WO2022163329A1 - 積層造形物の変形予測方法 - Google Patents
積層造形物の変形予測方法 Download PDFInfo
- Publication number
- WO2022163329A1 WO2022163329A1 PCT/JP2022/000398 JP2022000398W WO2022163329A1 WO 2022163329 A1 WO2022163329 A1 WO 2022163329A1 JP 2022000398 W JP2022000398 W JP 2022000398W WO 2022163329 A1 WO2022163329 A1 WO 2022163329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deformation
- laminate
- molded article
- block
- welding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 239000011324 bead Substances 0.000 claims abstract description 94
- 238000003466 welding Methods 0.000 claims abstract description 93
- 238000012545 processing Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 26
- 239000000945 filler Substances 0.000 claims description 25
- 238000010030 laminating Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000004364 calculation method Methods 0.000 description 42
- 238000004458 analytical method Methods 0.000 description 39
- 238000004519 manufacturing process Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 17
- 238000003860 storage Methods 0.000 description 15
- 238000000465 moulding Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000005493 welding type Methods 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/32—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/003—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/10—Additive manufacturing, e.g. 3D printing
Definitions
- the present invention relates to a method for predicting deformation of a layered product.
- 3D printers that model metal materials use heat sources such as lasers, electron beams, and arcs to melt metal powder or metal wires and layer the molten metals to create laminate models.
- Patent Literature 1 discloses a technique for analyzing the amount of deformation and residual stress after welding of a welded structure having a plurality of welded layers.
- Patent Literature 2 discloses a technique of creating modeling data in anticipation of deformation from shape data of a structure manufactured by layered modeling.
- Patent Literature 3 discloses a technique for calculating the inherent strain of a structure that is modeled by additive manufacturing with a low computational load.
- Patent Literature 4 discloses a technique for reducing calculation time when a computer analyzes residual stress and deformation occurring in a laminate-molded article.
- Patent Document 5 Techniques for accurately evaluating the amount of thermal deformation of a laminate-molded article in a short period of time have been disclosed. All of the above Patent Documents 1 to 5 employ an inherent strain method using elastic analysis that can be analyzed in a relatively short time than thermoelastic-plastic analysis.
- Fig. 10 shows the analysis procedure for thermal deformation of a laminate-molded product using the conventional inherent strain method.
- the inherent strain of the first bead which is the first layer
- the deformation ⁇ d1 ⁇ of the first bead is calculated using the determined inherent strain.
- the deformation ⁇ d2 ⁇ of the second bead is calculated from the inherent strain of the second bead obtained from the database and the deformation ⁇ d1 ⁇ of the first bead.
- the deformation amount of the entire laminate-molded article is obtained by sequentially calculating the deformation ⁇ dn ⁇ up to the n-th bead which is the final layer.
- the present invention consists of the following configurations.
- a deformation prediction method for a laminate-molded article manufactured by repeatedly laminating the next layer of the welding bead layer on a welding bead layer formed of welding beads obtained by melting and solidifying a filler material, dividing the shape of the layered product into a plurality of blocks; a step of calculating the amount of deformation and the direction of deformation of each block before and after forming the welding bead by parallel processing of a plurality of threads based on the inherent strain method; setting at least one block group composed of blocks joined together among the plurality of blocks; calculating the deformation of the entire block group by adding the deformation amount of each block constituting the block group according to the deformation direction of the block; A method for predicting deformation of a laminate-molded article.
- the present invention even if the shape of the laminate-molded object to be manufactured is complicated, it is possible to analyze the deformation that occurs during molding in a short period of time.
- FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a layered product.
- FIG. 2 is a hardware configuration diagram of an analysis device that performs deformation prediction.
- FIG. 3 is a block diagram showing a functional configuration of the analysis device shown in FIG. 2;
- FIG. 4 is a flow chart showing the process of predicting deformation of a laminate-manufactured article.
- FIG. 5 is a flow chart showing a procedure for creating a database of inherent strains.
- FIGS. 6A and 6B are explanatory diagrams schematically showing strains when welding beads are laminated.
- FIG. 7 is a schematic cross-sectional view of a layered product fabricated using different types of welding beads.
- FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a layered product.
- FIG. 2 is a hardware configuration diagram of an analysis device that performs deformation prediction.
- FIG. 3 is a block diagram showing a functional configuration of the analysis device shown in FIG. 2;
- FIG. 4 is
- FIG. 8 is an explanatory diagram showing a verification model used for predicting deformation of a laminate-molded article.
- FIG. 9 is a graph showing calculation times of Test Examples 1-1, 1-2, 1-3, 1-4, and Test Example 2; It is explanatory drawing which shows the analysis procedure of the thermal deformation of the laminate-molded article using the conventional intrinsic strain method.
- the present invention prevents deformation that occurs in a laminate-molded article when a laminate-molded article is manufactured by repeatedly laminating the next layer of the weld bead layer on the weld bead layer formed of the weld beads obtained by melting and solidifying the filler material. Predict.
- FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing a layered product.
