ得る態様を実質的に意味している。よって、本明細書でいう「担持」および「固着」といった用語は、活性炭の外表面および/または細孔の近傍に第一遷移金属元素、好ましくは「第一遷移金属元素を含んで成る化合物」が存在している態様を少なくとも包含しており、「第一遷移金属元素を含んで成る化合物」が活性炭の外表面および/または細孔に直接取り付けられている態様のみを必ずしも意味するものではない。また、本発明における「担持」および「固着」は、活性炭の表面および/または細孔の少なくとも一部に第一遷移金属元素、好ましくは「第一遷移金属元素を含んで成る化合物」が存在していればよく、「第一遷移金属元素を含んで成る化合物」が表面および細孔の全体にわたって必ずしも存在していなくてもよい。但し、好ましい態様では、活性炭の外表面および細孔内の全体に及んで「第一遷移金属元素を含んで成る化合物」が存在し、かかる化合物が活性炭に特に偏在なく担持されている。
 「第一遷移金属元素を含んで成る化合物」は、好ましくは、第一遷移金属元素を構成要素に含んだ無機化合物である。より好ましくは、本発明における「第一遷移金属元素を含んで成る化合物」は、第一遷移金属元素を構成元素として含んだ物質であって、共有結合および/またはイオン結合などの化学結合を介して第一遷移金属元素が他の構成元素と結合して成る無機化合物を指している。これは、本発明の重金属処理剤につき、そのベース材となる活性炭を定性分析すれば、第一遷移金属元素の存在を同定できることを意味している。あくまでも例示であるが、本発明の重金属処理剤をICP(誘導結合プラズマ、Inductively Coupled Plasma)の発光分光分析に付すと、活性炭上に存在する第一遷移金属元素が同定され得る。また、そのような第一遷移金属元素につき、活性炭に担持された化合物は、例えばX線回折など、当業者にとって常套的な分析化学手法を用いて把握することができる。
 本発明の重金属処理剤では、活性炭のベース材に第一遷移金属元素が少なくとも担持されている。好ましくは本発明の重金属処理剤では、活性炭のベース材に担持された化合物中に第一遷移金属元素が含まれている。換言すれば、活性炭上に存在し得る遷移金属元素は、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、Cr(クロム)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)から成る群から選択される少なくとも1種である。これらの金属元素は、元素周期表で同一周期(特に第4周期)に位置付けられる。それゆえ、本発明の重金属処理剤では、活性炭ベース材に担持された化合物を構成する金属元素が第4周期の遷移元素になっているといえる。
 ある好適な態様では、第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される金属元素となっている。つまり、ベースの有機多孔質材となる活性炭に担持された「第一遷移金属元素を含んで成る化合物」の第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、および銅(Cu)から成る群から選択される金属元素となっている。このような第一遷移金属元素が活性炭に含まれており、特に第一遷移金属元素が活性炭担持の化合物の構成元素となっていると、除去または低減の対象となる水などの液体中に含まれた金属成分を除去し易くなり、特には活性炭に担持された元素と同種の金属(すなわち、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、Cr(クロム)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される少なくとも1種の重金属)を水などの液体中から除去または低減し易くなる。例えば、本発明の重金属処理剤では、第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される金属元素となっていてよい。つまり、有機多孔質ベース材となる活性炭に担持された「第一遷移金属を含んで成る化合物」の第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される金属元素となっていてよい。かかる場合、少なくとも同種の金属となるマンガン(Mn)、鉄(Fe)、コバルト(Co)および/またはニッケル(Ni)の重金属を水などの液体中から除去または低減できる。
 上記第一遷移金属元素が例えばマンガン(Mn)である場合、本発明の重金属処理剤は、少なくともマンガンが活性炭に担持されており、好ましくは「マンガン元素を含んで成る化合物」が担持された活性炭から少なくとも構成されている。また、例えば上記第一遷移金属元素が鉄(Fe)である場合、本発明の重金属処理剤は、少なくとも鉄が活性炭に担持されており、好ましくは「鉄元素を含んで成る化合物」が担持された活性炭から少なくとも構成されている。同様にして、例えば上記第一遷移金属元素がコバルト(Co)である場合、本発明の重金属処理剤は、少なくともコバルトが活性炭に担持されており、好ましくは「コバルト元素を含んで成る化合物」が担持された活性炭から少なくとも構成されている。例えば上記第一遷移金属元素がニッケル(Ni)である場合、本発明の重金属処理剤は、少なくともニッケルが活性炭に担持されており、好ましくは「ニッケル元素を含んで成る化合物」が担持された活性炭から少なくとも構成されている。そして、例えば上記第一遷移金属元素が銅(Cu)である場合、本発明の重金属処理剤は、少なくとも銅が活性炭に担持されており、好ましくは「銅元素を含んで成る化合物」が担持された活性炭から少なくとも構成されている。
 本発明の重金属処理剤では、被担持材として活性炭が用いられている。つまり、本発明の重金属処理剤は、処理剤の大部分(処理剤の見掛け体積の大部分)を成すベース材として有機炭素材を含んで成る。
 活性炭は、細孔(特に微細孔)を有する有機多孔質体である。それゆえ、本発明では好ましくは「第一遷移金属を含んで成る無機化合物」と「有機多孔質体」とから組み合わされたハイブリッド型の重金属処理剤(特に水などの液相で使用される重金属処理剤)が供されている。
 本発明に係る重金属処理剤の活性炭は、細孔を備えており、かかる細孔が、いわゆるミクロ孔(またはマイクロ孔)、メソ孔およびマクロ孔の少なくとも1つの範疇に入るものであってよい。あくまでも例示にすぎないが、本発明において活性炭の多孔質体を構成する孔の直径は、0.01nm~500nmの範囲あるいは0.1nm~250nmもしくは0.1nm~50nmの範囲であってよい。
 本発明において活性炭の形態は、種々の形態であってよく、例えば粉末状、粒状、繊維状および/または柱形状(例えば円柱状)などであってよい。活性炭は、重金属処理剤のベース材に相当するので、処理剤の全体形態を形造っている。よって、本発明の重金属処理剤もまた、好ましくは粉末状、粒状、繊維状、柱形状(例えば円柱状)などの形態を有する。
 本発明に係る重金属処理剤の活性炭の種類は、上述の細孔が供されるものであれば特に限定されるものでなく、例えばいわゆる薬品賦活またはガス賦活の活性炭であってよい。活性炭自体の原料も、最終的に活性炭として上述の細孔が供されるものであれば特に限定されるものでなく、木炭、ヤシ殻炭、石炭(例えば亜炭、褐炭、瀝青炭および/または無煙炭など)、オガ屑、木材チップ、草炭(例えばビート)、石炭ピッチならびに石油ピッチから成る群から選択される原料であってよい(なお、繊維状活性炭については、レーヨン、アクリロニトリルおよび/またはフェノールが原料となっていてもよい)
 ある好適な態様の重金属処理剤では、第一遷移金属、好ましくは「第一遷移金属元素を含んで成る化合物」が活性炭の細孔に少なくとも存在している。つまり、好ましくは活性炭自体の表面積増大に寄与する細孔内に「第一遷移金属元素を含んで成る化合物」が少なくとも設けられている。“少なくとも”ゆえ、細孔内のみならず、その外側となる活性炭の外表面に対して「第一遷移金属元素を含んで成る化合物」が存在していてよい。
 好ましくは、本発明の重金属処理剤では、活性炭10のミクロ孔12、メソ孔14およびマクロ孔16の少なくとも1つに「第一遷移金属元素を含んで成る化合物」が存在している(図1参照)。より好ましくは、活性炭10の少なくともミクロ孔12およびメソ孔14の双方、少なくともメソ孔14およびマクロ孔16の双方、または、少なくともミクロ孔12およびマクロ孔16の双方に第一遷移金属、特に「第一遷移金属元素を含んで成る化合物」が存在している。更に好ましくは、活性炭10のミクロ孔12、メソ孔14およびマクロ孔16の全てに第一遷移金属、特に「第一遷移金属元素を含んで成る化合物」が存在している。本明細書において「ミクロ孔」、「メソ孔」および「マクロ孔」といった用語は、国際純正応用化学連合:IUPAC(International Union of Pure and Applied Chemistry)の分類に従ったものを意味している。より具体的には、本発明において「ミクロ孔」は細孔サイズが2nm以下の細孔を意味し、「メソ孔」は細孔サイズが2nm(2nm含まず)~50nm(50nm含まず)の細孔を意味し、また、「マクロ孔」は細孔サイズが50nm以上の細孔を意味している。なお、かかる細孔サイズは、ガス吸着法又は水銀圧入法で測定されるサイズを指しており、特にマクロ孔については水銀圧入法で測定される細孔サイズを意味し、メソ孔およびミクロ孔はガス吸着法で測定される細孔サイズを意味している。
 特に活性炭の細孔の内部(すなわち、ミクロ孔、メソ孔およびマクロ孔の少なくとも1つ)にまで至るように「第一遷移金属元素を含んで成る化合物」が存在することによって、より多くの「第一遷移金属元素を含んで成る化合物」が担持された活性炭がもたらされ得る。これは、単位重量当りでより多くの第一遷移金属、特に「第一遷移金属元素を含んで成る化合物」が含まれた重金属処理剤となることを意味している。後述するように、活性炭に担持された第一遷移金属、特に「第一遷移金属元素を含んで成る化合物」自体は、水などの液体中の重金属に対して親和性が高く、重金属を処理剤に結合又は引き寄せる等の作用で液体中から重金属を除去または減少させるのに資する。よって、単位重量当りでより多くの「第一遷移金属元素を含んで成る化合物」を含んだ重金属処理剤となっていることは、処理剤の単位重量でより多くの重金属を除去または低減できることを意味している。したがって、本発明の重金属処理剤は、より向上した除去効率(処理剤の単位重量当りで捉えた場合の除去効率)を有し得る。
 ある好適な態様に従った重金属処理剤では、「第一遷移金属元素を含んで成る化合物」が金属水酸化物となっている。ここでいう金属水酸化物とは、好ましくは水酸基(OH基)を有する形態を指している。また、場合によっては、金属水酸化物は、水酸基(OH基)を有する形態のみならず、水和物形態を有するものも指している。より具体的には、本発明における「金属水酸化物」とは、好ましくは例えばMOH、M(OH)またはM(OH)などで代表される化合物を指している。また、場合によっては、本発明における「金属水酸化物」とは、例えばMOH、M(OH)またはM(OH)などで代表される化合物のみならず、例えばMO・HO,MO・HO、M・HOなどで代表される酸化物の水和物をも包含し、さらには、例えばMONa、M(ONa)またはM(ONa)3、MOK、M(OK)またはM(OK)などで代表される塩や、例えばMO・NaO,MO・NaO、M・NaO、MO・KO,MO・KO、M・KOなどで代表される酸化物の塩として解される化合物をも包含していてもよい(M:第一遷移金属元素)。換言すれば、「第一遷移金属元素を含んで成る化合物」のある例示としては、上記で挙げた具体的な化合物を含んでいてよいといえる。
 換言すれば、好適な本発明の重金属処理剤では、“第一遷移金属元素の金属水酸化物”が活性炭ベース材に担持されている。“第一遷移金属元素の金属水酸化物”を備えた重金属処理剤の場合、除去または低減が求められる水などの液体中の金属成分がより除去・低減されやすくなる。特に、活性炭に担持されている元素と同種の金属、すなわち、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、Cr(クロム)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される少なくとも1種の重金属が水などの液体中からより効率的に除去または低減され易くなる。特定の理論に拘束されるわけではないが、これは、OH基(水和物に起因したOH基をも含む)が、水などの液体中の重金属に対して活性基として好適に働き、かかるOH基またはその近傍に重金属が結合する又は引き寄せられる作用がもたらされ得るからと考えられる。
 好ましくは、金属水酸化物は、オキシ水酸化物である。つまり、本発明のある好適な態様の重金属処理材では、活性炭ベース材に担持された“第一遷移金属元素の金属水酸化物”がオキシ水酸化物となっている。ここでいう「オキシ水酸化物」は、第一遷移金属から成る塩基性塩としての化合物のうち、第一遷移金属元素と結合している独立の酸素原子(O2-とみなしうるもの)を有する水酸化物を指している。あくまでも例示にすぎないが、第一遷移金属元素がマンガン(Mn)である場合を例にとると、MnO(OH)で表される水酸化物が活性炭に担持されていることが好ましい。また、第一遷移金属元素が鉄(Fe)である場合を例にとると、FeO(OH)で表される水酸化物が活性炭に担持されていることが好ましく、第一遷移金属元素がコバルト(Co)である場合を例にとると、CoO(OH)で表される水酸化物が活性炭に担持されていることが好ましく、さらには、第一遷移金属元素がニッケル(Ni)である場合を例にとると、NiO(OH)で表される水酸化物が活性炭に担持されていることが好ましい。このようなオキシ水酸化物が活性炭に担持された重金属処理剤の場合、除去または低減が求められる水などの液体中の金属成分がより除去・低減されやすくなる。特に、活性炭に担持されている元素と同種の金属、すなわち、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、Cr(クロム)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される少なくとも1種の重金属が水などの液体中からより効率的に除去または低減され易くなる。特定の理論に拘束されるわけではないが、活性炭に担持されたオキシ水酸化物におけるOH基が、水などの液体中の重金属に対して活性基としてより効果的に働き、かかるOH基またはその近傍に重金属が結合する作用がより効果的となるからである(例えば、OH基の水素原子と水中の重金属とが置換されて重金属が処理剤に吸着されるような効果が奏され得る)。
