WO2019049785A1 - Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法 - Google Patents

Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法 Download PDF

Info

Publication number
WO2019049785A1
WO2019049785A1 PCT/JP2018/032374 JP2018032374W WO2019049785A1 WO 2019049785 A1 WO2019049785 A1 WO 2019049785A1 JP 2018032374 W JP2018032374 W JP 2018032374W WO 2019049785 A1 WO2019049785 A1 WO 2019049785A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
las
ppm
crystallized glass
content
Prior art date
Application number
PCT/JP2018/032374
Other languages
English (en)
French (fr)
Inventor
裕基 横田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201880057584.2A priority Critical patent/CN111051261A/zh
Priority to JP2019540931A priority patent/JP7121348B2/ja
Priority to EP18852822.8A priority patent/EP3683197A4/en
Priority to US16/628,694 priority patent/US11286198B2/en
Priority to KR1020197035064A priority patent/KR102595466B1/ko
Publication of WO2019049785A1 publication Critical patent/WO2019049785A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to LAS-based crystalline glass, LAS-based crystallized glass, and methods for producing them.
  • oil stoves for example, oil stoves, front windows such as wood stoves, substrates for high-tech products such as color filters and substrates for image sensors, industrial scales, electronic component firing setters, electromagnetic cooking top plates, window doors for fire doors
  • the present invention relates to LAS crystalline glass, LAS crystallized glass, and methods for producing them, which are suitable as materials such as
  • Patent Documents 1 to 3 as a main crystal ⁇ - quartz solid solution (Li 2 O ⁇ Al 2 O 3 ⁇ nSiO 2 [ provided that 2 ⁇ n ⁇ 4]) and ⁇ - spodumene solid solution Disclosed is a LAS-based crystallized glass formed by depositing Li 2 O-Al 2 O 3 -SiO 2 -based crystals such as (Li 2 O.Al 2 O 3 .nSiO 2, where n ⁇ 4).
  • the LAS-based crystallized glass has excellent thermal properties because it has a low thermal expansion coefficient and high mechanical strength.
  • the fining agent added to the glass batch is As 2 O 3 and Sb 2 O 3 which can be generated a large amount of fining gas upon melting at a high temperature are used.
  • As 2 O 3 and Sb 2 O 3 are highly toxic, and may contaminate the environment during the glass manufacturing process or waste glass processing.
  • SnO 2 and Cl have been proposed as alternative fining agents for As 2 O 3 and Sb 2 O 3 (see, for example, Patent Documents 4 and 5).
  • Cl is likely to corrode the mold or metal roll at the time of glass forming, and as a result, there is a possibility that the surface quality of the glass is deteriorated. From such a point of view, it is preferable to use SnO 2 which does not cause the above problem as a fining agent.
  • the content of TiO 2 may be reduced, but when the content of TiO 2 is reduced, the optimum firing temperature range narrows, and the crystal The amount of nuclei produced tends to be small. As a result, coarse crystals increase, and the crystallized glass becomes cloudy, which easily impairs transparency. Furthermore, if the shortage of the amount of nucleation of crystals caused by the reduction of the content of TiO 2 is compensated by the increase of the content of ZrO 2 , the amount of formation of crystal nuclei increases, but at the same time coarse crystals precipitate, The crystallized glass becomes cloudy and easily loses transparency. From the above circumstances, when obtaining LAS-based crystallized glass using SnO 2 as a fining agent, in particular, transparent crystallized glass, it was extremely difficult to reduce the yellow coloration.
  • an object of the present invention is to provide LAS-based crystallized glass with reduced coloring.
  • the coloring factor of LAS-based crystallized glass is not only the above-mentioned transition metals but also the rare earth elements and actinide elements contained in the crystallized glass enhance the coloring of LAS-based crystallized glass We considered that there is a possibility, and examined the influence on the coloring of each element.
  • the above phenomenon also shows the same tendency in LAS-based crystallized glass before crystallization, that is, in LAS-based crystalline glass (glass which can be crystallized).
  • the rare earth elements are 17 elements of Sc, Y and lanthanoids (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu).
  • the actinide element refers to four types of Ac, Th, Pa, and U.
  • the LAS-based crystalline glass of the present invention has a V and Cr content of 0 to 3 ppm in the glass, and further, Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, and Dy. And Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, and U each have a content of 0 to 10 ppm.
  • the contents of V and Cr in the glass are each 0 to 3 ppm, and further Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy And Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, and U each have a content of 0 to 10 ppm.
  • the LAS-based crystallized glass of the present invention is formed by crystallizing the LAS-based crystalline glass in which the coloring is reduced as described above, so that the coloring of the glass by transition metals such as V and Cr can be reduced and It is also possible to reduce the coloration of glass due to actinide elements. As a result, it is possible to obtain LAS-based crystallized glass having high whiteness or transparency.
  • the content of Y in the glass is preferably 0.05 to 200 ppm.
  • Y is a component which hardly contributes to the color tone of LAS-based crystallized glass. Therefore, from the viewpoint of manufacturing cost and time and effort, it is acceptable to contain in the crystallized glass if it is a fixed amount, as long as the color tone of the glass is not impaired.
  • the LAS-based crystallized glass of the present invention has a glass composition by mass as SiO 2 55-75%, Al 2 O 3 5-25%, Li 2 O 2-5%, Na 2 O 0-1%, K 2 O 0 to 1%, MgO 0 to 3%, BaO 0 to 2%, TiO 2 0.5 to 3%, ZrO 2 0.1 to 5%, TiO 2 + ZrO 2 3 to 5%, P 2 O 5 It is preferable to contain 0 to 3% and SnO 2 0 to 1%.
  • ⁇ -quartz solid solution and ⁇ -spodumene solid solution are easily precipitated as main crystals, and LAS-based crystallized glass having low expansion and high mechanical strength can be easily obtained.
  • group crystallized glass of this invention is 2.86 or less by b * value of the L * a * b * display of a CIE specification.
  • the b * value is an index indicating the degree of yellow coloration of the glass in the range of b * > 0, and the higher the b * value, the stronger the yellow coloration of the glass.
  • b * ⁇ 0 it is an index indicating the degree of blue coloration of the glass, and as the b * value is higher on the negative side, it means that the blue coloration of the glass is stronger.
  • a ⁇ -quartz solid solution is preferably precipitated as a main crystal.
  • the thermal expansion coefficient at 30 to 380 ° C. is ⁇ 20 ⁇ 10 ⁇ 7 / ° C. to 20 ⁇ 10 ⁇ 7 / ° C. Is preferred.
  • the thermal expansion coefficient means an average linear thermal expansion coefficient at 30 to 380.degree.
  • a ⁇ -spodumene solid solution is preferably precipitated as a main crystal.
  • the thermal expansion coefficient at 30 to 380 ° C. is ⁇ 20 ⁇ 10 ⁇ 7 / ° C. to 20 ⁇ 10 ⁇ 7 / ° C. Is preferred.
  • the process for producing LAS crystalline glass according to the present invention is a process for producing a raw material batch, melting and shaping the LAS crystalline glass, wherein the contents of V and Cr in the obtained crystalline glass are each different.
  • the content of Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U It is characterized in that the selection of raw materials and the control of processes are performed so as to be 0 to 10 ppm respectively.
  • the method for producing LAS-based crystallized glass of the present invention is a method for producing LAS-based crystallized glass in which a raw material batch is prepared, melted and molded to produce LAS-based crystalline glass, and then heat treated to crystallize.
  • the contents of V and Cr in the crystallized glass to be obtained are each 0 to 3 ppm, and further Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, It is characterized in that selection of raw materials and management of processes are performed so that the contents of Tm, Yb, Lu, Ac, Th, Pa, and U become 0 to 10 ppm, respectively.
  • the content of Y in the crystallized glass is preferably 0.05 to 200 ppm.
  • Method for producing a LAS-type crystallized glass of the present invention has a glass composition, in mass%, SiO 2 55 ⁇ 75% , Al 2 O 3 5 ⁇ 25%, Li 2 O 2 ⁇ 5%, Na 2 O 0 ⁇ 1%, K 2 O 0 ⁇ 1%, MgO 0 ⁇ 3%, BaO 0 ⁇ 2%, TiO 2 0.5 ⁇ 3%, ZrO 2 0.1 ⁇ 5%, TiO 2 + ZrO 2 3 ⁇ 5%,
  • the raw material batch is preferably prepared so as to be a crystalline glass containing 0 to 3% of P 2 O 5 and 0 to 1% of SnO 2 .
  • the color tone of transmitted light at a thickness of 3 mm of the obtained LAS crystallized glass is 2.86 as the b * value of L * a * b * color system according to the CIE standard. It is preferable that it becomes the following.
  • the method for producing LAS-based crystallized glass according to the present invention is characterized in that V, Cr, Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu are used as glass raw materials. It is preferable to use a Zr raw material in which the content of each of Ac, Th, Pa, and U is 500 ppm or less.
  • the Zr raw material is not a raw material used in a large amount, but the Zr raw material contains a large amount of V, Cr, rare earth elements and actinide elements. , Likely to affect the color of the glass. Therefore, by appropriately using the Zr raw material, in particular, among the glass raw materials, it is possible to easily obtain LAS-based crystallized glass having reduced coloration of the glass and excellent in transparency or whiteness.
  • the LAS-based crystallized glass of the present invention has little coloring and is excellent in transparency or whiteness. Moreover, when the method for producing LAS-based crystallized glass of the present invention is used, LAS-based crystallized glass having less coloring and excellent in transparency or whiteness can be easily obtained.
  • % means “% by mass” unless otherwise noted, and ppm is ppm (mass).
  • the contents of V and Cr in the crystallized glass are each 0 to 3 ppm, preferably 0.1 to 2.5 ppm, particularly preferably 0.5 to 2 ppm. In this way, it is possible to easily obtain a LAS-based crystallized glass which is less in color and excellent in transparency or whiteness.
  • the content of each of the rare earth element and the actinide element is preferably 0 to 10 ppm as each element, and is 0 to 7 ppm, 0 to 5 ppm, 0 to 3 ppm, 0 to 2 ppm, , 0 to 1 ppm. In this way, it is possible to easily obtain a LAS-based crystallized glass which is less in color and excellent in transparency or whiteness.
  • the rare earth elements and the actinide elements are all elements present in the crust, and are easily contained in the glass raw materials, and consequently also in the glass after production. Therefore, it is preferable to avoid reducing the content in the crystallized glass more than necessary from the viewpoint of cost and time and effort as much as possible.
  • each element is 0.05 ppm or more and 0.1 ppm or more in the crystallized glass. You may contain 2 ppm or more. Moreover, these elements can also be introduce
  • Y is a component that is less likely to contribute to color tone than other elements, and it is possible to obtain LAS-based crystallized glass of a desired color tone without reducing the content in the crystallized glass to the limit. It is.
  • Y is an element that is present in the crust as the fourth most element among the rare earth elements, and is more likely to be present in the crystallized glass more than other rare earth elements. Therefore, in particular, in terms of cost and labor, as long as there is no problem in the color tone of the glass, it may be contained in the crystallized glass if it is a fixed amount.
  • the content of Y in the crystallized glass is more than 0 to 200 ppm, 0.01 to 180 ppm, 0.02 to 150 ppm, 0.03 to 100 ppm, and 0.04 to 50 ppm. It may be 0.05 to 10 ppm, 0.1 to 9 ppm, especially 0.2 to 8 ppm. Further, the content of Y in the crystallized glass is preferably 0.05 to 110 ppm or more.
  • the content of Y in the crystallized glass is 0.1 ppm or more, 0.5 ppm or more, 1 ppm or more, 5 ppm or more, 10 ppm or more, 20 ppm or more, 30 ppm or more, 50 ppm or more, It may be 80 ppm or more, 100 ppm or more, 130 ppm or more.
  • Nd has the effect of suppressing the yellowness of LAS-based crystallized glass. If the amount of Nd is too large, the transparency and the whiteness are impaired, but as long as the purpose of the present invention is not impaired, it may be positively contained in the glass if it is a fixed amount.
  • the content of Nd in the glass is more than 0 to 300 ppm, 0.01 to 270 ppm, 0.02 to 250 ppm, 0.1 to 200 ppm, 0.1 to 150 ppm, 0 It may be 1 to 100 ppm, 0.2 to 50 ppm, 0.2 to 25 ppm, 0.3 to 10 ppm, 0.4 to 9 ppm, in particular 0.5 to 8 ppm.
  • the content of Nd in the crystallized glass may be 0 to 10 ppm.
  • the content of Nd in the crystallized glass is 1 ppm or more, 5 ppm or more, 10 ppm or more, 20 ppm or more, 30 ppm or more, 50 ppm or more, 80 ppm or more, 100 ppm or more, 160 ppm or more. May be
  • the contents of V and Cr in the glass are each 0 to 3 ppm, and further Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho
  • the content of each of Er, Tm, Yb, Lu, Ac, Th, Pa, and U is 0 to 10 ppm.
  • LAS-type crystallized glass of the present invention SiO 2 55 ⁇ 75%, Al 2 O 3 5 ⁇ 25%, Li 2 O 2 ⁇ 5%, Na 2 O 0 ⁇ 1%, K 2 O 0 ⁇ 1 %, MgO 0-3%, BaO 0-2%, TiO 2 0.5-3%, ZrO 2 0.1-5%, TiO 2 + ZrO 2 3-5%, P 2 O 5 0-3%,
  • the SnO 2 content is preferably 0 to 1%.
  • SiO 2 forms a skeleton of glass and is a component constituting LAS-based crystals.
  • the content of SiO 2 is preferably 55 to 75%, more preferably 58 to 72%, particularly preferably 60 to 70%. If the content of SiO 2 is too small, the thermal expansion coefficient tends to be high, and it is difficult to obtain a crystallized glass excellent in thermal shock resistance. In addition, chemical durability tends to decrease. On the other hand, when the content of SiO 2 is too large, the meltability of the glass is reduced, the viscosity of the glass melt is increased, the glass is difficult to be clarified, or the forming of the glass becomes difficult, and the productivity is reduced. This results in high manufacturing costs.
  • Al 2 O 3 is a component that forms a skeleton of glass and constitutes LAS-based crystals.
  • the content of Al 2 O 3 is preferably 5 to 25%, more preferably 15 to 25%, 18 to 25%, and particularly preferably 20 to 24%. If the content of Al 2 O 3 is too small, the thermal expansion coefficient tends to be high, and it is difficult to obtain a crystallized glass excellent in thermal shock resistance. In addition, chemical durability tends to decrease. On the other hand, if the content of Al 2 O 3 is too large, the meltability of the glass is reduced, the viscosity of the glass melt is increased, and it becomes difficult to clarify or the forming of the glass becomes difficult to lower the productivity. . This results in high manufacturing costs. In addition, mullite crystals precipitate and the glass tends to devitrify, and the glass tends to be broken.
  • Li 2 O is a component that constitutes LAS-based crystals, and is a component that greatly affects the crystallinity and reduces the viscosity of the glass to improve the meltability and formability of the glass. Moreover, it is also a component with high raw material cost generally.
  • the content of Li 2 O is preferably 2 to 5%, particularly preferably 3 to 4.5%. If the content of Li 2 O is too low, crystals of mullite tend to precipitate and the glass to devitrify. Moreover, when crystallizing glass, it becomes difficult to precipitate LAS type crystals, and it becomes difficult to obtain a crystallized glass excellent in thermal shock resistance.
  • the meltability of the glass is reduced, the viscosity of the glass melt is increased, it becomes difficult to clarify, the molding of the glass becomes difficult, and the productivity is reduced. This results in high manufacturing costs.
  • the content of Li 2 O is too large, the production cost of the glass becomes high.
  • Na 2 O is a component which is solid-solved in LAS-based crystals and is a component which greatly affects the crystallinity and reduces the viscosity of the glass to improve the meltability and the formability of the glass.
  • the content of Na 2 O is preferably 0 to 1%, and more preferably 0 to 0.8%. If the content of Na 2 O is too large, the thermal expansion coefficient tends to be high, and it is difficult to obtain a crystallized glass excellent in thermal shock resistance.
  • K 2 O is a component which is solid-solved in LAS-based crystals, and is a component which greatly affects the crystallinity and reduces the viscosity of the glass to improve the meltability and the formability of the glass.
  • the content of K 2 O is preferably 0 to 1%, particularly preferably 0 to 0.8%. When the content of K 2 O is too large, the thermal expansion coefficient tends to be high, and it is difficult to obtain a crystallized glass excellent in thermal shock resistance.
  • MgO is a component which is dissolved in LAS-based crystals and has the effect of increasing the thermal expansion coefficient of LAS-based crystals.
  • the content of MgO is preferably 0 to 3%, more preferably 0.1 to 2%, particularly preferably 0.3 to 1.5%. If the content of MgO is too large, the crystallinity tends to be too strong and devitrification tends to occur, and the glass tends to be broken.
  • BaO is a component that reduces the viscosity of the glass to improve the meltability and formability of the glass.
  • the content of BaO is preferably 0 to 2%, more preferably 0.5 to 1.8%, particularly preferably 1 to 1.5%. If the content of BaO is too large, crystals containing Ba are likely to precipitate, and the glass is likely to be devitrified. If the content of BaO is too small, the viscosity of the glass melt will be high, and it will be difficult to clarify or the formation of glass will be difficult, and the productivity will be reduced. This results in high manufacturing costs.
  • TiO 2 is a component to be a nucleation agent for precipitating crystals in the crystallization step.
  • the content of TiO 2 is preferably 0.5 to 3%, more preferably 1.0 to 2.7%, particularly preferably 1.5 to 2.5%.
  • the content of TiO 2 is too large, the coloration of the glass tends to be intensified.
  • the content of TiO 2 is too small, crystal nuclei are not sufficiently formed, and coarse crystals may precipitate to cause the glass to become cloudy or to be broken.
  • ZrO 2 is, like TiO 2 , a nucleation component for precipitating crystals in the crystallization step.
  • the content of ZrO 2 is preferably 0.1 to 5%, more preferably 0.5 to 3%, particularly preferably 1 to 2.5%.
  • the content of ZrO 2 is too large, the glass is likely to be devitrified when it is melted, which makes it difficult to form the glass and the productivity is lowered. This results in high manufacturing costs.
  • the content of ZrO 2 is too small, crystal nuclei are not sufficiently formed, and coarse crystals may precipitate to cause the glass to become cloudy or to be damaged.
  • the total content of TiO 2 + ZrO 2 is preferably 3 to 5%, more preferably 3.5 to 4.7%, particularly preferably 4 to 4.5%.
  • the total content of TiO 2 + ZrO 2 is preferably 3 to 5%, more preferably 3.5 to 4.7%, particularly preferably 4 to 4.5%.
  • the glass is likely to be devitrified when it is melted, which makes it difficult to form the glass and the productivity is lowered. This results in high manufacturing costs.
  • the total content of TiO 2 + ZrO 2 is too small, crystal nuclei are not sufficiently formed, and coarse crystals may precipitate to cause the glass to become cloudy or to be damaged.
  • P 2 O 5 is a component that suppresses the precipitation of coarse ZrO 2 crystals.
  • the content of P 2 O 5 is preferably 0 to 3%, more preferably 0 to 2.5%, particularly preferably 0 to 2%.
  • the precipitation amount of LAS-based crystals tends to be small, and the thermal expansion coefficient tends to be high.
  • coarse ZrO 2 crystals precipitate and the glass tends to be clouded.
  • SnO 2 is a component that acts as a fining agent. On the other hand, when it is contained in a large amount, it is also a component that significantly enhances the coloration of the glass. Moreover, it is also a component with high raw material cost generally.
  • the content of SnO 2 is preferably 0 to 1%, preferably 0.01 to 0.5%, particularly preferably 0.1 to 0.4%. When the content of SnO 2 is too large, the color of the glass becomes strong. If the content of SnO 2 is too low, fining of the glass becomes difficult and productivity decreases. In addition, the manufacturing cost of the glass is high.
  • the LAS-based crystallized glass of the present invention contains, in addition to the above components, 0.1% or less of minor components such as H 2 , CO 2 , CO, H 2 O, He, Ne, Ar, N 2 etc. May be In addition, noble metal elements such as Ag, Au, Pd, and Ir may be added to the crystallized glass to 10 ppm each.
  • the LAS-based crystallized glass of the present invention contains Pt, Rh, B 2 O 3 , CaO, SrO, SO 3 , MnO, Cl 2 , WO 3 etc. in a total amount of up to 2%. You may
  • the LAS-based crystalline glass of the present invention has a V and Cr content of 0 to 3 ppm in the glass, and further, Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, and Dy. And Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, and U each have a content of 0 to 10 ppm.
  • compositional features of the crystallized glass of the present invention are in common with the crystalline glass of the present invention. Therefore, the detailed description about crystalline glass is omitted.
  • the LAS-based crystalline glass of the present invention preferably has a color tone of transmitted light at a thickness of 3 mm of less than 1.12, 1.11 or less, 1.10, as the b * value represented by L * a * b * in the CIE standard. It is preferable that it is the following. If the b * value is too high, the yellow coloration of the glass becomes too strong.
  • the LAS-based crystallized glass of the present invention preferably has a color tone of transmitted light at a thickness of 3 mm of 2.86 or less, 2.8 or less, and 2.7 or less, as the b * value represented by L * a * b * of CIE standard. Below, 2.6 or less, 2.5 or less, less than 2.5, 2.45, less than 2.41, 2.4 or less, 2.3 or less, more preferably 2.2 or less is preferable. If the b * value is too high, the yellow coloration of the glass becomes too strong.
  • a ⁇ -quartz solid solution is preferably precipitated as a main crystal.
  • the crystallized glass is likely to transmit visible light, and the transparency is likely to be enhanced. It also makes it easy to bring the expansion of the glass close to zero.
  • the LAS-based crystallized glass of the present invention in which ⁇ -quartz solid solution is precipitated as a main crystal has a thermal expansion coefficient at 30 to 380 ° C. of preferably ⁇ 20 ⁇ 10 ⁇ 7 / ° C. to 20 ⁇ 10 ⁇ 7 / ° C. -15 ⁇ 10 -7 / ° C to 15 ⁇ 10 -7 / ° C, -10 ⁇ 10 -7 / ° C to 10 ⁇ 10 -7 / ° C, -5 ⁇ 10 -7 / ° C to 5 ⁇ 10 -7 / ° C , more preferably -2.5 ⁇ 10 -7 /°C ⁇ 2.5 ⁇ 10 -7 / °C .
  • a ⁇ -spodumene solid solution may be precipitated.
  • the ⁇ -spodumene solid solution can be easily precipitated by heat treating the ⁇ -quartz solid solution. By precipitating the ⁇ -spodumene solid solution, it becomes easy to obtain a crystallized glass (white crystallized glass) with high whiteness.
  • the LAS-based crystallized glass of the present invention preferably has a color tone of transmitted light at a thickness of 3 mm with a b * value of L * a * b * display of CIE standard, preferably 40.85. Less than, 40.7 or less, 40.5 or less, 40.1 or less is preferable. If the b * value is too high, the yellow coloration of the glass becomes too strong.
  • the LAS system crystallized glass of the present invention in which ⁇ -spodumene is precipitated as a main crystal has a thermal expansion coefficient at 30 to 380 ° C. of preferably ⁇ 20 ⁇ 10 ⁇ 7 / ° C. to 20 ⁇ 10 ⁇ 7 / ° C. 15 ⁇ 10 -7 / ° C. to 15 ⁇ 10 -7 / ° C., -10 ⁇ 10 -7 / ° C. to 10 ⁇ 10 -7 / ° C., 0 ⁇ 10 -7 / ° C. to 20 ⁇ 10 -7 / ° C.
  • it is 0 ⁇ 10 ⁇ 7 / ° C. to 15 ⁇ 10 ⁇ 7 / ° C.
  • thermal expansion coefficient at 30 to 380 ° C. is too large, the thermal shock resistance of the product is lowered and the product tends to be damaged when the temperature changes.
  • the process for producing LAS crystalline glass according to the present invention is a process for producing a raw material batch, melting and shaping the LAS crystalline glass, wherein the contents of V and Cr in the obtained crystalline glass are each different.
  • the content of Sc, La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa, U It is characterized in that the selection of raw materials and the control of processes are performed so as to be 0 to 10 ppm respectively.
  • the method for producing LAS crystalline glass according to the present invention is a method for producing a raw material batch, and melting and shaping the raw material batch, and the content of V and Cr in the obtained crystalline glass Is 0 to 3 ppm, respectively, and further Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ac, Th, Pa It is preferable to control the selection of the raw materials and the process so that the content of U is 0 to 10 ppm, respectively.
  • the method for producing LAS-based crystallized glass of the present invention is characterized in that the crystalline glass is heat-treated to be crystallized.
  • the method for producing LAS-based crystallized glass according to the present invention performs selection of raw materials and management of processes focusing on V, Cr, rare earth elements and actinide elements. These elements are incorporated during the production process, and even minor amounts can affect the coloration of the glass. For example, if the element contributing to coloring is contained in the glass raw material to be used, it is melted, shaped and mixed in the glass. In addition, when cullet used to increase the melting efficiency contains V, Cr, a rare earth element and an actinide element, it is also mixed in the glass. In addition, there is also a possibility that the components of the melting furnace melt at a high temperature during melting of the glass, thereby causing contamination with the glass. It is preferable to suppress these colors by the selection of the used raw materials and cullet, the lowering of the melting temperature, and the like.
  • Y and Nd are components which are less likely to deteriorate the color tone as compared to other elements as described above, and therefore the content in the glass may not be reduced to the limit. Moreover, these elements can also be introduce
  • the preferable content of each element is as described above, and therefore the description is omitted here.
  • raw materials to be used are selected, glass raw materials are prepared so as to obtain a desired composition, and raw material batches are produced.
  • a raw material having a content of each of V, Cr, a rare earth element and an actinide element of 0 to 500 ppm as a Zr raw material. It is preferable to use a raw material of ⁇ 350 ppm, 0 ⁇ 250 ppm, 0 ⁇ 150 ppm, 0 ⁇ 100 ppm, especially 0 ⁇ 50 ppm.
  • ZrSiO 4 zircon, zircon flower
  • ZrO 2 zirconium oxide
  • ZrO 2 zirconium oxide
  • ZrO 2 are preferably those purified by the wet method, further, the cleaning liquid (e.g., a carboxylic acid solution, ammonia solution or ammonium carboxylate salt solution, etc.,) as long as it was washed with, in ZrO 2 of It is particularly preferable because the impurity content is further reduced.
  • the cleaning liquid e.g., a carboxylic acid solution, ammonia solution or ammonium carboxylate salt solution, etc.
  • the P raw material, the Ti raw material, etc. may contain an earth element or an actinide element. Therefore, also for these raw materials, appropriate raw materials are used similarly to the Zr raw materials. It is preferable to select.
  • the P raw material and / or the Ti raw material it is preferable to use a raw material having a content of each of rare earth element and actinide element of 0 to 500 ppm, 0 to 500 ppm or less, 0 to 350 ppm, 0 to 250 ppm, 0 to 150 ppm
  • the selection of the glass cullet and the use ratio thereof are determined in consideration of the contents of V, Cr, rare earth elements and actinide elements contained in the glass cullet. Is preferred.
  • the raw material batch is introduced into a glass melting furnace, melted at 1500 to 1750 ° C., and then molded to obtain LAS crystalline glass.
  • the obtained crystalline glass is heat treated to be crystallized.
  • crystallization conditions first, nucleation is carried out at 700 to 800 ° C. (preferably 750 to 790 ° C.) for 5 to 300 minutes (preferably 60 to 180 minutes), followed by crystal growth at 800 to 950 ° C. (preferably 850). C. for 5 to 120 minutes (preferably 10 to 60 minutes).
  • nucleation is carried out at 700 to 800 ° C. (preferably 750 to 790 ° C.) for 5 to 300 minutes (preferably 60 to 180 minutes), followed by crystal growth at 800 to 950 ° C. (preferably 850). C. for 5 to 120 minutes (preferably 10 to 60 minutes).
  • white opacity is generated by using ⁇ -spodumene solid solution as a main crystal by performing crystal growth at 1050 to 1200 ° C. (preferably 1100 to 1150 ° C.) for 5 to 120 minutes (preferably 10 to 60 minutes).
  • LAS based crystallized glass can also be obtained.
  • Table 1 shows Examples 1 to 6 and Comparative Examples 1 to 3 of the present invention in which ⁇ -quartz solid solution is precipitated as main crystals, respectively.
  • the contents of the basic components other than the components shown in Table 1 are as shown in Table 2.
  • each raw material was prepared in the form of an oxide, a hydroxide, a carbonate, a nitrate or the like so that a glass having the composition described in Tables 1 and 2 was obtained, to obtain a glass batch.
  • the obtained glass batch was placed in a quartz crucible, melted at 1600 ° C. for 23 hours, and then melted at 1650 ° C. for 1 hour. After melting, it was roll-formed to a thickness of 5 mm and further cooled to room temperature using a slow cooling furnace to obtain a crystalline glass plate.
  • Examples 1 to 4 use ZrO 2 as the Zr raw material
  • Examples 5 to 6 use the raw material obtained by mixing ZrO 2 and zircon flower
  • Comparative Examples 1 to 3 use zircon as the Zr raw material. It was used.
  • the crystalline glass was nucleated by heat treatment at 760 to 780 ° C. for 180 minutes, and then heat treatment was further carried out at 870 ° C. to 890 ° C. for 60 minutes to be crystallized. The chromaticity was measured for the obtained crystallized glass plate.
  • the transmittance at a wavelength of 380 to 780 nm is measured using a spectrophotometer on a crystallized glass plate that has been subjected to double-sided optical polishing to a thickness of 3 mm, and the transmittance indicates L * a * b of the CIE standard. * Evaluated by calculating the value.
  • JASCOPE spectrophotometer V-670 was used for measurement.
  • the thermal expansion coefficient was evaluated by an average linear thermal expansion coefficient measured in a temperature range of 30 to 380 ° C. using crystallized glass samples processed to 20 mm ⁇ 3.8 mm ⁇ . For measurement, a Dilatometer manufactured by NETZSCH was used.
  • Example 1 since the contents of V, Cr, the rare earth element and the actinide element are small, the b * value is lower in both the crystalline glass and the crystallized glass than in Comparative Example 1. Low, L * values were equal or higher. Further, Example 2 has the same V and Cr contents as Comparative Example 1 and the L * value is equivalent in both the crystalline glass and the crystallized glass, but the contents of rare earth elements and actinide elements are small. Therefore, the b * value was lower in Example 2 than in Comparative Example 1.
  • Example 3 the content of Y among the rare earth elements is larger than in Examples 1 and 2, but no superior difference is seen in the b * value or L * value of these examples. . From this, it is understood that Y hardly deteriorates the color tone of the crystalline glass and the crystallized glass. Furthermore, in Example 6, although the content of Nd in the rare earth elements is larger than in Examples 1 to 5, the b * value and L * value of the crystallized glass were not significantly deteriorated.
  • the LAS-based crystallized glass of the present invention is a substrate for high-tech products such as oil stoves, wood stoves and other front windows, color filters and substrates for image sensors, industrial scales, electronic component baking setters, electromagnetic cooking top plates, It is suitable for window glass for fire doors and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明の目的は、着色が低減されたLAS系結晶化ガラスを提供することである。本発明は、LAS系結晶化ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とする。

Description

LAS系結晶性ガラス、LAS系結晶化ガラス及びそれらの製造方法
 本発明はLAS系結晶性ガラス、LAS系結晶化ガラス及びそれらの製造方法に関する。詳細には、例えば石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、工業用スケール、電子部品焼成用セッター、電磁調理用トッププレート、防火戸用窓ガラス等の材料として好適なLAS系結晶性ガラス、LAS系結晶化ガラス及びそれらの製造方法に関する。
 LAS系結晶化ガラスとして、例えば、特許文献1~3には、主結晶としてβ-石英固溶体(LiO・Al・nSiO[ただし2≦n≦4])やβ-スポジュメン固溶体(LiO・Al・nSiO[ただしn≧4])等のLiO-Al-SiO系結晶を析出してなるLAS系結晶化ガラスが開示されている。
 LAS系結晶化ガラスは、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有している。また結晶化工程において熱処理条件を適宜調整することにより、析出結晶の種類を制御することが可能であり、白色結晶化ガラスのみならず、透明な結晶化ガラス(β-石英固溶体が析出)を作製することも可能である。
 ところで、この種の結晶化ガラスを製造する場合、1400℃を超える高温で溶融する必要がある。このため、ガラスバッチに添加される清澄剤には、高温での溶融時に清澄ガスを多量に発生させることができるAsやSbが使用されている。しかしながら、AsやSbは毒性が強く、ガラスの製造工程や廃ガラスの処理時等に環境を汚染する可能性がある。
 そこで、AsやSbの代替清澄剤として、SnOやClが提案されている(例えば、特許文献4および5参照)。ただし、Clは、ガラス成形時に金型や金属ロールを腐食させやすく、結果として、ガラスの表面品位を劣化させるおそれがある。このような観点から、清澄剤としては、上記問題が生じないSnOを用いることが好ましい。
 しかし、清澄剤としてSnOを用いた場合、従来用いられていたAsやSbを用いた場合よりもTiOやFe等に起因する着色が強くなるため、結晶化ガラスの黄色味が強くなり、外観上好ましくないという問題があった。
 SnOの含有に伴う結晶化ガラスの着色を改善するためには、TiOの含有量を低減すればよいが、TiOの含有量を少なくすると、最適焼成温度域が狭くなり、また、結晶核の生成量が少なくなりやすい。その結果、粗大結晶が多くなって、結晶化ガラスが白濁し、透明性を損ないやすくなる。更に、TiOの含有量の低減に伴う結晶核生成量の不足をZrOの含有量の増加で補うと、結晶核の生成量は多くなるが、同時に粗大な結晶が析出してしまい、やはり結晶化ガラスが白濁し、透明性を損ないやすい。上記事情から、清澄剤としてSnOを用いたLAS系結晶化ガラス、特に、透明結晶化ガラスを得る場合は、黄色着色の低減が極めて困難であった。
 そこで、特許文献6ではSnOとVに起因する黄色着色の低減が提案されているが、不十分である。また、特許文献7ではCrによる補色効果によるLAS系結晶化ガラスの黄色着色低減が提案されている。しかし、補色効果を用いた消色は製品の輝度を下げてしまい、全体的に薄暗い印象を与えてしまう。
特公昭39-21049号公報 特公昭40-20182号公報 特開平1-308845号公報 特開平11-228180号公報 特開平11-228181号公報 特開2013-249221号公報 特開2016-5995号公報
 このように、従来の方法では、着色を低減させるために、透明性や輝度等、様々な特性が犠牲になっており、現在までに根本的な解決には至っていないのが現状である。そして近年、LAS系結晶化ガラスに関し、更なる着色の低減が望まれている。
 すなわち、本発明の目的は、着色が低減されたLAS系結晶化ガラスを提供することである。
 本発明者は、LAS系結晶化ガラスの着色要因は、上述した遷移金属だけではなく、結晶化ガラス中に含有されている希土類元素やアクチノイド元素が、LAS系結晶化ガラスの着色を強めている可能性があると考え、各元素の着色に与える影響を調べた。
 本発明者による実験の結果、Yについては、希土類元素ではあるものの、ガラスの着色に与える影響が限定的であることが分かった。また、Ndについては、黄色着色の補色効果が期待できる。しかし、その他の希土類元素やアクチノイド元素はガラスの着色に大きな影響を与えることを見出した。
 上記現象は、結晶化させる前のLAS系結晶化ガラス、すなわちLAS系結晶性ガラス(結晶化可能なガラス)においても同様の傾向を示す。
 なお、本発明では、希土類元素とは、Sc、Y、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)の17元素を指し、アクチノイド元素とは、Ac、Th、Pa、Uの4種類を指す。
 すなわち、本発明のLAS系結晶性ガラスは、ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とする。
 このようにすれば、着色が低減されたLAS系結晶性ガラスを得ることが可能になる。すなわち、VやCrなどの遷移金属によるガラスの着色を低減できるとともに、希土類元素やアクチノイド元素に起因するガラスの着色も低減できる。その結果、白色度、あるいは透明性の高いLAS系結晶性ガラスを得ることが可能である。
 また、本発明のLAS系結晶化ガラスは、ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とする。
 本発明のLAS系結晶化ガラスは、前述したような着色が低減されたLAS系結晶性ガラスを結晶化させてなるため、VやCrなどの遷移金属によるガラスの着色を低減できるとともに、希土類元素やアクチノイド元素に起因するガラスの着色も低減できる。その結果、白色度、あるいは透明性の高いLAS系結晶化ガラスを得ることが可能である。
 また、本発明のLAS系結晶化ガラスは、ガラス中のYの含有量が0.05~200ppmであることが好ましい。
 YはLAS系結晶化ガラスの色調に寄与しにくい成分である。そのため、製造コスト面や、手間の面からすると、ガラスの色調に支障がない限り、一定量であれば結晶化ガラス中に含有させることが許容される。
 本発明のLAS系結晶化ガラスは、ガラス組成として質量%で、SiO 55~75%、Al 5~25%、LiO 2~5%、NaO 0~1%、KO 0~1%、MgO 0~3%、BaO 0~2%、TiO 0.5~3%、ZrO 0.1~5%、TiO+ZrO 3~5%、P 0~3%、SnO 0~1%を含有することが好ましい。
 このようにすれば、主結晶としてβ-石英固溶体やβ-スポジュメン固溶体が析出し易くなり、低膨張且つ機械的強度の高いLAS系結晶化ガラスが容易に得られる。しかも結晶化条件を調整することによって析出結晶の種類を制御することが可能であり、β-石英固溶体が析出した透明結晶化ガラスを容易に作製することができる。
 本発明のLAS系結晶化ガラスは、CIE規格のL表示のb値で2.86以下であることが好ましい。ここで、b値は、b>0の範囲ではガラスの黄色の着色の程度を示す指標であり、b値が高いほどガラスの黄色の着色が強いことを意味する。また、b<0の範囲ではガラスの青色の着色の程度を示す指標であり、b値がマイナス側に高いほどガラスの青色の着色が強いことを意味する。
 このようにすれば、着色が低減されたLAS系結晶化ガラスを容易に得ることができる。
 本発明のLAS系結晶化ガラスは、主結晶としてβ─石英固溶体が析出していることが好ましい。
 このようにすれば、透明で熱膨張係数の低いLAS系結晶化ガラスを得ることが容易になる。
 本発明のLAS系結晶化ガラスは、主結晶としてβ─石英固溶体が析出している場合、30~380℃における熱膨張係数が、-20×10-7/℃~20×10-7/℃であることが好ましい。ここで、熱膨張係数とは、30~380℃における平均線熱膨張係数を意味する。
 このようにすれば、透明性と低膨張性が求められる各種の用途に好適に使用することができる。
 本発明のLAS系結晶化ガラスは、主結晶としてβ─スポジュメン固溶体が析出していることが好ましい。
 このようにすれば、白色度が高いLAS系結晶化ガラスを得ることが容易になる。
 本発明のLAS系結晶化ガラスは、主結晶としてβ─スポジュメン固溶体が析出している場合、30~380℃における熱膨張係数が、-20×10-7/℃~20×10-7/℃であることが好ましい。
 このようにすれば、高白色度と低膨張性が求められる各種の用途に好適に使用することができる。
 本発明のLAS系結晶性ガラスの製造方法は、原料バッチを調製し、溶融、成形するLAS系結晶性ガラスの製造方法であって、得られる結晶性ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことを特徴とする。
 本発明のLAS系結晶化ガラスの製造方法は、原料バッチを調製し、溶融、成形してLAS系結晶性ガラスを作製した後、熱処理して結晶化させるLAS系結晶化ガラスの製造方法であって、得られる結晶化ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことを特徴とする。
 本発明のLAS系結晶化ガラスの製造方法は、結晶化ガラス中のYの含有量が0.05~200ppmであることが好ましい。
 本発明のLAS系結晶化ガラスの製造方法は、ガラス組成として、質量%で、SiO 55~75%、Al 5~25%、LiO 2~5%、NaO 0~1%、KO 0~1%、MgO 0~3%、BaO 0~2%、TiO 0.5~3%、ZrO 0.1~5%、TiO+ZrO 3~5%、P 0~3%、SnO 0~1%を含有する結晶性ガラスとなるように原料バッチを調製することが好ましい。
 本発明のLAS系結晶化ガラスの製造方法は、得られるLAS系結晶化ガラスの厚み3mmにおける透過光の色調が、CIE規格におけるL*a*b*表色系のb*値で2.86以下となることが好ましい。
 このようにすれば、ガラスの着色が低減され、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 本発明のLAS系結晶化ガラスの製造方法は、ガラス原料として、V、Cr、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ500ppm以下のZr原料を使用することが好ましい。
 本発明のLAS系結晶化ガラスの製造方法において、Zr原料は多量に用いる原料ではないが、Zr原料の中には、V、Cr、希土類元素やアクチノイド元素が原料中に多く含有されているため、ガラスの着色に影響を及ぼす可能性が高くなる。そのため、ガラス原料の中でも特にZr原料を適切に使用することで、ガラスの着色が低減され、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 本発明のLAS系結晶化ガラスの製造方法は、Zr原料として、ZrOを使用することが好ましい。
 このようにすることで、V、Cr、希土類元素やアクチノイド元素の含有を大幅に低減できるため、ガラスの着色が低減され、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 本発明のLAS系結晶化ガラスは、着色が少なく、透明性または白色度が優れている。また、本発明のLAS系結晶化ガラスの製造方法を用いると、着色が少なく、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 以下、本発明のLAS系結晶化ガラスについて説明する。なお、以下の説明において特に断りのない限り「%」は「質量%」を意味し、ppmはppm(質量)である。
 本発明のLAS系結晶化ガラスは、結晶化ガラス中のV、Crの含有量はそれぞれ0~3ppmであり、0.1~2.5ppm、特に、0.5~2ppmが好ましい。このようにすることで、着色が少なく、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 本発明のLAS系結晶化ガラスは、希土類元素およびアクチノイド元素の含有量は、各元素として、好ましくはそれぞれ0~10ppmであり、0~7ppm、0~5ppm、0~3ppm、0~2ppm、特に、0~1ppmである。このようにすることで、着色が少なく、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 上記した遷移金属、希土類元素、アクチノイド元素に対して可視光に相当するエネルギーの光が照射されると、それぞれの元素のフロンティア電子軌道であるd軌道ないしf軌道内において電子遷移が起き、ガラスが着色する可能性がある。また、着色に関わる元素近傍の酸素原子や硫黄原子などのアニオンから各元素のフロンティア軌道に電子が移動する、C-T遷移に起因する着色も発現しうる。
 しかし、希土類元素やアクチノイド元素は、いずれも地殻中に存在している元素であり、ガラス原料中、ひいては製造後のガラスにも不可避的に含有されやすい。そのため、結晶化ガラス中の含有量を必要以上に低減させることについては、コスト面や、手間の面から、できるだけ避けることが好ましい。
 本発明者は、希土類元素、アクチノイド元素の着色影響度について調査した。すると、これら21元素の中でも、LAS系結晶化ガラスの着色に寄与しやすい元素と寄与しにくい元素があることを見出した。
 上記知見から、希土類元素やアクチノイド元素のうち、LAS系結晶化ガラスの色調に寄与し難い元素であれば、各元素とも、結晶化ガラス中に0.05ppm以上、0.1ppm以上、特に0.2ppm以上含有させてもよい。また、これらの元素を、一定量であれば積極的に導入することもできる。
 例えば、Yは他の元素に比べて、色調に寄与しにくい成分であり、結晶化ガラス中の含有量を極限まで低減させなくても、所望の色調のLAS系結晶化ガラスを得ることが可能である。
 また、Yは、希土類元素の中では地殻中に4番目と多く存在している元素であり、他の希土類元素よりも多く結晶化ガラス中に存在する可能性が高い。そのため、特に、コスト面や、手間の面からすると、ガラスの色調に支障がない限り、一定量であれば結晶化ガラス中に含有させてもよい。
 すなわち、本発明のLAS系結晶化ガラスは、結晶化ガラス中のYの含有量が0超~200ppm、0.01~180ppm、0.02~150ppm、0.03~100ppm、0.04~50ppm、0.05~10ppm、0.1~9ppm、特に0.2~8ppmであってもよい。また、結晶化ガラス中のYの含有量は、0.05~110ppm以上であることが好ましい。
 また、本発明のLAS系結晶化ガラスは、結晶化ガラス中のYの含有量が0.1ppm以上、0.5ppm以上、1ppm以上、5ppm以上、10ppm以上、20ppm以上、30ppm以上、50ppm以上、80ppm以上、100ppm以上、130ppm以上であってもよい。
 このようにすれば、製造コストや、手間がかからないため好ましい。
 更に、Ndは、LAS系結晶化ガラスの黄色味を抑制する効果がある。Ndが多すぎると透明性や白色度が損なわれるが、本発明の趣旨を損なわない限り、一定量であれば、積極的にガラス中に含有させてもよい。
 すなわち、本発明のLAS系結晶化ガラスは、ガラス中のNdの含有量が0超~300ppm、0.01~270ppm、0.02~250ppm、0.1~200ppm、0.1~150ppm、0.1~100ppm、0.2~50ppm、0.2~25ppm、0.3~10ppm、0.4~9ppm、特に0.5~8ppmであってもよい。また、結晶化ガラス中のNdの含有量は、0~10ppmであってもよい。
 このようにすれば、着色が少なく、透明性または白色度が優れたLAS系結晶化ガラスを容易に得ることができる。
 また、本発明のLAS系結晶化ガラスは、結晶化ガラス中のNdの含有量が1ppm以上、5ppm以上、10ppm以上、20ppm以上、30ppm以上、50ppm以上、80ppm以上、100ppm以上、160ppm以上であってもよい。
 このようにすれば、製造コストや、手間がかからないため好ましい。また、LAS系結晶化ガラスの黄色味を抑制できるため好ましい。
 本発明のLAS系結晶化ガラスは、ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とする。
 また、本発明のLAS系結晶化ガラスは、SiO 55~75%、Al 5~25%、LiO 2~5%、NaO 0~1%、KO 0~1%、MgO 0~3%、BaO 0~2%、TiO 0.5~3%、ZrO 0.1~5%、TiO+ZrO 3~5%、P 0~3%、SnO 0~1%であることが好ましい。
 以下、LAS系結晶化ガラスの各成分の含有量を上記のように規定した理由を以下に説明する。
 SiOはガラスの骨格を形成するとともに、LAS系結晶を構成する成分である。SiOの含有量は55~75%が好ましく、58~72%、特に60~70%が好ましい。SiOの含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向がある。一方、SiOの含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下する。この結果、製造コストが高くなる。
 Alはガラスの骨格を形成するとともに、LAS系結晶を構成する成分である。Alの含有量は5~25%が好ましく、15~25%、18~25%、特に20~24%が好ましい。Alの含有量が少なすぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスが得られにくくなる。また、化学的耐久性が低下する傾向がある。一方、Alの含有量が多すぎると、ガラスの溶融性が低下したり、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなって生産性が低下する。この結果、製造コストが高くなる。また、ムライトの結晶が析出してガラスが失透する傾向があり、ガラスが破損しやすくなる。
 LiOはLAS系結晶を構成する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。また、一般に原料コストが高い成分でもある。LiOの含有量は2~5%が好ましく、特に3~4.5%が好ましい。LiOの含有量が少なすぎると、ムライトの結晶が析出してガラスが失透する傾向がある。また、ガラスを結晶化させる際に、LAS系結晶が析出しにくくなり、耐熱衝撃性に優れた結晶化ガラスを得ることが困難になる。さらに、ガラスの溶融性が低下し、ガラス融液の粘度が高くなって、清澄しにくくなり、ガラスの成形が難しくなって生産性が低下する。この結果、製造コストが高くなる。一方、LiOの含有量が多すぎると、ガラスの製造コストが高くなる。
 NaOはLAS系結晶に固溶する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。NaOの含有量は0~1%が好ましく、0~0.8%が好ましい。NaOの含有量が多すぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスを得にくくなる。
 KOはLAS系結晶に固溶する成分であり、結晶性に大きな影響を与えるとともに、ガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。KOの含有量は0~1%が好ましく、特に0~0.8%が好ましい。KOの含有量が多すぎると、熱膨張係数が高くなる傾向があり、耐熱衝撃性に優れた結晶化ガラスを得にくくなる。
 MgOはLAS系結晶に固溶し、LAS系結晶の熱膨張係数を高くする効果を有する成分である。MgOの含有量は0~3%が好ましく、0.1~2%、特に0.3~1.5%が好ましい。MgOの含有量が多すぎると、結晶性が強くなりすぎて失透する傾向があり、ガラスが破損しやすくなる。
 BaOはガラスの粘度を低下させて、ガラスの溶融性および成形性を向上させる成分である。BaOの含有量は0~2%が好ましく、0.5~1.8%、特に1~1.5%が好ましい。BaOの含有量が多すぎると、Baを含む結晶が析出しやすくなり、ガラスが失透しやすくなる。BaOの含有量が少なすぎると、ガラス融液の粘度が高くなって、清澄しにくくなったりガラスの成形が難しくなったりして生産性が低下する。この結果、製造コストが高くなる。
 TiOは結晶化工程で結晶を析出させるための核形成剤となる成分である。TiOの含有量は0.5~3%が好ましく、1.0~2.7%、特に、1.5~2.5%が好ましい。TiOの含有量が多すぎると、ガラスの着色が強まる傾向がある。一方、TiOの含有量が少なすぎると、結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁したり、破損したりするおそれがある。
 ZrOはTiOと同様に、結晶化工程で結晶を析出させるための核形成成分である。ZrOの含有量は0.1~5%が好ましく、0.5~3%、特に1~2.5%が好ましい。ZrOの含有量が多すぎると、ガラスを溶融する際に失透しやすくなり、ガラスの成形が難しくなって生産性が低下する。この結果、製造コストが高くなる。一方、ZrOの含有量が少なすぎると、結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁したり、破損したりするおそれがある。
 TiO+ZrOの合量は3~5%が好ましく、3.5~4.7%、特に4~4.5%が好ましい。TiO+ZrOの合量が多すぎると、ガラスを溶融する際に失透しやすくなり、ガラスの成形が難しくなって生産性が低下する。この結果、製造コストが高くなる。一方、TiO+ZrOの合量が少なすぎると、結晶核が十分に形成されず、粗大な結晶が析出してガラスが白濁したり、破損したりするおそれがある。
 Pは粗大なZrO結晶の析出を抑制する成分である。Pの含有量は0~3%が好ましく、0~2.5%、特に0~2%が好ましい。Pの含有量が多すぎると、LAS系結晶の析出量が少なくなり、熱膨張係数が高くなる傾向がある。Pの含有量が少なすぎると、粗大なZrO結晶が析出してガラスが白濁しやすくなる。
 SnOは清澄剤として作用する成分である。一方で、多量に含有するとガラスの着色を著しく強める成分でもある。また、一般に原料コストが高い成分でもある。SnOの含有量は0~1%が好ましく、0.01~0.5%、特に0.1~0.4%が好ましい。SnOの含有量が多すぎると、ガラスの着色が強くなる。SnOの含有量が少なすぎると、ガラスの清澄が困難となり、生産性が低下する。また、ガラスの製造コストが高くなる。
 本発明のLAS系結晶化ガラスは、上記成分以外にも、例えばH、CO、CO、HO、He、Ne、Ar、N等の微量成分をそれぞれ0.1%まで含有してもよい。また、結晶化ガラス中にAg、Au、Pd、Ir等の貴金属元素をそれぞれ10ppmまで添加してもよい。
 さらに着色に悪影響が無い限り、本発明のLAS系結晶化ガラスは、Pt、Rh、B、CaO、SrO、SO、MnO、Cl、WO等を合量で2%まで含有してもよい。
 また、本発明のLAS系結晶性ガラスは、ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とする。
 なお、本発明の結晶化ガラスの組成的な特徴は本発明の結晶性ガラスと共通する。そのため、結晶性ガラスについての詳細な説明は割愛する。
 以下に、本発明のLAS系結晶性ガラスとLAS系結晶化ガラスの特性について説明する。
 本発明のLAS系結晶性ガラスは、厚み3mmにおける透過光の色調が、CIE規格のL表示のb値で、好ましくは1.12未満、1.11以下、1.10以下であることが好ましい。b値が高すぎると、ガラスの黄色の着色が強くなりすぎる。
 本発明のLAS系結晶化ガラスは、厚み3mmにおける透過光の色調が、CIE規格のL表示のb値で、好ましくは2.86以下、2.8以下、2.7以下、2.6以下、2.5以下、2.5未満、2.45、2.41未満、2.4以下、2.3以下、より好ましくは2.2以下が好ましい。b値が高すぎると、ガラスの黄色の着色が強くなりすぎる。
 本発明のLAS系結晶化ガラスは、主結晶としてβ─石英固溶体が析出していることが好ましい。β─石英固溶体を主結晶として析出させれば、結晶化ガラスが可視光を透過しやすく、透明性が高まりやすい。またガラスの膨張をゼロに近付けることが容易になる。
 β─石英固溶体を主結晶として析出させた本発明のLAS系結晶化ガラスは、30~380℃における熱膨張係数が、好ましくは-20×10-7/℃~20×10-7/℃、-15×10-7/℃~15×10-7/℃、-10×10-7/℃~10×10-7/℃、-5×10-7/℃~5×10-7/℃、より好ましくは-2.5×10-7/℃~2.5×10-7/℃である。30~380℃における熱膨張係数が大きすぎるまたは小さすぎると、製品の耐熱衝撃性が低下し、温度変化時に破損しやすくなる。なお熱膨張係数を調整するには、SiO、Al、LiO、NaO、KO、MgO、TiO、ZrO等の成分の含有量を前述の範囲に調節するとともに、後述する温度及び時間の範囲内で結晶化すればよい。
 また、本発明のLAS系結晶化ガラスは、β―スポジュメン固溶体が析出していてもよい。β―スポジュメン固溶体はβ─石英固溶体を熱処理させることで容易に析出させることができる。β─スポジュメン固溶体を析出させれば、白色度が高い結晶化ガラス(白色結晶化ガラス)を得ることが容易になる。
 β―スポジュメン固溶体を析出させた場合、本発明のLAS系結晶化ガラスは、厚み3mmにおける透過光の色調が、CIE規格のL表示のb値で、好ましくは40.85未満、40.7以下、40.5以下、40.1以下が好ましい。b値が高すぎると、ガラスの黄色の着色が強くなりすぎる。
 β─スポジュメンを主結晶として析出させた本発明のLAS系結晶化ガラスは、30~380℃における熱膨張係数が、好ましくは-20×10-7/℃~20×10-7/℃、-15×10-7/℃~15×10-7/℃、-10×10-7/℃~10×10-7/℃、0×10-7/℃~20×10-7/℃、より好ましくは0×10-7/℃~15×10-7/℃である。30~380℃における熱膨張係数が大きすぎると、製品の耐熱衝撃性が低下し、温度変化時に破損しやすくなる。なお熱膨張係数を調整するには、SiO、Al、LiO、NaO、KO、MgO、TiO、ZrO等の成分の含有量を前述の範囲に調節するとともに、後述する温度及び時間の範囲内で結晶化すればよい。
 次に、本発明のLAS系結晶化ガラスの製造方法について以下に説明する。
 本発明のLAS系結晶性ガラスの製造方法は、原料バッチを調製し、溶融、成形するLAS系結晶性ガラスの製造方法であって、得られる結晶性ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことを特徴とする。
 また、本発明のLAS系結晶性ガラスの製造方法は、原料バッチを調製し、溶融、成形するLAS系結晶性ガラスの製造方法であって、得られる結晶性ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことが好ましい。
 本発明のLAS系結晶化ガラスの製造方法は、前記結晶性ガラスを熱処理して結晶化させることを特徴とする。
 このように、本発明のLAS系結晶化ガラスの製造方法は、V、Cr、希土類元素およびアクチノイド元素に着目して、原料の選択及び工程の管理を行う。これらの元素は、製造の過程で混入し、微量であってもガラスの着色に影響を及ぼしうる。例えば、着色に寄与する元素が使用するガラス原料に含有されていれば、溶融、成形され、ガラスに混入することになる。また、溶融効率を上げるために使用されるカレットに、V、Cr、希土類元素およびアクチノイド元素が含まれる場合も、ガラスに混入する。その他、ガラスの溶融中に溶融炉の部材が高温で溶け出ることにより、ガラスに混入する可能性もある。これらの着色は、使用原料やカレットの選定、溶融温度の低温化などによって抑えることが好ましい。
 なお、希土類元素のうち、YとNdについては、既に述べたとおり、他の元素に比べて色調を悪化させにくい成分であるため、ガラス中の含有量を極限まで低減させなくてもよい。また、これらの元素を、一定量であれば積極的に導入することもできる。各元素の好ましい含有量については既述の通りであるので、ここでは説明を割愛する。
 まず、上述のとおり、使用原料を選定し、所望の組成となるようにガラス原料を調合し、原料バッチを作製する。
 本発明のLAS系結晶化ガラスの製造方法は、Zr原料として、V、Cr、希土類元素およびアクチノイド元素の含有量がそれぞれ0~500ppmである原料を使用することが好ましく、0~500ppm以下、0~350ppm、0~250ppm、0~150ppm以下、0~100ppm、特に0~50ppmである原料を使用することが好ましい。
 また、Zr原料としては、ZrSiO(ジルコン、ジルコンフラワー)、ZrO(酸化ジルコニウム)などがあるが、その中でも、ZrO(酸化ジルコニウム)を使用することが好ましい。また、ZrOは、湿式方法で精製したものが好ましく、更に、洗浄液(例えば、カルボン酸溶液、アンモニア溶液、またはカルボン酸アンモニウム塩溶液等)を用いて洗浄したものであれば、ZrO中の不純物含有量がより少なくなるため、特に好ましい。
 加えて、Zr原料の他にも、P原料やTi原料などにも、土類元素やアクチノイド元素が含有されていることがあるため、これらの原料についても、Zr原料と同様に適切な原料を選択することが好ましい。例えば、P原料及び/またはTi原料として、希土類元素およびアクチノイド元素の含有量がそれぞれ0~500ppmである原料を使用することが好ましく、0~500ppm以下、0~350ppm、0~250ppm、0~150ppm以下、0~100ppm、特に0~50ppmである原料を使用することが好ましい。このようにすることで、より透明性または白色度が優れたLAS系結晶化ガラスを得ることができる。
 更に、原料バッチにガラスカレットを混合して使用する場合には、ガラスカレットに含まれるV、Cr、希土類元素およびアクチノイド元素の含有量を考慮して、ガラスカレットの選択及びその使用割合を決定することが好ましい。
 なお、好ましいガラス組成については既述の通りであり、ここでは説明を割愛する。
 次に、原料バッチを、ガラス溶融炉に投入し、1500~1750℃で溶融した後、成形し、LAS系結晶性ガラスを得る。
 その後、得られた結晶性ガラスを熱処理して結晶化させる。結晶化条件としては、まず核形成を700~800℃(好ましくは750~790℃)で5~300分(好ましくは60~180分)行い、続いて結晶成長を800~950℃(好ましくは850~900℃)で5~120分(好ましくは10~60分)行う。このようにしてβ―石英固溶体結晶が主結晶として析出した透明なLAS系結晶化ガラスを得ることができる。
 また、結晶成長を1050~1200℃(好ましくは1100~1150℃)で5~120分(好ましくは10~60分)の条件で行うことにより、β-スポジュメン固溶体結晶を主結晶として析出した白色不透明なLAS系結晶化ガラスを得ることもできる。
 以下、実施例に基づいて本発明を説明するが、本発明は以下の実施例に限定されるものではない。表1はβ─石英固溶体を主結晶として析出させた本発明の実施例1~6および比較例1~3をそれぞれ示している。なお、表1に示した成分以外の基本成分の含有量は表2に示したとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず表1、2に記載の組成を有するガラスとなるように、各原料を酸化物、水酸化物、炭酸塩、硝酸塩等の形態で調合し、ガラスバッチを得た。得られたガラスバッチを石英製の坩堝に入れ、1600℃で23時間溶融した後、1650℃で1時間溶融した。溶融後、5mmの厚さにロール成形し、さらに徐冷炉を用いて室温まで冷却することにより結晶性ガラス板を得た。なお、実施例1~4は、Zr原料としてZrOを使用し、実施例5~6は、ZrOとジルコンフラワーを混合した原料を使用し、比較例1~3は、Zr原料として、ジルコンを使用した。
 結晶性ガラスに対して、760~780℃で180分熱処理して核形成を行った後、さらに870℃~890℃で60分の熱処理を行い結晶化させた。得られた結晶化ガラス板について、色度を測定した。
 透過光の色度は、肉厚3mmに両面光学研磨した結晶化ガラス板について、分光光度計を用いて波長380~780nmの透過率を測定し、当該透過率からCIE規格のL値を算出することにより評価した。測定には日本分光製分光光度計V-670を用いた。
 熱膨張係数は、20mm×3.8mmφに加工した結晶化ガラス試料を用いて、30~380℃の温度域で測定した平均線熱膨張係数により評価した。測定にはNETZSCH製Dilatometerを用いた。
 表1から明らかなように、実施例1は、V、Cr、希土類元素およびアクチノイド元素の含有量が少ないため、比較例1よりも、結晶性ガラス及び結晶化ガラスのどちらにおいてもb値が低く、L値は同等以上であった。また、実施例2は比較例1とV、Cr含有量が同じであり、結晶性ガラス及び結晶化ガラスの両方においてL値は同等であったが、希土類元素およびアクチノイド元素の含有量が少ないため、実施例2の方が比較例1よりもb値が低かった。
 また、実施例3、4は希土類元素のうち、Yの含有量が実施例1、2と比べて多くなっているが、これら実施例のb値やL値に優位差は見られない。このことから、Yは結晶性ガラス及び結晶化ガラスの色調を悪化させにくいことが分かる。更に、実施例6では、希土類元素のうち、Ndの含有量が実施例1~5に比べると多いが、結晶化ガラスのb値やL値は大きく悪化しなかった。
 本発明のLAS系結晶化ガラスは、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、工業用スケール、電子部品焼成用セッター、電磁調理用トッププレート、防火戸用窓ガラス等に好適である。
 

Claims (15)

  1.  ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とするLAS系結晶性ガラス。
  2.  ガラス中のV、Crの含有量がそれぞれ0~3ppmであり、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmであることを特徴とするLAS系結晶化ガラス。
  3.  ガラス中のYの含有量が0.05~200ppmであることを特徴とする請求項2に記載のLAS系結晶化ガラス。
  4.  ガラス組成として質量%で、SiO 55~75%、Al 5~25%、LiO 2~5%、NaO 0~1%、KO 0~1%、MgO 0~3%、BaO 0~2%、TiO 0.5~3%、ZrO 0.1~5%、TiO+ZrO 3~5%、P 0~3%、SnO 0~1%を含有することを特徴とする請求項2または3に記載のLAS系結晶化ガラス。
  5.  厚み3mmにおける透過光の色調が、CIE規格におけるL表色系のb値で2.86以下であることを特徴とする請求項2~4のいずれかに記載のLAS系結晶化ガラス。
  6.  主結晶としてβ─石英固溶体が析出していることを特徴とする請求項2~5のいずれかに記載のLAS系結晶化ガラス。
  7.  主結晶としてβ─スポジュメン固溶体が析出していることを特徴とする請求項2~6のいずれかに記載のLAS系結晶化ガラス。
  8.  30~380℃における熱膨張係数が、-20×10-7/℃~20×10-7/℃であることを特徴とする請求項2~7のいずれかに記載のLAS系結晶化ガラス。
  9.  原料バッチを調製し、溶融、成形するLAS系結晶性ガラスの製造方法であって、得られる結晶性ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことを特徴とするLAS系結晶性ガラスの製造方法。
  10.  原料バッチを調製し、溶融、成形してLAS系結晶性ガラスを作製した後、熱処理して結晶化させるLAS系結晶化ガラスの製造方法であって、得られる結晶化ガラス中のV、Crの含有量がそれぞれ0~3ppmであって、更に、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ0~10ppmとなるように原料の選択及び工程の管理を行うことを特徴とするLAS系結晶化ガラスの製造方法。
  11.  ガラス中のYの含有量が0.05~200ppmであることを特徴とする請求項10に記載のLAS系結晶化ガラスの製造方法。
  12.  ガラス組成として、質量%で、SiO 55~75%、Al 5~25%、LiO 2~5%、NaO 0~1%、KO 0~1%、MgO 0~3%、BaO 0~2%、TiO 0.5~3%、ZrO 0.1~5%、TiO+ZrO 3~5%、P 0~3%、SnO 0~1%を含有する結晶性ガラスとなるように原料バッチを調製することを特徴とする請求項10または11に記載のLAS系結晶化ガラスの製造方法。
  13.  得られるLAS系結晶化ガラスの厚み3mmにおける透過光の色調が、CIE規格におけるL*a*b*表色系のb*値で2.86以下となることを特徴とする請求項10~12のいずれかに記載のLAS系結晶化ガラスの製造方法。
  14.  ガラス原料として、V、Cr、Sc、La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ac、Th、Pa、Uの含有量がそれぞれ500ppm以下のZr原料を使用することを特徴とする請求項10~13のいずれかに記載のLAS系結晶化ガラスの製造方法。
  15.  Zr原料として、ZrOを使用することを特徴とする請求項10~14のいずれかに記載のLAS系結晶化ガラスの製造方法。
     
PCT/JP2018/032374 2017-09-05 2018-08-31 Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法 WO2019049785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880057584.2A CN111051261A (zh) 2017-09-05 2018-08-31 Las系结晶性玻璃、las系结晶化玻璃以及它们的制造方法
JP2019540931A JP7121348B2 (ja) 2017-09-05 2018-08-31 Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法
EP18852822.8A EP3683197A4 (en) 2017-09-05 2018-08-31 LAS SYSTEM CRYSTALLINE GLASS, LAS SYSTEM CRYSTALLINE GLASS, LAS SYSTEM CRYSTALLINE GLASS PRODUCTION PROCESS, AND LAS SYSTEM CRYSTALLINE GLASS PRODUCTION PROCESS
US16/628,694 US11286198B2 (en) 2017-09-05 2018-08-31 LAS system crystalline glass, LAS system crystallized glass, method for producing LAS system crystalline glass, and method for producing LAS system crystallized glass
KR1020197035064A KR102595466B1 (ko) 2017-09-05 2018-08-31 Las계 결정성 유리, las계 결정화 유리, 및 그것들의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170349 2017-09-05
JP2017-170349 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049785A1 true WO2019049785A1 (ja) 2019-03-14

Family

ID=65634154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032374 WO2019049785A1 (ja) 2017-09-05 2018-08-31 Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法

Country Status (6)

Country Link
US (1) US11286198B2 (ja)
EP (1) EP3683197A4 (ja)
JP (1) JP7121348B2 (ja)
KR (1) KR102595466B1 (ja)
CN (1) CN111051261A (ja)
WO (1) WO2019049785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117468A1 (de) 2020-07-02 2022-01-05 Schott Ag Transparenter, nicht eingefärbter Lithiumaluminiumsilikat-Glaskeramikartikel mit Hochquarz-Mischkristall als Hauptkristallphase sowie Verfahren zur Herstellung des Artikels und dessen Verwendung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JPH07215733A (ja) * 1994-01-28 1995-08-15 Nippon Electric Glass Co Ltd 固体撮像素子用カバーガラス
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2004269347A (ja) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd ガラス組成物
WO2010053214A1 (ja) * 2008-11-10 2010-05-14 Hoya株式会社 ガラスの製造方法、光学ガラス、プレス成形用ガラス素材、光学素子とそれら製造方法
WO2013179894A1 (ja) * 2012-05-31 2013-12-05 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス及びその製造方法
JP2016005995A (ja) 2014-06-20 2016-01-14 日本電気硝子株式会社 結晶化ガラス、窓ガラス、防弾窓ガラス及び結晶化ガラスの製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4020182Y1 (ja) 1964-05-22 1965-07-14
US3676204A (en) * 1967-03-22 1972-07-11 Scm Corp Composition and process for glazing ceramic ware
US3951670A (en) * 1975-02-10 1976-04-20 Corning Glass Works Cristobalite suppression in high-silica Li2 O-Al2 O-SiO2 devitrified glass frits
US4126476A (en) * 1976-07-06 1978-11-21 Corning Glass Works Aluminous quartz ceramics and method
US4526872A (en) 1983-05-06 1985-07-02 Corning Glass Works Transparent glass-ceramic of light brown color and method of making
GB9120780D0 (en) * 1991-10-01 1991-11-13 Tioxide Group Services Ltd Stabilised metal oxides
US5387558A (en) 1994-05-02 1995-02-07 Corning Incorporated Colored glass-ceramic articles
JP2001348250A (ja) 2000-04-03 2001-12-18 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系透明結晶化ガラス物品及びそれを用いた光通信デバイス
US6450652B1 (en) * 2001-05-24 2002-09-17 Daniel Nathan Karpen Neodymium oxide doped motor vehicle windshield and safety glazing material
JP2005162600A (ja) 2003-11-11 2005-06-23 Nippon Electric Glass Co Ltd 半導体パッケージ用カバーガラス
JP5656040B2 (ja) 2006-05-29 2015-01-21 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
FR2909373B1 (fr) * 2006-11-30 2009-02-27 Snc Eurokera Soc En Nom Collec Vitroceramiques de beta-quartz, transparentes et incolores, exemptes de tio2 ; articles en lesdites vitroceramiques ; verres precurseurs, procedes d'elaboration.
JP5673909B2 (ja) * 2008-05-19 2015-02-18 日本電気硝子株式会社 結晶性ガラス及びこれを結晶化させてなる結晶化ガラス
JP2010059021A (ja) 2008-09-04 2010-03-18 Hoya Corp フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子それぞれの製造方法
JP5458532B2 (ja) * 2008-09-08 2014-04-02 日本電気硝子株式会社 Las系フロートガラス
GB0922064D0 (en) * 2009-12-17 2010-02-03 Pilkington Group Ltd Soda lime silica glass composition
JP6202775B2 (ja) 2010-08-11 2017-09-27 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
FR2975391A1 (fr) * 2011-05-16 2012-11-23 Eurokera Vitroceramiques de quartz-beta avec courbe de transmission controlee ; articles en lesdites vitroceramiques, verres precurseurs.
FR2990690B1 (fr) 2012-05-15 2016-01-01 Eurokera Vitroceramiques de quartz-beta, transparentes, essentiellement incolores et non diffusantes; articles en lesdites vitroceramiques; verres precurseurs
JP6331322B2 (ja) * 2013-10-11 2018-05-30 日本電気硝子株式会社 Li2O−Al2O3−SiO2系結晶化ガラス
DE102014222645A1 (de) * 2014-11-06 2016-05-12 Schott Ag Hochkristalline Lithiumaluminiumsilikat-Glaskeramik und ihre Verwendung
DE102015108173A1 (de) * 2015-05-22 2016-11-24 Degudent Gmbh Verfahren zur Erhöhung der Festigkeit von aus Lithiumsilikat-Glaskeramik bestehendem Formkörper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308845A (ja) 1988-06-07 1989-12-13 Nippon Electric Glass Co Ltd 燃焼装置窓用Li↓2O−A1↓2O↓3−SiO↓2系透明結晶化ガラス
JPH07215733A (ja) * 1994-01-28 1995-08-15 Nippon Electric Glass Co Ltd 固体撮像素子用カバーガラス
JPH11228180A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JPH11228181A (ja) 1998-02-19 1999-08-24 Nippon Electric Glass Co Ltd Li2 O−Al2 O3 −SiO2 系結晶化ガラス
JP2004269347A (ja) * 2003-02-18 2004-09-30 Nippon Electric Glass Co Ltd ガラス組成物
WO2010053214A1 (ja) * 2008-11-10 2010-05-14 Hoya株式会社 ガラスの製造方法、光学ガラス、プレス成形用ガラス素材、光学素子とそれら製造方法
WO2013179894A1 (ja) * 2012-05-31 2013-12-05 日本電気硝子株式会社 Li2O-Al2O3-SiO2系結晶化ガラス及びその製造方法
JP2013249221A (ja) 2012-05-31 2013-12-12 Nippon Electric Glass Co Ltd Li2O−Al2O3−SiO2系結晶化ガラス及びその製造方法
JP2016005995A (ja) 2014-06-20 2016-01-14 日本電気硝子株式会社 結晶化ガラス、窓ガラス、防弾窓ガラス及び結晶化ガラスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020117468A1 (de) 2020-07-02 2022-01-05 Schott Ag Transparenter, nicht eingefärbter Lithiumaluminiumsilikat-Glaskeramikartikel mit Hochquarz-Mischkristall als Hauptkristallphase sowie Verfahren zur Herstellung des Artikels und dessen Verwendung
EP3932884A1 (de) 2020-07-02 2022-01-05 Schott Ag Transparenter, nicht eingefärbter lithiumaluminiumsilikat-glaskeramikartikel mit hochquarz-mischkristall als hauptkristallphase sowie verfahren zur herstellung des artikels und dessen verwendung

Also Published As

Publication number Publication date
JP7121348B2 (ja) 2022-08-18
KR102595466B1 (ko) 2023-10-30
EP3683197A1 (en) 2020-07-22
US11286198B2 (en) 2022-03-29
JPWO2019049785A1 (ja) 2020-08-20
CN111051261A (zh) 2020-04-21
EP3683197A4 (en) 2021-05-26
US20200181002A1 (en) 2020-06-11
KR20200049707A (ko) 2020-05-08

Similar Documents

Publication Publication Date Title
JP6152537B2 (ja) 透明で無色の、チタニア含量の低いベータ・石英・ガラス・セラミック材料
US9458053B2 (en) Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
JP6202775B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP4000500B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス及び結晶性ガラス
EP2883846B1 (en) Li2o-al2o3-sio2-based crystallized glass and method for producing the same
US20070149379A1 (en) Crystallizable glass and crystallized glass of Li2O-A12O3-SiO2 system and method for producing crystallized glass fo Li2O-A12O3-SiO2 system
US6472338B1 (en) Li2O-Al2O3-SiO2 crystallized glass and crystallizable glass therefor
US20210403370A1 (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
JP6331322B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP7121348B2 (ja) Las系結晶性ガラス、las系結晶化ガラス及びそれらの製造方法
JP2013121890A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2016108201A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP2016108202A (ja) Li2O−Al2O3−SiO2系結晶化ガラス
JP6421795B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
Nakane et al. Li 2 O-Al 2 O 3-SiO 2 based crystallized glass and production method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852822

Country of ref document: EP

Effective date: 20200406