WO2019052073A1 - 柔性材料及其制备方法、柔性盖板及其制备方法 - Google Patents

柔性材料及其制备方法、柔性盖板及其制备方法 Download PDF

Info

Publication number
WO2019052073A1
WO2019052073A1 PCT/CN2017/117258 CN2017117258W WO2019052073A1 WO 2019052073 A1 WO2019052073 A1 WO 2019052073A1 CN 2017117258 W CN2017117258 W CN 2017117258W WO 2019052073 A1 WO2019052073 A1 WO 2019052073A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
flexible material
flexible
material according
cerium
Prior art date
Application number
PCT/CN2017/117258
Other languages
English (en)
French (fr)
Inventor
许杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/745,083 priority Critical patent/US10665824B2/en
Publication of WO2019052073A1 publication Critical patent/WO2019052073A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the invention relates to the field of display technology, in particular to a flexible material and a preparation method thereof, a flexible cover plate and a preparation method thereof.
  • AMOLED Active Matrix Organic Light-Emitting Diode
  • the flexible cover material of the flexible OLED is a superposition of a transparent polyimide (PI, Polyimide) and a hard layer under development, and the hard layer is composed of inorganic substances and organic substances.
  • the current cover material of the flexible AMOLED has a hardness of only 4H (H stands for pencil hardness standard) and a thickness of 70 um to 100 um. When it is attached to the display panel, it is difficult to meet the hardness and thickness requirements of the flexible cover plate currently on the market.
  • the invention provides a preparation method of a flexible material, and the preparation method of the flexible material is realized by the following steps:
  • cerium source material and NaOH are added to the deionized water, and stirred at room temperature to obtain a cerium source mixture
  • the molar ratio of titanium ions to NaOH in the cerium source and the liquid titanium source in the germanium source is 1:4:32.
  • the germanium source material comprises Ba(OH) 2 -H 2 O or BaCl 2
  • the liquid titanium source comprises TiCl 4 or butyl titanate
  • the germanium ion concentration in the germanium source is 0.1 mol/L. 0.4 mol/L.
  • the filling degree of the reaction kettle is 60% to 80%, which can be adjusted by adding deionized water.
  • the washing is washed 5 to 8 times by adding deionized water.
  • drying is carried out in a blast dryer at 50 ° C to 60 ° C for 24 h or more.
  • the invention provides a flexible material prepared by the above preparation method of a flexible material for preparing a transparent flexible cover plate.
  • a flexible cover plate is produced by the flexible material by means of physical vapor deposition (PVD), chemical vapor deposition (CVD) or physical coating (Physical Vapor Deposition) or physical coating.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • physical coating Physical Vapor Deposition
  • the invention also provides a flexible cover plate prepared by the above flexible cover manufacturing method for protecting the display panel.
  • the flexible cover plate can achieve an ultra-thin thickness of 40 um to 70 um, and its surface hardness is greater than 8H, and can also have good waterproof performance by Al or N doping, and has high reliability.
  • FIG. 1 is a structural diagram of a current flexible OLED.
  • FIG. 2 is a schematic flow chart of a method for preparing a flexible material of the present invention.
  • Figure 3 is an X-ray diffraction diagram structure of a flexible material of the present invention.
  • FIG. 4 is a schematic flow chart of a method for preparing a flexible cover according to the present invention.
