WO2019050023A1 - レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法 - Google Patents

レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法 Download PDF

Info

Publication number
WO2019050023A1
WO2019050023A1 PCT/JP2018/033350 JP2018033350W WO2019050023A1 WO 2019050023 A1 WO2019050023 A1 WO 2019050023A1 JP 2018033350 W JP2018033350 W JP 2018033350W WO 2019050023 A1 WO2019050023 A1 WO 2019050023A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
laser
laser light
processing head
light
Prior art date
Application number
PCT/JP2018/033350
Other languages
English (en)
French (fr)
Inventor
清隆 江泉
山下 隆之
同慶 長安
賢二 星野
秀明 山口
加藤 直也
諒 石川
真也 堂本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019541041A priority Critical patent/JP7142197B2/ja
Priority to CN201880057096.1A priority patent/CN111093886B/zh
Priority to EP18853690.8A priority patent/EP3683002B1/en
Publication of WO2019050023A1 publication Critical patent/WO2019050023A1/ja
Priority to US16/806,343 priority patent/US20200198053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering

Definitions

  • the present disclosure relates to a laser processing head, an optical fiber inspection apparatus for inspecting an optical fiber connected to the laser processing head, and an optical fiber inspection method.
  • the optical fiber is usually connected to the laser processing head after inspecting that there is no dust or dirt on the laser beam output end face of the optical fiber.
  • dust or the like adheres to the laser light emitting end face of the optical fiber, the dust or the like may be burnt by the laser light, and the laser light emitting end face of the optical fiber may be damaged.
  • an object of the present disclosure is a laser processing head capable of inspecting a laser light emitting end face of an optical fiber in a state where the optical fiber is connected, and an optical fiber inspecting an optical fiber connected to the laser processing head.
  • An inspection apparatus and an optical fiber inspection method are provided.
  • a laser processing head is a laser processing head connected to an optical fiber and irradiating laser light guided by the optical fiber toward a work, and a collimator lens converting the laser light into parallel rays.
  • a condenser lens for condensing the laser beam converted into parallel rays a casing for accommodating the collimator lens and the condenser lens inside, an optical path of the laser beam between the collimator lens and the condenser lens
  • the laser beam is emitted from the optical fiber through a wavelength selection mirror which transmits the laser light and reflects the light of the predetermined wavelength different from the laser light, a position where the light of the predetermined wavelength transmits, and the wavelength selection mirror.
  • a transmission window provided at a position where the end face is optically observable.
  • An optical fiber inspection apparatus is an optical fiber inspection apparatus for inspecting an optical fiber connected to the above-described laser processing head, which is different from a laser beam through a transmission window through a wavelength selection mirror.
  • the illumination light source which illuminates a laser beam output end face with the light of wavelength
  • the optical observation apparatus which observes the laser beam output end face illuminated by the illumination light source from a transmission window via a wavelength selection mirror.
  • An optical fiber inspection method is an optical fiber inspection method for inspecting an optical fiber connected to the above-mentioned laser processing head, which is different from laser light through a transmission window through a wavelength selection mirror.
  • An illumination step of illuminating a laser beam emitting end face with light of a wavelength, and an observation step of optically observing a laser beam emitting end face illuminated with light of a predetermined wavelength different from the laser light from a transmission window through a wavelength selection mirror And an inspection step of inspecting the state of the laser light emitting end surface based on the observation result in the observation step.
  • the laser light emitting end face of the optical fiber can be inspected in a state of being connected to the laser processing head. Further, since the laser light emitting end surface can be observed without removing the optical fiber from the laser processing head, the maintenance frequency of the laser processing head can be appropriately determined.
  • illumination light can be irradiated to the laser light emitting end face without removing the optical fiber from the laser processing head, and the state of the laser light emitting end face is observed can do.
  • FIG. 1 is a view showing the configuration of a laser processing apparatus according to a first embodiment.
  • FIG. 2 is a view showing an essential part of a laser processing head to which an optical fiber and an optical fiber inspection apparatus according to Embodiment 1 are attached. It is a figure which shows the principal part of the laser processing head in which the optical fiber and optical fiber test
  • FIG. 1 shows the configuration of a laser processing apparatus 10 according to the present embodiment.
  • the laser processing apparatus 10 includes a laser processing head 20, a manipulator 30, a control unit 40, a laser oscillator 50, and an optical fiber 60.
  • the laser processing head 20 irradiates the workpiece W with the laser beam 70 from the optical fiber 60.
  • the laser processing head 20 is attached to the tip of the manipulator 30 and moves the laser processing head 20.
  • the control unit 40 controls the operation of the laser processing head 20, the operation of the manipulator 30, and the laser oscillation of the laser oscillator 50.
  • the laser oscillator 50 oscillates the laser beam 70 and outputs the laser beam 70 to the optical fiber 60.
  • the optical fiber 60 transmits the laser beam 70 output from the laser oscillator 50 to the laser processing head 20.
