WO2019052210A1 - 一种晶体的生长方法 - Google Patents

一种晶体的生长方法 Download PDF

Info

Publication number
WO2019052210A1
WO2019052210A1 PCT/CN2018/087459 CN2018087459W WO2019052210A1 WO 2019052210 A1 WO2019052210 A1 WO 2019052210A1 CN 2018087459 W CN2018087459 W CN 2018087459W WO 2019052210 A1 WO2019052210 A1 WO 2019052210A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
seeding
growing
growth
growth stage
Prior art date
Application number
PCT/CN2018/087459
Other languages
English (en)
French (fr)
Inventor
刘乾坤
齐凡
吴锋波
余剑云
谢斌晖
Original Assignee
福建晶安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建晶安光电有限公司 filed Critical 福建晶安光电有限公司
Publication of WO2019052210A1 publication Critical patent/WO2019052210A1/zh
Priority to US16/817,142 priority Critical patent/US11486054B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Definitions

  • the present invention relates to a method of growing a crystal, and more particularly to a method of seeding a crystal.
  • the conventional crystal seeding process according to the size of the crystal knot, is carried out by a fixed inter-turn interval, and the fluid disturbance is relatively intense during the pulling process, thereby affecting the heat transfer of the growth interface to cause temperature fluctuation, and the temperature.
  • the undulations necessarily have an adverse effect on the crystallization of sapphire so that the bubbles are not conducive to the discharge and reduce the quality of the seeding.
  • the present invention provides a crystal growth method for growing a crystal in a crystal growth furnace, characterized in that: a first growth stage and a second growth stage are sequentially included, the first The growth stage employs a crystal seeding process, and the second growth stage employs a continuous seeding process.
  • the crystal diameter of the first growth stage ranges from 15 to 25 mm, which not only ensures the crystal growth rate, but also does not cause excessive defects due to excessive use of the crystal seeding process, for example, Due to the relatively low temperature of the crystal seeding process, the impurity content is increased.
  • the first growth stage is composed of at least a first step of crystallizing seeding and a second step of crystallizing seeding.
  • the crystal diameter of the first step of crystallizing seeding ranges from 15 to 20 mm
  • the crystal diameter of the second step of crystallizing seeding ranges from 20 to 25 mm.
  • the crystal amplification rate of the first step of crystallizing seeding is 0.3 to 0.5 mm/min.
  • the crystal weight increase rate of the first step of the crystal seeding is 0.035 to 0.045 g/min.
  • the pulling crystal period of the first step of crystallizing seeding is 4.5 to 5.5 min.
  • the crystal amplification rate of the second step crystallizing seeding is 0.2 to 0.3 mm/min.
  • the crystal weight increase rate of the second step of crystallizing seeding is 0.045 ⁇ 0.055g/min.
  • the pulling crystal period of the second step crystallizing seeding is 7.5 to 8.5 min.
  • the transition phase preferably, there is a transition phase between the first growth phase and the second growth phase, and the transition phase adopts a continuous seeding process, using an amplification rate of 0.15 to 0.25 mm/min, and a higher crystallization temperature.
  • the junction amplification rate is smaller and the impurities are more fully excluded.
  • the heating power of the transition phase needs to be increased by 150 to 250 w to achieve a reduction in the amplification rate.
  • the end of the transition phase is 20 to 40 minutes after the heating power is increased.
  • the second growth stage has a crystal diameter ranging from 25 to 50 mm.
  • the crystal growth rate of the second growth stage is 0.081 to 0.085 mm/min, and the crystal weight increase rate of the second growth stage is 0.045 to 0.055 g/min, because After the transition period, the crystal defects are reduced; in this case, the crystal growth driving force (ie, the degree of supercooling) is mainly caused by the heat dissipation of the crystal itself, to ensure stable crystallization after the automatic growth program is run, to prevent crystal crystallization or even crystal remelting.
