WO2019053936A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2019053936A1
WO2019053936A1 PCT/JP2018/016494 JP2018016494W WO2019053936A1 WO 2019053936 A1 WO2019053936 A1 WO 2019053936A1 JP 2018016494 W JP2018016494 W JP 2018016494W WO 2019053936 A1 WO2019053936 A1 WO 2019053936A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
stroke
stroke end
deceleration
gravity
Prior art date
Application number
PCT/JP2018/016494
Other languages
English (en)
French (fr)
Inventor
悠介 鈴木
坂本 博史
麻里子 水落
田中 宏明
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201880015947.6A priority Critical patent/CN110382787B/zh
Priority to US16/493,423 priority patent/US11414836B2/en
Priority to EP18857245.7A priority patent/EP3683366A4/en
Publication of WO2019053936A1 publication Critical patent/WO2019053936A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2214Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing the shock generated at the stroke end
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position

Definitions

  • the present invention relates to a working machine used for structure disassembly work, waste disposal, scrap processing, road work, construction work, civil engineering work and the like.
  • a swing body As a working machine used for structure dismantling work, waste disposal, scrap processing, road work, construction work, civil engineering work, etc., a swing body is attached to the upper part of a traveling body traveling by a power system so It is known that an articulated work front is mounted rotatably in the vertical direction, and each front member constituting the work front is driven by a cylinder.
  • a hydraulic shovel having a working front composed of a boom, an arm and a bucket. The boom, arm and bucket are driven by the boom cylinder, arm cylinder and bucket cylinder, respectively.
  • Patent Document 1 when the hydraulic cylinder is operated to extend and retract the hydraulic cylinder by the operation signal from the operating means, when the hydraulic cylinder reaches near the stroke end, the hydraulic cylinder is decelerated to reduce the impact at the stroke end.
  • Operation control means for detecting an operation signal from the operation means, and when the hydraulic cylinder reaches near the stroke end to perform the deceleration control, the operation signal has a predetermined value
  • the hydraulic cylinder drive control system (claim 1) is characterized by further comprising: a deceleration control releasing means for releasing the deceleration control of the hydraulic cylinder while the hydraulic cylinder is near the stroke end as it becomes smaller. There is.
  • this hydraulic cylinder drive control device while maintaining the function of reducing the impact when the hydraulic cylinder reaches the stroke end, work can be easily performed even when the hydraulic cylinder is near the stroke end, and in the vicinity of the stroke end Workability and operability are improved.
  • a hydraulic shovel in order to remove the mud adhering to a bucket and an arm, operation which makes a bucket cylinder and an arm cylinder collide with a stroke end may be performed.
  • an operation when working in a narrow place, in order to fly the earth and sand that entered the bucket close to the vehicle body, an operation may be performed in which the arm cylinder collides with the stroke end on the arm cloud side to suddenly stop the arm.
  • the arm cylinder should be made to collide with the stroke end on the arm dump side to stop the arm quickly in order to fly the earth and sand entering the bucket further than the movable range of the work front.
  • the present invention has been made in view of the above problems, and an object thereof is to perform an operation utilizing an impact at the time of a stroke end collision of a cylinder for driving an operation front, as long as the dynamic stability is not impaired. It is to provide a working machine that can
  • the present invention provides a vehicle body, a work front pivotally mounted on a front portion of the car body in the vertical direction, at least one cylinder for driving the work front, and An operation input device for instructing an operation; and a drive control device for controlling driving of the cylinder in accordance with an instruction from the operation input device, the drive control device, when the cylinder approaches a stroke end
  • the drive control device may have the possibility of the cylinder colliding with the stroke end.
  • the stroke end distance calculation / evaluation unit determines the stroke of the cylinder.
  • a dynamic gravity center position prediction unit that predicts a trajectory of a dynamic gravity center position of the work machine from when the deceleration operation of the cylinder is started to when the cylinder is stopped when it is determined that there is a possibility of colliding with an end
  • an allowable speed change unit that changes the allowable speed according to the minimum distance from the trajectory of the dynamic gravity center position predicted by the dynamic gravity center position prediction unit to the falling branch line of the working machine.
  • the motion of the working machine from the start of the deceleration operation of the cylinder to the stop of the cylinder The limit which does not impair the dynamic stability of the working machine by predicting the trajectory of the dynamic center of gravity position and changing the allowable speed of the cylinder according to the minimum distance from the trajectory of the dynamic center of gravity position to the fall branch line of the working machine In the case of a stroke end collision of the cylinder, an impact can be generated.
  • FIG. 1 is a side view of a hydraulic shovel according to the present embodiment.
  • the hydraulic shovel 1 is provided with a work front 2 and a vehicle body composed of a revolving unit 3 and a traveling unit 4.
  • the work front 2 includes a boom 20 rotatably attached to the front of the revolving unit 3 in the vertical direction, an arm 21 rotatably attached to the tip of the boom 20 in the vertical or longitudinal direction, and an arm 21 Bucket 22 rotatably attached in the vertical direction or in the front and rear direction to the tip of the boom, a boom cylinder 20A having one end connected to the front of the swing body 3 and the other end connected to the middle of the boom 20, Is connected to the middle part of the boom 20, and the other end is connected to the base end of the arm 21; the one end is connected to the base end of the arm 21; And a bucket cylinder 22A connected to the base end of the bucket 22 via the bucket link 22B.
  • the boom 20 pivots up and down by the expansion and contraction operation of the boom cylinder 20A.
  • the arm 21 pivots up and down or back and forth by the expansion and contraction operation of the arm cylinder 21A.
  • the bucket 22 pivots up and down or back and forth by the expansion and contraction operation of the bucket cylinder 22A.
  • the bucket 22 can be replaced with other working tools such as grapples, breakers, rippers, magnets and the like.
  • a boom IMU sensor 20 a for detecting the angular velocity and acceleration of the boom 20 is attached to the boom 20.
  • An arm IMU sensor 21 a for detecting an angular velocity and an acceleration of the arm 21 is attached to the arm 21.
  • a bucket IMU sensor 22a for detecting the angular velocity and the acceleration of the bucket 22 is attached to the bucket link 22B.
  • a swing body IMU sensor 30 a for detecting the angular velocity and the acceleration of the swing body 3 is mounted in the cab 32.
  • the swing body 3 includes a main frame 31, a cab 32, an operation input device 33, a drive control device 34, an engine 35, a drive device 36, and a counterweight 37.
  • the cab 32, the drive control device 34, the engine 35, the drive device 36 and the counterweight 37 are disposed on the main frame 31.
  • the operation input device 33 is provided in the driver's cab 32.
  • the operation input amount sensors 33a, 33b and 33c detect a plurality of operation levers operated by the operator and the amount of inclination (lever operation amount) of them. 4).
  • the drive control device 34 controls operations of actuators including the boom cylinder 20A, the arm cylinder 21A, and the bucket cylinder 22A based on an instruction from the operation input device 33.
  • the engine 35 generates power necessary for the operation of the hydraulic shovel 1.
  • the drive device 36 drives an actuator including the boom cylinder 20A, the arm cylinder 21A and the bucket cylinder 22A based on the drive command value determined by the drive control device 34.
  • the counterweight 37 is disposed at the rear of the hydraulic shovel 1 in order to balance the weight necessary for operating the hydraulic shovel 1.
  • the traveling body 4 includes a track frame 40, a front idler 41, lower rollers 42a, 42b and 42c, a sprocket 43, an upper roller 44, and a crawler belt 45.
  • the front idler 41, the lower rollers 42a, 42b and 42c, the sprocket 43 and the upper roller 44 are rotatably mounted on the track frame 40, and the crawler belt 45 can orbit around the track frame 40 via these members.
  • the number of lower rollers 42a, 42b and 42c and the number of upper rollers 44 increase and decrease according to the size of the traveling body 4, and when the size of the traveling body 4 is small, the lower rollers 42a, 42b and 42c and the upper rollers 44 are not installed In some cases.
  • the traveling body 4 is not limited to one provided with the crawler belt 45, and may be provided with traveling wheels and legs.
  • the operator can cause the hydraulic shovel 1 to travel via the crawler belt 45 by adjusting the rotation speed of the sprocket 43 by operating the operation lever of the operation input device 33.
  • FIG. 2 is a diagram showing a calculation model for obtaining the center of gravity position of the hydraulic shovel 1.
  • a concentration mass point model in which mass is concentrated at the center of gravity of each component is used as a calculation model for obtaining the center of gravity position of the hydraulic shovel 1 in consideration of the simplicity of mounting.
  • a point at which the turning central axis of the turning body 3 intersects the ground is the origin
  • the traveling direction of the traveling body 4 is the X direction
  • the normal direction of the ground is the Z direction
  • the position of the center of gravity is considered on the XZ plane.
  • the hydraulic shovel center of gravity 1G is at a position where the boom center of gravity 20G, the arm center of gravity 21G, the bucket center of gravity 22G, the rotating body center of gravity 3G, and the traveling body center of gravity 4G are combined.
  • the boom gravity center 20G is at a position obtained by combining the gravity centers of the boom 20, the boom cylinder 20A, and the boom IMU sensor 20a.
  • the arm gravity center 21G is at a position where the respective gravity centers of the arm 21, the arm cylinder 21A, and the arm IMU sensor 21a are combined.
  • the bucket gravity center 22G is at a position where the respective gravity centers of the bucket 22, the bucket link 22B, the arm link 22C, the bucket cylinder 22A, and the bucket IMU sensor 22a are combined.
  • the slewing body gravity center 3G is at a position where the respective gravity centers of the slewing body IMU sensor 30a, the main frame 31, the cab 32, the operation input device 33, the drive control device 34, the engine 35, the driving device 36 and the counterweight 37 are synthesized. is there.
  • the traveling body gravity center 4G is at a position where the respective gravity centers of the front idler 41, the lower rollers 42a, 42b, 42c, the sprocket 43 and the upper roller 44 are synthesized.
  • the setting method of a mass point is not limited to this, You may add or aggregate the site
  • the mass of soil may be added to the mass of the bucket 22.
  • the overturning branch line is defined in JIS A 8403-1: 1996, earthworking machine-hydraulic shovel-Part 1: Terminology and specification items as "a line connecting points serving as a fulcrum of overturning".