- a laminate-molded article manufacturing apparatus 10 is an apparatus for forming a laminate-molded article or a laminate-molded article as a raw material for obtaining a molded article of a desired shape. and a controller 15 that integrally controls the modeling apparatus 11 and the power supply device 13 .
- the additive manufacturing apparatus 11 has a welding robot 19 having a torch 17 on its tip axis, and a filler material supply section 23 that supplies a filler material (welding wire) M to the torch 17 .
- the torch 17 holds the filler material M in a state of protruding from the tip.
- the welding robot 19 is a multi-joint robot, and the torch 17 is supported so that the filler material M can be continuously supplied.
- the position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of degrees of freedom of the robot arm.
- the torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
- the arc welding method may be a consumable electrode type such as coated arc welding or carbon dioxide gas arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminate model to be produced. be.
- a contact tip is arranged inside the shield nozzle, and the contact tip holds the filler material M to which the melting current is supplied.
- the torch 17 holds the filler material M and generates an arc from the tip of the filler material M in a shield gas atmosphere.
- the filler material M is fed from the filler material supply unit 23 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like.
- a linear welding bead B which is a melted and solidified body of the filler material M, is formed on the base plate 25 .
- any commercially available welding wire can be used as the filler material M.
- MAG welding and MIG welding solid wire JIS Z 3312
- high-strength steel and low-temperature steel arc welding flux-cored wire (JIS Z 3313) for mild steel, high-strength steel and low-temperature steel, etc. wire can be used.
- the heat source for melting the filler material M is not limited to the arc described above.
- a heat source using other methods such as a heating method using both an arc and a laser, a heating method using plasma, a heating method using an electron beam or a laser, or the like may be employed.
- the amount of heating can be more finely controlled, the state of the welding bead can be maintained more appropriately, and the quality of the laminate-molded product can be further improved.
- the controller 15 has a CAD/CAM section 31, a trajectory calculation section 33, a storage section 35, and a control section 37 to which these are connected.
- the controller 15 is composed of a computer device including a CPU, memory, storage, and the like.
- the CAD/CAM unit 31 reads the three-dimensional shape data (CAD data, etc.) of the layered product to be manufactured, divides the three-dimensional model according to the three-dimensional shape data into a plurality of blocks, and determines the shape of each block.
- Generate block shape data representing The trajectory calculation unit 33 divides the generated block shape data into weld bead shapes, and determines the movement trajectory of the torch 17 along the shape of each divided weld bead. Then, according to the block shape data, the welding conditions, and the movement trajectory of the torch 17, a driving program for driving each part such as the welding robot 19 and the power supply device 13 of the layered manufacturing apparatus 11 is created.
- the storage unit 35 stores various data including generated block shape data, welding conditions, and information such as the movement locus of the torch 17, and drive programs.
- the control unit 37 executes the driving program stored in the storage unit 35 to drive each unit of the layered manufacturing apparatus 11 . That is, the welding robot 19 drives the power supply device 13 according to a command from the control unit 37, moves the torch 17 along the trajectory set in the drive program, and arcs at the tip of the torch 17 at a desired timing. generate
- the laminate-molded product manufacturing apparatus 10 configured as described above drives each part including the welding robot 19 and the power supply device 13, thereby forming a welding bead along the set movement trajectory of the torch 17.
- the torch 17 is moved, the filler material M is melted, and the melted filler material M is supplied onto the base plate 25 .
- a bead layer in which a plurality of linear beads are solidified and arranged on the base plate 25 is formed.
- a laminate-molded article W having a multilayer structure as shown in FIG. 1 is formed.
- the drive program may be generated by another computer device by inputting the required information to another computer device other than the controller 15 .
- the generated drive program is input to the storage unit 35 of the controller 15 via appropriate communication means such as LAN.
- thermal deformation during formation of the welding bead is analytically obtained in advance, and a stacking plan is created in consideration of this thermal deformation, so that more highly accurate molding can be realized. Become.
- the welding bead forming procedure is determined based on the shape data of the laminate-molded article and the welding conditions by the laminate-molding apparatus 11 described above. Then, the deformation of each welding bead when layered manufacturing is performed by the formation procedure is analytically determined, and various parameters such as the size of the welding bead, path of bead formation, welding speed, welding current, etc. are determined so that the desired target shape can be obtained.
- a lamination plan with set conditions is created, and the aforementioned driving program is created based on this lamination plan.
- the created drive program is stored in the storage unit 35 of the controller 15, and the control unit 37 executes the drive program, thereby forming a laminate-molded article.
- FIG. 2 is a hardware configuration diagram of an analysis device that performs deformation prediction.
- the analysis device 100 includes a CPU 41 as a processor, a memory 43 such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a storage unit 45 such as a HDD (Hard Disk Drive) and an SSD (Solid State Drive),
- the computer device includes an input unit 47 , an output unit 49 , and a communication unit 51 .
- the analysis device 100 is connected to a network 53 via a communication unit 51 and is capable of transmitting and receiving information from a server 55 or the like connected to the network 53 . Further, the controller 15 of the laminate molding apparatus 11 described above may be connected to the network 53 so that information such as a drive program can be input/output to the laminate molding apparatus 11 .
