WO2019049703A1 - 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法 - Google Patents

蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法 Download PDF

Info

Publication number
WO2019049703A1
WO2019049703A1 PCT/JP2018/031532 JP2018031532W WO2019049703A1 WO 2019049703 A1 WO2019049703 A1 WO 2019049703A1 JP 2018031532 W JP2018031532 W JP 2018031532W WO 2019049703 A1 WO2019049703 A1 WO 2019049703A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
back side
wing
suction port
drain
Prior art date
Application number
PCT/JP2018/031532
Other languages
English (en)
French (fr)
Inventor
泰洋 笹尾
創一朗 田畑
将平 檀野
田中 良典
秀之 戸田
佑 柴田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017170123A external-priority patent/JP6944314B2/ja
Priority claimed from JP2017170124A external-priority patent/JP6944841B2/ja
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/633,348 priority Critical patent/US11486255B2/en
Priority to CH00064/20A priority patent/CH715181B1/de
Priority to CN201880049085.9A priority patent/CN110945212B/zh
Priority to KR1020207002045A priority patent/KR102400690B1/ko
Publication of WO2019049703A1 publication Critical patent/WO2019049703A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage

Definitions

  • the present invention relates to a steam turbine blade, a steam turbine, and a method of manufacturing a steam turbine blade.
  • Priority is claimed on Japanese Patent Application Nos. 2017-170124 and 2017-170123, filed on September 5, 2017, the content of which is incorporated herein by reference.
  • Patent Document 2 describes a stator blade in which a ventral slit is formed on the ventral wing surface and a dorsal slit is formed on the dorsal wing surface.
  • a ventral slit is formed on the ventral wing surface and a dorsal slit is formed on the dorsal wing surface.
  • two independent hollow cavities are formed inside the vane from the inner shroud to the outer shroud.
  • the ventral slit and the dorsal slit are each in communication with another hollow cavity. This prevents the collected drain from re-flowing to the surface of the blade, and improves the drain collection efficiency.
  • the vane described in Patent Document 2 it is necessary to form two independent hollow cavities inside.
  • the hollow cavity is formed simultaneously with the blade surface using a core or the like, or is formed by post-processing using a drill or the like.
  • the stationary blade is formed by cutting away from the plate material, it is formed by post-processing using a drill or the like.
  • Patent No. 5919123 gazette Japanese Patent Application Laid-Open No. 11-336503
  • the plurality of slits and the plurality of second slits and the hollow portion inside the wing body are connected by one communication passage. That is, the slits are internally connected via the communication path.
  • the pressure difference in the blade height direction generated around the wing surface causes the drain sucked from the slit disposed in the high pressure portion to move in the blade height direction in the communication passage and to the low pressure portion.
  • the present invention provides a steam turbine blade, a steam turbine, and a method of manufacturing a steam turbine blade capable of efficiently removing a drain attached to a blade surface.
  • the steam turbine blade according to the first aspect of the present invention includes a blade body having a blade surface extending in a blade height direction, the blade body extending in the blade height direction and being open at the blade surface.
  • the drain in the first series passage is in the blade height direction according to the pressure difference. You can control moving to As a result, the drain once drawn into the second series passage from the first suction port located in the high pressure portion can be prevented from flowing out again from the first suction port located in the low pressure portion. Therefore, the drain collected once from the first suction port can be prevented from flowing out.
  • the first suction port may be formed on a concave antinode surface among the wing surfaces.
  • the drain attached to the ventral side can be recovered.
  • the first suction port is connected to a concave ventral side and a convex back side of the wing surfaces. It may be formed at the end on the rear edge side.
  • the drain attached to the dorsal side or ventral side and flowing to the rear edge side can be collected at the end on the most downstream side.
  • more drains can be recovered from the first suction port. Therefore, the drain adhering to the wing surface can be efficiently recovered.
  • the first suction port is in the upper half region of the blade surface in the blade height direction. It may be formed.
  • the drain attached to the upper half region in the wing height direction of the wing surface can be made to flow into the first suction port. Therefore, the drain adhering to the upper half region of the wing surface and flowing toward the rear edge can be recovered with high accuracy.
  • the blade body internally extends in the blade height direction, and the first drain channel A second drain flow passage formed on the front edge side of the wing main body, a second suction port opened on the convex back side, the second suction port, and the second drain flow passage.
  • the blade main body includes a back side plate member forming a convex back surface as the blade surface, and a concave surface as the blade surface.
  • a ventral-side plate forming a ventral-side surface, and a plurality of junctions joining the back-side plate and the belly-side plate, one of the junctions forming the partition It may be done.
  • the inner side of the wing main body is formed by processing two plate materials in advance and then joining to form a partition.
  • the two spaces extending in the wing height direction can be easily formed independently. Therefore, it is possible to form the first drain channel and the second drain channel while suppressing the influence of processing difficulty due to the shape of the wing main body.
  • the first drain channel forming surface so as to be recessed from at least one of the back plate and the vent plate, the plate thickness of the back plate and the vent plate can be increased without thickening.
  • the first drain channel can be formed larger.
  • the back side of the back side plate is a back side located closer to the belly side plate side than the back side in the back side plate
  • the back side plate and the belly side are formed by the first series passage forming surface respectively formed on the side plate inner side and the ventral side plate inner side located closer to the back side plate than the belly side in the belly side plate. It may be formed between the plate material, and the first channel formation surface may be recessed from at least one of the inner surface of the back plate material and the inner surface of the vent plate material.
  • the first series passage formation surface can be formed only by processing it on the surface of the flat plate-like back side plate or the vent-side plate. Therefore, processing of the first series passage formation surface becomes easy.
  • a first series passage is formed between the back side plate and the belly side plate by the first series passage forming surface. Therefore, the first series passage can be easily formed inside the wing body.
  • a rotor shaft rotating about an axis
  • a steam turbine blade according to any one of the first to ninth aspects arranged to surround the rotor shaft.
  • the drain can be efficiently recovered by the steam turbine blade, and the steam turbine can be operated efficiently.
  • the first method includes: a blade body having a blade surface extending in the blade height direction; The suction port, the first drain flow passage extending in the wing height direction inside the wing body, and the first drain flow path separated from each other in the wing height direction inside the wing body and independent of each other
  • a method of manufacturing a steam turbine blade comprising a single suction port and a plurality of first series passages communicating the first drain passage, the flat plate being capable of forming a convex back surface as the blade surface.
  • the first suction port formation surface, the first drain flow passage formation surface, and the first series passage formation surface can be formed only by processing the flat plate-shaped back side plate or the belly side plate.
  • processing of the first suction port formation surface, the first drain flow channel formation surface, and the first series passage formation surface is facilitated.
  • the first suction port, the first drain flow passage, and the first series passage are formed by the first suction port formation surface, the first drain passage formation surface, and the first series passage formation surface.
  • the final shape of the wing main body It is possible to easily form the first suction port, the first drain flow passage, and the first series passage inside the wing main body while suppressing the influence of processing difficulty.
  • the processing step is a removal step of scraping and removing a part of the back side plate and the belly side plate.
  • a bending step of bending the back side plate member and the belly side plate member, and in the removing step, the first suction port forming surface, the first drain passage forming surface, and the second series passage forming surface are In the bending step, the dorsal side and the abdominal side may be formed.
  • the back plate and the vent plate are joined when the back plate is joined.
  • the back side plate inner side located closer to the ventral side plate side than the back side in the side plate, and at least one inside side of the belly side plate located closer to the back side plate than the vent side The first drain passage forming surface may be formed to be recessed.
  • the first drain channel forming surface so as to be recessed from at least one of the back plate and the vent plate, the plate thickness of the back plate and the vent plate can be increased without thickening.
  • the first drain channel can be formed larger.
  • the back plate and the vent plate are joined.
  • the inner side surface of the back side plate positioned closer to the ventilating plate side than the back side surface, and the belly side plate inner side surface positioned closer to the back side plate than the belly side surface may be formed to be recessed from at least one of the two.
  • the first series passage formation surface can be formed only by processing it on the surface of the flat plate-like back side plate or the vent-side plate. Therefore, processing of the first series passage formation surface becomes easy.
  • a first series passage is formed between the back side plate and the belly side plate by the first series passage forming surface. Therefore, the first series passage can be easily formed inside the wing body.
  • the back surface is formed as the first suction port forming surface.
  • a first suction port back side forming surface is formed which is recessed from the inner side surface of the back side plate located on the ventral side plate side with respect to the back side. Then, the back side plate and the belly side plate are joined so as to form the first suction port between the first suction port back side forming surface and the end face on the rear edge side of the belly side plate.
  • the back side plate material and the belly side plate material are one.
  • the wing-forming plate material may be prepared as a sheet of wing-forming plate material, and the wing-forming plate material may be bent in the bending step to form the back side surface and the belly side surface and to form a front edge portion of the blade body. .
  • the number of parts can be reduced to form the wing body.
  • the manufacturing cost of the wing body can be reduced.
  • the blade height direction in the blade main body And a second drain passage forming surface which forms a second drain passage formed on the front edge side of the wing body with respect to the first drain passage is bent together with the back surface and the belly surface.
  • a second communication passage may be formed through the back side plate so that the back side surface and the second drain passage forming surface of the back side plate are communicated with each other.
  • the second drain passage forming surface can be formed only by bending the flat-plate-like back side plate or the belly side plate. As a result, processing of the second drain passage forming surface is facilitated.
  • a second drain passage is formed by the second drain passage forming surface. Therefore, even if the final shape of the wing body is a difficult shape to be machined internally, such as when the wing body is thin or the wing surface is formed by a complicated three-dimensional curved surface, the second The drain passage can be easily formed inside the wing body.
  • the second drain passage forming surface and the first drain passage forming surface may be joined between them, and a partition part may be formed to separate the second drain passage and the first drain passage from each other.
  • the inner side of the wing main body is formed by processing two plate materials in advance and then joining to form a partition.
  • the two spaces extending in the wing height direction can be easily formed independently. Therefore, it is possible to form the first drain channel and the second drain channel while suppressing the influence of processing difficulty due to the shape of the wing main body.
  • the first suction port and the second suction port communicate with each other in the inside of the wing main body because the first drain flow path and the second drain flow path are independent of each other in the partition portion. Can be prevented. Thereby, it is possible to prevent the drain collected through the first suction port from flowing out through the inside of the wing main body and from the second suction port formed on the back surface with low pressure. Further, even in the case of a wing main body having a shape that is difficult to process, two plate materials are processed in advance and then joined so as to form a partition part, in the wing height direction inside the wing main body. The two extending spaces can be easily formed independently. Therefore, it is possible to form the first drain channel and the second drain channel while suppressing the influence of processing difficulty due to the final shape of the wing body.
  • a method of manufacturing a steam turbine blade according to a twentieth aspect of the present invention is a method of manufacturing a steam turbine blade comprising: a first drain flow passage extending in the blade height direction inside a blade body having a blade surface extending in the blade height direction; A second drain flow path extending in the wing height direction on the front edge side of the wing body relative to the first drain flow path inside the wing body, and a first suction opening at the wing surface A second communication passage for communicating the second suction port with the second drain passage, and a second series passage for communicating the first suction port and the first drain passage with each other.
  • a method of manufacturing a steam turbine blade comprising: providing a back side plate capable of forming a convex back side as the wing surface; and an venting side plate capable of forming a concave abdominal side as the wing surface
  • Preparing step a processing step of processing the back side plate and the ventral side plate, the first drain flow path And a joining step of joining the back side plate and the belly side plate so as to form the second drain channel between the back side plate and the belly side plate
  • the processing step includes The removing step of scraping and removing a portion of the back side plate and the ventral side plate, and the bending step of bending the back side plate and the venting side plate, wherein the removing step includes The first drain channel forming surface to be formed and the second drain channel forming surface to form the second drain channel are formed in both the back side plate and the belly side plate, and in the bending step, The back side is formed on the back side plate, and the ventral side is formed on the ventral side plate, and in the bonding step, between
  • the first drain passage forming surface and the second drain passage forming surface can be formed only by processing the flat-plate-like back side plate material and the belly side plate material. As a result, processing of the first drain passage forming surface and the second drain passage forming surface is facilitated. Further, the first drain passage and the second drain passage are formed by the first drain passage forming surface and the second drain passage forming surface.
  • drain attached to the wing surface can be efficiently removed.
  • FIG. 1 It is a schematic diagram which shows the structure of the steam turbine of embodiment of this invention. It is a longitudinal cross-sectional view of the steam turbine which shows the distribution
  • the steam turbine 100 is a rotating machine that extracts the energy of the steam S as a rotational power.
  • the steam turbine 100 of the present embodiment is a low pressure turbine.
  • the steam turbine 100 includes a casing 1, a stator blade 2, a rotor 3, and a bearing portion 4.
  • the direction in which the axis Ac of the rotor 3 extends is taken as the axial direction Da.
  • the circumferential direction with respect to the axis Ac is simply referred to as a circumferential direction Dc.
  • the radial direction with respect to the axis Ac is simply referred to as the radial direction Dr.
  • one side (first side) of the axial direction Da is taken as the upstream side, and the other side (second side) of the axial direction Da is taken as the downstream side.
  • the casing 1 has an internal space hermetically sealed and a flow path of the steam S formed therein.
  • the casing 1 covers the rotor 3 from the outside in the radial direction Dr.
  • a steam inlet 11 for guiding the steam S into the casing 1 is formed at the upstream side portion.
  • a steam outlet 12 for discharging the steam S having passed through the inside of the casing 1 to the outside is formed at the downstream side portion.
  • a plurality of stator blades 2 are provided along the circumferential direction Dc of the rotor 3 on the surface facing the inside of the casing 1.
  • the stationary blades 2 are arranged at intervals in the radial direction Dr with respect to the rotor 3.
  • the stationary blade 2 is disposed at an interval in the axial direction Da with a moving blade 6 described later.
  • the rotor 3 rotates about an axis Ac.
  • the rotor 3 has a rotor shaft 5 and moving blades 6.
  • the rotor shaft 5 is rotatable about an axis Ac.
  • the rotor shaft 5 extends in the axial direction Da so as to penetrate the casing 1.
  • An intermediate portion of the rotor shaft 5 on which the moving blades 6 are provided is housed inside the casing 1. Both ends of the rotor shaft 5 protrude to the outside of the casing 1. Both ends of the rotor shaft 5 are rotatably supported by bearings 4.
  • the bearing portion 4 rotatably supports the rotor 3 around an axis Ac.
  • the bearing portion 4 includes journal bearings 41 respectively provided at both end portions of the rotor shaft 5 and thrust bearings 42 provided at one end side of the rotor shaft 5.
  • a plurality of moving blades 6 are arranged side by side in the circumferential direction Dc so as to surround the rotor shaft 5.
  • the plurality of moving blades 6 are annularly disposed on the outer peripheral surface of the rotor shaft 5.
  • the moving blade 6 receives the steam S flowing in the axial direction Da of the rotor 3 and rotates the rotor shaft 5 around the axis Ac.
  • stator blade 2 will be described as an example of the steam turbine blade of the present embodiment.
  • the steam turbine blade is not limited to the stationary blade 2 and may be the moving blade 6.
  • the vanes 2 are connected side by side in an annular fashion to form one vane ring.
  • a plurality of stator blades 2 are arranged in the circumferential direction Dc so as to surround the rotor shaft 5.
  • the stator blade 2 of the present embodiment includes a blade body 7, an inner shroud 21, and an outer shroud 22.
  • the wing main body 7 has a wing shape in cross section and extends with the wing height direction D1 as the radial direction Dr.
  • the wing body 7 has a wing surface 70 extending in the wing height direction D1.
  • a back surface 701 which is a wing surface 70 on the back side is formed in a convex shape.
  • the belly side 702 which is the belly side 70 is formed in a concave shape.
  • the wing body 7 has a front edge 7a formed on the front side in the chord direction D2 to which the back surface 701 and the ventral surface 702 are connected.
  • the rear end of the chord direction D2 to which the back surface 701 and the ventral surface 702 are connected forms a rear edge 7b.
  • a plurality of wing bodies 7 are spaced apart with the blade thickness direction D3 as the circumferential direction Dc.
  • the wing height direction D1 of the wing body 7 is the direction in which the wing body 7 extends.
  • the chord direction D2 of the wing body 7 is a direction orthogonal to the wing height direction D1 in the present embodiment, and the end portion on the front edge 7a side including the extension direction of the chord of the wing body 7 and the rear The direction is parallel to an imaginary line connecting the end on the edge 7 b side.
  • the wing thickness direction D3 of the wing body 7 is a direction orthogonal to the wing height direction D1 and the chord direction D2 in the present embodiment.
  • the inner shroud 21 connects the plurality of wing bodies 7 at the base end side in the wing height direction D1.
  • the inner shroud 21 of the present embodiment has an arc shape when viewed from the axial direction Da.
  • the inner shroud 21 is internally formed with an inner discharge passage 210 for discharging a drain described later.
  • the inner discharge flow passage 210 is connected to a condenser (not shown) to provide a negative pressure (e.g., a vacuum).
  • the outer shroud 22 connects the plurality of wing bodies 7 on the tip end side in the wing height direction D1. Therefore, the outer shroud 22 is disposed on the opposite side of the wing body 7 with respect to the inner shroud 21 in the wing height direction D1.
  • the outer shroud 22 of the present embodiment has an arc shape when viewed from the axial direction Da.
  • the outer shroud 22 is internally formed with an outer discharge passage 220 for discharging a drain described later.
  • the outer discharge flow passage 220 is connected to a condenser (not shown) to provide a negative pressure (e.g., a vacuum).
  • the main flow path C ⁇ b> 1 in which the steam S flows is formed by the adjacent wing main body 7, the inner shroud 21, and the outer shroud 22.
  • the main channel C1 is a space inside the casing 1 sandwiched by the steam inlet 11 and the steam outlet 12 as shown in FIG.
  • the wing body 7 is disposed in the main flow passage C1 through which the steam S flows.
  • the surface of the inner shroud 21 facing outward in the radial direction Dr defines the position in the radial direction Dr of the annular main flow passage C1.
  • the surface of the outer shroud 22 facing inward in the radial direction Dr defines the position in the radial direction Dr of the annular main flow passage C1.
  • the wing main body 7 of the present embodiment includes a back side plate 71, a belly side plate 72, and a plurality of joint portions 73.
  • the back side plate 71 forms a convex back side 701 as the wing surface 70.
  • the back side plate member 71 is a plate-like member, and is curved so as to form a space inside the wing main body 7.
  • the back surface 701 is a surface that faces outward when the back side plate 71 is joined to the ventral side plate 72. Further, in the back side plate 71, when the back side plate 71 is joined to the ventral side plate 72, it is a surface that forms a space inside the wing main body 7, and on the belly side plate 72 side than the back side 701
  • the surface located is the back side plate inner surface 71a.
  • the back side plate inner surface 71a forms a part of the ventral side 702 in the rear edge 7b, thereby forming the end of the rear edge 7b.
  • the ventral-side plate 72 forms a concave ventral-side surface 702 as a wing surface 70.
  • the ventral-side plate member 72 is a plate-like member, and is curved together with the back-side plate member 71 so as to form a space inside the wing main body 7.
  • the belly side 702 faces the outside when the belly side plate 72 is joined to the back side plate 71.
  • the ventral-side plate 72 when the vent-side plate 72 is joined to the back-side plate 71, it is a surface that forms a space inside the wing main body 7 and is closer to the back-side plate 71 than the belly-side surface 702.
  • the surface located is the ventral side plate inner surface 72a.
  • the joint portion 73 joins the back side plate 71 and the ventral side plate 72.
  • the joint portion 73 of the present embodiment is a portion where the back side plate 71 and the belly side plate 72 are joined by brazing, and is formed by solidification of silver solder.
  • the joint portion 73 joins the back side plate 71 and the belly side plate 72 without a gap in the wing height direction D1.
  • the joint portions 73 are provided at a plurality of places separated in the chord direction D2, such as the front edge portion 7a, the rear edge portion 7b, and the partition portion 80 described later. There is.
  • junction part 73 is not limited to the structure joined by brazing, What is necessary is just to join the back side board
  • FIG. The joint portion 73 may be joined, for example, in a welded state.
  • the wing main body 7 of the present embodiment includes the first suction port 74, the first drain flow path 75, the first series passage 76, the second drain flow path 77, the second suction port 78, and the second A communication passage 79 and a partition portion 80 are provided.
  • the first suction port 74 extends in the wing height direction D 1 and opens at the wing surface 70.
  • the first suction port 74 of the present embodiment is formed only on the abdominal side surface 702.
  • the first suction port 74 is formed in the upper half region of the ventral side 702 in the wing height direction D1.
  • the upper half region is a region on the outer shroud 22 side than the central position in the wing height direction D1. That is, the first suction port 74 is formed as one long groove which is recessed toward the outer shroud 22 from the center position in the wing height direction D1 of the belly side 702 so as to extend in the wing height direction D1.
  • the first suction port 74 is formed in a rectangular shape elongated in the wing height direction D1 when viewed from the wing thickness direction D3.
  • the first suction port 74 is formed on the rear edge 7b side with respect to the center of the chord direction D2.
  • the first suction port 74 is formed by a first suction port forming surface 81 formed in at least one of the back side plate 71 and the ventral side plate 72.
  • the first suction port 74 of the present embodiment is, as shown in FIG. 5, a first suction recessed from an end surface 72 b on the rear edge 7 b side of the abdominal plate 72 and a back side plate inner surface 71 a of the back plate 71. It is formed by the mouth back side formation surface 81a.
  • the first suction port formation surface 81 forming the first suction port 74 is an end surface 72 b on the rear edge 7 b side of the abdominal plate member 72 and a back plate inner surface 71 a of the back plate member 71. And the first suction port back side forming surface 81a.
  • the first drain channel 75 is a space formed between the back side plate 71 and the ventral side plate 72 as shown in FIG. 4.