  • the falling branch line of the hydraulic shovel 1 will be described with reference to FIG.
  • the support polygon of the hydraulic shovel 1 is shown by a broken line.
  • the support polygon of the hydraulic shovel 1 is a quadrangle in which the contact point between the crawler belt 45 and the ground is connected so as not to be concave.
  • crawler belts 45 is not in contact with the ground.
  • the side of the support polygon (square) located on the front side of the traveling body 4 is at the position of the lower roller 42a disposed on the foremost side of the crawler belt 45 and the support polygon located on the rear side of the traveling body 4
  • the side of the quadrilateral is at the position of the lower roller 42 c disposed at the rearmost position of the crawler belt 45.
  • the falling branch line is a side where a straight line extending toward the dynamic gravity center position 1Gd from the static gravity center position 1Gs of the hydraulic shovel 1 as a base point intersects among the four sides constituting the support polygon (square).
  • the side of the support polygon (square) located in front of the traveling body 4 is It becomes a fall support line.
  • the static center of gravity position 1Gs changes in accordance with the attitude of the work front 2 and the angle (turning angle) of the swing body 3.
  • the dynamic gravity center position 1 Gd changes in accordance with the inertial force generated when the work front 2 or the swing body 3 operates, in addition to the posture of the work front 2 and the angle (swing angle) of the swing body 3.
  • the side of the support polygon (quadrilateral) located on the left or right side or the rear of the traveling body 4 serves as the fall supporting line.
  • overturning branch line distance The distance from the dynamic gravity center position 1Gd of the hydraulic shovel 1 to the overturning branch line (hereinafter referred to as overturning branch line distance) is an index value indicating the stability of the hydraulic shovel 1 according to the concept of the ZMP stability discriminant described later.
  • overturning branch line distance As the distance from the dynamic gravity center position 1 Gd to the fall branch line (fall branch branch line distance) decreases, the possibility of the vehicle body tilting increases.
  • a circle centered on the rotation center of revolving unit 3 may be used as the falling branch line in consideration of ease of mounting.
  • the revolving unit IMU sensor 30a (shown in FIG. 1) is composed of an angular velocity sensor 30b and an acceleration sensor 30c (shown in FIG. 4).
  • the boom IMU sensor 20a (shown in FIG. 1) includes an angular velocity sensor 20b and an acceleration sensor 20c (shown in FIG. 4).
  • the arm IMU sensor 21a (shown in FIG. 1) includes an angular velocity sensor 21b and an acceleration sensor 21c (shown in FIG. 4).
  • the bucket IMU sensor 22a (shown in FIG. 1) includes an angular velocity sensor 22b and an acceleration sensor 22c (shown in FIG. 4).
  • the ground angles and angular velocities of the swing body 3, the boom 20, the arm 21 and the bucket 22 can be determined by the angular velocity sensors 30b, 20b, 21b, 22b and the acceleration sensors 30c, 20c, 21c, 22c. That is, the posture of the hydraulic shovel 1 can be acquired. Further, the positions and accelerations of the swing body gravity center 3G, the boom gravity center 20G, the arm gravity center 21G, and the bucket gravity center 22G can be obtained in three dimensions from the respective mechanical link relationships. An IMU sensor may be attached to the traveling body 4 to obtain the position and acceleration of the traveling body gravity center 4G in three dimensions.
  • the traveling body 4 pivots only on the XY plane with respect to the pivoting body 3, in consideration of the ease of mounting, the position and acceleration in the X direction and Z direction are mechanical constraints and pivoting Determined from the body IMU sensor 30a.
  • the state quantity detection means shown here is an example, and as means for detecting the attitude and acceleration of the hydraulic shovel 1, one that directly measures the relative angle of each part of the work front 2, a boom cylinder 20A, an arm cylinder
  • the stroke and the speed of the bucket cylinder 22A may be detected by the stroke 21A and may be converted into the attitude and the acceleration of the hydraulic shovel 1.
  • the operation input device 33 detects the tilt amount of the operation lever corresponding to the boom 20 as an operation command value corresponding to the operation speed of the boom cylinder 20A (shown in FIG. 4), and an arm An operation input amount sensor 33b for an arm (shown in FIG. 4) for detecting the amount of tilting of the operation lever corresponding to 21 as an operation command value corresponding to the operation speed of the arm cylinder 21A
  • a bucket operation input amount sensor 33c (shown in FIG. 4) is provided to detect the amount of displacement as an operation command value corresponding to the operation speed of the bucket cylinder 22A.
  • FIG. 4 is a functional block diagram of the drive control device 34 shown in FIG.
  • the drive control device 34 is composed of an operation block 34A and a control block 34B.
  • the calculation block 34A includes a mass point position / acceleration calculation unit 34a, a post-deceleration cylinder stroke prediction unit 34b, a stroke end distance calculation / evaluation unit 34c, a dynamic gravity center position prediction unit 34d, and an overturning branch distance calculation / evaluation unit And 34e.
  • the control block 34B includes an allowable speed changer 34f and a drive command value determiner 34g.
  • the mass point position / acceleration calculation unit 34a calculates the acceleration at each mass point and position of each mass point of the hydraulic shovel 1 based on the information from the angular velocity sensors 20b, 21b, 22b and 30b and the acceleration sensors 20c, 21c, 22c and 30c. calculate.
  • the angular velocity sensor 20b and the acceleration sensor 20c constitute a boom IMU sensor 20a (shown in FIG. 1).
  • the angular velocity sensor 21b and the acceleration sensor 21c constitute an arm IMU sensor 21a (shown in FIG. 1).
  • the angular velocity sensor 22b and the acceleration sensor 22c constitute a bucket IMU sensor 22a (shown in FIG. 1).
  • the angular velocity sensor 30 b and the acceleration sensor 30 c constitute an IMU sensor 30 a (shown in FIG. 1) for a revolving unit.
  • the cylinder stroke prediction unit 34b calculates the cylinder stroke (deceleration and stop cylinder stroke) after the cylinder is decelerated and stopped based on the information from the mass point position / acceleration calculation unit 34a and the cylinder allowable speed set in advance. Predict. The method of calculating the cylinder stroke after deceleration and stop will be described later.
  • the stroke end distance calculation / evaluation unit 34c calculates the distance (stroke end distance) from the post-deceleration-stopped cylinder stroke to the stroke end (stroke end distance) predicted by the cylinder stroke prediction unit 34b after the deceleration and stop, and based on the stroke end distance Determine if there is a possibility of collision with the stroke end. The method of determining the presence or absence of the stroke end collision possibility will be described later.
  • the dynamic center of gravity position prediction unit 34 d starts the deceleration operation of the cylinder and stops until the cylinder stops.
  • the dynamic center of gravity position of the hydraulic shovel 1 is predicted. The calculation method of the dynamic gravity center position will be described later.
  • the fall branch line distance calculation / evaluation unit 34e calculates the distance (fall branch line distance) from the dynamic center of gravity position predicted by the dynamic center of gravity position prediction unit 34d to the fall branch line of the hydraulic shovel 1, and based on this fall branch line distance.
  • the stable state of the hydraulic shovel 1 is determined. The method of determining the stable state of the hydraulic shovel 1 will be described later.
  • the allowable speed changing unit 34 f changes the cylinder allowable speed in the vicinity of the stroke end based on the falling branch distance calculated by the overturn branch distance calculation / evaluation unit 34 e. The method of changing the cylinder allowable speed will be described later.
  • Drive command value determination unit 34g is a drive for controlling driving of the cylinder based on the cylinder allowable speed changed by allowable speed change unit 34f and the operation command values from operation input amount sensors 33a, 33b, and 33c. The command value is determined and output to the drive unit 36. The method of determining the drive command value will be described later.
  • the cylinder stroke after deceleration and stop is obtained by adding the stroke amount expanded and contracted from the start of the deceleration operation of the cylinder to the deceleration and stop of the cylinder to the cylinder stroke when the deceleration operation of the cylinder is started.
  • FIG. 5 shows the time-dependent change of the cylinder speed when the cylinder decelerates and stops.
  • the time when the deceleration operation of the cylinder is started is the reference time t i
  • the time at the speed change start point where the cylinder starts decelerating is the speed change time t s
  • the time when the cylinder speed is 0 is the deceleration stop time t e , cylinder to a time to reach the peak arrival point overshoots the peak arrival time t p.
  • the cubic function model is the cylinder speed change from the start of cylinder deceleration operation to the stop of the cylinder, approximated by a cubic function with the speed change start point and peak arrival point as extrema.
  • speed cylinder speed during deceleration operation starts at V s, peak arrival time t p the peak velocity in the velocity V p, overshoot rate ratio of the peak velocity V p for the speed change starting speed V s alpha, the reference time t i Time to change start time ts delay time T L , time from speed change start time t s to deceleration stop time t e Deceleration stop time T G , time from speed change start time t s to peak arrival time t p Is defined as a peak arrival time T C.
  • the overshoot rate ⁇ , the delay time T L and the peak arrival time T C are identified for each of the cylinders 20A and 21A.
  • the cylinder stroke after deceleration and stop is the stroke amount L L that has expanded and contracted from the reference time t i to the speed change time t s (delay time T L ) when the cylinder decelerating operation is started (time t i ) It can be obtained by adding a stroke amount L G that is expanded and contracted from the speed change time t s to the deceleration stop time t e (deceleration stop time T G ).
  • the stroke amount L L expanded and contracted to the delay time T L assumes the cylinder speed to be constant, and the reference time It is obtained by multiplying the cylinder speed V s of t i by the delay time T L.
  • Stroke L G which is stretchable in the speed change time T s to the deceleration stop time t e is determined by integrating the cubic function from the speed change time T s to the deceleration stop time t e.
  • the speed change of the cylinder is approximated by a linear function connecting the speed change start point and the peak arrival point, and the speed change time is obtained by integrating this linear function.
  • the stroke amount L G may be obtained which is expanded and contracted from t s to the deceleration stop time t e (deceleration stop time T G ).
