WO2019049693A1 - ホルムアルデヒド検知センサ、および、それを用いたシステム - Google Patents

ホルムアルデヒド検知センサ、および、それを用いたシステム Download PDF

Info

Publication number
WO2019049693A1
WO2019049693A1 PCT/JP2018/031385 JP2018031385W WO2019049693A1 WO 2019049693 A1 WO2019049693 A1 WO 2019049693A1 JP 2018031385 W JP2018031385 W JP 2018031385W WO 2019049693 A1 WO2019049693 A1 WO 2019049693A1
Authority
WO
WIPO (PCT)
Prior art keywords
formaldehyde
detection sensor
formaldehyde detection
sensor
acid
Prior art date
Application number
PCT/JP2018/031385
Other languages
English (en)
French (fr)
Inventor
伸輔 石原
ヤン ラブタ
尚志 中西
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2019540882A priority Critical patent/JP6774127B2/ja
Priority to CN201880057881.7A priority patent/CN111051868B/zh
Priority to US16/644,843 priority patent/US11740198B2/en
Publication of WO2019049693A1 publication Critical patent/WO2019049693A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a formaldehyde detection sensor using a change in electrical resistance, and a system using the same.
  • Formaldehyde is one of the volatile organic compounds (VOCs) and is known to be harmful to the human body when exceeding a certain amount.
  • VOCs volatile organic compounds
  • Formaldehyde is contained, for example, in plywood, lacquers, building materials and the like, and can be released indoors into the atmosphere to cause diseases such as sick house syndrome and cancer.
  • WHO World Health Organization
  • the indoor formaldehyde concentration standard is below 0.08 ppm.
  • a detection tube is known as a method for detecting such formaldehyde easily (see, for example, Patent Document 1).
  • the detection tube is filled with a filler that utilizes the reaction of hydroxylamine phosphate and formaldehyde, and is configured to be discolored by the reaction.
  • a detection tube can detect formaldehyde at a desired place, but can not monitor formaldehyde at any time, and is disposable.
  • Patent Documents 2 and 3 it is known that carbon nanotubes exhibit semiconductivity at room temperature, and the electric resistance value is easily changed by adsorption of gas or the like on the surface thereof. Sensors using such carbon nanotubes have been developed (see, for example, Patent Documents 2 and 3).
  • Patent Document 2 a sensor is disclosed in which a carbon nanotube grafted with a group reactive with a compound to be detected is disposed on an electrode, and a compound such as a volatile organic compound is detected by a change in electrical resistance.
  • Patent Document 3 a carbon nanotube is mounted on a radio frequency identification tag, and a volatile organic compound or the like is detected by a change in resistivity.
  • Patent Documents 2 and 3 are selective to formaldehyde alone.
  • Non-Patent Document 1 describes that carbon nanotubes are functionalized with tetrafluorohydroquinone (TFQ), and the conductivity is improved by 20% to 0.15 ppm formaldehyde in dry air, and the selectivity to formaldehyde is high. It reports that it has. However, when the relative humidity is 20% or more, the sensitivity is significantly reduced, and therefore, it is unsuitable for normal indoor use.
  • TFQ tetrafluorohydroquinone
  • the formaldehyde detection sensor of the present invention contains at least a hydroxylamine salt, and a reaction part that reacts with formaldehyde to generate an acid, and an electrode supporting a carbon material whose electric resistance value is changed by the acid generated in the reaction part. And a response unit, wherein the hydroxylamine salt and the carbon material are separated from each other, thereby solving the above problem.
  • the hydroxylamine salt may be a neutralization salt selected from the group consisting of halide salts, nitrates, sulfates, phosphates, borates and trifluoroacetates of hydroxylamine (NH 2 OH) .
  • the above-mentioned hydroxylamine salts include halide salts, nitrates, sulfates, phosphates, and borates of NH 2 OR (R is an aromatic, cyclic or noncyclic hydrocarbon compound, or a derivative thereof). It may be a neutralizing salt selected from the group consisting of acid salts and trifluoroacetates.
  • the carbon material may be selected from the group consisting of carbon nanotubes, carbon nanohorns, graphene, fullerenes, and derivatives thereof.
  • the carbon nanotube may contain 10 wt% or more of semiconducting carbon nanotube.
  • the carbon nanotube may contain 60 wt% or more of semiconducting carbon nanotube.
  • the carbon material may be coated with a dispersant selected from the group consisting of ⁇ conjugated small molecules, surfactants, polymers and supramolecular polymers.
  • the supramolecular polymer may be represented by the following formula.
  • n represents a linear C 8 H 17
  • m is a natural number of 2 to 200
  • M is a divalent transition metal ion selected from the group consisting of Cu, Ni, Pd and Pt. It is.
  • the hydroxylamine salts may be supported on a porous material.
  • the porous material may be selected from the group consisting of paper, hydrophobic polymer, hydrophilic polymer, porous glass, porous carbon material and porous oxide.
  • a spacer may be provided between the reaction part and the response part.
  • the hydroxylamine salts may be modified to particles having a particle diameter in the range of 0.05 ⁇ m to 5000 ⁇ m.
  • the particles are selected from the group consisting of polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylamide (PAM), polyethylene terephthalate (PET), polycaprolactone, polyvinyl acetate, polyvinyl ethyl acetate, carbon, glass and silica It may be made of the
  • the reaction part may further contain a salt of a volatile acid selected from the group consisting of salts of hydrochloric acid, nitric acid, carbonic acid, perchloric acid and trifluoroacetic acid.
  • the formaldehyde detection system of the present invention comprises a formaldehyde detection sensor and a detection means, wherein the formaldehyde detection sensor is the above-mentioned formaldehyde detection sensor, and the detection means detects a change in electric resistance value from the formaldehyde detection sensor And solve the above problems by this.
  • the formaldehyde detection sensor may be connected to a power source, and the detection means may be an ammeter or a light emitting device.
  • the light emitting device may be a light emitting diode.
  • the electronic device may further include a non-formaldehyde detection sensor including an electrode supporting a carbon material, wherein the non-formaldehyde detection sensor may be disposed so that the acid generated in the reaction unit is not supplied.
  • the detection means may compare a change in the electrical resistance value from the formaldehyde detection sensor with that from the formaldehyde non-detection sensor to distinguish between a response due to formaldehyde and a response other than the formaldehyde.
  • the air sensor may further include an air flow unit that flows air to the carbon material of the response unit in the formaldehyde detection sensor and removes an acid adsorbed to the carbon material.
  • the formaldehyde detection sensor of the present invention can detect the acid generated in the reaction part by the change of the electrical resistance value of the carbon material of the response part.
  • the carbon material can detect 0.05 ppm formaldehyde in the measured value even at room temperature and in the air, and theoretically it can detect even 0.016 ppm formaldehyde, so extremely accurate detection is possible.
  • the sensor of the present invention can be used repeatedly by simply removing the acid adsorbed to the carbon material by a flow of air or the like. The combination of the sensor of the present invention with various detection devices can provide a formaldehyde detection system.
  • Schematic showing an exemplary formaldehyde detection sensor of the present invention Schematic showing another exemplary formaldehyde detection sensor of the present invention
  • Schematic diagram showing the formaldehyde detection system of the present invention Schematic showing another formaldehyde detection system of the present invention
  • the figure which shows the response characteristic with respect to the formaldehyde of the sensor by Example 1, 2 and the comparative example 3 The figure which shows the response characteristic to the formaldehyde of the sensor by Example 1, 4-5 The figure which shows the response characteristic to the formaldehyde of the sensor by Example 1, 6-7 The figure which shows the response characteristic to the formaldehyde of the sensor by Example 1 and 8 The figure which shows the response characteristic with respect to formaldehyde of the sensor by Example 8 and the reference example 9.
  • the figure which shows the formaldehyde concentration dependence of the response characteristic with respect to the formaldehyde of the sensor by Example 8 The figure which shows the correlation with the formaldehyde concentration of the sensor by Example 8, and an increase in an electric current value based on FIG.
  • FIG. 13 A partial enlarged view of FIG. 13
  • the figure which shows the response characteristic to water (420 ppm) of the sensor by Example 8 The figure which shows the response characteristic with respect to water (3200 ppm) of the sensor by Example 8
  • the figure which shows the response characteristic to methanol (1200 ppm) of the sensor by Example 8 The figure which shows the response characteristic to ethanol (440 ppm) of the sensor by Example 8
  • the figure which shows the response characteristic with respect to toluene (720 ppm) of the sensor by Example 8 The figure which shows the list of the response characteristics with respect to various gas of the sensor by Example 8
  • the figure which shows the influence of the humidity on the response characteristic of the sensor by Example 8 The figure which compared the change of relative humidity and the response to formaldehyde with the sensor of Example 8 and the reference example 9
  • Embodiment 1 In the first embodiment, the formaldehyde detection sensor of the present invention will be described.