  • the crystal heat dissipation area needs to be increased to keep the crystal heat dissipation amount stable, and the amplification rate parameter is used to achieve the purpose.
  • FIG. 1 is a schematic diagram of a composite seeding method
  • FIG. 2 composite seeding step diagram
  • FIG. 3 is a composite seeding process table (the values in the table are preferred parameters of the examples).
  • the present invention provides a method for growing a crystal, which grows crystals in a crystal growth furnace, and improves and integrates the original seeding process, and the original single crystal introduction method (crystal junction introduction) Crystal or continuous seeding) is integrated into the same new seeding process.
  • the first growth stage and the second growth stage are sequentially included, and the first growth stage adopts a crystal seeding process, and the second The growth stage uses a continuous seeding process.
  • the crystal diameter of the first growth stage ranges from 15 to 25 mm, and the first growth stage is composed of at least a first crystal seeding and a second crystallizing, the first crystal
  • the crystal diameter of the junction seeding is in the range of 15 to 20 mm, and the crystal amplification rate of the first crystallizing seeding is 0.3 to 0.5 mm/min, preferably 0.4 mm/min, and the crystal weight of the first crystallizing crystal is increased. It is 0.035 ⁇ 0.045g/min, preferably 0.04g/min, and the pulling crystal period of the first crystallizing seeding is 4.5 ⁇ 5.5min.
  • the crystal diameter of the crystal seeding is in the range of 20 to 25 mm
  • the crystal amplification rate in the second step is 0.2 to 0.3 mm/min, preferably 0.25 mm/min, and the second step is to crystallize the crystal.
  • the crystal weight increase rate is 0.045 ⁇ 0.055g/min, preferably 0.05g/min
  • the pulling crystal period of the second step crystal seeding is 7.5 ⁇ 8.5min
  • the crystal amplification rate is close to the second step.
  • the junction crystallization is slightly smaller than the first crystal crystallization, that is, the second crystallization crystallization temperature is higher, further eliminating the crystal defects, and not affecting the amplification efficiency.
  • transition phase between the first growth phase and the second growth phase, and the transition phase adopts a continuous seeding process, and the heating power of the transition phase needs to be increased by 150 to 250 w, so that the amplification rate can be reduced, and the amplification rate is 0.15 to 0.25 mm. /min, preferably 0.02 mm/min, the crystallization temperature is higher, the crystal amplification rate is smaller, and the impurities are more sufficiently excluded.
  • the transition phase ends at 20 to 40 minutes after the heating power is increased, and enters the second growth stage.
  • the second growth stage has a crystal diameter ranging from 25 to 50 mm, and the second growth stage has a crystal amplification rate of 0.081 to 0.085 mm/min, preferably 0.083 mm/min, and the crystal weight of the second growth stage.
  • the increase rate is 0.045 ⁇ 0.055g/min, preferably 0.05g/min, because the crystal defects decrease after the transition period; therefore, the driving force of crystal growth (ie, the degree of supercooling) is mainly due to the heat dissipation of the crystal itself, to ensure
  • the automatic growth program maintains stable crystallization after running, preventing crystals from crystallizing or even crystal remelting. It is necessary to increase the crystal heat dissipation area and keep the crystal heat dissipation amount stable.
  • the amplification rate parameter is used to achieve the purpose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种晶体的生长方法,按顺序依次包括晶结引晶阶段与连续引晶阶段,两个阶段之间的过渡阶段采用连续引晶工艺,将晶结引晶工艺和连续引晶工艺整合在一起,设计一种复合引晶工艺,适应生产的实际需要,可以提高引晶质量和单机产能,缩短引晶周期,降低生产成本。