 本発明に係る重金属処理剤は、特に液相用の処理剤である。つまり、本発明の重金属処理剤は、液相中で用いる重金属処理剤であって、その液相に含まれる重金属を除去または低減するために用いる重金属処理剤である。換言すれば、本発明に従った好適な重金属処理剤は、排ガス処理剤などの気相系で用いる処理剤ではない。あくまでも“液相用”ゆえ、本発明の重金属処理剤は、好ましくは土壌や固形廃棄物などの固形物に対して直接的に用いる処理剤でもないといえる。かかる説明から分かるように、本発明でいう「液相用」といった用語は、重金属が除去または低減される処理対象が水などの液体であって、それに対して直接的または間接的に供される処理剤であることを意味している。よって、本発明の重金属処理剤は、“液体使用処理剤”と称すこともできる。
 本発明は、好適には金属無機物(特に第一遷移金属から成る金属無機物)と活性炭有機物とから構成された液相用の重金属処理剤といった点で特徴を有する。つまり、当業者の一般認識からすると相互の接合・固定化などの点で互いに相性が良くないものと考えられていた金属無機物および活性炭有機物から構成されており、かかるユニークな構成が本発明の“液相使用の重金属処理剤”を成している。
 好ましくは本発明の液相系使用の処理剤は、それを構成する第一遷移金属元素と同種の重金属(すなわち、第一遷移元素の重金属)を液相中から除去または低減するための重金属処理剤となっている。このような液相処理剤では、活性炭に担持された「第一遷移金属を含んで成る化合物」は液相中の重金属に対して活性ポイントを有するように効果的に働くことになり得、かかる活性ポイントまたはその近傍に重金属を結合させる又は引き寄せておく作用がより効果的に奏され得る。
 特に好ましくは、液相系使用の処理剤は水処理剤である。つまり、本発明の重金属処理剤は、水中で用いる重金属処理剤であって、その水中に含まれる重金属を除去または低減するために用いる重金属処理剤である。例えば、水の浄化処理剤として本発明の重金属処理剤が用いられ得る。好ましくは、水に含まれる第一遷移金属を除去または低減する水用第一遷移金属除去剤として本発明の重金属処理剤を用いてよい(あくまでも例示にすぎないが、水中のマンガンを除去または低減する水中マンガン除去剤として用いてよい)。
(本発明の重金属処理剤の製造方法)
 本発明の製造方法は、上述の重金属処理剤を得るための方法である。かかる製造方法は、複数の原料を好適に組み合わせて用いることを特徴とする。より具体的には、本発明の製造方法は、第一遷移金属、活性炭および極性溶媒から少なくとも構成される原料の組合せを含んでいる。
 具体的には、本発明の製造方法は、
 金属化合物と極性溶媒と活性炭とを互いに接触させる工程
を含んで成り、
 金属化合物における金属が第一遷移金属となっており、極性溶媒が3.5以上のSnyderの極性パラメータを有している。
 かかる製造方法では、金属化合物(特に第一遷移金属の化合物)と極性溶媒(特に3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることを通じて、第一遷移金属を活性炭に担持させる、好ましくは第一遷移金属を含んで成る化合物を活性炭に担持させるといった特徴を有する(図2参照)。つまり、好ましくは第一遷移金属を含んで成る化合物としての“無機物”を、活性炭の“有機物”に担持させる。この点、本発明の製造方法では、当業者の一般認識からすると相互の接合または固定化などの点で相性が良くないものと考えられている「金属無機物と活性炭有機物との組合せ」を積極的に用いて、重金属処理剤(特に液相系で用いられる重金属処理剤)を得ることを特徴としている(“活性炭”というものは、特に水中有機物に対しては吸着効果があると当業者に通常考えられている)。
 本発明で用いる極性溶媒は、3.5以上のSnyderの極性パラメータを有する液状体である。少なくともかかる極性パラメータを有する極性溶媒に起因して、第一遷移金属を含んで成る化合物の活性炭への担持が促進される。
 本明細書でいう「Snyderの極性パラメータ」とは、L. R. Snyder, J. Chromatogr., 第32巻、223頁(1974年); J. Chromatogr. Sci., 第16巻、223頁で説明されている極性パラメータである。
 かかる極性パラメータの極性溶媒を用いると、好ましくは活性炭の細孔内に第一遷移金属元素を設けることができる。特に活性炭の細孔内に「第一遷移金属元素を含んで成る化合物」を好適に設けることができる。つまり、3.5以上のSnyderの極性パラメータを有する極性溶媒を介在させて、金属化合物(特に第一遷移金属の化合物と活性炭とを接触させると、活性炭の表面積増大に寄与する細孔内に対して「第一遷移金属元素を含んで成る化合物」を設けることができる。これは、特定の理論に拘束されるわけではないが、3.5以上のSnyderの極性パラメータを有する極性溶媒が、活性炭と第一遷移金属元素との間、好ましくは活性炭と「第一遷移金属元素を含んで成る化合物」との間でバインダー的な役割を果たすことが要因として考えられる。換言すれば、3.5以上のSnyderの極性パラメータを有する極性溶媒を用いない場合、活性炭の細孔内に第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を実質的に設けることができない又は多く設けることができない一方、3.5以上のSnyderの極性パラメータを有する極性溶媒を用いることで、活性炭の細孔内に第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を実質的に設けることができる又は多く設けることができるといえる。例えば、本発明では活性炭のミクロ孔、メソ孔およびマクロ孔の少なくとも1つに第一遷移金属元素を設けることができ、好ましくは「第一遷移金属元素を含んで成る化合物」を設けることができる。
 また、そのように、3.5以上のSnyderの極性パラメータを有する極性溶媒を用いると、より強固に第一遷移金属元素を活性炭に担持できる。好ましくはより強固に「第一遷移金属元素を含んで成る化合物」を活性炭に担持できる。特定の理論に拘束されるわけではないが、これも3.5以上のSnyderに起因した上記極性溶媒のバインダー的な作用が関係していると考えられる。換言すれば、3.5以上のSnyderの極性パラメータを有する極性溶媒を用いない場合、第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を活性炭により強固に担持させることができず、その一方で3.5以上のSnyderの極性パラメータを有する極性溶媒を用いることで、第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を活性炭により強固に担持させることができる。
 より具体的には、本発明で用いる極性溶媒は、水、エーテル類、アルコール類、ケトン類、酢酸エステル類、アミド類、ニトリル類およびハロゲン化炭化水素類からなるから成る群から選択される3.5以上のSnyderの極性パラメータを有する溶媒であってよい。すなわち、単体溶媒としてSnyderが3.5以上の極性パラメータを有する溶媒を用いることのみならず、それら媒体の種々の組合せから成る混合溶媒としてSnyderが3.5以上の極性パラメータを有する溶媒を用いてもよい。本発明で用いる溶媒に関して「Snyderの極性パラメータ」は、上述したようにL. R. Snyder, J. Chromatogr., 第32巻、223頁(1974年); J. Chromatogr. Sci., 第16巻、223頁で説明される極性パラメータのことを指している。例えば、本発明では、極性パラメータとしてSnyderのパラメータ値が知られている溶媒の中から「3.5以上のSnyderの極性パラメータ値を有する溶媒」を選択して使用してよい。あくまでも例示であるが、簡易的にはWako Analytical Circle No. 11 [平成29年7月21日検索]、インターネット、〈URL:http://www.wako-chem.co.jp/siyaku/info/chroma〉に記載されているSnyderの極性パラメータ値を基準に選択してもよい。
 あくまでも例示にすぎないが、本発明で用いる「3.5以上のSnyderの極性パラメータを有する極性溶媒」は、接触工程に供する活性炭の細孔表面を全て満たすことができる量またはそれよりも多い量用いることが好ましい。つまり、接触工程に用いられる活性炭の全細孔容積以上の量に相当する極性溶媒を用いて接触工程を実施することが好ましい。
 本発明の製造方法で用いる金属化合物は、第一遷移金属元素の化合物である。好ましくは、かかる第一遷移金属元素は、マンガン(Mn)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)および銅(Cu)から成る群から選択される金属元素である。つまり、極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)および活性炭に接触させる金属化合物が、マンガン(Mn)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)および銅(Cu)から成る群から選択される第一遷移金属元素の化合物であることが好ましい。これにより、少なくとも同種の金属となるマンガン(Mn)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)および/またはCu(銅)の重金属を水などの液体中から除去または低減できる重金属処理剤を得ることができる。例えば、本発明の製造方法で用いる第一遷移金属元素の化合物における第一遷移金属元素は、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される金属元素であってよい。つまり、極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)および活性炭に接触させる金属化合物が、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される第一遷移金属元素の化合物であってよい。これにより、少なくとも同種の金属となるマンガン(Mn)、鉄(Fe)、コバルト(Co)および/またはニッケル(Ni)の重金属を水などの液体中から除去または低減できる重金属処理剤を得ることができる。このような化合物を用いると、その化合物に起因した第一遷移金属元素を活性炭に担持させることができ、特にその第一遷移金属元素を含んで成る化合物を活性炭に担持させることができる。これは、原料に含まれていた第一遷移金属元素に少なくとも起因する物質が活性炭に担持されることを意味している。
 例えば、上記第一遷移金属元素がマンガン(Mn)である場合、本発明の製造方法ではマンガン化合物と極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることになる。これにより、マンガン元素を含んで成る化合物が担持された活性炭から少なくとも構成された重金属処理剤を最終的に得ることができる。用いられるマンガン化合物としては、例えば過マンガン酸カリウム(KMnO)、フッ化マンガン(MnF)、塩化マンガン(MnCl)、臭化マンガン(MnBr)、ヨウ化マンガン(MnI)、水酸化マンガン(Mn(OH))、硝酸マンガン(Mn(NO)、硫酸マンガン(MnSO)、酢酸マンガン(Mn(CHCOO))またはそれらの組合せなどであってよい。また、上記第一遷移金属元素が鉄(Fe)である場合、鉄化合物と極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることになる。これにより、鉄元素を含んで成る化合物が担持された活性炭から少なくとも構成された重金属処理剤を最終的に得ることができる。用いられる鉄化合物としては、例示にすぎないが塩化第二鉄(例えばFeCl)、フッ化鉄(FeF)、塩化第一鉄(FeCl)、臭化鉄(FeBr)、ヨウ化鉄(FeI)、水酸化鉄(Fe(OH))、硝酸鉄(Fe(NO)、硫酸鉄(FeSO)、酢酸鉄(Fe(CHCOO))、炭酸鉄(FeCO)、またはそれらの組合せなどであってよい。さらに、上記第一遷移金属元素がコバルト(Co)である場合、コバルト化合物と極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることになる。これにより、コバルト元素を含んで成る化合物が担持された活性炭から少なくとも構成された重金属処理剤を最終的に得ることができる。用いられるコバルト化合物としては、例示にすぎないが、塩化コバルト(CoCl)、臭化コバルト(CoBr)、ヨウ化コバルト(CoI)、水酸化コバルト(Co(OH))、硝酸コバルト(Co(NO)、硫酸コバルト(CoSO)、酢酸コバルト(Co(CHCOO))、炭酸コバルト(CoCO)、またはそれらの組合せなどであってよい。上記第一遷移金属元素がニッケル(Ni)である場合、ニッケル化合物と極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることになる。これにより、ニッケル元素を含んで成る化合物が担持された活性炭から少なくとも構成された重金属処理剤を最終的に得ることができる。用いられるニッケル化合物としては、例示にすぎないが、塩化ニッケル(NiCl)、臭化ニッケル(NiBr)、ヨウ化ニッケル(NiI)、水酸化ニッケル(Ni(OH))、硝酸ニッケル(Ni(NO)、硫酸ニッケル(NiSO)、酢酸ニッケル(Ni(CHCOO))、炭酸ニッケル(NiCO)、またはそれらの組合せなどであってよい。そして、上記第一遷移金属元素が銅(Cu)である場合、銅化合物と極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)と活性炭とを互いに接触させることになる。これにより、銅元素を含んで成る化合物が担持された活性炭から少なくとも構成された重金属処理剤を最終的に得ることができる。用いられる銅化合物としては、例示にすぎないがフッ化銅(CuF)、塩化銅(CuCl)、臭化銅(CuBr)、ヨウ化銅(CuI)、水酸化銅(Cu(OH))、硝酸銅(Cu(NO)、硫酸銅(CuSO)、酢酸銅(Cu(CHCOO))、炭酸銅(CuCO)、またはそれらの組合せなどであってよい。