  • the laser processing apparatus 10 operates the laser processing head 20 and the manipulator 30 to irradiate the workpiece W with the laser beam 70 output from the laser oscillator 50 with a desired trajectory, and cut the workpiece W or Used for welding, drilling, etc. Further, at the time of periodic inspection or the like, the optical fiber inspection device 80 is attached to the laser processing head 20 (see FIG. 2).
  • FIG. 2 shows the main part of the laser processing head 20 to which the optical fiber 60 and the optical fiber inspection apparatus 80 are attached.
  • illustration and the description are abbreviate
  • the incident side of the laser beam 70 in the laser processing head 20 may be referred to as “upper”, and the emission side may be referred to as “lower”.
  • the broken arrow in FIG. 2 and FIG. 3 schematically indicates the direction of the light beam, and is not intended to indicate the center of the optical axis or the spread of the light.
  • the laser processing head 20 includes a housing 21, a connector 22, a collimator lens 23, a condenser lens 24, and a wavelength selection mirror 25.
  • a connector 22 is attached to the upper side of the housing 21, and the collimator lens 23, the condenser lens 24, and the wavelength selection mirror 25 are accommodated inside. Further, a transmission window 26 in which a protective glass 27 is fitted is provided on the side wall. Further, although not shown, a nozzle for irradiating the laser beam 70 toward the workpiece W is provided below the condenser lens 24.
  • the optical components such as the collimator lens 23 are held in a predetermined arrangement relationship in the housing 21 to define the optical axis of the laser beam 70 emitted from the laser processing head 20.
  • the housing 21 also has a function of preventing adhesion of dust, dirt and the like to the optical component and preventing the laser beam 70 from unintentionally leaking to the outside. Further, the connector 22 connects and fixes the optical fiber 60 to the laser processing head 20.
  • the collimator lens 23 converts the laser beam 70 emitted from the laser beam emitting end face 61 of the optical fiber 60 into a parallel beam
  • the condenser lens 24 converts the laser beam 70 converted into the parallel beam into a predetermined beam.
  • the laser beam 70 is condensed at a position, and the laser beam 70 is irradiated toward a predetermined processing point of the workpiece W through the nozzle.
  • the distance between the laser processing head 20 and the work W is adjusted using, for example, a manipulator 30 or the like so that the focal point of the focusing lens 24 is positioned on the surface or near the surface of the work W.
  • the wavelength selection mirror 25 is provided inside the housing 21 and in the optical path of the laser beam 70 between the collimator lens 23 and the condenser lens 24.
  • the wavelength selection mirror 25 is configured to transmit the laser beam 70 and to reflect light of a predetermined wavelength different from that of the laser beam 70.
  • desired wavelength selectivity can be obtained by adjusting the configuration of a wavelength selection filter (not shown) formed on the upper surface of the wavelength selection mirror 25.
  • the transmission window 26 is provided to introduce light into the inside of the housing 21 from the outside, and a protective glass 27 is fitted to keep the inside of the housing 21 airtight.
  • the transmission window 26 is provided at a position where the laser light emission end face 61 of the optical fiber 60 can be optically observed through the wavelength selection mirror 25. That is, the positional relationship between the optical fiber 60, the wavelength selection mirror 25, and the transmission window 26 is defined such that the light transmitted through the transmission window 26 is reflected by the wavelength selection mirror 25 and illuminates the laser light emission end face 61. .
  • the distance between the collimator lens 23 and the condensing lens 24, which is a section which is parallel light, is not limited greatly, and these optical components It becomes easy to arrange the wavelength selection mirror 25 in the section which is parallel light between (23, 24).
  • the optical fiber inspection apparatus 80 performs an optical observation for observing an illumination light source 81 emitting light of a predetermined wavelength different from the laser light 70 and a laser light emitting end face 61 of the optical fiber 60 illuminated by the light from the illumination light source 81
  • a device 82, a light guiding member 83, and a light branching member 84 are provided.
  • the optical fiber inspection apparatus 80 is removed from the laser processing head 20 at the time of normal laser processing, and in order to inspect the state of the optical fiber 60, particularly the laser light emitting end face 61 at the time of periodic inspection, etc.
  • the laser processing head 20 is attached.
  • the illumination light source 81 and the optical observation device 82 may be integrated as one device, for example, or may be separately disposed.
  • the illumination light source 81 and the transmission window 26 are connected by a light guide member 83.
  • a light branching member 84 such as a half mirror is disposed in the path of the light guiding member 83.
  • the wavelength selection mirror 25 is configured to reflect light of a predetermined wavelength different from that of the laser light 70
  • light of a predetermined wavelength different from that of the laser light 70 emitted from the illumination light source 81 is The light travels toward the wavelength selection mirror 25 via the light guide member 83 and the light branching member 84, is reflected by the wavelength selection mirror 25, and illuminates the laser light emission end face 61.
  • the return light reflected by the laser light emission end face 61 is reflected by the wavelength selection mirror 25 and guided to the optical observation device 82, and the optical observation device 82 can optically observe the laser light emission end face 61. Based on this observation result, it is possible to inspect the state of the laser light emitting end face 61, for example, the adhesion state of dust or the like, the presence or absence of burn-in or breakage of the end face, or the like.