  • the possibility of collision with the stroke end is determined based on the distance from the cylinder stroke to the stroke end (stroke end distance) after deceleration and stop. If the stroke end distance is smaller than the predetermined threshold (second threshold), it is determined that the cylinder may collide with the stroke end, and if the stroke end distance is equal to or greater than the predetermined threshold (second threshold), the stroke Determine that there is no possibility of collision at the end.
  • the cylinder stroke after deceleration and stop is calculated with high accuracy, so a small value can be set as the predetermined threshold (second threshold).
  • a predetermined threshold (second threshold) according to the difference between the cylinder stroke after deceleration and stop and the cylinder stroke when actually decelerating and stop, the determination accuracy of the possibility of collision at the stroke end is improved. It becomes possible.
  • the dynamic gravity center position 1Gd of the hydraulic shovel 1 is a gravity center position in which an inertial force generated when the work front 2 or the swing body 3 operates is added to the static gravity center position 1Gs of the hydraulic shovel 1, and ZMP shown below It is obtained using an equation.
  • r ZMP ... ZMP position vector (dynamic center of gravity position vector) m i ... i-th mass point mass r i ... i-th mass point position vector r i "... acceleration vector added to the i-th mass point (including gravitational acceleration) M j ... j th external force moment S k ... k th external force application point position vector F k ... k th external force vector
  • the vector of equation (1) is a three-dimensional image composed of an X component, a Y component, and a Z component It is a vector.
  • the portion (external force moment M j and external force vector F k ) related to the external force of Equation (1) is zero. Therefore, if the mass m i of the mass point, the position vector r i and the acceleration vector r i ′ ′ are known, the dynamic gravity center position can be obtained.
  • the acceleration until the cylinder is decelerated and stopped is obtained using the cubic function model shown in FIG. Since the cubic function shown in FIG. 5 has the velocity change start point and the peak arrival point at the extrema, the acceleration has the maximum absolute value in the middle. Since the speed change time t s and the peak arrival time t p are known, the slope of the cubic function at an intermediate time is the acceleration. The acceleration is obtained by differentiating the cubic function at the intermediate time mentioned above.
  • the speed change when the cylinder is actually decelerated and stopped at the cylinder allowable speed set in advance is identified using a cubic function that approximates. If the difference between the operating speed of the cylinder corresponding to the drive command value and the actual cylinder operating speed is small, the acceleration may be identified from the operating speed of the cylinder corresponding to the drive command value.
  • the fall branch line distance is a distance from the dynamic gravity center position 1 Gd to the fall branch line, and is obtained by subtracting the X component of the dynamic gravity center position from the X component of the distance fall branch line.
  • the stable state of the hydraulic shovel 1 can be determined based on the fall branch line distance. According to the ZMP stability discriminant, it is determined that the subject is in an unstable state when the fall branch distance is less than or equal to zero.
  • the hydraulic shovel 1 since the hydraulic shovel 1 is used for excavating and loading earth and sand, it may be used not only on a strong ground but also on a soft ground where the crawler belt 45 sinks to the ground. Therefore, depending on the ground on which the hydraulic shovel 1 is installed, the vehicle body may be inclined due to the crawler belt 45 sinking into the ground even if the fall branch line distance does not become 0 or less. Therefore, in the present embodiment, if the falling branch distance is equal to or more than a predetermined threshold value (second threshold value), it is determined that there is no possibility that the vehicle body is tilted.
  • a predetermined threshold value second threshold value
  • the predetermined threshold value may be determined experimentally according to the hardness of the ground on which the hydraulic shovel 1 is used and the size of the allowable inclination. Further, the predetermined threshold value (second threshold value) may not be a fixed value, but may be a variable value according to the hardness of the ground or the magnitude of the allowable inclination.
  • the cylinder allowable speed changes based on the fall branch distance.
  • the minimum distance from the trajectory of the dynamic gravity center position from the start of the deceleration operation of the cylinder to the stop of the cylinder to the overturning branch line is a predetermined threshold (second threshold) or more.
  • the cylinder allowable speed is set to decrease the deceleration of the cylinder. change.
  • FIGS. 7 to 9 show the relationship between the cylinder stroke and the allowable cylinder speed near the stroke end, respectively.
  • the deceleration of the cylinder is increased by changing the allowable cylinder speed so that the cylinder stroke S1 for starting deceleration becomes the cylinder stroke S2 near the stroke end.
  • the impact at the time of a stroke end collision can be enlarged.
  • the cylinder allowable speed at the stroke end is 0 in the example shown in FIG. 7, the cylinder allowable speed at the stroke end may not be 0 as shown in FIG. 8.
  • the cylinder allowable speed is set to be constant at the maximum speed. Thereby, the impact at the time of the stroke end collision can be maximized.
  • FIG. 10 is a view showing the time-dependent change of the cylinder speed and the cylinder stroke when the cylinder stops at the stroke end.
  • the lever operation amount is corrected before reaching the stroke end (time t s ), and as indicated by the upper broken line, as the stroke end is approached.
  • the cylinder speed gradually decreases. As a result, the cylinder stops smoothly, and the impact at the stroke end collision is alleviated.
  • the drive command value is determined based on the lever operation amount and the possibility of the cylinder colliding with the stroke end. When there is no possibility that the cylinder collides with the stroke end, a value corresponding to the lever operation amount is used as a drive command value. On the other hand, when there is a possibility that the cylinder may collide with the stroke end, the cylinder operating speed corresponding to the lever operation amount is compared with the cylinder allowable speed, and the cylinder operation speed corresponding to the lever operation amount is less than the allowable speed. The drive command value is set to a value corresponding to the lever operation amount. On the other hand, when the cylinder operation speed corresponding to the lever operation amount is larger than the allowable speed, a value corresponding to the cylinder allowable speed is set as the drive command value.
  • FIG. 11 is a flow chart showing processing of the drive control device 34. As shown in FIG. The flow is executed for each of the boom cylinder 20A and the arm cylinder 21A. Hereinafter, each step will be described in order.
  • step S1 the post-deceleration-and-stop cylinder stroke prediction unit 34b predicts the post-deceleration-and-stop cylinder stroke based on the information from the mass point position / acceleration calculation unit 34a.
  • step S2 the stroke end distance calculation / evaluation unit 34c calculates the distance (stroke end distance) from the post-deceleration-stopped cylinder stroke to the stroke end predicted in step S1.
  • step S3 the stroke end distance calculation / evaluation unit 34c determines whether the stroke end distance calculated in step S2 is smaller than a predetermined threshold (second threshold). If it is determined that the stroke end distance is greater than or equal to the predetermined threshold (second threshold) (No), the process proceeds to step S11. If it is determined that the stroke end distance is smaller (Yes) than the predetermined threshold (second threshold), the process proceeds to step S4.
  • second threshold a predetermined threshold
  • step S4 the dynamic gravity center position prediction unit 34d predicts the trajectory of the dynamic gravity center position from when the deceleration operation of the cylinder is started to when the cylinder stops.
  • step S5 the overturn branch line distance calculation / evaluation unit 34e calculates the minimum distance (minimum overturn branch line distance) from the trajectory of the dynamic center of gravity predicted in step S4 to the overturn branch line of the hydraulic shovel 1.
  • step S6 the overturn branch line distance calculation / evaluation unit 34e determines whether the minimum overturn branch line distance calculated in step S5 is smaller than a predetermined threshold value (first threshold value). If it is determined that the minimum overturning branch line distance is equal to or greater than the predetermined threshold (first threshold) (No), the process proceeds to step S7. If it is determined that the minimum overturning branch line distance is smaller (Yes) than a predetermined threshold (first threshold), the process proceeds to step S8.
  • first threshold value a predetermined threshold value
  • step S7 the cylinder allowable speed is changed so as to increase the deceleration of the cylinder, and the process returns to step S4.
  • step S8 the largest cylinder allowable speed among the cylinder allowable speeds satisfying the condition that the minimum overturning branch line distance calculated in step S5 satisfies the predetermined threshold value (first threshold value) of step S6 is the drive command value to drive device 36 Set to the cylinder allowable speed to determine.
  • step S9 it is determined whether the cylinder operation speed corresponding to the lever operation amount is larger than the cylinder allowable speed. If it is determined that the speed is higher than the cylinder allowable speed (Yes), the process proceeds to step S10. If it is determined that the speed is equal to or less than the cylinder allowable speed (No), the process proceeds to step S11.
  • step S10 a drive command value corresponding to the cylinder allowable speed is set as a drive command value to the drive device 36, and the process returns to step S1.
  • step S11 a drive command value corresponding to the lever operation amount is set as a drive command value to the drive device 36, and the process returns to step S1.
  • Running body (vehicle body), 4G: Running body center of gravity, 20: Boom, 20a: IMU sensor for boom, 20b: Angular velocity sensor, 20c: Acceleration sensor, 20A: Boom cylinder, 20G: Boom center of gravity, 21: Arm, 21a: Arm IMU sensor for 21b: angular velocity sensor, 21c: acceleration sensor, 21A: arm cylinder, 21G: arm center of gravity, 22: bucket, 22a: IMU sensor for bucket, 22b: angular velocity sensor, 22c: acceleration sensor, 22A: bucket cylinder, 22G ... bucket center of gravity, 22B ... bucket link, 22C ... arm link, 30a ...
  • IMU for revolving body Sensor 30b: Angular velocity sensor, 30c: Acceleration sensor, 31: Main frame, 32: Operating room, 33: Operation input device, 33a: Operation input amount sensor for boom, 33b: Operation input amount sensor for arm, 33c: For bucket Operation input amount sensor 34: Drive control device 34a: Mass point position / acceleration operation unit 34b: Cylinder stroke prediction unit after deceleration and stoppage 34c: Stroke end distance operation / evaluation unit 34d: Dynamic gravity center position prediction unit, 34e ... Falling branch line distance calculation / evaluation unit 34f ... Permissible speed change unit 34g ... Drive command value determination unit 34A ... Calculation block 34B ... Control block 35: Engine 36: Drive device 37: Counter weight 40 ... Track frame 41: front idler 42a, 42b, 42c lower roller 43: sprocket 4 ... upper roller, 45 ... track.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