Description

发明名称:一种晶体的生长方法
技术领域
[0001] 本发明涉及一种晶体的生长方法, 特别是包括对晶体引晶的工艺方法。
背景技术
[0002] 传统的晶结引晶工艺, 根据晶结大小以固定的吋间间隔分别进行晶结的提拉, 提拉过程中流体扰动较为剧烈从而影响生长界面的热量传输造成温度起伏, 而 温度起伏必然对蓝宝石结晶产生不利影响使气泡不利于排出降低引晶质量。
[0003] 传统的连续引晶工艺, 相对于晶结引晶工艺, 引晶过程中流体扰动较小, 有助 于更好地排出气泡, 但是由于生长速率较慢, 所需吋间较传统晶结引晶工艺更 长, 不免浪费机台稼动率与人力。
技术问题
问题的解决方案
技术解决方案
[0004] 为解决以上技术问题, 一方面, 本发明提供一种晶体的生长方法, 在长晶炉中 生长晶体, 其特征在于: 依次包括第一生长阶段与第二生长阶段, 所述第一生 长阶段采用晶结引晶工艺, 所述第二生长阶段采用连续引晶工艺。
[0005] 根据本发明, 优选地, 所述第一生长阶段的晶体直径范围在 15~25mm, 既保证 了晶体生长速度, 又不会因为采用晶结引晶工艺过长导致缺陷过多, 例如由于 晶结引晶工艺温度比较低, 导致的杂质含量增高。
[0006] 根据本发明, 优选地, 所述第一生长阶段至少由第一步晶结引晶和第二步晶结 引晶组成。
[0007] 根据本发明, 优选地, 所述第一步晶结引晶的晶体直径范围为 15~20mm, 所述 第二步晶结引晶的晶体直径范围为 20~25mm。
[0008] 根据本发明, 优选地, 所述第一步晶结引晶的晶体放大速率为 0.3~0.5mm/min
, 所述第一步晶结引晶的晶体重量增加速度为 0.035~0.045g/min。 [0009] 根据本发明, 优选地, 所述第一步晶结引晶的提拉晶体周期为 4.5~5.5min。
[0010] 根据本发明, 优选地, 所述第二步晶结引晶的晶体放大速率为 0.2~0.3mm/min
, 所述第二步晶结引晶的晶体重量增加速度为 0.045~0.055g/min。
[0011] 根据本发明, 优选地, 所述第二步晶结引晶的提拉晶体周期为 7.5~8.5min。
[0012] 根据本发明, 优选地, 第一生长阶段与第二生长阶段之间具有过渡阶段, 过渡 阶段采用连续引晶工艺, 采用放大速率为 0.15 ~0.25mm/min, 结晶温度更高, 晶 结放大速率更小, 更能充分地排除杂质。
[0013] 根据本发明, 优选地 , 所述过渡阶段加热功率需提高 150~250w, 才能实现放 大速率降低。
[0014] 根据本发明, 优选地 , 所述过渡阶段的结束吋间为所述加热功率提高后 20~40 min。
[0015] 根据本发明, 优选地 , 所述第二生长阶段的晶体直径范围为 25~50mm。
[0016] 根据本发明, 优选地 , 所述第二生长阶段的晶体放大速率为 0.081~0.085mm/mi n, 所述第二生长阶段的晶体重量增加速度为 0.045~0.055g/min, 因为经过渡阶段 后, 晶体缺陷降低; 此吋, 晶体生长驱动力 (即过冷度) , 主要源于晶体本身 散热, 为保证自动生长程序运行后保持稳定结晶, 防止出现晶体不结晶甚至晶 体回融现象, 需增大晶结散热面积, 使晶结散热量保持稳定, 通过设定放大速 率参数来达到目的。
发明的有益效果
有益效果