  • the laser processing head 20 is provided with the transmission window 26 for optically observing the laser light emission end face 61 of the optical fiber 60 and the wavelength selection mirror 25.
  • the laser light emitting end face 61 of the optical fiber 60 can be inspected from the outside of the processing head 20.
  • the state of the laser beam output end face 61 can be in-situ (actually, the transmission window 26
  • inspection can be performed in such a manner that an optical fiber is connected to the laser processing head.
  • an appropriate replacement time of the optical fiber 60 can be determined.
  • the maintenance frequency of the laser processing head 20 can be appropriately determined, and the cost for maintenance can be suppressed. .
  • an optical fiber port (not shown) may be provided instead of the transmission window 26 to connect the optical fibers.
  • an anti-reflection film is provided on the inner surface and the surface of the protective glass 27 fitted in the transmission window 26, to suppress reflection of illumination light from the illumination light source 81 and return light from the laser light emitting end face 61. It is preferred that in addition, when an optical coherence tomography (Optical Coherence Tomography) apparatus is used as the optical fiber inspection apparatus 80, the state of the laser light emitting end face 61 can be observed with high resolution, and the inspection accuracy is improved.
  • Optical Coherence Tomography Optical Coherence Tomography
  • a wavelength selection filter for transmitting the illumination light from the illumination light source 81 while cutting the laser light 70 is in contact with or near the surface of the transmission window 26 or the optical fiber port on the housing 21 side. It may be provided. With such a configuration, components of the laser beam 70 incident on the optical observation device 82 can be significantly reduced, and observation accuracy can be improved.
  • FIG. 3 shows the main part of the laser processing head 20a to which the optical fiber 60 and the optical fiber inspection device 80 are attached according to the present embodiment.
  • the configuration shown in the present embodiment and the configuration shown in the first embodiment are different in that an optical block 28 that can be attached to and detached from the housing 21 is attached.
  • the optical block 28 has an opening or transmission window (not shown) up and down between the collimator lens 23 and the condenser lens 24 in the housing 21 so as to pass the laser beam 70 and the light from the illumination light source 81.
  • a transmission window 26 is provided on the side wall of the optical block 28, and a wavelength selection mirror 25 is provided inside.
  • the material which comprises the optical block 28 is the same material as the housing
  • the wavelength selection mirror 25 is configured to transmit the laser beam 70. However, it is difficult to realize the wavelength selection mirror 25 having 100% transmittance, and a part of the laser beam 70, for example, 0. A few percent is reflected and absorbed by the housing 21.
  • the case 21 absorbs a part of the laser beam 70, the temperature of the case 21 rises and thermally expands. As a result, there is a risk that the arrangement relationship of the optical components provided inside the housing 21 may deviate from the predetermined relationship. Moreover, the temperature rise may accelerate deterioration of the housing 21 and shorten the life.
  • a wavelength selection mirror 25 is provided which is a component necessary for observing the state of the laser light emitting end face 61 of the optical fiber 60 by providing the optical block 28 which is attachable to and detachable from the housing 21. And a transmission window 26.
  • the optical block 28 can be removed and the loss of the laser beam 70 can be suppressed.
  • the optical block 28 can be attached to the housing 21 only at the time of inspection of the optical fiber 60, and the state of the laser light emitting end face 61 can be observed by the optical fiber inspection apparatus 80.
  • an optical fiber may be used as the light guide member 83 in order to observe the laser light emission end face 61 from the transmission window 26. Further, the light guide member 83 may not be used.
  • a wavelength selection filter may be provided on the lower surface of the wavelength selection mirror 25, or the wavelength selection mirror 25 itself may be provided with the above-described wavelength selectivity.
  • the transmission window 26 is described as being provided on the side wall of the housing 21 in Embodiment 1 and on the side wall of the optical block 28 in Embodiment 2. However, the position where the transmission window 26 is provided is limited to the side wall I can not. That is, the transmitted light having a predetermined wavelength different from that of the laser light 70 from the illumination light source 81 is reflected by the wavelength selection mirror 25 so as to illuminate the laser light emitting end face 61 of the optical fiber 60 directly or indirectly. It should be done.
  • the housing is provided with the removable optical block between the collimator lens and the condenser lens in the housing, the transmission window is provided in the optical block instead of the housing, the wavelength selection mirror is the optical block Preferably, it is provided inside the housing
  • a laser processing head, an optical fiber inspection apparatus for inspecting an optical fiber connected to the laser processing head, and an optical fiber inspection method according to an aspect of the present disclosure can inspect the state of a laser light emission end surface without removing the optical fiber. Therefore, it is useful when applied to a laser processing apparatus that processes a large amount of work with high power.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ加工ヘッド(20)は、レーザ光(70)を平行光線に変換するコリメータレンズ(23)と、平行光線に変換されたレーザ光(70)を集光する集光レンズ(24)と、コリメータレンズ(23)と集光レンズ(24)とを内部に収容する筐体(21)と、コリメータレンズ(23)と集光レンズ(24)との間に設けられ、レーザ光(70)を透過する一方、レーザ光(70)と異なる所定の波長の光を反射する波長選択ミラー(25)と、所定の波長の光を透過する位置且つ波長選択ミラー(25)を介して光ファイバ(60)のレーザ光出射端面(61)が光学的に観測可能な位置に設けられた透過窓と、を備える。