  • the first drain passage 75 extends in the blade height direction D1 inside the blade body 7, as shown in FIG.
  • the first drain passage 75 penetrates the wing body 7 so as to be in communication with the inner shroud 21 and the outer shroud 22.
  • the first drain passage 75 is formed with a narrowed portion 751 for narrowing the passage at a connection portion with the space formed inside the inner shroud 21 and the outer shroud 22.
  • the first drain passage 75 is formed by the first drain passage forming surface 82 respectively formed on the back side plate inner surface 71 a and the belly side plate inner surface 72 a. And 72 are formed.
  • the first drain passage forming surface 82 is formed to be recessed from at least one of the back side plate inner surface 71 a and the vent plate side inner surface 72 a.
  • the first drain channel 75 of the present embodiment includes a first drain channel back side forming surface 82a which is recessed to form a concave surface from the back side plate inner surface 71a, and a concave surface from the ventral side plate inner surface 72a. It is formed by the first drain channel vent-side forming surface 82b which is recessed to form.
  • the first drain passage back side forming surface 82a of the present embodiment is recessed from the first suction port back side forming surface 81a so as to form a concave surface.
  • the first drain passage forming surface 82 forming the first drain passage 75 in the present embodiment includes the first drain passage back side forming surface 82a formed on the back side plate inner surface 71a, and the belly side plate member It is formed in the inner side surface 72a, and is the 1st drain channel venting side formation surface 82b. That is, the first drain passage forming surface 82 of the present embodiment is respectively recessed from both of the back side plate inner surface 71 a and the belly side plate inner surface 72 a.
  • a plurality of first series passages 76 are formed in the wing body 7 so as to be separated from each other in the wing height direction D1.
  • the plurality of first series passages 76 communicate the first suction port 74 and the first drain passage 75 in a state independent of each other. That is, the plurality of first series passages 76 are formed so as not to be connected to each other between the first suction port 74 and the first drain passage 75.
  • the first series passage 76 is a space formed between the back side plate 71 and the ventral side plate 72.
  • the first series passage 76 is formed between the back side plate 71 and the belly side plate 72 by a first series passage forming surface 83 respectively formed on the back side plate inner surface 71 a and the belly side plate inner surface 72 a. .
  • the first series passage forming surface 83 is formed to be recessed from at least one of the back side plate inner surface 71 a and the vent side plate inner surface 72 a.
  • the first series passage 76 of the present embodiment includes a first series inlet side forming surface which is recessed in a rectangular groove shape from the first suction port back side forming surface 81 a and the ventral side plate inner surface 72 a of the ventilating plate member 72. And 83b.
  • the first series passage forming surface 83 forming the first series passage 76 in the present embodiment is a first series formed in a part of the first suction port back side forming surface 81a and the ventral plate material inner side surface 72a. It is a passage ventral side forming surface 83b. That is, the first series passage formation surface 83 of the present embodiment is recessed only from the belly-side plate inner surface 72a.
  • the second drain passage 77 is formed closer to the front edge 7 a than the first drain passage 75.
  • the second drain passage 77 is a space formed between the back side plate 71 and the ventral side plate 72.
  • the second drain passage 77 extends in the blade height direction D1 inside the blade body 7.
  • the second drain passage 77 penetrates the wing body 7 so as to be in communication with the inner shroud 21 and the outer shroud 22.
  • the second drain passage 77 is formed by the second drain passage forming surface 84 formed respectively on the back side plate inner surface 71 a and the ventral side plate inner surface 72 a. And 72 are formed.
  • the second drain passage back side forming surface 84 a formed on the back side plate inner surface 71 a and the belly side plate 72 are bent. Therefore, it is formed by the 2nd drain channel belly side formation surface 84b formed in the belly side plate material inner side 72a. Therefore, the second drain passage forming surface 84 which forms the second drain passage 77 in the present embodiment is the ventral side and the second drain passage back forming surface 84a which is a part of the back side plate inner surface 71a. It is a second drain passage vent-side forming surface 84b which is a part of the plate inner surface 72a.
  • the second suction port 78 opens at the back side 701.
  • the second suction port 78 extends in the wing height direction D ⁇ b> 1 on the back side 701 and is open.
  • the second suction port 78 of the present embodiment is formed only on the back side 701.
  • the second suction port 78 is formed over the entire area of the back surface 701 in the blade height direction D1.
  • the second suction port 78 is formed as a single slit long in the wing height direction D1.
  • the second suction port 78 is formed in an elongated rectangular shape extending in the wing height direction D1 when viewed from the wing thickness direction D3.
  • the second suction port 78 is formed closer to the front edge 7a than the center of the chord direction D2.
  • a plurality of second communication passages 79 are formed apart from each other in the wing height direction D1 inside the wing body 7.
  • the second communication passage 79 causes the second suction port 78 and the second drain passage 77 to communicate with each other in a mutually independent state.
  • the second communication passage 79 in the present embodiment is a through hole that penetrates the back side plate material 71.
  • the plurality of second communication passages 79 are formed apart from each other so as not to be connected between the second drain passage 77 and the second suction port 78.
  • the partition section 80 partitions the first drain channel 75 and the second drain channel 77 so as to be independent of each other in the wing main body 7.
  • the partition portion 80 is a region in which the back side plate 71 and the ventral side plate 72 are joined between the first drain passage 75 and the second drain passage 77.
  • the partition part 80 isolates the first drain passage 75 and the second drain passage 77 over the entire region in the blade height direction D1.
  • the partition portion 80 of the present embodiment is formed by a joint portion 73 in which the back side plate inner surface 71 a of the back side plate 71 and the belly side plate inner surface 72 a of the abdominal side plate 72 are joined.
  • the method S1 of manufacturing a steam turbine blade includes a preparation step S2, a processing step S3, and a bonding step S4.
  • the back side plate 71 and the ventral side plate 72 are processed.
  • the 1st suction inlet formation surface 81 which forms the 1st suction inlet 74 is formed in at least one of the back side board
  • the first drain passage forming surface 82 forming the first drain passage 75 and the first series passage forming the first series passage 76 are formed in both the back side plate 71 and the ventral side plate 72.
  • a face 83 is formed.
  • a back side 701 is formed on the back side plate 71 in the processing step S3.
  • the belly side 702 is formed on the belly side plate 72.
  • the second drain passage forming surface 84 forming the second drain passage 77 is formed in both the back side plate 71 and the ventral side plate 72.
  • the second suction port 78 and the second communication passage 79 are formed in the back side plate 71.
  • a first suction port back side forming surface 81a is formed as the first suction port forming surface 81.
  • a first drain passage back side forming surface 82a and a first drain passage vent-side forming surface 82b are formed.
  • a first series passage formation surface 83 a first series passage vent-side formation surface 83b is formed.
  • a second drain passage back side forming surface 84a and a second drain passage vent-side forming surface 84b are formed.
  • the processing step S3 of the present embodiment includes a removal step S31 of scraping and removing a part of the back side plate 71 and the belly side plate 72, and a bending step S32 of bending the back side plate 71 and the belly side plate 72. It is.
  • the back side plate 71 and the belly side plate 72 are scraped and partially removed by grinding or cutting.
  • a first suction port formation surface 81, a first drain flow channel formation surface 82, a first series passage formation surface 83, a second suction port 78, and a second communication passage 79 are formed.
  • the first drain passage forming surface 82 is formed so as to be recessed from at least one of the back side plate inner surface 71a and the vent plate side inner surface 72a.
  • the first series passage forming surface 83 is formed so as to be recessed from at least one of the back side plate inner surface 71a and the abdominal side plate inner surface 72a.
  • the removal step S31 of this embodiment when the back side plate 71 is combined with the ventral side plate 72, the front edge 7a, the rear edge 7b, and the wing surface 70 are formed, Unwanted portions are scraped and removed from the plate-like back side plate 71.
  • the operator cuts the back side plate inner surface 71a to form the first suction port back side forming surface 81a on the back side plate 71 as the first suction port forming surface 81.
  • the operator further scrapes a part of the first suction port back side forming surface 81a, whereby the first drain flow path back side forming surface 82a is formed in the back side plate 71.
  • the back side 701 is scraped to form a second suction port 78.
  • a second communication passage 79 penetrating the back side plate 71 is formed so as to communicate the second suction port 78 and the second drain passage forming surface 84 with each other.
  • the removal step S31 of the present embodiment when the back side plate 71 is combined with the ventral side plate 72, the front edge 7a, the rear edge 7b and the wing surface 70 are formed, Unwanted portions are scraped and removed from the plate-like ventral-side plate 72.
  • the operator scrapes the rear edge 7b side of the ventral-side plate member 72 to make the first suction port forming surface 81 smooth according to the shape of the first suction port back side forming surface 81a. End face is formed.
  • the operator scrapes the belly-side plate inner surface 72a to form the first drain channel belly-side forming surface 82b in the belly-side plate 72.
  • the operator scrapes the inside surface 72a of the ventral-side plate material, whereby the ventral-side plate member 72 is formed with the first series passage ventral-side forming surface 83b.
  • the back side plate 71 and the ventral side plate 72 are curved to form the wing surface 70 having a predetermined shape on the back side plate 71 and the ventral side plate 72. Accordingly, by bending the back side plate 71 and the belly side plate 72 in the bending step S32, the back side 701 is formed in a convex shape, and the belly side 702 is formed in a concave shape.
  • the back side plate inner surface 71a is bent in a concave shape, whereby the second drain passage back side forming surface 84a is formed in the back side plate 71 as the second drain passage forming surface 84.
  • the back is formed so that the first suction port 74, the first drain passage 75, the second series passage 76, and the second drain passage 77 are formed between the back plate member 71 and the vent plate member 72.
  • the side plate 71 and the ventral side plate 72 are joined. Specifically, in the joining step S4, the back side plate 71 and the ventral side plate 72 are joined at the end of the front edge 7a. Further, in the joining step S4, the back side plate 71 and the belly side plate are formed so as to form the first suction port 74 between the first suction port back side forming surface 81a and the end face 72b on the rear edge 7b side of the belly side plate 72 72 are joined.
  • the blade main body 7 of the stationary blade 2 is disposed in the main flow passage C1 in which the steam S flows from the upstream side to the downstream side of the axial direction Da.
  • the steam S water drops are generated as the pressure decreases. Therefore, water droplets are likely to be generated particularly near the final stage on the most downstream side. Therefore, the steam S flows in the main flow path C1 in a state including water droplets.
  • the main steam S flows near the ventral surface 702
  • the water droplets in the main steam S adhere to the ventral surface 702 as fine water droplets by inertia.
  • the main steam S flows near the back side 701 the water droplets in the main steam S adhere to the back side 701 as fine water droplets W by inertia.
  • the drain attached to the ventral surface 702 flows so as to form a liquid film from the front edge 7a to the rear edge 7b along the concave ventral surface 702. .
  • the drain adhering to the ventral surface 702 flows into the first suction port 74 on the way to the end of the rear edge 7 b.
  • the first drain passage 75 is connected to a condenser (not shown) via the inner discharge passage 210 of the inner shroud 21 and the outer discharge passage 220 of the outer shroud 22 so that the first drain passage 75 is in a vacuum state. It has become.
  • the drain accumulated in the inner discharge flow path 210 is negative pressure. It flows in the wing body towards the outer discharge passage 220.
  • the drain attached to the back side 701 flows from the front edge 7 a side toward the rear edge 7 b along the convex back side 701.
  • the drain attached to the back side 701 peels off from the back side 701 before reaching the end on the rear edge 7 b side because the back side 701 has a convex shape.
  • the second suction port 78 is formed on the front edge 7a side with respect to the center of the chord direction D2, so that the drain attached to the back side 701 flows into the second suction port 78 before it is peeled off.
  • the second drain passage 77 is connected to the condenser via the inner discharge passage 210 of the inner shroud 21 and the outer discharge passage 220 of the outer shroud 22 similarly to the first drain passage 75. It is in a vacuum state. Therefore, the drain that has flowed into the second suction port 78 is drawn into the plurality of second communication paths 79 spaced apart in the blade height direction D1 and flows into the second drain flow path 77.
  • the drain that has flowed into the second drain passage 77 is directed to the inner shroud 21 or the outer shroud 22 as shown in FIG. Thereafter, as shown in FIG. 2, the drain joins the drain flowing from the first drain passage 75 and the inner discharge passage 210 of the inner shroud 21 and the outer discharge passage 220 of the outer shroud 22, as shown in FIG. Sent to
  • the plurality of first series passages 76 are formed separately in the blade height direction D1 in an independent state. Therefore, even if a pressure difference occurs around the belly side surface 702 in the wing height direction D1 in which the first suction port 74 extends, the drain in the first series passage 76 corresponds to the pressure difference in the wing height direction D1.
  • the movement in the wing height direction D1 can be suppressed.
  • the drain once drawn into the second series passage 76 from the first suction port 74 located in the high pressure portion may flow out again from the first suction port 74 located in the low pressure portion. It is suppressed. Therefore, the drain collected once from the first suction port 74 can be prevented from flowing out, and the drain attached to the wing surface 70 can be efficiently removed.
  • a plurality of first series passages 76 are formed independently in the wing height direction D1. Thereby, compared with the case where it forms in the state where it connected in the whole area of the wing height direction D1, inflow of vapor S which circulates around can be controlled. Therefore, the drain can be removed while suppressing the influence on the flow of the steam S flowing through the main flow passage C1.
  • a first suction port 74 is formed in the upper half region of the wing height direction D1 of the belly side surface 702.
  • a first suction port 74 is formed in the abdominal side surface 702, and a second suction port 78 is formed in the back side surface 701. Therefore, a structure for collecting drain separately from the first suction port 74 can be formed on the back side 701 independently.
  • the first suction port 74 is formed on the belly side surface 702 on the rear edge 7b side with respect to the center in the chord direction D2. Therefore, the drain that has flowed to the rear edge 7 b side can be made to collectively flow into the first suction port 74 while adhering to the abdominal side surface 702 and forming a liquid film. As a result, more drains can be recovered from the first suction port 74.
  • a second suction port 78 is formed on the front edge 7 a side of the first suction port 74. Therefore, the drain can be recovered via the second suction port 78 before the drain attached to the back side 701 is peeled off from the back side 701.
  • the second drain passage 77 connected to the second suction port 78 and the first drain passage 75 connected to the first suction port 74 are independent of each other in the inside of the wing main body 7 by the partition portion 80. Therefore, it can prevent that the 2nd suction port 78 and the 1st suction port 74 connect in the inside of the wing
  • the drain collected from the ventral side 702 having a higher pressure than the dorsal side 701 through the first suction port 74 passes through the inside of the wing main body 7 to form a second suction formed on the lower side 701 having a low pressure. It can prevent flowing out from the mouth 78. Therefore, the drain collected once from the first suction port 74 can be prevented from flowing out, and the drain attached to the wing surface 70 can be efficiently removed.
  • the wing main body 7 is formed by joining the two plate members of the back side plate member 71 and the ventral side plate member 72. Specifically, in the removal step S31, the first suction port back side forming surface 81a and the first drain flow path back side forming surface 82a are formed on the flat plate-shaped back side plate member 71. In addition, the first drain passage vent-forming surface 82b and the first series vent-venting surface forming surface 83b are formed in the flat ventral-side plate member 72. Furthermore, the second drain passage back side forming surface 84 a is formed in the back side plate 71 by the bending step S ⁇ b> 32.
  • a second drain passage vent-forming surface 84 b is formed on the flat ventral-side plate member 72. Then, the first suction port 74, the first drain passage 75, the second series passage 76, and the second drain passage 77 are joined by joining and combining the back side plate 71 and the belly side plate 72 after the bending step S32. It is formed. As described above, by processing the flat plate-like back side plate 71 and the belly side plate 72 in advance in the removal step S31 and the bending step S32, it is possible to work without being influenced by the final shape of the wing main body 7.
  • the side forming surface 84 a and the second drain passage vent-side forming surface 84 b can be formed only by processing the flat plate-like back side plate 71 and the vent-side plate 72.
  • the first suction port back side forming surface 81a, the first drain passage back side forming surface 82a, the first drain passage venting side forming surface 82b, the first series passage venting side forming surface 83b, the second drain passage Processing of the back side forming surface 84a and the second drain passage venting side forming surface 84b is facilitated.
  • the first suction port back side forming surface 81a, the first drain flow path back side forming surface 82a, the first drain flow path ventral side forming surface 82b, the first series passage ventral side forming surface 83b, the second drain flow path back The processing accuracy of the side forming surface 84 a and the second drain passage vent-side forming surface 84 b can be improved.
  • first suction port back side forming surface 81a formed with high accuracy
  • first drain flow path back side forming surface 82a the first drain flow path ventral side forming surface 82b
  • first series ventral side forming surface 83b The first suction port 74, the first drain passage 75, the second series passage 76, and the second drain passage 77 are formed by the second drain passage back forming surface 84a and the second drain passage venting side forming surface 84b. It is formed.
  • the wing main body 7 is thin or the wing surface 70 is formed by a complicated three-dimensional curved surface, even if the wing main body 7 has a shape that is difficult to process,
  • the first suction port 74, the first drain passage 75, the second series passage 76, and the second drain passage 77 can be easily formed inside the wing body 7 while suppressing the influence of processing difficulty due to the final shape. . Therefore, the space for recovering the drain can be easily formed inside the wing body 7.
  • first suction port 74 By forming the first suction port 74, the first drain flow path 75, the second series passage 76, and the second drain flow path 77 using the surfaces of the two plates, the first suction port 74, It is possible to improve the manufacturing freedom such as the position and shape of the first drain passage 75, the first series passage 76, and the second drain passage 77.
  • the first drain channel forming surface 82 the first drain channel back side forming surface 82a recessed from the back side plate material inner side surface 71a and the first drain channel formed on the belly side plate material inner side surface 72a
  • the surface 82b is formed. Therefore, by forming the first drain channel forming surface 82 so as to be recessed from at least one of the back plate 71 and the vent plate 72, the thickness of the back plate 71 and the vent plate 72 can be increased without increasing the thickness.
  • One drain channel 75 can be formed larger.
  • first drain channel forming surface 82 can be formed only by processing the surfaces of the flat plate-like back side plate member 71 and the belly side plate member 72, the processing of the first drain channel forming surface 82 is facilitated. Furthermore, a first drain channel 75 is formed between the back plate member 71 and the vent plate member 72 by the first drain passage back surface forming surface 82 a and the first drain channel venting surface forming surface 82 b. Therefore, the first drain passage 75 can be easily formed inside the wing body 7.
  • any one of the back side plate member 71 and the belly side plate member 72 Compared with the case where the first drain passage forming surface 82 is formed only on one side, it is possible to suppress the depth of depression per sheet when the first drain passage forming surface 82 is formed. Therefore, it can suppress that the board thickness of back side board material 71 and belly side board material 72 becomes thick.
  • first series passage ventral-side forming surface 83b is formed as a groove which is recessed from the ventral-side plate inner surface 72a.
  • first series passage forming surface 83 can be formed only by processing the surface of the flat plate 72 on the side of the abdomen. Therefore, processing of the first series passage formation surface 83 is facilitated.
  • a first series passage 76 is formed between the back side plate 71 and the belly side plate 72 by the first series passage forming surface 83. Therefore, the first series passage 76 can be easily formed inside the wing body 7.
  • the second communication passage 79 is formed by scraping the back plate 71 and the vent plate 72, respectively.
  • the 2nd drain flow-path formation surface 84 is formed by bending process S32 at the timing which forms the back side 701 and the belly side 702. As shown in FIG.
  • the first suction port 74 in order to form the first suction port 74, the first drain passage 75, the second series passage 76, the second drain passage 77, and the second communication passage 79, the other than the back side plate 71 and the belly side plate 72 There is no need to prepare another part of As a result, the number of parts forming the wing main body 7 can be reduced, and the manufacturing cost of the wing main body 7 can be reduced.
  • the second drain passage forming surface 84 can be formed only by bending the flat plate-shaped back side plate 71 and the ventral side plate 72. As a result, processing of the second drain passage forming surface 84 is facilitated. Further, the second drain passage 77 is formed by the second drain passage forming surface 84. Therefore, as in the case where the wing main body 7 is thin or the wing surface is formed by a complicated three-dimensional curved surface, even if the final shape of the wing main body 7 is a shape that is difficult to process inside, The second drain passage 77 can be easily formed inside the wing body.
  • a partition portion 80 is formed by the joint portion 73 to make the first drain channel 75 and the second drain channel 77 independent. Therefore, it is not necessary to form the partition part 80 as a separate member or to cut out the partition part 80 by post processing such as drilling and electric discharge machining. Therefore, by processing the two plate members in advance and joining them so as to form the partition portion 80, even if the wing main body 7 has a shape that is difficult to process, the blade height in the wing main body 7 The two spaces communicating in the longitudinal direction D1 can be easily formed in an independent state. Therefore, it is possible to form the first drain passage 75 and the second drain passage 77 independent of each other in the interior of the wing body 7 while suppressing the influence of processing difficulty due to the shape of the wing body 7. That is, it is possible to further improve the manufacturing freedom, such as the position and shape of the first drain channel 75 and the second drain channel 77.
  • the drain can be efficiently recovered by the stationary blade 2, and the steam turbine 100 can be operated efficiently.
  • the first series passage 76 of the first modified example is recessed in an angular groove shape from the ventral plate material inner side surface 72a and the first suction port back side forming surface 81a of the back plate material 71. It is formed by the 1st series passage back side formation side 83a. Therefore, the first series passage forming surface 83 forming the first series passage 76 in the present modification is a part of the ventral plate material inner side surface 72a and the first series passage back surface forming surface 83a. As in the case of forming the first drain passage back side forming surface 82a, the worker further adds a part of the first suction port back side forming surface 81a in the removal step S31 in the first series passage back side forming surface 83a. It is formed by shaving.
  • the first series passage back side forming surface 83a is recessed from the first suction port back side forming surface 81a as a plurality of angular grooves spaced apart and aligned in the wing height direction D1.