[0017] 本发明的有益效果是, 解决了背景技术中的问题, 借用本发明的复合引晶显著 缩短引晶吋间和提高引晶质量。 本发明的其他有益效果将在实施例中进一步描 述。
对附图的简要说明
附图说明
[0018] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。 [0019] 图 1复合引晶方式示意图
[0020] 图 2复合引晶步骤图
[0021] 图 3复合引晶工艺表 (表中数值为实施例优选参数) 。
本发明的实施方式
[0022] 下面结合示意图对本发明的进行详细的描述, 借此对本发明如何应用技术手段 来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实施。
实施例
[0023] 参看图 1, 本发明提供了一种晶体的生长方法, 在长晶炉中生长晶体, 对原有 的引晶工艺进行改良和整合, 将原来固有的单一引晶方式 (晶结引晶或连续引晶) 整合到同一个新型的引晶工艺上, 具体来说, 参看图 2, 依次包括第一生长阶段 与第二生长阶段, 第一生长阶段采用晶结引晶工艺, 第二生长阶段采用连续引 晶工艺。
[0024] 参看图 3中的图表, 第一生长阶段的晶体直径范围在 15~25mm, 第一生长阶段 至少由第一步晶结引晶和第二步晶结引晶组成, 第一步晶结引晶的晶体直径范 围为 15~20mm, 第一步晶结引晶的晶体放大速率为 0.3~0.5mm/min, 优选为 0.4m m/min, 第一步晶结引晶的晶体重量增加速度为 0.035~0.045g/min, 优选为 0.04g/ min, 第一步晶结引晶的提拉晶体周期为 4.5~5.5min。 第二步晶结引晶的晶体直 径范围为 20~25mm, 第二步晶结引晶的晶体放大速率为 0.2~0.3mm/min, 优选为 0.25mm/min, 第二步晶结引晶的晶体重量增加速度为 0.045~0.055g/min, 优选为 0.05g/min, 所述第二步晶结引晶的提拉晶体周期为 7.5~8.5min, 两者晶体放大速 率接近, 第二步晶结引晶略小于第一步晶结引晶, 即第二步晶结引晶温度较高 , 进一步消除晶体缺陷, 又不至于影响放大效率。
[0025] 第一生长阶段与第二生长阶段之间具有过渡阶段, 过渡阶段采用连续引晶工艺 , 过渡阶段加热功率需提高 150~250w, 才能实现放大速率降低, 采用放大速率 为 0.15 ~0.25mm/min, 优选为 0.02mm/min, 结晶温度更高, 晶结放大速率更小, 更能充分地排除杂质。 过渡阶段在加热功率提高后的 20~40min结束, 进入第二 生长阶段。 [0026] 第二生长阶段的晶体直径范围为 25~50mm, 第二生长阶段的晶体放大速率为 0. 081~0.085mm/min, 优选为 0.083mm/min, 所述第二生长阶段的晶体重量增加速 度为 0.045~0.055g/min, 优选为 0.05g/min, 因为经过渡阶段后, 晶体缺陷降低; 此吋, 晶体生长驱动力 (即过冷度) , 主要源于晶体本身散热, 为保证自动生 长程序运行后保持稳定结晶, 防止出现晶体不结晶甚至晶体回融现象, 需增大 晶结散热面积, 使晶结散热量保持稳定, 通过设定放大速率参数来达到目的。
[0027] 尽管已经描述本发明的示例性实施例, 但是理解的是, 本发明不应限于这些示 例性实施例而是本领域的技术人员能够在如下文的权利要求所要求的本发明的 精神和范围内进行各种变化和修改。