Description

レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法
 本開示は、レーザ加工ヘッド、レーザ加工ヘッドに接続された光ファイバを検査する光ファイバ検査装置及び光ファイバ検査方法に関する。
 従来、気体レーザや固体レーザ等のレーザ発振器からの出射光を光ファイバで導波して、レーザ加工ヘッドからワークに向けて照射し、ワークの溶接や加工を行うレーザ加工装置が知られている(例えば、特許文献1参照)。
特開2007-030032号公報
 従来のレーザ加工装置において、通常、光ファイバのレーザ光出射端面にゴミや汚れ等がないことを検査してから、光ファイバをレーザ加工ヘッドに接続している。光ファイバのレーザ光出射端面にゴミ等が付着している場合、レーザ光によりこのゴミ等が焼け、光ファイバのレーザ光出射端面が損傷する場合があるからである。
 しかし、上記従来の構成において、光ファイバをレーザ加工ヘッドに接続した後は、光ファイバのレーザ光出射端面の確認ができない。そのため、光ファイバをレーザ加工ヘッドに接続する工程で光ファイバのレーザ光出射端面にゴミ等が付着した場合、以降に行われるレーザ加工において、光ファイバのレーザ光出射端面が損傷するおそれがあった。
 本開示はかかる点に鑑み、その目的は、光ファイバが接続された状態で、光ファイバのレーザ光出射端面を検査可能なレーザ加工ヘッド、レーザ加工ヘッドに接続された光ファイバを検査する光ファイバ検査装置及び光ファイバ検査方法を提供することにある。
 本開示の一態様に係るレーザ加工ヘッドは、光ファイバに接続され、ワークに向けて光ファイバで導波したレーザ光を照射するレーザ加工ヘッドであって、レーザ光を平行光線に変換するコリメータレンズと、平行光線に変換されたレーザ光を集光する集光レンズと、コリメータレンズと集光レンズとを内部に収容する筐体と、コリメータレンズと集光レンズとの間のレーザ光の光路中に設けられ、レーザ光を透過する一方、レーザ光と異なる所定の波長の光を反射する波長選択ミラーと、所定の波長の光が透過する位置且つ波長選択ミラーを介して光ファイバのレーザ光出射端面が光学的に観測可能な位置に設けられた透過窓と、を備える。
 本開示の一態様に係る光ファイバ検査装置は、上記のレーザ加工ヘッドに接続された光ファイバを検査する光ファイバ検査装置であって、透過窓から波長選択ミラーを介してレーザ光と異なる所定の波長の光でレーザ光出射端面を照明する照明光源と、照明光源に照明されたレーザ光出射端面を、波長選択ミラーを介して透過窓から観測する光学観測装置と、を備える。
 本開示の一態様に係る光ファイバ検査方法は、上記のレーザ加工ヘッドに接続された光ファイバを検査する光ファイバ検査方法であって、透過窓から波長選択ミラーを介してレーザ光と異なる所定の波長の光でレーザ光出射端面を照明する照明ステップと、レーザ光と異なる所定の波長の光で照明されたレーザ光出射端面を、波長選択ミラーを介して透過窓から光学的に観測する観測ステップと、観測ステップにおける観測結果に基づいて、レーザ光出射端面の状態を検査する検査ステップと、を含む。
 以上説明したように、本開示に係るレーザ加工ヘッドによれば、レーザ加工ヘッドに接続した状態で、光ファイバのレーザ光出射端面を検査することができる。また、レーザ加工ヘッドから光ファイバを取り外すことなく、レーザ光出射端面を観測できるため、レーザ加工ヘッドのメンテナンス頻度を適切に定めることができる。
 また、本開示に係る光ファイバ検査装置及び光ファイバ検査方法によれば、レーザ加工ヘッドから光ファイバを取り外すことなく、そのレーザ光出射端面に照明光を照射でき、レーザ光出射端面の状態を観測することができる。
実施形態1に係るレーザ加工装置の構成を示す図である。 実施形態1に係る光ファイバと光ファイバ検査装置とが取り付けられたレーザ加工ヘッドの要部を示す図である。 実施形態2に係る光ファイバと光ファイバ検査装置とが取り付けられたレーザ加工ヘッドの要部を示す図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 [レーザ加工装置の構成]
 図1は、本実施形態に係るレーザ加工装置10の構成を示す。レーザ加工装置10は、レーザ加工ヘッド20と、マニピュレータ30と、制御部40と、レーザ発振器50と、光ファイバ60とを備えている。
 レーザ加工ヘッド20は、光ファイバ60からのレーザ光70をワークWに照射する。マニピュレータ30は、先端にレーザ加工ヘッド20が取り付けられ、レーザ加工ヘッド20を移動させる。制御部40は、レーザ加工ヘッド20の動作とマニピュレータ30の動作と、レーザ発振器50のレーザ発振を制御する。レーザ発振器50は、レーザ光70を発振し、光ファイバ60に出力する。光ファイバ60は、レーザ発振器50から出力されたレーザ光70をレーザ加工ヘッド20まで伝送する。このような構成により、レーザ加工装置10は、レーザ加工ヘッド20及びマニピュレータ30を動作させて、レーザ発振器50から出力されたレーザ光70をワークWに所望の軌跡で照射し、ワークWの切断や溶接、穴あけ加工等を行うのに使用される。また、定期点検等の際には、レーザ加工ヘッド20に光ファイバ検査装置80が取り付けられる(図2参照)。
 [レーザ加工ヘッドの要部構成]