  • FIG. 1 is a schematic view showing an exemplary formaldehyde detection sensor of the present invention.
  • the formaldehyde detection sensor 100 of the present invention (hereinafter sometimes referred to simply as the sensor of the present invention) contains at least a hydroxylamine salt 110 that reacts with the formaldehyde to be detected, and generates a acid by the reaction with formaldehyde. And a response unit 150 including an electrode 140 carrying a carbon material 130 whose electric resistance value changes according to the acid generated in the reaction unit 120. Furthermore, the sensor 100 of the present invention is characterized in that the hydroxylamine salt 110 and the carbon material 130 are separated. In FIG. 1, hydroxylamine salts 110 are schematically shown by dots for easy understanding.
  • the inventors of the present invention use the reaction of formaldehyde with hydroxylamine phosphate as shown in Patent Document 1, and the acid generated thereby changes the electrical resistance of carbon nanotubes and detects formaldehyde.
  • a sensor As shown in Comparative Example 3 to be described later, when the present inventors contact a hydroxylamine salt 110 such as hydroxylamine phosphate and a carbon material 130 such as a carbon nanotube, the change of the electric resistance value is Although it can be seen, it does not function as a sensor because the phenomenon that the electric resistance reversibly changes in response to formaldehyde does not occur reproducibly, and the hydroxylamine salt 110 and the carbon material 130 are separated Only the change in electrical resistance occurred and was found to function as a sensor.
  • separation is intended to be in a state of not being in physical contact, and the distance of separation is not particularly limited as long as the acid generated in the reaction unit 120 is introduced into the response unit 150. Is in the range of 0.05 ⁇ m to 5000 ⁇ m.
  • the generated hydrochloric acid diffuses immediately to the response unit 150 and is adsorbed to the carbon material 130.
  • the electrical conductivity of the carbon material 130 is increased by the adsorption of the acid. If such a change in electrical conductivity occurs, the presence of formaldehyde can be detected.
  • the hydroxylamine salts 110 used in the reaction unit 120 do not react to VOCs represented by methanol, ethanol, toluene, tetrahydrofuran (THF) other than formaldehyde, so only formaldehyde can be detected selectively and with high accuracy. .
  • the hydroxylamine salt 110 may react with aldehydes and ketones other than formaldehyde to generate an acid, but when this sensor indicates the presence of formaldehyde, it is not interfered with aldehydes and ketones other than formaldehyde.
  • the presence of formaldehyde can be determined by performing other precise analysis methods (for example, a color method by lutidine formation, gas chromatography, etc.). By constantly monitoring formaldehyde, the sensor of the present invention can quickly notify that there is a need for inspection by precision analysis.
  • Hydroxylamine salts 110 are neutralized salts of inorganic compounds selected from the group consisting of halides, nitrates, sulfates, phosphates, borates and trifluoroacetates of hydroxylamine (NH 2 OH) . These hydroxylamine salts 110 are readily available or can be synthesized. Among them, it is preferable that the volatile acid (gas) occurs upon reaction with formaldehyde, illustratively, a halogen acid salt of hydroxylamine (NH 2 OH ⁇ HCl, NH 2 OH ⁇ HBr, NH 2 OH ⁇ HF), trifluoroacetate and the like.
  • hydroxylamine salts 110 are halides, nitrates, sulfates, phosphates of NH 2 OR (R is an aromatic, cyclic or acyclic hydrocarbon compound or a derivative thereof) And a neutralized salt of an organic compound selected from the group consisting of borate and trifluoroacetate.
  • R is an aromatic, cyclic or acyclic hydrocarbon compound or a derivative thereof
  • a neutralized salt of an organic compound selected from the group consisting of borate and trifluoroacetate Among them, halogen salts (NH 2 OR ⁇ HCl, NH 2 OR ⁇ HBr, NH 2 OR ⁇ HF), trifluoroacetates and the like in which R is an aromatic benzene ring or nitrobenzene.
  • the reaction unit 120 may contain at least the hydroxylamine salt 110. However, when the non-volatile acid (liquid) is generated by the reaction of the hydroxylamine salt 110 with formaldehyde, the carbon material 130 is a non-volatile acid. Sometimes can not be adsorbed. Therefore, in addition to the hydroxylamine salts 110, the reaction unit 120 may further contain salts of volatile acids selected from the group consisting of salts of hydrochloric acid, nitric acid, carbonic acid, perchloric acid and trifluoroacetic acid. . Since the salts of these volatile acids generate volatile acids by reacting with non-volatile acids, the sensor 100 of the present invention can improve the detection capability of formaldehyde.
  • the carbon material 130 is not particularly limited as long as it is a material containing carbon whose electric resistance value changes due to the adsorption of an acid, but exemplarily includes carbon nanotubes, carbon nanohorns, graphene, fullerenes, and derivatives thereof A material selected from the group consisting of As for these, it is known that an electrical resistance value changes by adsorption of an acid. Among them, carbon nanotubes are preferable because they are easily available. As a derivative, the thing which has functional groups, such as an amine and carboxylic acid, on the surface, and the thing which covered the surface with a dispersing agent etc. is intended.
  • the carbon materials 130 overlap while having a space so that an acid can be easily adsorbed, and can form a network structure (network).
  • carbon nanotubes can be divided into single-walled, double-walled and multi-walled carbon nanotubes depending on the number of overlapping layers of graphene, but any of them can be adopted in the present invention.
  • single-walled carbon nanotubes SWCNTs are preferable because they have high electric conductivity and easily change in electric resistance value with respect to acid.
  • the content of the semiconducting carbon nanotube is preferably 10% by weight or more. More preferably, the content of semiconducting carbon nanotubes is 60% by weight or more. Thereby, the detection sensitivity of formaldehyde can be improved. More preferably, the content of the semiconducting carbon nanotube is 90% by weight or more. In particular, the content of the semiconductor single-walled carbon nanotube is preferably 10% or more, more preferably 60% or more, and still more preferably 90% or more. In addition, it is naturally preferable that all carbon nanotubes be composed of semiconductive carbon nanotubes, but even if metal carbon nanotubes are contained in the range of 5% by weight or more and less than 10% by weight, there are problems with sensor accuracy Absent.
  • the carbon material 130 should have a large surface area to promote the adsorption of the acid. From this point of view, it is desirable to enhance the dispersibility of the carbon material 130, and the carbon material 130 is partially covered with a dispersant consisting of a ⁇ conjugated low molecule, surfactant, polymer and supramolecular polymer preferable. These dispersants are known to partially cover the above-described carbon material 130 to enhance the dispersibility. As the dispersibility of the carbon material 130 on the electrode increases, the surface area that interacts with the acid increases, so formaldehyde can be detected with high accuracy.
  • the amount to be “partially” is not limited if the carbon material 130 is not completely covered, but, for example, when the carbon material 130 is a carbon nanotube, any of the range of 5% to 90% of the surface area Preferably, it is in the range of 10% to 50%.
  • Examples of ⁇ -conjugated low molecules are pyrene, anthracene, porphyrin and the like.
  • the surfactant is used to solubilize the carbon material 130 in a solvent, and illustratively sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), Sodium deoxycholate (DOC) and the like.
  • SDS sodium dodecyl sulfate
  • SDBS sodium dodecylbenzene sulfate
  • SC sodium cholate
  • DOC Sodium deoxycholate
  • Polymers are also known to solubilize the carbon material 130 in a solvent. Such polymers are illustratively polysilanes, polythiophenes, polyfluorenes and the like.
  • the supramolecular polymer is intended to be one in which monomer units are linked by noncovalent bonds, and is, for example, a supramolecular polymer represented by the following formula. Techniques for coating such supramolecular polymers on carbon nanotubes are known, and improved dispersibility has been confirmed.
  • n a linear C 8 H 17
  • m is a natural number of 2 to 200
  • M is a divalent transition metal selected from the group consisting of Cu, Ni, Pd and Pt. It is an ion.
  • dispersing agent specified concretely here is only a mere illustration, and if a dispersibility can be improved, there will be no restriction
  • the carbon material 130 is supported on an electrode 140 made of a commonly used electrode material.
  • the electrode 140 is illustratively made of a material selected from the group consisting of Au, Pt, Ag and their alloys, or a conductive carbon material such as glassy carbon.
  • the shape of the electrode 140 varies depending on the method of detecting a change in electrical resistance value, but is, for example, a comb electrode (for example, FIG. 1), a cross finger electrode or the like. For this reason, the electrode 140 is located on the substrate 160 in FIG.
  • the hydroxylamine salts 110 may be supported on a porous material.
  • a porous material may be made of a material which has no reactivity with the hydroxylamine salt 110 and has pores which the hydroxylamine salt 110 can support.
  • the material is a material selected from the group consisting of paper represented by filter paper and the like, hydrophobic polymers, hydrophilic polymers, porous glass, porous carbon materials and porous oxides. These are porous materials that are commercially available.