- a multi-core CPU capable of parallel processing is preferably used for the CPU 41, which is a processor. Moreover, it is more preferable to use a simultaneous multithreading technique that treats one CPU core as a plurality of pseudo cores. According to this technology, processing can be efficiently executed by allocating processing to CPU cores recognized by an OS (Operating System) or an application.
- OS Operating System
- the storage unit 45 stores an inherent strain database DB (hereinafter referred to as database DB) required for the analysis described later, and a program that causes the analysis device 100 to function as a deformation analysis device.
- database DB an inherent strain database DB (hereinafter referred to as database DB) required for the analysis described later, and a program that causes the analysis device 100 to function as a deformation analysis device.
- the database DB has information on various conditions such as welding conditions, material properties of weld metal, shape data of laminate-molded objects, etc., and information on inherent strain obtained according to measured deformation values and analysis values.
- the input unit 47 may be an interface that accepts information from the outside in addition to input devices such as a keyboard and mouse.
- the output unit 49 may be an output device such as a monitor that displays the analysis result by the analysis device 100 on a screen, or an interface that outputs the result to the outside as an output signal.
- FIG. 3 is a functional block diagram showing the functional configuration of the analysis device 100 shown in FIG. 2.
- the analysis device 100 includes an inherent strain DB creation/storage unit 61, a target shape block division unit 63, an inherent strain definition unit 65 that determines the inherent strain for each block, a parallel calculation unit 67, and a calculation result integration unit 69. And prepare.
- This analysis device 100 predicts the deformation of a laminate-molded product that is manufactured by repeatedly laminating a next layer of welding bead layers on a welding bead layer formed of welding beads obtained by melting and solidifying a filler material.
- FIG. 4 is a flow chart showing the process of predicting deformation of a laminate-manufactured article.
- the configuration of the analysis device 100 shown in FIGS. 2 and 3 will be referred to as appropriate.
- the shape data of the laminate-molded product to be manufactured is input to the storage unit 45 of the analysis device 100 through the input unit 47 or the communication unit 51 (S11).
- the input shape data is sent to the block dividing unit 63, and the block dividing unit 63 divides the shape of the layered product into a plurality of blocks (S12).
- S12 a plurality of blocks
- the inherent strain defining section 65 determines the inherent strain for each divided block (S13).
- the inherent strain of each block is determined by referring to the database DB created by the inherent strain DB creation/storage unit 61 .
- FIG. 5 is a flow chart showing the procedure for creating the inherent strain database DB.
- the inherent strain is obtained in units of paths (torch trajectories) for forming one welding bead by moving the torch 17 of the layered manufacturing apparatus 11 shown in FIG.
- FIGS. 6A and 6B are explanatory diagrams schematically showing strains when welding beads B are laminated.
- the matrix [H] that relates the inherent strain and the elastic strain (displacement) is obtained in advance according to various bead shapes and welding conditions.
- the relationship between the intrinsic strain ⁇ K , the elastic strain ⁇ j , and the matrix H is given by equation (1).
- Equation (3) is a basic equation for obtaining the inherent strain ⁇ by the method of least squares.
- the inherent strain obtained from the above basic formula is registered in the database DB in association with the bead shape of pass K, welding conditions, etc. (S25). It is determined whether pass K is the final pass (S26), and if there is another pass, K is incremented (S27), and the inherent strain for the next pass is obtained in the same manner as described above. By repeating this process up to the final pass, the inherent strain for each pass is registered in the database DB.
- the database DB is constructed by obtaining analysis results and actual measurement results in various different passes and welding conditions in addition to the above-mentioned passes, and accumulating information on inherent strain in each case.
- the inherent strain definition unit 65 refers to the database DB created by the inherent strain DB creation/storage unit 61 to determine the inherent strain corresponding to each divided block.
- the parallel calculation unit 67 calculates the amount of deformation (deformation vector) for each block, that is, for each pass, based on the inherent strain method (S14). This calculation is performed by parallel processing of multiple threads, that is, simultaneous arithmetic processing of a multi-core CPU.
- Each layer is treated simultaneously.
- the amount of deformation in each pass is calculated as an absolute amount for pass 1 because the lower layer is the base plate 25, and for the other passes, the amount of deformation relative to the lower layer is calculated. .
- the amount of deformation obtained here is a vector amount indicating the direction of deformation and the magnitude of deformation in that direction.
- the calculation results of the deformation amount in each pass obtained by the simultaneous arithmetic processing are integrated (S15). That is, the deformation amount and deformation direction of the entire laminate-molded article are calculated by adding the deformation amount of each pass (block) according to the deformation direction of the pass. Specifically, the deformation amount ⁇ d2 ⁇ , .
- the deformation amount ⁇ d2 ⁇ is the height of three layers of beads.
- the determined amount of deformation is output as the predicted amount of deformation of the laminate-molded object (S16).