  • FIG. 2 is a schematic flow chart of a method for preparing a flexible material according to the present invention. As shown in FIG. 2, the steps for preparing the flexible material of the present invention are as follows:
  • the raw material of the ruthenium source and the NaOH are added to the deionized water, and stirred at room temperature to obtain a ruthenium mixture.
  • the germanium source material includes, but is not limited to, Ba(OH) 2 -H 2 O or BaCl 2 .
  • the raw material of the cerium source is Ba(OH) 2 -H 2 O
  • the concentration of cerium ions is 0.1 mol/L to 0.4 mol/L, optimized to be 0.2144 mol/L, and the cerium ions and NaOH are used.
  • the molar ratio is 1:32.
  • the weighed raw material and NaOH are added to 10 ml to 30 ml of deionized water, and stirred at room temperature for 20 min to 40 min to obtain a cerium source mixture.
  • the liquid titanium source includes, but is not limited to, TiCl 4 or butyl titanate.
  • the liquid titanium source is TiCl 4
  • the molar ratio of cerium ions to titanium ions is 1:4.
  • Slowly dropping TiCl 4 into the cerium source mixture in a vacuum glove box prevents TiCl 4 from being exposed to air and reacting with water to cause smoke deterioration.
  • TiCl4 is slowly dropped into the hydrazine mixture and stirred at room temperature for 20 minutes. After ⁇ 40min, a mixture of helium source and titanium source can be obtained.
  • the filling degree of the reaction vessel is first adjusted by adding deionized water to be 60% to 80%.
  • the filling degree of the reaction kettle is adjusted to 80%, and the pH value of the reaction solution in the reaction kettle is tested by using a pH test paper, and the pH value of the reaction solution in the reaction kettle can be measured at this time. 12 ⁇ 13, the reaction kettle was placed in a constant temperature drying oven and heated to 180 ° C for 24 hours.
  • the product in the reactor is taken out and washed with deionized water in a high-speed centrifuge for 5 to 8 times. Then, it is dried in a blast drying oven at 50 ° C to 60 ° C for 24 hours or more.
  • the analytical pure germanium source and the titanium source are used as reactants, and NaOH is used as a mineralizer, and the mineralizer can promote or control the formation of the compound.
  • the mixture of the ruthenium source and the source of the ruthenium source and the source of titanium in S1 and S2 are placed in the lining of the reaction vessel.
  • Ba(OH) 2 -H 2 O and TiCl 4 are used as reactants, and the reactor liner is a polytetrafluoroethylene liner.
  • the ratio of the source of the tantalum source and the source of the titanium source can be adjusted, and an element such as Al or N is added to the reactant by a doping process, and the final flexibility is completed according to different requirements.
  • Al and N elements are added to the reactants to finally obtain a flexible material having water repellency.
  • the flexible material provided by the invention is prepared by the above flexible material preparation method for preparing a transparent flexible cover plate.
  • 3 is an X-ray diffraction pattern of a flexible material provided by the present invention.
  • the flexible material is compared with the standard JCPDS card, and no diffraction peak exists, which proves that the product prepared by the above flexible material preparation method is an amorphous material, and the raw materials used in the preparation process are germanium source and titanium.
  • the source may determine that the flexible material comprises the elements Ba, Ti and O.
  • FIG. 4 is a schematic flow chart of a method for preparing a flexible cover according to the present invention. As shown in FIG. 4, the method for preparing a flexible cover of the present invention includes:
  • the germanium source material includes, but is not limited to, Ba(OH) 2 -H 2 O or BaCl 2 .