  • the hydrophobic polymer is, for example, polyvinylidene fluoride (PFVD), polytetrafluoroethylene (PTFE), etc., but it is preferable because the hydroxylamine salt 110 is easily supported and is not reactive.
  • the porous carbon material is, for example, a replica of the porous silica obtained by using the porous silica as a template.
  • the porous oxide is made of TiO 2 , CeO 2 , ZrO 2 , ZnO, SiO 2 or the like, but may be a hollow body or core-shell structure made of nanoparticles.
  • the porous material has a specific surface area in the range of 10 m 2 / g to 5000 m 2 / g, a pore diameter in the range of 10 nm to 100 ⁇ m, and 0.05 cm 3 / g to 0.90 cm. It has a pore volume of 3 / g or less. This allows the hydroxylamine salt 110 to be supported, which is necessary for the reaction and does not require future exchanges.
  • a spacer 170 may be positioned between the reaction unit 120 and the response unit 150 such that the hydroxylamine salt 110 and the carbon material 130 are separated.
  • the material of the spacer 170 is not particularly limited.
  • the height H of the spacer 170 may be in the range of 0.05 ⁇ m to 5000 ⁇ m as described above.
  • FIG. 2 is a schematic view showing another exemplary formaldehyde detection sensor of the present invention.
  • the sensor 200 of FIG. 2 is the same as the sensor 100 except that the method of spacing the hydroxylamine salt 110 and the carbon material 130 is different without providing the spacer 170.
  • the hydroxylamine salt 110 is patterned in the vicinity of the electrode on which the carbon material 130 is supported. Such patterning can be performed by, for example, an inkjet printer or the like. Since the spacer 170 is not provided, the sensor 200 can be miniaturized and thinned.
  • FIG. 3 is a schematic view showing still another exemplary formaldehyde detection sensor of the present invention.
  • the sensor 300 of FIG. 3 (FIG. 3A) is the same as the sensor 100 except for the method of separating the hydroxylamine salt 110 and the carbon material 130 without providing the spacer 170.
  • the hydroxylamine salt 110 is modified to the particle 310 (FIG. 3 (B)).
  • the particle diameter of the particles 310 preferably satisfies 0.05 ⁇ m or more and 5000 ⁇ m or less. If the particle size is less than 0.05 ⁇ m, the hydroxylamine salt 110 and the carbon material 130 may contact over a wide area, and the reversibility of the electrical resistance value by the acid may be impaired.
  • the particle size exceeds 5000 ⁇ m, the amount of hydroxylamine salt 110 supported on the particle surface decreases, and as a result of the decrease in the amount of acid generated, the sensitivity to formaldehyde may be impaired.
  • the particle size is in the range of 10 ⁇ m to 500 ⁇ m, more preferably 50 ⁇ m to 300 ⁇ m.
  • the particle diameter is a volume-based median diameter (d50), and can be measured by, for example, a microtrack or a laser scattering method.
  • Particles 310 for modifying hydroxylamine salts 110 are polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylamide (PAM), polyethylene terephthalate (PET), polycaprolactone, polyvinyl acetate, polyvinyl ethyl acetate, carbon, glass And a material selected from the group consisting of and silica. All of these particles are easily available. Among them, PS, PMMA and the like are preferable because they are easy to modify the hydroxylamine salt 110.
  • the hydroxylamine salt 110 is illustrated to exemplify the case of a monovalent acid salt (X in FIG. 3 represents a monovalent base), but the hydroxylamine salt 110 to be modified to the particles 310 is the above mentioned hydroxyl. It may be the same as the amine salt 110. That is, the hydroxylamine salt 110 to be modified to the particle 310 is a halide salt of NH 2 OR (R is an aromatic, cyclic or non-cyclic hydrocarbon compound or a derivative thereof), nitrate, sulfuric acid It is a neutralized salt of an organic compound selected from the group consisting of salts, phosphates, borates and trifluoroacetates.
  • an air-permeable spacer such as paper is inserted between the response unit 150 and the particles 310 modified by the hydroxylamine salt 110, and the hydroxylamine salt 110 and the carbon material 130 are inserted. It is also possible to reliably prevent physical contact with the
  • a substrate 160 having an electrode 140 is prepared.
  • the carbon material 130 is dispersed in a solvent.
  • the solvent is not particularly limited as long as it is volatile, but is exemplarily a mixed solvent of o-dichlorobenzene and toluene.
  • the carbon material 130 is coated with a dispersion medium, the above-described dispersion medium may be added.
  • the suspension is then drop cast onto the electrode 140. After drying of the solvent, the response part 150 is obtained.
  • the hydroxylamine salts 110 are then added to a solvent such as methanol and the solution is drop cast or dipped into the porous material. By removing the excess solvent by drying, a reaction unit 120 is obtained. If the spacer 170 is installed in the response part 150, and the reaction part 120 is covered on it and it fixes, the sensor 100 of this invention will be obtained.
  • the manufacturing procedure of the response unit 150 is the same as that of the sensor 100, and thus the description thereof is omitted.
  • the sensor 200 of the present invention can be obtained by masking the predetermined portion of the response unit 150 and printing the hydroxylamine salt 110 by an ink jet printer or the like.
  • the manufacturing procedure of the response unit 150 is the same as that of the sensor 100, and thus the description thereof is omitted.
  • particles 310 for modifying hydroxylamine salts 110 are prepared. Particles 310 that modify hydroxylamine salts 110 can be easily obtained by treating particles 310 modified with hydroxylamine or its derivative in an acid. If this is arrange
  • FIG. 4 is a schematic view showing the formaldehyde detection system of the present invention.
  • the formaldehyde detection system 400 of the present invention (which may hereinafter be referred to simply as the system of the present invention) comprises changes in the electrical resistance value from the formaldehyde detection sensor 100, 200, 300 of the present invention and the sensors 100, 200, 300. And detection means 410 for detecting.
  • the system 400 of the present invention is connected to a power supply 420.
  • the power source 420 may be a fixed power source, but may be a battery or the like. If a battery is employed as the power supply 420, a portable compact system 400 can be provided.
  • the detection unit 410 is not particularly limited as long as it can detect a change in the electrical resistance value, but is, for example, an ammeter or a light emitting device. If it is an ammeter, if the voltage of the power supply 420 is known, the change in the electrical resistance can be detected by measuring the magnitude of the current. If it is a light emitting device, the change in the electrical resistance value can be detected by observing the change in luminance.
  • a light emitting diode can be used simply as such a light emitting device. The use of a light emitting diode makes it possible to visually detect a change in luminance, thereby providing a portable and simple system 400.
  • the detection means 410 may be an audio alarm. If the voice alarm is set to generate voice when it changes from a predetermined electrical resistance value, detection of formaldehyde is enabled by voice.
  • the system 400 includes a control unit (not shown) in which false response data based on temperature and humidity are stored in a database in advance, and the control unit detects the sensors 100 and 200 of the present invention detected by the detection unit 410.
  • the change in the electrical resistance value of the carbon material 130 at 300 may be compared with the data stored in the database of the control unit to distinguish between a positive response and an incorrect response.
  • the acid generated in the reaction unit 120 is adsorbed to the carbon material 130 of the response unit 150 and the formaldehyde is changed by the change in electric resistance value.
  • the system 400 of the present invention may further include an air flow unit and a fan that flow air to the carbon material 130 of the response unit 150.
  • the air may be air, nitrogen, argon or the like.
  • FIG. 5 is a schematic view showing another formaldehyde detection system of the present invention.
  • Another formaldehyde detection system 500 of the present invention differs from the system 400 in that it comprises a non-formaldehyde detection sensor 510 (hereinafter referred to simply as a non-detection sensor).
  • the non-detection sensor 510 is provided with an electrode carrying the carbon material 130, and is arranged so that the acid generated in the reaction part 120 of the sensor 100, 200, 300 of the present invention is not supplied.
  • the non-detection sensor 510 may not respond to formaldehyde, but may respond to other environments such as temperature and humidity as the sensors 100, 200, and 300.
  • the detecting means 410 is a change in the electrical resistance of the carbon material 130 (based on formaldehyde) in the sensor 100, 200, 300 of the present invention, and a change in the electrical resistance of the carbon material in the non-detection sensor 510 (based on temperature and humidity). Can be distinguished from the positive response and the false response by respectively detecting and comparing. Also here, if the detection means 410 is an ammeter, by comparing the magnitudes of the current values, if the detection means 410 is a light emitting device, the positive response is easily mistaken by comparing the magnitudes of luminance. Since the response can be distinguished, a system for detecting only formaldehyde with high accuracy can be provided. Such comparison may be performed visually, or may be automatically performed by a separately provided control unit (not shown) and displayed on a display unit (not shown). it can.