 図2は、光ファイバ60と光ファイバ検査装置80とが取り付けられたレーザ加工ヘッド20の要部を示す。なお、説明の便宜上、本開示に直接関係しない構成部品については、図示及びその説明を省略する。また、以降の説明において、レーザ加工ヘッド20におけるレーザ光70の入射側を「上」、出射側を「下」と呼ぶことがある。また、図2及び図3における破線の矢印は、光線の方向を模式的に示すものであって、光軸中心や光の広がりを示す意図はない。
 レーザ加工ヘッド20は、筐体21とコネクタ22とコリメータレンズ23と集光レンズ24と波長選択ミラー25とを備えている。
 筐体21は上側にコネクタ22が取り付けられ、内部にコリメータレンズ23と集光レンズ24と波長選択ミラー25とを収容している。また、側壁には保護ガラス27が嵌め込まれた透過窓26が設けられている。また、図示しないが、集光レンズ24の下方側にはワークWに向けてレーザ光70を照射するためのノズルが設けられている。筐体21の内部にコリメータレンズ23等の光学部品が所定の配置関係を保って保持されることにより、レーザ加工ヘッド20から出射されるレーザ光70の光軸が規定される。また、筐体21は、光学部品にほこりや汚れ等が付着するのを防止するとともに、レーザ光70が外部に意図せず漏れ出すのを防止する機能を有する。また、コネクタ22は、光ファイバ60をレーザ加工ヘッド20に接続して固定している。
 コリメータレンズ23は、光ファイバ60のレーザ光出射端面61から出射され、広がるなどしたレーザ光70を平行光線に変換し、集光レンズ24は、この平行光線に変換されたレーザ光70を所定の位置に集光し、レーザ光70は、ノズルを介してワークWの所定の加工点に向けて照射される。この際、ワークWの表面または表面近傍に集光レンズ24の焦点が位置するように、例えば、マニピュレータ30等を用いてレーザ加工ヘッド20とワークWとの距離が調整される。
 波長選択ミラー25は、筐体21の内部でかつ、コリメータレンズ23と集光レンズ24との間のレーザ光70の光路中に設けられている。波長選択ミラー25は、レーザ光70を透過する一方、レーザ光70と異なる所定の波長の光を反射するように構成されている。具体的には、波長選択ミラー25の上面に形成された波長選択フィルター(図示せず)の構成を調整して、所望の波長選択性が得られる。
 透過窓26は外部から筐体21の内部に光を導入するために設けられており、筐体21内部の気密を保つために保護ガラス27が嵌め込まれている。また透過窓26は、波長選択ミラー25を介して光ファイバ60のレーザ光出射端面61が光学的に観測可能である位置に設けられている。つまり、透過窓26を透過した光が波長選択ミラー25により反射されてレーザ光出射端面61を照明するように、光ファイバ60と波長選択ミラー25と透過窓26との配置関係が規定されている。なお、コリメータレンズ23によってレーザ光70が平行光線に変換されているため、平行光となっている区間であるコリメータレンズ23と集光レンズ24との距離に大きな制約は加わらず、これらの光学部品(23,24)の間の平行光となっている区間に波長選択ミラー25を配置することが容易となる。
 光ファイバ検査装置80は、レーザ光70と異なる所定の波長の光を発する照明光源81と、照明光源81からの光に照明された光ファイバ60のレーザ光出射端面61を観測するための光学観測装置82と、導光部材83と、光分岐部材84とを有している。
 なお、光ファイバ検査装置80は、通常のレーザ加工時はレーザ加工ヘッド20から取り外されており、定期点検等の際に、光ファイバ60、特にレーザ光出射端面61の状態を検査するために、レーザ加工ヘッド20に取り付けられる。照明光源81と光学観測装置82とは、例えば一つの装置としてまとめられていてもよいし、個別に配置されていてもよい。
 照明光源81と透過窓26との間は、導光部材83で接続されている。また、導光部材83の経路中にハーフミラー等の光分岐部材84が配置される。
 上述のように、波長選択ミラー25は、レーザ光70と異なる所定の波長の光を反射するように構成されているため、照明光源81から発せられたレーザ光70と異なる所定の波長の光は、導光部材83及び光分岐部材84を介して波長選択ミラー25に向かい、波長選択ミラー25で反射され、レーザ光出射端面61を照明する。そして、レーザ光出射端面61で反射された戻り光が波長選択ミラー25で反射されて光学観測装置82に導かれ、光学観測装置82によって、レーザ光出射端面61を光学的に観測できる。この観測結果に基づいて、レーザ光出射端面61の状態、例えば、ホコリ等の付着状態や端面の焼き付きあるいは破損の有無等を検査することができる。
 以上説明したように、本実施形態によれば、光ファイバ60のレーザ光出射端面61を光学的に観測するための透過窓26と波長選択ミラー25とをレーザ加工ヘッド20に設けることにより、レーザ加工ヘッド20の外部から光ファイバ60のレーザ光出射端面61を検査できるようにした。このように、波長選択ミラー25を介して、透過窓26から光ファイバ60のレーザ光出射端面61を観測することで、レーザ光出射端面61の状態をin-situで(実際に透過窓26と波長選択ミラー25とをレーザ加工ヘッド20に設けたときの位置関係で、レーザ加工ヘッドに光ファイバが接続された状態となるようにして)検査できる。このことにより、例えば、光ファイバ60の適切な交換時期を決めることができる。また、レーザ加工ヘッド20から光ファイバ60を取り外すことなく、レーザ光出射端面61の状態を検査できるため、レーザ加工ヘッド20のメンテナンス頻度を適切に定めることができ、メンテナンス等にかかるコストを抑制できる。