  • the raw material of the cerium source is Ba(OH) 2 -H 2 O
  • the concentration of cerium ions is 0.1 mol/L to 0.4 mol/L, optimized to be 0.2144 mol/L, and the cerium ions and NaOH are used.
  • the molar ratio is 1:32.
  • the weighed raw material and NaOH are added to 10 ml to 30 ml of deionized water, and stirred at room temperature for 20 min to 40 min to obtain a cerium source mixture.
  • the liquid titanium source includes, but is not limited to, TiCl 4 or butyl titanate.
  • the liquid titanium source is TiCl 4
  • the molar ratio of cerium ions to titanium ions is 1:4.
  • Slowly dropping TiCl4 into the cerium source mixture in a vacuum glove box prevents TiCl 4 from being exposed to air and reacting with water to cause smoke deterioration.
  • TiCl 4 is slowly dropped into the hydrazine mixture and stirred at room temperature for 20 minutes. After ⁇ 40min, a mixture of helium source and titanium source can be obtained.
  • the filling degree of the reaction vessel is first adjusted by adding deionized water to be 60% to 80%.
  • the filling degree of the reaction kettle is adjusted to 80%, and the pH value of the reaction solution in the reaction kettle is tested by using a pH test paper, and the pH value of the reaction solution in the reaction kettle can be measured at this time. 12 ⁇ 13, the reaction kettle was placed in a constant temperature drying oven and heated to 180 ° C for 24 hours.
  • the product in the reactor is taken out and washed with deionized water in a high-speed centrifuge for 5 to 8 times. Then, it is dried in a blast drying oven at 50 ° C to 60 ° C for 24 hours or more.
  • S105 forming the flexible cover material by vapor phase deposition, chemical vapor deposition or coating of the powdery flexible material.
  • the analytical pure germanium source and the titanium source are used as reactants, and NaOH is used as a mineralizer, and the mineralizer can promote or control the formation of the compound.
  • the mixture of the ruthenium source and the source of the ruthenium source and the source of titanium in S101 and S102 are placed in the lining of the reaction vessel.
  • Ba(OH) 2 -H 2 O and TiCl 4 are used as reactants, and the reactor liner is a polytetrafluoroethylene liner.
  • the ratio of the source of the tantalum source and the titanium source can be adjusted, and an element such as Al or N is added to the reactant by a doping process, and the final is completed according to different requirements.
  • Design of flexible materials In this embodiment, Al and N elements are added to the reactants, and finally a flexible cover sheet having waterproof properties is obtained.
  • the flexible cover plate provided by the invention is prepared by the above-mentioned flexible cover plate preparation method, and the flexible cover plate can be made into an ultra-thin film having a thickness of 50 um to 70 um and a surface hardness exceeding 8H.
  • the flexible material for preparing the flexible cover sheet can be doped with Al or N elements, the resulting flexible cover sheet has excellent waterproof performance while having ultra-thinness and high hardness.
  • the flexible cover plate provided by the invention not only has ultra-thin thickness, strong surface hardness, but also can be designed as a flexible cover plate with different properties according to different requirements. Greatly improve the reliability of OLED products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性材料制备方法,包括:取钡源原料和NaOH加入到去离子水中,室温下搅拌得到钡源混合液;将所述钡源混合液转移至真空手套箱中,并加入液态钛源,搅拌后得到钡源和钛源混合液;将所述钡源和钛源混合液转入反应釜中,其中,在160℃~200℃下反应20h~28h;待所述反应釜冷却后,通过离心、洗涤和干燥得到粉末状柔性材料。一种柔性材料由上述柔性材料制备方法制备得到,用于制备透明柔性盖板。一种柔性盖板制备方法,包括:将上述柔性材料通过物理气相沉积、化学蒸汽沉积或物理涂层的方式加工得到柔性盖板。一种柔性盖板,由上述柔性盖板制备方法制备得到,用于保护显示面板。