- the predicted deformation amount may be output by displaying a numerical value on a monitor or the like from the output unit 49 shown in FIG. 2, or by displaying the shape together with the state before bead contraction. Further, by transmitting the predicted deformation amount to the server 55 or the controller 15 through the communication unit 51, the server 55 or the controller 15 can correct the molding plan for manufacturing the laminate-molded article so as to compensate for the predicted deformation amount. By doing so, it is possible to generate a drive program capable of performing layered manufacturing with higher accuracy.
- deformation is predicted using the inherent strain method, so calculations for elasto-plastic analysis, which makes calculations complicated, are not performed, so the calculation load can be reduced.
- the process of dividing the shape of the layered product into a plurality of blocks described above is an example of the case where the shape of one block group obtained by dividing the welding bead as a unit and combining each block becomes the shape of the layered product.
- a laminate of a plurality of welding beads may be divided into blocks as a unit.
- the shape of the layered product may be composed of a plurality of block groups.
- FIG. 7 is a schematic cross-sectional view of a layered product fabricated using different types of welding beads.
- This laminate-molded article Wa has a frame portion 71 formed by laminating the welding beads B1 on the base plate 25, and an internal molded portion 73 formed inside the frame portion 71 from the welding beads B2.
- the internal molding portion 73 is configured by stacking welding bead layers each composed of the welding bead B2.
- Such a laminate-molded article Wa is formed, for example, by arranging two different torches 17 shown in FIG. 1 and supplying different types of filler material M to each torch. Specifically, the amount of sulfur (S) added to the filler material forming the welding bead B2 is greater than that of the filler material forming the welding bead B1. As a result, the welding bead B2 has a wider and flatter cross-sectional shape than the welding bead B1, and has good conformability to the base. On the other hand, the weld bead B1, to which the amount of sulfur (S) added is relatively small, has a high viscosity and surface tension, and has a narrow and raised cross-sectional shape.
- welding conditions such as welding speed, welding current, and welding voltage may be changed. may be changed. In either case, weld beads having different characteristics are formed.
- the frame portion 71 formed from the welding bead B1 and the internal forming portion 73 formed from the welding bead B2 are separately formed. into blocks of Then, as described above, the amount of deformation and the direction of deformation of each block before and after welding bead formation are calculated by parallel processing using a plurality of processors based on the intrinsic strain method for each block.
- the deformation is calculated with the frame portion 71 and the internal molding portion 73 as separate blocks, welding beads having similar characteristics are treated as the same block, further reducing the amount of calculation. Further, if the frame portion 71 is left as it is and the weld bead is formed in the internal molded portion 73 under different conditions, the deformation of the internal molded portion 73 to be newly calculated is added to the deformation of the block of the frame portion 71 that has already been calculated. Deformation of the entire laminate-molded article can be easily obtained simply by adding them together.
- each block can be simplified by determining the deformation of a weld bead formed along a straight line and a weld bead formed along a curve as separate blocks. This makes it possible to easily analyze the inherent strain, thereby reducing the computational load for the analysis.
- FIG. 8 is an explanatory diagram showing a verification model MDL used for predicting deformation of a laminate-molded article. Deformation of the laminate-molded article was predicted using the verification model MDL shown in FIG. 8, and the effect of reducing the calculation time was confirmed. 1. Verification contents (1) Comparison between the program corresponding to the present invention and general-purpose software When parallel calculation for each block is performed by executing a program based on the method for predicting deformation of a laminate-molded product according to the present invention (Test Example 1) , the calculation time was compared with the case where the CPU itself automatically performed parallel calculation using predetermined general-purpose software (Test Example 2).
- the CPU configuration of the analysis device used is such that general-purpose software can perform faster processing than the program based on the method for predicting deformation of a laminate-molded object according to the present invention.
- analysis device [configuration 1] that executes a program corresponding to the present invention
- CPU Intel Core (registered trademark) i7-6800K (6 cores, 12 threads, operating clock 3.4 GHz)
- OS Microsoft Windows 10 (registered trademark)
- Specifications of analysis device [configuration 2] that executes general-purpose software CPU: Intel Xeon (registered trademark) E5-2637v4 (8 cores, 16 threads, operating clock 3.50 GHz)
- OS Linux (registered trademark) Enterprise Server 11 SP4 manufactured by SUSE
- FIG. 9 is a graph showing the calculation times of Test Examples 1-1, 1-2, 1-3, 1-4, and Test Example 2.
- Test Example 2 using the analysis device of configuration 2 it was carried out by automatic parallel calculation of CPU using predetermined general-purpose software. As a result, the calculation time was 2 minutes and 48 seconds, despite the configuration having higher arithmetic processing performance than the analysis device of Configuration 1.
- the amount and direction of deformation for each of a plurality of blocks are obtained simultaneously by parallel calculation, thereby enabling high-speed arithmetic processing.
- deformation prediction can be performed in a short time.
- calculation load can be reduced because the inherent strain method is used without the need for calculation of elasto-plastic analysis, which makes calculations complicated.
- the deformation amount of the plurality of block groups is added according to the deformation direction of the block group to predict the deformation of the laminate-molded article, according to any one of (1) to (4).