  • the first series passage back side forming surface 83a is formed as a groove recessed from the first suction port back side forming surface 81a. Accordingly, the first series passage formation surface 83 can be formed only by processing the surface of the flat plate-shaped back side plate 71. Therefore, processing of the first series passage formation surface 83 is facilitated. Further, a first series passage 76 is formed between the back side plate 71 and the belly side plate 72 by the first series passage forming surface 83. Therefore, the first series passage 76 can be easily formed inside the wing body 7.
  • first series passage 76 of the first modified example As in the case where the first series passage forming surface 83 is provided on the ventral side plate 72 as in the first embodiment, they are independent of each other. Multiple are formed. As a result, drain can be efficiently introduced from the first suction port 74 to the first drain passage 75.
  • a wing body 7B according to a second modification of the first embodiment will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof will be omitted.
  • blade main body 7B of this 2nd modification it differs from 1st embodiment about the position in which the 1st suction inlet 74A is formed.
  • the first suction port 74A of the second modified example is formed at an end portion of the wing surface 70 on the side of the rear edge 7b where the ventral side surface 702 and the back side surface 701 are connected. . That is, the first suction port 74A is recessed as if the end on the rear edge 7b side was scraped.
  • the first suction port 74A of the second modification is formed by both the back surface 701 and the ventral surface 702.
  • the first suction port 74A is formed over the entire area in the blade height direction D1 of the end on the rear edge 7b side.
  • the first suction port 74A is formed as one angular groove extending in the wing height direction D1.
  • the first suction port 74A is formed by a first suction port forming surface 81 formed on each of the back side plate 71A and the ventral side plate 72A.
  • the first suction port 74A of the second modification includes a first suction port back side forming surface 91a which is recessed from an end face on the back edge 7b side of the back side plate 71A and the back side plate inner surface 71a;
  • the first suction port belly side forming surface 91b is recessed from the end surface on the rear edge 7b side and the belly side plate inner surface 72a.
  • the first suction port forming surface 81 forming the first suction port 74A is a first suction port back side forming surface 91a and a first suction port abdominal side forming surface 91b.
  • the first suction port 74A of the second modification is formed at an end on the rear edge 7b side. Therefore, the drain adhering to the back side 701 and the ventral side 702 and flowing to the rear edge 7b can be collected at the end on the most downstream side, and as a result, more drains can be collected at the first suction port 74A. Can be collected from Therefore, the drain adhering to the back surface 701 and the ventral surface 702 can be efficiently recovered.
  • a wing body 7C of a third modified example of the first embodiment will be described with reference to FIG.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • blade main body 7C of this 3rd modification it differs from 1st embodiment about the structure in which the 2nd drain channel is not formed.
  • the second drain passage, the second suction port, and the second communication passage are not formed. That is, only the first drain passage 75B, the first suction port 74, and the first series passage 76 are formed inside the blade body 7. Since the second drain channel is not formed, the back side plate member 71B and the ventral side plate member 72B are bent by bending to form the first drain channel 75B only by forming a space inside the wing main body 7C. be able to. Thereby, the curved back side plate inner surface 71a itself becomes the first drain channel back side forming surface 92a, and the curved ventral side plate inner surface 72a itself becomes the first drain channel front side forming surface 92b.
  • the back side plate inner surface 71a and the belly side plate inner surface 72a are scraped to form the first drain channel forming surface 82 recessed from the back plate inner surface 71a and the belly side plate inner surface 72a. There is no need. Therefore, the processing cost can be suppressed and the manufacturing cost of the wing body 7C can be reduced.
  • a wing body 7D of a fourth modified example of the first embodiment will be described with reference to FIG.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • blade main body 7D of this 4th modification is different from 1st embodiment in the point comprised with the board
  • the wing main body 7D of the fourth modified example includes, as the back side plate 71 and the belly side plate 72, one wing forming plate 99 and a joint portion 73, as shown in FIG.
  • the wing forming plate 99 is a single plate having a shape in which the back plate 71 and the vent plate 72 of the first embodiment are connected.
  • the wing forming plate 99 is bent to form both the back side 701C and the belly side 702C as the wing surface 70.
  • the wing forming plate 99 is curved so as to form a space inside the wing main body 7D.
  • the wing forming plate 99 is bent to form the leading edge 7a.
  • the joint portion 73 is not formed at the end on the front edge 7a side.
  • the wing forming plate material 99 forms a joint portion 73 by joining the both ends on the rear edge portion 7 b side. That is, in the wing body 7D of the fourth modified example, the first suction port 74 is formed by joining the both ends of the wing forming plate material 99.
  • the second drain passage 77, the second suction port 78, and the second communication passage 79 are not formed. That is, only the first drain passage 75C, the first suction port 74, and the first series passage 76 are formed inside the wing main body 7D.
  • the number of parts can be reduced to form the blade main body 7D.
  • the manufacturing cost of the wing body 7D can be reduced.
  • the same function and effect as those of the third modification can be obtained.
  • a wing body 7E of a fifth modification of the first embodiment will be described with reference to FIG.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • blade main body 7E of this 5th modification is different from 1st embodiment in the point comprised with the board
  • the wing main body 7E of the fifth modified example includes, as the back side plate 71 and the belly side plate 72, one wing forming plate 99E and a joint portion 73E, as shown in FIG.
  • the wing forming plate 99E is a single plate having a shape in which the back plate 71 and the vent plate 72 of the first embodiment are connected.
  • the wing forming plate 99E is bent to form both the back side 701C and the venting side 702C as the wing surface 70.
  • the wing forming plate 99E is curved so as to form a space inside the wing body 7E.
  • the wing forming plate 99E is bent so as to form the leading edge 7a.
  • the joint portion 73E is not formed at the end on the front edge 7a side.
  • the wing forming plate material 99E forms a joint portion 73E by joining the both ends on the rear edge 7b side. That is, in the wing body 7E of the fourth modified example, the first suction port 74 is formed by joining the both ends of the wing forming plate material 99E.
  • plate material 72 are prepared as the wing formation board material 99E of 1 sheet by preparatory process S2 of manufacturing method S1 of steam turbine wing
  • the number of parts can be reduced to form the wing body 7E.
  • the manufacturing cost of the wing body 7E can be reduced.
  • FIGS. 14 to 16 a second embodiment of the steam turbine blade of the present invention will be described with reference to FIGS. 14 to 16.
  • the stationary blade which is the steam turbine blade shown in the second embodiment is different from the first embodiment in that the blade main body has a solid structure. Therefore, in the description of the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and redundant descriptions will be omitted.
  • the wing main body 7F of the second embodiment has a back side plate 71F, a ventral side plate 72F, and a plurality of joint portions 73F.
  • the back side plate 71F forms a part of a convex back side 701F as a wing surface 70F.
  • the back side plate 71F is a plate-like member that is thinner and smaller than the back side plate 71 of the first embodiment.
  • the back side plate 71F is curved along the ventral side plate 72F.
  • the back side 701F is a surface facing outward when the back side plate 71F is joined to the ventral side plate 72F.
  • the back side plate inner surface 710a when the back side plate 71F is joined to the abdominal side plate 72F, the side facing the inner side of the wing main body 7F and a surface positioned closer to the abdominal side plate 72F than the back side 701F. Is the back side plate inner surface 710a.
  • the back side plate inner surface 710a forms a part of the ventral side surface 702F in the rear edge 7b to form an end portion of the rear edge 7b.
  • the ventral-side plate 72F forms a concave ventral-side surface 702F as a wing surface 70F and a part of a back-side surface 701F.
  • the ventral-side plate 72F has a wing-shaped cross section and extends in the wing height direction D1.
  • the ventral-side plate 72F is thicker than the vent-side plate 72 of the first embodiment in the thickness direction D3.
  • the ventral-side plate 72F has a thickness substantially the same as the thickness in the wing thickness direction D3 of the final wing body 7F.
  • the outer circumferential surface 720F of the ventral side plate 72F forms a ventral side 702F and a part of the back side 701F on the side of the front edge 7a.
  • a housing concave portion 88 in which the back-side plate member 71F can be housed is formed in a part of the outer peripheral surface 720F on the back side 701F side.
  • the housing recess 88 is recessed from the outer peripheral surface 720F on the back side 701F side, leaving the front edge 7a side.
  • the outer peripheral surface 720F on the front edge 7a side of the ventral-side plate 72F forms a part of the back side 701F.
  • the ventral-side surface 702F is a part of the outer peripheral surface 720F and faces the side on which the back-side plate 71F is not disposed when the vent-side plate 72F is joined to the back-side plate 71F.
  • the belly side plate material 72F when the belly side plate material 72F is joined to the back side plate material 71F, it is a surface facing the inside of the wing main body 7F and a surface located closer to the back side plate material 71F than the belly side surface 702F. Is the ventral side plate inner surface 720a.
  • the joint portion 73F joins the back side plate 71F and the ventral side plate 72F.
  • the joint portion 73F of the second embodiment is a portion where the back side plate 71F and the ventral side plate 72F are joined by brazing, and is formed by solidification of silver solder.
  • the joint portion 73F joins the back side plate member 71F and the belly side plate member 72F without a gap in the wing height direction D1.
  • the joint portion 73F joins the back side plate inner surface 710a and the front side plate inner surface 720a.
  • the wing main body 7F of the second embodiment includes a first suction port 74F, a first drain flow path 75F, a first series passage 76F, a second drain flow path 77F, a second suction port 78F, and a second suction port 78F.
  • a second communication passage 79F and a partition 80F are provided.
  • the first suction port 74F of the second embodiment is formed only on the ventral side 702F.
  • the first suction port 74F is formed in the upper half region of the ventral side 702F in the wing height direction D1.
  • the first suction port 74F is formed as a single long groove so as to extend in the wing height direction D1.
  • the first suction port 74F is formed in a rectangular shape elongated in the wing height direction D1 when viewed from the wing thickness direction D3.
  • the first suction port 74F is formed closer to the rear edge 7b than the center of the chord direction D2.
  • the first suction port 74F is formed by a first suction port forming surface 81F formed in the back side plate 71F and the ventral side plate 72F.
  • the first suction port 74F of the present embodiment is a first suction port that is recessed in an angular groove shape from the end surface 720b on the rear edge 7b side of the abdominal plate material 72F and the back side plate inner surface 710a of the back plate material 71F. It is formed by the back side formation surface 810a.
  • the first suction port back side forming surface 810a is an angular groove formed longitudinally extending in the wing height direction D1. Therefore, in the present embodiment, the first suction port forming surface 81F forming the first suction port 74F includes the first suction port back side forming surface 810a and the end face 720b on the rear edge 7b side of the abdominal plate member 72F; It is.
  • the first drain channel 75F is a space formed between the back side plate 71F and the ventral side plate 72F.
  • the first drain passage 75F extends in the blade height direction D1 inside the blade body 7F.
  • the first drain flow channel 75F is formed between the back side plate 71F and the belly side plate 72F by the first drain flow path forming surface 82F respectively formed on the back side plate inner surface 710a and the belly side plate inner surface 720a. ing.
  • the first drain passage 75F of the second embodiment is formed to be recessed from the ventral plate material inner surface 720a.
  • the first drain passage 75F is formed by the back side plate inner surface 710a and the first drain passage vent-formed surface 820b which is recessed from the vent side plate inner surface 720a.
  • the first drain passage belly-side forming surface 820b of the second embodiment is recessed from the belly-side plate inner surface 720a so as to form a concave surface. Therefore, the first drain passage forming surface 82F forming the first drain passage 75F in the second embodiment is a part of the back side plate inner surface 710a and the first drain passage venting surface forming surface 820b. .
  • a plurality of first series passages 76F are formed apart from each other in the wing height direction D1 inside the wing body 7F.
  • the plurality of first series passages 76F are formed so as not to connect with each other in the blade height direction D1 between the first suction port 74F and the first drain passage 75F.
  • the first series passage 76F is a space formed between the back side plate 71F and the ventral side plate 72F.
  • the first series passage 76F is formed between the back side plate 71F and the belly side plate 72F by the first series passage forming surface 83F respectively formed on the back side plate inner surface 710a and the belly side plate inner surface 720a. .
  • the first series passage 76F is formed to be recessed from the back side plate inner surface 710a.
  • a series-series passage back side forming surface 830a which is recessed in a square groove shape from the back side plate inner surface 710a of the back side plate 71F, an abdominal side plate inner surface 720a, and It is formed by
  • the first series passage back surface forming surface 830a is a surface that forms a plurality of angular grooves that are formed apart in the blade height direction D1.
  • the plurality of first series passage back surface forming surfaces 830a communicate with the first suction port back surface forming surface 810a on the rear edge 7b side. Therefore, the first series passage formation surface 83F that forms the first series passage 76F in the second embodiment is the first series passage back side formation surface 830a and a part of the ventral side plate inner surface 720a.
  • the second drain passage 77F is formed closer to the front edge 7a than the first drain passage 75F.
  • the second drain passage 77F is a space formed between the back side plate 71F and the ventral side plate 72F.
  • the second drain passage 77F extends in the blade height direction D1 inside the blade body 7F.
  • the second drain passage 77F is formed between the back side plate 71F and the belly side plate 72F by the second drain passage forming surface 84F respectively formed on the back side plate inner surface 710a and the vent side plate inner surface 720a. ing.
  • the second drain passage 77F of the second embodiment is formed to be recessed from the ventral plate material inner surface 720a.
  • the second drain passage 77F is formed by a part of the back side plate inner surface 710a and a second drain passage side forming surface 840b recessed from the vent side plate inner surface 720a. Therefore, the second drain passage forming surface 84F forming the second drain passage 77F in the present embodiment is a part of the back side plate inner surface 710a and the second drain passage side forming surface 840b.
  • the second suction port 78F of the second embodiment is formed only on the back side 701F.
  • the second suction port 78F is formed in the upper half area of the back side 701.
  • the second suction port 78F is formed as a single long groove so as to extend in the wing height direction D1.
  • the second suction port 78F is formed in a rectangular shape elongated in the wing height direction D1 when viewed from the wing thickness direction D3 to the back side 701F.
  • the second suction port 78F is formed closer to the leading edge 7a than the center of the chord direction D2.
  • the second suction port 78F is formed by a second suction port forming surface 85F formed on the back side plate 71F and the ventral side plate 72F.
  • the second suction port 78F includes an end surface 710b on the front edge 7a side of the back side plate 71F and a second suction port belly side forming surface 850b recessed from the belly side plate inner surface 720a of the belly side plate 72F. It is formed.
  • the second suction inlet belly-side forming surface 850b is a surface that constitutes a plurality of angular grooves that are separated in the blade height direction D1. Therefore, in the present embodiment, the second suction port forming surface 85F forming the second suction port 78F is the end surface 710b on the front edge 7a side of the back side plate 71F and the second suction port belly side forming surface 850b. .
  • a plurality of second communication passages 79F are formed apart in the wing height direction D1 inside the wing main body 7F.
  • the second communication passage 79F allows the second suction port 78F and the second drain passage 77F to communicate with each other in a state independent of each other.
  • the second communication passage 79F of the present embodiment is formed between the back side plate 71F and the belly side plate 72F by the second communication passage forming surface 86F respectively formed on the back side plate inner surface 710a and the vent side plate inner surface 720a. It is formed.
  • the second communication passage 79F is formed to be recessed from the back side plate inner surface 710a and the vent side plate inner surface 720a.
  • the plurality of second communication passage back side formation surfaces 860a communicate with the end surface 710b on the front edge 7a side of the back side plate 71F on the front edge 7a side. Therefore, the second communication passage forming surface 86F forming the second communication passage 79F in the second embodiment is the second communication passage back side forming surface 860a and the second suction port belly side forming surface 850b.
  • the partition section 80F partitions the first drain channel 75F and the second drain channel 77F so as to be independent of each other in the wing body 7F.
  • the partition portion 80F is a region in which the back side plate 71F and the ventral side plate 72F are joined between the first drain passage 75F and the second drain passage 77F.
  • the partition portion 80F isolates the first drain passage 75F and the second drain passage 77F over the entire region in the blade height direction D1.
  • Partition part 80F of this embodiment is formed of joined part 73F by which back side board inner surface 710a and belly side board inner surface 720a were joined.
  • a method of manufacturing the steam turbine blade (the stationary blade 2F) of the second embodiment described above will be described.
  • a flat plate-shaped back side plate member 71F and a belly side plate member 72F having a rectangular cross section are prepared in the preparation step S2.
  • the back side plate 71F and the belly side plate 72F are scraped and partially removed by grinding or cutting.
  • the first suction port forming surface 81F, the first drain flow channel forming surface 82F, the first series passage forming surface 83F, the second drain flow channel forming surface 84F, the second suction port forming surface 85F, the second train A passage forming surface 86F is formed.
  • the back side plate member 71F As shown in FIG. 15, in the removal step S31 of the second embodiment, when the back side plate 71F is combined with the ventral side plate 72F, the plate is formed so that a part of the rear edge 7b and the back side 701F is formed. Unnecessary portions are scraped and removed from the back plate material 71F. At this time, in the removal step S31, the operator scrapes the rear edge 7b side of the back side plate inner surface 710a to form the first suction port back side forming surface 810a.
  • the operator further scrapes a part of the back side plate inner surface 710a so as to communicate with the groove formed by the first suction port back side forming surface 810a, whereby the back side plate 71F is subjected to the first series A passage dorsal forming surface 830a is formed.
  • the operator scrapes the front edge 7a side of the back side plate inner surface 710a to form the second communication passage back side formation surface 860a as the second communication passage formation surface 86F.
  • the belly-side plate 72F is processed.
  • the removal step S31 of this embodiment when the back side plate 71F is combined with the ventral side plate 72F, a part of the front edge 7a, the back side 701F, and the ventral side 702F are formed.
  • unnecessary portions are scraped and removed.
  • the operator scrapes the rear edge 7b side of the ventral-side plate member 72F to form a smooth end face 720b corresponding to the shape of the first suction port back side forming surface 810a.
  • the operator scrapes the belly-side plate inner surface 720a to form the first drain passage belly-side forming surface 820b in the belly-side plate 72F.
  • the operator scrapes the belly plate material inner surface 720a near the middle of the chord direction D2, which is the front edge portion 7a side of the first drain passage belly forming surface 820b, so that the belly plate material 72F is formed.
  • the second drain passage vent-forming surface 840b is formed in the second.
  • the worker cuts off the belly side plate inner surface 720a on the side of the front edge portion 7a with respect to the second drainage passage belly forming surface 840b so as to be connected to the second drainage passage belly forming surface 840b.
  • the second suction port belly-side forming surface 850b is formed on the side plate member 72F.
  • the back side plate 71F is bent in the bending step S32, whereby a part of the back side 701F is formed on the back side plate 71F. Further, by bending the ventral side plate member 72F, a part of the back side 701F and the ventral side surface 702F are formed on the ventral side plate member 72F.
  • the back side plate 71F and the front side plate are formed so as to form a second suction port 78F between the second suction port abdominal side forming surface 850b and the end face 710b on the front edge 7a side of the back side plate 71F. 72F is joined. Furthermore, in the bonding step S4, the back side plate inner surface 710a and the belly side plate inner surface 720a are bonded between the second drain passage forming surface 84F and the first drain passage forming surface 82F. Thus, in the bonding step S4, the partition portion 80F that partitions the second drain passage 77F and the first drain passage 75F so as to be independent from each other is formed as the bonding portion 73F.
  • a plurality of first series passages 76F are formed independently of one another, as in the first embodiment.
  • the drain can be efficiently introduced from the first suction port 74F to the first drain passage 75F.
  • a plurality of second communication passages 79F are formed independently of each other. As a result, drain can be efficiently introduced from the second suction port 78F to the second drain passage 77F.
  • the first suction ports 74, 74A, 74F and the second suction ports 78, 78F are not limited to being formed in a continuous shape in the blade height direction D1. If the first suction ports 74, 74A, 74F and the second suction ports 78, 78F are connected to the plurality of first series passages 76, 76F or the second communication paths 79, 79F, the first suction ports 74, 74A, 74F do not work in the wing height direction D1. It may be formed as a continuous slit.
  • first suction ports 74, 74A, 74F and the second suction ports 78, 78F are not limited to being formed in the entire upper half region of the wing height direction D1.
  • the first suction ports 74, 74A, 74F and the second suction ports 78, 78F may be formed only in a partial region on the tip end side of the wing surfaces 70, 70F.
  • first suction ports 74, 74A, 74F are not limited to being formed only in the ventral side surfaces 702, 702C, 702F.
  • the second suction ports 78 and 78F are not formed as in the third and fourth modifications, the first suction ports 74, 74A and 74F are formed on the back side surfaces 701, 701C and 701F. It is also good.
  • first series passage formation surfaces 83, 83F are the back side plate inner surfaces 71a, 710a of the back side plate members 71, 71A, 71B, 71F and the ventral side plate members 72, 72A, 72B, as in the embodiment and the modification.
  • the present invention is not limited to being formed so as to be recessed from only one of the ventral plate material inner side surfaces 72a and 720a of 72F.
  • the first series passage forming surfaces 83, 83F are the back side plate inner surfaces 71a, 710a of the back side plate members 71, 71A, 71B, 71F and the ventral side plate 72 as the first drain channel forming surface 82 of the embodiment. It may be formed so as to be recessed from both of the ventral side plate inner surface 72a, 720a of 72A, 72B, 72F.
  • the first drain passage forming surface 82 is both the back side plate inner surface 71a of the back side plate members 71, 71A, 71B and the ventral plate side inner surface 72a of the ventral side plate members 72, 72A, 72B as in the embodiment. It is not limited to being formed so as to be recessed from it.
  • the first drain flow path forming surface 82 is the back side plate inner surface 71a, 710a of the back side plate members 71, 71A, 71B, 71F and the ventral side plate inner surface 72a, 720a of the ventral plate members 72, 72A, 72B, 72F. It may be formed to be recessed from only one of them.
  • the second drain passage forming surface 84 is not limited to being formed in the bending step S32 as in the embodiment. Similarly to the first drain passage forming surface 82, the second drain passage forming surface 84 is from the back side plate inner surface 71a of the back side plate 71 and the belly side plate inner surface 72a of the ventral side plate 72 in the removal step S31. It may be scraped to be recessed.
  • first drain passage forming surface 82 is not limited to being formed in the removing step S31 as in the embodiment.
  • the first drain passage forming surface 82 may be formed in the bending step S32 in the same manner as the second drain passage forming surface 84.
  • drain attached to the wing surface can be efficiently removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