Description

柔性材料及其制备方法、柔性盖板及其制备方法
本发明要求2017年09月12日递交的发明名称为“柔性材料及其制备方法、柔性盖板及其制备方法”的申请号2017108178275的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及显示技术领域,特别涉及一种柔性材料及其制备方法、柔性盖板及其制备方法。
背景技术
在目前照明和显示领域中,由于有源矩阵有机发光二极体(Active Matrix Organic Light-Emitting Diode,AMOLED)本身的特点,如自发光、色域广和可弯折等特点,越来越多的被广泛研究用于开发照明产品以及面板行业中。
目前柔性有机发光二极管(OLED,Organic Light-Emitting Diode)的结构如图1所示。其中,柔性OLED的柔性盖板材料为正在开发的透明聚酰亚胺(PI,Polyimide)和硬质层的叠加,硬质层是由无机物和有机物组成。当前柔性AMOLED的盖板材料的硬度仅有4H(H代表铅笔硬度标准),厚度为70um~100um,当贴合在显示面板上后,难以满足目前市场上柔性盖板的硬度和厚度需求。
发明内容
本发明提供一种柔性材料的制备方法,所述柔性材料的制备方法通过以下步骤实现:
取钡源原料和NaOH加入到去离子水中,室温下搅拌得到钡源混合液;
将所述钡源混合液转移至真空手套箱中,并加入液态钛源,搅拌后得到钡源和钛源混合液;
将所述钡源和钛源混合液转入反应釜中,其中,在160℃~200℃下反应20h~28h;
待所述反应釜冷却后,通过离心、洗涤和干燥到粉末状柔性材料。
其中,所述钡源原料中钡离子、液态钛源中钛离子和NaOH的摩尔比为1∶4∶32。
其中,所述的钡源原料包括Ba(OH) 2-H 2O或BaCl 2,所述液态钛源包括TiCl 4或钛酸丁酯,所述钡源中钡离子浓度为0.1mol/L~0.4mol/L。
其中,所述反应釜填充度为60%~80%,可通过采用加入去离子水的方式调整。
其中,所述洗涤为加入去离子水洗涤5~8次。
其中,所述干燥是在鼓风干燥器中在50℃~60℃下干燥24h或以上。
其中,所述钡源混合液中还可以通过掺杂的方式添加Al和N等其他元素。
本发明提供一种柔性材料,由上述柔性材料的制备方法制备得到,用于制备透明柔性盖板。
本发明一种柔性盖板制作方法,由上述柔性材料通过物理气相沉积(PVD,Physical Vapor Deposition)、化学蒸汽沉积(CVD,Chemical Vapor Deposition)或物理涂层的方式加工得到柔性盖板。
本发明还提供一种柔性盖板,由上述的柔性盖板制作方法制备得到,用于保护显示面板。所述柔性盖板能够达到40um~70um的超薄厚度,其表面硬度大于8H,而且还可以通过Al或N的掺杂具有很好的防水性能,具有高可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是目前柔性OLED的结构图。
图2是本发明柔性材料制备方法的流程示意图。
图3是本发明柔性材料的X射线衍射图结构。
图4是本发明柔性盖板制备方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明的柔性材料制备方法的具体流程示意图,如图2所示,本发明柔性材料制备步骤如下:
S1,取钡源原料和NaOH加入到去离子水中,室温下搅拌得到钡源混合液。
其中,所述钡源原料包括且不限于Ba(OH) 2-H 2O或BaCl 2。本实施例中,所述钡源原料为Ba(OH) 2-H 2O,钡离子的浓度为0.1mol/L~0.4mol/L,优化为0.2144mol/L,所述钡离子和NaOH的摩尔比为1∶32。所称取的钡源原料和NaOH加入10ml~30ml的去离子水中,在室温下搅拌20min~40min后即可得到钡源混合液。
S2,将所述钡源混合液转移至真空手套箱中,加入液态钛源,搅拌后得到钡源和钛源混合液。
其中,所述液态钛源包括且不限于TiCl 4或钛酸丁酯。本实施例中,所述液态钛源为TiCl 4,钡离子和钛离子的摩尔比为1∶4。在真空手套箱中将TiCl 4缓慢滴入所述钡源混合液中避免了TiCl 4暴露在空气中与水反应发烟变质,TiCl4缓慢滴入所述钡源混合液后,在室温下搅拌20min~40min后即可得到钡源和钛源混合液。
S3,将所述钡源和钛源混合液转入反应釜中,其中,在160℃~200℃下反应20h~28h。
其中,在所述反应釜开始加热保温之前,通过加入去离子水的方式先调整反应釜的填充度为60%~80%。本实施例中,将所述反应釜的填充度调整为80%,再利用pH试纸测试所述反应釜中反应溶液的pH值,可测得此时所述反应釜中反应溶液的pH值为12~13,再将所述反应釜放入恒温干燥箱中加热 到180℃,保温24h。