- Deformation prediction method for additive manufacturing According to this method for predicting deformation of a laminate-manufactured article, even if the laminate-manufactured article has a complicated shape, since the deformation is added for each block group, it is possible to reduce the complexity of calculation of the deformation of the laminate-manufactured article.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
特許文献3には、積層造形により造形される構造物の固有ひずみを、低い計算負荷で算出する技術が開示されている。特許文献4には、積層造形物に生じる残留応力及び変形をコンピュータで解析する際の計算時間を削減する技術が開示されている。特許文献5には、
積層造形物の熱変形量を短時間で正確に評価する技術が開示されている。
上記した特許文献1~5は、いずれも熱弾塑性解析よりも比較的短時間で解析できる弾性解析を用いる固有ひずみ法が採用されている。
溶加材を溶融及び凝固させた溶着ビードで形成した溶着ビード層に、次層の前記溶着ビード層を繰り返し積層して造形される積層造形物の変形予測方法であって、
前記積層造形物の形状を複数のブロックに分割する工程と、
前記ブロック毎の前記溶着ビード形成前後における変形量及び変形方向を、それぞれ固有ひずみ法に基づいて複数スレッドの並列処理によって算出する工程と、
前記複数のブロックのうち、互いに接合されるブロックから構成される少なくとも一つのブロック群を設定する工程と、
前記ブロック群を構成する個々のブロックの前記変形量を、当該ブロックの前記変形方向に応じて加算して、前記ブロック群全体の変形を算出する工程と、
を有する、積層造形物の変形予測方法。
本発明は、溶加材を溶融及び凝固させた溶着ビードで形成した溶着ビード層に、次層の溶着ビード層を繰り返し積層して積層造形物を造形する際に、積層造形物に生じる変形を予測する。
まず、積層造形物の製造手順を説明する。
図1は、積層造形物の製造装置を示す概略構成図である。
積層造形物の製造には、種々の製造方式があるが、ここではアーク溶接により溶着ビードを積層する方式について説明する。積層造形物の製造装置10は、積層造形物、又は所望形状の造形物を得るための粗形材としての積層造形物を形成する装置であり、積層造形装置11と、電源装置13と、積層造形装置11及び電源装置13を統括制御するコントローラ15と、を備える。
記憶部35は、生成されたブロック形状データ、溶接条件及びトーチ17の移動軌跡等の情報を含む各種のデータと駆動プログラムとを記憶する。
次に、上記した積層造形物の造形時における熱変形を解析的に求める、積層物の変形予測方法について説明する。
(解析装置の構成)
図2は、変形予測を行う解析装置のハードウェア構成図である。
解析装置100は、プロセッサであるCPU41と、RAM(Random access memory)、ROM(Read Only Memory)等のメモリ43と、HDD(Hard Disk Drive)、SSD(Solid State Drive)等の記憶部45と、入力部47と、出力部49と、通信部51とを備えるコンピュータ装置である。解析装置100は、通信部51を介してネットワーク53に接続され、ネットワーク53に接続されたサーバ55等から情報の送受信が可能になっている。また、ネットワーク53に前述した積層造形装置11のコントローラ15を接続して、積層造形装置11に駆動プログラム等の情報を入出力可能にしてもよい。
解析装置100は、固有ひずみDB作成・記憶部61と、目標形状のブロック分割部63と、ブロック毎の固有ひずみを決定する固有ひずみ定義部65と、並列計算部67と、計算結果統合部69と、を備える。
ここで、積層造形物の変形予測方法の各工程を説明する。
図4は、積層造形物の変形を予測する工程を示すフローチャートである。以下の説明では、図2,図3に示す解析装置100の構成を適宜参照する。
(S13)。各ブロックの固有ひずみは、固有ひずみDB作成・記憶部61が作成したデータベースDBを参照して決定する。
図5は、固有ひずみのデータベースDBの作成手順を示すフローチャートである。
ここでは、図1に示す積層造形装置11のトーチ17を移動させて1本の溶着ビードを形施するパス(トーチ軌跡)を単位として固有ひずみを求める。
図6の(A)に実線で計画線を示すように、溶着ビードBを形成する際、初層(K=1)の溶着ビードB1と、2層目(K=2)の溶着ビードB2と、3層目(K=3)の溶着ビードB3とは、それぞれ形成後の熱収縮によって点線で示す形状に変化する。
固有ひずみ定義部65は、固有ひずみDB作成・記憶部61が作成したデータベースDBを参照して、分割したブロックそれぞれに対応する固有ひずみを決定する。
各ブロックで固有ひずみが決定されると、並列計算部67は、それぞれのブロック、すなわちパス毎に固有ひずみ法に基づいて変形量(変形ベクトル)を計算する(S14)。この計算は、複数スレッドの並列処理、つまり、マルチコアCPUの同時演算処理により行う。
次に、同時演算処理により求めた各パスでの変形量の計算結果を統合する(S15)。つまり、個々のパス(ブロック)の変形量を、そのパスの変形方向に応じて加算して、積層造形物全体の変形量及び変形方向を算出する。具体的には、初層のパスの変形量{d1}に他の層の積層方向の変形量{Δd2},・・・,{Δdn}をベクトル加算する。例えば、溶着ビードの積層方向に関する変形量を統合する場合、図6に示すように、積層方向の変形量であるd1+Δd2+Δd3がビード3層分の高さとなる。
前述した積層造形物の形状を複数のブロックに分割する工程は、溶着ビードを単位として分割し、各ブロックを組み合わせた1つのブロック群の形状が積層造形物の形状となる場合の例であったが、これに限らない。例えば、複数の溶着ビードの積層体を単位としてブロックに分割してもよい。その場合、積層造形物の形状は、複数のブロック群から構成される場合もある。