 ある好適な態様では、極性溶媒におけるSnyderの極性パラメータが3.5以上11.0以下となっている。これにより、活性炭の細孔内に「第一遷移金属元素を含んで成る化合物」をより効率的および/またはより多く設けることができ、あるいは、「第一遷移金属元素を含んで成る化合物」を活性炭により強固に担持させることができる。例えば、極性溶媒(括弧内の値はSnyderの極性パラメータを示す。以降の記載も同様である)が、二塩化エチレン(3.5)、イソプロピルアルコール(3.9)、テトラヒドロフラン(4.0)、n-プロパノール(4.0)、クロロホルム(4.1)、エタノール(4.3)、酢酸エチル(4.4)、メチルエチルケトン(4.7)、ジオキサン(4.8)、アセトン(5.1)、メタノール(5.1)、アセトニトリル(5.8)、酢酸(6.0)、ジメチルホルムアミド(6.4)、エチレングリコール(6.9)、ジメチルスルホキシド(7.2)および水(10.2)からなる群より選択される少なくとも1種であってよい。
 例えば、極性溶媒におけるSnyderの極性パラメータが3.5以上7.0以下となっており、それゆえ、極性溶媒が、テトラヒドロフラン(4.0)、酢酸エチル(4.4)、ジオキサン(4.8)、アセトン(5.1)、メタノール(5.1)およびアセトニトリル(5.8)からなる群より選択される少なくとも1種であってよい。また、例えば、極性溶媒におけるSnyderの極性パラメータが3.5以上6.0以下となっており、それゆえ、極性溶媒が、テトラヒドロフラン(4.0)、酢酸エチル(4.4)、ジオキサン(4.8)、アセトン(5.1)、メタノール(5.1)およびアセトニトリル(5.8)からなる群より選択される少なくとも1種であってよい。更には、例えば、極性溶媒におけるSnyderの極性パラメータが3.5以上5.5以下となっており、それゆえ、極性溶媒が、テトラヒドロフラン(4.0)、酢酸エチル(4.4)、ジオキサン(4.8)、アセトン(5.1)およびメタノール(5.1)からなる群より選択される少なくとも1種であってよく、あるいは、極性溶媒におけるSnyderの極性パラメータが4.5以上5.5以下となっており、それゆえ、極性溶媒が、ジオキサン(4.8)、アセトン(5.1)およびメタノール(5.1)からなる群より選択される少なくとも1種であってよい。
 本発明の製造方法で用いる活性炭は、例えば粉末状、粒状、繊維状および/または柱形状(例えば円柱状)などであってよい。活性炭の種類は、細孔を備えるものであれば特に限定されるものでなく、例えばいわゆる薬品賦活またはガス賦活の活性炭であってよい。活性炭の由来となる原料も、特に限定されるものでなく、木炭、ヤシ殻炭、石炭(例えば亜炭、褐炭、瀝青炭および/または無煙炭など)、オガ屑、木材チップ、草炭(例えばビート)、石炭ピッチならびに石油ピッチから成る群から選択される原料であってよい(なお、繊維状の活性炭については、レーヨン、アクリロニトリルおよび/またはフェノールが原料となっていてもよい)。
 好ましくは、本発明の製造方法で用いる活性炭10は、ミクロ孔12、メソ孔14およびマクロ孔16の少なくとも1つの細孔を含んでいる(図1参照)。このような活性炭を「3.5以上のSnyderの極性パラメータを有する極性溶媒」および「第一遷移金属の化合物」と共に用いると、最終的には活性炭表面への担持化に加えて又はそれに代えて、活性炭の少なくともミクロ孔12およびメソ孔14の双方、少なくともメソ孔14およびマクロ孔16の双方、または、少なくともミクロ孔12およびマクロ孔16の双方に第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を担持化させることができる。より好ましくは、活性炭10のミクロ孔12、メソ孔14およびマクロ孔16の全てに第一遷移金属元素、特に「第一遷移金属元素を含んで成る化合物」を担持化できる。ここでいう「ミクロ孔」、「メソ孔」および「マクロ孔」といった用語は、上述したように国際純正応用化学連合(IUPAC)の分類に従ったものである。より具体的には、本発明の製造方法で用いる活性炭における「ミクロ孔」は細孔サイズ(特にガス吸着法で測定されるサイズ)が2nm以下の細孔を意味し、「メソ孔」は細孔サイズ(特にガス吸着法で測定されるサイズ)が2nm(2nm含まず)~50nm(50nm含まず)の細孔を意味し、また、「マクロ孔」は細孔サイズ(特に水銀圧入法で測定されるサイズ)が50nm以上の細孔を意味している。
 本発明の製造方法では、使用する原材料を水環境に付すことが好ましい。水は、例えば、蒸留水、純水、超純水もしくは脱イオン水等の精製水または水道水等であってよい。水環境に付すことの例示として、金属化合物と極性溶媒と活性炭とを互いに接触させた後で得られる活性炭を水に接触させてよい。かかる場合、典型的には、金属化合物と極性溶媒と活性炭とを互いに接触させて重金属処理剤前駆体を得る工程、および、その前駆体を水と接触させる工程が含まれ得る。これにより、「第一遷移金属元素を含んで成る化合物」を担持した活性炭から成る重金属処理剤が得られることになる。特定の理論に拘束されるわけではないが、原料の第一遷移金属の化合物と水とが実質的に互いに反応することで「第一遷移金属元素を含んで成る化合物」の形成がより積極的にもたらされ、「第一遷移金属元素を含んで成る化合物」に担持された活性炭の形成がより促進され得る。
 また、付加的および/または代替的に、活性炭と金属化合物との接触工程における極性溶媒が水成分を含んでいてよい。かかる場合であっても、第一遷移金属元素を含んで成る化合物が担持された活性炭から成る重金属処理剤が得られる。水成分を含んで成る極性溶媒は、積極的に水を極性溶媒に加えることによって形成してよく、あるいは、極性溶媒が空気環境下に置かれるなどに起因して溶媒が空気中の水分を自然吸収して得られるものを用いてもよい。さらにいえば、活性炭と金属化合物と極性溶媒との接触工程に際してそれらの混合物に水を加えてもよい。これによっても、活性炭と金属化合物との接触工程における極性溶媒が水成分を含むことになる。そのような観点でいえば、極性溶媒との接触に用いる金属化合物が水溶液形態を有しているものでもよく、あるいは、極性溶媒との接触に用いる活性炭が水分を含んだものであってもよいといえる。
 使用する原料が上記の如く水環境に付される場合、好ましくは「第一遷移金属元素を含んで成る金属水酸化物」が担持された活性炭から成る重金属処理剤を得ることができる。特定の理論に拘束されるわけではないが、原料として用いられる第一遷移金属の化合物に含まれる第一遷移金属と、水に起因する水酸基とが関係する反応が生じることで「第一遷移金属元素を含んで成る水酸化物」の形成がより積極的にもたらされ、これによって「第一遷移金属元素を含んで成る水酸化物」を担持した活性炭の形成がより促進され得る。本明細書において「金属水酸化物」とは、水酸基(OH基)を有する形態のみならず、水和物形態を有するものも含めて広く意味しているところ、そのような水酸基を有する第一遷移金属化合物および/または水和物形態の第一遷移金属化合物が担持された活性炭を本発明で得ることができる。
 水環境に付す操作は、アルカリ条件下で行うことが好ましい。「第一遷移金属元素を含んで成る金属水酸化物」の生成がより促進され得るからである。金属化合物と極性溶媒と活性炭とを互いに接触させた後で水環境に付すに際しては、その水がアルカリ性を呈するようにしてよい。例えば、水酸化ナトリウム(苛性ソーダ)、水酸化カリウム(苛性カリ)、水酸化カルシウムおよび/または水酸化バリウムなどの塩基を溶解させた水を使用することで水環境に付してよい。換言すれば、金属化合物と極性溶媒と活性炭とを互いに接触させた後に得られる活性炭をアルカリ溶液(例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液および/または水酸化バリウム水溶液など)に接触させ、それによって、活性炭に担持化された「第一遷移金属元素を含んで成る金属水酸化物」を得てもよい。
 ある好適な一態様では、活性炭に担持された金属水酸化物はオキシ水酸化物である。つまり、使用する原料を水環境に付することによって、重金属処理剤として「第一遷移金属元素を含んだオキシ水酸化金属」が担持された活性炭を得る。あくまでも例示にすぎないが、第一遷移金属元素がマンガン(Mn)である場合、マンガン化合物および極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)との接触後に得られる活性炭を水に接触させ、重金属処理剤としてMnO(OH)が担持化された活性炭を得てよい。同様にして、第一遷移金属元素が鉄(Fe)である場合、鉄化合物および極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)との接触後に得られる活性炭を水に接触させ、重金属処理剤としてFeO(OH)が担持化された活性炭を得てよい。同様にして、第一遷移金属元素がコバルト(Co)である場合、コバルト化合物および極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)との接触後に得られる活性炭を水に接触させ、重金属処理剤としてCoO(OH)が担持化された活性炭を得てよい。同様にして、第一遷移金属元素がニッケル(Ni)である場合、ニッケル化合物および極性溶媒(3.5以上のSnyderの極性パラメータを有する極性溶媒)との接触後に得られる活性炭を水に接触させ、重金属処理剤としてNiO(OH)が担持化された活性炭を得てよい。
 本発明の製造方法は、種々の態様で具現化することができる。例えば、接触工程の後に得られる活性炭を乾燥処理に付してよい。つまり、金属化合物(特に第一遷移金属の化合物)および極性溶媒(特に3.5以上のSnyderの極性パラメータを有する極性溶媒)に対する接触処理後に得られる活性炭を乾燥に付してよい。これにより、活性炭に付着した余分な極性溶媒を気化除去させることができる。例えば、接触工程の後の活性炭を大気圧下で50~200℃程度の乾燥温度の熱処理条件下に付してよい。あるいは、接触工程の後に得られる活性炭を減圧下または真空下に置いてもよい。減圧下または真空下に置く場合では、減圧度または真空度を極性溶媒の飽和蒸気圧以下に維持することによって極性溶媒を蒸発させる。必要に応じて「熱処理」と「減圧下または真空下」とを組み合わせてもよい。
 本発明の製造方法における接触工程では、金属化合物を極性溶媒に溶解させて得られる金属化合物溶液を活性炭に接触させてもよい。つまり、金属化合物と極性溶媒とから接触用液体を調製し、次いで、かかる接触用液体と活性炭とを互いに接触させてよい。例えば、活性炭を容器に充填し、かかる活性炭充填容器に対して接触用液体を供すことで、本発明の製造方法の接触工程を実施してよい。
(より具体的な製法の例示)
 あくまでも1つの例示にすぎないが、第一遷移金属元素がマンガン(Mn)となる場合、および、3.5以上のSnyderの極性パラメータを有する極性溶媒としてアセトンを用いる場合を例として、本発明の製造方法をより具体的に例示しておく。
 まず、過マンガン酸カリウムとアセトンとから活性炭接触用の液体を調製する。例えば、撹拌処理に付すことを通じて過マンガン酸カリウムをアセトンに溶解させた溶液を調製し、かかる調製液体を活性炭と接触させる。より具体的には、粒状の活性炭を充填した容器に対して「過マンガン酸カリウムをアセトンに溶解させて得られる調製溶液」を供すことで接触処理を行ってよい。
 接触処理後の活性炭は乾燥処理に付してよく、例えば真空乾燥に付してよい。次いで、接触処理後または乾燥処理後に得られる活性炭を水に対して接触させる。例えば接触処理後または乾燥処理後の活性炭を水に含浸させる操作を行うことで水接触を行ってよい。かかる含浸後においては、余分な水を濾過除去してよい。以上の工程を経ることによって、「マンガン元素を含んだ化合物」(好ましくはマンガンの水酸化合物、より好ましくはオキシ水酸化マンガン)と、それが担持された活性炭とから構成される重金属処理剤を得ることができる。
 このようにして得られた重金属処理剤では、水中のマンガンを特に効果的に除去できる。例えば活性炭にオキシ水酸化マンガンが担持された重金属処理剤を水処理に用いると、特定の理論に拘束されるわけではないが図3(A)に示すような機構で水中のマンガンを吸着除去することができる。他の重金属処理剤でも同様である。例えば活性炭にオキシ水酸化鉄が担持された重金属処理剤を水処理に用いると、特定の理論に拘束されるわけではないが図3(B)に示すような機構で水中の鉄を吸着除去することができ得る。同様にして、活性炭にオキシ水酸化コバルトが担持された重金属処理剤を水処理に用いると、特定の理論に拘束されるわけではないが図3(B)に示すような機構で水中のコバルトを吸着除去することができ得る。同様にして、活性炭にオキシ水酸化ニッケルが担持された重金属処理剤を水処理に用いると、特定の理論に拘束されるわけではないが図3(B)に示すような機構で水中のニッケルを吸着除去することができ得る。
 以上、本発明の各種態様を説明してきたが、本発明はこれに限定されることなく、特許請求の範囲に規定される範囲から逸脱することなく種々の変更が当業者によって為され得ることを理解されよう。
 例えば、本発明では、その構成要素として活性炭が用いられているが、同様の有機系多孔質材と捉えることができる材料があれば、それを重金属処理剤のベース材として用いることができる。また、本発明に従って重金属処理剤として活性炭に担持された「第一遷移金属元素を含んで成る水酸化物」を得る場合では、“水”環境に付す(すなわち、水に接触させること)に代えて又はそれに加えて、エタノールまたはメタノールに代表される“アルコール類”環境に付す(すなわち、アルコール類と接触させること)を行ってもよい。
 尚、上述のような本発明は、次の好適を包含し得る。
・第1態様:第一遷移金属元素の金属化合物と、3.5以上のSnyderの極性パラメータを有する極性溶媒と、活性炭とを互いに接触させることによって得られる重金属処理剤。