  • the non-detection sensor 510 is configured to detect an incorrect response other than formaldehyde, but as the non-detection sensor 510, a resistance having the same electric resistance value as the electric resistance value in the initial state of the sensors 100, 200, 300 is used. You may use. In this case, although it is difficult to distinguish between the positive response and the false response, formaldehyde is easily detected from the current value from the detection means 410 connected to each of the sensors 100, 200, 300 and the non-detection sensor 510, the change in luminance, etc. Can be detected.
  • reagents and Materials The reagents and materials used in the following examples, comparative examples and reference examples will be described. All reagents were special grade reagents, purchased from Sigma Aldrich, Tokyo Chemical Industry Co., Ltd., Alfa Aesar, and used as they were without purification. Three types shown in the following formula were used as hydroxylamine salts.
  • Single-walled carbon nanotubes were purchased from Nano Integris of the United States prepared by the HiPco (high pressure CO) method utilizing the carbon monoxide inhomogenization reaction. SWCNTs as in Yomogida, Y. Et al., Nat. Commun. , And separated into a semiconductor type and a metal type, based on US Pat.
  • the supramolecular polymer shown in the following formula is described by Ishihara, S. et al. Et al. Am. Chem. Soc. , 2016, 138, 8221-8227.
  • n represents linear C 8 H 17
  • the average value of m was about 15-20.
  • As the electrode a comb-shaped electrode (No. CC1. W1 manufactured by BVI Technologies) made of Au formed on an aluminum oxide ceramic substrate was used. The inter-electrode distance was 200 ⁇ m.
  • Example 1 In Example 1, NH 2 OH ⁇ HCl (hydroxylamine hydrochloride) is used as the hydroxylamine salt 110, and SWCNT (containing 95% by weight of semiconductor type and 5% by weight of metal type) as carbon material 130.
  • a formaldehyde detection sensor 100 shown in FIG. 1 was produced, in which a hydroxylamine salt 110 was supported on a PVDF membrane filter.
  • FIG. 6 is a figure which shows a mode that the formaldehyde detection sensor of this invention is manufactured.
  • NH 2 OH ⁇ HCl was added to methanol until saturation (about 100 mg / mL). This solution was drop cast onto a PVDF membrane filter (pore diameter 0.2 ⁇ m, manufactured by Merck Millipore, Omnipore membrane filter, JGWP). The methanol was dried in the air to produce a reaction unit (120 in FIG. 1).
  • the NH 2 OH ⁇ HCl supported on the PVDF membrane filter was about 0.5 mg. It should be noted that the amount of 0.5 mg is extremely excessive compared to formaldehyde (HCHO) present in the sub-ppm order in the atmosphere.
  • the PVDF membrane filter carrying NH 2 OH ⁇ HCl was cut, and the response part was covered via the spacer (FIG. 6 (c)). The PVDF membrane filter was fixed with tape so as not to come off (FIG. 6 (d)). The appearance of the side of the sensor of Example 1 obtained in this manner is shown in FIG.
  • the sensor of Example 1 was connected to a power supply and an ammeter to detect formaldehyde. Specifically, gas detection was performed by connecting the comb electrodes of the sensor to an EmStat potentiostat with a PalmSens MUX 16 multiplexer, using a test clip fixed in a glass chamber. A constant potential of 0.1 V was applied to the comb electrode, and the change in current value when the sensor was exposed to gas was recorded using PSTrace Softwere (v. 4.8).
  • Example 2 In Example 2, NH 2 OH ⁇ HCl (hydroxylamine hydrochloride) is used as the hydroxylamine salt 110, and SWCNT (containing 95% by weight of semiconductor type and 5% by weight of metal type) as carbon material 130.
  • a formaldehyde detection sensor shown in FIG. 1 was prepared, in which hydroxylamine salts 110 were supported on filter paper.
  • Example 2 a sensor was manufactured in the same manner as in Example 1 except that NH 2 OH ⁇ HCl was supported on filter paper (What filter made by Whatman, qualitative filter paper) in place of the PVDF membrane filter in Example 1. Formaldehyde was detected from the sensor of Example 2 in the same manner as in Example 1 under the measurement condition 1 shown in Table 2. The results are shown in FIG.
  • Comparative Example 3 uses NH 2 OH ⁇ HCl (hydroxylamine hydrochloride) as the hydroxylamine salt 110 and SWCNT as the carbon material 130 (however, containing 95% by weight of semiconductor type and 5% by weight of metal type) However, a sensor in which SWCNT was contacted with NH 2 OH ⁇ HCl was manufactured.
  • NH 2 OH ⁇ HCl hydroxylamine hydrochloride
  • Example 4 In Example 4, a PVDF membrane filter is used using o-benzhydroxylamine hydrochloride as the hydroxylamine salt 110 and SWCNT as the carbon material 130 (however, containing 95% by weight of semiconductor type and 5% by weight of metal type) A formaldehyde detection sensor shown in FIG. 1 was prepared, which had hydroxylamine salt 110 supported thereon.
  • a sensor was produced in the same manner as in Example 1 except that o-benzhydroxylamine hydrochloride was used in place of NH 2 OH ⁇ HCl in Example 1.
  • o-Benzhydroxylamine hydrochloride was dissolved in methanol (67 mg / mL).
  • the amount of o-benzhydroxylamine hydrochloride supported on the PVDF membrane filter was about 0.5 mg.
  • Formaldehyde was detected under the measurement conditions 1 shown in Table 2 in the same manner as in Example 1 using the sensor of Example 4. The results are shown in FIG.
  • Example 5 PVDF using o-4-nitrobenzenehydroxylamine hydrochloride as the hydroxylamine salt 110 and SWCNT as the carbon material 130 (provided that the semiconductor type is 95% by weight and the metal type is 5% by weight) is used.
  • a formaldehyde detection sensor shown in FIG. 1 was manufactured, in which hydroxylamine salts 110 were supported on a membrane filter.
  • Example 5 A sensor was produced in the same manner as in Example 1 except that o-4-nitrobenzenehydroxylamine hydrochloride was used in place of NH 2 OH ⁇ HCl in Example 1. o-4-Nitrobenzenehydroxylamine hydrochloride was dissolved in methanol (20 mg / mL). The amount of o-4-nitrobenzenehydroxylamine hydrochloride supported on the PVDF membrane filter was about 0.5 mg. Formaldehyde was detected under the measurement conditions 1 shown in Table 2 in the same manner as in Example 1 using the sensor of Example 5. The results are shown in FIG.
  • Example 6 In Example 6, in the same manner as in Example 1, NH 2 OH ⁇ HCl as hydroxylamine salt 110 and SWCNT as carbon material 130 (however, containing 10% by weight of semiconductor type and 90% by weight of metal type) A formaldehyde detection sensor shown in FIG. 1 was produced, in which a hydroxylamine salt 110 was supported on a PVDF membrane filter. Formaldehyde was detected under the measurement conditions 2 shown in Table 2 in the same manner as in Example 1 using the sensor of Example 6. The results are shown in FIG.
  • Example 7 In Example 7, in the same manner as in Example 1, NH 2 OH ⁇ HCl as the hydroxylamine salt 110, SWCNT as the carbon material 130 (provided that the semiconductor type is 66.7% by weight and the metal type is 33.3%)
  • the formaldehyde detection sensor shown in FIG. 1 was prepared by supporting the hydroxylamine salt 110 on a PVDF membrane filter. Formaldehyde was detected from the sensor of Example 7 in the same manner as in Example 1 under the measurement condition 2 shown in Table 2. The results are shown in FIG.
  • Example 8 SWCNT coated with NH 2 OH ⁇ HCl (hydroxylamine hydrochloride) as the hydroxylamine salt 110 and a supramolecular polymer as the carbon material 130 (however, 95% by weight of semiconductor type and 5% by weight of metal type)
  • the formaldehyde detection sensor shown in FIG. 1 was prepared by supporting the hydroxylamine salt 110 on a PVDF membrane filter.
  • Supramolecular polymer-coated SWCNTs were prepared as follows. SWCNT (0.02 mg) and an anthracene ligand (0.1 mg) were suspended in 0.2 mL of a mixed solvent of o-dichlorobenzene (o-DCB) and toluene. The o-DCB and toluene were mixed at a ratio of 4: 1 (volume ratio). Then, a methanol solution (10.6 mM, 16.4 ⁇ L) in which copper acetate monohydrate was dissolved was added to this to form the supramolecular polymer described above. The suspension was sonicated for 30 minutes at room temperature.
  • o-DCB o-dichlorobenzene
  • a methanol solution (10.6 mM, 16.4 ⁇ L) in which copper acetate monohydrate was dissolved was added to this to form the supramolecular polymer described above.
  • the suspension was sonicated for 30 minutes at room temperature.