動的安定性を損なわない限度において、作業フロントを駆動するシリンダのストロークエンド衝突時の衝撃を利用した作業を行うことができる作業機械を提供する。 駆動制御装置34は、シリンダ20A,21Aがストロークエンドに衝突する可能性の有無を判定するストロークエンド距離演算・評価部34cと、前記ストロークエンド距離演算・評価部が前記シリンダがストロークエンドに衝突する可能性があると判定した場合に、前記シリンダの減速操作を開始してから前記シリンダが停止するまでの油圧ショベル1の動的重心位置の軌道を予測する動的重心位置予測部34dと、前記動的重心位置予測部が予測した動的重心位置の軌道から前記油圧ショベルの転倒支線までの最小距離に応じて前記シリンダの許容速度を変更する許容速度変更部34fとを有する。

Description

作業機械
 本発明は、構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械に関する。
 構造物解体工事、廃棄物処理、スクラップ処理、道路工事、建設工事、土木工事等に使用される作業機械として、動力系により走行する走行体の上部に旋回体を旋回可能に取り付けると共に、旋回体に多関節型の作業フロントを上下方向に回動可能に取り付け、作業フロントを構成する各フロント部材をシリンダにて駆動するものが知られている。その一例にブーム、アームおよびバケットから構成される作業フロントを有する油圧ショベルがある。ブーム、アームおよびバケットは、それぞれブームシリンダ、アームシリンダおよびバケットシリンダによって駆動される。
 油圧ショベルを代表とするこの種の作業機械では、作業フロントを駆動するシリンダがストロークエンドに衝突するとき、その作用によって作業機械に衝撃が発生し、衝撃の大きさによっては作業機械がバランスを崩して傾く、あるいは最悪の場合、転倒することがある。そこで、シリンダがストロークエンドに衝突するときに生じる衝撃を緩和して作業機械の傾きや転倒を緩和する目的で、ストロークエンド付近の減速制御を行う駆動制御装置が知られている(例えば、特許文献1)。
 特許文献1には、操作手段からの操作信号により油圧シリンダを伸縮動作し作業機を操作するに際して、前記油圧シリンダがストロークエンド付近に達すると油圧シリンダを減速制御し、ストロークエンドでの衝撃を緩和する油圧シリンダの駆動制御装置において、前記操作手段からの操作信号を検出する操作信号検出手段と、前記油圧シリンダがストロークエンド付近に達し前記減速制御をするとき、前記操作信号が一旦予め定めた値より小さくなると、油圧シリンダがストロークエンド付近にある間、前記油圧シリンダの減速制御を解除する減速制御解除手段とを備えることを特徴とする油圧シリンダの駆動制御装置(請求項1)が記載されている。
 この油圧シリンダの駆動制御装置によれば、油圧シリンダがストロークエンドに達する際の衝撃を緩和する機能を維持しつつ、油圧シリンダがストロークエンド付近にあるときでも容易に作業が行え、ストロークエンド付近での作業性、操作性が向上する。
特開2000-130402号公報
 油圧ショベルでは、バケットやアームに付着した泥土を落とすため、バケットシリンダやアームシリンダをストロークエンドに衝突させる操作が行われることがある。また、狭い場所での作業時に、バケットに入った土砂を車体の近傍に飛ばして寄せるため、アームシリンダをアームクラウド側のストロークエンドに衝突させてアームを急停止させる操作が行われることがある。さらに、広い場所での作業時に、バケットに入った土砂を作業フロントの可動範囲よりも遠方に飛ばすため、アームシリンダをアームダンプ側のストロークエンドに衝突させてアームを急停止させる操作が行われることがある。
 しかしながら、特許文献1に記載の油圧シリンダの駆動制御装置では、油圧シリンダがストロークエンド付近に達し、操作信号が一旦予め定めた値より小さくなると、油圧シリンダがストロークエンド付近にある間しか、油圧シリンダの減速制御が解除されない。そのため、油圧シリンダの減速制御が解除された状態で操作手段を油圧シリンダのストロークエンド方向に動作するよう操作しても、油圧シリンダのストロークエンドまでの距離が非常に短く、十分にシリンダ速度が上がらないうちにストロークエンドに達するため、油圧シリンダの減速制御を行わなくても大きな衝撃は生じない(段落[0010])。従って、油圧シリンダの減速制御を解除しても、ストロークエンド衝突時の衝撃を利用した作業を行うことができない。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、動的安定性を損なわない限度において、作業フロントを駆動するシリンダのストロークエンド衝突時の衝撃を利用した作業を行うことができる作業機械を提供することにある。
 上記目的を達成するために、本発明は、車体と、前記車体の前部に上下方向に回動可能に取り付けられた作業フロントと、前記作業フロントを駆動する少なくとも1つのシリンダと、前記シリンダの動作を指示するための操作入力装置と、前記操作入力装置からの指示に応じて前記シリンダの駆動を制御する駆動制御装置とを備え、前記駆動制御装置は、前記シリンダがストロークエンドに近づいたときに、前記操作入力装置によって指示された動作速度を予め設定した許容速度以下に補正して前記シリンダを減速させる作業機械において、前記駆動制御装置は、前記シリンダがストロークエンドに衝突する可能性の有無を判定するストロークエンド距離演算・評価部と、前記ストロークエンド距離演算・評価部が前記シリンダがストロークエンドに衝突する可能性があると判定した場合に、前記シリンダの減速操作を開始してから前記シリンダが停止するまでの前記作業機械の動的重心位置の軌道を予測する動的重心位置予測部と、前記動的重心位置予測部が予測した動的重心位置の軌道から前記作業機械の転倒支線までの最小距離に応じて前記許容速度を変更する許容速度変更部とを有するものとする。
 以上のように構成した本発明によれば、作業フロントを駆動するシリンダがストロークエンドに衝突する可能性があるときに、シリンダの減速操作を開始してからシリンダが停止するまでの作業機械の動的重心位置の軌道を予測し、前記動的重心位置の軌道から作業機械の転倒支線までの最小距離に応じてシリンダの許容速度を変更することにより、作業機械の動的安定性を損なわない限度において、シリンダのストロークエンド衝突時に衝撃を発生させることができる。
 本発明によれば、作業機械の動的安定性を損なわない限度において、作業フロントを駆動するシリンダのストロークエンド衝突時の衝撃を利用した作業を行うことが可能となる。
本発明の実施形態に係る油圧ショベルの側面図である。 油圧ショベルの各構成部材の重心位置を示す図である。 油圧ショベルの静的重心位置、動的重心位置および転倒支線の位置関係を示す図である。 駆動制御装置の機能ブロック図である。 減速停止後シリンダストロークを求めるための計算モデルを示す図である。 減速停止後シリンダストロークを求めるための計算モデルを示す図である。 ストロークエンド付近のシリンダストロークとシリンダ許容速度との関係を示す図である。 ストロークエンド付近のシリンダストロークとシリンダ許容速度との関係を示す図である。 ストロークエンド付近のシリンダストロークとシリンダ許容速度との関係を示す図である。 ストロークエンド付近のシリンダ速度およびシリンダストロークの経時変化を示す図である。 駆動制御装置の処理を示すフロー図である。
 以下、本発明の実施形態に係る作業機械として油圧ショベルを例に挙げ、図面を参照して説明する。なお、各図中、同等の部材には同一の符号を付し、重複した説明は適宜省略する。
 <油圧ショベル>
 図1は、本実施形態に係る油圧ショベルの側面図である。
 図1に示すように、油圧ショベル1は、作業フロント2と、旋回体3および走行体4からなる車体とを備えている。
 作業フロント2は、旋回体3の前部に上下方向に回動可能に取り付けられたブーム20と、ブーム20の先端部に上下または前後方向に回動可能に取り付けられたアーム21と、アーム21の先端部に上下または前後方向に回動可能に取り付けられたバケット22と、一端が旋回体3の前部に連結され、他端がブーム20の中間部に連結されたブームシリンダ20Aと、一端がブーム20の中間部に連結され、他端がアーム21の基端部に連結されたアームシリンダ21Aと、一端がアーム21の基端部に連結され、他端がアームリンク22Cを介してアーム21の先端部に連結されるとともに、バケットリンク22Bを介してバケット22の基端部に連結されたバケットシリンダ22Aとを備えている。ブーム20は、ブームシリンダ20Aの伸縮動作によって上下方向に回動する。アーム21は、アームシリンダ21Aの伸縮動作によって上下または前後方向に回動する。バケット22は、バケットシリンダ22Aの伸縮動作によって上下または前後方向に回動する。なお、バケット22は、グラップル、ブレーカ、リッパ、マグネット等の他の作業具と交換可能である。
 ブーム20には、ブーム20の角速度と加速度を検出するブーム用IMUセンサ20aが取り付けられている。アーム21には、アーム21の角速度と加速度を検出するアーム用IMUセンサ21aが取り付けられている。バケットリンク22Bには、バケット22の角速度と加速度を検出するバケット用IMUセンサ22aが取り付けられている。運転室32内には、旋回体3の角速度と加速度を検出する旋回体用IMUセンサ30aが取り付けられている。