蒸気タービン翼は、翼高さ方向に延びる翼面(70)を有する翼本体(7)を備える。翼本体(7)は、前記翼高さ方向に延びて翼面(70)で開口している第一吸込口(74)と、内部で前記翼高さ方向に延びている第一ドレン流路(75)と、内部で前記翼高さ方向に互いに離れ、かつ、互いに独立した状態で第一吸込口(74)と第一ドレン流路(75)とを連通させている第一連通路(76)とを有する。

Description

蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法
 本発明は、蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法に関する。
 本願は、2017年9月5日に日本に出願された特願2017-170124号、及び特願2017-170123号について優先権を主張し、その内容をここに援用する。
 蒸気タービンは、機械駆動用などに用いられ、回転可能に支持されたロータと、ロータを覆うケーシングとを有している。蒸気タービンは、ロータに対して作動流体としての蒸気が供給されることによって回転駆動される。蒸気タービンは、ロータに動翼が設けられ、ロータを覆うケーシングに静翼が設けられている。蒸気タービンの蒸気流路には、動翼と静翼とが交互に複数段配設されて構成されている。蒸気流路に蒸気が流れることで、静翼により蒸気の流れが整流され、動翼を介してロータが回転駆動される。
 蒸気タービンでは、その最終段に近づくにしたがって圧力が非常に低くなっていく。そのため、流通する蒸気はやがて飽和蒸気圧に達し、液化した微細な水滴(水滴核)を含む湿り蒸気状態となっている。この微細な水滴(ドレン)の多くは、蒸気とともに翼列間を通過していくが、一部は慣性によって翼面に付着していくことで、翼面上で液膜を形成する。液膜は翼の後縁まで移動した後、再び蒸気流中に飛散し粗大な水滴となる。この粗大な水滴が動翼と大きな相対速度で衝突することで、動翼表面にエロージョンを発生させることが知られている。
 これに対して、ドレンの影響を低減するには、翼面に付着したドレン自体を除去することが最も効果的である。特許文献1には、翼背側の金属板と翼腹側の金属板とを塑性加工して形成された中空翼状の静翼の後縁端に、翼面に付着した液滴を回収する構造を設けることが記載されている。具体的には、特許文献1に記載の静翼には、翼高さ方向に延びるスリットと、このスリットよりも主流流れ方向上流側で翼高さ方向に複数設けられた第2のスリットとが形成されている。このスリット及び第2のスリットは、翼体内部の中空部と連通している。このスリット及び第2のスリットを介して、翼面に付着したドレンが翼体内部に回収されている。
 特許文献2には、腹側の翼表面に腹側スリットが形成され、背側の翼表面に背側スリットが形成された静翼が記載されている。この静翼では、静翼の内部に内側シュラウドから外側シュラウドまで貫通する二つの独立した中空空洞が形成されている。腹側スリット及び背側スリットは、それぞれ別の中空空洞に連通されている。これにより、回収したドレンが翼表面に再流出することを抑え、ドレンの回収効率を向上させている。
 特許文献2に記載された静翼では、二つの独立した中空空洞を内部に形成する必要が有る。静翼自体が鋳造で形成される場合、中空空洞は中子等を用いて翼面と同時に成形するか、ドリル等を用いて後加工で形成することとなる。板材からの削り出しで静翼が形成される場合も、ドリル等を用いて後加工で形成することとなる。
特許第5919123号公報 特開平11-336503号公報
 ところで、特許文献1に記載された静翼では、複数のスリット及び複数の第2のスリットと翼体内部の中空部とが一つの連通路で接続されている。つまり、スリット同士が連通路を介して内部で繋がっている。その結果、翼面の周りに生じる翼高さ方向の圧力差によって、圧力の高い部分に配置されたスリットから吸い込まれたドレンが連通路内で翼高さ方向に移動し、圧力の低い部分に配置された他のスリットから再び流出する可能性が有る。そのため、翼面に付着したドレンを効率良く除去することが難しい。
 本発明は、翼面に付着したドレンを効率良く除去することが可能な蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法を提供する。
 本発明の第一の態様における蒸気タービン翼は、翼高さ方向に延びる翼面を有する翼本体を備え、前記翼本体は、前記翼高さ方向に延びて前記翼面で開口している第一吸込口と、内部で前記翼高さ方向に延びている第一ドレン流路と、内部で前記翼高さ方向に互いに離れ、かつ、互いに独立した状態で前記第一吸込口と前記第一ドレン流路とを連通させている複数の第一連通路とを有する。
 このような構成によれば、第一吸込口の延びる翼高さ方向に翼面の周囲で圧力差が生じていても、第一連通路内のドレンが、圧力差に応じて翼高さ方向に移動することを抑えられる。その結果、圧力の高い部分に位置する第一吸込口から第一連通路に一度引き込んだドレンが、圧力の低い部分に位置する第一吸込口から再び外部に流出してしまうことを抑えられる。したがって、第一吸込口から一度回収したドレンが外部に流出することを抑えることができる。
 また、本発明の第二の態様における蒸気タービン翼では、第一の態様において、前記第一吸込口は、前記翼面のうち、凹面状の腹側面に形成されていてもよい。
 このような構成によれば、腹側面に付着したドレンを回収することができる。
 また、本発明の第三の態様における蒸気タービン翼では、第一の態様において、前記第一吸込口は、前記翼面のうち、凹面状の腹側面と凸面状の背側面とが接続される後縁部側の端部に形成されていてもよい。
 このような構成によれば、背側面や腹側面に付着して後縁部側に流れてきたドレンを最も下流側の端部で回収することができる。その結果、より多くのドレンを第一吸込口から回収することができる。したがって、翼面に付着したドレンを効率良く回収することができる。
 また、本発明の第四の態様における蒸気タービン翼では、第一から第三の態様のいずれか一つにおいて、前記第一吸込口は、前記翼高さ方向における前記翼面の上半分領域に形成されていてもよい。
 このような構成によれば、翼面の翼高さ方向の上半分領域に付着したドレンを、第一吸込口に流入させることができる。したがって、翼面の上半分領域に付着して後縁部側に向かって流れるドレンを高い精度で回収することができる。
 また、本発明の第五の態様における蒸気タービン翼では、第一から第四の態様のいずれか一つにおいて、前記翼本体は、内部で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路と、凸面状の背側面で開口する第二吸込口と、前記第二吸込口と前記第二ドレン流路とを連通させている第二連通路と、前記第二ドレン流路と前記第一ドレン流路とを前記翼本体の内部で互いに独立させるように仕切る仕切部とを有していてもよい。
 このような構成によれば、第一ドレン流路と第二ドレン流路とが仕切部で互いに独立していることで、第一吸込口と第二吸込口とが翼本体の内部で連通してしまうことを防ぐことができる。これにより、第一吸込口を介して回収したドレンが、翼本体の内部を通って、圧力の低い背側面に形成された第二吸込口から流出してしまうことを防ぐことができる。
 また、本発明の第六の態様における蒸気タービン翼では、第五の態様において、前記翼本体は、前記翼面として凸面状の背側面を形成している背側板材と、前記翼面として凹面状の腹側面を形成している腹側板材と、前記背側板材と前記腹側板材とを接合している複数の接合部とを有し、前記接合部の一つが、前記仕切部を形成していてもよい。
 このような構成によれば、加工を施すことが難しい形状の翼本体であっても、二枚の板材を事前に加工した上で仕切部を形成するように接合することで、翼本体の内部に翼高さ方向に延びる二つの空間を独立した状態で容易に形成することができる。そのため、翼本体の形状による加工難度の影響を抑えて、第一ドレン流路及び第二ドレン流路を形成することができる。
 また、本発明の第七の態様における蒸気タービン翼では、第六の態様において、前記第一ドレン流路は、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面と、前記腹側板材において前記腹側面よりも前記背側板材側に位置する腹側板材内側面とにそれぞれ形成された第一ドレン流路形成面によって前記背側板材と前記腹側板材との間に形成され、前記第一ドレン流路形成面は、前記背側板材内側面及び前記腹側板材内側面の少なくとも一方から窪んで形成されていてもよい。
 このような構成によれば、背側板材及び腹側板材の少なくとも一方から窪むように第一ドレン流路形成面を形成することで、背側板材及び腹側板材の板厚を厚くすることなく、第一ドレン流路をより大きく形成することができる。
 また、本発明の第八の態様における蒸気タービン翼では、第六又は第七の態様において、前記第一連通路は、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面と、前記腹側板材において前記腹側面よりも前記背側板材側に位置する腹側板材内側面とにそれぞれ形成された第一連通路形成面によって前記背側板材と前記腹側板材との間に形成され、前記第一連通路形成面は、前記背側板材内側面及び前記腹側板材内側面の少なくとも一方から窪んで形成されていてもよい。
 このような構成によれば、第一連通路形成面は、平板状の背側板材又は腹側板材の表面に加工するだけで形成できる。そのため、第一連通路形成面の加工が容易になる。また、第一連通路形成面によって背側板材と腹側板材との間に第一連通路が形成される。そのため、第一連通路を翼本体の内部に容易に形成できる。
 また、本発明の第九の態様における蒸気タービン翼では、第六から第八の態様のいずれか一つにおいて、前記第一吸込口は、前記背側板材において、前記背側面よりも前記腹側板材側に位置する背側板材内側面から窪む第一吸込口背側形成面と、前記腹側板材の後縁部側の端面とによって形成されていてもよい。
 また、本発明の第十の態様における蒸気タービンでは、軸線を中心として回転するロータ軸と、前記ロータ軸を囲むように配置される第一から第九の態様のいずれか一つの蒸気タービン翼と、を備える。
 このような構成によれば、蒸気タービン翼でドレンを効率良く回収でき、蒸気タービンを効率的に運転させることができる。
 また、本発明の第十一の態様における蒸気タービン翼の製造方法は、翼高さ方向に延びる翼面を有する翼本体の前記翼面で前記翼高さ方向に延びて開口している第一吸込口と、前記翼本体の内部で前記翼高さ方向に延びている第一ドレン流路と、前記翼本体の内部で前記翼高さ方向に互いに離れ、かつ、互いに独立した状態で前記第一吸込口と前記第一ドレン流路とを連通させる複数の第一連通路とを備えた蒸気タービン翼の製造方法であって、前記翼面として凸面状の背側面を形成可能な平板状の背側板材と、前記翼面として凹面状の腹側面を形成可能な平板状の腹側板材とを準備する準備工程と、前記背側板材及び前記腹側板材を加工する加工工程と、前記第一ドレン流路及び前記第一連通路を前記背側板材と前記腹側板材との間に形成するように、前記背側板材と前記腹側板材とを接合する接合工程とを含み、前記加工工程では、前記背側板材及び前記腹側板材の少なくとも一方に前記第一吸込口を形成する第一吸込口形成面が形成され、前記背側板材及び前記腹側板材の両方に前記第一ドレン流路を形成する第一ドレン流路形成面と、前記第一連通路を形成する第一連通路形成面とが形成され、前記背側板材に前記背側面が形成され、前記腹側板材に前記腹側面が形成される。
 このような構成によれば、事前に平板状の背側板材や腹側板材に加工を施すことで、翼本体の最終的な形状の影響を受けずに加工できる。そのため、第一吸込口形成面、第一ドレン流路形成面、及び第一連通路形成面は、平板状の背側板材や腹側板材を加工するだけで形成できる。その結果、第一吸込口形成面、第一ドレン流路形成面、及び第一連通路形成面の加工が容易になる。また、第一吸込口形成面、第一ドレン流路形成面、及び第一連通路形成面によって第一吸込口、第一ドレン流路、及び第一連通路が形成される。そのため、翼本体が薄い場合や翼面が複雑な三次元曲面で形成されている場合のように、翼本体が加工を施すことが難しい形状をしていても、翼本体の最終的な形状による加工難度の影響を抑えて、第一吸込口、第一ドレン流路、及び第一連通路を翼本体の内部に容易に形成できる。
 また、本発明の第十二の態様における蒸気タービン翼の製造方法では、第十一の態様において、前記加工工程は、前記背側板材及び前記腹側板材の一部を削って除去する除去工程と、前記背側板材及び前記腹側板材を曲げる曲げ工程とを含み、前記除去工程では、前記第一吸込口形成面、前記第一ドレン流路形成面、及び前記第一連通路形成面が形成され、前記曲げ工程では、前記背側面及び前記腹側面が形成されていてもよい。
 このような構成によれば、第一吸込口、第一ドレン流路、及び第一連通路を形成するために、背側板材及び腹側板材以外の別の部材を新たに準備する必要が無い。その結果、翼本体を形成する部品点数を削減することができ、翼本体の製造コストを低減することができる。
 また、本発明の第十三の態様における蒸気タービン翼の製造方法では、第十二の態様において、前記除去工程では、前記背側板材と前記腹側板材とが接合される際に、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面、及び、前記腹側面において前記腹側面よりも前記背側板材側に位置する腹側板材内側面の少なくとも一方から窪むように、前記第一ドレン流路形成面が形成されてもよい。
 このような構成によれば、背側板材及び腹側板材の少なくとも一方から窪むように第一ドレン流路形成面を形成することで、背側板材及び腹側板材の板厚を厚くすることなく、第一ドレン流路をより大きく形成することができる。
 また、本発明の第十四の態様における蒸気タービン翼の製造方法では、第十二又は第十三の態様において、前記除去工程では、前記背側板材と前記腹側板材とが接合される際に、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面、及び、前記腹側面において前記腹側面よりも前記背側板材側に位置する腹側板材内側面の少なくとも一方から窪むように、前記第一連通路形成面が形成されてもよい。
 このような構成によれば、第一連通路形成面は、平板状の背側板材又は腹側板材の表面に加工するだけで形成できる。そのため、第一連通路形成面の加工が容易になる。また、第一連通路形成面によって背側板材と腹側板材との間に第一連通路が形成される。そのため、第一連通路を翼本体の内部に容易に形成できる。
 また、本発明の第十五の態様における蒸気タービン翼の製造方法では、第十二から第十四のいずれか一つの態様において、前記除去工程では、前記第一吸込口形成面として、前記背側板材が前記腹側板材と接合される際に、前記背側面よりも前記腹側板材側に位置する背側板材内側面から窪む第一吸込口背側形成面が形成され、前記接合工程では、前記第一吸込口背側形成面と前記腹側板材の後縁部側の端面との間に前記第一吸込口を形成するように前記背側板材と前記腹側板材とが接合されてもよい。
 また、本発明の第十六の態様における蒸気タービン翼の製造方法では、第十二から第十五のいずれか一つの態様において、前記準備工程では、前記背側板材及び前記腹側板材が一枚の翼形成板材として準備され、前記曲げ工程では、前記翼形成板材が曲げられることで、前記背側面及び前記腹側面が形成されるとともに、前記翼本体の前縁部が形成されてもよい。
 このような構成によれば、部品点数を減らして翼本体を形成することができる。その結果、翼本体の製造コストを低減することができる。
 また、本発明の第十七の態様における蒸気タービン翼の製造方法では、第十二から第十六のいずれか一つの態様において、前記曲げ工程では、前記翼本体の内部で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路を形成する第二ドレン流路形成面が、前記背側面及び前記腹側面とともに曲げて形成され、前記除去工程では、前記背側面と前記背側板材の前記第二ドレン流路形成面とを連通させるように前記背側板材を貫通する第二連通路が形成されてもよい。
 このような構成によれば、第二ドレン流路形成面は、平板状の背側板材や腹側板材を曲げるだけで形成できる。その結果、第二ドレン流路形成面の加工が容易になる。また、第二ドレン流路形成面によって第二ドレン流路が形成される。そのため、翼本体が薄い場合や翼面が複雑な三次元曲面で形成されている場合のように、翼本体の最終的な形状が内部に加工を施すことが難しい形状であっても、第二ドレン流路を翼本体の内部に容易に形成できる。
 また、本発明の第十八の態様における蒸気タービン翼の製造方法では、第十七の態様において、前記接合工程では、前記第二ドレン流路形成面と前記第一ドレン流路形成面との間で前記背側板材と前記腹側板材とが接合され、前記第二ドレン流路と前記第一ドレン流路とが互いに独立した状態となるように仕切る仕切部が形成されてもよい。
 このような構成によれば、加工を施すことが難しい形状の翼本体であっても、二枚の板材を事前に加工した上で仕切部を形成するように接合することで、翼本体の内部で翼高さ方向に延びる二つの空間を独立した状態で容易に形成することができる。そのため、翼本体の形状による加工難度の影響を抑えて、第一ドレン流路及び第二ドレン流路を形成することができる。
 また、本発明の第十九の態様における蒸気タービン翼は、翼高さ方向に延びる翼面を有する翼本体を備え、前記翼本体は、前記翼面として凸面状の背側面を形成している背側板材と、前記翼面として凹面状の腹側面を形成している腹側板材と、前記背側板材と前記腹側板材とを接合している複数の接合部と、前記背側板材と前記腹側板材との間で前記翼高さ方向に延びている第一ドレン流路と、前記背側板材と前記腹側板材との間で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路と、前記翼面で開口している第一吸込口及び第二吸込口と、前記第一吸込口と前記第一ドレン流路とを連通させている第一連通路と、前記第二吸込口と前記第二ドレン流路とを連通させている第二連通路と、前記第二ドレン流路と前記第一ドレン流路とを前記翼本体の内部で互いに独立した状態となるように仕切る仕切部と、を有し、前記接合部の一つが、前記仕切部を形成している。
 このような構成によれば、第一ドレン流路と第二ドレン流路とが仕切部で互いに独立していることで、第一吸込口と第二吸込口とが翼本体の内部で連通してしまうことを防ぐことができる。これにより、第一吸込口を介して回収したドレンが、翼本体の内部を通って、圧力の低い背側面に形成された第二吸込口から流出してしまうことを防ぐことができる。また、加工を施すことが難しい形状の翼本体であっても、二枚の板材を事前に加工した上で仕切部を形成するように接合することで、翼本体の内部で翼高さ方向に延びる二つの空間を独立した状態で容易に形成することができる。そのため、翼本体の最終的な形状による加工難度の影響を抑えて、第一ドレン流路及び第二ドレン流路を形成することができる。
 また、本発明の第二十の態様における蒸気タービン翼の製造方法は、翼高さ方向に延びる翼面を有する翼本体の内部で前記翼高さ方向に延びている第一ドレン流路と、前記翼本体の内部の前記第一ドレン流路よりも前記翼本体の前縁部側で前記翼高さ方向に延びている第二ドレン流路と、前記翼面で開口している第一吸込口及び第二吸込口と、前記第一吸込口と前記第一ドレン流路とを連通させる第一連通路と、前記第二吸込口と前記第二ドレン流路とを連通させる第二連通路とを有する蒸気タービン翼の製造方法であって、前記翼面として凸面状の背側面を形成可能な背側板材と、前記翼面として凹面状の腹側面を形成可能な腹側板材とを準備する準備工程と、前記背側板材及び前記腹側板材を加工する加工工程と、前記第一ドレン流路及び前記第二ドレン流路を前記背側板材と前記腹側板材との間に形成するように、前記背側板材と前記腹側板材とを接合する接合工程とを含み、前記加工工程は、前記背側板材及び前記腹側板材の一部を削って除去する除去工程と、前記背側板材及び前記腹側板材を曲げる曲げ工程とを含み、前記除去工程では、前記第一ドレン流路を形成する第一ドレン流路形成面と、前記第二ドレン流路を形成する第二ドレン流路形成面とが、前記背側板材及び前記腹側板材の両方に形成され、前記曲げ工程では、前記背側板材に前記背側面が形成され、前記腹側板材に前記腹側面が形成され、前記接合工程では、前記第二ドレン流路形成面と前記第一ドレン流路形成面との間で前記背側板材と前記腹側板材とを接合し、前記第二ドレン流路と前記第一ドレン流路とが互いに独立した状態となるように仕切る仕切部を形成する。
 このような構成によれば、事前に平板状の背側板材や腹側板材に加工を施すことで、翼本体の最終的な形状の影響を受けずに加工できる。そのため、第一ドレン流路形成面及び第二ドレン流路形成面は、平板状の背側板材や腹側板材を加工するだけで形成できる。その結果、第一ドレン流路形成面及び第二ドレン流路形成面の加工が容易になる。また、第一ドレン流路形成面及び第二ドレン流路形成面によって第一ドレン流路及び第二ドレン流路が形成される。そのため、翼本体が薄い場合や翼面が複雑な三次元曲面で形成されている場合のように、翼本体の最終的な形状が内部に加工を施すことが難しい形状であっても、第一ドレン流路及び第二ドレン流路を翼本体の内部に容易に形成できる。さらに、第一ドレン流路を形成するために、背側板材及び腹側板材以外の別の部材を新たに準備する必要が無い。その結果、翼本体を形成する部品点数を削減することができ、翼本体の製造コストを低減することができる。