 なお、導光部材83として光ファイバを用いる場合は、透過窓26の代わりに光ファイバポート(図示せず)を設け、光ファイバを接続するようにするとよい。また、図示しないが、透過窓26に嵌め込まれた保護ガラス27の内面及び表面には、照明光源81からの照明光及びレーザ光出射端面61からの戻り光の反射を抑制する反射防止膜が設けられているのが好ましい。また、光ファイバ検査装置80として光コヒーレンストモグラフィー(Optical Coherence Tomography)装置を用いると、レーザ光出射端面61の状態を高分解能で観測でき、検査精度が向上する。
 また、図示しないが、透過窓26または光ファイバポートの筐体21側の面に接して、あるいは近傍に、照明光源81からの照明光を透過する一方、レーザ光70をカットする波長選択フィルタが設けられていてもよい。このような構成とすることで、光学観測装置82に入射するレーザ光70の成分を大幅に低減でき、観測精度を向上できる。
 (実施形態2)
 図3は、本実施形態に係る、光ファイバ60と光ファイバ検査装置80とが取り付けられたレーザ加工ヘッド20aの要部を示す。
 本実施形態に示す構成と実施形態1に示す構成(図2参照)とは、筐体21に対し着脱可能な光学ブロック28が取り付けられている点で異なる。光学ブロック28は、筐体21におけるコリメータレンズ23と集光レンズ24との間に、レーザ光70及び照明光源81からの光を通過させるように上下に開口または透過窓(図示せず)を有する。この光学ブロック28の側壁には、透過窓26が設けられ、内部に波長選択ミラー25が設けられている。なお、光学ブロック28を構成する材料は筐体21と同じ材料であるのが好ましい。
 前述したように、波長選択ミラー25はレーザ光70を透過するように構成されているが、100%の透過率を有する波長選択ミラー25を実現することは難しく、レーザ光70の一部、例えば0.数%が反射されて筐体21に吸収される。
 一方、レーザ加工において、レーザ光70の高出力化が求められており、上記の反射によるレーザ光70のロスも抑制する必要がある。また、筐体21がレーザ光70の一部を吸収することにより、筐体21の温度が上昇し熱膨張する。このことにより、筐体21の内部に設けられた光学部品の配置関係が所定の関係からずれてしまうおそれがある。また、温度上昇は、筐体21の劣化を早め、寿命を短くするおそれがある。
 そこで、本実施形態のように、筐体21に対し着脱可能な光学ブロック28を設け、これに光ファイバ60のレーザ光出射端面61の状態を観測するのに必要な部品である波長選択ミラー25と透過窓26とを設ける。このことにより、通常のレーザ加工時には、光学ブロック28を取り外してレーザ光70のロスを抑制することができる。また、光ファイバ60の検査時のみ筐体21に光学ブロック28を取り付けて、光ファイバ検査装置80によりレーザ光出射端面61の状態を観測することができる。
 なお、実施形態1,2において、透過窓26からレーザ光出射端面61を観測するために、例えば、導光部材83として光ファイバを用いてもよい。また、導光部材83を用いなくてもよい。
 また、波長選択ミラー25の下面に波長選択フィルタが設けられていてもよいし、波長選択ミラー25自体に上記の波長選択性が付与されていてもよい。
 また、透過窓26は、実施形態1では筐体21の側壁に、実施形態2では光学ブロック28の側壁に設けられているものとして説明したが、透過窓26が設けられる位置は、側壁に限られない。すなわち、透過した、照明光源81からのレーザ光70と異なる所定の波長の光が波長選択ミラー25により反射されて光ファイバ60のレーザ光出射端面61を直接的または間接的に照明する位置に設けられていればよい。
 [効果等]
 以上のように、筐体におけるコリメータレンズと集光レンズとの間に着脱可能な光学ブロックを備え、透過窓は、筐体に替えて光学ブロックに設けられており、波長選択ミラーは、光学ブロックの内部に設けられているのが好ましい。
 この構成によれば、レーザ加工ヘッドから光ファイバを取り外すことなく、レーザ光出射端面を観測できるとともに、通常のレーザ加工時には、光学ブロックを取り外してレーザ光のロスを抑制することができる。
 本開示の一態様に係るレーザ加工ヘッド、レーザ加工ヘッドに接続された光ファイバを検査する光ファイバ検査装置及び光ファイバ検査方法は、光ファイバを取り外すことなく、レーザ光出射端面の状態を検査できるため、高出力で大量のワークを加工するレーザ加工装置に適用する上で有用である。
10  レーザ加工装置
20  レーザ加工ヘッド
20a レーザ加工ヘッド
21  筐体
22  コネクタ
23  コリメータレンズ
24  集光レンズ
25  波長選択ミラー
26  透過窓
27  保護ガラス
28  光学ブロック
30  マニピュレータ
40  制御部
50  レーザ発振器
60  光ファイバ
61  レーザ光出射端面
70  レーザ光
80  光ファイバ検査装置
81  照明光源
82  光学観測装置
83  導光部材
84  光分岐部材
 W  ワーク