Claims

权利要求书
一种晶体的生长方法, 在长晶炉中生长晶体, 其特征在于: 依次包括 第一生长阶段与第二生长阶段, 所述第一生长阶段采用晶结引晶工艺 , 所述第二生长阶段采用连续引晶工艺。
根据权利要求 1所述的一种晶体的生长方法, 其特征在于: 所述第一 生长阶段的晶体直径范围在 15~25mm。
根据权利要求 1所述的一种晶体的生长方法, 其特征在于: 所述第一 生长阶段至少由第一步晶结引晶和第二步晶结引晶组成。
根据权利要求 3所述的一种晶体的生长方法, 其特征在于: 所述第一 步晶结引晶的晶体直径范围为 15~20mm, 所述第二步晶结引晶的晶 体直径范围为 20~25mm。
根据权利要求 3所述的一种晶体的生长方法, 其特征在于: 所述第一 步晶结引晶的晶体放大速率为 0.3~0.5mm/min, 所述第一步晶结引晶 的晶体重量增加速度为 0.035~0.045g/min。
根据权利要求 3所述的一种晶体的生长方法, 所述第一步晶结引晶的 提拉晶体周期为 4.5~5.5min。
根据权利要求 3所述的一种晶体的生长方法, 其特征在于: 所述第二 步晶结引晶的晶体放大速率为 0.2~0.3mm/min, 所述第二步晶结引晶 的晶体重量增加速度为 0.045~0.055g/min。
根据权利要求 3所述的一种晶体的生长方法, 其特征在于: 所述第二 步晶结引晶的提拉晶体周期为 7.5~8.5min。
根据权利要求 1所述的一种晶体的生长方法, 其特征在于: 第一生长 阶段与第二生长阶段之间具有过渡阶段, 所述过渡阶段采用连续引晶 工艺, 采用放大速率为 0.15 ~0.25mm/min。
根据权利要求 9所述的一种晶体的生长方法, 其特征在于: 所述过渡 阶段加热功率需提高 150~250w。
根据权利要求 9所述的一种晶体的生长方法, 其特征在于: 所述过渡 阶段的生长温度大于第一生长阶段的生长温度。 [权利要求 12] 根据权利要求 10所述的一种晶体的生长方法, 其特征在于: 所述过渡 阶段的结束吋间为所述加热功率提高后 20~40min。
[权利要求 13] 根据权利要求 1所述的一种晶体的生长方法, 其特征在于: 所述第二 生长阶段的晶体直径范围为 25~50mm。
[权利要求 14] 根据权利要求 1所述的一种晶体的生长方法, 其特征在于: 所述第二 生长阶段的晶体放大速率为 0.081~0.085mm/min, 所述第二生长阶段 的晶体重量增加速度为 0.045~0.055g/min。
PCT/CN2018/087459 2017-09-15 2018-05-18 一种晶体的生长方法 WO2019052210A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/817,142 US11486054B2 (en) 2017-09-15 2020-03-12 Method for growing crystal boule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710830008.4A CN107653489B (zh) 2017-09-15 2017-09-15 一种晶体的生长方法
CN201710830008.4 2017-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/817,142 Continuation-In-Part US11486054B2 (en) 2017-09-15 2020-03-12 Method for growing crystal boule

Publications (1)

Publication Number Publication Date
WO2019052210A1 true WO2019052210A1 (zh) 2019-03-21

Family

ID=61129844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087459 WO2019052210A1 (zh) 2017-09-15 2018-05-18 一种晶体的生长方法

Country Status (3)

Country Link
US (1) US11486054B2 (zh)
CN (1) CN107653489B (zh)
WO (1) WO2019052210A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653489B (zh) 2017-09-15 2020-06-09 福建晶安光电有限公司 一种晶体的生长方法
CN112359412A (zh) * 2020-11-03 2021-02-12 上海新昇半导体科技有限公司 一种用于晶体生长的引晶方法
CN117468084B (zh) * 2023-12-27 2024-05-28 浙江晶盛机电股份有限公司 晶棒生长控制方法、装置、长晶炉系统和计算机设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782087A (ja) * 1993-09-13 1995-03-28 Asahi Glass Co Ltd 酸化物単結晶の製造方法
RU2248418C1 (ru) * 2003-07-09 2005-03-20 НИИ Российский центр лазерной физики Способ выращивания кристаллов
CN104109904A (zh) * 2014-05-27 2014-10-22 上海佳宇信息技术有限公司 一种泡生法蓝宝石晶体生长的引晶方法
CN104674345A (zh) * 2014-12-26 2015-06-03 浙江东海蓝玉光电科技有限公司 一种泡生法生长大尺寸蓝宝石晶体的引晶控制方法
CN105506738A (zh) * 2015-11-06 2016-04-20 浙江露通机电有限公司 利用蓝宝石碎块制造蓝宝石晶体的引晶工艺
CN107653489A (zh) * 2017-09-15 2018-02-02 福建晶安光电有限公司 一种晶体的生长方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327482A (ja) * 1999-05-18 2000-11-28 Sumitomo Metal Ind Ltd 単結晶製造方法
US6869477B2 (en) * 2000-02-22 2005-03-22 Memc Electronic Materials, Inc. Controlled neck growth process for single crystal silicon
US20060005761A1 (en) * 2004-06-07 2006-01-12 Memc Electronic Materials, Inc. Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
CN1323195C (zh) * 2005-06-24 2007-06-27 哈尔滨工业大学 大尺寸蓝宝石单晶的冷心放肩微量提拉制备法
JP2009263142A (ja) * 2008-04-21 2009-11-12 Sumco Corp シリコン単結晶の育成方法
JP5562776B2 (ja) * 2010-09-16 2014-07-30 グローバルウェーハズ・ジャパン株式会社 単結晶引上装置及び単結晶引き上げ方法
CN102268726B (zh) * 2011-08-09 2013-06-19 马鞍山明鑫光能科技有限公司 一种cz直拉法太阳能单晶生长工艺
CN104451862B (zh) * 2015-01-16 2017-09-01 苏州恒嘉晶体材料有限公司 一种蓝宝石单晶炉和蓝宝石引晶方法
CN204849124U (zh) * 2015-06-15 2015-12-09 哈尔滨奥瑞德光电技术有限公司 一种80kg以上大尺寸蓝宝石单晶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782087A (ja) * 1993-09-13 1995-03-28 Asahi Glass Co Ltd 酸化物単結晶の製造方法
RU2248418C1 (ru) * 2003-07-09 2005-03-20 НИИ Российский центр лазерной физики Способ выращивания кристаллов
CN104109904A (zh) * 2014-05-27 2014-10-22 上海佳宇信息技术有限公司 一种泡生法蓝宝石晶体生长的引晶方法
CN104674345A (zh) * 2014-12-26 2015-06-03 浙江东海蓝玉光电科技有限公司 一种泡生法生长大尺寸蓝宝石晶体的引晶控制方法
CN105506738A (zh) * 2015-11-06 2016-04-20 浙江露通机电有限公司 利用蓝宝石碎块制造蓝宝石晶体的引晶工艺
CN107653489A (zh) * 2017-09-15 2018-02-02 福建晶安光电有限公司 一种晶体的生长方法