S4,待所述反应釜冷却后,通过离心、洗涤和干燥到粉末状柔性材料。
本实施例中,待所述反应釜加热反应结束后,待所述反应釜自然冷却至室温后,将所述反应釜中的产物取出,用去离子水在高速离心机中清洗5~8次,之后在鼓风干燥箱中在50℃~60℃下干燥24h或以上。
具体的,整个柔性材料制备过程中以分析纯的钡源和钛源为反应物,以NaOH为矿化剂,矿化剂能够促进或控制化合物的形成。S1和S2中所述钡源混合液与钡源和钛源混合液均盛放在反应釜内衬中。本实施例中,以Ba(OH) 2-H 2O和TiCl 4为反应物,所述反应釜内衬为聚四氟乙烯内衬。
另外的,所述柔性材料的制备过程中,还可以通过调整钡源和钛源反应物的比例,采用掺杂工艺将Al或N等元素加入到反应物中,根据不同的需求来完成最终柔性材料的设计。本实施例中,将Al和N元素加入到反应物中,最终可得到具有防水性能的柔性材料。
本发明提供的柔性材料,通过上述柔性材料制备方法制备得到,用于制备透明的柔性盖板。图3是本发明提供的柔性材料的X射线衍射图谱。从图3中可以看出,所述柔性材料与标准JCPDS卡对比,没有衍射峰存在,证明上述柔性材料制备方法制备得到的产物为非晶材料,依据制备过程中使用的原材料为钡源和钛源可决定了所述柔性材料包括元素Ba、Ti和O。
图4为本发明的柔性盖板制备方法的具体流程示意图,如图4所示,本发明柔性盖板制备方法包括:
S101,取钡源原料和NaOH加入到去离子水中,室温下搅拌得到钡源混合液。
其中,所述钡源原料包括且不限于Ba(OH) 2-H 2O或BaCl 2。本实施例中,所述钡源原料为Ba(OH) 2-H 2O,钡离子的浓度为0.1mol/L~0.4mol/L,优化为0.2144mol/L,所述钡离子和NaOH的摩尔比为1∶32。所称取的钡源原料和NaOH加入10ml~30ml的去离子水中,在室温下搅拌20min~40min后即可得到钡源混合液。
S102,将所述钡源混合液转移至真空手套箱中,加入液态钛源,搅拌后得到钡源和钛源混合液。
其中,所述液态钛源包括且不限于TiCl 4或钛酸丁酯。本实施例中,所述液态钛源为TiCl 4,钡离子和钛离子的摩尔比为1∶4。在真空手套箱中将TiCl4缓慢滴入所述钡源混合液中避免了TiCl 4暴露在空气中与水反应发烟变质,TiCl 4缓慢滴入所述钡源混合液后,在室温下搅拌20min~40min后即可得到钡源和钛源混合液。
S103,将所述钡源和钛源混合液转入反应釜中,其中,在160℃~200℃下反应20h~28h。
其中,在所述反应釜开始加热保温之前,通过加入去离子水的方式先调整反应釜的填充度为60%~80%。本实施例中,将所述反应釜的填充度调整为80%,再利用pH试纸测试所述反应釜中反应溶液的pH值,可测得此时所述反应釜中反应溶液的pH值为12~13,再将所述反应釜放入恒温干燥箱中加热到180℃,保温24h。
S104,待所述反应釜冷却后,通过离心、洗涤和干燥到粉末状柔性材料。
本实施例中,待所述反应釜加热反应结束后,待所述反应釜自然冷却至室温后,将所述反应釜中的产物取出,用去离子水在高速离心机中清洗5~8次,之后在鼓风干燥箱中在50℃~60℃下干燥24h或以上。
S105:将所述粉末状柔性材料通过物相气相沉积、化学蒸汽沉积或涂层的方式制成柔性盖板。
具体的,整个柔性盖板制备过程中以分析纯的钡源和钛源为反应物,以NaOH为矿化剂,矿化剂能够促进或控制化合物的形成。S101和S102中所述钡源混合液与钡源和钛源混合液均盛放在反应釜内衬中。本实施例中,以Ba(OH) 2-H 2O和TiCl 4为反应物,所述反应釜内衬为聚四氟乙烯内衬。
另外的,所述柔性盖板的制备过程中,还可以通过调整钡源和钛源反应物的比例,采用掺杂工艺将Al或N等元素加入到反应物中,根据不同的需求来完成最终柔性材料的设计。本实施例中,将Al和N元素加入到反应物中,最终可得到了具有防水性能的柔性盖板。
本发明提供的柔性盖板,通过上述柔性盖板制备方法制备得到,所述柔性盖板可制成厚度为50um~70um且表面硬度超过8H的超薄膜。另外的,由于制备所述柔性盖板的柔性材料可掺杂Al或N元素,使得最终得到的柔性盖板 在具有超薄和高硬度的同时也具有较好的防水性能。
综上所述,与现有柔性盖板相比,本发明提供的柔性盖板不仅具有超薄的厚度、较强的表面硬度,还可以依据不同的需求设计成具有不同性能的柔性盖板,大大提高了OLED产品的可靠性。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (16)