・第2態様:前記第1態様において、前記接触の後に得られる前記活性炭を水と接触させる、および/または、前記接触における前記極性溶媒が水成分を含有することを特徴とする重金属処理剤。
・第3態様:前記第1態様または第2態様において、前記極性パラメータが3.5以上11.0以下であることを特徴とする重金属処理剤。
・第4態様:前記第3態様において、前記極性溶媒が、水、エーテル類、アルコール類、ケトン類、酢酸エステル類、アミド類、ニトリル類およびハロゲン化炭化水素類から成る群から選択される溶媒であることを特徴とする重金属処理剤。
・第5態様:前記第1態様~第4態様のいずれかにおいて、前記接触の後で得られる前記活性炭を乾燥処理に付すことを特徴とする重金属処理剤。
・第6態様:上記第1態様~第5態様のいずれかにおいて、前記接触においては、前記金属化合物を前記極性溶媒に溶解させて得られる金属化合物溶液を、前記活性炭に対して接触させることを特徴とする重金属処理剤。
・第7態様:上記第1態様~第6態様のいずれかにおいて、前記極性溶媒がアセトンであることを特徴とする重金属処理剤。
・第8態様:上記第1態様~第7態様のいずれかにおいて、前記第一遷移金属元素が、マンガン(Mn)、鉄(Fe)および銅(Cu)から成る群から選択される元素であることを特徴とする重金属処理剤。
・第9態様:上記第1態様~第7態様のいずれかにおいて、前記第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される元素であることを特徴とする重金属処理剤。
・第10態様:上記第1態様~第9態様のいずれかにおいて、前記第一遷移金属元素がマンガン(Mn)であることを特徴とする重金属処理剤。
・第11態様:重金属処理剤であって、第一遷移金属元素が担持された活性炭を有して成り、液相用である重金属処理剤。
 本発明に関連して各種試験を実施した。
《活性炭に対する第一遷移金属化合物の担持性確認試験》
 活性炭に対する「第一遷移金属元素を含んで成る化合物」の担持特性に関して、以下の『溶解特性の確認試験』および『活性炭への担持化試験』を実施した。
『溶解特性の確認試験』
 まず、極性溶媒と第一遷移金属との間の溶解性について確認試験を実施した。特に、極性パラメータに関する相関関係を調べるべく、Snyderの極性パラメータ値がそれぞれ異なった極性溶媒を用い、それらが第一遷移金属化合物に対して溶解特性を呈するかについて調べる試験を行った。
 まず、Snyderの極性パラメータの点でそれぞれ異なる値を有する溶媒を用意した。具体的には、ヘキサン(和光純薬工業(株)製、品番:085-00416)、トルエン(和光純薬工業(株)製、品番:204-01866)、ジクロロメタン(和光純薬工業(株)製、品番:135-02446)、テトラヒドロフラン/THF(和光純薬工業(株)製、品番:204-08745)、酢酸エチル(和光純薬工業(株)製、品番:051-00356)、ジオキサン(和光純薬工業(株)製、品番:042-03766)、アセトン(和光純薬工業(株)製、品番:016-00346)、メタノール(和光純薬工業(株)製、品番:131-01826)、アセトニトリル(和光純薬工業(株)製、品番:014-00386)、N,N-ジメチルホルムアミド/DMF(和光純薬工業(株)製、品番:045-02916)、ジメチルスルホキシド/DMSO(和光純薬工業(株)製、品番:043-07216)、オルガノ製ピュアライトPRO-0100で精製した超純水を用意した。
 上記極性溶媒10mLの各々に対して、第一遷移金属化合物を約0.1g添加した。具体的には、室温(約25℃)および大気圧の条件下で極性溶媒10mLをビーカー(材質:硼珪酸ガラス、収容容積:50mL)に仕込んで第一遷移金属化合物を約0.1g添加し、約10分間撹拌した。その後、ビーカー内を外側から目視確認することによって、極性溶媒中に第一遷移金属化合物が完全に溶解したか否かを判断した。特に、添加前の第一遷移金属化合物の粉状態が極性溶媒中で残存していないか否かを目視確認することで溶解性を判定した。
 結果を以下の表1に示す。表中の「Snyder極性パラメータ」は、L. R. Snyder, J. Chromatogr., 第32巻、223頁(1974年); J. Chromatogr. Sci., 第16巻、223頁で説明される極性パラメータである。
[表1]
Figure JPOXMLDOC01-appb-I000001
 上記表1の結果から分かるように、Snyderの極性パラメータが3.5以上を有する極性溶媒では第一遷移金属化合物の溶解性を確認することができた。より具体的には、3.5以上11.0以下のSnyderの極性パラメータを有する極性溶媒は、第一遷移金属化合物を溶解させることが可能であることが分かった。
『活性炭への担持化試験』
 上記試験で溶解性を確認することができた極性溶媒を用いて「第一遷移金属元素を含んで成る化合物」の活性炭への担持化を確認する試験を行った。
 具体的には、極性溶媒として用いたアセトン、水およびメタノールのそれぞれに第一遷移金属化合物を溶解させて得られる金属化合物溶液(化合物濃度:1~4重量%)を、活性炭に接触させる処理を行い、それによる効果を調べた。
 まず、上記極性溶媒と金属化合物(下記参照)との混合で得られる金属化合物溶液の約70gを活性炭100gに対して供することによって、活性炭と金属化合物溶液とを接触させた(つまり、活性炭と金属化合物と極性溶媒とを互いに接触させた)。用いた活性炭は、粒状活性炭(クラレケミカル製、品番:クラレコールGW40/20)であった。上記接触は、室温(約25℃)および大気圧の条件下で約10分間行い、その後に活性炭を70℃の温度条件下で真空乾燥機(アズワン製、型式AVO-250NB)で減圧乾燥に付し、「接触処理済み活性炭」を得た。
 かかる「接触処理済み活性炭」は、少なくとも第一遷移金属元素が担持されていると考えられるところ、その担持化の有無を調べる試験を行った。具体的には、「接触処理済み活性炭」を酸性液に接触させ、それによって回収される酸性処理回収液の成分を調べた。酸性液は「第一遷移金属元素を含んで成る化合物」をその液体中に溶解させる効果がある。よって、「接触処理済み活性炭」に少なくとも第一遷移金属元素が担持されていれば、酸性処理回収液中に第一遷移金属元素の成分が含まれることになる一方、「接触処理済み活性炭」に第一遷移金属元素がそもそも担持されていなければ、酸性処理回収液中に第一遷移金属元素の成分が存在しないことになる。実際に得られた酸性処理回収液を調べてみると、その液体中に第一遷移金属元素の成分が含まれていたことが分かり、「接触処理済み活性炭」には少なくとも第一遷移金属元素が担持されていることが分かった。
 より具体的には、各「接触処理済み活性炭」を10g定量し、カラム(材質ポリプロピレン(PP)から成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に詰め、1N塩酸を10mL通液して回収した。第一遷移金属がMnの場合は回収液に100μLの67.5%硝酸(東京化成工業製、品番:N0806)および3mgのビスマス酸ナトリウム(和光純薬工業製、品番:198-01332)を加えて撹拌に付し、その溶液の色が赤紫色に着色したことでMnの担持を確認した。第一遷移金属がFeの場合は回収液に2-2’-ビピリジル(東京化成工業製、品番:B0468)を100mg加えて撹拌に付し、その溶液の色が赤色に着色したことでFeの担持を確認した。第一遷移金属がCoの場合は、回収液に28%アンモニア水溶液(和光純薬工業製、品番:010-03166)を2mL加えて撹拌に付し、その溶液の色が青緑色に着色したことでCoの担持を確認した。第一遷移金属がNiの場合は、回収液に硫化ナトリウム(和光純薬製、品番:195-15632)を100mg加えて撹拌に付し、その溶液に黒色沈殿が生じたことでNiの担持を確認した。第一遷移金属がCuの場合は回収液に28%アンモニア水溶液(和光純薬工業製、品番:010-03166)を2mL加えて撹拌に付し、その溶液の色が青色に着色したことでCuの担持を確認した。かかる担持化に関して、極性溶媒として又はそれとは別に水等が含まれていると、活性炭に担持化された第一遷移金属は、少なくともその水等との反応および/または酸化反応などに起因して化合物となっていることが考えられる。よって、上記の試験からは、第一遷移元素を含んで成る化合物の活性炭への担持化を把握することができた。
 結果を以下の表2に示す。表中の担持性評価については、酸性処理回収液中に第一遷移金属元素の成分が含まれ、それゆえ「接触処理済み活性炭」に「第一遷移金属元素を含んで成る化合物」が担持されていることを確認できた場合が「○」の評価となっている。
[表2]
Figure JPOXMLDOC01-appb-I000002
 上記表2の結果から分かるように、Snyderの極性パラメータが3.5以上を有する極性溶媒(特に3.5以上11.0以下のSnyderの極性パラメータを有する極性溶媒)から形成された金属化合物水溶液を用いると、「第一遷移金属元素を含んで成る化合物」を活性炭に担持化できることが分かった。
《液相中重金属に対する除去効果の確認試験》
 「第一遷移金属元素を含んで成る化合物」が担持された活性炭を重金属処理剤として液相用途に用いた場合の効果を確認した。具体的には、以下の試験を実施して液相中の重金属に対する除去効果およびその再生効果を確認する試験を行った。
 実施例として用いた重金属処理剤AおよびBは、以下のように調製した。
(重金属処理剤A)
 ビーカーに1gの過マンガン酸カリウム(和光純薬工業製、品番:161-04185)および99gのアセトン(和光純薬工業(株)製、品番:016-00346)を仕込み、室温(約25℃)および大気圧の条件下でスターラー(アズワン製、型式RSH-1AN)を用いて約30分間撹拌に付すことによって、過マンガン酸カリウムがアセトンに溶解した処理溶液を得た。活性炭105g(クラレケミカル製、品番:クラレコールGW40/20)をカラム(材質ポリプロピレン(PP)から成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に詰め、得られた処理溶液を室温(約25℃)および大気圧の条件下で滴下することによって処理溶液を活性炭充填カラムに供し、10分間静置した。次いで、活性炭をバットに移し真空乾燥機(アズワン製、型式AVO-250NB)で70℃3時間乾燥させた。次いで、乾燥後の活性炭をオルガノ製ピュアライトPRO-0100で精製した超純水に含浸させ、かかる超純水を流出除去した。以上の工程によって重金属処理剤Aを得た。
 重金属処理剤Aにおいて担持化された「Mn元素を含んで成る化合物」のMn量(単位mg/g)は、Mn量=Mn分子量/KMnO分子量×担持したKMnO量/用いた活性炭量を計算することによって求めた(表3における「Mn担持量」)。このMn量は、その単位「mg/g」から分かるように、活性炭1g当たりのMn量(mg)を意味している。
(重金属処理剤B)
 ビーカーに10gの過マンガン酸カリウム(和光純薬工業製、品番:161-04185)および990gのアセトン(和光純薬工業(株)製、品番:016-00346)を仕込み、室温(約25℃)および大気圧の条件下でスターラー(アズワン製、型式RSH-1AN)を用いて約30分間撹拌に付すことによって、過マンガン酸カリウムがアセトンに溶解した処理溶液を得た。活性炭130g(クラレケミカル製:クラレコールGW40/20)をカラム(材質ポリプロピレン(PP)から成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に詰め、過マンガン酸カリウム/アセトン溶液を室温(約25℃)および大気圧の条件下で滴下することによって処理溶液を活性炭充填カラムに加え、10分間静置した。次いで、この活性炭をバットに移し真空乾燥機(アズワン製、型式AVO-250NB)で70℃3時間乾燥させた。次いで、乾燥後の活性炭をオルガノ製ピュアライトPRO-0100で精製した超純水に含浸させ、かかる超純水を流出除去した。以上の工程によって重金属処理剤Bを得た。
 重金属処理剤Bにおいて担持化された「Mn元素を含んで成る化合物」のMn量(単位mg/g)は、Mn量=Mn分子量/KMnO分子量×担持したKMnO量/用いた活性炭量を計算することによって求めた(表3における「Mn担持量」)。このMn量は、その単位「mg/g」から分かるように、活性炭1g当たりのMn量(mg)を意味している。
[実施例1]
(重金属除去試験)
 被検液として1000ppmのMnCl水溶液を用いた。かかるMnCl水溶液は、塩化マンガン四水和物(和光純薬工業製、品番:134-15302)をオルガノ製ピュアライトPRO-0100で精製した超純水に溶解させることによって調製した。重金属処理剤Aをカラム(材質ポリプロピレン(PP)から成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に10gに充填し、かかる充填カラムに対して室温(約25℃)および大気圧の条件下で被検液を滴下することによって重金属除去試験を実施した。具体的には、重金属処理剤Aが充填されたカラムに対して約3mL/minの速度条件下で被検液を20mL滴下し、次いで、重金属処理剤Aに接触した後で得られる溶液を回収した。重金属処理剤Aによる被検液中のマンガンの除去効果を把握するため、回収溶液のマンガン濃度について求めた。
 回収溶液のマンガン濃度は、吸光光度法で測定した。つまり、試薬を用いて回収溶液を呈色させ、その吸光度からマンガン濃度を算出した。具体的には、回収溶液100μLに4.90mLのオルガノ製ピュアライトPRO-0100で精製した超純水を加え、更に100μLの67.5%硝酸(東京化成工業製、品番:N0806)および3mgのビスマス酸ナトリウム(和光純薬工業製、品番:198-01332)を加えて撹拌に付した。これにより回収溶液中に含まれるMn2+をMn7+まで酸化させ、回収溶液を赤紫色に発色させた。かかる発色回収溶液について545nmの吸光度の測定を行い、Mn濃度レベルを間接的に把握した(表3における「Mn濃度(i)」)。吸光度の測定には、HITACHI製、型式U-1800の試験機を用いた。かかる吸光度(無次元)の値が高いほど、Mn濃度が高いことを示している一方、吸光度の値が低いほど、Mn濃度が低いことを示している。また、吸光度が“0”の場合は、回収溶液中にMnが存在していないことを示している。このような吸光度に関する事項は、以下の「Mn濃度(ii)」および「Mn濃度(iii)」についても同様である。