  • the suspension was then applied to a centrifuge (6238 ⁇ g, 10000 rpm, 15 minutes, Rev Spin 102 from Revolutionary Science). The supernatant (top 50%) was collected to obtain a suspension containing SWCNTs coated with supramolecular polymer.
  • the subsequent procedure is the same as that of the first embodiment, so the description will be omitted.
  • Formaldehyde was detected from the sensor of Example 8 obtained in this manner, in the same procedure as in Example 1, under measurement conditions 3 to 14 shown in Table 2. The results are shown in FIGS. 10 to 24.
  • Reference Example 9 In Reference Example 9, a non-formaldehyde detection sensor was manufactured in the same manner as in Example 8 except that hydroxylamine salt 110 was not used. Formaldehyde was detected from the sensor of Reference Example 9 obtained in this manner in the same manner as in Example 1 under measurement conditions 4, 13 and 14 shown in Table 2. The results are shown in FIG. 11, FIG. 23 and FIG.
  • Example 10 polystyrene particles modified with hydroxylamine salts represented by the following formula as hydroxylamine salts 110, and SWCNTs coated with a supramolecular polymer as the carbon material 130 (however, 95% by weight of semiconductor type, 5% of metal type) %, And the formaldehyde detection sensor 300 shown in FIG. 3 was manufactured.
  • the hydroxylamine salts modified polystyrene particles were prepared as follows. 100% of polystyrene particles modified by hydroxylamine derivative shown by the following formula (manufactured by Sigma Aldrich, 641014-5G, 100 to 200 mesh, modification amount 1.0 to 1.5 mmol / g, cross-linked with 1% divinylbenzene), 3% The mixture was stirred in methanol solution of hydrochloric acid (20 mL) at room temperature for 1 hour to convert hydroxylamine to hydrochloride. Subsequently, the mixture was filtered through a glass filter, and excess hydrochloric acid was sufficiently washed with a large amount of methanol, and then vacuum drying was performed for 1 hour to obtain particles modified with hydroxylamine salts.
  • FIG. 7 is a view showing the response characteristics of the sensors according to Examples 1 and 2 and Comparative Example 3 to formaldehyde.
  • the formaldehyde detection sensor of the present invention contains at least a hydroxylamine salt, a reaction part that reacts with formaldehyde to generate an acid, and a response part that includes an electrode supporting a carbon material whose electric resistance value changes. It was shown that formaldehyde can be detected reproducibly and reversibly by providing and separating the hydroxylamine salt and the carbon material.
  • FIG. 8 is a diagram showing the response characteristics of the sensors according to Examples 1 and 4 to formaldehyde.
  • hydroxylamine salts in the reaction part can detect formaldehyde regardless of the type.
  • hydroxylamine salts it has been found that hydroxylamine hydrochloride is excellent in sensitivity and repeating characteristics to formaldehyde.
  • FIG. 9 is a diagram showing the response characteristics of the sensors according to Examples 1 and 6 to formaldehyde.
  • the carbon material of the response portion preferably contains at least a semiconductor type among carbon nanotubes, and preferably contains 60% by weight or more. It was done.
  • FIG. 10 is a diagram showing the response characteristics of the sensors according to Examples 1 and 8 to formaldehyde.
  • the current value showed a positive change, and when air flowed, the current showed a behavior of returning to the original value.
  • the sensor of Example 8 showed the largest change in the current value. It is considered that this is because the carbon nanotube is coated with the supramolecular polymer to form a network structure in which the carbon nanotube is more dispersed, the specific surface area is increased, and the reaction with the acid is promoted.
  • the carbon material of the response part is preferably coated with a dispersion medium such as a supramolecular polymer, from the viewpoint of improving the sensitivity to formaldehyde.
  • FIG. 11 is a diagram showing the response characteristics of the sensors according to Example 8 and Reference Example 9 to formaldehyde.
  • the sensor of Reference Example 9 did not respond to formaldehyde at all, and functioned as a non-formaldehyde detection sensor.
  • the sensor of Example 8 positively increased the current value in response to formaldehyde, but returned to the original current value when air was flowed. This also shows that the sensor of the present invention is effective for repeated detection of formaldehyde and can always monitor formaldehyde.
  • FIG. 12 is a view showing the formaldehyde concentration dependency of the response characteristic to formaldehyde of the sensor according to Example 8.
  • FIG. 13 is a diagram showing the correlation between the formaldehyde concentration of the sensor according to Example 8 and the increase in the current value based on FIG.
  • FIG. 14 shows a partially enlarged view of FIG. FIG. 14 shows the standard deviation of the change in current value at formaldehyde concentration of 0 ppm and 0.05 ppm.
  • the sensor of Example 8 also responded to extremely low concentration of formaldehyde with a concentration of 0.05 ppm, and showed a change in current value.
  • the above-mentioned concentration of 0.05 ppm corresponds to the limit value of formaldehyde concentration that can be generated at a reliable concentration in this experimental system.
  • the change in the current value showed a tendency to saturate after the formaldehyde concentration was 7 ppm.
  • LoD mean blank + 1.645 ⁇ ⁇ blank + 1.645 ⁇ lowest conc.
  • mean blank is the average value of the change in the current value of the response when introducing formaldehyde-free air
  • ⁇ blank is the change in the current value of the response when introducing formaldehyde-free air Standard deviation, ⁇ lowest conc. Is the standard deviation of the change in current value of the response when introducing the lowest concentration (here, 0.05 ppm) of formaldehyde.
  • the detection limit (LoD) of the change in current value of the sensor was calculated to be 0.92%, and this value was found to correspond to 0.016 ppm. From this, it was shown that, using the sensor of the present invention, theoretically, a trace amount of formaldehyde which is sufficiently lower than the WHO standard of 0.08 ppm can be detected, and the sensitivity to formaldehyde is extremely excellent.
  • FIG. 15 is a diagram showing the response characteristic to water (420 ppm) of the sensor according to Example 8.
  • FIG. 16 is a diagram showing the response characteristic to water (3200 ppm) of the sensor according to Example 8.
  • FIG. 17 is a diagram showing the response characteristic to methanol (1200 ppm) of the sensor according to Example 8.
  • FIG. 18 is a diagram showing the response characteristic to ethanol (440 ppm) of the sensor according to Example 8.
  • FIG. 19 is a diagram showing the response characteristic to tetrahydrofuran (860 ppm) of the sensor according to Example 8.
  • FIG. 20 is a diagram showing the response characteristic of the sensor according to Example 8 to toluene (720 ppm).
  • FIG. 21 is a view showing a list of response characteristics of the sensor according to the eighth embodiment to various gases.
  • the sensor of the present invention shows some response to various gases, but referring to FIG. 21, the sensor of the present invention is formaldehyde even though it has extremely low concentration of formaldehyde. It can be seen that it responds selectively and sensitively.
  • the sensitivity to formaldehyde at a concentration of 0.19 ppm is equivalent to or extremely high compared to the sensitivity to other gases having a concentration of tens to hundreds of thousands of times of 0.19 ppm. This indicates that the sensitivity to formaldehyde is about 10 4 to 10 6 times greater than the sensitivity to other gases.
  • gases other than formaldehyde inject electrons into the carbon material (here, a network of SWCNTs) and cause them to swell, so the sensor of the present invention detects the above gases other than formaldehyde, It showed a response characteristic reverse to that of formaldehyde (ie, a decrease in conductivity). This also shows that the sensor of the present invention can selectively detect only formaldehyde with high accuracy.
  • FIG. 22 is a diagram showing the influence of humidity on the response characteristic of the sensor according to the eighth embodiment.
  • the sensor of Example 8 showed a change in current value in response to formaldehyde regardless of relative humidity, but the lower the relative humidity (ie, the more dry air), the more formaldehyde
  • the relative humidity is 12.5% to 68%)
  • the influence of humidity on the sensor of the present invention is small and it can be said that there is no problem.
  • the relative humidity can be easily measured by a separately prepared hygrometer, and the data may be used for correction of the formaldehyde sensor.
  • FIG. 23 is a diagram comparing the change in relative humidity and the response to formaldehyde between the sensors of Example 8 and Reference Example 9.
  • FIG. 24 is a diagram comparing the response to temperature change between the sensors of Example 8 and Reference Example 9.
  • the response characteristics of the sensor of the present invention depend on the relative humidity.
  • the sensor of Example 8 having a reaction part containing hydroxylamine salts and the sensor of Reference Example 9 having no reaction part respond to relative humidity and temperature. Although differences in strength were observed, it was found that they showed similar response tendencies. From this, when the formaldehyde detection sensor of the present invention and the non-formaldehyde detection sensor are simultaneously used and their response characteristics are compared, the positive response (response by formaldehyde) and the false response (response by relative humidity or temperature) can be easily obtained. It has been shown that it can provide a formaldehyde detection system that accurately distinguishes That is, if the sensor of Example 8 responds and the sensor of Reference Example 9 does not respond, it can be determined that formaldehyde is detected.