  1. 一种柔性材料制备方法,其中,包括:
    取钡源原料和NaOH加入到去离子水中,室温下搅拌得到钡源混合液;
    将所述钡源混合液转移至真空手套箱中,并加入液态钛源,搅拌后得到钡源和钛源混合液;
    将所述钡源和钛源混合液转入反应釜中,其中,在160℃~200℃下反应20h~28h;
    待所述反应釜冷却后,通过离心、洗涤和干燥得到粉末状柔性材料。
  2. 如权利要求1所述的柔性材料制备方法,其中,所述钡源原料中钡离子、液态钛源中钛离子和NaOH的摩尔比为1∶4∶32。
  3. 如权利要求2所述的柔性材料制备方法,其中,所述的钡源原料包括Ba(OH) 2-H 2O或BaCl 2,所述液态钛源包括TiCl 4或钛酸丁酯,所述钡源中钡离子浓度为0.1mol/L~0.4mol/L。
  4. 如权利要求1所述的柔性材料制备方法,其中,所述反应釜填充度为60%~80%,可通过采用加入去离子水的方式调整。
  5. 如权利要求1所述的柔性材料制备方法,其中,所述洗涤为加入去离子水洗涤5~8次。
  6. 如权利要求1所述的柔性材料制备方法,其中,所述干燥是在鼓风干燥器中在50℃~60℃下干燥24h或以上。
  7. 如权利要求1所述的柔性材料制备方法,其中,所述钡源混合液中还可以通过掺杂的方式添加Al和N等其他元素。
  8. 一种柔性材料,其中,由权利要求1所述的方法制备得到,用于制备透明柔性盖板。
  9. 如权利要求8所述的柔性材料,其中,所述钡源原料中钡离子、液态钛源中钛离子和NaOH的摩尔比为1∶4∶32。
  10. 如权利要求9所述的柔性材料,其中,所述的钡源原料包括Ba(OH) 2-H 2O或BaCl 2,所述液态钛源包括TiCl 4或钛酸丁酯,所述钡源中钡离子浓度为0.1mol/L~0.4mol/L。
  11. 如权利要求8所述的柔性材料,其中,所述反应釜填充度为60%~80%, 可通过采用加入去离子水的方式调整。
  12. 如权利要求8所述的柔性材料,其中,所述洗涤为加入去离子水洗涤5~8次。
  13. 如权利要求8所述的柔性材料,其中,所述干燥是在鼓风干燥器中在50℃~60℃下干燥24h或以上。
  14. 如权利要求8所述的柔性材料,其中,所述钡源混合液中还可以通过掺杂的方式添加Al和N等其他元素。
  15. 一种柔性盖板制作方法,包括:提供权利要求8~14所述的柔性材料,所述柔性材料通过物理气相沉积、化学蒸汽沉积或物理涂层的方式加工得到柔性盖板。
  16. 一种柔性盖板,其中,由权利要求15所述的方法制备得到,用于保护显示面板。
PCT/CN2017/117258 2017-09-12 2017-12-19 柔性材料及其制备方法、柔性盖板及其制备方法 WO2019052073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/745,083 US10665824B2 (en) 2017-09-12 2017-12-19 Flexible material and preparation method thereof, flexible cover plate and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710817827.5 2017-09-12
CN201710817827.5A CN107644944B (zh) 2017-09-12 2017-09-12 柔性材料、柔性盖板及其制备方法