この積層造形物Waは、ベースプレート25上に溶着ビードB1を積層させて造形された枠部71と、枠部71の内部に溶着ビードB2から造形された内部造形部73を有している。内部造形部73は、溶着ビードB2からなる溶着ビード層を積層させて構成される。
図8に示す検証用モデルMDLを用いて積層造形物の変形を予測し、その計算時間の低減効果を確認した。
1.検証内容
(1)本発明に対応するプログラムと汎用ソフトウェアとの比較
本発明に係る積層造形物の変形予測方法に基づくプログラムを実行させてブロック毎の並列計算を実施した場合(試験例1)と、既定の汎用ソフトウェアを用いて、CPU自体が自動的に並列計算を実施した場合(試験例2)との、計算時間を比較した。ただし、使用する解析装置のCPU構成は、本発明に係る積層造形物の変形予測方法に基づくプログラムを用いるものよりも、汎用ソフトウェアを用いる場合のものを、より高速な処理が行える構成としている。
(2)並列計算の有無
上記した試験例1のうち、解析装置のCPUの性能を同一にして、ブロック毎の並列計算なしの場合(試験例1-1)と、ブロック毎の並列計算ありの場合(試験例1-2,1-3,1-4)との計算時間を比較した。
(1)本発明に対応するプログラムを実行する解析装置[構成1]の仕様
CPU:インテル社製 Core(登録商標)i7-6800K(6コア、12スレッド、動作クロック3.4GHz)
OS:マイクロソフト社製 Windows10(登録商標)
(2)汎用ソフトウェアを実行する解析装置[構成2]の仕様
CPU:インテル社製 Xeon(登録商標) E5-2637v4(8コア、16スレッド、動作クロック3.50GHz)
OS:SUSE社製 Linux(登録商標) Enterprise Server 11 SP4
20層の溶着ビードで構成される壁体である積層造形体の3Dモデル(節点数:79940 要素数:63954)
図9は、試験例1-1,1-2,1-3,1-4、及び試験例2の計算時間を示すグラフである。
試験例1-1,1-2,1-3,1-4では、構成1の解析装置を用いた。試験例1-1のブロック毎の並列計算をしない場合(1スレッドで計算)の計算時間は8分27秒であった。試験例1-2のブロック毎の並列計算を2スレッドで実施した場合の計算時間は4分18秒であり、試験例1-3の6スレッドで実施した場合の計算時間は2分6秒であり、試験例1-4の12スレッドで実施した場合の計算時間は1分35秒であった。
(1) 溶加材を溶融及び凝固させた溶着ビードで形成した溶着ビード層に、次層の前記溶着ビード層を繰り返し積層して造形される積層造形物の変形予測方法であって、
前記積層造形物の形状を複数のブロックに分割する工程と、
前記ブロック毎の前記溶着ビード形成前後における変形量及び変形方向を、それぞれ固有ひずみ法に基づいて複数スレッドの並列処理によって算出する工程と、
前記複数のブロックのうち、互いに接合されるブロックから構成される少なくとも一つのブロック群を設定する工程と、
前記ブロック群を構成する個々のブロックの前記変形量を、当該ブロックの前記変形方向に応じて加算して、前記ブロック群全体の変形を算出する工程と、
を有する、積層造形物の変形予測方法。
この積層造形物の変形予測方法によれば、複数のブロック毎の変形量及び変形方向を、並列計算により同時に求めることで、高速な演算処理が可能となり、複雑な積層造形物の形状であっても短時間で変形予測が行える。また、計算が煩雑となる弾塑性解析の計算を必要とせず、固有ひずみ法を使用するため計算負荷を軽減できる。
この積層造形物の変形予測方法によれば、溶着ビード毎にブロック分割して変形を予測するため、より細かな変形を正確に予測できる。
この積層造形物の変形予測方法によれば、溶着ビードの積層体毎にブロック分割して変形を予測するため、例えば、特定のブロックのみ入れ替えた積層造形物である場合に、入れ替えたブロックの変形を他のブロックの変形に加算することで、簡単に積層造形物全体の変形が求められる。
この積層造形物の変形予測方法によれば、各ブロックの変形パターンを単純化し、固有ひずみの解析を平易にできる。
前記複数のブロック群の前記変形量を、当該ブロック群の前記変形方向に応じて加算して、前記積層造形物の変形を予測する、(1)~(4)のいずれか1つに記載の積層造形物の変形予測方法。
この積層造形物の変形予測方法によれば、積層造形物が複雑な形状であっても、ブロック群毎に変形を加算するため、積層造形物の変形の演算の煩雑化を軽減できる。
11 積層造形装置
13 電源装置
15 コントローラ
17 トーチ
19 溶接ロボット
23 溶加材供給部
25 ベースプレート
31 CAD/CAM部
33 軌道演算部
35 記憶部
37 制御部
41 CPU
43 メモリ
45 記憶部
47 入力部
49 出力部
51 通信部
53 ネットワーク
55 サーバ
61 固有ひずみDB作成・記憶部
63 ブロック分割部
65 固有ひずみ定義部
67 並列計算部
69 計算結果統合部
71 枠部
73 内部造形部
100 解析装置
DB 固有ひずみデータベース
MDL 検証用モデル
W 積層造形物
Claims (6)
- 溶加材を溶融及び凝固させた溶着ビードで形成した溶着ビード層に、次層の前記溶着ビード層を繰り返し積層して造形される積層造形物の変形予測方法であって、
前記積層造形物の形状を複数のブロックに分割する工程と、
前記ブロック毎の前記溶着ビード形成前後における変形量及び変形方向を、それぞれ固有ひずみ法に基づいて複数スレッドの並列処理によって算出する工程と、
前記複数のブロックのうち、互いに接合されるブロックから構成される少なくとも一つのブロック群を設定する工程と、
前記ブロック群を構成する個々のブロックの前記変形量を、当該ブロックの前記変形方向に応じて加算して、前記ブロック群全体の変形を算出する工程と、
を有する、積層造形物の変形予測方法。 - 前記複数のブロックに分割する工程は、前記溶着ビードを単位として前記積層造形物の形状を分割する、
請求項1に記載の積層造形物の変形予測方法。 - 前記複数のブロックに分割する工程は、複数の前記溶着ビードの積層体を単位として前記積層造形物の形状を分割する、
請求項1に記載の積層造形物の変形予測方法。 - 前記複数のブロックのうち互いに同じ溶接条件となるブロック同士を、同じ前記ブロック群に設定する、
請求項1~3のいずれか1項に記載の積層造形物の変形予測方法。 - 前記積層造形物の形状が、複数の前記ブロック群に分割される場合に、
前記複数のブロック群の前記変形量を、当該ブロック群の前記変形方向に応じて加算して、前記積層造形物の変形を予測する、