  • FIG. 25 is a diagram showing the response characteristic to formaldehyde of the sensor according to Example 10.
  • Example 11 the light emission is connected to the sensor of Example 8 as the formaldehyde detection sensor 100, the sensor of Reference Example 9 as the formaldehyde non-detection sensor 510, and the sensors of Example 8 and Reference 9 as the detection means 410.
  • the formaldehyde detection system 500 shown in FIG. 5 was manufactured, including the device (LED).
  • the system of the present invention was connected to a 3.0V button cell. Formaldehyde was introduced into the system of the present invention, and changes in the LED at that time were examined. The results are shown in FIG.
  • FIG. 26 is a view showing a formaldehyde detection system according to Example 11 and a state of response to formaldehyde.
  • the resistances of the sensors of Example 8 and Reference Example 9 were all set to 20 k ⁇ . At this time, LEDs 1 and 2 had similar brightness in appearance (upper left in FIG. 26).
  • the resistance of the sensor of Example 8 decreased to 10 k ⁇ , but the resistance of the sensor of Reference Example 9 did not change.
  • the LED 1 connected to the sensor of Example 8 became brighter than the LED 2 connected to the sensor of Reference Example 9 (upper right in FIG. 26).
  • the system of the present invention can detect formaldehyde selectively and with high accuracy by using a formaldehyde detection sensor.
  • Example 12 The twelfth embodiment is the same as the system of the eleventh embodiment except that a resistance of 20 k ⁇ is simply used as the formaldehyde non-detection sensor 510, and therefore the description thereof is omitted. Similar to Example 11, formaldehyde was introduced into the system, and changes in the LED at that time were examined. The results are shown in FIG.
  • FIG. 27 is a diagram showing a state of luminance of the LED before introducing formaldehyde (A) of the system of Example 12, and a state of luminance of the LED after introducing formaldehyde (B).
  • the formaldehyde detection sensor of the present invention can selectively detect formaldehyde with high accuracy in an indoor environment. Since the formaldehyde detection sensor of the present invention can always monitor formaldehyde, it can function as an alarm type detection sensor. Such a formaldehyde detection sensor that detects electric resistance can be easily combined with various electronic devices and detection devices, and can provide an inexpensive, small-sized, low-power-consumption formaldehyde detection system. For example, if it mounts in radio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

【課題】ホルムアルデヒドを選択的かつ高精度に、常にモニタリング可能なホルムアルデヒド検知センサを提供すること。 【解決手段】本発明によるホルムアルデヒド検知センサは、少なくともヒドロキシルアミン塩類を含有し、ホルムアルデヒドと反応し、酸を発生させる反応部と、反応部で発生した酸によって電気抵抗値が変化する炭素材料を担持した電極を備える応答部とを備え、ヒドロキシルアミン塩類と炭素材料とは離間している。

Description

ホルムアルデヒド検知センサ、および、それを用いたシステム
 本発明は、電気抵抗値の変化を利用したホルムアルデヒド検知センサ、および、それを用いたシステムに関する。
 ホルムアルデヒドは、揮発性有機化合物(VOC)の1つであり、一定量を超えると人体に有害であることが知られている。ホルムアルデヒドは、例えば、合板、ラッカー、建材などに含有され、室内において大気中に放出されて、シックハウス症候群、がんなどの病気を引き起こし得る。世界保健機構(WHO)によれば、室内におけるホルムアルデヒド濃度基準は、0.08ppm以下とされている。
 このようなホルムアルデヒドを簡易に検出する方法として、検知管が知られている(例えば、特許文献1を参照)。特許文献1によれば、検知管には、リン酸ヒドロキシルアミンとホルムアルデヒドとの反応を利用する充填剤が充填されており、反応によって変色するよう構成されている。しかしながら、このような検知管では、所望の場所にてホルムアルデヒドを検出することはできるが、随時ホルムアルデヒドをモニタリングすることはできず、使い捨てである。
 一方、カーボンナノチューブは、室温において半導体性を示し、その表面にガス等が吸着することにより、容易に電気抵抗値が変化することが知られている。このようなカーボンナノチューブを用いたセンサが開発されている(例えば、特許文献2および3を参照)。特許文献2によれば、検知したい化合物と反応する基がグラフトされたカーボンナノチューブが電極上に配置されたセンサを開示しており、電気抵抗値の変化によって揮発性有機化合物などの化合物を検知する。特許文献3によれば、カーボンナノチューブを無線周波数識別タグに搭載し、抵抗率の変化によって、揮発性有機化合物などを検知する。しかしながら、特許文献2および3のいずれも、ホルムアルデヒドのみに選択的ではない。
 カーボンナノチューブを用いた別のホルムアルデヒド検知センサが開発されている(例えば、非特許文献1を参照)。非特許文献1は、カーボンナノチューブがテトラフルオロヒドロキノン(TFQ)で官能化されており、乾燥空気中、0.15ppmのホルムアルデヒドに対して導電率が20%向上し、ホルムアルデヒドに対して高い選択性を有することを報告している。しかしながら、相対湿度が20%以上になると、感度が大幅に低下するため、通常の室内での使用に不向きである。
 したがって、ホルムアルデヒドに対して高い感度を示し、選択性に優れ、常にモニタリング可能なホルムアルデヒド検知センサの開発が望まれている。
特開2003-287500号公報 特開2012-504227号公報 特表2017-509859号公報
Shiら,Sens.Actuator B-Chem.,2013,177,370-375
 以上から、本発明の課題は、ホルムアルデヒドを選択的かつ高精度に、常にモニタリング可能なホルムアルデヒド検知センサを提供することである。
 本発明のホルムアルデヒド検知センサは、少なくともヒドロキシルアミン塩類を含有し、ホルムアルデヒドと反応し、酸を発生させる反応部と、前記反応部で発生した酸によって電気抵抗値が変化する炭素材料を担持した電極を備える応答部とを備え、前記ヒドロキシルアミン塩類と前記炭素材料とは離間しており、これにより上記課題を解決する。
 前記ヒドロキシルアミン塩類は、ヒドロキシルアミン(NHOH)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される中和塩であってもよい。
 前記ヒドロキシルアミン塩類は、NHOR(Rは、芳香族、環式または非環式の炭化水素化合物、または、それらの誘導体である)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される中和塩であってもよい。
 前記炭素材料は、カーボンナノチューブ、カーボンナノホーン、グラフェン、フラーレンおよびそれらの誘導体からなる群から選択されてもよい。