(再生効果の確認試験)
 重金属処理剤Aの再生能を確認する試験を行った。まず、上記の重金属除去試験後に得られた“使用済み重金属処理剤A”を再生処理に付した。具体的には、使用済み重金属処理剤Aに対して1%次亜塩素酸ソーダ水溶液を通液し、これにより“再生処理された重金属処理剤A”を得た。かかる1%次亜塩素酸ソーダ水溶液は、次亜塩素酸ソーダ(大阪ソーダ製)をオルガノ製ピュアライトPRO-0100で精製した超純水で希釈させることによって調製した。次亜塩素酸ソーダに起因して“使用済み重金属処理剤A”から除されたマンガン量を把握するため、次亜塩素酸ソーダの通液後に回収される回収溶液について、そのマンガン濃度を求めた。具体的には、かかる回収溶液に10%硫化ナトリウム(和光純薬製、品番:195-15632)を1mL加え、硫化マンガンを沈殿させ、600nmの吸光度を測定することで濁度からMn濃度を求めた(表3における「Mn濃度(ii)」)。かかる吸光度の測定には、HITACHI製、型式U-1800の試験機を用いた。
 次いで、上記の重金属除去試験と同様の試験を再度行った。つまり、“再生処理された重金属処理剤A”をカラム(材質ポリプロピレン(PP)から成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に10gに充填し、かかる充填カラムに対して被検液を滴下して重金属除去試験を実施した。より具体的には、“再生処理された重金属処理剤A”が充填されたカラムに対して約3mL/minの速度条件下で被検液を20mL滴下し、重金属処理剤Aに接触した後の溶液を回収した。この“再生処理された重金属処理剤A”による被検液中のマンガンの除去効果を把握すべく、回収溶液のマンガン濃度を求めた(表3における「Mn濃度(iii)」)。かかるマンガン濃度の算出自体は、上記の重金属除去試験と同じである。
[実施例2]
 「重金属処理剤Aの10gに代えて重金属処理剤Bを10g用いたこと」および「重金属除去試験および再生効果の確認試験における被検液の滴下量を20mLに代えて40mLとしたこと」以外は、実施例1と同じ「重金属除去試験」および「再生効果の確認試験」を行った。
[比較例1]
 重金属処理剤Aの10gに代えてマンガン砂(株式会社トーケミ製、品番MS0)を10g用いたこと以外は、実施例1と同じ「重金属除去試験」を行った。なお、かかるマンガン砂におけるMn量(単位:mg/g)は、すなわち、活性炭1g当たりのMn量(mg)は、カタログ値から得た。
[比較例2]
 重金属処理剤Aの10gに代えてフェロライトMC(株式会社トーケミ製、品番MC3)を10g用いたこと以外は、実施例1と同じ「重金属除去試験」を行った。なお、かかるフェロライトMCにおけるMn量(単位:mg/g)、すなわち、活性炭1g当たりのMn量(mg)は、カタログ値から得た。
 上記実施例1~2および比較例1~2の結果を以下の表3に示す。
[表3]
Figure JPOXMLDOC01-appb-I000003
 上記の重金属除去試験および再生効果の確認試験から以下の事項を理解することができた。
 ・本発明の実施例1および2では、従来技術の比較例1および2よりも除去効率、特に処理剤の単位重量当りの除去効率が高い。
 ・実施例1と実施例2とを比較すると、スケールアップした場合であっても本発明の処理剤の除去効果および再生能は変わらず維持される。
 ・従来技術の比較例1および2では、再生処理に起因して担持物が離脱するのに対して、本発明の実施例1および2では、再生処理に際して活性炭に担持されたマンガン化合物は離脱しにくい。すなわち、本発明の実施例1および2の重金属処理剤の方が「第一遷移金属元素を含んで成る化合物」がより強固に担持されている。(従来技術の比較例1および2については、次亜塩素酸ソーダの通液後に得られる回収溶液中のMn量が「被検液に当初含まれていたMn量」よりも多かった。一方、本発明の実施例1および2では、そのようなことはなかった。)
 上記の実施例および比較例では、第一遷移金属元素が“マンガン”に基づくものであった。他の第一遷移金属元素に関しても同様の除去効果を奏するか否かについて確認試験を実施した。
 (重金属処理剤C)
 ビーカーに4.99gの塩化鉄(II)四水和物(和光純薬工業製、品番:099-00915)、16gのメタノール(和光純薬工業(株)製、品番:131-01826)及び29gのアセトン(和光純薬工業(株)製、品番:016-00346)を仕込み、室温(約25℃)および大気圧の条件下でスターラー(アズワン製、型式RSH-1AN)を用いて約30分間撹拌に付すことによって、塩化鉄(II)四水和物がメタノール/アセトン混合溶液に溶解した処理溶液を得た。そこに十分に乾燥させた活性炭20g(クラレケミカル製:クラレコールGW40/20)を加え、10分間静置した。次いで、この活性炭をロータリーエバポレーター(アズワン製、型式NA-2VGS)で40℃、3時間乾燥させた。次いで、10%水酸化ナトリウム溶液50mL(和光純薬工業(株)製、品番:191-11555)に含浸させ、12%次亜塩素酸ナトリウム溶液10mL(和光純薬工業(株)製、品番:197-02206)を加え、1時間静置させたのちにオルガノ製ピュアライトPRO-0100で精製した超純水で流出除去した。以上の工程によって重金属処理剤Cを得た。
 重金属処理剤Cにおいて担持化された「Fe元素を含んで成る化合物」のFe量(単位mg/g)は、Fe量=Fe分子量/FeCl・4HO分子量×担持したFeCl・4HO量/用いた活性炭量を計算することによって求めた(表4における「Fe担持量」)。
[実施例3]
 被検液として1000ppmのFeCl水溶液を用いた。かかるFeCl水溶液は、塩化鉄(II)四水和物(和光純薬工業製、品番:099-00915)をオルガノ製ピュアライトPRO-0100で精製した超純水に溶解させることによって調製した。重金属処理剤Cをカラム(材質PPから成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に5gに充填し、かかる充填カラムに対して室温(約25℃)および大気圧の条件下で被検液を滴下することによって重金属除去試験を実施した。具体的には、重金属処理剤Cが充填されたカラムに対して約3mL/minの速度条件下で被検液を30mL滴下し、次いで、重金属処理剤Cに接触した後で得られる溶液を回収した。重金属処理剤Cによる被検液中の鉄の除去効果を把握するため、回収溶液の鉄濃度について求めた。
 回収溶液の鉄濃度は、吸光光度法で測定した。具体的には、回収溶液100μLに10mLのオルガノ製ピュアライトPRO-0100で精製した超純水を加え、更に10mgの(2、2-bipyridil)(東京化成工業製、品番:366-18-7)を加えて撹拌に付した。これにより回収溶液中に含まれる鉄(II)を赤色に発色させた。かかる発色回収溶液について524nmの吸光度の測定を行い、鉄濃度レベルを間接的に確認した。(表4における「鉄濃度」)。
 吸光度の測定には、HITACHI製、型式U-1800の試験機を用いた。かかる吸光度(無次元)の値が高いほど、鉄濃度が高いことを示している一方、吸光度の値が低いほど、鉄濃度が低いことを示している。また、吸光度が“0”の場合は、回収溶液中に鉄が存在していないことを示している。
[比較例3]
 重金属処理剤Cの5gに代えて活性炭(クラレケミカル製:クラレコールGW40/20)5g用いたこと以外は、実施例3と同じ「重金属除去試験」を行った。
 上記実施例3および比較例3の結果を以下の表4に示す。
[表4]
Figure JPOXMLDOC01-appb-I000004
(重金属処理剤D)
 ビーカーに6gの塩化コバルト(II)六水和物(和光純薬工業製、品番:030-03685)、16gのメタノール(和光純薬工業(株)製、品番:131-01826)及び22gのアセトニトリル(和光純薬工業(株)製、品番:014-00386)を仕込み、室温(約25℃)および大気圧の条件下でスターラー(アズワン製、型式RSH-1AN)を用いて約30分間撹拌に付すことによって、塩化コバルト(II)6水和物がメタノール/アセトニトリル混合溶液に溶解した処理溶液を得た。そこに十分に乾燥させた活性炭20g(クラレケミカル製:クラレコールGW40/20)を加え、10分間静置した。次いで、この活性炭をロータリーエバポレーター(アズワン製、型式NA-2VGS)で40℃、3時間乾燥させた。次いで、乾燥後の活性炭を10%水酸化ナトリウム溶液50mL(和光純薬工業(株)製、品番:191-11555)に含浸させ、次いで12%次亜塩素酸ナトリウム溶液10mL(和光純薬工業(株)製、品番:197-02206)を添加し、1時間静置させたのちにオルガノ製ピュアライトPRO-0100で精製した超純水で流出除去した。以上の工程によって重金属処理剤Dを得た。
 重金属処理剤Dにおいて担持化された「Co元素を含んで成る化合物」のCo量(単位mg/g)は、Co量=Co分子量/CoCl・6HO分子量×担持したCoCl・6HO量/用いた活性炭量を計算することによって求めた(表5における「Co担持量」)。
[実施例4]
 被検液として1000ppmのCoCl水溶液を用いた。かかるCoCl水溶液は、塩化コバルト六水和物(和光純薬工業製、品番:030-03685)をオルガノ製ピュアライトPRO-0100で精製した超純水に溶解させることによって調製した。重金属処理剤Dをカラム(材質PPから成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に5gに充填し、かかる充填カラムに対して室温(約25℃)および大気圧の条件下で被検液を滴下することによって重金属除去試験を実施した。具体的には、重金属処理剤Dが充填されたカラムに対して約3mL/minの速度条件下で被検液を30mL滴下し、次いで、重金属処理剤Dに接触した後で得られる溶液を回収した。重金属処理剤Dによる被検液中のコバルトの除去効果を把握するため、回収溶液のコバルト濃度について求めた。
 回収溶液のコバルト濃度は、吸光光度法で測定した。具体的には、回収溶液について510nmの吸光度を測定してCo濃度を求めた(表5における「Co濃度」)。かかる吸光度の測定には、HITACHI製、型式U-1800の試験機を用いた。
[比較例4]
 重金属処理剤Dの5gに代えて活性炭(クラレケミカル製:クラレコールGW40/20)5g用いたこと以外は、実施例4と同じ「重金属除去試験」を行った。
 上記実施例4および比較例4の結果を以下の表5に示す。
[表5]
Figure JPOXMLDOC01-appb-I000005
(重金属処理剤E)
 ビーカーに5.99gの塩化ニッケル(II)六水和物(和光純薬工業製、品番:141-08365)、16gのメタノール(和光純薬工業(株)製、品番:131-01826)及び29gのアセトン(和光純薬工業(株)製、品番:016-00346)を仕込み、室温(約25℃)および大気圧の条件下でスターラー(アズワン製、型式RSH-1AN)を用いて約30分間撹拌に付すことによって、塩化ニッケル(II)六水和物がメタノール/アセトン混合溶液に溶解した処理溶液を得た。そこに十分に乾燥させた活性炭20g(クラレケミカル製:クラレコールGW40/20)を加え、10分間静置した。次いで、この活性炭をロータリーエバポレーター(アズワン製、型式NA-2VGS)で40℃、3時間乾燥させた。次いで10%水酸化ナトリウム溶液50mL(和光純薬工業(株)製、品番:191-11555)に含浸させ、12%次亜塩素酸ナトリウム溶液10mL(和光純薬工業(株)製、品番:197-02206)を加え、1時間静置させたのちにオルガノ製ピュアライトPRO-0100で精製した超純水で流出除去した。以上の工程によって重金属処理剤Eを得た。
 重金属処理剤Eにおいて担持化された「Ni元素を含んで成る化合物」のNi量(単位mg/g)は、Ni量=Ni分子量/NiCl・6HO分子量×担持したNiCl・6HO量/用いた活性炭量を計算することによって求めた(表6における「Ni担持量」)。
[実施例5]
 被検液として1000ppmのNiCl水溶液を用いた。かかるNiCl水溶液は、塩化ニッケル(II)六水和物(和光純薬工業製、品番:141-08365)をオルガノ製ピュアライトPRO-0100で精製した超純水に溶解させることによって調製した。重金属処理剤Eをカラム(材質PPから成る円筒形カラム、カラム内径20mm、カラム高さ60mm)に5gに充填し、かかる充填カラムに対して室温(約25℃)および大気圧の条件下で被検液を滴下することによって重金属除去試験を実施した。具体的には、重金属処理剤Eが充填されたカラムに対して約3mL/minの速度条件下で被検液を30mL滴下し、次いで、重金属処理剤Eに接触した後で得られる溶液を回収した。重金属処理剤Eによる被検液中のニッケルの除去効果を把握するため、回収溶液のニッケル濃度について求めた。
 回収溶液のNi濃度は、吸光光度法で測定した。具体的には、回収溶液100μLに10mLのオルガノ製ピュアライトPRO-0100で精製した超純水を加え、更に10mgのジメチルグリオキシム(和光純薬工業製、品番:048-02962)を加えて撹拌に付した。これにより回収溶液中に含まれるNi(II)を赤色に発色させた。かかる発色回収溶液について520nmの吸光度の測定を行い、ニッケル濃度レベルを間接的に確認した。(表6における「ニッケル濃度」)。
 吸光度の測定には、HITACHI製、型式U-1800の試験機を用いた。かかる吸光度(無次元)の値が高いほど、ニッケル濃度が高いことを示している一方、吸光度の値が低いほど、ニッケル濃度が低いことを示している。また、吸光度が“0”の場合は、回収溶液中にニッケルが存在していないことを示している。
[比較例5]
 重金属処理剤Eの5gに代えて活性炭(クラレケミカル製:クラレコールGW40/20)5g用いたこと以外は、実施例5と同じ「重金属除去試験」を行った。
 上記実施例5および比較例5の結果を以下の表6に示す。
[表6]
Figure JPOXMLDOC01-appb-I000006
 上記の実施例3~5およびそれに対する比較例から以下の事項を理解することができた。