請求項1~3のいずれか1項に記載の積層造形物の変形予測方法。 - 前記積層造形物の形状が、複数の前記ブロック群に分割される場合に、
前記複数のブロック群の前記変形量を、当該ブロック群の前記変形方向に応じて加算して、前記積層造形物の変形を予測する、
請求項4に記載の積層造形物の変形予測方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280011899.XA CN116829290A (zh) | 2021-01-29 | 2022-01-07 | 层叠造型物的变形预测方法 |
US18/263,098 US20240102798A1 (en) | 2021-01-29 | 2022-01-07 | Method for predicting deformation of additively manufactured object |
EP22745556.5A EP4269110A4 (en) | 2021-01-29 | 2022-01-07 | METHOD FOR PREDICTING THE DEFORMATION OF AN ADDITIVELY MANUFACTURED OBJECT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-013576 | 2021-01-29 | ||
JP2021013576A JP7505999B2 (ja) | 2021-01-29 | 2021-01-29 | 積層造形物の変形予測方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022163329A1 true WO2022163329A1 (ja) | 2022-08-04 |
Family
ID=82653380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000398 WO2022163329A1 (ja) | 2021-01-29 | 2022-01-07 | 積層造形物の変形予測方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240102798A1 (ja) |
EP (1) | EP4269110A4 (ja) |
JP (1) | JP7505999B2 (ja) |
CN (1) | CN116829290A (ja) |
WO (1) | WO2022163329A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014115789A (ja) | 2012-12-07 | 2014-06-26 | Toshiba Corp | 解析装置、解析方法および解析プログラム |
JP2017161981A (ja) * | 2016-03-07 | 2017-09-14 | 株式会社東芝 | 解析装置、解析方法および解析プログラム |
WO2018123858A1 (ja) | 2016-12-26 | 2018-07-05 | 三菱重工業株式会社 | 熱変形量演算装置、3次元積層システム、3次元積層方法及びプログラム |
JP2018184623A (ja) | 2017-04-24 | 2018-11-22 | 株式会社東芝 | 積層造形物の固有ひずみ算出装置、その固有ひずみ算出方法、その固有ひずみ算出プログラム、その解析装置、その解析方法、及び積層造形装置 |
WO2019049981A1 (ja) | 2017-09-08 | 2019-03-14 | 公立大学法人大阪府立大学 | 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置 |
JP2020001059A (ja) * | 2018-06-27 | 2020-01-09 | 株式会社神戸製鋼所 | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 |
JP2020027491A (ja) | 2018-08-14 | 2020-02-20 | 株式会社東芝 | 造形データ作成装置、造形データ作成装置用プログラム、造形データ作成方法および造形方法 |
JP2021003724A (ja) * | 2019-06-26 | 2021-01-14 | 株式会社神戸製鋼所 | 積層造形方法 |
JP2021013576A (ja) | 2019-07-12 | 2021-02-12 | 株式会社Qdレーザ | 視覚検査装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4945312B2 (ja) * | 2007-05-22 | 2012-06-06 | 株式会社東芝 | 被溶接体物理量の解析方法および解析システム |
WO2019070125A1 (en) * | 2017-10-06 | 2019-04-11 | Technische Universiteit Delft | DIGITAL PROCESS SIMULATION OF ADDITIVE MANUFACTURE |
-
2021
- 2021-01-29 JP JP2021013576A patent/JP7505999B2/ja active Active
-
2022
- 2022-01-07 CN CN202280011899.XA patent/CN116829290A/zh active Pending
- 2022-01-07 EP EP22745556.5A patent/EP4269110A4/en active Pending
- 2022-01-07 US US18/263,098 patent/US20240102798A1/en active Pending
- 2022-01-07 WO PCT/JP2022/000398 patent/WO2022163329A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014115789A (ja) | 2012-12-07 | 2014-06-26 | Toshiba Corp | 解析装置、解析方法および解析プログラム |
JP2017161981A (ja) * | 2016-03-07 | 2017-09-14 | 株式会社東芝 | 解析装置、解析方法および解析プログラム |