 前記カーボンナノチューブは、半導体型カーボンナノチューブを10重量%以上含有してもよい。
 前記カーボンナノチューブは、半導体型カーボンナノチューブを60重量%以上含有してもよい。
 前記炭素材料は、π共役系低分子、界面活性剤、ポリマーおよび超分子ポリマーからなる群から選択される分散剤によって被覆されていてもよい。
 前記超分子ポリマーは次式で表されてもよい。
Figure JPOXMLDOC01-appb-C000002
 ここで、nは直鎖状のC17を表し、mは、2~200の自然数であり、Mは、Cu、Ni、PdおよびPtからなる群から選択される2価の遷移金属イオンである。
 前記ヒドロキシルアミン塩類は、多孔質材料に担持されていてもよい。
 前記多孔質材料は、紙、疎水性ポリマー、親水性ポリマー、多孔質ガラス、多孔質炭素材料および多孔質酸化物からなる群から選択されてもよい。
 前記反応部と前記応答部との間にスペーサを有してもよい。
 前記ヒドロキシルアミン塩類は、粒子径が0.05μm以上5000μm以下の範囲を有する粒子に修飾されていてもよい。
 前記粒子は、ポリスチレン(PS)、ポリメタクリル酸メチル(PMMA)、ポリアクリルアミド(PAM)、ポリエチレンテレフタレート(PET)、ポリカプロラクトン、ポリ酢酸ビニル、ポリビニルエチルアセテート、炭素、ガラスおよびシリカからなる群から選択される材料からなってもよい。
 前記反応部は、塩酸、硝酸、炭酸、過塩素酸およびトリフルオロ酢酸の塩からなるからなる群から選択される揮発性酸の塩をさらに含有してもよい。
 本発明のホルムアルデヒド検知システムは、ホルムアルデヒド検知センサと検出手段とを備え、前記ホルムアルデヒド検知センサは、上述のホルムアルデヒド検知センサであり、前記検出手段は、前記ホルムアルデヒド検知センサからの電気抵抗値の変化を検出し、これにより上記課題を解決する。
 前記ホルムアルデヒド検知センサは、電源に接続されており、前記検出手段は、電流計または発光装置であってもよい。
 前記発光装置は、発光ダイオードであってもよい。
 炭素材料を担持した電極を備えるホルムアルデヒド非検知センサをさらに備え、前記ホルムアルデヒド非検知センサは、前記反応部で発生した酸が供給されないように配置されていてもよい。
 前記検出手段は、前記ホルムアルデヒド検知センサからの電気抵抗値の変化と、前記ホルムアルデヒド非検知センサからのそれとを比較し、ホルムアルデヒドによる応答と前記ホルムアルデヒド以外の応答とを区別してもよい。
 前記ホルムアルデヒド検知センサにおける前記応答部の前記炭素材料にエアをフローし、前記炭素材料に吸着した酸を除去するエアフロー部をさらに備えてもよい。
 本発明のホルムアルデヒド検知センサは、反応部で発生した酸を応答部の炭素材料の電気抵抗値の変化によって検出できる。特に、反応部にヒドロキシルアミン塩類を採用することにより、ホルムアルデヒドに選択的に反応し、酸を発生させることができるので、本発明のセンサは、ホルムアルデヒドを選択的に検知できる。また、炭素材料は、室温下、空気中においても、実測値で0.05ppmのホルムアルデヒドを検知でき、理論的には0.016ppmのホルムアルデヒドに対しても検知できるので、極めて高精度な検知を可能にする。さらに、炭素材料に吸着した酸を空気等のフローによって単に除去するだけで、本発明のセンサを繰り返し使用することもできる。本発明のセンサを各種検出装置と組み合わせれば、ホルムアルデヒド検知システムを提供できる。
本発明の例示的なホルムアルデヒド検知センサを示す模式図 本発明の別の例示的なホルムアルデヒド検知センサを示す模式図 本発明のさらに別の例示的なホルムアルデヒド検知センサを示す模式図 本発明のホルムアルデヒド検知システムを示す模式図 本発明の別のホルムアルデヒド検知システムを示す模式図 本発明のホルムアルデヒド検知センサを製造する様子を示す図 実施例1,2及び比較例3によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例1、4~5によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例1、6~7によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例1および8によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例8および参考例9によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例8によるセンサのホルムアルデヒドに対する応答特性のホルムアルデヒド濃度依存性を示す図 図12に基づく、実施例8によるセンサのホルムアルデヒド濃度と電流値の増大との相関関係を示す図 図13の一部拡大図 実施例8によるセンサの水(420ppm)に対する応答特性を示す図 実施例8によるセンサの水(3200ppm)に対する応答特性を示す図 実施例8によるセンサのメタノール(1200ppm)に対する応答特性を示す図 実施例8によるセンサのエタノール(440ppm)に対する応答特性を示す図 実施例8によるセンサのテトラヒドロフラン(860ppm)に対する応答特性を示す図 実施例8によるセンサのトルエン(720ppm)に対する応答特性を示す図 実施例8によるセンサの各種ガスに対する応答特性の一覧を示す図 実施例8によるセンサの応答特性に及ぼす湿度の影響を示す図 相対湿度の変化およびホルムアルデヒドへの応答について、実施例8および参考例9のセンサで比較した図 温度変化への応答について、実施例8および参考例9のセンサで比較した図 実施例10によるセンサのホルムアルデヒドに対する応答特性を示す図 実施例11によるホルムアルデヒド検知システムと、ホルムアルデヒドに対する応答の様子とを示す図 実施例12のシステムのホルムアルデヒドを導入する前のLEDの輝度の様子(A)およびホルムアルデヒドを導入した後のLEDの輝度の様子(B)を示す図
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の番号を付し、その説明を省略する。
 (実施の形態1)
 実施の形態1では、本発明のホルムアルデヒド検知センサについて説明する。
 図1は、本発明の例示的なホルムアルデヒド検知センサを示す模式図である。
 本発明のホルムアルデヒド検知センサ100(以降では単に本発明のセンサと称する場合がある)は、検知すべきホルムアルデヒドと反応するヒドロキシルアミン塩類110を少なくとも含有し、ホルムアルデヒドとの反応によって酸を生じる反応部120と、反応部120で発生した酸によって電気抵抗値が変化する炭素材料130を担持した電極140を備える応答部150とを備える。さらに、本発明のセンサ100では、ヒドロキシルアミン塩類110と炭素材料130とが離間していることを特徴とする。なお、図1では、ヒドロキシルアミン塩類110を分かりやすさのために模式的にドットで示す。
 本願発明者らは、特許文献1に示されるようにホルムアルデヒドがリン酸ヒドロキシルアミンと反応することを利用し、それによって生成した酸がカーボンナノチューブの電気抵抗値を変化させ、ホルムアルデヒドを検知するためのセンサとして機能することに着目した。しかしながら、本願発明者らは、後述する比較例3に示すように、リン酸ヒドロキシルアミン等のヒドロキシルアミン塩類110とカーボンナノチューブ等の炭素材料130とが接触している場合、電気抵抗値の変化は見られるものの、ホルムアルデヒドに応答して電気抵抗が可逆的に変化するような現象が再現性よく生じないために、センサとして機能せず、ヒドロキシルアミン塩類110と炭素材料130とが離間している場合のみ、電気抵抗値の変化が生じ、センサとして機能することを見出した。本願明細書において、離間とは、物理的に接触していない状態を意図し、反応部120で発生した酸が応答部150に導入されれば離間の距離は特に制限はないが、例示的には、0.05μm以上5000μm以下の範囲である。
 ここで、本発明のセンサ100の動作原理を説明する。本発明のセンサ100に検知すべきホルムアルデヒドが導入されると、反応部120において、ヒドロキシルアミン塩類110とホルムアルデヒドとが次式にしたがって反応し、酸として揮発性の塩酸が発生する。ここでは、簡単のためヒドロキシルアミン塩類110として後述するヒドロキシルアミン塩酸塩の場合を説明するが、いずれのヒドロキシルアミン塩類110であっても、同様の反応によって酸を発生する。
 HCHO+NHOH・HCl→HC=NOH+HO+HCl
 次いで、発生した塩酸は、応答部150にすぐさま拡散し、炭素材料130に吸着する。炭素材料130の電気伝導率は、酸が吸着することによって、上昇する。このような電気伝導率の変化が生じれば、ホルムアルデヒドが存在することを検知できる。本発明では、反応部120に用いるヒドロキシルアミン塩類110は、ホルムアルデヒド以外のメタノール、エタノール、トルエン、テトラヒドロフラン(THF)に代表されるVOCには反応しないので、ホルムアルデヒドのみを選択的かつ高精度に検知できる。
 なお、ヒドロキシルアミン塩類110は、ホルムアルデヒド以外のアルデヒドやケトンと反応し、酸を発生する可能性があるが、本センサによってホルムアルデヒドの存在が示唆された場合、ホルムアルデヒド以外のアルデヒドやケトン類では干渉されない他の精密分析法(例えば、ルチジン生成による呈色法やガスクロマトグラフィーなど)を行うことにより、ホルムアルデヒドの存在を断定できる。本発明のセンサは、ホルムアルデヒドを常時モニタすることで、精密分析法による検査の必要性があることをいち早く知らせることができる。
 ヒドロキシルアミン塩類110は、ヒドロキシルアミン(NHOH)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される無機化合物の中和塩である。これらのヒドロキシルアミン塩類110は、容易に入手または合成可能である。中でも、ホルムアルデヒドと反応した際に揮発性の酸(気体)が発生するものが好ましく、例示的には、ヒドロキシルアミンのハロゲン酸塩(NHOH・HCl、NHOH・HBr、NHOH・HF)、トリフルオロ酢酸塩等である。