 ・本発明の重金属処理剤における第一遷移金属元素が、鉄(Fe)、コバルト(Co)およびニッケル(Ni)であっても、マンガン(Mn)の場合と同様に重金属除去効果を奏することが分かった。

 ・具体的には、第一遷移金属元素として鉄(Fe)を含んで成る化合物が担持された活性炭を有して成る液相用の重金属処理剤では、その活性炭に担持された金属と同種の金属、すなわち、少なくとも鉄を液体から除去・低減できることが分かった。

 ・同様にして、第一遷移金属元素としてコバルト(Co)を含んで成る化合物が担持された活性炭を有して成る液相用の重金属処理剤では、その活性炭に担持された金属と同種の金属、すなわち、少なくともコバルトを液体から除去・低減できることが分かった。

 ・同様にして、第一遷移金属元素としてニッケル(Ni)を含んで成る化合物が担持された活性炭を有して成る液相用の重金属処理剤では、その活性炭に担持された金属と同種の金属、すなわち、少なくともニッケルを液体から除去・低減できることが分かった。
 本発明に係る重金属処理剤は、重金属の除去または低減が求められる様々な分野に利用することができる。特に水処理の分野に用いることができ、生活用水および工業用水のみならず、農業用水および雑用水などとして所望の水を得るべく本発明の重金属処理剤は利用できる。
関連出願の相互参照
 本出願は、日本国特許出願第2017-175910号(出願日:2017年9月13日、発明の名称:「重金属処理剤および重金属処理剤の製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。