 旋回体3は、メインフレーム31と、運転室32と、操作入力装置33と、駆動制御装置34と、エンジン35と、駆動装置36と、カウンタウェイト37とを備えている。運転室32、駆動制御装置34、エンジン35、駆動装置36およびカウンタウェイト37は、メインフレーム31上に配置されている。
 操作入力装置33は、運転室32内に設けられており、オペレータによって傾倒操作される複数の操作レバーとそれらの傾倒量(レバー操作量)を検出する操作入力量センサ33a,33b,33c(図4に示す)とで構成されている。駆動制御装置34は、操作入力装置33からの指示に基づいて、ブームシリンダ20A、アームシリンダ21Aおよびバケットシリンダ22Aを含むアクチュエータの動作を制御する。エンジン35は、油圧ショベル1の運転に必要な動力を発生させる。駆動装置36は、駆動制御装置34が決定した駆動指令値に基づいて、ブームシリンダ20A、アームシリンダ21Aおよびバケットシリンダ22Aを含むアクチュエータを駆動する。カウンタウェイト37は、油圧ショベル1の運転時に必要な重量バランスをとるために、油圧ショベル1の後方に配置されている。
 走行体4は、トラックフレーム40と、フロントアイドラ41と、下ローラ42a,42b,42cと、スプロケット43と、上ローラ44と、履帯45とを備えている。フロントアイドラ41、下ローラ42a,42b,42c、スプロケット43および上ローラ44は、それぞれトラックフレーム40に回動可能に設置されており、履帯45はこれら部材を介してトラックフレーム40の周囲を周回できるように取り付けられている。なお、下ローラ42a,42b,42cおよび上ローラ44の数は走行体4の規模に応じて増減し、走行体4の規模が小さい場合は下ローラ42a,42b,42cおよび上ローラ44が設置されない場合もある。また、走行体4は、履帯45を備えたものに限定されず、走行輪や脚を備えたものであってもよい。オペレータは、操作入力装置33の操作レバーを操作してスプロケット43の回転速度を調整することにより、履帯45を介して油圧ショベル1を走行させることができる。
 <重心位置>
 図2は、油圧ショベル1の重心位置を求めるための計算モデルを示す図である。
 図2に示すように、本実施形態では実装の簡易性を考慮し、油圧ショベル1の重心位置を求めるための計算モデルとして、各構成部材の重心に質量が集中する集中質点モデルを使用する。図2において、旋回体3の旋回中心軸が地面と交わる点を原点とし、走行体4の進行方向をX方向とし、地面の法線方向をZ方向とし、X方向およびY方向と直交する方向をY方向とする。また、重心位置は、XZ平面上で考えるものとする。
 油圧ショベル重心1Gは、ブーム重心20G、アーム重心21G、バケット重心22G、旋回体重心3Gおよび走行体重心4Gを合成した位置にある。
 ブーム重心20Gは、ブーム20、ブームシリンダ20Aおよびブーム用IMUセンサ20aのそれぞれの重心を合成した位置にある。
 アーム重心21Gは、アーム21、アームシリンダ21Aおよびアーム用IMUセンサ21aのそれぞれの重心を合成した位置にある。
 バケット重心22Gは、バケット22、バケットリンク22B、アームリンク22C、バケットシリンダ22Aおよびバケット用IMUセンサ22aのそれぞれの重心を合成した位置にある。
 旋回体重心3Gは、旋回体用IMUセンサ30a、メインフレーム31、運転室32、操作入力装置33、駆動制御装置34、エンジン35、駆動装置36およびカウンタウェイト37のそれぞれの重心を合成した位置にある。
 走行体重心4Gは、フロントアイドラ41、下ローラ42a,42b,42c、スプロケット43および上ローラ44のそれぞれの重心を合成した位置にある。
 なお、質点の設定方法はこれに限定されるものではなく、質点が集中している部位を追加または集約してもよい。例えば、土砂の質量をバケット22の質量に加えてもよい。
 <転倒支線>
 転倒支線は、JIS A 8403-1:1996,土工機械-油圧ショベル-第1部:用語及び仕様項目において、「転倒の支点となる点を結んだ線」と定義されている。油圧ショベル1の転倒支線について図3を用いて説明する。
 図3において、油圧ショベル1の支持多角形を破線で示す。油圧ショベル1の支持多角形は、履帯45と地面との接触点を凹にならないように結んだ四角形となる。本実施形態では、図1に示すように、フロントアイドラ41とスプロケット43が下ローラ42a,42b,42cに対してやや高い位置に取り付けられているため、フロントアイドラ41とスプロケット43の下では、履帯45が地面と接していない。そのため、走行体4の前側に位置する支持多角形(四角形)の辺は、履帯45の最も前方に配置された下ローラ42aの位置にあり、走行体4の後側に位置する支持多角形(四角形)の辺は、履帯45の最も後方に配置された下ローラ42cの位置にある。
 転倒支線は、支持多角形(四角形)を構成する4つの辺のうち、油圧ショベル1の静的重心位置1Gsを基点として動的重心位置1Gdに向かって延ばした直線が交わる辺である。図3に示す例では、動的重心位置1Gdが静的重心位置1Gsから見て走行体4の前方に位置しているため、走行体4の前方に位置する支持多角形(四角形)の辺が転倒支線となる。静的重心位置1Gsは、作業フロント2の姿勢や旋回体3の角度(旋回角)に応じて変化する。動的重心位置1Gdは、作業フロント2の姿勢や旋回体3の角度(旋回角)に加えて、作業フロント2や旋回体3が動作する際に発生する慣性力に応じて変化する。静的重心位置1Gsと動的重心位置1Gdとの位置関係によっては、走行体4の左右方または後方に位置する支持多角形(四角形)の辺が転倒支線となる。
 後述するZMP安定判別規範の考え方では、油圧ショベル1の動的重心位置1Gdから転倒支線までの距離(以下、転倒支線距離)は、油圧ショベル1の安定性を示す指標値となる。動的重心位置1Gdから転倒支線までの距離(転倒支線距離)が小さくなるほど、車体が傾くおそれが高まる。
 なお、走行体4の中心から転倒支線までの距離が前後左右方向でほぼ同じであれば、実装の簡易性を考慮し、旋回体3の回動中心を中心とする円を転倒支線としてもよい。
 <状態量検出手段>
 旋回体用IMUセンサ30a(図1に示す)は、角速度センサ30bおよび加速度センサ30c(図4に示す)で構成されている。ブーム用IMUセンサ20a(図1に示す)は、角速度センサ20bおよび加速度センサ20c(図4に示す)で構成されている。アーム用IMUセンサ21a(図1に示す)は、角速度センサ21bおよび加速度センサ21c(図4に示す)で構成されている。バケット用IMUセンサ22a(図1に示す)は、角速度センサ22bおよび加速度センサ22c(図4に示す)で構成されている。
 角速度センサ30b,20b,21b,22bおよび加速度センサ30c,20c,21c,22cにより、旋回体3、ブーム20、アーム21およびバケット22のそれぞれの対地角度と角速度を求めることができる。すなわち、油圧ショベル1の姿勢を取得することができる。また、それぞれの機械的なリンク関係から、旋回体重心3G、ブーム重心20G、アーム重心21Gおよびバケット重心22Gの位置と加速度を3次元で求めることができる。なお、走行体4にもIMUセンサを取り付け、走行体重心4Gの位置と加速度を3次元で求めてもよい。
 本実施形態において走行体4は、旋回体3に対してXY平面上でしか回動しないため、実装の簡易性を考慮し、X方向およびZ方向の位置および加速度は、機械的な制約および旋回体用IMUセンサ30aから求める。
 なお、ここで示した状態量検出手段は一例であり、油圧ショベル1の姿勢および加速度を検出する手段としては、作業フロント2の各部の相対角度を直接計測するものや、ブームシリンダ20A、アームシリンダ21Aおよびバケットシリンダ22Aのストロークや速度を検出して、油圧ショベル1の姿勢や加速度に変換するものであってもよい。
 操作入力装置33は、ブーム20に対応した操作レバーの傾転量を、ブームシリンダ20Aの動作速度に相当する操作指令値として検出するブーム用操作入力量センサ33a(図4に示す)と、アーム21に対応した操作レバーの傾転量を、アームシリンダ21Aの動作速度に相当する操作指令値として検出するアーム用操作入力量センサ33b(図4に示す)と、バケット22に対応した操作レバーの傾転量を、バケットシリンダ22Aの動作速度に相当する操作指令値として検出するバケット用操作入力量センサ33c(図4に示す)とを備えている。これにより、オペレータが操作レバーの傾転量を調整することにより、シリンダ20A,21A,22Aの動作速度を変更することができる。
 <駆動制御装置>
 図4は、図1に示す駆動制御装置34の機能ブロック図である。
 図4に示すように、駆動制御装置34は、演算ブロック34Aと、制御ブロック34Bとで構成されている。演算ブロック34Aは、質点位置・加速度演算部34aと、減速停止後シリンダストローク予測部34bと、ストロークエンド距離演算・評価部34cと、動的重心位置予測部34dと、転倒支線距離演算・評価部34eとを備えている。制御ブロック34Bは、許容速度変更部34fと、駆動指令値決定部34gとを備えている。