 本発明によれば、翼面に付着したドレンを効率良く除去することができる。
本発明の実施形態の蒸気タービンの構成を示す模式図である。 本発明の実施形態の蒸気タービンにおけるドレンの流通状態を示す蒸気タービンの縦断面図である。 本発明の第一実施形態における静翼の翼高さ方向に広がる仮想平面での断面図である。 本発明の第一実施形態における静翼の翼本体の翼高さ方向と直交する仮想平面での断面図である。 本発明の第一実施形態における静翼の後縁端部を説明する要部斜視図である。 本発明の実施形態における蒸気タービン翼の製造方法を示すフローチャートである。 本発明の第一実施形態における背側板材の断面図である。 本発明の第一実施形態における腹側板材の断面図である。 本発明の第一実施形態の第一変形例における静翼の後縁端部を説明する要部平面図である。 本発明の第一実施形態の第二変形例における静翼の後縁端部を説明する要部斜視図である。 本発明の第一実施形態の第三変形例における静翼の翼高さ方向と直交する仮想平面での断面図である。 本発明の第一実施形態の第四変形例における静翼の翼高さ方向と直交する仮想平面での断面図である。 本発明の第一実施形態の第五変形例における静翼の翼高さ方向と直交する仮想平面での断面図である。 本発明の第二実施形態における静翼の翼本体の翼高さ方向と直交する仮想平面での断面図である。 本発明の第二実施形態における背側板材の断面図である。 本発明の第二実施形態における腹側板材の断面図である。
《第一実施形態》
 以下、本発明に係る実施形態について図を参照して説明する。
 蒸気タービン100は、蒸気Sのエネルギーを回転動力として取り出す回転機械である。本実施形態の蒸気タービン100は、低圧タービンである。蒸気タービン100は、図1に示すように、ケーシング1と、静翼2と、ロータ3と、軸受部4と、を備えている。
 なお、以下では、ロータ3の軸線Acが延びている方向を軸方向Daとする。また、軸線Acに対する周方向を単に周方向Dcとする。また、軸線Acに対する径方向を単に径方向Drとする。また、軸方向Daの一方側(第一側)を上流側、軸方向Daの他方側(第二側)を下流側とする。
 ケーシング1は、内部の空間が気密に封止されているとともに、蒸気Sの流路が内部に形成されている。ケーシング1は、径方向Drの外側からロータ3を覆っている。ケーシング1には、上流側部分にケーシング1内に蒸気Sを導く蒸気入口11が形成されている。ケーシング1には、下流側部分にケーシング1内を通った蒸気Sを外部に排出する蒸気出口12が形成されている。
 静翼2は、ロータ3の周方向Dcに沿って並んでケーシング1の内側を向く面に複数設けられている。静翼2は、ロータ3に対して径方向Drに間隔を空けて配置されている。静翼2は、後述する動翼6と軸方向Daに間隔を空けて配置されている。
 ロータ3は、軸線Acを中心として回転する。ロータ3は、ロータ軸5と、動翼6とを有する。
 ロータ軸5は、軸線Acを中心として回転可能とされている。ロータ軸5は、ケーシング1を貫通するように軸方向Daに延びている。ロータ軸5の動翼6が設けられた中間部分は、ケーシング1の内部に収容されている。ロータ軸5の両端部は、ケーシング1の外部に突出している。ロータ軸5の両端部は、軸受部4により回転可能に支持されている。
 軸受部4は、ロータ3を軸線Ac回りに回転可能に支持している。軸受部4は、ロータ軸5の両端部にそれぞれ設けられたジャーナル軸受41と、ロータ軸5の一端側に設けられたスラスト軸受42と、を備えている。
 動翼6は、ロータ軸5を囲むように周方向Dcに複数並んで配置されている。複数の動翼6は、環状をなしてロータ軸5の外周面に配置されている。動翼6は、ロータ3の軸方向Daに流れる蒸気Sを受けて軸線Ac回りにロータ軸5を回転させる。
 ここで、本実施形態の蒸気タービン翼として静翼2を例に挙げて説明する。なお、蒸気タービン翼は、静翼2であることに限定されるものではなく、動翼6であってもよい。
 静翼2は、図2に示すように、環状に並んで相互に連結されることで1つの静翼環を形成している。静翼2は、ロータ軸5を囲むように周方向Dcに複数配置されている。本実施形態の静翼2は、図2及び図3に示すように、翼本体7と、内側シュラウド21と、外側シュラウド22とを有している。
 翼本体7は、図3及び図4に示すように、断面が翼形状をなして翼高さ方向D1を径方向Drとして延びている。翼本体7は、翼高さ方向D1に延びる翼面70を有している。翼本体7は、翼高さ方向D1から見た際に、背側の翼面70である背側面701が凸面状に形成されている。翼本体7は、翼高さ方向D1から見た際に、腹側の翼面70である腹側面702が凹面状に形成されている。翼本体7は、背側面701及び腹側面702が接続される翼弦方向D2の前方側の端部が前縁部7aを形成している。翼本体7は、背側面701及び腹側面702が接続される翼弦方向D2の後方側の端部が後縁部7bを形成している。翼本体7は、翼厚方向D3を周方向Dcとして、離れて複数並んでいる。
 ここで、翼本体7の翼高さ方向D1は、翼本体7の延びている方向である。また、翼本体7の翼弦方向D2は、本実施形態における翼高さ方向D1と直交する方向であって、翼本体7の翼弦の延びる方向を含む前縁部7a側の端部と後縁部7b側の端部とを結んだ仮想線と平行な方向とする。翼本体7の翼厚方向D3は、本実施形態における翼高さ方向D1及び翼弦方向D2と直交する方向とする。
 内側シュラウド21は、図2及び図3に示すように、複数の翼本体7を翼高さ方向D1の基端部側で連結している。本実施形態の内側シュラウド21は、軸方向Daから見た際に、円弧状をなしている。内側シュラウド21は、後述するドレンを排出するための内側排出流路210が内部に形成されている。内側排出流路210は、不図示の復水器に接続されることで、負圧(例えば、真空)とされている。
 外側シュラウド22は、複数の翼本体7を翼高さ方向D1の先端部側で連結している。したがって、外側シュラウド22は、内側シュラウド21に対して、翼本体7を挟んで翼高さ方向D1の反対側に配置されている。本実施形態の外側シュラウド22は、軸方向Daから見た際に、円弧状をなしている。外側シュラウド22は、後述するドレンを排出するための外側排出流路220が内部に形成されている。外側排出流路220は、不図示の復水器に接続されることで、負圧(例えば、真空)とされている。
 静翼2では、図2に示すように、蒸気Sが流れる主流路C1が、隣り合う翼本体7と、内側シュラウド21と、外側シュラウド22とで形成されている。主流路C1は、図1に示すように、蒸気入口11と蒸気出口12とで挟まれたケーシング1の内部の空間である。翼本体7は、蒸気Sが流通する主流路C1内に配置されている。内側シュラウド21の径方向Drの外側を向く面が、環状の主流路C1の径方向Drの内側の位置を画定している。外側シュラウド22の径方向Drの内側を向く面が、環状の主流路C1の径方向Drの外側の位置を画定している。
 また、本実施形態の翼本体7は、図4に示すように、背側板材71と、腹側板材72と、複数の接合部73とを有している。
 背側板材71は、翼面70として凸面状の背側面701を形成している。背側板材71は、板状の部材であって、翼本体7の内部に空間を形成するように湾曲している。背側面701は、背側板材71が腹側板材72に接合される際に、外側を向く面である。また、背側板材71において、背側板材71が腹側板材72に接合される際に、翼本体7の内部に空間を形成する面であって、背側面701よりも腹側板材72側に位置する面が背側板材内側面71aである。本実施形態の背側板材71は、背側板材内側面71aが後縁部7bにおける腹側面702の一部を形成することで、後縁部7bの端部を形成している。
 腹側板材72は、翼面70として凹面状の腹側面702を形成している。腹側板材72は、板状の部材であって、背側板材71とともに翼本体7の内部に空間を形成するように湾曲している。腹側面702は、腹側板材72が背側板材71に接合される際に、外側を向く面である。また、腹側板材72において、腹側板材72が背側板材71に接合される際に、翼本体7の内部に空間を形成する面であって、腹側面702よりも背側板材71側に位置する面が腹側板材内側面72aである。
 接合部73は、背側板材71と腹側板材72とを接合している。本実施形態の接合部73は、ろう付けによって背側板材71と腹側板材72とを接合している部分であり、銀ロウが凝固することで形成されている。接合部73は、翼高さ方向D1に隙間なく背側板材71と腹側板材72とを接合している。本実施形態の翼本体7では、接合部73は、前縁部7aと、後縁部7bと、後述する仕切部80とのように、翼弦方向D2に離れた複数の箇所に設けられている。
 なお、接合部73は、ろう付けによって接合する構造に限定されるものではなく、背側板材71と腹側板材72とを接合していればよい。接合部73は、例えば、溶接された状態で接合していてもよい。
 また、本実施形態の翼本体7は、第一吸込口74と、第一ドレン流路75と、第一連通路76と、第二ドレン流路77と、第二吸込口78と、第二連通路79と、仕切部80と、を有している。
 第一吸込口74は、翼高さ方向D1に延びて翼面70で開口している。本実施形態の第一吸込口74は、腹側面702のみに形成されている。第一吸込口74は、翼高さ方向D1における腹側面702の上半分領域に形成されている。ここで、上半分領域とは、翼高さ方向D1の中心位置よりも外側シュラウド22側の領域である。つまり、第一吸込口74は、翼高さ方向D1に延びるように腹側面702の翼高さ方向D1の中心位置から外側シュラウド22に向かって窪む一つの長い溝として形成されている。第一吸込口74は、翼厚方向D3から腹側面702を見た際に、細長く翼高さ方向D1に延びる矩形状に形成されている。第一吸込口74は、翼弦方向D2の中心よりも後縁部7b側に形成されている。第一吸込口74は、背側板材71及び腹側板材72の少なくとも一方に形成された第一吸込口形成面81によって形成されている。本実施形態の第一吸込口74は、図5に示すように、腹側板材72の後縁部7b側の端面72bと、背側板材71の背側板材内側面71aから窪む第一吸込口背側形成面81aとによって形成されている。したがって、本実施形態において、第一吸込口74を形成する第一吸込口形成面81は、腹側板材72の後縁部7b側の端面72bと、背側板材71の背側板材内側面71aに形成された第一吸込口背側形成面81aとである。
 第一ドレン流路75は、図4に示すように、背側板材71と腹側板材72との間に形成される空間である。第一ドレン流路75は、図3に示すように、翼本体7の内部で翼高さ方向D1に延びている。第一ドレン流路75は、内側シュラウド21及び外側シュラウド22と連通するように翼本体7を貫通している。第一ドレン流路75は、内側シュラウド21及び外側シュラウド22の内部に形成された空間との接続部分に流路を狭くする絞り部751が形成されている。図4に示すように、第一ドレン流路75は、背側板材内側面71a及び腹側板材内側面72aにそれぞれ形成された第一ドレン流路形成面82によって、背側板材71と腹側板材72との間に形成されている。第一ドレン流路形成面82は、背側板材内側面71a及び腹側板材内側面72aの少なくとも一方から窪んで形成されている。本実施形態の第一ドレン流路75は、背側板材内側面71aから凹曲面を形成するように窪む第一ドレン流路背側形成面82aと、腹側板材内側面72aから凹曲面を形成するように窪む第一ドレン流路腹側形成面82bとによって形成されている。本実施形態の第一ドレン流路背側形成面82aは、第一吸込口背側形成面81aから凹曲面を形成するように窪んでいる。したがって、本実施形態における第一ドレン流路75を形成する第一ドレン流路形成面82は、背側板材内側面71aに形成された第一ドレン流路背側形成面82aと、腹側板材内側面72aに形成されて第一ドレン流路腹側形成面82bとである。つまり、本実施形態の第一ドレン流路形成面82は、背側板材内側面71a及び腹側板材内側面72aの両方からそれぞれ窪んでいる。
 第一連通路76は、図5に示すように、翼本体7の内部で翼高さ方向D1に互いに離れて複数形成されている。複数の第一連通路76は、互いに独立した状態で第一吸込口74と第一ドレン流路75とを連通させている。つまり、複数の第一連通路76は、第一吸込口74と第一ドレン流路75との間では互いに繋がらないように形成されている。第一連通路76は、背側板材71と腹側板材72との間に形成される空間である。第一連通路76は、背側板材内側面71a及び腹側板材内側面72aにそれぞれ形成された第一連通路形成面83によって、背側板材71と腹側板材72との間に形成されている。第一連通路形成面83は、背側板材内側面71a及び腹側板材内側面72aの少なくとも一方から窪んで形成されている。本実施形態の第一連通路76は、第一吸込口背側形成面81aと、腹側板材72の腹側板材内側面72aから角溝状をなして窪む第一連通路腹側形成面83bとによって形成されている。したがって、本実施形態における第一連通路76を形成する第一連通路形成面83は、第一吸込口背側形成面81aの一部と、腹側板材内側面72aに形成された第一連通路腹側形成面83bとである。つまり、本実施形態の第一連通路形成面83は、腹側板材内側面72aのみから窪んでいる。
 第二ドレン流路77は、図4に示すように、第一ドレン流路75よりも前縁部7a側に形成されている。第二ドレン流路77は、背側板材71と腹側板材72との間に形成される空間である。図3に示すように、第二ドレン流路77は、翼本体7の内部で翼高さ方向D1に延びている。第二ドレン流路77は、内側シュラウド21及び外側シュラウド22と連通するように翼本体7を貫通している。第二ドレン流路77は、図4に示すように、背側板材内側面71a及び腹側板材内側面72aにそれぞれ形成された第二ドレン流路形成面84によって、背側板材71と腹側板材72との間に形成されている。本実施形態の第二ドレン流路77は、背側板材71が曲げられることで背側板材内側面71aに形成される第二ドレン流路背側形成面84aと、腹側板材72が曲げられることで腹側板材内側面72aに形成される第二ドレン流路腹側形成面84bとによって形成されている。したがって、本実施形態における第二ドレン流路77を形成する第二ドレン流路形成面84は、背側板材内側面71aの一部である第二ドレン流路背側形成面84aと、腹側板材内側面72aの一部である第二ドレン流路腹側形成面84bとである。
 第二吸込口78は、背側面701で開口している。第二吸込口78は、背側面701で翼高さ方向D1に延びて開口している。本実施形態の第二吸込口78は、背側面701のみに形成されている。第二吸込口78は、背側面701の翼高さ方向D1の全域にわたって形成されている。第二吸込口78は、翼高さ方向D1に長い一つのスリットとして形成されている。第二吸込口78は、翼厚方向D3から背側面701を見た際に、細長く翼高さ方向D1に延びる矩形状に形成されている。第二吸込口78は、翼弦方向D2の中心よりも前縁部7a側に形成されている。
 第二連通路79は、翼本体7の内部で翼高さ方向D1に離れて複数形成されている。第二連通路79は、互いに独立した状態で第二吸込口78と第二ドレン流路77とを連通させている。本実施形態の第二連通路79は、背側板材71を貫通する貫通孔である。複数の第二連通路79は、第二ドレン流路77と第二吸込口78との間では互いに繋がらないように離れて形成されている。
 仕切部80は、第一ドレン流路75と第二ドレン流路77とを翼本体7の内部で互いに独立させるように仕切っている。仕切部80は、第一ドレン流路75と第二ドレン流路77との間で、背側板材71と腹側板材72とが接合されている領域である。仕切部80は、翼高さ方向D1の全域にわたって第一ドレン流路75と第二ドレン流路77とを隔離している。本実施形態の仕切部80は、背側板材71の背側板材内側面71aと腹側板材72の腹側板材内側面72aとが接合された接合部73によって形成されている。
 次に、以上で説明した蒸気タービン翼(静翼2)の製造方法について、図6に示すフローチャートに従って説明する。
 蒸気タービン翼の製造方法S1は、図6に示すように、準備工程S2と、加工工程S3と、接合工程S4とを含む。
 蒸気タービン翼の製造方法S1では、第一に、準備工程S2を実施する。準備工程S2では、翼面70として凸面状の背側面701を形成可能な平板状の背側板材71が準備される。準備工程S2では、翼面70として凹面状の腹側面702を形成可能な平板状の腹側板材72が準備される。準備工程S2で準備された背側板材71及び腹側板材72は、断面が矩形の平板状をなしている。
 加工工程S3では、背側板材71及び腹側板材72が加工される。加工工程S3では、背側板材71及び腹側板材72の少なくとも一方に、第一吸込口74を形成する第一吸込口形成面81が形成される。加工工程S3では、背側板材71及び腹側板材72の両方に、第一ドレン流路75を形成する第一ドレン流路形成面82と、第一連通路76を形成する第一連通路形成面83とが形成される。加工工程S3では、背側板材71に背側面701が形成される。加工工程S3では、腹側板材72に腹側面702が形成される。加工工程S3では、第二ドレン流路77を形成する第二ドレン流路形成面84が背側板材71及び腹側板材72の両方に形成される。加工工程S3では、第二吸込口78及び第二連通路79が背側板材71に形成される。
 本実施形態の加工工程S3では、第一吸込口形成面81として、第一吸込口背側形成面81aが形成される。加工工程S3では、第一ドレン流路形成面82として、第一ドレン流路背側形成面82aと、第一ドレン流路腹側形成面82bとが形成される。加工工程S3では、第一連通路形成面83として、第一連通路腹側形成面83bが形成される。加工工程S3では、第二ドレン流路形成面84として、第二ドレン流路背側形成面84aと、第二ドレン流路腹側形成面84bとが形成される。
 また、本実施形態の加工工程S3は、背側板材71及び腹側板材72の一部を削って除去する除去工程S31と、背側板材71及び腹側板材72を曲げる曲げ工程S32とを含んでいる。
 除去工程S31では、図7及び図8に示すように、研削加工や切削加工によって背側板材71及び腹側板材72が削られて一部除去される。除去工程S31では、第一吸込口形成面81、第一ドレン流路形成面82、第一連通路形成面83、第二吸込口78、及び第二連通路79が形成される。除去工程S31では、背側板材内側面71a及び腹側板材内側面72aの少なくとも一方から窪むように、第一ドレン流路形成面82が形成される。除去工程S31では、背側板材内側面71a及び腹側板材内側面72aの少なくとも一方から窪むように、第一連通路形成面83が形成される。
 具体的には、背側板材71を加工する場合から説明する。図7に示すように、本実施形態の除去工程S31では、背側板材71を腹側板材72に組み合わせた際に、前縁部7aや後縁部7bや翼面70が形作られるように、板状の背側板材71から不要な部分が削られて除去される。この際、除去工程S31では、背側板材内側面71aを作業者が削ることで、第一吸込口形成面81として、背側板材71に第一吸込口背側形成面81aが形成される。除去工程S31では、第一吸込口背側形成面81aの一部をさらに作業者が削ることで、背側板材71に第一ドレン流路背側形成面82aが形成される。除去工程S31では、背側面701が削られて第二吸込口78が形成される。除去工程S31では、第二吸込口78と第二ドレン流路形成面84とを連通させるように背側板材71を貫通する第二連通路79が形成される。
 次に、腹側板材72を加工する場合を説明する。図8に示すように、本実施形態の除去工程S31では、背側板材71を腹側板材72に組み合わせた際に、前縁部7aや後縁部7bや翼面70が形作られるように、板状の腹側板材72から不要な部分が削られて除去される。この際、除去工程S31では、腹側板材72の後縁部7b側を作業者が削ることで、第一吸込口形成面81として、第一吸込口背側形成面81aの形状に対応した平滑な端面が形成される。除去工程S31では、腹側板材内側面72aを作業者が削ることで、腹側板材72に第一ドレン流路腹側形成面82bが形成される。除去工程S31では、腹側板材内側面72aを作業者が削ることで、腹側板材72に第一連通路腹側形成面83bが形成される。
 曲げ工程S32では、背側板材71及び腹側板材72を湾曲させて、背側板材71及び腹側板材72に所定の形状の翼面70が形成される。したがって、曲げ工程S32で背側板材71及び腹側板材72が曲げられることで、背側面701が凸面状に形成され、腹側面702が凹面状に形成される。曲げ工程S32では、背側板材内側面71aが凹面状に曲げられることで、第二ドレン流路形成面84として、背側板材71に第二ドレン流路背側形成面84aが形成される。曲げ工程S32では、腹側板材内側面72aが凸面状に曲げられることで、第二ドレン流路形成面84として、腹側板材72に第二ドレン流路腹側形成面84bが形成される。
 接合工程S4では、第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77を背側板材71と腹側板材72との間に形成するように、背側板材71と腹側板材72とが接合される。具体的には、接合工程S4では、前縁部7aの端部で背側板材71と腹側板材72とが接合される。また、接合工程S4では、第一吸込口背側形成面81aと腹側板材72の後縁部7b側の端面72bとの間に第一吸込口74を形成するように背側板材71と腹側板材72とが接合される。また、接合工程S4では、第二ドレン流路形成面84と第一ドレン流路形成面82との間で背側板材71と腹側板材72とが接合される。これにより、接合工程S4では、第二ドレン流路77と第一ドレン流路75とが互いに独立するように仕切る仕切部80が接合部73として形成される。接合工程S4では、ろう付けによって背側板材71と腹側板材72とが接合される。
 上記のような蒸気タービン100では、図2に示すように、静翼2の翼本体7は、軸方向Daの上流側から下流側に向かって蒸気Sが流通する主流路C1内に配置されている。この蒸気S中では、圧力低下とともに水滴が発生する。そのため、特に最も下流側の最終段付近では水滴が発生し易くなる。したがって、蒸気Sは、水滴を含んだ状態で主流路C1内を流通している。主蒸気Sが腹側面702付近を流れる場合には、主蒸気S中の水滴は、慣性によって微細な水滴として腹側面702に付着する。また、主蒸気Sが背側面701付近を流れる場合には、主蒸気S中の水滴は、慣性によって微細な水滴Wとして背側面701に付着する。
 水滴を含んだ蒸気Sが翼本体7に衝突することで、翼面70には水滴(ドレン)が付着する。特に、腹側面702に付着したドレンは、図4に示すように、凹面状をなす腹側面702に沿って前縁部7a側から後縁部7b側に向かって液膜を形成するように流れる。腹側面702に付着したドレンは、後縁部7bの端部に向かう途中で、第一吸込口74に流れ込む。ここで、第一ドレン流路75は、内側シュラウド21の内側排出流路210や外側シュラウド22の外側排出流路220を介して不図示の復水器に接続されていることで、真空状態となっている。そのため、第一吸込口74に流れ込んだドレンは、翼高さ方向D1に離れて複数並んだ第一連通路76に引き込まれて、第一ドレン流路75に流入する。第一ドレン流路75に流入したドレンは、図3に示すように、内側シュラウド21又は外側シュラウド22に向かう。その後、ドレンは、図2に示すように、内側シュラウド21の内側排出流路210や外側シュラウド22の外側排出流路220を介して復水器に送られる。なお、一部の第一吸込口74や第二吸込口78が形成されていない翼本体(鉛直方向の最も下方に位置する翼本体)では、内側排出流路210に溜まったドレンが負圧によって外側排出流路220に向かって翼本体の中を流れる。
 また、図4に示すように、背側面701に付着したドレンは、凸面状をなす背側面701に沿って前縁部7a側から後縁部7b側に向かって流れる。通常、背側面701に付着したドレンは、背側面701が凸面状をなしていることで、後縁部7b側の端部に到達する前に背側面701から剥離してしまう。しかしながら、翼弦方向D2の中心よりも前縁部7a側に第二吸込口78が形成されていることで、背側面701に付着したドレンは剥離する前に第二吸込口78に流れ込む。ここで、第二ドレン流路77は、第一ドレン流路75と同様に、内側シュラウド21の内側排出流路210や外側シュラウド22の外側排出流路220を介して復水器に接続されていることで、真空状態となっている。そのため、第二吸込口78に流れ込んだドレンは、翼高さ方向D1に離れて複数並んだ第二連通路79に引き込まれて、第二ドレン流路77に流入する。第二ドレン流路77に流入したドレンは、図3に示すように、内側シュラウド21又は外側シュラウド22に向かう。その後、ドレンは、図2に示すように、第一ドレン流路75から流れてきたドレンと内側シュラウド21の内側排出流路210や外側シュラウド22の外側排出流路220で合流し、復水器に送られる。
 上記のような蒸気タービン翼の製造方法S1で製造された静翼2では、複数の第一連通路76が、独立した状態で翼高さ方向D1に離れて形成されている。そのため、第一吸込口74の延びる翼高さ方向D1に腹側面702の周囲で圧力差が生じていても、第一連通路76内のドレンが、翼高さ方向D1の圧力差に応じて翼高さ方向D1に移動することを抑えられる。その結果、圧力の高い部分に位置する第一吸込口74から第一連通路76に一度引き込んだドレンが、圧力の低い部分に位置する第一吸込口74から再び外部に流出してしまうことを抑えられる。したがって、第一吸込口74から一度回収したドレンが外部に流出することを抑えることができ、翼面70に付着したドレンを効率良く除去することができる。
 また、第一連通路76が翼高さ方向D1に複数独立して形成されている。これにより、翼高さ方向D1の全域にわたって連通した状態で形成されている場合に比べて、周りを流通する蒸気Sの流入を抑えることができる。したがって、主流路C1を流れる蒸気Sの流通への影響を抑えつつ、ドレンを除去することができる。
 また、第一吸込口74が、腹側面702の翼高さ方向D1の上半分領域に形成されている。これにより、腹側面702の翼高さ方向D1の上半分領域に付着したドレンを、第一吸込口74に流入させることができる。したがって、腹側面702に付着して後縁部7b側に向かって流れるドレンを高い精度で回収することができる。
 また、第一吸込口74が腹側面702に形成され、第二吸込口78が背側面701に形成されている。そのため、第一吸込口74とは別にドレンを回収する構造を独立して背側面701に形成することができる。
 また、第一吸込口74が、腹側面702において、翼弦方向D2の中心よりも後縁部7b側に形成されている。そのため、腹側面702に付着して液膜を形成するようにまとまりながら後縁部7b側に流れてきたドレンをまとめて第一吸込口74に流入させることができる。その結果、より多くのドレンを第一吸込口74から回収することができる。
 また、本実施形態では、第一連通路76が、孔あけ加工ではなく、腹側板材72に溝加工を施した後に、背側板材71と腹側板材72とを接合することによって形成されている。その結果、接合部73の近傍に第一吸込口74を形成することができる。これにより、後縁部7b側の端部のように肉厚の薄い部分に強度を維持したまま第一吸込口74を形成することができる。つまり、より後縁部7bの端部に近い位置に第一吸込口74を形成でき、より多くのドレンを第一吸込口74から回収することができる。したがって、腹側面702に付着したドレンを効率良く回収することができる。
 また、第一吸込口74より前縁部7a側に第二吸込口78が形成されている。そのため、背側面701に付着したドレンが背側面701から剥離する前に、第二吸込口78を介してドレンを回収することができる。
 また、第二吸込口78に繋がる第二ドレン流路77と、第一吸込口74に繋がる第一ドレン流路75とが、仕切部80によって翼本体7の内部で互いに独立している。そのため、第二吸込口78と第一吸込口74とが翼本体7の内部で連通してしまうことを防ぐことができる。これにより、背側面701よりも圧力の高い腹側面702から第一吸込口74を介して回収したドレンが、翼本体7の内部を通って、圧力の低い背側面701に形成された第二吸込口78から流出してしまうことを防ぐことができる。したがって、第一吸込口74から一度回収したドレンが外部に流出することを抑えることができ、翼面70に付着したドレンを効率良く除去することができる。
 また、本実施形態では、背側板材71及び腹側板材72の二枚の板材を接合することで翼本体7が形成されている。具体的には、除去工程S31において、平板状の背側板材71に第一吸込口背側形成面81a及び第一ドレン流路背側形成面82aが形成されている。また、平板状の腹側板材72に第一ドレン流路腹側形成面82b及び第一連通路腹側形成面83bが形成されている。さらに、曲げ工程S32によって、背側板材71に第二ドレン流路背側形成面84aが形成されている。また、平板状の腹側板材72に第二ドレン流路腹側形成面84bが形成されている。そして、曲げ工程S32後の背側板材71及び腹側板材72を接合して組み合わせることで第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77が形成されている。このように、除去工程S31や曲げ工程S32で事前に平板状の背側板材71や腹側板材72に加工を施すことで、翼本体7の最終的な形状に影響を受けずに加工できる。そのため、第一吸込口背側形成面81a、第一ドレン流路背側形成面82a、第一ドレン流路腹側形成面82b、第一連通路腹側形成面83b、第二ドレン流路背側形成面84a、及び第二ドレン流路腹側形成面84bは、平板状の背側板材71や腹側板材72を加工するだけで形成できる。その結果、第一吸込口背側形成面81a、第一ドレン流路背側形成面82a、第一ドレン流路腹側形成面82b、第一連通路腹側形成面83b、第二ドレン流路背側形成面84a、及び第二ドレン流路腹側形成面84bの加工が容易になる。また、第一吸込口背側形成面81a、第一ドレン流路背側形成面82a、第一ドレン流路腹側形成面82b、第一連通路腹側形成面83b、第二ドレン流路背側形成面84a、及び第二ドレン流路腹側形成面84bの加工精度を向上させることができる。
 さらに、高い精度で形成された第一吸込口背側形成面81a、第一ドレン流路背側形成面82a、第一ドレン流路腹側形成面82b、第一連通路腹側形成面83b、第二ドレン流路背側形成面84a、及び第二ドレン流路腹側形成面84bによって第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77が形成される。その結果、翼本体7が薄い場合や翼面70が複雑な三次元曲面で形成されている場合のように、翼本体7が加工を施すことが難しい形状をしていても、翼本体7の最終的な形状による加工難度の影響を抑えて、第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77を翼本体7の内部に容易に形成できる。したがって、ドレンを回収するための空間を翼本体7の内部に容易に形成することができる。
 また、二枚の板の表面を利用して第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77を形成することで、第一吸込口74、第一ドレン流路75、第一連通路76、及び第二ドレン流路77を形成する位置や形状等の製造上の自由度を向上させることができる。
 また、第一ドレン流路形成面82として、背側板材内側面71aから窪む第一ドレン流路背側形成面82aと、腹側板材内側面72aから窪む第一ドレン流路腹側形成面82bとが形成されている。そのため、背側板材71及び腹側板材72の少なくとも一方から窪むように第一ドレン流路形成面82を形成することで、背側板材71及び腹側板材72の板厚を厚くすることなく、第一ドレン流路75をより大きく形成することができる。
 また、平板状の背側板材71や腹側板材72の表面を加工するだけで第一ドレン流路形成面82を形成できるため、第一ドレン流路形成面82の加工が容易になる。さらに、第一ドレン流路背側形成面82aと第一ドレン流路腹側形成面82bとによって、背側板材71と腹側板材72との間に第一ドレン流路75が形成される。したがって、第一ドレン流路75を翼本体7の内部に容易に形成できる。
 特に、本実施形態のように第一ドレン流路背側形成面82aと、第一ドレン流路腹側形成面82bとを両方形成することで、背側板材71及び腹側板材72のいずれか一方のみに第一ドレン流路形成面82を形成する場合に比べて、第一ドレン流路形成面82を形成する際の一枚当たりの窪ませる深さを抑えることができる。したがって、背側板材71及び腹側板材72の板厚が厚くなってしまうことを抑えることができる。
 また、第一連通路腹側形成面83bが腹側板材内側面72aから窪む溝として形成されている。これにより、第一連通路形成面83は、平板状の腹側板材72の表面に加工するだけで形成できる。そのため、第一連通路形成面83の加工が容易になる。また、第一連通路形成面83によって背側板材71と腹側板材72との間に第一連通路76が形成される。そのため、第一連通路76を翼本体7の内部に容易に形成できる。
 また、除去工程S31において、第一吸込口背側形成面81a、第一ドレン流路背側形成面82a、第一ドレン流路腹側形成面82b、第一連通路腹側形成面83b、及び第二連通路79が背側板材71及び腹側板材72をそれぞれ削ることで形成されている。また、背側面701及び腹側面702を形成するタイミングで第二ドレン流路形成面84が曲げ工程S32で形成されている。そのため、第一吸込口74、第一ドレン流路75、第一連通路76、第二ドレン流路77、及び第二連通路79を形成するために、背側板材71及び腹側板材72以外の別の部材を新たに準備する必要が無い。その結果、翼本体7を形成する部品点数を削減することができ、翼本体7の製造コストを低減することができる。
 また、第二ドレン流路形成面84は、平板状の背側板材71や腹側板材72に曲げ加工を施すだけで形成できる。その結果、第二ドレン流路形成面84の加工が容易になる。また、第二ドレン流路形成面84によって第二ドレン流路77が形成される。そのため、翼本体7が薄い場合や翼面が複雑な三次元曲面で形成されている場合のように、翼本体7の最終的な形状が内部に加工を施すことが難しい形状であっても、第二ドレン流路77を翼本体の内部に容易に形成できる。
 また、第一ドレン流路75と第二ドレン流路77とを独立した状態とする仕切部80が接合部73によって形成されている。そのため、仕切部80を別部材で形成したり、仕切部80をドリルや放電加工等の後加工で削り出したりする作業が不要となる。したがって、二枚の板材を事前に加工した上で仕切部80を形成するように接合することで、加工を施すことが難しい形状の翼本体7であっても、翼本体7の内部で翼高さ方向D1に連通する二つの空間を独立した状態で容易に形成することができる。そのため、翼本体7の形状による加工難度の影響を抑えて、独立した第一ドレン流路75及び第二ドレン流路77を翼本体7の内部に形成することができる。つまり、第一ドレン流路75及び第二ドレン流路77を形成する位置や形状等の製造上の自由度をさらに向上させることができる。
 また、上記のような蒸気タービン100によれば、静翼2でドレンを効率良く回収でき、蒸気タービン100を効率的に運転させることができる。
《第一変形例》
 次に、図9を参照して本第一実施形態の第一変形例の翼本体7Aについて説明する。
 第一変形例においては、第一実施形態と同様の構成要素には、同一の符号を付して詳細な説明を省略する。この第一変形例の翼本体7Aでは、第一連通路76を形成する第一連通路形成面83が背側板材71に形成されている構成について第一実施形態と相違する。
 第一変形例の第一連通路76は、図9に示すように、腹側板材内側面72aと、背側板材71の第一吸込口背側形成面81aから角溝状をなして窪む第一連通路背側形成面83aとによって形成されている。したがって、本変形例における第一連通路76を形成する第一連通路形成面83は、腹側板材内側面72aの一部と、第一連通路背側形成面83aとである。第一連通路背側形成面83aは、第一ドレン流路背側形成面82aを形成する場合と同様に、除去工程S31で第一吸込口背側形成面81aの一部をさらに作業者が削ることで形成されている。第一連通路背側形成面83aは、翼高さ方向D1に離れて並ぶ複数の角溝として第一吸込口背側形成面81aから窪んでいる。
 第一連通路背側形成面83aが、第一吸込口背側形成面81aから窪む溝として形成されている。これにより、第一連通路形成面83は、平板状の背側板材71の表面を加工するだけで形成できる。そのため、第一連通路形成面83の加工が容易になる。また、第一連通路形成面83によって背側板材71と腹側板材72との間に第一連通路76が形成される。そのため、第一連通路76を翼本体7の内部に容易に形成できる。
 また、第一変形例の第一連通路76であっても、第一実施形態のように第一連通路形成面83が腹側板材72に設けられた場合と同様に、互いに独立した状態で複数形成される。その結果、第一吸込口74から第一ドレン流路75までドレンを効率良く流入させることができる。
《第二変形例》
 次に、図10を参照して本第一実施形態の第二変形例の翼本体7Bについて説明する。
 第二変形例においては、第一実施形態と同様の構成要素には、同一の符号を付して詳細な説明を省略する。この第二変形例の翼本体7Bでは、第一吸込口74Aが形成されている位置について第一実施形態と相違する。
 第二変形例の第一吸込口74Aは、図10に示すように、翼面70のうち、腹側面702と背側面701とが接続される後縁部7b側の端部に形成されている。つまり、第一吸込口74Aは、後縁部7b側の端部を削ったように窪んでいる。第二変形例の第一吸込口74Aは、背側面701及び腹側面702の両方によって形成されている。第一吸込口74Aは、後縁部7b側の端部の翼高さ方向D1の全域にわたって形成されている。第一吸込口74Aは、翼高さ方向D1に長く延びる一つの角溝として形成されている。第一吸込口74Aは、背側板材71A及び腹側板材72Aのそれぞれに形成された第一吸込口形成面81によって形成されている。第二変形例の第一吸込口74Aは、背側板材71Aの後縁部7b側の端面と背側板材内側面71aとから窪む第一吸込口背側形成面91aと、腹側板材72Aの後縁部7b側の端面と腹側板材内側面72aとから窪む第一吸込口腹側形成面91bとによって形成されている。第二変形例において、第一吸込口74Aを形成する第一吸込口形成面81は、第一吸込口背側形成面91aと第一吸込口腹側形成面91bとである。
 第二変形例の第一吸込口74Aは、後縁部7b側の端部に形成されている。そのため、背側面701や腹側面702に付着して後縁部7b側に流れてきたドレンを最も下流側の端部で回収することができる、その結果、より多くのドレンを第一吸込口74Aから回収することができる。したがって、背側面701及び腹側面702に付着したドレンを効率良く回収することができる。
《第三変形例》
 次に、図11を参照して本第一実施形態の第三変形例の翼本体7Cについて説明する。
 第三変形例においては、第一実施形態と同様の構成要素には、同一の符号を付して詳細な説明を省略する。この第三変形例の翼本体7Cでは、第二ドレン流路が形成されていない構成について第一実施形態と相違する。
 第三変形例の翼本体7Cでは、図11に示すように、第二ドレン流路、第二吸込口、及び第二連通路が形成されていない。つまり、第一ドレン流路75B、第一吸込口74、及び第一連通路76のみが翼本体7の内部に形成されている。第二ドレン流路が形成されていないことで、曲げ加工によって背側板材71Bや腹側板材72Bを曲げて、翼本体7Cの内部に空間を形成するだけで第一ドレン流路75Bを形成することができる。これにより、湾曲した背側板材内側面71a自体が第一ドレン流路背側形成面92aとなり、湾曲した腹側板材内側面72a自体が第一ドレン流路腹側形成面92bとなる。したがって、除去工程S31で背側板材内側面71a及び腹側板材内側面72aを削って、背側板材内側面71a及び腹側板材内側面72aから窪む第一ドレン流路形成面82を形成する必要が無い。そのため、加工コストを抑えて翼本体7Cの製造コストを低減することができる。
《第四変形例》
 次に、図12を参照して本第一実施形態の第四変形例の翼本体7Dについて説明する。
 第四変形例においては、第一実施形態と同様の構成要素には、同一の符号を付して詳細な説明を省略する。この第四変形例の翼本体7Dは、一枚の板材で構成されている点について第一実施形態と相違する。
 第四変形例の翼本体7Dは、図12に示すように、背側板材71及び腹側板材72として、一枚の翼形成板材99と、接合部73とを有している。翼形成板材99は、第一実施形態の背側板材71及び腹側板材72を繋げたような形状をなす一枚の板材である。翼形成板材99は、曲げられることで、翼面70として背側面701C及び腹側面702Cの両方を形成している。翼形成板材99は、翼本体7Dの内部に空間を形成するように湾曲している。翼形成板材99は、前縁部7aを形成するように曲げられている。つまり、第四変形例の翼本体7Dでは、前縁部7a側の端部に接合部73が形成されていない。翼形成板材99は、後縁部7b側で両端が接合されることで接合部73を形成している。つまり、第四変形例の翼本体7Dは、翼形成板材99の両端部が接合されることで第一吸込口74が形成されている。
 また、第四変形例の翼本体7Dでは、第三変形例と同様に、第二ドレン流路77、第二吸込口78、及び第二連通路79が形成されていない。つまり、第一ドレン流路75C、第一吸込口74、及び第一連通路76だけが翼本体7Dの内部に形成されている。
 第四変形例の翼本体7Dを製造する際には、蒸気タービン翼の製造方法S1の準備工程S2で、背側板材71及び腹側板材72が一枚の翼形成板材99として準備される。その後、曲げ工程S32で翼形成板材99を曲げることで翼本体7Dの前縁部7a側の端部が形成されている。さらに、接合工程S4で翼形成板材99の両端部を接合することで第一吸込口74が形成されている。
 上記のような第四変形例の静翼2によれば、部品点数を減らして翼本体7Dを形成することができる。その結果、翼本体7Dの製造コストを低減することができる。また、第四変形例の静翼2でも、第三変形例と同様の作用効果を得ることができる。
《第五変形例》
 次に、図11を参照して第一実施形態の第五変形例の翼本体7Eについて説明する。
 第五変形例においては、第一実施形態と同様の構成要素には、同一の符号を付して詳細な説明を省略する。この第五変形例の翼本体7Eは、一枚の板材で構成されている点について第一実施形態と相違する。
 第五変形例の翼本体7Eは、図13に示すように、背側板材71及び腹側板材72として、一枚の翼形成板材99Eと、接合部73Eとを有している。翼形成板材99Eは、第一実施形態の背側板材71及び腹側板材72を繋げたような形状をなす一枚の板材である。翼形成板材99Eは、曲げられることで、翼面70として背側面701C及び腹側面702Cの両方を形成している。翼形成板材99Eは、翼本体7Eの内部に空間を形成するように湾曲している。翼形成板材99Eは、前縁部7aを形成するように曲げられている。つまり、第五変形例の翼本体7Eでは、前縁部7a側の端部に接合部73Eが形成されていない。翼形成板材99Eは、後縁部7b側で両端が接合されることで接合部73Eを形成している。つまり、第四変形例の翼本体7Eは、翼形成板材99Eの両端部が接合されることで第一吸込口74が形成されている。
 第五変形例の翼本体7Eを製造する際には、蒸気タービン翼の製造方法S1の準備工程S2で、背側板材71及び腹側板材72が一枚の翼形成板材99Eとして準備される。その後、曲げ工程S32で翼形成板材99Eを曲げることで翼本体7Eの前縁部7a側の端部が形成されている。さらに、接合工程S4で翼形成板材99Eの両端部を接合することで第一吸込口74が形成されている。
 上記のような第五変形例の静翼2によれば、部品点数を減らして翼本体7Eを形成することができる。その結果、翼本体7Eの製造コストを低減することができる。
《第二実施形態》
 次に、本発明の蒸気タービン翼の第二実施形態について、図14から図16を参照して説明する。第二実施形態で示す蒸気タービン翼である静翼は、翼本体が中実構造である点が第一実施形態と異なっている。したがって、第二実施形態の説明においては、第一実施形態と同一部分に同一符号を付して説明するとともに重複説明を省略する。
 第二実施形態の翼本体7Fは、図14に示すように、背側板材71Fと、腹側板材72Fと、複数の接合部73Fとを有している。
 背側板材71Fは、翼面70Fとして凸面状の背側面701Fの一部を形成している。背側板材71Fは、第一実施形態の背側板材71よりも薄く小さい板状の部材である。背側板材71Fは、腹側板材72Fに沿うように湾曲している。背側面701Fは、背側板材71Fが腹側板材72Fに接合される際に、外側を向く面である。また、背側板材71Fにおいて、背側板材71Fが腹側板材72Fに接合される際に、翼本体7Fの内側を向く面であって、背側面701Fよりも腹側板材72F側に位置する面が背側板材内側面710aである。第二実施形態の背側板材71Fは、背側板材内側面710aが後縁部7bにおける腹側面702Fの一部を形成することで、後縁部7bの端部を形成している。
 腹側板材72Fは、翼面70Fとして凹面状の腹側面702Fと、背側面701Fの一部とを形成している。腹側板材72Fは、断面が翼形状をなして翼高さ方向D1に延びている。腹側板材72Fは、翼厚方向D3の厚みが、第一実施形態の腹側板材72よりも厚い。腹側板材72Fは、最終的な翼本体7Fの翼厚方向D3の厚さと同程度の厚みを有している。腹側板材72Fの外周面720Fは、腹側面702Fと背側面701Fの前縁部7a側の一部とを形成している。腹側板材72Fは、背側面701F側の外周面720Fの一部に、背側板材71Fが収容可能な収容凹部88が形成されている。収容凹部88は、前縁部7a側を残して背側面701F側の外周面720Fから窪んでいる。これにより、腹側板材72Fの前縁部7a側の外周面720Fが背側面701Fの一部を形成している。腹側面702Fは、外周面720Fの一部であって、腹側板材72Fが背側板材71Fに接合される際に、背側板材71Fが配置されていない側を向く面である。また、腹側板材72Fにおいて、腹側板材72Fが背側板材71Fに接合される際に、翼本体7Fの内側を向く面であって、腹側面702Fよりも背側板材71F側に位置する面が腹側板材内側面720aである。
 接合部73Fは、背側板材71Fと腹側板材72Fとを接合している。第二実施形態の接合部73Fは、ろう付けによって背側板材71Fと腹側板材72Fとを接合している部分であり、銀ロウが凝固することで形成されている。接合部73Fは、翼高さ方向D1に隙間なく背側板材71Fと腹側板材72Fとを接合している。第二実施形態の翼本体7Fでは、接合部73Fは、背側板材内側面710aと腹側板材内側面720aとを接合している。
 また、第二実施形態の翼本体7Fは、第一吸込口74Fと、第一ドレン流路75Fと、第一連通路76Fと、第二ドレン流路77Fと、第二吸込口78Fと、第二連通路79Fと、仕切部80Fと、を有している。
 第二実施形態の第一吸込口74Fは、腹側面702Fのみに形成されている。第一吸込口74Fは、翼高さ方向D1における腹側面702Fの上半分領域に形成されている。第一吸込口74Fは、翼高さ方向D1に延びるように一つの長い溝として形成されている。第一吸込口74Fは、翼厚方向D3から腹側面702Fを見た際に、細長く翼高さ方向D1に延びる矩形状に形成されている。第一吸込口74Fは、翼弦方向D2の中心よりも後縁部7b側に形成されている。第一吸込口74Fは、背側板材71F及び腹側板材72Fに形成された第一吸込口形成面81Fによって形成されている。本実施形態の第一吸込口74Fは、腹側板材72Fの後縁部7b側の端面720bと、背側板材71Fの背側板材内側面710aから角溝状をなして窪む第一吸込口背側形成面810aとによって形成されている。第一吸込口背側形成面810aは、翼高さ方向D1に延びる縦長に形成された角溝である。したがって、本実施形態において、第一吸込口74Fを形成する第一吸込口形成面81Fは、第一吸込口背側形成面810aと、腹側板材72Fの後縁部7b側の端面720bと、である。
 第一ドレン流路75Fは、背側板材71Fと腹側板材72Fとの間に形成される空間である。第一ドレン流路75Fは、翼本体7Fの内部で翼高さ方向D1に延びている。第一ドレン流路75Fは、背側板材内側面710a及び腹側板材内側面720aにそれぞれ形成された第一ドレン流路形成面82Fによって、背側板材71Fと腹側板材72Fとの間に形成されている。第二実施形態の第一ドレン流路75Fは、腹側板材内側面720aから窪んで形成されている。第一ドレン流路75Fは、背側板材内側面710aと、腹側板材内側面720aから窪む第一ドレン流路腹側形成面820bと、によって形成されている。第二実施形態の第一ドレン流路腹側形成面820bは、腹側板材内側面720aから凹曲面を形成するように窪んでいる。したがって、第二実施形態における第一ドレン流路75Fを形成する第一ドレン流路形成面82Fは、背側板材内側面710aの一部と、第一ドレン流路腹側形成面820bとである。
 第一連通路76Fは、翼本体7Fの内部で翼高さ方向D1に互いに離れて複数形成されている。複数の第一連通路76Fは、第一吸込口74Fと第一ドレン流路75Fとの間では翼高さ方向D1で互いに繋がらないように形成されている。第一連通路76Fは、背側板材71Fと腹側板材72Fとの間に形成される空間である。第一連通路76Fは、背側板材内側面710a及び腹側板材内側面720aにそれぞれ形成された第一連通路形成面83Fによって、背側板材71Fと腹側板材72Fとの間に形成されている。第一連通路76Fは、背側板材内側面710aから窪んで形成されている。第二実施形態の第一連通路76Fは、背側板材71Fの背側板材内側面710aから角溝状をなして窪む第一連通路背側形成面830aと、腹側板材内側面720aとによって形成されている。第一連通路背側形成面830aは、翼高さ方向D1に離れて複数形成された角溝を構成する面である。複数の第一連通路背側形成面830aは、後縁部7b側で第一吸込口背側形成面810aと連通している。したがって、第二実施形態における第一連通路76Fを形成する第一連通路形成面83Fは、第一連通路背側形成面830aと、腹側板材内側面720aの一部とである。
 第二ドレン流路77Fは、第一ドレン流路75Fよりも前縁部7a側に形成されている。第二ドレン流路77Fは、背側板材71Fと腹側板材72Fとの間に形成される空間である。第二ドレン流路77Fは、翼本体7Fの内部で翼高さ方向D1に延びている。第二ドレン流路77Fは、背側板材内側面710a及び腹側板材内側面720aにそれぞれ形成された第二ドレン流路形成面84Fによって、背側板材71Fと腹側板材72Fとの間に形成されている。第二実施形態の第二ドレン流路77Fは、腹側板材内側面720aから窪んで形成されている。第二ドレン流路77Fは、背側板材内側面710aの一部と、腹側板材内側面720aから窪む第二ドレン流路腹側形成面840bとによって形成されている。したがって、本実施形態における第二ドレン流路77Fを形成する第二ドレン流路形成面84Fは、背側板材内側面710aの一部と、第二ドレン流路腹側形成面840bとである。
 第二実施形態の第二吸込口78Fは、背側面701Fのみに形成されている。第二吸込口78Fは、背側面701の上半分領域に形成されている。第二吸込口78Fは、翼高さ方向D1に延びるように一つの長い溝として形成されている。第二吸込口78Fは、翼厚方向D3から背側面701Fを見た際に、細長く翼高さ方向D1に延びる矩形状に形成されている。第二吸込口78Fは、翼弦方向D2の中心よりも前縁部7a側に形成されている。第二吸込口78Fは、背側板材71F及び腹側板材72Fに形成された第二吸込口形成面85Fによって形成されている。本実施形態の第二吸込口78Fは、背側板材71Fの前縁部7a側の端面710bと、腹側板材72Fの腹側板材内側面720aから窪む第二吸込口腹側形成面850bとによって形成されている。第二吸込口腹側形成面850bは、翼高さ方向D1に離れて複数形成された角溝を構成する面である。したがって、本実施形態において、第二吸込口78Fを形成する第二吸込口形成面85Fは、背側板材71Fの前縁部7a側の端面710bと、第二吸込口腹側形成面850bとである。
 第二連通路79Fは、翼本体7Fの内部で翼高さ方向D1に離れて複数形成されている。第二連通路79Fは、互いに独立した状態で第二吸込口78Fと第二ドレン流路77Fとを連通させている。本実施形態の第二連通路79Fは、背側板材内側面710a及び腹側板材内側面720aにそれぞれ形成された第二連通路形成面86Fによって、背側板材71Fと腹側板材72Fとの間に形成されている。第二連通路79Fは、背側板材内側面710a及び腹側板材内側面720aからそれぞれ窪んで形成されている。第二実施形態の第二連通路形成面86Fは、背側板材内側面710aから角溝状をなして窪む第二連通路背側形成面860aと、第二吸込口腹側形成面850bとによって形成されている。第二連通路背側形成面860aは、翼高さ方向D1に離れて複数形成された角溝を構成する面である。第二連通路背側形成面860aは、翼高さ方向D1の位置が第二吸込口腹側形成面850bと同じ位置となるように形成されている。複数の第二連通路背側形成面860aは、前縁部7a側で背側板材71Fの前縁部7a側の端面710bと連通している。したがって、第二実施形態における第二連通路79Fを形成する第二連通路形成面86Fは、第二連通路背側形成面860aと、第二吸込口腹側形成面850bとである。
 仕切部80Fは、第一ドレン流路75Fと第二ドレン流路77Fとを翼本体7Fの内部で互いに独立させるように仕切っている。仕切部80Fは、第一ドレン流路75Fと第二ドレン流路77Fとの間で、背側板材71Fと腹側板材72Fとが接合されている領域である。仕切部80Fは、翼高さ方向D1の全域にわたって第一ドレン流路75Fと第二ドレン流路77Fとを隔離している。本実施形態の仕切部80Fは、背側板材内側面710aと腹側板材内側面720aとが接合された接合部73Fによって形成されている。
 次に、以上で説明した第二実施形態の蒸気タービン翼(静翼2F)の製造方法について、説明する。蒸気タービン翼の製造方法S1では、準備工程S2で断面が矩形の平板状の背側板材71F及び腹側板材72Fが準備される。
 その後、除去工程S31では、図15及び図16に示すように、研削加工や切削加工によって背側板材71F及び腹側板材72Fが削られて一部除去される。除去工程S31では、第一吸込口形成面81F、第一ドレン流路形成面82F、第一連通路形成面83F、第二ドレン流路形成面84F、第二吸込口形成面85F、第二連通路形成面86Fが形成される。
 具体的には、背側板材71Fを加工する場合から説明する。図15に示すように、第二実施形態の除去工程S31では、背側板材71Fを腹側板材72Fに組み合わせた際に、後縁部7bや背側面701Fの一部が形作られるように、板状の背側板材71Fから不要な部分が削られて除去される。この際、除去工程S31では、背側板材内側面710aの後縁部7b側を作業者が削ることで、第一吸込口背側形成面810aが形成される。除去工程S31では、第一吸込口背側形成面810aが形成する溝と連通するように、背側板材内側面710aの一部をさらに作業者が削ることで、背側板材71Fに第一連通路背側形成面830aが形成される。除去工程S31では、背側板材内側面710aの前縁部7a側を作業者が削ることで、第二連通路形成面86Fとして、第二連通路背側形成面860aが形成される。
 次に、腹側板材72Fを加工する場合を説明する。図16に示すように、本実施形態の除去工程S31では、背側板材71Fを腹側板材72Fに組み合わせた際に、前縁部7aや背側面701Fの一部や腹側面702Fが形作られるように、板状の腹側板材72Fから不要な部分が削られて除去される。この際、除去工程S31では、腹側板材72Fの後縁部7b側を作業者が削ることで、第一吸込口背側形成面810aの形状に対応した平滑な端面720bが形成される。除去工程S31では、腹側板材内側面720aを作業者が削ることで、腹側板材72Fに第一ドレン流路腹側形成面820bが形成される。除去工程S31では、第一ドレン流路腹側形成面820bよりも前縁部7a側である翼弦方向D2の中間付近の腹側板材内側面720aを作業者が削ることで、腹側板材72Fに第二ドレン流路腹側形成面840bが形成される。さらに、第二ドレン流路腹側形成面840bと繋がるように、第二ドレン流路腹側形成面840bよりも前縁部7a側の腹側板材内側面720aを作業者が削ることで、腹側板材72Fに第二吸込口腹側形成面850bが形成される。
 その後、曲げ工程S32で背側板材71Fが曲げられることで、背側面701Fの一部が背側板材71Fに形成される。また、腹側板材72Fが曲げられることで、背側面701Fの一部及び腹側面702Fが腹側板材72Fに形成される。
 接合工程S4では、第一吸込口74F、第一ドレン流路75F、第一連通路76F、第二ドレン流路77F、第二吸込口78F、及び第二連通路79Fを背側板材71Fと腹側板材72Fとの間に形成するように、背側板材71Fと腹側板材72Fとが接合される。具体的には、接合工程S4では、第一吸込口背側形成面810aと腹側板材72Fの後縁部7b側の端面720bとの間に第一吸込口74Fを形成するように背側板材71Fと腹側板材72Fとが接合される。また、接合工程S4では、第二吸込口腹側形成面850bと背側板材71Fの前縁部7a側の端面710bとの間に第二吸込口78Fを形成するように背側板材71Fと腹側板材72Fとが接合される。さらに、接合工程S4では、第二ドレン流路形成面84Fと第一ドレン流路形成面82Fとの間で、背側板材内側面710aと腹側板材内側面720aとが接合される。これにより、接合工程S4では、第二ドレン流路77Fと第一ドレン流路75Fとが互いに独立するように仕切る仕切部80Fが接合部73Fとして形成される。
 上記のような第二実施形態の静翼2Fでも、第一実施形態と同様に、第一連通路76Fが互いに独立した状態で複数形成される。その結果、第一吸込口74Fから第一ドレン流路75Fまでドレンを効率良く流入させることができる。同様に、第二連通路79Fが互いに独立した状態で複数形成される。その結果、第二吸込口78Fから第二ドレン流路77Fまでドレンを効率良く流入させることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、第一吸込口74、74A、74F及び第二吸込口78、78Fは、翼高さ方向D1に連続した形状で形成されていることに限定されるものではない。第一吸込口74、74A、74F及び第二吸込口78、78Fは、複数の第一連通路76、76Fや第二連通路79、79Fに繋がれていれば、翼高さ方向D1に不連続なスリットとして形成されていてもよい。
 また、第一ドレン流路75、75B、75C、75F、第一吸込口74、74A、74F、第二ドレン流路77、77E、及び第二吸込口78、78Fは、少なくとも翼高さ方向D1の上半分領域に形成されていればよい。したがって、第一ドレン流路75、75B、75C、75F、及び第二ドレン流路77、77Eは、内側シュラウド21及び外側シュラウド22と連通するように翼本体7を貫通して翼本体の翼高さ方向の全域に形成されていることに限定されるものではない。
 また、第一吸込口74、74A、74F及び第二吸込口78、78Fは、翼高さ方向D1の上半分領域の全域に形成されていることに限定されるものではない。第一吸込口74、74A、74F及び第二吸込口78、78Fは、翼面70、70Fの先端部側の一部の領域のみに形成されていてもよい。
 また、第一吸込口74、74A、74Fは、腹側面702、702C、702Fのみに形成されることに限定されるものではない。特に、第三変形例及び第四変形例のように第二吸込口78、78Fを形成しない場合には、第一吸込口74、74A、74Fは背側面701、701C、701Fに形成されていてもよい。
 また、第一連通路形成面83、83Fは、実施形態や変形例のように背側板材71、71A、71B、71Fの背側板材内側面71a、710a及び腹側板材72、72A、72B、72Fの腹側板材内側面72a、720aのいずれか一方のみから窪むように形成されることに限定されるものではない。第一連通路形成面83、83Fは、実施形態の第一ドレン流路形成面82のように背側板材71、71A、71B、71Fの背側板材内側面71a、710a及び腹側板材72、72A、72B、72Fの腹側板材内側面72a、720aの両方から窪むように形成されていてもよい。
 また、第一ドレン流路形成面82は、実施形態のように背側板材71、71A、71Bの背側板材内側面71a及び腹側板材72、72A、72Bの腹側板材内側面72aの両方から窪むように形成されることに限定されるものではない。第一ドレン流路形成面82は、背側板材71、71A、71B、71Fの背側板材内側面71a、710a及び腹側板材72、72A、72B、72Fの腹側板材内側面72a、720aのいずれか一方のみから窪むように形成されていてもよい。
 また、第二ドレン流路形成面84は、実施形態のように曲げ工程S32で形成されることに限定されるものではない。第二ドレン流路形成面84は、第一ドレン流路形成面82と同様に、除去工程S31で背側板材71の背側板材内側面71a及び腹側板材72の腹側板材内側面72aから窪むように削って形成されてもよい。
 また、第一ドレン流路形成面82は、実施形態のように除去工程S31で形成されることに限定されるものではない。例えば、第一ドレン流路形成面82は、第二ドレン流路形成面84と同様に、曲げ工程S32で形成されてもよい。
 本発明によれば、翼面に付着したドレンを効率良く除去することができる。
100 蒸気タービン
S     蒸気
Ac   軸線
Da   軸方向
Dc   周方向
Dr   径方向
1     ケーシング
11   蒸気入口
12   蒸気出口
2,2F      静翼
3     ロータ
5     ロータ軸
6     動翼
4     軸受部
41   ジャーナル軸受
42   スラスト軸受
7、7A、7B、7C、7D,7E   翼本体
D1   翼高さ方向
D2   翼弦方向
D3   翼厚方向
70,70F  翼面
701,701C,701F  背側面
702,702C,702F  腹側面
7a   前縁部
7b   後縁部
71,71A,71B,71F       背側板材
71a,710a     背側板材内側面
72,72A,72B,72F       腹側板材
72a,720a     腹側板材内側面
73,73E  接合部
74,74A,74F 第一吸込口
75,75B,75C,75F       第一ドレン流路
751 絞り部
76,76F  第一連通路
77,77E  第二ドレン流路
78,78F  第二吸込口
79,79F  第二連通路
80,80F  仕切部
81,81F  第一吸込口形成面
81a,91a,810a    第一吸込口背側形成面
82,82F  第一ドレン流路形成面
82a,92a,820a    第一ドレン流路背側形成面
82b,92b,820b    第一ドレン流路腹側形成面
83,83F  第一連通路形成面
83a,830a     第一連通路背側形成面
83b,830b     第一連通路腹側形成面
84,84F  第二ドレン流路形成面
84a 第二ドレン流路背側形成面
84b,840b     第二ドレン流路腹側形成面
850b      第二吸込口腹側形成面
860a      第二連通路背側形成面
88   収容凹部
21   内側シュラウド
210 内側排出流路
22   外側シュラウド
220 外側排出流路
C1   主流路
S1   蒸気タービン翼の製造方法
S2   準備工程
S3   加工工程
S31 除去工程
S32 曲げ工程
S4   接合工程
91b 第一吸込口腹側形成面
99   翼形成板材

Claims (20)

  1.  翼高さ方向に延びる翼面を有する翼本体を備え、
     前記翼本体は、
     前記翼高さ方向に延びて前記翼面で開口している第一吸込口と、
     内部で前記翼高さ方向に延びている第一ドレン流路と、
     内部で前記翼高さ方向に互いに離れ、かつ、互いに独立した状態で前記第一吸込口と前記第一ドレン流路とを連通させている複数の第一連通路とを有する蒸気タービン翼。
  2.  前記第一吸込口は、前記翼面のうち、凹面状の腹側面に形成されている請求項1に記載の蒸気タービン翼。
  3.  前記第一吸込口は、前記翼面のうち、凹面状の腹側面と凸面状の背側面とが接続される後縁部側の端部に形成されている請求項1に記載の蒸気タービン翼。
  4.  前記第一吸込口は、前記翼高さ方向における前記翼面の上半分領域に形成されている請求項1から請求項3のいずれか一項に記載の蒸気タービン翼。
  5.  前記翼本体は、
     内部で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路と、
     凸面状の背側面で開口する第二吸込口と、
     前記第二吸込口と前記第二ドレン流路とを連通させている第二連通路と、
     前記第二ドレン流路と前記第一ドレン流路とを前記翼本体の内部で互いに独立させるように仕切る仕切部とを有する請求項1から請求項4のいずれか一項に記載の蒸気タービン翼。
  6.  前記翼本体は、
     前記翼面として凸面状の背側面を形成している背側板材と、
     前記翼面として凹面状の腹側面を形成している腹側板材と、
     前記背側板材と前記腹側板材とを接合している複数の接合部とを有し、
     前記接合部の一つが、前記仕切部を形成している請求項5に記載の蒸気タービン翼。
  7.  前記第一ドレン流路は、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面と、前記腹側板材において前記腹側面よりも前記背側板材側に位置する腹側板材内側面とにそれぞれ形成された第一ドレン流路形成面によって前記背側板材と前記腹側板材との間に形成され、
     前記第一ドレン流路形成面は、前記背側板材内側面及び前記腹側板材内側面の少なくとも一方から窪んで形成されている請求項6に記載の蒸気タービン翼。
  8.  前記第一連通路は、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面と、前記腹側板材において前記腹側面よりも前記背側板材側に位置する腹側板材内側面とにそれぞれ形成された第一連通路形成面によって前記背側板材と前記腹側板材との間に形成され、
     前記第一連通路形成面は、前記背側板材内側面及び前記腹側板材内側面の少なくとも一方から窪んで形成されている請求項6又は請求項7に記載の蒸気タービン翼。
  9.  前記第一吸込口は、前記背側板材において、前記背側面よりも前記腹側板材側に位置する背側板材内側面から窪む第一吸込口背側形成面と、
     前記腹側板材の後縁部側の端面とによって形成されている請求項6から請求項8のいずれか一項に記載の蒸気タービン翼。
  10.  軸線を中心として回転するロータ軸と、
     前記ロータ軸を囲むように配置される請求項1から請求項9のいずれか一項に記載の蒸気タービン翼と、を備える蒸気タービン。
  11.  翼高さ方向に延びる翼面を有する翼本体の前記翼面で前記翼高さ方向に延びて開口している第一吸込口と、前記翼本体の内部で前記翼高さ方向に延びている第一ドレン流路と、前記翼本体の内部で前記翼高さ方向に互いに離れ、かつ、互いに独立した状態で前記第一吸込口と前記第一ドレン流路とを連通させる複数の第一連通路とを備えた蒸気タービン翼の製造方法であって、
     前記翼面として凸面状の背側面を形成可能な平板状の背側板材と、前記翼面として凹面状の腹側面を形成可能な平板状の腹側板材とを準備する準備工程と、
     前記背側板材及び前記腹側板材を加工する加工工程と、
     前記第一ドレン流路及び前記第一連通路を前記背側板材と前記腹側板材との間に形成するように、前記背側板材と前記腹側板材とを接合する接合工程とを含み、
     前記加工工程では、
     前記背側板材及び前記腹側板材の少なくとも一方に前記第一吸込口を形成する第一吸込口形成面が形成され、
     前記背側板材及び前記腹側板材の両方に前記第一ドレン流路を形成する第一ドレン流路形成面と、前記第一連通路を形成する第一連通路形成面とが形成され、
     前記背側板材に前記背側面が形成され、
     前記腹側板材に前記腹側面が形成される蒸気タービン翼の製造方法。
  12.  前記加工工程は、
     前記背側板材及び前記腹側板材の一部を削って除去する除去工程と、
     前記背側板材及び前記腹側板材を曲げる曲げ工程とを含み、
     前記除去工程では、前記第一吸込口形成面、前記第一ドレン流路形成面、及び前記第一連通路形成面が形成され、
     前記曲げ工程では、前記背側面及び前記腹側面が形成される請求項11に記載の蒸気タービン翼の製造方法。
  13.  前記除去工程では、前記背側板材と前記腹側板材とが接合される際に、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面、及び、前記腹側面において前記腹側面よりも前記背側板材側に位置する腹側板材内側面の少なくとも一方から窪むように、前記第一ドレン流路形成面が形成される請求項12に記載の蒸気タービン翼の製造方法。
  14.  前記除去工程では、前記背側板材と前記腹側板材とが接合される際に、前記背側板材において前記背側面よりも前記腹側板材側に位置する背側板材内側面、及び、前記腹側面において前記腹側面よりも前記背側板材側に位置する腹側板材内側面の少なくとも一方から窪むように、前記第一連通路形成面が形成される請求項12又は請求項13に記載の蒸気タービン翼の製造方法。
  15.  前記除去工程では、前記第一吸込口形成面として、前記背側板材が前記腹側板材と接合される際に、前記背側面よりも前記腹側板材側に位置する背側板材内側面から窪む第一吸込口背側形成面が形成され、
     前記接合工程では、前記第一吸込口背側形成面と前記腹側板材の後縁部側の端面との間に前記第一吸込口を形成するように前記背側板材と前記腹側板材とが接合される請求項12から請求項14のいずれか一項に記載の蒸気タービン翼の製造方法。
  16.  前記準備工程では、前記背側板材及び前記腹側板材が一枚の翼形成板材として準備され、
     前記曲げ工程では、前記翼形成板材が曲げられることで、前記背側面及び前記腹側面が形成されるとともに、前記翼本体の前縁部が形成される請求項12から請求項15のいずれか一項に記載の蒸気タービン翼の製造方法。
  17.  前記曲げ工程では、
     前記翼本体の内部で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路を形成する第二ドレン流路形成面が、前記背側面及び前記腹側面とともに曲げて形成され、
     前記除去工程では、前記背側面と前記背側板材の前記第二ドレン流路形成面とを連通させるように前記背側板材を貫通する第二連通路が形成される請求項12から請求項16のいずれか一項に記載の蒸気タービン翼の製造方法。
  18.  前記接合工程では、前記第二ドレン流路形成面と前記第一ドレン流路形成面との間で前記背側板材と前記腹側板材とが接合され、前記第二ドレン流路と前記第一ドレン流路とが互いに独立した状態となるように仕切る仕切部が形成される請求項17に記載の蒸気タービン翼の製造方法。
  19.  翼高さ方向に延びる翼面を有する翼本体を備え、
     前記翼本体は、
     前記翼面として凸面状の背側面を形成している背側板材と、
     前記翼面として凹面状の腹側面を形成している腹側板材と、
     前記背側板材と前記腹側板材とを接合している複数の接合部と、
     前記背側板材と前記腹側板材との間で前記翼高さ方向に延びている第一ドレン流路と、
     前記背側板材と前記腹側板材との間で前記翼高さ方向に延び、前記第一ドレン流路よりも前記翼本体の前縁部側に形成されている第二ドレン流路と、
     前記翼面で開口している第一吸込口及び第二吸込口と、
     前記第一吸込口と前記第一ドレン流路とを連通させている第一連通路と、
     前記第二吸込口と前記第二ドレン流路とを連通させている第二連通路と、
     前記第二ドレン流路と前記第一ドレン流路とを前記翼本体の内部で互いに独立した状態となるように仕切る仕切部と、を有し、
     前記接合部の一つが、前記仕切部を形成している請求項1に記載の蒸気タービン翼。
  20.  翼高さ方向に延びる翼面を有する翼本体の内部で前記翼高さ方向に延びている第一ドレン流路と、前記翼本体の内部の前記第一ドレン流路よりも前記翼本体の前縁部側で前記翼高さ方向に延びている第二ドレン流路と、前記翼面で開口している第一吸込口及び第二吸込口と、前記第一吸込口と前記第一ドレン流路とを連通させる第一連通路と、前記第二吸込口と前記第二ドレン流路とを連通させる第二連通路とを有する蒸気タービン翼の製造方法であって、
     前記翼面として凸面状の背側面を形成可能な背側板材と、前記翼面として凹面状の腹側面を形成可能な腹側板材とを準備する準備工程と、
     前記背側板材及び前記腹側板材を加工する加工工程と、
     前記第一ドレン流路及び前記第二ドレン流路を前記背側板材と前記腹側板材との間に形成するように、前記背側板材と前記腹側板材とを接合する接合工程とを含み、
     前記加工工程は、
     前記背側板材及び前記腹側板材の一部を削って除去する除去工程と、
     前記背側板材及び前記腹側板材を曲げる曲げ工程とを含み、
     前記除去工程では、前記第一ドレン流路を形成する第一ドレン流路形成面と、前記第二ドレン流路を形成する第二ドレン流路形成面とが、前記背側板材及び前記腹側板材の両方に形成され、
     前記曲げ工程では、前記背側板材に前記背側面が形成され、前記腹側板材に前記腹側面が形成され、
     前記接合工程では、前記第二ドレン流路形成面と前記第一ドレン流路形成面との間で前記背側板材と前記腹側板材とを接合し、前記第二ドレン流路と前記第一ドレン流路とが互いに独立した状態となるように仕切る仕切部を形成する請求項11に記載の蒸気タービン翼の製造方法。
PCT/JP2018/031532 2017-09-05 2018-08-27 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法 WO2019049703A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/633,348 US11486255B2 (en) 2017-09-05 2018-08-27 Steam turbine blade, steam turbine, and method for manufacturing steam turbine blade
CH00064/20A CH715181B1 (de) 2017-09-05 2018-08-27 Dampfturbinenschaufel, Dampfturbine und Verfahren zur Herstellung einer Dampfturbinenschaufel.
CN201880049085.9A CN110945212B (zh) 2017-09-05 2018-08-27 汽轮机叶片、汽轮机、以及汽轮机叶片的制造方法
KR1020207002045A KR102400690B1 (ko) 2017-09-05 2018-08-27 증기 터빈 날개, 증기 터빈, 및 증기 터빈 날개의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-170124 2017-09-05
JP2017-170123 2017-09-05
JP2017170123A JP6944314B2 (ja) 2017-09-05 2017-09-05 蒸気タービン翼の製造方法、蒸気タービン翼、及び蒸気タービン
JP2017170124A JP6944841B2 (ja) 2017-09-05 2017-09-05 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法

Publications (1)

Publication Number Publication Date
WO2019049703A1 true WO2019049703A1 (ja) 2019-03-14

Family

ID=65634796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031532 WO2019049703A1 (ja) 2017-09-05 2018-08-27 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法

Country Status (5)

Country Link
US (1) US11486255B2 (ja)
KR (1) KR102400690B1 (ja)
CN (1) CN110945212B (ja)
CH (1) CH715181B1 (ja)
WO (1) WO2019049703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241106A1 (ja) * 2019-05-31 2020-12-03 三菱パワー株式会社 蒸気タービン翼、蒸気タービン、及びその運転方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB316381A (en) * 1928-06-11 1929-08-01 Karl Baumann Improvements relating to elastic fluid turbines
US2362831A (en) * 1943-08-20 1944-11-14 Gen Electric Elastic fluid turbine
JPH11210404A (ja) * 1998-01-28 1999-08-03 Juki Aizu Precision Kk ドレン穴付きノズル翼及びその製造方法
JP2013139807A (ja) * 2012-01-05 2013-07-18 General Electric Co <Ge> スロット付きタービン翼形部

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919123B2 (ja) 1976-05-28 1984-05-02 旭化成株式会社 均一な粒径を有する粒状架橋重合体の懸濁重合方法
CH671072A5 (ja) 1986-01-15 1989-07-31 Bbc Brown Boveri & Cie
JPS6445904A (en) * 1987-08-13 1989-02-20 Toshiba Corp Steam turbine nozzle
JPH11336503A (ja) * 1998-05-27 1999-12-07 Mitsubishi Heavy Ind Ltd 蒸気タービン静翼
US7422415B2 (en) * 2006-05-23 2008-09-09 General Electric Company Airfoil and method for moisture removal and steam injection
EP2224096A1 (en) * 2009-02-27 2010-09-01 Alstom Technology Ltd Steam turbine and method for extracting moisture from a steam turbine
US20100329853A1 (en) * 2009-06-30 2010-12-30 General Electric Company Moisture removal provisions for steam turbine
JP2013119819A (ja) * 2011-12-08 2013-06-17 Mitsubishi Heavy Ind Ltd 翼の水分除去構造を備えた蒸気タービン
ITCO20110060A1 (it) * 2011-12-12 2013-06-13 Nuovo Pignone Spa Turbina a vapore, paletta e metodo
JP5804985B2 (ja) * 2012-03-08 2015-11-04 三菱日立パワーシステムズ株式会社 蒸気シール機能および水分除去機能を備えた蒸気タービン
JP5919123B2 (ja) * 2012-07-30 2016-05-18 三菱日立パワーシステムズ株式会社 蒸気タービン、および蒸気タービンの静翼
JP5968173B2 (ja) * 2012-09-14 2016-08-10 三菱日立パワーシステムズ株式会社 蒸気タービン静翼及び蒸気タービン
US9394797B2 (en) * 2012-12-04 2016-07-19 General Electric Company Turbomachine nozzle having fluid conduit and related turbomachine
JP5996115B2 (ja) * 2013-07-30 2016-09-21 三菱日立パワーシステムズ株式会社 蒸気タービンの水分除去装置
EP3009603B1 (en) * 2013-07-30 2020-06-24 Mitsubishi Hitachi Power Systems, Ltd. Water removal device for a steam turbine and corresponding method for forming a slit
JP5606648B1 (ja) * 2014-06-27 2014-10-15 三菱日立パワーシステムズ株式会社 動翼、及びこれを備えているガスタービン
JP7293011B2 (ja) * 2019-07-10 2023-06-19 三菱重工業株式会社 蒸気タービン用静翼、蒸気タービン及び蒸気タービン用静翼の加熱方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB316381A (en) * 1928-06-11 1929-08-01 Karl Baumann Improvements relating to elastic fluid turbines
US2362831A (en) * 1943-08-20 1944-11-14 Gen Electric Elastic fluid turbine
JPH11210404A (ja) * 1998-01-28 1999-08-03 Juki Aizu Precision Kk ドレン穴付きノズル翼及びその製造方法
JP2013139807A (ja) * 2012-01-05 2013-07-18 General Electric Co <Ge> スロット付きタービン翼形部

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241106A1 (ja) * 2019-05-31 2020-12-03 三菱パワー株式会社 蒸気タービン翼、蒸気タービン、及びその運転方法
JP2020197136A (ja) * 2019-05-31 2020-12-10 三菱パワー株式会社 蒸気タービン翼、蒸気タービン、及びその運転方法
JP7281969B2 (ja) 2019-05-31 2023-05-26 三菱重工業株式会社 蒸気タービン静翼、蒸気タービン、及びその運転方法

Also Published As

Publication number Publication date
KR102400690B1 (ko) 2022-05-20
CH715181B1 (de) 2023-03-15
US20200165920A1 (en) 2020-05-28
CN110945212A (zh) 2020-03-31
CN110945212B (zh) 2022-07-08
KR20200018685A (ko) 2020-02-19
US11486255B2 (en) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6924012B2 (ja) 冷却通路を有するタービンバケット
JP6506514B2 (ja) 動翼エンジェルウイングを冷却する方法およびシステム
JP6849384B2 (ja) シュラウド内に出口経路を有するタービンバケット
EP2948639B1 (en) Seal assembly including grooves in an inner shroud in a gas turbine engine
CN106801625B (zh) 在护罩中具有出口通路的涡轮轮叶
WO2011007506A1 (ja) 蒸気タービン
RU2015122653A (ru) Лопатка турбины со встроенными петлевым контуром охлаждения и аксиальным контуром охлаждения законцовки
JP2019044723A (ja) 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法
JP2011247419A (ja) 受動型ブリード路を備えたロータブレード
US20130177397A1 (en) Slotted turbine airfoil
WO2019049703A1 (ja) 蒸気タービン翼、蒸気タービン、及び蒸気タービン翼の製造方法
JP2017502188A (ja) 蒸気タービンの段を製造する方法
EP3498973B1 (en) Aerofoil for a gas turbine engine and method of manufacture
DE202017104914U1 (de) Kühlkreislauf für ein mehrwandiges Blatt, Vorrichtung und Turbomaschine
WO2015015859A1 (ja) 蒸気タービンの水分除去装置、及びスリット孔の形成方法
JP2017129124A (ja) インライン分散型推進のための方法およびシステム
JP7002890B2 (ja) 蒸気タービン翼
CN105992874A (zh) 摆线转子泵压缩机和膨胀机的性能改善
JP6944314B2 (ja) 蒸気タービン翼の製造方法、蒸気タービン翼、及び蒸気タービン
EP2985426B1 (en) Blade device for a turbine and corresponding manufacturing method
WO2016071224A1 (en) Sector for the assembly of a stage of a turbine and corresponding manufacturing method
WO2020137308A1 (ja) 蒸気タービン、及びその排気室
US9945238B2 (en) Steam turbine
US10794397B2 (en) Rotor blade and axial flow rotary machine
JP5766528B2 (ja) 蒸気タービンの静翼及びその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852817

Country of ref document: EP

Kind code of ref document: A1