Claims (18)

  1. 重金属処理剤であって、
     第一遷移金属元素を含んで成る化合物が担持された活性炭を有して成り、液相用である、重金属処理剤。
  2. 前記第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される金属元素である、請求項1に記載の重金属処理剤。
  3. 前記第一遷移金属元素がマンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)であるから成る群から選択される金属元素である、請求項1または2に記載の重金属処理剤。
  4. 前記第一遷移金属元素がマンガン(Mn)である、請求項1~3のいずれかに記載の重金属処理剤。
  5. 前記化合物が、前記第一遷移金属元素の金属水酸化物である、請求項1~4のいずれかに記載の重金属処理剤。
  6. 前記金属水酸化物がオキシ水酸化金属である、請求項5に記載の重金属処理剤。
  7. 前記活性炭の細孔に前記化合物が少なくとも存在する、請求項1~6のいずれかに記載の重金属処理剤。
  8. 前記重金属処理剤が水処理剤である、請求項1~7のいずれかに記載の重金属処理剤。
  9. 重金属処理剤を製造する方法であって、
     金属化合物と極性溶媒と活性炭とを互いに接触させる工程
    を含んで成り、
     前記金属化合物に含まれる金属元素が第一遷移金属元素であり、前記極性溶媒が3.5以上のSnyderの極性パラメータを有する、重金属処理剤の製造方法。
  10. 前記接触工程の後に得られる前記活性炭を水と接触させる、および/または、前記接触工程における前記極性溶媒が水成分を含有する、請求項9に記載の重金属処理剤の製造方法。
  11. 前記Snyderの極性パラメータが3.5以上11.0以下である、請求項9または10に記載の重金属処理剤の製造方法。
  12. 前記極性溶媒が、水、エーテル類、アルコール類、ケトン類、酢酸エステル類、アミド類、ニトリル類およびハロゲン化炭化水素類から成る群から選択される溶媒である、請求項11に記載の重金属処理剤の製造方法。
  13. 前記接触工程の後にて前記活性炭を乾燥処理に付す、請求項9~12のいずれかに記載の重金属処理剤の製造方法。
  14. 前記接触工程においては、前記金属化合物を前記極性溶媒に溶解させて得られる金属化合物溶液を、前記活性炭に接触させる、請求項9~13のいずれかに記載の重金属処理剤の製造方法。
  15. 前記極性溶媒がアセトンである、請求項9~14のいずれかに記載の重金属処理剤の製造方法。
  16. 前記第一遷移金属元素が、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)および銅(Cu)から成る群から選択される、請求項9~15のいずれかに記載の重金属処理剤の製造方法。
  17. 前記第一遷移金属元素がマンガン(Mn)、鉄(Fe)、コバルト(Co)およびニッケル(Ni)から成る群から選択される、請求項9~16のいずれかに記載の重金属処理剤の製造方法。
  18. 前記第一遷移金属元素がマンガン(Mn)である、請求項9~17のいずれかに記載の重金属処理剤の製造方法。
PCT/JP2018/032480 2017-09-13 2018-08-31 重金属処理剤および重金属処理剤の製造方法 WO2019054214A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019541998A JP6922989B2 (ja) 2017-09-13 2018-08-31 重金属処理剤の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175910 2017-09-13
JP2017-175910 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019054214A1 true WO2019054214A1 (ja) 2019-03-21

Family

ID=65723348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032480 WO2019054214A1 (ja) 2017-09-13 2018-08-31 重金属処理剤および重金属処理剤の製造方法

Country Status (2)

Country Link
JP (1) JP6922989B2 (ja)
WO (1) WO2019054214A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6953606B1 (ja) * 2020-10-08 2021-10-27 Dowaエコシステム株式会社 有機ハロゲン系化合物分解剤、その製造方法、及び、土壌又は地下水の浄化方法
CN114210303A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用
CN115350101A (zh) * 2022-08-25 2022-11-18 广东丸美生物技术股份有限公司 一种护肤油及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008019A1 (en) * 2011-07-12 2013-01-17 University Of Bristol Filter
JP2013542053A (ja) * 2010-09-03 2013-11-21 インディアン インスティテュート オブ テクノロジー 浄水のための還元されたグラフェン酸化物ベースの複合体
JP2014069136A (ja) * 2012-09-28 2014-04-21 Futamura Chemical Co Ltd 活性炭複合材料及びその製造方法並びにこれを含むフィルター体
US20150291446A1 (en) * 2014-04-14 2015-10-15 Corning Incorporated Co-extrusion method for making carbon-supported transition metal-based nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ546946A (en) * 2003-11-06 2009-01-31 Commw Scient Ind Res Org Metal oxide/hydroxide materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542053A (ja) * 2010-09-03 2013-11-21 インディアン インスティテュート オブ テクノロジー 浄水のための還元されたグラフェン酸化物ベースの複合体
WO2013008019A1 (en) * 2011-07-12 2013-01-17 University Of Bristol Filter
JP2014069136A (ja) * 2012-09-28 2014-04-21 Futamura Chemical Co Ltd 活性炭複合材料及びその製造方法並びにこれを含むフィルター体
US20150291446A1 (en) * 2014-04-14 2015-10-15 Corning Incorporated Co-extrusion method for making carbon-supported transition metal-based nanoparticles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6953606B1 (ja) * 2020-10-08 2021-10-27 Dowaエコシステム株式会社 有機ハロゲン系化合物分解剤、その製造方法、及び、土壌又は地下水の浄化方法
CN114210303A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用
CN114210303B (zh) * 2021-10-26 2023-12-12 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用
CN115350101A (zh) * 2022-08-25 2022-11-18 广东丸美生物技术股份有限公司 一种护肤油及其制备方法

Also Published As

Publication number Publication date
JP6922989B2 (ja) 2021-08-18
JPWO2019054214A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
Zhao et al. Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study
Chigondo et al. Magnetic arginine-functionalized polypyrrole with improved and selective chromium (VI) ions removal from water
Zhang et al. Mechanism study about the adsorption of Pb (II) and Cd (II) with iron-trimesic metal-organic frameworks
Navarathna et al. Removal of Arsenic (III) from water using magnetite precipitated onto Douglas fir biochar
Zhou et al. Preparation of iminodiacetic acid-modified magnetic biochar by carbonization, magnetization and functional modification for Cd (II) removal in water
Zandipak et al. Novel mesoporous Fe 3 O 4/SiO 2/CTAB–SiO 2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water
Huang et al. Design and synthesis of core–shell Fe3O4@ PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater
Petit et al. Reactive adsorption of acidic gases on MOF/graphite oxide composites
Su et al. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters
Fan et al. Adsorption of antimony (III) from aqueous solution by mercapto-functionalized silica-supported organic–inorganic hybrid sorbent: Mechanism insights
Kosa et al. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline
Wang et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66
Ren et al. Adsorption of Pb (II) and Cu (II) from aqueous solution on magnetic porous ferrospinel MnFe2O4
Oliveira et al. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water
Awual et al. Mesoporous silica based novel conjugate adsorbent for efficient selenium (IV) detection and removal from water
Kakavandi et al. Pb (II) adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: experimental and modeling study
JP6922989B2 (ja) 重金属処理剤の製造方法
Oliveira et al. Clay–iron oxide magnetic composites for the adsorption of contaminants in water
Siriwardane et al. Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications
Pyrzynska Carbon nanostructures for separation, preconcentration and speciation of metal ions
Ghorbani et al. Derived N-doped carbon through core-shell structured metal-organic frameworks as a novel sorbent for dispersive solid phase extraction of Cr (III) and Pb (II) from water samples followed by quantitation through flame atomic absorption spectrometry
Wang et al. Efficient adsorption of antibiotics and heavy metals from aqueous solution by structural designed PSSMA-functionalized-chitosan magnetic composite
KR102079994B1 (ko) 탄소 옥시칼코게나이드 및 금속 염의 열분해 생성물을 포함하는 여과 장치 및 이 열분해 생성물로 클로라민을 제거하는 방법
Ma et al. Facile method for the synthesis of a magnetic CNTs–C@ Fe–chitosan composite and its application in tetracycline removal from aqueous solutions
Oveisi et al. Effective removal of mercury from aqueous solution using thiol-functionalized magnetic nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541998

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855968

Country of ref document: EP

Kind code of ref document: A1