WO2018123858A1 (ja) | 2016-12-26 | 2018-07-05 | 三菱重工業株式会社 | 熱変形量演算装置、3次元積層システム、3次元積層方法及びプログラム |
JP2018184623A (ja) | 2017-04-24 | 2018-11-22 | 株式会社東芝 | 積層造形物の固有ひずみ算出装置、その固有ひずみ算出方法、その固有ひずみ算出プログラム、その解析装置、その解析方法、及び積層造形装置 |
WO2019049981A1 (ja) | 2017-09-08 | 2019-03-14 | 公立大学法人大阪府立大学 | 積層造形物の解析方法及び積層造形物の解析装置、並びに積層造形物の製造方法及び積層造形物の製造装置 |
JP2020001059A (ja) * | 2018-06-27 | 2020-01-09 | 株式会社神戸製鋼所 | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 |
JP2020027491A (ja) | 2018-08-14 | 2020-02-20 | 株式会社東芝 | 造形データ作成装置、造形データ作成装置用プログラム、造形データ作成方法および造形方法 |
JP2021003724A (ja) * | 2019-06-26 | 2021-01-14 | 株式会社神戸製鋼所 | 積層造形方法 |
JP2021013576A (ja) | 2019-07-12 | 2021-02-12 | 株式会社Qdレーザ | 視覚検査装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4269110A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2022117082A (ja) | 2022-08-10 |
EP4269110A4 (en) | 2024-08-21 |
EP4269110A1 (en) | 2023-11-01 |
US20240102798A1 (en) | 2024-03-28 |
JP7505999B2 (ja) | 2024-06-25 |
CN116829290A (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nguyen et al. | Continuous Eulerian tool path strategies for wire-arc additive manufacturing of rib-web structures with machine-learning-based adaptive void filling | |
CN112368099B (zh) | 层叠造型物的制造方法以及制造装置 | |
Ding et al. | Process planning strategy for wire and arc additive manufacturing | |
US9952572B2 (en) | Object production using an additive manufacturing process | |
JP7303163B2 (ja) | 欠陥発生予測方法、及び欠陥発生予測装置 | |
Zhang et al. | Robotic additive manufacturing along curved surface—A step towards free-form fabrication | |
JP6981957B2 (ja) | 余肉量設定方法、余肉量設定装置、及び造形物の製造方法、並びにプログラム | |
WO2018180135A1 (ja) | 積層造形物の製造方法及び製造システム | |
JP6753990B1 (ja) | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 | |
CN116137838A (zh) | 造形计划支援方法以及造形计划支援装置 | |
JP7404833B2 (ja) | 品質予測システム | |
JP2021016885A (ja) | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 | |
WO2022163329A1 (ja) | 積層造形物の変形予測方法 | |
JP6753989B1 (ja) | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 | |
JP2021138030A (ja) | 積層造形物の材質予測方法、材質データベースの構築方法、積層造形物の積層計画方法、及び積層造形物の製造方法 | |
WO2023171151A1 (ja) | 学習装置、温度履歴予測装置、溶接システム及びプログラム | |
WO2021029297A1 (ja) | 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置 | |
WO2023149143A1 (ja) | 制御情報生成装置、制御情報生成方法、プログラム、溶接制御装置及び溶接装置 | |
WO2023149142A1 (ja) | 制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラム | |
JP7303162B2 (ja) | 積層造形物の製造方法 | |
JP2024071271A (ja) | 断面形状データ生成方法、断面形状データ生成装置及びプログラム | |
JP2021188060A (ja) | 積層造形物の解析装置および解析方法、並びに積層造形物の造形システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22745556 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18263098 Country of ref document: US Ref document number: 202280011899.X Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022745556 Country of ref document: EP Effective date: 20230727 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |