WO2019049981A1 - 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置 - Google Patents

積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置 Download PDF

Info

Publication number
WO2019049981A1
WO2019049981A1 PCT/JP2018/033185 JP2018033185W WO2019049981A1 WO 2019049981 A1 WO2019049981 A1 WO 2019049981A1 JP 2018033185 W JP2018033185 W JP 2018033185W WO 2019049981 A1 WO2019049981 A1 WO 2019049981A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
analysis
layered
layered object
block
Prior art date
Application number
PCT/JP2018/033185
Other languages
English (en)
French (fr)
Inventor
正和 柴原
一樹 生島
充 河原
梨乃 竹内
光 橋詰
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to CN201880058266.8A priority Critical patent/CN111093865B/zh
Priority to US16/643,258 priority patent/US20200331102A1/en
Priority to JP2019541019A priority patent/JP7125764B2/ja
Publication of WO2019049981A1 publication Critical patent/WO2019049981A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a method of analyzing a laminate-shaped article and an analysis apparatus of the laminate-shaped article, a method of manufacturing a laminate-shaped article, and a device of manufacturing a laminate-shaped article.
  • lamination molding using resin powder lamination molding in which molten resin or metal melted by arc discharge is deposited, and the like are also known.
  • the metal powder is irradiated with a laser, an electron beam, etc. to melt and solidify the metal powder to form an object, so extremely large residual stress and deformation in the generated laminate molded article Can occur.
  • Such residual stress and deformation cause problems such as deterioration of the dimensional accuracy of the generated layered product and cracking.
  • Thermal-elastic-plastic analysis using a finite element method is useful for computer analysis of such residual stress and deformation.
  • FEM Finite Element Method
  • static implicit solution FEM it is necessary to solve the stiffness equation of the entire system (multiple simultaneous linear equations) sequentially at each calculation step. It is practically difficult from the viewpoint of calculation time to apply static implicit solution FEM to modeling analysis.
  • an object of the present disclosure is to significantly reduce calculation time in an analysis method and an analysis apparatus for analyzing by computer a residual stress and a deformation that occur in a layered product.
  • Another object of the present disclosure is to provide a method and an apparatus for manufacturing a laminate-molded article capable of suppressing the residual stress and deformation generated in the laminate-molded article.
  • An analysis method of a laminated three-dimensional object is an analysis method for analyzing by computer a residual stress and a deformation generated in a laminated three-dimensional object generated by solidifying and depositing a molten material. Performing thermal elasto-plastic analysis according to time-series data of temperature distribution occurring in the layered object according to the formation of the layered object by performing data input for performing the elasto-plastic analysis of the layered object using the And calculating the residual stress and deformation produced in the layered product.
  • the size of the temperature increment is set to a value larger than the size of the temperature increment used in thermal elasto-plastic analysis of the layered product using the static implicit solution FEM.
  • Heating of the layered object is performed by means of an instantaneous surface heat source having a heat input adjusted to the heat input when heating is performed by a moving heat source.
  • an analysis device of a laminated three-dimensional object of the present disclosure is an analysis device that analyzes residual stress and deformation generated in a laminated three-dimensional object generated by solidifying a molten material in a surface layer, and includes an input unit and a calculation unit And
  • the input unit is configured to input data for performing thermal elastic-plastic analysis of the layered product using FEM.
  • the calculation unit is configured to calculate residual stress and deformation generated in the layered object by performing thermal elastic-plastic analysis in accordance with time-series data of temperature distribution occurring in the layered object with formation of the layered object.
  • the calculation unit calculates displacement and stress of the layered product until reaching a predetermined static equilibrium condition using a dynamic explicit solution FEM when given temperature increments according to time series data, and the displacement is static equilibrium When the condition is reached, the temperature increment is again given to recalculate the displacement and stress.
  • the size of the temperature increment is set to a value larger than the size of the temperature increment used in thermal elasto-plastic analysis of the layered product using the static implicit solution FEM.
  • Heating of the layered object is performed by means of an instantaneous surface heat source having a heat input adjusted to the heat input when heating is performed by a moving heat source.
  • heating for the layered object is performed block by block for the top layer of layered object divided into a plurality of blocks. Heating for each block is performed by the instantaneous surface heat source described above.
  • the heating for the layered object is performed according to a heating pattern which simultaneously heats at least two blocks not adjacent to each other.
  • the heat input of the instantaneous surface heat source is adjusted with respect to the heat input when heating is performed by the moving heat source so that the amount of contraction of the layered object is equal to that when heating is performed by the moving heat source .
  • the material is metal and the temperature increment is at least 100 degrees or more.
  • the size of the temperature increment is determined based on the mechanical melting temperature of the metal that constitutes the laminate.
  • the method of manufacturing a laminate-molded article of the present disclosure is a method of manufacturing a laminate-molded article generated by solidifying a molten material and depositing the molten material, and the method is based on the analysis result using the above-described analysis method. And determining the heating pattern when heating the uppermost layer of the layered product, and heating the layered object according to the heating pattern.
  • the device for producing a layered object is a device for producing a layered object produced by solidifying and depositing a molten material, and is configured to heat the uppermost layer of the layered object.
  • a controller configured to control the heater.
  • the control device determines a heating pattern when heating the uppermost layer of the layered object based on the analysis result using the above-described analysis method, and the heating device is configured to heat the layered object according to the heating pattern. Control.
  • the heating pattern in which the residual stress and the deformation are suppressed can be determined according to the analysis result using the above-mentioned analysis method, and the layered object can be manufactured according to the heating pattern.
  • the method of manufacturing a laminate-molded article of the present disclosure is a method of manufacturing a laminate-molded article which is generated by depositing while melting a molten material.
  • the heating for the layered object is performed block by block for the top layer of the layered object divided into a plurality of blocks.
  • the manufacturing method includes the steps of heating the block at the outermost periphery, and heating the block on the inner peripheral side of the block at the outermost periphery after heating the block at the outermost periphery.
  • the device for producing a layered object is a device for producing a layered object produced by solidifying and depositing a molten material, and is configured to heat the uppermost layer of the layered object.
  • a controller configured to heat each block by controlling the heater with respect to the uppermost layer divided into a plurality of blocks.
  • the control device is configured to heat the block on the inner peripheral side of the outermost peripheral block after the heating of the outermost peripheral block by controlling the heating device.
  • calculation time can be significantly reduced.
  • the manufacturing method and manufacturing apparatus of the laminate-molded article of the present disclosure it is possible to suppress the residual stress generated in the laminate-molded article.
  • FIG. 1 It is a figure showing an analysis model of a metallic laminate model which is an example of a laminate model which is analyzed by an analysis method according to an embodiment of the present disclosure. It is the figure which showed the element of the analysis model. It is the figure which showed an example of the production
  • FIG. 1 is a diagram showing an analysis model of a metal laminate-molded article which is an example of a laminate-molded article analyzed by the analysis method according to the embodiment of the present disclosure.
  • a simple model having a rectangular structure is shown as an example, but a model that can be analyzed by this analysis method is not limited to the model of the structure shown in FIG. 1.
  • this analysis model 10 is a model of a metal-layered laminate (object to be analyzed) laminated and formed on a base plate 12 by a metal 3D printer (not shown).
  • the analysis model 10 has dimensions of 30 mm ⁇ 30 mm ⁇ 1.2 mm.
  • the dimensions of the respective elements constituting the analysis model 10 are 0.1 mm ⁇ 0.1 mm ⁇ 0.03 mm as shown in FIG. 2 from the size of the laser (described later) irradiated at the time of additive manufacturing. Therefore, the number of elements of the analysis model 10 is 3,600,000, and the number of stacked layers is 40.
  • FIG. 3 is the figure which showed an example of the production
  • melts metal powder is shown by irradiating a laser to metal powder of material, the analysis method of this indication is a metal by irradiating an electron beam to metal powder. An electron beam melting method or the like for melting the powder is also applicable.
  • an SLM (Selective Laser Melting) method is shown in which SLM (Selective Laser Melting) is performed in which the laser irradiation is selectively applied to the powder bed in which the metal powder of the material is spread.
  • step I elevator 20 on which intermediate shaped object 24 and metal powder 22 produced in step IV described later is lowered by a thickness of one layer (step I).
  • step II the metal powder 26 of the next layer is supplied onto the intermediate shaped object 24 and the metal powder 22 (Step II).
  • the metal powder 26 is leveled by the roller blade 28 (Step III).
  • shaping of the surface layer is performed by selectively melting and solidifying (sintering) the metal powder 26 using the laser 32 output from the torch 30 as a heat source (step IV) ).
  • FIG. 4 is a view showing how the formation of the surface layer is performed by the laser melting method.
  • the laser 32 is irradiated while moving the torch 30 to the metal powder 26 newly supplied onto the solidified intermediate shaped object 24.
  • the metal powder 26 irradiated with the laser 32 melts the surface of the intermediate shaped object 24 in the lower layer while forming the molten pool 34, and is a new layer joined to the heat-affected zone 38 formed on the surface of the intermediate shaped object 24.
  • shaping by an electron beam melting method in which an electron beam is irradiated instead of the laser 32 is similarly performed.
  • thermal elastic-plastic analysis using FEM is performed on analysis model 10.
  • residual stress and deformation occurring in the metal laminated object to be analyzed by the analysis model 10 can be predicted by a computer, it becomes easy to study the effects of various factors such as stress and deformation generated in the laminated object. Also, it is possible to reduce the number of trial productions of the product to reduce the cost.
  • the analysis method according to the present embodiment there is no need to solve simultaneous equations in each calculation step as in the static implicit solution FEM, and an “idealized explicit solution FEM capable of analyzing residual stress and deformation of a large scale structure “Thermoelastic-plastic analysis on the analysis model 10 is performed using Then, according to this idealized explicit solution FEM, the solution converges even if the temperature increment (the temperature step at the time of calculation, which takes a negative value in the cooling process) is large, so the analysis method according to the present embodiment
  • the size of the temperature increment (for example, 100) larger than the size of the temperature increment (generally taken as a 15 ° or 30 ° temperature increment) used in thermal elastic-plastic analysis using static implicit FEM Can be given) (large temperature increments). This can reduce the number of calculations required for analysis and shorten the calculation time.
  • the heating model for the analysis model 10 is the heat input adjusted with respect to the heat input in the case of heating by the moving heat source heating while moving the laser 32 at a predetermined speed. Heating shall be carried out by using an instantaneous surface heat source (instant heat source model).
  • the heating model for the analysis model 10 may perform heating in a random order for each of a plurality of blocks in accordance with a heating pattern for simultaneously heating at least two blocks not adjacent to each other (simultaneous heating pattern).
  • a heating pattern for simultaneously heating at least two blocks not adjacent to each other may be substantially simultaneous, and may not necessarily be completely simultaneous.
  • the order of heating does not necessarily have to be random, and may be regular.
  • heating is performed according to such a simultaneous heating pattern, and heating is performed in each block by an instantaneous surface heat source using an instantaneous heat source model. This can significantly reduce the calculation time required for analysis.
  • the calculation required for analysis is performed by adopting the “large temperature increment” and the “instant heat source model” as described above, and also adopting the “simultaneous heating pattern”. Time can be significantly reduced.
  • thermal elastic-plastic analysis using idealized explicit solution FEM will be briefly described, and "large temperature increment”, “simultaneous heating pattern” and “instant heat source model” which are features of the present embodiment. Will be described in detail.
  • FIG. 5 is a diagram for conceptually explaining thermal elastic-plastic analysis using an idealized explicit solution FEM. Referring to FIG. 5, thermal elasto-plastic analysis using idealized explicit solution FEM proceeds as follows.
  • the equilibrium equation used in the idealized explicit solution FEM is represented by the following equation (1), where a nodal displacement vector at time t is ⁇ u ⁇ t .
  • [M] is a mass matrix
  • [C] is a damping matrix
  • [K] is a stiffness matrix
  • ⁇ F ⁇ t is a load vector. Note that the mass matrix [M] and the attenuation matrix [C] are adjusted to be a node concentrated diagonal matrix.
  • time-series data of temperature distribution of an analysis object (the analysis model 10 in this embodiment) is given as input data.
  • FEM idealized explicit solution FEM
  • time-series of temperature distribution is described by heat conduction analysis described later.
  • Data are calculated, and a load generated by a temperature increment based on time-series data of this temperature distribution is given as a load vector of equation (1) (load step (1) in FIG. 5).
  • the displacement in the loading step is determined by solving the above equation (1) (curve k1). Specifically, the displacement is obtained by solving equation (1) at each virtual time step using a dynamic explicit solution FEM, and until the displacement reaches a static equilibrium state, ie, in equation (1) The calculation of the displacement is repeated until the influence of the inertia term and the damping term becomes negligibly small and the displacement converges to a value equivalent to the solution obtained in the static implicit solution FEM ((2) in FIG. 5). .
  • the loading step (temperature step) is advanced ((4) in FIG. 5). Then, the displacement in this loading step (temperature step) is determined (curve k2), and calculation is repeated using the dynamic explicit solution FEM until the displacement reaches a static equilibrium state ((5) in FIG. 5).
  • ⁇ Description of large temperature increment> According to the above-described idealized explicit solution FEM, the solution converges even if the temperature step (load step) is increased. Therefore, in the analysis method according to the present embodiment, a temperature step larger than the temperature step used in thermal elasto-plastic analysis using static implicit solution FEM is given (large temperature increment). Generally, in thermal elastic-plastic analysis using static implicit solution FEM, if the temperature step is increased, the solution does not converge and it is necessary to suppress the temperature step (temperature increment) as small as 15 degrees or 30 degrees In the analysis method according to the present embodiment, a load step corresponding to a temperature step (temperature increment) of 100 degrees or more is provided. This can reduce the number of calculations required for analysis and shorten the calculation time.
  • FIG. 6 is a plan view of the analysis model 10 shown in FIG. Referring to FIG. 6, in this embodiment, the top layer (upper surface) of analysis model 10 is divided into a plurality of blocks, and four blocks which are not adjacent to each other are simultaneously heated to reduce calculation time.
  • the uppermost layer (heating surface by laser) of the analysis model 10 is divided into four regions A1-A4, and each region A1-A4 is further divided into nine blocks B1-B9. . Then, first, the blocks B1 of the respective areas A1-A4 are simultaneously heated. Next, it is assumed that the blocks B2 in each of the areas A1-A4 are simultaneously heated, and then the blocks Bi in each of the areas A1-A4 are sequentially heated simultaneously. That is, in this example, four blocks Bi are heated at the same time.
  • the heating order of each block in each region is heated in a random order.
  • heating is performed in the order of B1 ⁇ B2 ⁇ ...
  • the order of heating of the blocks is not limited to this.
  • each area is divided into 3 ⁇ 3 blocks as an example, each area may not be divided into blocks, and each area may be divided into blocks of 5 ⁇ 5 or 20 ⁇ 20, for example. It may be divided. And also in these cases, each block shall be heated in random order in each field.
  • “simultaneous” may be substantially simultaneous, and may not necessarily be completely simultaneous. Moreover, the order of heating does not necessarily need to be random, and may be regular.
  • the blocks to be simultaneously heated are determined not to be adjacent to each other so that residual stress depending on the heating method does not remain.
  • the heating order of the blocks B1-B9 is determined in each of the regions A1-A4 so that the four blocks heated simultaneously are not adjacent to each other.
  • the heating method of each block is performed by the surface heat source having the heat input adjusted with respect to the heat input when heating is performed by the moving heat source.
  • FIG. 7 is a diagram showing how heating of each block is performed by the moving heat source model as a comparative example
  • FIG. 8 shows how heating of each block is performed by the instantaneous heat source model (surface heat source) FIG.
  • the moving heat source follows the actual heating method, but heats up several elements while moving the heat source (torch 30 and laser 32), so the calculation time becomes longer.
  • the instantaneous heat source model it is assumed that all elements of the top layer of the block are simultaneously heated by the surface heat source 40. This can greatly reduce the calculation time.
  • the surface heat source 40 makes the moving speed of the moving heat source infinite.
  • ⁇ 0 (heat input of instantaneous surface heat source) / (heat input of moving heat source) ... (2)
  • heating is performed for each of a plurality of blocks according to the simultaneous heating pattern, and in each block, not a moving heat source but an instantaneous heat source model (surface heat source) is adopted. Ru.
  • FIG. 9 is a block diagram showing the main part of the hardware configuration of the analysis apparatus according to the present embodiment.
  • the analysis apparatus 100 includes an input unit 110, an interface (I / F) unit 120, a central processing unit (CPU) 130, a random access memory (RAM) 140, and a read only memory (ROM). 150 and an output unit 160.
  • I / F interface
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • the CPU 130 implements the analysis method according to the present embodiment by executing various programs stored in ROM 150.
  • the RAM 140 is used by the CPU 130 as a work area.
  • the ROM 150 records a program including each step of a flowchart (described later) in which the procedure of the analysis method according to the present embodiment is shown.
  • the input unit 110 is means for reading data from the outside, such as a keyboard, a mouse, a recording medium, and a communication device.
  • the output unit 160 is a unit such as a display, a recording medium, a communication device, or the like for outputting an operation result by the CPU 130.
  • FIG. 10 is a functional block diagram functionally showing the configuration of the analysis device 100 shown in FIG.
  • analysis apparatus 100 includes a temperature distribution calculation unit 210, a displacement / stress calculation unit 220, a simplified calculation setting unit 230, and the above-described input unit 110 and output unit 160.
  • Various data necessary for the FEM heat conduction analysis (described later) performed in the temperature distribution calculation unit 210 are input from the input unit 110.
  • the shape, size, FEM element information of the analysis object (the analysis model 10 in the present embodiment), heat source model, temperature dependency of material constants (specific heat, density, thermal conductivity coefficient etc.), object surface characteristics (heat transfer Data such as temperature dependency of coefficients), boundary conditions, analysis conditions (time increment, initial temperature, temperature between paths, type of element, etc.) are input.
  • various data necessary for the FEM thermal elastic-plastic analysis performed in the displacement / stress calculation unit 220 are input from the input unit 110.
  • temperature dependence of material constants Youngng's modulus, yield stress, Poisson's ratio, linear expansion coefficient, work hardening coefficient, etc.
  • selection of various models hardening law, yield conditions, creep, phase transformation
  • Data such as geometric linear / nonlinear, mechanical boundary conditions, geometric boundary conditions, analysis conditions (type of elements, etc.) are input.
  • the temperature distribution calculation unit 210 calculates the time series data of the temperature distribution of the analysis target (analysis model 10) by executing the FEM heat conduction analysis using various data input from the input unit 110.
  • the heat conduction analysis method by various known FEM can be used for this FEM heat conduction analysis.
  • the displacement / stress calculation unit 220 receives various data input from the input unit 110 and, at the same time, obtains time-series data of the temperature distribution of the analysis target (analysis model 10) calculated by the temperature distribution calculation unit 210. Receive from Further, the displacement / stress calculation unit 220 receives, from the simplified calculation setting unit 230, each setting of the temperature increment ⁇ T, the heat input pattern, and the heat source model set in the simplified calculation setting unit 230.
  • the simplified calculation setting unit 230 performs various settings for simplifying the thermal-elastic-plastic analysis calculation using the idealized explicit solution FEM, which is executed in the displacement / stress calculation unit 220.
  • the simplified calculation setting unit 230 sets a temperature increment ⁇ T in thermal elastic-plastic analysis analysis calculation using the idealized explicit solution FEM.
  • the magnitude of the temperature increment ⁇ T is set to a value larger than the magnitude (generally 15 degrees or 30 degrees) of the temperature increment used in the thermal elastic-plastic analysis calculation using the static implicit solution FEM.
  • the simplified calculation setting unit 230 sets a predetermined temperature increment ⁇ T of 100 degrees or more.
  • size of temperature increment (DELTA) T may be determined based on the dynamic melting temperature of the metal which comprises metal laminate-molded article.
  • the mechanical melting temperature of iron is about 750 ° -800 °, and based on such mechanical melting temperature, the size of the temperature increment ⁇ T May be set to several hundred degrees.
  • the simplified calculation setting unit 230 sets a heat input pattern in thermal elastic-plastic analysis analysis calculation using the idealized explicit solution FEM. Specifically, as described with reference to FIG. 6, the simplified calculation setting unit 230 divides the uppermost layer (heating surface by laser) of the analysis model 10 into a plurality of regions A1-A4 and a plurality of blocks. The heat input pattern is set so as to divide into B1-B9, and simultaneously heat each of the four blocks Bi while simultaneously heating the four blocks Bi not adjacent to each other.
  • the simplified calculation setting unit 230 sets a heat source model in thermal elastic-plastic analysis calculation using the idealized explicit solution FEM.
  • the simplified calculation setting unit 230 is a heat source model for heating each block described above, and the above equation for heat input when heating is performed by a moving heat source (corresponding to actual heating)
  • the instantaneous heat source model (surface heat source) having the heat input adjusted using the correction coefficient ⁇ 0 shown in (2) is set.
  • the displacement / stress calculation unit 220 uses various data received from the input unit 110 and time series data of the temperature distribution of the analysis target (analysis model 10) received from the temperature distribution calculation unit 210 in the simplified calculation setting unit 230. By performing FEM thermal elastic-plastic analysis according to each setting of the temperature increment ⁇ T, the heat input pattern, and the heat source model to be set, time series data of residual stress and displacement occurring in the analysis object (analysis model 10) is calculated.
  • the output unit 160 outputs time-series data of residual stress and displacement calculated by the displacement / stress calculation unit 220.
  • the output unit 160 may be a display that displays time series data of the calculated residual stress and displacement, or a writing unit that writes the data on the recording medium according to a predetermined format, or the data according to a predetermined format May be a communication device or the like that transmits the signal to the outside.
  • FIG. 11 is a flowchart for explaining the processing procedure of FEM thermal elastic-plastic analysis performed by the analysis apparatus 100 shown in FIG.
  • analysis apparatus 100 performs FEM heat conduction analysis to calculate time-series data of temperature distribution of an analysis target (analysis model 10) (step S10).
  • the analysis apparatus 100 sets an initial value 1 to the counter i (step S20).
  • the counter i is used to select a block to be heated according to the heat input pattern.
  • the analysis apparatus 100 updates the temperature field (temperature increment ⁇ T) on the assumption that the heat is applied from the instantaneous surface heat source to the i-th block of each of the areas A1-A4 (FIG. 6) (step S30).
  • the temperature increment ⁇ T is a large temperature increment setting, and is a value (100 degrees) larger than the temperature increment (about 15 degrees or 30 degrees) used in the thermal elastic-plastic analysis calculation using the static implicit solution FEM. The above predetermined value).
  • the analysis apparatus 100 uses the various data read from the input unit 110 to calculate the mass matrix [M] and the attenuation matrix [C] of the equilibrium equation represented by the above equation (1) (step S40). .
  • the analyzer 100 gives the load generated by the temperature increment ⁇ T as the load vector of equation (1), and calculates the displacement of each node by solving equation (1) using the dynamic explicit solution FEM (step S50). .
  • the analysis device 100 calculates stress from the calculated displacement using various data read from the input unit 110 (step S60).
  • step S70 determines whether the calculated displacement has reached a static equilibrium state. If the displacement has not reached the static equilibrium state (NO in step S70), the analysis device 100 returns the process to step S50, advances the virtual time step, and calculates the displacement of each node again by the dynamic explicit solution FEM. Do.