 質点位置・加速度演算部34aは、角速度センサ20b、21b、22b、30bおよび加速度センサ20c,21c,22c,30cからの情報に基づいて、油圧ショベル1の各部質点の位置と質点位置での加速度を算出する。角速度センサ20bおよび加速度センサ20cは、ブーム用IMUセンサ20a(図1に示す)を構成している。角速度センサ21bおよび加速度センサ21cは、アーム用IMUセンサ21a(図1に示す)を構成している。角速度センサ22bおよび加速度センサ22cは、バケット用IMUセンサ22a(図1に示す)を構成している。角速度センサ30bおよび加速度センサ30cは、旋回体用IMUセンサ30a(図1に示す)を構成している。
 減速停止後シリンダストローク予測部34bは、質点位置・加速度演算部34aからの情報と、予め設定したシリンダ許容速度とに基づいて、シリンダが減速停止した後のシリンダストローク(減速停止後シリンダストローク)を予測する。減速停止後シリンダストロークの算出方法については後述する。
 ストロークエンド距離演算・評価部34cは、減速停止後シリンダストローク予測部34bが予測した減速停止後シリンダストロークからストロークエンドまでの距離(ストロークエンド距離)を算出し、このストロークエンド距離に基づいて、シリンダがストロークエンドに衝突する可能性の有無を判定する。ストロークエンド衝突可能性の有無を判定する方法については後述する。
 動的重心位置予測部34dは、ストロークエンド距離演算・評価部34cによってシリンダがストロークエンドに衝突する可能性があると予測された場合に、シリンダの減速操作を開始してからシリンダが停止するまでの油圧ショベル1の動的重心位置を予測する。動的重心位置の算出方法については後述する。
 転倒支線距離演算・評価部34eは、動的重心位置予測部34dが予測した動的重心位置から油圧ショベル1の転倒支線までの距離(転倒支線距離)を算出し、この転倒支線距離に基づいて油圧ショベル1の安定状態を判定する。油圧ショベル1の安定状態を判別する方法については後述する。
 許容速度変更部34fは、転倒支線距離演算・評価部34eが算出した転倒支線距離に基づいて、ストロークエンド付近におけるシリンダ許容速度を変更する。シリンダ許容速度の変更方法については後述する。
 駆動指令値決定部34gは、許容速度変更部34fによって変更されたシリンダ許容速度と、操作入力量センサ33a,33b,33cからの操作指令値とに基づいて、シリンダの駆動を制御するための駆動指令値を決定し、駆動装置36に出力する。駆動指令値の決定方法については後述する。
 <減速停止後シリンダストロークの算出方法>
 減速停止後シリンダストロークを算出する方法について説明する。当該方法は、減速停止後シリンダストローク予測部34bによって実行される。
 減速停止後シリンダストロークは、シリンダの減速操作を開始したときのシリンダストロークに、シリンダの減速操作を開始してからシリンダが減速停止するまでに伸縮したストローク量を加算することにより求められる。
 本実施形態では、減速停止後シリンダストロークを算出する方法の一例として、図5に示す3次関数モデルを用いた方法を説明する。図5は、シリンダが減速停止する際のシリンダ速度の経時変化を示している。
 図5において、シリンダの減速操作を開始した時刻を基準時刻t、シリンダが減速を開始する速度変化開始点における時刻を速度変化時刻t、シリンダ速度が0になる時刻を減速停止時刻t、シリンダがオーバシュートしてピーク到達点に達する時刻をピーク到達時刻tとする。
 3次関数モデルとは、シリンダの減速操作を開始してからシリンダが停止するまでのシリンダの速度変化を、速度変化開始点とピーク到達点を極値とする3次関数で近似したものであり、減速操作開始時のシリンダ速度をV、ピーク到達時刻tにおける速度をピーク速度V、速度変化開始速度Vに対するピーク速度Vの比率をオーバシュート率α、基準時刻tから速度変化開始時刻tsまでの時間を遅れ時間T、速度変化開始時刻tから減速停止時刻tまでの時間を減速停止時間T、速度変化開始時刻tからピーク到達時刻tまでの時間をピーク到達時間Tと定義する。オーバシュート率α、遅れ時間Tおよびピーク到達時間Tは、シリンダ20A,21Aごとに同定する。
 減速停止後シリンダストロークは、シリンダの減速操作を開始したとき(時刻t)のシリンダストロークに、基準時刻tから速度変化時刻tまで(遅れ時間T)に伸縮したストローク量Lと、速度変化時刻tから減速停止時刻tまで(減速停止時間T)に伸縮したストローク量Lとを加算することにより求められる。
 油圧ショベル1の応答性を示す遅れ時間Tは減速停止時間Tと比べて十分に短いため、遅れ時間Tに伸縮したストローク量Lは、シリンダ速度を一定と仮定して、基準時刻tのシリンダ速度Vと遅れ時間Tとを乗算することにより求められる。
 速度変化時刻Tから減速停止時刻tまでに伸縮したストローク量Lは、3次関数を速度変化時刻Tから減速停止時刻tまで積分することにより求められる。
 なお、実装の簡易性を考慮し、図6に示すように、シリンダの速度変化を速度変化開始点とピーク到達点とを結ぶ一次関数で近似し、この一次関数を積分することにより速度変化時刻tから減速停止時刻tまで(減速停止時間T)に伸縮したストローク量Lを求めてもよい。
 <ストロークエンド衝突可能性有無の判定方法>
 ストロークエンド衝突可能性の有無を判定する方法について説明する。当該方法は、ストロークエンド距離演算・評価部34cによって実行される。
 ストロークエンドに衝突する可能性の有無は、減速停止後シリンダストロークからストロークエンドまでの距離(ストロークエンド距離)に基づいて判定する。ストロークエンド距離が所定の閾値(第2閾値)より小さい場合は、シリンダがストロークエンドに衝突する可能性があると判定し、ストロークエンド距離が所定の閾値(第2閾値)以上の場合は、ストロークエンドに衝突する可能性がないと判定する。
 ここで、シリンダの製造誤差が小さくIMUセンサの検出精度が高い場合は、減速停止後シリンダストロークが高い精度で算出されるため、所定の閾値(第2閾値)として小さい値を設定することができる。また、減速停止後シリンダストロークと実際に減速停止させたときのシリンダストロークとの差分に応じて所定の閾値(第2閾値)を調整することにより、ストロークエンド衝突可能性有無の判定精度を向上させることが可能となる。
 <動的重心位置の算出方法>
 油圧ショベル1の動的重心位置を算出する方法について説明する。当該方法は、動的重心位置予測部34dによって実行される。
 油圧ショベル1の動的重心位置1Gdは、油圧ショベル1の静的重心位置1Gsに、作業フロント2や旋回体3が動作する際に発生する慣性力を加味した重心位置であり、以下に示すZMP方程式を用いて求められる。
Figure JPOXMLDOC01-appb-M000001
ここで、
ZMP…ZMP位置ベクトル(動的重心位置ベクトル)
…i番目の質点の質量
…i番目の質点の位置ベクトル
”…i番目の質点に加わる加速度ベクトル(重力加速度含む)
…j番目の外力モーメント
…k番目の外力作用点位置ベクトル
…k番目の外力ベクトル
 なお、式(1)のベクトルはX成分、Y成分、Z成分で構成される3次元ベクトルである。
 本実施形態では、外力は作用しないため、式(1)の外力に係る部分(外力モーメントMおよび外力ベクトルF)は0となる。よって、質点の質量m、位置ベクトルrおよび加速度ベクトルr”が分かれば、動的重心位置を求められる。
 本実施形態では、図5に示す3次関数モデルを用いて、シリンダが減速停止するまでの加速度を求める。図5に示す3次関数は、速度変化開始点とピーク到達点を極値にもつため、加速度はその中間で絶対値が最大になる。速度変化時刻tとピーク到達時刻tが分かっているため、その中間の時刻における3次関数の傾きが加速度となる。加速度は、3次関数を前述の中間の時刻において微分することによって求められる。
 本実施形態では、駆動指令値に相当するシリンダの動作速度と実際のシリンダ動作速度との差分が大きいことを想定し、予め設定したシリンダ許容速度でシリンダを実際に減速停止させた場合の速度変化を近似した3次関数を用いて加速度を同定している。なお、駆動指令値に相当するシリンダの動作速度と実際のシリンダ動作速度との差分が小さい場合は、駆動指令値に相当するシリンダの動作速度から加速度を同定してもよい。
 <安定状態の判別方法>
 油圧ショベル1の安定状態を判定する方法について説明する。当該方法は、転倒支線距離演算・評価部34eによって実行される。
 転倒支線距離は、動的重心位置1Gdから転倒支線までの距離であり、距離転倒支線のX成分から動的重心位置のX成分を減算することにより求められる。転倒支線距離の大小によって、油圧ショベル1の安定状態を判別することができる。ZMP安定判別規範によれば、この転倒支線距離が0以下になるときに、対象は不安定状態になると判別する。
 ところで、油圧ショベル1は土砂の掘削や積込に使用されるため、強固な地面上だけでなく履帯45が地面に沈み込むような軟弱な地盤において使用されることがある。そのため、転倒支線距離が0以下にならない場合でも、油圧ショベル1が設置される地盤によっては、履帯45が地面にめり込むことで車体が傾くことがある。そこで、本実施形態では、転倒支線距離が所定の閾値(第2閾値)以上であれば、車体が傾くおそれはないと判別する。