Publications (1)

Publication Number Publication Date
WO2019052073A1 true WO2019052073A1 (zh) 2019-03-21

Family

ID=61111202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117258 WO2019052073A1 (zh) 2017-09-12 2017-12-19 柔性材料及其制备方法、柔性盖板及其制备方法

Country Status (3)

Country Link
US (1) US10665824B2 (zh)
CN (1) CN107644944B (zh)
WO (1) WO2019052073A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207541A1 (en) * 2010-09-27 2013-08-15 Koninklijke Philips Electronics N.V. OLED with flexible cover layer
CN203521480U (zh) * 2013-10-12 2014-04-02 昆山工研院新型平板显示技术中心有限公司 一种柔性有机光电器件的封装结构
CN104803412A (zh) * 2015-05-06 2015-07-29 武汉工程大学 水热法制备二钛酸钡的方法
US20160093685A1 (en) * 2014-09-30 2016-03-31 Lg Display Co., Ltd. Flexible display device with bend stress reduction member and manufacturing method for the same
CN105591036A (zh) * 2016-01-26 2016-05-18 纳晶科技股份有限公司 一种柔性电致发光器件的封装结构及其封装方法
CN106033273A (zh) * 2015-03-17 2016-10-19 南昌欧菲光学技术有限公司 触摸屏盖板的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152893B (zh) * 2013-02-16 2015-07-15 上海科润光电技术有限公司 一种发光线组合的柔性双面显示器
CN103570060A (zh) * 2013-11-08 2014-02-12 蚌埠玻璃工业设计研究院 一种纳米钛酸钡的制备工艺
CN105289588A (zh) * 2014-07-28 2016-02-03 中国科学院上海硅酸盐研究所 一种钯合金催化薄膜材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130207541A1 (en) * 2010-09-27 2013-08-15 Koninklijke Philips Electronics N.V. OLED with flexible cover layer
CN203521480U (zh) * 2013-10-12 2014-04-02 昆山工研院新型平板显示技术中心有限公司 一种柔性有机光电器件的封装结构
US20160093685A1 (en) * 2014-09-30 2016-03-31 Lg Display Co., Ltd. Flexible display device with bend stress reduction member and manufacturing method for the same
CN106033273A (zh) * 2015-03-17 2016-10-19 南昌欧菲光学技术有限公司 触摸屏盖板的制备方法
CN104803412A (zh) * 2015-05-06 2015-07-29 武汉工程大学 水热法制备二钛酸钡的方法
CN105591036A (zh) * 2016-01-26 2016-05-18 纳晶科技股份有限公司 一种柔性电致发光器件的封装结构及其封装方法

Also Published As

Publication number Publication date
US20190386214A1 (en) 2019-12-19
CN107644944B (zh) 2019-12-03
US10665824B2 (en) 2020-05-26
CN107644944A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
Wang et al. Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method
Chen et al. High-performance transparent barrier films of SiO x∕ SiN x stacks on flexible polymer substrates
RU2541539C2 (ru) Способ получения хлордиалкоксидов индия
Lin et al. Efficient Cesium Lead Halide Perovskite Solar Cells through Alternative Thousand‐Layer Rapid Deposition
US9334443B1 (en) Synthesis of CsSnI3 by a solution based method
Tseng et al. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes
TW201124345A (en) Process for producing indium oxide-containing layers
Banerjee et al. Fabrication of ZrO2 and ZrN films by metalorganic chemical vapor deposition employing new Zr precursors
Veith et al. A novel precursor system and its application to produce tin doped indium oxide
TW201402470A (zh) 複合氧化物薄膜製造用組合物及使用該組合物之薄膜之製造方法、與複合氧化物薄膜
JP2017088895A (ja) 蛍光体微粒子、蛍光体微粒子の製造方法、蛍光体薄膜、波長変換膜、波長変換デバイス及び太陽電池
TWI543940B (zh) A composition for producing an oxide film, and an oxide thin film using the same
Lotnyk et al. Formation of BaTiO3 thin films from (110) TiO2 rutile single crystals and BaCO3 by solid state reactions
Sun et al. Vacuum ultraviolet photochemical sol-gel processing of Zn, Sn, Zn-Sn oxide thin films for encapsulation of organic light emitting diodes
Wang et al. Surface CH3NH3+ to CH3+ Ratio Impacts the Work Function of Solution‐Processed and Vacuum‐Sublimed CH3NH3PbI3 Thin Films
WO2019052073A1 (zh) 柔性材料及其制备方法、柔性盖板及其制备方法
Zong et al. Synthesis and thermal stability of Zn3N2 powder
CN108447996B (zh) 钙钛矿结构、应用其的电子装置、相关的光电转换层的制造方法
CN109904317A (zh) 一种钙钛矿层的制备方法、应用及装置
CN113235163B (zh) 一种无机化合物晶体CsSb5S8及其制备方法、应用
CN109399678A (zh) 一种纳米级金属氢氧化物的制备方法
CN107629006A (zh) 一种克霉唑的合成方法
CN102115308B (zh) 含铟醇盐及锡醇盐的组成物的制造方法及借由该方法制得的含铟醇盐及锡醇盐的组成物
TWI709594B (zh) 聚苯並噁唑及其利用
Okada et al. Behavior of zinc-and aluminum β-ketoesterate complexes during steaming treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925516

Country of ref document: EP

Kind code of ref document: A1