  • step S70 If it is determined in step S70 that the displacement has reached the static equilibrium state (YES in step S70), analysis apparatus 100 determines whether calculation has been performed in all temperature steps (step S80). If it is determined that there is an uncalculated temperature step (NO in step S80), the analysis device 100 returns the process to step S30, advances the temperature step, and updates the temperature field (by the temperature increment ⁇ T).
  • step S80 If it is determined in step S80 that calculation has been completed in all the temperature steps (YES in step S80), the analysis apparatus 100 determines whether heat has been applied to all the blocks (step S90). If it is determined that there is a block having no heat input (NO in step S90), the analyzer 100 counts up the counter i (step S100), and returns the process to step S30. Thereby, the analysis apparatus 100 transfers the heat input block and executes the series of processes of steps S30 to S80 again. When it is determined in step S90 that heat has been applied to all the blocks (YES in step S90), the process proceeds to the end, and a series of thermal elastic-plastic analysis ends.
  • FIG. 12 is a diagram showing the amount of contraction of the analysis target (analysis model 10) when the temperature increment ⁇ T is changed.
  • the amount of contraction in the Y direction at a certain X coordinate in the coordinate system shown in FIG. 1 is shown.
  • the magnitude of the changed temperature increment ⁇ T has a relationship of ⁇ T1 ⁇ T2 ⁇ T3 ⁇ T4, and the smallest temperature increment ⁇ T1 gives a temperature increment of 100 degrees or more.
  • the temperature increment ⁇ T is increased, the amount of contraction increases and the variation varies, and the calculation accuracy is deteriorated, but the temperature increment (15 degrees or 30 degrees) used in the thermal elastic-plastic analysis calculation using the static implicit solution FEM Can also provide a large value temperature increment .DELTA.T, which can shorten the calculation time.
  • FIG. 13 is a diagram showing the amount of contraction of an analysis target (analysis model 10) when an instantaneous heat source model (surface heat source) is used.
  • the vertical axis indicates the amount of contraction (median value) in the X direction
  • the horizontal axis indicates the equivalent heat input ratio ⁇ , which is the ratio of the heat input of the surface heat source to the heat input of the moving heat source. That is, this graph shows the amount of contraction when the amount of heat input of the surface heat source is changed based on the amount of heat input of the moving heat source corresponding to the actual heat source.
  • thermal elastic-plastic analysis using idealized explicit solution FEM is performed. Then, a temperature increment larger than the magnitude of the temperature increment used in the thermal elastic-plastic analysis using the static implicit solution FEM is given (large temperature increment).
  • the calculation time can be shortened because the process is performed for each of the plurality of blocks in accordance with the heating pattern for simultaneously heating the plurality of blocks not adjacent to each other (simultaneous heating pattern).
  • the calculation time can be shortened also from this point (instant heat source model). Therefore, according to the analysis method and the analysis apparatus according to the embodiment of the present disclosure, the calculation time can be significantly reduced.
  • the idealized explicit solution FEM is a method that improves the computational efficiency for thermal elasto-plastic analysis based on the dynamic explicit solution FEM, and is equivalent to the static implicit FEM generally used in thermal elasto-plastic analysis. It is an accurate, high-speed, memory-saving analysis method.
  • the idealized explicit solution FEM it is necessary to calculate the entire static unbalance force vector, that is, the residual force vector, for each time step in the calculation process. This calculation occupies most of the calculation time in the idealized explicit solution FEM because integral calculation of all elements of the equation (2) shown below is required.
  • ⁇ R ⁇ is a total residual force vector
  • ⁇ F ⁇ is a load vector
  • [B e ] is a displacement-strain relationship matrix of element e
  • ⁇ e ⁇ is a stress vector of element e.
  • Ne indicates the number of elements of the analysis model.
  • the integral calculation of the equation (2) is represented by the following equation (3) in the linear elastic analysis.
  • Equation (3) is a stiffness matrix of element e
  • ⁇ u e ⁇ is a displacement vector of element e.
  • equation (3) since the integral calculation of equation (2) is represented by the product of a matrix and a vector, the amount of calculation when calculating the residual force vector by equation (3) is equation (2) The amount is far less than the amount of computation by. Therefore, in the idealized explicit solution FEM, it is considered that the calculation amount can be largely reduced and the speedup can be achieved by using the equation (3) to calculate the residual force vector.
  • Equation (3) is a calculation equation assuming a linear elastic body, it can not be used as it is for nonlinear thermal elasto-plastic analysis. So, in this modification, Formula (3) is made employable also in the nonlinear thermal elastic-plastic analysis by idealized explicit solution FEM by the method shown by the below-mentioned flow chart.
  • displacement is calculated by performing N time step calculations based on a dynamic explicit solution FEM.
  • the residual force at each time step is calculated using equation (3), and the calculation time can be reduced.
  • a non-linear residual force vector is calculated using equation (2), and this is set as a load (external force).
  • N time steps are calculated using the residual force vector as a load vector, and the displacement is calculated again.
  • FIG. 14 is a flowchart for explaining the processing procedure of FEM thermal elastic-plastic analysis performed by the analysis apparatus 100 in the present modification. This flowchart corresponds to FIG. 11 described in the above embodiment.
  • analysis apparatus 100 executes the processes of steps S110 to S130.
  • the processes performed in steps S110 to S130 are the same as the processes performed in steps S10 to S30 shown in FIG. 11, and thus the description will not be repeated here.
  • the analysis apparatus 100 uses the various data read from the input unit 110 (FIG. 9) to obtain the stiffness matrix [K e ], mass matrix [M], and attenuation matrix [ C] is calculated (step S140). Further, the analysis apparatus 100 sets an initial value 1 to the counter t of the time step (step S150).
  • the analysis device 100 gives the load generated by the temperature increment ⁇ T as the load vector ⁇ F ⁇ of equation (3), and calculates the residual force vector ⁇ R ⁇ using equation (3) based on the dynamic explicit solution FEM. (Step S160). Then, the analysis apparatus 100 determines whether the counter t exceeds N (N is a predetermined natural number) (step S170). If counter t is equal to or less than N (NO in step S170), counter t is incremented (step S180), and the process returns to step S160.
  • N is a predetermined natural number
  • step S170 If it is determined in step S170 that the counter t exceeds N (YES in step S170), the analysis apparatus 100 calculates the displacement and stress of each node (step S190). Furthermore, the analysis device 100 calculates the non-linear residual force vector ⁇ R ⁇ by the above equation (2) (step S200).
  • the analysis apparatus 100 determines whether the solution has converged (step S210). For example, when it is determined that the calculated displacement has reached a static equilibrium state, it is determined that the solution has converged. When the solution does not converge (NO in step S210), the analysis device 100 updates the load vector ⁇ F ⁇ by the residual force vector ⁇ R ⁇ calculated in step S200 (step S220), and step S150. Return processing to
  • step S210 If it is determined in step S210 that the solution has converged (YES in step S210), the analysis apparatus 100 shifts the process to step S230.
  • the processes performed in steps S230 to S250 are the same as the processes performed in steps S80 to S100 shown in FIG. 11, and thus the description will not be repeated.
  • this Embodiment 2 shows a method of manufacturing a laminate-molded article.
  • the present inventors conducted analysis of residual stress and deformation produced in the laminate-molded article, using various analysis conditions, using the above-mentioned analysis method. As a result, when heating the surface layer of a shaped object, the present inventors heat the block at the outermost peripheral portion and then the block on the inner peripheral side (for example, one row or two rows of blocks at the outermost peripheral portion) It was found that the residual stress at the outermost peripheral portion where defects (cracks, deformation, etc.) most likely to occur due to residual stress decreased when The reason why the residual stress at the outermost peripheral portion can be reduced by such heating pattern is that the block on the inner peripheral side of the block at the outermost peripheral portion is generated in the block at the outermost peripheral portion due to shrinkage along with melting and solidification. It is considered that the residual stress in the tensile direction is relieved.
  • FIG. 15 is a view schematically showing the configuration of a metal 3D printer shown as an example of a laminated three-dimensional object manufacturing apparatus.
  • the metal 3D printer includes a work unit 300 and a controller 320.
  • the work unit 300 includes an elevator 20, a material supply device 310, roller blades 28, a torch 30, and a laser 32.
  • the elevator 20, the roller blades 28, the torch 30, and the laser 32 are as described in FIGS.
  • the material supply device 310 supplies the metal powder 26 onto the intermediate shaped object 24.
  • the controller 320 is configured to include a CPU, a RAM, a ROM, and an input / output buffer for inputting / outputting various signals (all not shown).
  • the CPU loads the program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which the processing procedure of the controller 320 is described.
  • the controller 320 executes control of each device in the work unit 300 according to these programs. The control is not limited to the processing by software, but may be processed by dedicated hardware (electronic circuit).
  • the controller 320 divides the top layer of the intermediate structure 24 into a plurality of blocks, and heat sources (torch 30 and laser to melt and solidify the metal powder 26 for each block) 32) control the movement.
  • the controller 320 heats the surface of each block while moving the heat source (torch 30 and laser 32).
  • the controller 320 heats the block at the outermost peripheral portion of the plurality of blocks (hereinafter, referred to as “first block group”) and then blocks on the inner circumferential side thereof.
  • the movement of the heat sources (torch 30 and laser 32) is controlled to heat (hereinafter referred to as "second block group").
  • the second block group may be on the inner circumferential side of one row of the first block group, or if a plurality of blocks are sufficiently subdivided, on two or more inner circumferential sides of the first block group It may be.
  • FIG.16 and FIG.17 is a figure explaining an example of the heating order (heating pattern) of several block.
  • the top layer of the intermediate structure 24 is divided into 10 ⁇ 10 blocks.
  • the heating of the second block group is performed (FIG. 17).
  • the presence or absence of heating of each block on the inner peripheral side of the second block group is not shown.
  • the second The remaining blocks including the blocks of B may be heated randomly or in a predetermined order.
  • the first block group may be collectively heated sequentially, and then the second block group may be collectively heated sequentially.
  • FIG.18 and FIG.19 is a figure which shows an example of the analysis result of the residual stress which arises in a laminate-molded article.
  • FIG. 18 shows the distribution of residual stress ⁇ x (tensile direction) in the X direction which occurs after heating of all the blocks
  • FIG. 19 shows the distribution of residual stress ⁇ y (tensile direction) in the Y direction.
  • heating is performed in the heating order (heating pattern) shown in FIGS. 16 and 17 so that the residual stress ⁇ x (tensile direction) in the X direction is relative to the outermost peripheral portion surrounded by the frame line. Can be reduced significantly.
  • heating is performed in the heating order (heating pattern) shown in FIGS. 16 and 17 so that residual stress ⁇ y (tensile direction) in the Y direction at the outermost peripheral portion surrounded by the frame line. Can be relatively reduced.
  • FIG. 20 is a flowchart for explaining an example of the procedure of processing executed by the controller 320.
  • the series of processes shown in this flowchart is for determining the heating order of the first block group and the second block group, and corresponds to the process performed in step IV shown in FIG.
  • the controller 320 heats the heat source (torch 30) to heat any block other than the block (second block group) on the innermost side of the outermost peripheral row (second block group). And the movement of the laser 32) (step S310). Then, when the heating of the block is completed, the controller 320 determines whether or not all heating of the block (first block group) in the outermost peripheral portion is completed (step S320).
  • step S320 If the heating of all the blocks in the first block group is not completed (NO in step S320), the controller 320 returns the process to step S310.
  • the heating order of the block by step S310 being repeatedly performed may be random, and may be regular.
  • step S320 When it is determined in step S320 that the heating of all the blocks in the first block group is completed (YES in step S320), the controller 320 controls the remaining blocks that have not been heated (the second block group). The movement of the heat source (the torch 30 and the laser 32) is controlled to heat any of the two) (step S330). Then, when the heating of the block is completed, the controller 320 determines whether the heating of all the blocks is completed (step S340).
  • controller 320 If heating of all the blocks has not been completed (NO in step S340), controller 320 returns the process to step S330.
  • the heating order of the block by repeatedly performing step S330 may also be random or regular.
  • the controller 320 shifts the processing to the end.

Abstract

変位・応力算出部(220)は、理想化陽解法FEMを用いた熱弾塑性解析を実行することによって残留応力及び変形を算出するように構成される。温度増分の大きさは、静的陰解法FEMを用いた熱弾塑性解析において用いられる温度増分の大きさよりも大きい値に設定される。加熱は、互いに隣接しない複数のブロックを同時に加熱する加熱パターンに従って複数のブロック毎に行なわれる。各ブロックに対する加熱は、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する面熱源により行なわれる。

Description

積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置
 本開示は、積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置に関する。
 溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物が近年注目されている。たとえば、金属粉末にレーザーや電子ビーム等を照射して金属粉末を溶融・凝固させることにより所望の形態の物体を造形する、所謂金属3Dプリンタが知られている。特許第2620353号には、金属等の粉末層の所定箇所にレーザービームを照射して該当箇所の粉末を焼結させることで焼結層を形成し、そのような焼結層を順次形成していくことによって三次元形状の積層造形物を生成する方法が開示されている(特許文献1参照)。
 その他にも、樹脂粉末を用いる積層造形や、溶融した樹脂やアーク放電により溶融させた金属を堆積させていく積層造形等も知られている。
特許第2620353号
 たとえば金属3Dプリンタを用いた積層造形では、金属粉末にレーザーや電子ビーム等を照射して金属粉末を溶融・凝固させながら物体を生成するので、生成された積層造形物に極めて大きな残留応力及び変形が発生し得る。このような残留応力及び変形により、生成された積層造形物の寸法精度の悪化や割れ等の問題が生じる。
 そのため、積層造形の前に、積層造形物に生じる残留応力及び変形を予め検討することが必要となる場合がある。しかしながら、実物を用いた実験による検討は、残留応力の計測が困難であったり、コスト面の問題が生じたりし得る。
 そこで、積層造形物に生じる残留応力及び変形をコンピュータにより事前に解析可能とすることが望まれている。積層造形物に生じる残留応力及び変形をコンピュータにより解析して予測することができれば、積層造形物に生じる応力や変形等の諸因子の影響の検討が容易になり、また、製品の試作回数を削減してコストを低減することが可能となる。
 このような残留応力及び変形のコンピュータによる解析には、有限要素法(FEM(Finite Element Method))を用いた熱弾塑性解析が有用である。しかしながら、このような熱弾塑性解析において一般的に用いられている静的陰解法FEMでは、各計算ステップにおいて系全体の剛性方程式(多元連立一次方程式)を逐次解く必要があるので、特に大規模な造形解析に静的陰解法FEMを適用することは、計算時間の観点から現実的には難しい。
 それゆえに、本開示の目的は、積層造形物に生じる残留応力及び変形をコンピュータにより解析するための解析方法及び解析装置において、計算時間を大幅に削減することである。
 また、本開示の別の目的は、積層造形物に生じる残留応力及び変形を抑制可能な積層造形物の製造方法及び製造装置を提供することである。
 本開示の積層造形物の解析方法は、溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物に生じる残留応力及び変形をコンピュータにより解析するための解析方法であって、FEMを用いた積層造形物の熱弾塑性解析を実行するためのデータを入力するステップと、積層造形物の造形に伴ない積層造形物に生じる温度分布の時系列データに従って熱弾塑性解析を実行することによって、積層造形物に生じる残留応力及び変形を算出するステップとを含む。上記の残留応力及び変形を算出するステップにおいて、時系列データに従う温度増分が与えられた場合に、動的陽解法FEMを用いて所定の静的平衡条件に達するまで積層造形物の変位及び応力の計算が行なわれ、変位が静的平衡条件に達すると、温度増分が再度与えられて変位及び応力の計算が再度行なわれる。ここで、温度増分の大きさは、静的陰解法FEMを用いた積層造形物の熱弾塑性解析において用いられる温度増分の大きさよりも大きい値に設定される。積層造形物に対する加熱は、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する瞬間面熱源により行なわれる。
 また、本開示の積層造形物の解析装置は、溶融した材料を表層で凝固させることにより生成される積層造形物に生じる残留応力及び変形を解析する解析装置であって、入力部と、算出部とを備える。入力部は、FEMを用いた積層造形物の熱弾塑性解析を実行するためのデータを入力するように構成される。算出部は、積層造形物の造形に伴ない積層造形物に生じる温度分布の時系列データに従って熱弾塑性解析を実行することによって、積層造形物に生じる残留応力及び変形を算出するように構成される。算出部は、時系列データに従う温度増分が与えられた場合に、動的陽解法FEMを用いて所定の静的平衡条件に達するまで積層造形物の変位及び応力の計算を行ない、変位が静的平衡条件に達すると、温度増分が再度与えられて変位及び応力の計算を再度行なう。ここで、温度増分の大きさは、静的陰解法FEMを用いた積層造形物の熱弾塑性解析において用いられる温度増分の大きさよりも大きい値に設定される。積層造形物に対する加熱は、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する瞬間面熱源により行なわれる。
 上記の積層造形物の解析方法及び解析装置においては、時系列データに従う温度増分が与えられた場合に、動的陽解法FEMを用いて所定の静的平衡条件に達するまで積層造形物の変位及び応力の計算が行なわれ、変位が静的平衡条件に達すると、温度増分が再度与えられて変位及び応力の計算が再度行なわれる(理想化陽解法FEM)。このような理想化陽解法FEMによれば、大きな温度増分を与えても解が収束するので、この解析方法及び解析装置においては、静的陰解法FEMを用いた熱弾塑性解析において用いられる温度増分の大きさよりも大きい温度増分が与えられる(大温度増分)。これにより、計算回数を削減して計算時間を短縮することができる。また、この解析方法及び解析装置においては、積層造形物に対する加熱は、入熱量を調整したうえで瞬間面熱源により行なわれるので、この点でも計算時間を短縮することができる(瞬間熱源モデル)。したがって、本開示の積層造形物の解析方法及び解析装置によれば、計算時間を大幅に削減することができる。
 好ましくは、積層造形物に対する加熱は、複数のブロックに分割された積層造形物の最上位層に対してブロック毎に行なわれる。各ブロックに対する加熱は、上記の瞬間面熱源により行なわれる。
 さらに好ましくは、積層造形物に対する加熱は、互いに隣接しない少なくとも2つのブロックを同時に加熱する加熱パターンに従って行なわれる。
 これにより、複数のブロック毎に加熱が行なわれるので、計算時間をさらに短縮することができる(同時加熱パターン)。
 好ましくは、瞬間面熱源の入熱量は、移動熱源により加熱が行なわれる場合と積層造形物の収縮量が同等になるように、移動熱源により加熱が行なわれる場合の入熱量に対して調整される。
 好ましくは、材料は金属であり、温度増分の大きさは、少なくとも100度以上である。
 好ましくは、温度増分の大きさは、積層造形物を構成する金属の力学的溶融温度に基づいて決定される。
 また、本開示の積層造形物の製造方法は、溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造方法であって、上述の解析方法を用いた解析結果に基づいて、積層造形物の最上位層を加熱する際の加熱パターンを決定するステップと、その加熱パターンに従って、積層造形物に対する加熱を行なうステップとを含む。
 また、本開示の積層造形物の製造装置は、溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造装置であって、積層造形物の最上位層を加熱するように構成された加熱装置と、加熱装置を制御するように構成された制御装置とを備える。制御装置は、上述の解析方法を用いた解析結果に基づいて、積層造形物の最上位層を加熱する際の加熱パターンを決定し、その加熱パターンに従って積層造形物に対する加熱を行なうように加熱装置を制御する。
 上記の製造方法及び製造装置によれば、上述の解析方法を用いた解析結果により、残留応力及び変形が抑制される加熱パターンを決定し、その加熱パターンに従って積層造形物を製造することができる。
 また、さらに、本開示の積層造形物の製造方法は、溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造方法である。積層造形物に対する加熱は、複数のブロックに分割された積層造形物の最上位層に対してブロック毎に行なわれる。そして、製造方法は、最周縁部のブロックを加熱するステップと、最周縁部のブロックの加熱後に、最周縁部のブロックの内周側のブロックを加熱するステップとを含む。
 また、本開示の積層造形物の製造装置は、溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造装置であって、積層造形物の最上位層を加熱するように構成された加熱装置と、複数のブロックに分割された最上位層に対して、加熱装置を制御することによってブロック毎に加熱するように構成された制御装置とを備える。制御装置は、加熱装置を制御することによって、最周縁部のブロックの加熱後に、最周縁部のブロックの内周側のブロックを加熱するように構成される。
 上記の製造方法及び製造装置によれば、積層造形物の最周縁部に生じる残留応力を抑制することができる。
 本開示の積層造形物の解析方法及び解析装置によれば、計算時間を大幅に削減することができる。
 また、本開示の積層造形物の製造方法及び製造装置によれば、積層造形物に生じる残留応力を抑制することができる。
本開示の実施の形態に従う解析方法によって解析される積層造形物の一例である金属積層造形物の解析モデルを示した図である。 解析モデルの要素を示した図である。 金属3Dプリンタによる金属積層造形物の生成方法の一例を示した図である。 レーザー溶融法により表層の造形が行なわれる様子を示した図である。 理想化陽解法FEMを用いた熱弾塑性解析を概念的に説明する図である。 図1に示す解析モデルの平面図である。 比較例として、移動熱源により各ブロックの加熱が行なわれる様子を示した図である。 瞬間面熱源により各ブロックの加熱が行なわれる様子を示した図である。 本実施の形態に従う解析装置のハードウェア構成の要部を示すブロック図である。 図9に示す解析装置の構成を機能的に示す機能ブロック図である。 図9に示す解析装置により実行されるFEM熱弾塑性解析の処理手順を説明するためのフローチャートである。 温度増分を変化させたときの解析対象の収縮量を示した図である。 瞬間熱源モデルを用いた場合の解析対象の収縮量を示した図である。 変形例における解析装置により実行されるFEM熱弾塑性解析の処理手順を説明するためのフローチャートである。 積層造形物の製造装置の一例として示される金属3Dプリンタの構成を概略的に示す図である。 複数のブロックの加熱順序の一例を説明する第1の図である。 複数のブロックの加熱順序の一例を説明する第2の図である。 積層造形物に生じる残留応力の解析結果の一例を示す第1の図である。 積層造形物に生じる残留応力の解析結果の一例を示す第2の図である。 コントローラにより実行される処理の手順の一例を説明するフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本開示の実施の形態に従う解析方法によって解析される積層造形物の一例である金属積層造形物の解析モデルを示した図である。なお、この図1では、矩形構造の簡易的なモデルが一例として示されるが、本解析方法によって解析可能なモデルは、図1に示される構造のモデルに限定されるものではない。
 図1を参照して、この解析モデル10は、図示しない金属3Dプリンタによってベースプレート12上に積層造形される金属積層造形物(解析対象)をモデル化したものである。この例では、解析モデル10は、30mm×30mm×1.2mmの寸法を有するものとしている。解析モデル10を構成する各要素の寸法は、積層造形時に照射されるレーザー(後述)のサイズ等から、図2に示されるように0.1mm×0.1mm×0.03mmとしている。したがって、この解析モデル10の要素数は360万個であり、積層数は40層である。
 図3は、金属3Dプリンタによる金属積層造形物の生成方法の一例を示した図である。なお、この図3では、材料の金属粉末にレーザーを照射することによって金属粉末を溶融させるレーザー溶融法が示されるが、本開示の解析方法には、金属粉末に電子ビームを照射することによって金属粉末を溶融させる電子ビーム溶融法等も適用可能である。
 また、この図3では、材料の金属粉末を敷き詰めたパウダーベッドにレーザーを選択的に照射することで積層造形を行なうSLM(Selective Laser Melting)法が示されるが、本開示の解析方法には、金属粉末とレーザーとを同時に照射して積層造形を行なうLMD(Laser Metal Deposition)法等も適用可能である。
 図3を参照して、後述の工程IVにおいて生成された中間造形物24及び金属粉末22を載置するエレベータ20が、1層の厚さ分だけ降下する(工程I)。次いで、中間造形物24及び金属粉末22上に次層分の金属粉末26が供給される(工程II)。続いて、ローラーブレード28によって金属粉末26が均される(工程III)。そして、造形領域に予熱が与えられた後、トーチ30から出力されるレーザー32を熱源として金属粉末26を選択的に溶融・凝固(焼結)させることにより、表層の造形が行なわれる(工程IV)。このような一連の工程I~IVを繰り返し行なうことによって積層造形が行なわれ、所望の金属積層造形物が生成される。
 図4は、レーザー溶融法により表層の造形が行なわれる様子を示した図である。図4を参照して、凝固した中間造形物24上に新たに供給された金属粉末26に、トーチ30を移動させながらレーザー32が照射される。レーザー32が照射された金属粉末26は、溶融池34を形成しつつ下層の中間造形物24の表面を溶融させ、中間造形物24の表層に形成される熱影響部38と接合した新たな層36を形成する。
 なお、特に図示しないが、レーザー32に代えて電子ビームが照射される電子ビーム溶融法による造形も同様に行なわれる。
 再び図1を参照して、この実施の形態では、解析モデル10に対して、FEMを用いた熱弾塑性解析が行なわれる。これにより、解析モデル10による解析対象の金属積層造形物に生じる残留応力及び変形をコンピュータにより予測することができるので、積層造形物に生じる応力や変形等の諸因子の影響の検討が容易になり、また、製品の試作回数を削減してコストを低減することが可能となる。
 しかしながら、このような熱弾塑性解析において一般的に用いられている静的陰解法FEMでは、各計算ステップにおいて系全体の剛性方程式(多元連立一次方程式)を逐次解く必要があるので、図1に示されるような大規模な金属積層造形物の造形解析に静的陰解法FEMを適用することは、計算時間の観点から現実的には難しい。
 そこで、本実施の形態に従う解析方法では、静的陰解法FEMのように各計算ステップにおいて連立方程式を解く必要がなく、大規模な構造物の残留応力及び変形を解析可能な「理想化陽解法FEM」を用いて、解析モデル10に対する熱弾塑性解析が行なわれる。そして、この理想化陽解法FEMによれば、温度増分(計算時の温度ステップであり、冷却過程では負値をとる。)を大きくしても解が収束するので、本実施の形態に従う解析方法では、静的陰解法FEMを用いた熱弾塑性解析において用いられる温度増分の大きさ(一般的には15度や30度の温度増分とされる。)よりも大きい温度増分の大きさ(たとえば100度以上)を与えることができる(大温度増分)。これにより、解析に要する計算回数を削減して計算時間を短縮することができる。
 また、本実施の形態に従う解析方法では、解析モデル10に対する加熱のモデルは、レーザー32を所定の速度で移動させながら加熱する移動熱源により加熱する場合の入熱量に対して調整された入熱量を有する瞬間面熱源により加熱を行なうものとする(瞬間熱源モデル)。
 さらに、解析モデル10に対する加熱のモデルは、互いに隣接しない少なくとも2つのブロックを同時に加熱する加熱パターンに従って複数のブロック毎にランダムな順序で加熱を行なうものとしてもよい(同時加熱パターン)。なお、「同時」とは、実質的に同時であればよく、必ずしも完全に同時でなくてもよい。また、加熱の順序は、必ずしもランダムである必要はなく、規則的なものであってもよい。本実施の形態に従う解析方法では、このような同時加熱パターンに従って加熱が行なわれ、各ブロックにおいて瞬間熱源モデルを用いた瞬間面熱源により加熱が行なわれる。これにより、解析に要する計算時間を大幅に短縮することができる。
 このように、本実施の形態に従う解析方法によれば、上記のような「大温度増分」及び「瞬間熱源モデル」を採用し、さらに「同時加熱パターン」も採用することにより、解析に要する計算時間を大幅に削減することができる。
 以下では、まず、理想化陽解法FEMを用いた熱弾塑性解析について簡単に説明を行なうとともに、本実施の形態の特徴である「大温度増分」、「同時加熱パターン」、及び「瞬間熱源モデル」について詳しく説明する。
 <理想化陽解法FEMを用いた熱弾塑性解析>
 図5は、理想化陽解法FEMを用いた熱弾塑性解析を概念的に説明する図である。図5を参照して、理想化陽解法FEMを用いた熱弾塑性解析は、以下のように進められる。
 理想化陽解法FEMで用いられる平衡方程式は、時刻tにおける節点変位ベクトルを{u}tとすると、次式(1)によって示される。
Figure JPOXMLDOC01-appb-M000001
 ここで、[M]は質量マトリックス、[C]は減衰マトリックス、[K]は剛性マトリックス、{F}tは荷重ベクトルを示す。なお、質量マトリックス[M]及び減衰マトリックス[C]は、節点集中型の対角マトリックスに調整されたものである。
 熱弾塑性解析では、解析対象(本実施の形態では解析モデル10)の温度分布の時系列データが入力データとして与えられるところ、理想化陽解法FEMでは、後述の熱伝導解析によって温度分布の時系列データが算出され、この温度分布の時系列データに基づく温度増分により生じる荷重が式(1)の荷重ベクトルとして与えられる(図5の荷重ステップ(1))。
 そして、この荷重ステップ(温度ステップ)について、上記の式(1)を解くことによって、この荷重ステップ(温度ステップ)における変位が求められる(曲線k1)。具体的には、動的陽解法FEMを用いて、仮想的な時間ステップ毎に式(1)を解くことで変位が求められ、変位が静的平衡状態に達するまで、すなわち、式(1)において慣性項及び減衰項の影響が無視できる程度に小さくなり、静的陰解法FEMにおいて得られる解と同等の値に変位が収束するまで、変位の計算が繰り返し行なわれる(図5の(2))。
 変位が静的平衡状態に達すると(図5の(3))、荷重ステップ(温度ステップ)が進められる(図5の(4))。そして、この荷重ステップ(温度ステップ)における変位が求められ(曲線k2)、動的陽解法FEMを用いて、変位が静的平衡状態に達するまで繰り返し計算が行なわれる(図5の(5))。
 この理想化陽解法FEMによれば、仮想的な時間ステップに分割して解析を進めることから計算ステップ数自体は増加するけれども、静的陰解法FEMのようにステップ毎に連立方程式を解く必要がない。したがって、各計算ステップにおける計算量は、静的陰解法FEMに比べてはるかに少ない。また、各荷重ステップ(温度ステップ)において静的平衡条件を満たすように収束計算が行なわれるので、単に動的陽解法FEMを用いた手法よりも解析精度は良い。
 <大温度増分の説明>
 上記の理想化陽解法FEMによれば、温度ステップ(荷重ステップ)を大きくしても解が収束する。そこで、本実施の形態に従う解析方法では、静的陰解法FEMを用いた熱弾塑性解析において用いられる温度ステップよりも大きい温度ステップが与えられる(大温度増分)。一般的には、静的陰解法FEMを用いた熱弾塑性解析では、温度ステップを大きくすると解が収束せず、15度や30度程度の小さい温度ステップ(温度増分)に抑える必要があるところ、本実施の形態に従う解析方法では、100度以上の温度ステップ(温度増分)に対応する荷重ステップが与えられる。これにより、解析に要する計算回数を削減して計算時間を短縮することができる。
 <同時加熱パターン及び瞬間熱源モデルの説明>
 図6は、図1に示した解析モデル10の平面図である。図6を参照して、この実施の形態では、解析モデル10の最上位層(上面)が複数のブロックに分割され、互いに隣接しない4つのブロックを同時に加熱することで、計算時間の短縮が図られる。
 具体的には、この例では、解析モデル10の最上位層(レーザーによる加熱面)が4つの領域A1-A4に分割され、各領域A1-A4が9つのブロックB1-B9にさらに分割される。そして、まず、各領域A1-A4のブロックB1が同時に加熱されるものとする。次いで、各領域A1-A4のブロックB2が同時に加熱されるものとし、その後、各領域A1-A4のブロックBiが同時に順次加熱されるものとする。すなわち、この例では、4つのブロックBiが同時に加熱されるものとされる。
 各領域における各ブロックの加熱の順序については、ランダムな順番で加熱される。上記では、B1→B2→・・・の順序で加熱されるものとしたが、各ブロックの加熱の順序はこれに限定されるものではない。
 また、領域やブロックの分割方法も、上記のものに限定されるものではない。上記では、一例として各領域が3×3のブロックに分割されるものとしたが、各領域をブロックに分割しなくてもよいし、各領域をたとえば5×5や20×20等のブロックに分割してもよい。そして、これらの場合についても、各領域において各ブロックがランダムな順番で加熱されるものとする。
 なお、上述のように、「同時」とは、実質的に同時であればよく、必ずしも完全に同時でなくてもよい。また、加熱の順番は、必ずしもランダムである必要はなく、規則的なものであってもよい。
 なお、加熱方法に依存した残留応力が残らないように、同時に加熱されるブロックは、互いに隣接しないように決定される。図6に示される例では、同時に加熱される4つのブロックが互いに隣接しないように、各領域A1-A4においてブロックB1-B9の加熱順が決定されている。
 さらに、この例では、各ブロックの加熱方法については、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する面熱源により行なわれる。
 図7は、比較例として、移動熱源モデルにより各ブロックの加熱が行なわれる様子を示した図であり、図8は、瞬間熱源モデル(面熱源)により各ブロックの加熱が行なわれる様子を示した図である。図7を参照して、移動熱源は、実際の加熱方法に沿うものであるが、熱源(トーチ30及びレーザー32)を移動させながら数要素ずつ加熱するので、計算時間が長くなる。これに対して、図8を参照して、瞬間熱源モデルでは、ブロックの最上位層の全要素が面熱源40により同時に加熱されるものとする。これにより、計算時間を大幅に短縮することができる。なお、面熱源40は、移動熱源の移動速度を無限大にしたものといえる。
 なお、瞬間熱源モデル(面熱源)では、加熱される全要素の各々が、隣接する要素の熱を同時に受けるので、瞬間熱源モデルにおいて移動熱源と同じ入熱量(J)を与えると、相乗効果により、移動熱源の場合に比べて造形物の収縮量が大きくなる傾向がある。そこで、この実施の形態に従う解析方法では、以下の補正係数η0を用いて、移動熱源を用いる場合(実際の加熱に相当)の入熱量に対する入熱量の調整が行なわれる。
 η0=(瞬間面熱源の入熱量)/(移動熱源の入熱量) …(2)
 このように、本実施の形態に従う解析方法では、同時加熱パターンにより複数のブロック毎に加熱が行なわれるものとし、さらに、各ブロックにおいては、移動熱源ではなく瞬間熱源モデル(面熱源)が採用される。上述の大温度増分とともにこのような加熱モデルを採用することによって、解析に要する計算時間を大幅に短縮することができる。
 <解析システムの説明>
 図9は、本実施の形態に従う解析装置のハードウェア構成の要部を示すブロック図である。図9を参照して、解析装置100は、入力部110と、インターフェース(I/F)部120と、CPU(Central Processing Unit)130と、RAM(Random Access Memory)140と、ROM(Read Only Memory)150と、出力部160とを含む。
 CPU130は、ROM150に格納された各種プログラムを実行することにより、本実施の形態に従う解析方法を実現する。RAM140は、CPU130によってワークエリアとして利用される。ROM150は、本実施の形態に従う解析方法の手順が示されたフローチャート(後述)の各ステップを含むプログラムを記録する。入力部110は、キーボードやマウス、記録媒体、通信装置等、外部からデータを読込むための手段である。出力部160は、ディスプレイや、記録媒体、通信装置等、CPU130による演算結果を出力するための手段である。
 図10は、図9に示した解析装置100の構成を機能的に示す機能ブロック図である。図10を参照して、解析装置100は、温度分布算出部210と、変位・応力算出部220と、簡略計算設定部230と、上述の入力部110及び出力部160とを備える。
 入力部110からは、温度分布算出部210において行なわれるFEM熱伝導解析(後述)に必要な各種データが入力される。一例として、解析対象(本実施の形態では解析モデル10)の形状・寸法・FEM要素情報、熱源モデル、材料定数(比熱、密度、熱伝導係数等)の温度依存性、物体表面特性(熱伝達係数)の温度依存性、境界条件、解析条件(時間増分、初期温度、パス間温度、要素の種類等)等のデータが入力される。
 さらに、入力部110からは、変位・応力算出部220において行なわれるFEM熱弾塑性解析に必要な各種データが入力される。一例として、上記データに加えて、材料定数(ヤング率、降伏応力、ポアソン比、線膨張係数、加工硬化係数等)の温度依存性、各種モデルの選択(硬化則、降伏条件、クリープ、相変態、幾何学的線形/非線形等)、力学的境界条件、幾何学的境界条件、解析条件(要素の種類等)等のデータが入力される。
 温度分布算出部210は、入力部110から入力される各種データを用いて、FEM熱伝導解析を実行することにより解析対象(解析モデル10)の温度分布の時系列データを算出する。なお、このFEM熱伝導解析には、公知の各種のFEMによる熱伝導解析手法を用いることができる。
 変位・応力算出部220は、入力部110から入力される各種データを受けるとともに、温度分布算出部210によって算出された解析対象(解析モデル10)の温度分布の時系列データを温度分布算出部210から受ける。また、変位・応力算出部220は、簡略計算設定部230において設定される温度増分ΔT、入熱パターン、及び熱源モデルの各設定を簡略計算設定部230から受ける。
 簡略計算設定部230は、変位・応力算出部220において実行される、理想化陽解法FEMを用いた熱弾塑性解析計算を簡略化するための各種設定を行なう。
 具体的には、簡略計算設定部230は、理想化陽解法FEMを用いた熱弾塑性解析計算における温度増分ΔTを設定する。温度増分ΔTの大きさは、静的陰解法FEMを用いた熱弾塑性解析計算において用いられる温度増分の大きさ(一般的に15度や30度)よりも大きい値に設定され、この実施の形態では、簡略計算設定部230は、100度以上の所定の温度増分ΔTを設定する。
 なお、温度増分ΔTの大きさは、金属積層造形物を構成する金属の力学的溶融温度に基づいて決定されてもよい。たとえば、金属積層造形物を構成する金属が鉄の場合、鉄の力学的溶融温度は、750度-800度程度であるところ、このような力学的溶融温度に基づいて、温度増分ΔTの大きさを数百度レベルに設定してもよい。
 また、簡略計算設定部230は、理想化陽解法FEMを用いた熱弾塑性解析計算における入熱パターンを設定する。具体的には、簡略計算設定部230は、図6で説明したように、解析モデル10の最上位層(レーザーによる加熱面)を複数の領域A1-A4に分割するとともに各領域を複数のブロックB1-B9に分割し、互いに隣接しない4つのブロックBiが同時に加熱されるとともに4つのブロックBi毎に順次加熱されるように入熱パターンを設定する。
 さらに、簡略計算設定部230は、理想化陽解法FEMを用いた熱弾塑性解析計算における熱源モデルを設定する。具体的には、簡略計算設定部230は、上記の各ブロックに対して加熱を行なう熱源モデルとして、移動熱源により加熱が行なわれる場合(実際の加熱に相当)の入熱量に対して上記の式(2)に示した補正係数η0を用いて調整された入熱量を有する瞬間熱源モデル(面熱源)を設定する。
 そして、変位・応力算出部220は、入力部110から受ける各種データ、及び温度分布算出部210から受ける解析対象(解析モデル10)の温度分布の時系列データを用いて、簡略計算設定部230において設定される温度増分ΔT、入熱パターン、及び熱源モデルの各設定に従ってFEM熱弾塑性解析を実行することにより、解析対象(解析モデル10)に生じる残留応力及び変位の時系列データを算出する。
 出力部160には、変位・応力算出部220によって算出された残留応力及び変位の時系列データが出力される。出力部160は、算出された残留応力及び変位の時系列データを表示するディスプレイであってもよいし、所定のフォーマットに従って上記データを記録媒体に書込む書込手段や、所定のフォーマットに従って上記データを外部へ送信する通信装置等であってもよい。
 図11は、図9に示した解析装置100により実行されるFEM熱弾塑性解析の処理手順を説明するためのフローチャートである。図11を参照して、解析装置100は、FEM熱伝導解析を実行することにより、解析対象(解析モデル10)の温度分布の時系列データを算出する(ステップS10)。次いで、解析装置100は、カウンタiに初期値1を設定する(ステップS20)。このカウンタiは、入熱パターンに従って加熱するブロックの選定に用いられる。
 続いて、解析装置100は、各領域A1-A4(図6)の第iブロックに瞬間面熱源から熱を付与したものとして、温度場を更新(温度増分ΔT)する(ステップS30)。上述のように、温度増分ΔTは、大温度増分設定であり、静的陰解法FEMを用いた熱弾塑性解析計算において用いられる温度増分(15度や30度程度)よりも大きい値(100度以上の所定値)である。
 次いで、解析装置100は、入力部110から読込まれた各種データを用いて、上記の式(1)で示される平衡方程式の質量マトリックス[M]及び減衰マトリックス[C]を算出する(ステップS40)。
 そして、解析装置100は、温度増分ΔTにより生じる荷重を式(1)の荷重ベクトルとして与え、動的陽解法FEMを用いて式(1)を解くことで各節点の変位を算出する(ステップS50)。変位が算出されると、解析装置100は、入力部110から読込まれた各種データを用いて、算出された変位から応力を算出する(ステップS60)。
 次いで、解析装置100は、算出された変位が静的平衡状態に達したか否かを判定する(ステップS70)。変位が静的平衡状態に達していなければ(ステップS70においてNO)、解析装置100は、ステップS50へ処理を戻し、仮想的な時間ステップを進めて動的陽解法FEMにより各節点の変位を再度算出する。
 ステップS70において変位が静的平衡状態に達したと判定されると(ステップS70においてYES)、解析装置100は、全ての温度ステップにおいて計算済か否かを判定する(ステップS80)。未計算の温度ステップがあると判定されると(ステップS80においてNO)、解析装置100は、ステップS30へ処理を戻し、温度ステップを進めて(温度増分ΔTにより)温度場を更新する。