 ここで、所定の閾値(第2閾値)は、油圧ショベル1が使用される地盤の固さや、許容できる傾きの大きさに応じて実験的に決定すればよい。また、所定の閾値(第2閾値)を固定値とせずに、地盤の固さや許容できる傾きの大きさに応じた可変値としてもよい。
 <許容速度の変更方法>
 シリンダ許容速度を変更する方法について説明する。当該方法は、許容速度変更部34fによって実行される。
 シリンダ許容速度は、転倒支線距離に基づいて変更する。本実施形態では、シリンダの減速操作を開始してからシリンダが停止するまでの動的重心位置の軌道から転倒支線までの最小距離(最小転倒支線距離)が所定の閾値(第2閾値)以上である場合は、ストロークエンド衝突時の衝撃で車体が傾くおそれはないとみなし、シリンダの減速度が大きくなるようにシリンダ許容速度を変更する。一方、最小転倒支線距離が所定の閾値(第2閾値)よりも小さい場合は、ストロークエンド衝突時の衝撃で車体が傾くおそれがあるとみなし、シリンダの減速度が小さくなるようにシリンダ許容速度を変更する。
 シリンダ許容速度の変更方法の具体例を図7~図9を用いて説明する。図7~図9は、それぞれ、ストロークエンド付近におけるシリンダストロークとシリンダ許容速度との関係を示す図である。
 図7に示す例では、減速を開始するシリンダストロークS1がストロークエンド寄りのシリンダストロークS2となるようにシリンダ許容速度を変更することにより、シリンダの減速度を大きくしている。これにより、ストロークエンド衝突時の衝撃を大きくことができる。なお、図7に示す例では、ストロークエンドにおけるシリンダ許容速度を0にしているが、図8に示すように、ストロークエンドにおけるシリンダ許容速度を0にしなくてもよい。また、シリンダ速度を最大速度に維持したままシリンダをストロークエンドに衝突させた場合でも最小転倒支線距離が所定の閾値(第2閾値)以上となる場合は、図9に示すように、ストロークエンドまでシリンダ許容速度が最大速度で一定となるように設定される。これにより、ストロークエンド衝突時の衝撃を最大にすることができる。
 図10は、シリンダがストロークエンドで停止する際のシリンダ速度およびシリンダストロークの経時変化を示す図である。
 シリンダの減速度が小さくなるように許容速度が設定されている場合は、ストロークエンドに達する前(時刻t)からレバー操作量が補正され、上側の破線で示すように、ストロークエンドに近づくに従ってシリンダ速度が徐々に小さくなる。これにより、シリンダが滑らかに停止するため、ストロークエンド衝突時の衝撃が緩和される。
 一方、シリンダの減速度が大きくなるように許容速度が設定されている場合は、上側の実線で示すように、ストロークエンドに衝突するまでレバー操作量に相当するシリンダ速度が維持される。これにより、シリンダがストロークエンドで急停止するため、ストロークエンド衝突時に大きな衝撃が発生する。
 <駆動指令値決定方法>
 駆動装置36への駆動指令値を決定する方法について説明する。当該方法は、駆動指令値決定部34gによって実行される。
 駆動指令値は、レバー操作量と、シリンダがストロークエンドに衝突する可能性とに基づいて決定する。シリンダがストロークエンドに衝突する可能性がないときは、レバー操作量に相当する値を駆動指令値とする。一方、シリンダがストロークエンドに衝突する可能性があるときは、レバー操作量に相当するシリンダ動作速度とシリンダ許容速度とを比較し、レバー操作量に相当するシリンダ動作速度が許容速度以下のときは、レバー操作量に相当する値を駆動指令値する。一方、レバー操作量に相当するシリンダ動作速度が許容速度よりも大きいときは、シリンダ許容速度に相当する値を駆動指令値とする。
 <駆動制御手段>
 図11は、駆動制御装置34の処理を示すフロー図である。当該フローは、ブームシリンダ20Aとアームシリンダ21Aのそれぞれに対して実行される。以下、各ステップを順に説明する。
 ステップS1で、減速停止後シリンダストローク予測部34bは、質点位置・加速度演算部34aからの情報に基づいて、減速停止後シリンダストロークを予測する。
 ステップS2で、ストロークエンド距離演算・評価部34cは、ステップS1で予測した減速停止後シリンダストロークからストロークエンドまでの距離(ストロークエンド距離)を算出する。
 ステップS3で、ストロークエンド距離演算・評価部34cは、ステップS2で算出したストロークエンド距離が、所定の閾値(第2閾値)よりも小さいか否かを判定する。ストロークエンド距離が所定の閾値(第2閾値)以上である(No)と判定した場合は、ステップS11に進む。ストロークエンド距離が所定の閾値(第2閾値)よりも小さい(Yes)と判定した場合は、ステップS4に進む。
 ステップS4で、動的重心位置予測部34dは、シリンダの減速操作を開始してからシリンダが停止するまでの動的重心位置の軌道を予測する。
 ステップS5で、転倒支線距離演算・評価部34eは、ステップS4で予測した動的重心の軌道から油圧ショベル1の転倒支線までの最小距離(最小転倒支線距離)を算出する。
 ステップS6で、転倒支線距離演算・評価部34eは、ステップS5で算出した最小転倒支線距離が、所定の閾値(第1閾値)より小さいか否かを判定する。最小転倒支線距離が所定の閾値(第1閾値)以上である(No)と判定した場合は、ステップS7に進む。最小転倒支線距離が所定の閾値(第1閾値)よりも小さい(Yes)と判定した場合は、ステップS8に進む。
 ステップS7で、シリンダの減速度が大きくなるようにシリンダ許容速度を変更し、ステップS4に戻る。
 ステップS8で、ステップS5で算出した最小転倒支線距離がステップS6の所定の閾値(第1閾値)以上の条件を満たすシリンダ許容速度のうち最も大きいシリンダ許容速度を、駆動装置36への駆動指令値を決定するためのシリンダ許容速度に設定する。
 ステップS9で、レバー操作量に相当するシリンダ動作速度がシリンダ許容速度よりも大きいか否かを判定する。シリンダ許容速度よりも大きい(Yes)と判定した場合は、ステップS10に進む。シリンダ許容速度以下である(No)と判定した場合は、ステップS11に進む。
 ステップS10で、シリンダ許容速度に相当する駆動指令値を駆動装置36への駆動指令値とし、ステップS1に戻る。
 ステップS11で、レバー操作量に相当する駆動指令値を駆動装置36への駆動指令値とし、ステップS1に戻る。
 <効果>
 以上のように構成した油圧ショベル1によれば、作業フロント2を駆動するシリンダ20A,21Aがストロークエンドに衝突する可能性があるときに、シリンダ20A,21Aの減速操作を開始してからシリンダ20A,21が停止するまでの動的重心の軌道から転倒支線までの最小距離(最小転倒支線距離)が大きくなるほど、シリンダ20A,21Aの減速度が大きくなるようにシリンダ許容速度を設定することにより、油圧ショベル1の動的安定性を損なわない限度において、シリンダ20A,21Aのストロークエンド衝突時に衝撃を発生させることができる。これにより、油圧ショベル1の動的安定性を損なわない限度において、作業フロント2を駆動するシリンダ20A,21Aのストロークエンド衝突時の衝撃を利用した作業を行うことが可能となる。
 <その他>
 以上、本発明の実施形態について詳述したが、本発明は、上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態では、油圧ショベルを例に説明したが、本発明は、油圧ショベル以外の作業機械にも適用可能である。また、上記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1…油圧ショベル(作業機械)、1G…油圧ショベル重心、1Gs…静的重心位置、1Gd…動的重心位置、2…作業フロント、3…旋回体(車体)、3G…旋回体重心、4…走行体(車体)、4G…走行体重心、20…ブーム、20a…ブーム用IMUセンサ、20b…角速度センサ、20c…加速度センサ、20A…ブームシリンダ、20G…ブーム重心、21…アーム、21a…アーム用IMUセンサ、21b…角速度センサ、21c…加速度センサ、21A…アームシリンダ、21G…アーム重心、22…バケット、22a…バケット用IMUセンサ、22b…角速度センサ、22c…加速度センサ、22A…バケットシリンダ、22G…バケット重心、22B…バケットリンク、22C…アームリンク、30a…旋回体用IMUセンサ、30b…角速度センサ、30c…加速度センサ、31…メインフレーム、32…運転室、33…操作入力装置、33a…ブーム用操作入力量センサ、33b…アーム用操作入力量センサ、33c…バケット用操作入力量センサ、34…駆動制御装置、34a…質点位置・加速度演算部、34b…減速停止後シリンダストローク予測部、34c…ストロークエンド距離演算・評価部、34d…動的重心位置予測部、34e…転倒支線距離演算・評価部、34f…許容速度変更部、34g…駆動指令値決定部、34A…演算ブロック、34B…制御ブロック、35…エンジン、36…駆動装置、37…カウンタウェイト、40…トラックフレーム、41…フロントアイドラ、42a,42b,42c…下ローラ、43…スプロケット、44…上ローラ、45…履帯。

Claims (3)

  1.  車体と、
     前記車体の前部に上下方向に回動可能に取り付けられた作業フロントと、
     前記作業フロントを駆動する少なくとも1つのシリンダと、
     前記シリンダの動作を指示するための操作入力装置と、
     前記操作入力装置からの指示に応じて前記シリンダの駆動を制御する駆動制御装置とを備え、
     前記駆動制御装置は、前記シリンダがストロークエンドに近づいたときに、前記操作入力装置によって指示された動作速度を予め設定した許容速度以下に補正して前記シリンダを減速させる作業機械において、
     前記駆動制御装置は、
     前記シリンダがストロークエンドに衝突する可能性の有無を判定するストロークエンド距離演算・評価部と、
     前記ストロークエンド距離演算・評価部が前記シリンダがストロークエンドに衝突する可能性があると判定した場合に、前記シリンダの減速操作を開始してから前記シリンダが停止するまでの前記作業機械の動的重心位置の軌道を予測する動的重心位置予測部と、
     前記動的重心位置予測部が予測した動的重心位置の軌道から前記作業機械の転倒支線までの最小距離に応じて前記許容速度を変更する許容速度変更部と
     を有することを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記許容速度変更部は、前記最小距離が所定の第1閾値よりも大きいときに、前記シリンダの減速度が大きくなるように前記許容速度を変更する
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     前記駆動制御装置は、前記シリンダが減速停止した後のシリンダストロークを予測する減速停止後シリンダストローク予測部を更に有し、
     前記ストロークエンド距離演算・評価部は、前記減速停止後シリンダストローク予測部が予測したシリンダストロークからストロークエンドまでの距離が所定の第2閾値よりも小さいときに、前記シリンダがストロークエンドに衝突する可能性があると判定する
     ことを特徴とする作業機械。
PCT/JP2018/016494 2017-09-15 2018-04-23 作業機械 WO2019053936A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015947.6A CN110382787B (zh) 2017-09-15 2018-04-23 作业机械
US16/493,423 US11414836B2 (en) 2017-09-15 2018-04-23 Work machine
EP18857245.7A EP3683366A4 (en) 2017-09-15 2018-04-23 CONSTRUCTION MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017178365A JP6860458B2 (ja) 2017-09-15 2017-09-15 作業機械
JP2017-178365 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019053936A1 true WO2019053936A1 (ja) 2019-03-21

Family

ID=65723254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016494 WO2019053936A1 (ja) 2017-09-15 2018-04-23 作業機械

Country Status (5)

Country Link
US (1) US11414836B2 (ja)
EP (1) EP3683366A4 (ja)
JP (1) JP6860458B2 (ja)
CN (1) CN110382787B (ja)
WO (1) WO2019053936A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000019627A1 (it) 2020-08-07 2022-02-07 Inglass Spa “sistema per azionare un attuatore a fluido”
CN115234123A (zh) * 2022-07-04 2022-10-25 上海默控智能科技有限公司 一种新型的通风柜自动视窗位置的控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097022B2 (ja) * 2018-08-31 2022-07-07 コベルコ建機株式会社 建設機械
US11286648B2 (en) * 2019-04-26 2022-03-29 Cnh Industrial America Llc System and method for estimating implement load weights during automated boom movement
US11851844B2 (en) 2020-01-21 2023-12-26 Caterpillar Inc. Implement travel prediction for a work machine
JPWO2021241487A1 (ja) * 2020-05-25 2021-12-02
CN111879525A (zh) * 2020-07-30 2020-11-03 雷沃工程机械集团有限公司 一种量化挖掘机整车稳定性的测试评价系统及方法
US20220186469A1 (en) * 2020-12-14 2022-06-16 Cnh Industrial America Llc System and method for controlling implement operation of a work vehicle using a speed-based parameter
JP2023081170A (ja) 2021-11-30 2023-06-09 株式会社小松製作所 作業機械のためのシステム、方法、及び作業機械
CN115100837A (zh) * 2022-05-13 2022-09-23 北京三一智造科技有限公司 一种工程机械稳定性预警方法、系统及工程机械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941421A (ja) * 1995-08-03 1997-02-10 Mitsubishi Agricult Mach Co Ltd 油圧ショベル
JP2000130402A (ja) 1998-10-23 2000-05-12 Hitachi Constr Mach Co Ltd 油圧シリンダの駆動制御装置
JP2013113004A (ja) * 2011-11-29 2013-06-10 Caterpillar Sarl 作業機の干渉防止装置
JP2013204260A (ja) * 2012-03-27 2013-10-07 Mitsubishi Heavy Ind Ltd 車両の遠隔操作装置、車両及び車両の遠隔操作方法
WO2014013877A1 (ja) * 2012-07-20 2014-01-23 日立建機株式会社 作業機械
JP2017008501A (ja) * 2015-06-17 2017-01-12 日立建機株式会社 作業機械

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564060B2 (ja) * 1991-10-24 1996-12-18 株式会社神戸製鋼所 建設機械の安全装置
CN101666105B (zh) * 2009-07-08 2011-08-10 北汽福田汽车股份有限公司 控制挖掘机动臂上升速度的方法、控制系统及一种挖掘机
JP6023053B2 (ja) 2011-06-10 2016-11-09 日立建機株式会社 作業機械
KR101822931B1 (ko) * 2013-02-06 2018-01-29 볼보 컨스트럭션 이큅먼트 에이비 건설기계용 선회 제어 시스템
GB2514346B (en) * 2013-05-20 2017-02-08 Jc Bamford Excavators Ltd Working machine and control system
JP6487872B2 (ja) * 2016-03-30 2019-03-20 日立建機株式会社 作業機械の駆動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941421A (ja) * 1995-08-03 1997-02-10 Mitsubishi Agricult Mach Co Ltd 油圧ショベル
JP2000130402A (ja) 1998-10-23 2000-05-12 Hitachi Constr Mach Co Ltd 油圧シリンダの駆動制御装置
JP2013113004A (ja) * 2011-11-29 2013-06-10 Caterpillar Sarl 作業機の干渉防止装置
JP2013204260A (ja) * 2012-03-27 2013-10-07 Mitsubishi Heavy Ind Ltd 車両の遠隔操作装置、車両及び車両の遠隔操作方法
WO2014013877A1 (ja) * 2012-07-20 2014-01-23 日立建機株式会社 作業機械
JP2017008501A (ja) * 2015-06-17 2017-01-12 日立建機株式会社 作業機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683366A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000019627A1 (it) 2020-08-07 2022-02-07 Inglass Spa “sistema per azionare un attuatore a fluido”
CN115234123A (zh) * 2022-07-04 2022-10-25 上海默控智能科技有限公司 一种新型的通风柜自动视窗位置的控制方法
CN115234123B (zh) * 2022-07-04 2024-02-27 上海默控智能科技有限公司 一种通风柜自动视窗位置的控制方法

Also Published As

Publication number Publication date
JP2019052499A (ja) 2019-04-04
JP6860458B2 (ja) 2021-04-14
US20200131737A1 (en) 2020-04-30
CN110382787B (zh) 2022-04-26
US11414836B2 (en) 2022-08-16
EP3683366A4 (en) 2021-11-17
EP3683366A1 (en) 2020-07-22
CN110382787A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP6860458B2 (ja) 作業機械
CN110546327B (zh) 作业机械
JP6023053B2 (ja) 作業機械
KR101755739B1 (ko) 작업 기계
JP5851037B2 (ja) 作業機械
JP2020169515A (ja) 油圧ショベル
KR20220066157A (ko) 작업 기계 및 작업 기계의 제어 방법
CN112384663A (zh) 挖土机
WO2020166241A1 (ja) 監視装置及び建設機械
CN114174598B (zh) 建筑机械
CN114423908B (zh) 工程机械
EP3828349B1 (en) Wheel loader
KR20210124442A (ko) 작업 기계
JP3386797B2 (ja) バックホーの油圧シリンダ制御装置
JP2021055262A (ja) 油圧ショベル
JP2020143449A (ja) 作業機械
WO2023106265A1 (ja) 作業機械
CN114423905B (zh) 工程机械
JP7340123B2 (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857245

Country of ref document: EP

Effective date: 20200415