Claims (4)

  1.  光ファイバに接続され、ワークに向けて前記光ファイバで導波したレーザ光を照射するレーザ加工ヘッドであって、
     前記レーザ光を平行光線に変換するコリメータレンズと、
     前記平行光線に変換された前記レーザ光を集光する集光レンズと、
     前記コリメータレンズと前記集光レンズとを内部に収容する筐体と、
     前記コリメータレンズと前記集光レンズとの間の前記レーザ光の光路中に設けられ、前記レーザ光を透過する一方、前記レーザ光と異なる所定の波長の光を反射する波長選択ミラーと、
     前記所定の波長の光が透過する位置且つ前記波長選択ミラーを介して前記光ファイバのレーザ光出射端面が光学的に観測可能な位置に設けられた透過窓と、を備えることを特徴とするレーザ加工ヘッド。
  2.  請求項1に記載のレーザ加工ヘッドにおいて、
     前記筐体における前記コリメータレンズと前記集光レンズとの間に着脱可能に設けられ、側壁に前記透過窓を有し、内部に前記波長選択ミラーを有する光学ブロックをさらに備えることを特徴とするレーザ加工ヘッド。
  3.  請求項1または2に記載のレーザ加工ヘッドに接続された前記光ファイバを検査する光ファイバ検査装置であって、
     前記透過窓から前記波長選択ミラーを介して前記レーザ光と異なる前記所定の波長の光で前記レーザ光出射端面を照明する照明光源と、
     前記照明光源に照明された前記レーザ光出射端面を、前記波長選択ミラーを介して前記透過窓から観測する光学観測装置と、を備えることを特徴とする光ファイバ検査装置。
  4.  請求項1または2に記載のレーザ加工ヘッドに接続された前記光ファイバを検査する光ファイバ検査方法であって、
     前記透過窓から前記波長選択ミラーを介して前記レーザ光と異なる前記所定の波長の光で前記レーザ光出射端面を照明する照明ステップと、
     前記レーザ光と異なる前記所定の波長の光で照明された前記レーザ光出射端面を、前記波長選択ミラーを介して前記透過窓から光学的に観測する観測ステップと、
     前記観測ステップにおける観測結果に基づいて、前記レーザ光出射端面の状態を検査する検査ステップと、を含むことを特徴とする光ファイバ検査方法。
PCT/JP2018/033350 2017-09-11 2018-09-10 レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法 WO2019050023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019541041A JP7142197B2 (ja) 2017-09-11 2018-09-10 レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法
CN201880057096.1A CN111093886B (zh) 2017-09-11 2018-09-10 激光加工头、光纤检查装置及光纤检查方法
EP18853690.8A EP3683002B1 (en) 2017-09-11 2018-09-10 Laser processing head, optical fiber inspection device, and optical fiber inspection method
US16/806,343 US20200198053A1 (en) 2017-09-11 2020-03-02 Laser processing head, optical fiber inspection device, and optical fiber inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174075 2017-09-11
JP2017-174075 2017-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/806,343 Continuation US20200198053A1 (en) 2017-09-11 2020-03-02 Laser processing head, optical fiber inspection device, and optical fiber inspection method

Publications (1)

Publication Number Publication Date
WO2019050023A1 true WO2019050023A1 (ja) 2019-03-14

Family

ID=65633967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033350 WO2019050023A1 (ja) 2017-09-11 2018-09-10 レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法

Country Status (5)

Country Link
US (1) US20200198053A1 (ja)
EP (1) EP3683002B1 (ja)
JP (1) JP7142197B2 (ja)
CN (1) CN111093886B (ja)
WO (1) WO2019050023A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187292A (ja) * 1989-01-10 1990-07-23 Sony Corp 光照射位置検出装置
JP2007030032A (ja) 2005-07-29 2007-02-08 Miyachi Technos Corp レーザ加工ヘッド及びレーザ加工装置
JP2010188368A (ja) * 2009-02-17 2010-09-02 Miyachi Technos Corp 光ファイバ伝送系監視装置及びレーザ加工装置
JP2013099783A (ja) * 2011-10-17 2013-05-23 Toshiba Corp レーザ照射装置及びレーザ照射ヘッドの健全性診断方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032967A1 (de) * 1989-10-17 1991-04-18 Haas Laser Systems Ag Verfahren und vorrichtung zur ueberwachung von faserlichtleitern
DE19840346C2 (de) * 1998-09-04 2000-09-07 Med Laserzentrum Luebeck Gmbh Verfahren und Einrichtung zur Diagnose und Überwachung der Übertragungsgüte eines faseroptischen Systems
JP3368427B2 (ja) * 1999-12-27 2003-01-20 住友重機械工業株式会社 レーザ加工状態計測装置
WO2005084874A1 (ja) * 2004-03-05 2005-09-15 Olympus Corporation レーザ加工装置
DE102006028250A1 (de) * 2006-06-20 2007-12-27 Carl Zeiss Microimaging Gmbh Verfahren zur Überwachung von Laserbearbeitungsprozessen
DE102008028347B4 (de) * 2008-06-13 2010-11-04 Precitec Kg Laserstrahlleistungsmessmodul und Laserbearbeitungskopf mit einem Laserstrahlleistungmessmodul
JP5882072B2 (ja) * 2012-02-06 2016-03-09 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置
CN104439695B (zh) * 2013-09-16 2017-08-25 大族激光科技产业集团股份有限公司 一种激光加工系统的视觉检测装置
CN108449974A (zh) * 2016-01-29 2018-08-24 株式会社斯库林集团 污迹检测装置、激光打孔加工装置以及激光打孔加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187292A (ja) * 1989-01-10 1990-07-23 Sony Corp 光照射位置検出装置
JP2007030032A (ja) 2005-07-29 2007-02-08 Miyachi Technos Corp レーザ加工ヘッド及びレーザ加工装置
JP2010188368A (ja) * 2009-02-17 2010-09-02 Miyachi Technos Corp 光ファイバ伝送系監視装置及びレーザ加工装置
JP2013099783A (ja) * 2011-10-17 2013-05-23 Toshiba Corp レーザ照射装置及びレーザ照射ヘッドの健全性診断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683002A4

Also Published As

Publication number Publication date
CN111093886A (zh) 2020-05-01
JP7142197B2 (ja) 2022-09-27
JPWO2019050023A1 (ja) 2020-10-15
EP3683002B1 (en) 2023-08-02
CN111093886B (zh) 2023-04-28
EP3683002A4 (en) 2020-11-04
US20200198053A1 (en) 2020-06-25
EP3683002A1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
CA2785688C (en) Laser ultrasonic flaw detection apparatus
US4716288A (en) Security device for detecting defects in transmitting fiber
US7924428B2 (en) Optical rotary adaptor and optical tomographic imaging apparatus using the same
US20170304942A1 (en) Direct diode laser processing apparatus and output monitoring method therfof
US10751833B2 (en) Fiber coupling device
CN110198804B (zh) 激光加工头以及使用其的激光加工装置
JP6145719B2 (ja) レーザ加工装置及びレーザ加工方法
JP7142197B2 (ja) レーザ加工ヘッド、光ファイバ検査装置及び光ファイバ検査方法
JP2000221108A (ja) 光ファイバ健全性検査装置
JP6364305B2 (ja) 水素ガス濃度計測装置および方法
JP2010038557A (ja) 元素分析装置および元素分析方法
JP5193677B2 (ja) レーザ加工装置
JP2019155446A (ja) レーザ加工装置及びレーザ発振制御方法
JP2732117B2 (ja) レーザ装置
JPH11312831A (ja) レーザビーム漏れ検知システム
JP2016196029A (ja) レーザ加工ヘッド
US8108942B2 (en) Probe microscope
JP2013086110A (ja) レーザ加工装置の光学部品診断方法及びレーザ加工装置
IL209276A (en) Hollow core waveguide for ultrasonic laser production
JP2019201031A (ja) 集光光学ユニット及びそれを用いたレーザ発振器、レーザ加工装置、レーザ発振器の異常診断方法
KR20160048515A (ko) 관 내부 검사 장치
WO2021220763A1 (ja) レーザ加工ヘッド及びレーザ加工装置
US11179800B2 (en) Laser processing device
JP2008185636A (ja) 全反射顕微鏡
JPH11114781A (ja) 湿式切削における工具切刃のモニタリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853690

Country of ref document: EP

Effective date: 20200414