Also Published As

Publication number Publication date
US11486054B2 (en) 2022-11-01
US20200208293A1 (en) 2020-07-02
CN107653489B (zh) 2020-06-09
CN107653489A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
WO2019052210A1 (zh) 一种晶体的生长方法
CN101798704B (zh) 18英寸热场生长φ8〞太阳能级直拉硅单晶工艺
CN202558970U (zh) 一种类单晶硅铸锭炉
CN103911654B (zh) 制备直径为400mm以上的单晶硅的方法
CN102345157A (zh) 一种太阳能级直拉单晶硅的连续复投的生产方法
CN204825129U (zh) 一种高效多晶硅铸锭炉的热场结构
TW201619453A (zh) 多晶矽鑄錠爐底部小保溫板活動裝置及多晶矽鑄錠爐
CN104372399A (zh) 一种单晶硅收尾方法及单晶硅制备方法
CN103806101A (zh) 一种方形蓝宝石晶体的生长方法及设备
CN103694085B (zh) 一种高纯度的抗氧剂bht结晶方法
CN102776556B (zh) 一种多晶硅锭及其制备方法和多晶硅片
CN105568368A (zh) 保护热场部件减小损耗的热场及方法
CN113755947A (zh) 一种12吋单晶拉制的放肩工艺方法
CN102719881A (zh) 用于单晶炉的石墨坩埚
CN201990762U (zh) 直拉单晶炉加热装置
CN102242399A (zh) 钒酸钇晶体的退火方法
CN201627000U (zh) 一种直拉法制备单晶硅所使用的硅籽晶
CN111910248B (zh) 铸锭单晶籽晶、铸造单晶硅锭及其制备方法、铸造单晶硅片及其制备方法
CN210683991U (zh) 一种单晶硅生长装置
CN202610385U (zh) 一种蓝宝石晶体的生长设备
CN203613301U (zh) 拉制大直径n型单晶的导流筒
CN201864791U (zh) 一种800型硅单晶炉的石墨导流筒
CN104562187B (zh) 一种垂直无籽晶化学气相法生长ZnO单晶的方法
JP5776587B2 (ja) 単結晶製造方法
CN201545932U (zh) 制备碲铟汞单晶专用石英坩埚

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855784

Country of ref document: EP

Kind code of ref document: A1