 ステップS80において全ての温度ステップにおいて計算済みであると判定されると(ステップS80においてYES)、解析装置100は、全てのブロックに熱を付与したか否かを判定する(ステップS90)。未入熱のブロックがあると判定されると(ステップS90においてNO)、解析装置100は、カウンタiをカウントアップして(ステップS100)、ステップS30へ処理を戻す。これにより、解析装置100は、入熱ブロックを移してステップS30~S80の一連の処理を再度実行する。そして、ステップS90において全てのブロックに熱を付与したと判定されると(ステップS90においてYES)、エンドへと処理が移行され、一連の熱弾塑性解析が終了する。
 図12は、温度増分ΔTを変化させたときの解析対象(解析モデル10)の収縮量を示した図である。この図12では、一例として、図1に示した座標系において、あるX座標におけるY方向の収縮量を示したものである。
 図12を参照して、変化させた温度増分ΔTの大きさには、ΔT1<ΔT2<ΔT3<ΔT4の関係があり、最小の温度増分ΔT1においても100度以上の温度増分を与えている。温度増分ΔTを大きくすると、収縮量が増大するとともにばらつき、計算精度の悪化がみられるものの、静的陰解法FEMを用いた熱弾塑性解析計算において用いられる温度増分(15度や30度)よりも大きい値の温度増分ΔTを与えることができ、計算時間の短縮を図ることができる。
 図13は、瞬間熱源モデル(面熱源)を用いた場合の解析対象(解析モデル10)の収縮量を示した図である。図13において、縦軸は、X方向の収縮量(中央値)を示し、横軸は、移動熱源の入熱量に対する面熱源の入熱量の比である等価入熱比ηを示す。すなわち、このグラフは、実際の熱源に相当する移動熱源の入熱量を基準として、面熱源の入熱量を変化させたときの収縮量を示したものである。
 図13を参照して、この例では、等価入熱比ηがη0の場合に、面熱源による収縮量が移動熱源による収縮量と同等になる。したがって、この実施の形態に従う解析方法では、面熱源により各ブロックの加熱を行なうにあたり、上記の式(2)に示した補正係数としてこのη0を用いて、移動熱源を用いる場合(実際の加熱に相当)の入熱量に対して調整された入熱量を有する瞬間熱源モデル(面熱源)が用いられる。
 以上のように、この実施の形態においては、理想化陽解法FEMを用いた熱弾塑性解析が行なわれる。そして、静的陰解法FEMを用いた熱弾塑性解析において用いられる温度増分の大きさよりも大きい温度増分が与えられる(大温度増分)。これにより、計算回数を削減して計算時間を短縮することができる。また、この実施の形態によれば、互いに隣接しない複数のブロックを同時に加熱する加熱パターンに従って複数のブロック毎に行なわれるので、計算時間を短縮することができる(同時加熱パターン)。さらに、この実施の形態によれば、各ブロックに対する加熱は、入熱量を調整したうえで面熱源により行なわれるので、この点でも計算時間を短縮することができる(瞬間熱源モデル)。したがって、本開示の実施の形態に従う解析方法及び解析装置によれば、計算時間を大幅に削減することができる。
 [変形例]
 上記の実施の形態では、理想化陽解法FEMを用いた熱弾塑性解析において、上記の「大温度増分」及び「瞬間熱源モデル」を採用し、さらに「同時加熱パターン」も採用することにより、解析に要する計算時間を削減するものとした。この変形例では、理想化陽解法FEMの計算手法自体の改善がさらに図られる。これにより、解析に要する計算時間をさらに削減することが可能となる。
 理想化陽解法FEMは、動的陽解法FEMを基に熱弾塑性解析に対して計算効率を高めた手法であり、熱弾塑性解析において一般的に用いられている静的陰解法FEMと同等の解析精度を有し、かつ、高速・省メモリで解析可能な手法である。しかしながら、理想化陽解法FEMでは、その計算過程において、時間ステップ毎に全体の静的不平衡力ベクトル、すなわち残差力ベクトルを算出する必要がある。この計算は、以下に示される式(2)の全要素の積分計算が必要となることから、理想化陽解法FEMにおける計算時間の大半を占める。
Figure JPOXMLDOC01-appb-M000002
 ここで、{R}は全体残差力ベクトル、{F}は荷重ベクトル、[B]は要素eの変位-ひずみ関係マトリックス、{σ}は要素eの応力ベクトルを示す。また、Neは解析モデルの要素数を示す。この式(2)の積分計算は、線形弾性解析においては、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、[K]は要素eの剛性マトリックス、{u}は要素eの変位ベクトルを示す。この式(3)では、式(2)の積分計算がマトリックスとベクトルとの積で表されることから、式(3)により残差力ベクトルを算出する際の計算量は、式(2)による計算量に比べて圧倒的に少なくなる。そのため、理想化陽解法FEMにおいて、残差力ベクトルの算出に式(3)用いることで、大幅に計算量を削減し、高速化を達成できると考えられる。
 しかしながら、式(3)は線形弾性体を仮定した計算式であるので、非線形の熱弾塑性解析にそのまま使用することはできない。そこで、本変形例では、後述のフローチャートに示される方法によって、理想化陽解法FEMによる非線形熱弾塑性解析においても式(3)を採用可能としている。
 概略的には、まず、通常の理想化陽解法FEMと同様に、動的陽解法FEMに基づき、N回の時間ステップの計算を行なって変位が算出される。このとき、各時間ステップにおける残差力は式(3)を用いて算出され、計算時間の削減が図られる。N回の時間ステップの計算が完了した後、式(2)を用いて非線形の残差力ベクトルが算出され、これが荷重(外力)として設定される。その後、残差力ベクトルを荷重ベクトルとしたN回の時間ステップの計算が行なわれ、再度変位が算出される。このような計算過程を全体の収束が得られるまで繰り返すことによって、非線形の残差力の計算(式(2))の回数を大幅に削減しつつ、式(2)を用いた場合と同等の解析結果を得ることができる。
 図14は、本変形例における解析装置100により実行されるFEM熱弾塑性解析の処理手順を説明するためのフローチャートである。このフローチャートは、上記の実施の形態で説明した図11に対応するものである。
 図14を参照して、解析装置100は、ステップS110~S130の処理を実行する。このステップS110~S130において実行される処理は、それぞれ図11に示したステップS10~S30において実行される処理と同じであるので、ここでは説明を繰り返さない。
 ステップS130において温度場が更新されると、解析装置100は、入力部110(図9)から読込まれた各種データを用いて、剛性マトリックス[K]、質量マトリックス[M]、及び減衰マトリックス[C]を算出する(ステップS140)。また、解析装置100は、時間ステップのカウンタtに初期値1を設定する(ステップS150)。
 次いで、解析装置100は、温度増分ΔTにより生じる荷重を式(3)の荷重ベクトル{F}として与え、動的陽解法FEMに基づき、式(3)を用いて残差力ベクトル{R}を算出する(ステップS160)。そして、解析装置100は、カウンタtがN(Nは所定の自然数)を超えたか否かを判定する(ステップS170)。カウンタtがN以下であれば(ステップS170においてNO)、カウンタtがカウントアップされ(ステップS180)、ステップS160へ処理が戻される。
 ステップS170においてカウンタtがNを超えたと判定されると(ステップS170においてYES)、解析装置100は、各節点の変位及び応力を算出する(ステップS190)。さらに、解析装置100は、上記の式(2)によって非線形の残差力ベクトル{R}を算出する(ステップS200)。
 次いで、解析装置100は、解が収束したか否かを判定する(ステップS210)。たとえば、算出された変位が静的平衡状態に達した判定されると、解が収束したものと判定される。解が収束していない場合には(ステップS210においてNO)、解析装置100は、ステップS200において算出された残差力ベクトル{R}によって荷重ベクトル{F}を更新し(ステップS220)、ステップS150へ処理を戻す。
 ステップS210において解が収束したと判定されると(ステップS210においてYES)、解析装置100は、ステップS230へ処理を移行する。ステップS230~S250において実行される処理は、それぞれ図11に示したステップS80~S100において実行される処理と同じであるので、説明を繰り返さない。
 この変形例によれば、理想化陽解法FEMの計算時間の大半を占める残差力の積分計算の回数を削減できるので、解析に要する計算時間をさらに削減することができる。
 [実施の形態2]
 上記の実施の形態に従う解析方法を用いた解析結果に基づいて、この実施の形態2では、積層造形物の製造方法が示される。
 本発明者らは、上記の解析方法を用いて、様々な製造条件を与えて、積層造形物に生じる残留応力及び変形の解析を行なった。その結果、本発明者らは、造形物の表層を加熱する際に、最周縁部のブロックを加熱してからその内周側(たとえば、最周縁部のブロックの一列或いは二列内側)のブロックを加熱すると、残留応力による欠陥(割れや変形等)が最も生じやすい最周縁部の残留応力が低下するとの知見を得た。このような加熱パターンにより最周縁部の残留応力を低減できる理由は、最周縁部のブロックの内周側のブロックが溶融・凝固に伴なって収縮することにより、最周縁部のブロックに生じていた引っ張り方向の残留応力が緩和されるためと考えられる。
 図15は、積層造形物の製造装置の一例として示される金属3Dプリンタの構成を概略的に示す図である。図15を参照して、この金属3Dプリンタは、ワーク部300と、コントローラ320とを備える。ワーク部300は、エレベータ20と、材料供給装置310と、ローラーブレード28と、トーチ30と、レーザー32とを含む。エレベータ20、ローラーブレード28、トーチ30、及びレーザー32は、図3,4で説明したとおりである。材料供給装置310は、中間造形物24上に金属粉末26を供給する。
 コントローラ320は、CPUと、RAMと、ROMと、各種信号を入出力するための入出力バッファとを含んで構成される(いずれも図示せず)。CPUは、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、コントローラ320の処理手順が記されたプログラムである。コントローラ320は、これらのプログラムに従って、ワーク部300における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 コントローラ320により実行される主要な処理として、コントローラ320は、中間造形物24の最上位層を複数のブロックに分割し、ブロック毎に金属粉末26を溶融・凝固させるように熱源(トーチ30及びレーザー32)の移動を制御する。各ブロックにおいては、図7に示されるように、コントローラ320は、熱源(トーチ30及びレーザー32)を移動させながら各ブロックの表面を加熱する。
 そして、複数のブロックの加熱の順序について、コントローラ320は、複数のブロックのうちの最周縁部のブロック(以下「第1のブロック群」と称する。)を加熱してからその内周側のブロック(以下「第2のブロック群」と称する。)を加熱するように、熱源(トーチ30及びレーザー32)の移動を制御する。第2のブロック群は、第1のブロック群の一列内周側であってもよいし、複数のブロックが十分に細分化されていれば、第1のブロック群の二列以上内周側であってもよい。
 図16及び図17は、複数のブロックの加熱順序(加熱パターン)の一例を説明する図である。図16及び図17を参照して、この例では、中間造形物24の最上位層が10×10のブロックに分割されている。そして、最周縁部の第1のブロック群の加熱が完了した後に(図16)、第2のブロック群の加熱が行なわれる(図17)。なお、これらの図では、第2のブロック群の内周側の各ブロックの加熱の有無については示されていない。
 第1及び第2のブロック群の加熱順序については、第2のブロック群を除く各ブロックをランダム或いは所定の順序で加熱し、第1のブロック群の全ブロックの加熱が完了した後に、第2のブロック群を含む残余の各ブロックをランダム或いは所定の順序で加熱してもよい。或いは、第1のブロック群を纏めて順次加熱した後、第2のブロック群を纏めて順次加熱してもよい。
 図18及び図19は、積層造形物に生じる残留応力の解析結果の一例を示す図である。図18は、全ブロックの加熱終了後に生じるX方向の残留応力σx(引張方向)の分布を示し、図19は、Y方向の残留応力σy(引張方向)の分布を示す。
 図18を参照して、図16,17で示した加熱順序(加熱パターン)で加熱が行なわれることにより、枠線で囲った最周縁部において、X方向の残留応力σx(引張方向)を相対的に低下させることができることが分かる。
 また、図19を参照して、図16,17で示した加熱順序(加熱パターン)で加熱が行なわれることにより、枠線で囲った最周縁部において、Y方向の残留応力σy(引張方向)を相対的に低下させることができることが分かる。
 図20は、コントローラ320により実行される処理の手順の一例を説明するフローチャートである。このフローチャートに示される一連の処理は、第1のブロック群及び第2のブロック群の加熱順序を決定するものであり、図3に示した工程IVで実行される処理に相当するものである。
 図20を参照して、コントローラ320は、最周縁部の一列内側のブロック(第2のブロック群)以外のブロックであって加熱が未実施のもののいずれかを加熱するように、熱源(トーチ30及びレーザー32)の移動を制御する(ステップS310)。そして、当該ブロックの加熱が終了すると、コントローラ320は、最周縁部のブロック(第1のブロック群)の全ての加熱が終了したか否かを判定する(ステップS320)。
 第1のブロック群の全ブロックの加熱が終了していない場合には(ステップS320においてNO)、コントローラ320は、ステップS310へ処理を戻す。なお、ステップS310が繰り返し実行されることによるブロックの加熱順序は、ランダムであってもよいし、規則的であってもよい。
 そして、ステップS320において第1のブロック群の全ブロックの加熱が終了したものと判定されると(ステップS320においてYES)、コントローラ320は、加熱が未実施の残余のブロック(第2のブロック群を含む)のいずれかを加熱するように、熱源(トーチ30及びレーザー32)の移動を制御する(ステップS330)。そして、当該ブロックの加熱が終了すると、コントローラ320は、全てのブロックの加熱が終了したか否かを判定する(ステップS340)。
 全てのブロックの加熱が終了していない場合には(ステップS340においてNO)、コントローラ320は、ステップS330へ処理を戻す。なお、ステップS330が繰り返し実行されることによるブロックの加熱順序も、ランダムであってもよいし、規則的であってもよい。そして、ステップS340において全てのブロックの加熱が終了したものと判定されると(ステップS340においてYES)、コントローラ320は、エンドへと処理を移行する。
 以上のように、この実施の形態2によれば、積層造形物の最周縁部に生じる残留応力を抑制することができる。
 なお、上記の各実施の形態では、金属3Dプリンタを用いた積層造形について説明したが、本開示の適用範囲は、これに限定されるものではなく、樹脂粉末を用いる積層造形や、溶融した樹脂やアーク放電により溶融させた金属を堆積させていく積層造形等も含むものである。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 解析モデル、12 ベースプレート、20 エレベータ、22,26 金属粉末、24 中間造形物、28 ローラーブレード、30 トーチ、32 レーザー、34 溶融池、36 層、38 熱影響部、40 面熱源、100 解析装置、110 入力部、120 I/F部、130 CPU、140 RAM、150 ROM、160 出力部、210 温度分布算出部、220 変位・応力算出部、230 簡略計算設定部、300 ワーク部、310 材料供給装置、320 コントローラ、A1~A4 領域、B1~B9 ブロック。

Claims (13)

  1.  溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物に生じる残留応力及び変形をコンピュータにより解析するための解析方法であって、
     有限要素法(FEM)を用いた前記積層造形物の熱弾塑性解析を実行するためのデータを入力するステップと、
     前記積層造形物の造形に伴ない前記積層造形物に生じる温度分布の時系列データに従って前記熱弾塑性解析を実行することによって、前記積層造形物に生じる残留応力及び変形を算出するステップとを含み、
     前記残留応力及び変形を算出するステップにおいて、前記時系列データに従う温度増分が与えられた場合に、動的陽解法FEMを用いて所定の静的平衡条件に達するまで前記積層造形物の変位及び応力の計算が行なわれ、前記変位が前記静的平衡条件に達すると、前記温度増分が再度与えられて前記変位及び応力の計算が再度行なわれ、
     前記温度増分の大きさは、静的陰解法FEMを用いた前記積層造形物の熱弾塑性解析において用いられる温度増分の大きさよりも大きい値に設定され、
     前記積層造形物に対する加熱は、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する瞬間面熱源により行なわれる、積層造形物の解析方法。
  2.  前記積層造形物に対する加熱は、複数のブロックに分割された前記積層造形物の最上位層に対してブロック毎に行なわれ、
     前記複数のブロックの各々に対する加熱は、前記瞬間面熱源により行なわれる、請求項1に記載の積層造形物の解析方法。
  3.  前記積層造形物に対する加熱は、互いに隣接しない少なくとも2つのブロックを同時に加熱する加熱パターンに従って行なわれる、請求項2に記載の積層造形物の解析方法。
  4.  前記瞬間面熱源の入熱量は、移動熱源により加熱が行なわれる場合と前記積層造形物の収縮量が同等になるように、移動熱源により加熱が行なわれる場合の入熱量に対して調整される、請求項1から請求項3のいずれか1項に記載の積層造形物の解析方法。
  5.  前記材料は金属であり、
     前記温度増分の大きさは、少なくとも100度以上である、請求項1から請求項4のいずれか1項に記載の積層造形物の解析方法。
  6.  前記温度増分の大きさは、前記積層造形物を構成する金属の力学的溶融温度に基づいて決定される、請求項1から請求項4のいずれか1項に記載の積層造形物の解析方法。
  7.  溶融した材料を表層で凝固させることにより生成される積層造形物に生じる残留応力及び変形を解析する解析装置であって、
     有限要素法(FEM)を用いた前記積層造形物の熱弾塑性解析を実行するためのデータを入力するように構成された入力部と、
     前記積層造形物の造形に伴ない前記積層造形物に生じる温度分布の時系列データに従って前記熱弾塑性解析を実行することによって、前記積層造形物に生じる残留応力及び変形を算出するように構成された算出部とを備え、
     前記算出部は、前記時系列データに従う温度増分が与えられた場合に、動的陽解法FEMを用いて所定の静的平衡条件に達するまで前記積層造形物の変位及び応力の計算を行ない、前記変位が前記静的平衡条件に達すると、前記温度増分が再度与えられて前記変位及び応力の計算を再度行ない、
     前記温度増分の大きさは、静的陰解法FEMを用いた前記積層造形物の熱弾塑性解析において用いられる温度増分の大きさよりも大きい値に設定され、
     前記積層造形物に対する加熱は、移動熱源により加熱が行なわれる場合の入熱量に対して調整された入熱量を有する瞬間面熱源により行なわれる、積層造形物の解析装置。
  8.  前記積層造形物に対する加熱は、複数のブロックに分割された前記積層造形物の最上位層に対してブロック毎に行なわれ、
     前記複数のブロックの各々に対する加熱は、前記瞬間面熱源により行なわれる、請求項7に記載の積層造形物の解析装置。
  9.  前記積層造形物に対する加熱は、互いに隣接しない少なくとも2つのブロックを同時に加熱する加熱パターンに従って行なわれる、請求項8に記載の積層造形物の解析装置。
  10.  溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造方法であって、
     請求項1に記載の解析方法を用いた解析結果に基づいて、前記積層造形物の最上位層を加熱する際の加熱パターンを決定するステップと、
     前記加熱パターンに従って、前記積層造形物に対する加熱を行なうステップとを含む、積層造形物の製造方法。
  11.  溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造方法であって、
     前記積層造形物に対する加熱は、複数のブロックに分割された前記積層造形物の最上位層に対してブロック毎に行なわれ、
     最周縁部のブロックを加熱するステップと、
     前記最周縁部のブロックの加熱後に、前記最周縁部のブロックの内周側のブロックを加熱するステップとを含む、積層造形物の製造方法。
  12.  溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造装置であって、
     前記積層造形物の最上位層を加熱するように構成された加熱装置と、
     前記加熱装置を制御するように構成された制御装置とを備え、
     前記制御装置は、
     請求項1に記載の解析方法を用いた解析結果に基づいて、前記積層造形物の最上位層を加熱する際の加熱パターンを決定し、
     前記加熱パターンに従って前記積層造形物に対する加熱を行なうように前記加熱装置を制御する、積層造形物の製造装置。
  13.  溶融した材料を凝固させつつ堆積していくことにより生成される積層造形物の製造装置であって、
     前記積層造形物の最上位層を加熱するように構成された加熱装置と、
     複数のブロックに分割された前記最上位層に対して、前記加熱装置を制御することによってブロック毎に加熱するように構成された制御装置とを備え、
     前記制御装置は、前記加熱装置を制御することによって、最周縁部のブロックの加熱後に、前記最周縁部のブロックの内周側のブロックを加熱するように構成される、積層造形物の製造装置。
PCT/JP2018/033185 2017-09-08 2018-09-07 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置 WO2019049981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880058266.8A CN111093865B (zh) 2017-09-08 2018-09-07 层叠造型物的分析方法及分析装置、制造方法及制造装置
US16/643,258 US20200331102A1 (en) 2017-09-08 2018-09-07 Method and Apparatus for Analyzing Additively Manufactured Object, and Method and Apparatus for Additively Manufacturing an Object
JP2019541019A JP7125764B2 (ja) 2017-09-08 2018-09-07 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017173123 2017-09-08
JP2017-173123 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049981A1 true WO2019049981A1 (ja) 2019-03-14

Family

ID=65635295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033185 WO2019049981A1 (ja) 2017-09-08 2018-09-07 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置

Country Status (4)

Country Link
US (1) US20200331102A1 (ja)
JP (1) JP7125764B2 (ja)
CN (1) CN111093865B (ja)
WO (1) WO2019049981A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111859734A (zh) * 2020-06-22 2020-10-30 清华大学 Slm增材制造工件成形取向的优化方法
JP2021016988A (ja) * 2019-07-19 2021-02-15 株式会社神戸製鋼所 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
CN113967745A (zh) * 2020-07-22 2022-01-25 株式会社沙迪克 层叠造形方法及层叠造形系统
KR102428577B1 (ko) * 2021-05-31 2022-08-03 한국전자기술연구원 3d 프린팅 출력 신뢰도 향상을 위한 열 해석 기반 출력 안정화 방법 및 시스템
WO2022163329A1 (ja) 2021-01-29 2022-08-04 株式会社神戸製鋼所 積層造形物の変形予測方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11676009B2 (en) * 2019-10-04 2023-06-13 Raytheon Technologies Corporation Machine learning based rotor alloy design system
CN111804916B (zh) * 2020-08-27 2020-12-29 西安赛隆金属材料有限责任公司 一种电子束3d打印粉床预热方法
CN114429058A (zh) * 2020-10-28 2022-05-03 苏州奇流信息科技有限公司 机器学习模型的训练方法、训练装置、预测系统
CN112347574B (zh) * 2020-10-29 2022-05-24 中国石油大学(华东) 一种增材制造金属材料的弹塑性损伤失效预测方法
WO2022170296A1 (en) * 2021-02-02 2022-08-11 Materialise Nv Heating techniques for additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176535A (ja) * 2007-01-18 2008-07-31 Nippon Steel Corp 造管工程の数値解析法
JP2012122948A (ja) * 2010-12-10 2012-06-28 Jfe Steel Corp 張り剛性評価圧子モデル、その圧子モデルを使用した張り剛性解析装置及び解析方法
WO2015133137A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
JP2015199197A (ja) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
WO2015184495A1 (en) * 2014-06-05 2015-12-10 Commonwealth Scientific And Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412300B2 (en) * 2005-07-27 2008-08-12 General Electric Company Thermal forming
CN100489713C (zh) * 2007-11-22 2009-05-20 上海交通大学 直缝焊管排辊成型机组全流程自动化参数建模的方法
US7991599B2 (en) * 2008-04-09 2011-08-02 Active Implants Corporation Meniscus prosthetic device selection and implantation methods
CN101559511B (zh) * 2009-05-22 2011-12-28 清华大学 一种以温度为控制变量的焊接数值模拟计算方法
JP2011159213A (ja) * 2010-02-03 2011-08-18 Hitachi Ltd 溶接変形解析方法
CN102608918B (zh) * 2012-02-21 2013-07-24 南京航空航天大学 激光熔深焊接的能量耦合自洽模型建立方法
US8866041B2 (en) * 2012-04-12 2014-10-21 Tdk Corporation Apparatus and method of manufacturing laser diode unit utilizing submount bar
CN103978690B (zh) * 2014-05-28 2016-05-11 山东大学 一种面向3d打印的物体内部结构优化方法
WO2017027351A1 (en) * 2015-08-07 2017-02-16 Alcoa Inc. Architectural manufactures, apparatus and methods using additive manufacturing techniques
JP6655345B2 (ja) * 2015-10-20 2020-02-26 東レエンジニアリング株式会社 3次元物品の積層造形支援方法、コンピュータ・ソフトウェア、記録媒体および積層造形システム
CN106694878A (zh) * 2015-11-15 2017-05-24 罗天珍 激光烧结或固化3d成型机的群扫描标定及辅加热方法
CN105598448B (zh) * 2015-12-23 2017-09-26 中国科学院金属研究所 一种金属材料激光3d打印原位预热温度的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176535A (ja) * 2007-01-18 2008-07-31 Nippon Steel Corp 造管工程の数値解析法
JP2012122948A (ja) * 2010-12-10 2012-06-28 Jfe Steel Corp 張り剛性評価圧子モデル、その圧子モデルを使用した張り剛性解析装置及び解析方法
WO2015133137A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
JP2015199197A (ja) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
WO2015184495A1 (en) * 2014-06-05 2015-12-10 Commonwealth Scientific And Industrial Research Organisation Distortion prediction and minimisation in additive manufacturing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016988A (ja) * 2019-07-19 2021-02-15 株式会社神戸製鋼所 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
JP7160768B2 (ja) 2019-07-19 2022-10-25 株式会社神戸製鋼所 積層造形物の余肉量設定方法、積層造形物の製造方法及び製造装置
CN111859734A (zh) * 2020-06-22 2020-10-30 清华大学 Slm增材制造工件成形取向的优化方法
CN111859734B (zh) * 2020-06-22 2023-04-14 清华大学 Slm增材制造工件成形取向的优化方法
CN113967745A (zh) * 2020-07-22 2022-01-25 株式会社沙迪克 层叠造形方法及层叠造形系统
JP2022021918A (ja) * 2020-07-22 2022-02-03 株式会社ソディック 積層造形方法および積層造形システム
US11794252B2 (en) 2020-07-22 2023-10-24 Sodick Co., Ltd. Lamination molding method and lamination molding system
WO2022163329A1 (ja) 2021-01-29 2022-08-04 株式会社神戸製鋼所 積層造形物の変形予測方法
KR102428577B1 (ko) * 2021-05-31 2022-08-03 한국전자기술연구원 3d 프린팅 출력 신뢰도 향상을 위한 열 해석 기반 출력 안정화 방법 및 시스템

Also Published As

Publication number Publication date
CN111093865B (zh) 2022-03-08
JP7125764B2 (ja) 2022-08-25
CN111093865A (zh) 2020-05-01
US20200331102A1 (en) 2020-10-22
JPWO2019049981A1 (ja) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019049981A1 (ja) 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置
Chen et al. An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering
Li et al. Efficient predictive model of part distortion and residual stress in selective laser melting
JP6655345B2 (ja) 3次元物品の積層造形支援方法、コンピュータ・ソフトウェア、記録媒体および積層造形システム
KR101996933B1 (ko) 적층 생성된 구조물에서 응력들 및 형상 편차들을 결정하기 위한 방법, 컴퓨터-판독가능 데이터 캐리어, 컴퓨터 프로그램, 및 시뮬레이터
US11090872B2 (en) Generating adapted control instructions for a 3D printing process
US9939394B2 (en) Process mapping of cooling rates and thermal gradients
Vasinonta et al. A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures
CN110340358B (zh) 增材制造过程工艺参数梯度调控的方法
Patil et al. A new finite element solver using numerical eigen modes for fast simulation of additive manufacturing processes
JP2017215957A (ja) 付加製造のスケーラブル有限要素シミュレーション
Galati et al. Powder bed properties modelling and 3D thermo-mechanical simulation of the additive manufacturing Electron Beam Melting process
Foteinopoulos et al. Development of a simulation approach for laser powder bed fusion based on scanning strategy selection
CN113343521B (zh) 基于comsol预测选区激光熔化过程中层间热应力分布的方法
CN112512729B (zh) 用于确定针对增材制造方法的构造规范的方法
JP2017094540A (ja) 三次元造形装置、三次元造形方法、プログラムおよび記録媒体
Bian et al. Evolution of cyclic thermal stress in selective laser melting of 316L stainless steel: a realistic numerical study with experimental verification
CN212310848U (zh) 用于基于pbf的三维(3d)打印机的热处理设备
JP7312601B2 (ja) 積層造形条件生成方法、積層造形支援ソフトウエアおよび積層造形支援システム
Malmelöv Modeling of additive manufacturing with reduced computational effort
JP7027221B2 (ja) 造形データ生成システム及び造形データ生成方法
Xu et al. An island scanning path-patten optimization for metal additive manufacturing based on inherent strain method
Orlov et al. Numerical simulation of the selective laser melting process using the example of a turbine blade
El Gaaly Optimization Models for Melting Patterns in Powder Bed Fusion Additive Manufacturing
Homami et al. Residual stress analysis through numerical simulation in powder bed additive manufacturing using the representative volume approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854123

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019541019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854123

Country of ref document: EP

Kind code of ref document: A1