 あるいは、ヒドロキシルアミン塩類110は、NHOR(Rは、芳香族、環式または非環式の炭化水素化合物、または、それらの誘導体である)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される有機化合物の中和塩である。中でも、Rが芳香族のベンゼン環またはニトロベンゼンであるハロゲン酸塩(NHOR・HCl、NHOR・HBr、NHOR・HF)、トリフルオロ酢酸塩等である。
 反応部120は、少なくともヒドロキシルアミン塩類110を含有すればよいが、ヒドロキシルアミン塩類110とホルムアルデヒドとの反応によって不揮発性の酸(液体)が発生する場合、炭素材料130が、不揮発性の酸を効率的に吸着できない場合がある。このため、反応部120は、ヒドロキシルアミン塩類110に加えて、塩酸、硝酸、炭酸、過塩素酸およびトリフルオロ酢酸の塩からなる群から選択される揮発性酸の塩をさらに含有してもよい。これら揮発性酸の塩は、不揮発性の酸と反応することによって、揮発性の酸を発生するので、本発明のセンサ100は、ホルムアルデヒドの検知能力を向上できる。
 炭素材料130は、酸の吸着によって電気抵抗値が変化する炭素を含有する材料であれば特に制限はないが、例示的には、カーボンナノチューブ、カーボンナノホーン、グラフェン、フラーレン、および、これらの誘導体からなる群から選択される材料である。これらは、酸の吸着によって電気抵抗値が変化することが知られている。中でも、カーボンナノチューブは入手が容易であり好ましい。誘導体としては、表面にアミン、カルボン酸等の官能基を有するものや、表面を分散剤等により被覆したものを意図する。
 炭素材料130は、酸が吸着しやすいよう、空間を有しながら重なりあっていることが望ましく、網目構造体(ネットワーク)を形成し得る。
 また、カーボンナノチューブは、グラフェンの重なりの層数によって、単層、二層、多層カーボンナノチューブと分けられるが、本発明ではいずれも採用できる。中でも、単層カーボンナノチューブ(SWCNT)は、高い電気伝導度を有しており、酸に対して電気抵抗値の変化を生じやすいため好ましい。
 カーボンナノチューブには、半導体型および金属型の2種類あることが知られている。本発明のセンサ100に半導体型カーボンナノチューブを採用する場合には、半導体型カーボンナノチューブの含有量が10重量%未満である場合、酸に対する電気抵抗値の変化を十分に得られない可能性があるため、10重量%以上であることが好ましい。さらに好ましくは、半導体型カーボンナノチューブの含有量が60重量%以上である。これにより、ホルムアルデヒドの検知感度を向上させることができる。なお好ましくは、半導体型カーボンナノチューブの含有量は90重量%以上である。特に、半導体型単層カーボンナノチューブの含有量が、10%以上であることが好ましく、60%以上であることがより好ましく、90%以上であることがさらに好ましい。
 また、カーボンナノチューブは、当然ながらすべて半導体型カーボンナノチューブから構成されることが好ましいが、5重量%以上10重量%未満の範囲で金属型カーボンナノチューブを含有していても、センサの精度に問題はない。
 炭素材料130は、酸の吸着を促進するよう、表面積が大きい方がよい。この観点から、炭素材料130の分散性を高めることが望ましく、炭素材料130が、π共役系低分子、界面活性剤、ポリマーおよび超分子ポリマーからなる分散剤によって部分的に被覆されていることが好ましい。これらの分散剤は、上述する炭素材料130を部分的に被覆し、分散性を高めることが知られている。電極上の炭素材料130の分散性が高まると、酸と相互作用する表面積が増大するため、ホルムアルデヒドを高精度に検知できる。なお、「部分的」とする量は、炭素材料130が完全に被覆されていなければよいが、例えば、炭素材料130がカーボンナノチューブである場合、表面積の5%以上90%以下の範囲のいずれか、好ましくは、10%以上50%以下の範囲とする。
 π共役系低分子は、例示的には、ピレン、アントラセン、ポルフィリン等である。界面活性剤は、炭素材料130を溶媒に可溶化させる際に使用されるものであり、例示的には、ドデシル硫酸ナトリウム(SDS)、ドデシルベンゼン硫酸ナトリウム(SDBS)、コール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)等である。ポリマーもまた、炭素材料130を溶媒に可溶化させることが知られている。このようなポリマーは、例示的には、ポリシラン、ポリチオフェン、ポリフルオレン等である。超分子ポリマーは、モノマーユニットが非共有結合により連結されたものを意図するが、例えば、次式で表される超分子ポリマーである。このような超分子ポリマーをカーボンナノチューブに被覆する技術は知られており、分散性の向上が確認されている。
Figure JPOXMLDOC01-appb-C000003
 ここで、nは、直鎖状のC17を示し、mは、2~200の自然数であり、Mは、Cu、Ni、PdおよびPtからなる群から選択される2価の遷移金属イオンである。
 なお、ここで具体的に明示した分散剤は、単なる例示に過ぎず、分散性を高めることができるものであれば、特に制限はない。
 炭素材料130は、通常使用される電極材料からなる電極140上に担持される。電極140は、例示的には、Au、Pt、Agおよびこれらの合金からなる群から選択される材料、または、グラッシーカーボンなどの導電性炭素材料からなる。電極140の形状は、電気抵抗値の変化を検出する方法によって異なるが、例示的には、櫛形電極(例えば図1)、交差指電極等である。このため、図1では電極140は、基板160上に位置する。
 ヒドロキシルアミン塩類110は、多孔質材料に担持されていてもよい。これにより、反応部120の取り扱いが簡便になるとともに、ヒドロキシルアミン塩類110とホルムアルデヒドの反応を促進し、炭素材料130との離間を容易にする。このような多孔質材料は、ヒドロキシルアミン塩類110との反応性がなく、ヒドロキシルアミン塩類110が担持可能な細孔を有する材料からなればよい。例示的には、ろ紙等に代表される紙、疎水性ポリマー、親水性ポリマー、多孔質ガラス、多孔質炭素材料および多孔質酸化物からなる群から選択される材料である。これらは市販されている多孔質材料である。
 疎水性ポリマーは、例示的には、ポリフッ化ビニリデン(PFVD)、ポリテトラフルオロエチレン(PTFE)等であるが、ヒドロキシルアミン塩類110の担持が容易であり、反応性がないため好ましい。多孔質炭素材料は、例えば、シリカ多孔体をテンプレートにして得られるシリカ多孔体のレプリカなどがある。多孔質酸化物は、TiO、CeO、ZrO、ZnO、SiO等からなるが、ナノ粒子からなる中空体やコアシェル構造体であってもよい。
 好ましくは、多孔質材料は、10m/g以上5000m/g以下の範囲の比表面積を有し、10nm以上100μm以下の範囲の細孔径を有し、0.05cm/g以上0.90cm/g以下の細孔容積を有する。これにより、反応に必要かつ将来的な交換を不要とするだけのヒドロキシルアミン塩類110を担持できる。
 図1に示すように、本発明のセンサ100において、ヒドロキシルアミン塩類110と炭素材料130とが離間するよう、反応部120と応答部150との間にスペーサ170が位置していてもよい。スペーサ170の材料は特に制限されるものではない。スペーサ170の高さHは、上述した、0.05μm以上5000μm以下の範囲であればよい。
 図2は、本発明の別の例示的なホルムアルデヒド検知センサを示す模式図である。
 図2のセンサ200は、スペーサ170を設けることなく、ヒドロキシルアミン塩類110と炭素材料130との離間の方法が異なるが、それ以外はセンサ100と同様である。
 詳細には、図2のセンサ200では、ヒドロキシルアミン塩類110は、炭素材料130が担持された電極の近辺にパターニングされている。このようなパターニングは、例えば、インクジェットプリンタ等によって行うことができる。スペーサ170を設けないので、センサ200の小型化および薄型化を可能にする。
 図3は、本発明のさらに別の例示的なホルムアルデヒド検知センサを示す模式図である。
 図3のセンサ300(図3(A))は、スペーサ170を設けることなく、ヒドロキシルアミン塩類110と炭素材料130との離間の方法が異なるが、それ以外はセンサ100と同様である。
 詳細には、図3のセンサ300では、ヒドロキシルアミン塩類110が粒子310に修飾されている(図3(B))。ヒドロキシルアミン塩類110と炭素材料130とが離間するためには、粒子310の粒子径は、0.05μm以上5000μm以下を満たすことがよい。粒子径が0.05μm未満の場合、ヒドロキシルアミン塩類110と炭素材料130とが広面積にわたって接触し、酸による電気抵抗値の可逆性が損なわれるおそれがある。粒子径が5000μmを超すと、粒子表面に担持されたヒドロキシルアミン塩類110の量が少なくなり、酸の発生量が減少する結果として、ホルムアルデヒドへの感度が損なわれる可能性がある。好ましくは、粒子径は、10μm以上500μm以下、さらに好ましくは50μm以上300μm以下の範囲である。ここで粒子径は、体積基準のメディアン径(d50)であり、例えば、マイクロトラックやレーザ散乱法によって測定できる。
 ヒドロキシルアミン塩類110を修飾させる粒子310は、ポリスチレン(PS)、ポリメタクリル酸メチル(PMMA)、ポリアクリルアミド(PAM)、ポリエチレンテレフタレート(PET)、ポリカプロラクトン、ポリ酢酸ビニル、ポリビニルエチルアセテート、炭素、ガラスおよびシリカからなる群から選択される材料からなる。これらの粒子は、いずれも入手が容易である。中でも、PS、PMMA等は、ヒドロキシルアミン塩類110を修飾させやすいため好ましい。
 図3では、ヒドロキシルアミン塩類110が1価の酸塩(図3においてXは1価の塩基を表す)の場合を例示して示すが、粒子310に修飾するヒドロキシルアミン塩類110は、上述したヒドロキシルアミン塩類110と同じであってよい。すなわち、粒子310に修飾するヒドロキシルアミン塩類110は、NHOR(Rは、芳香族、環式または非環式の炭化水素化合物、または、それらの誘導体である)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される有機化合物の中和塩である。
 なお、図3のセンサ300において、応答部150とヒドロキシルアミン塩類110が修飾した粒子310との間に紙等の通気性のあるスペーサ(図示せず)を入れ、ヒドロキシルアミン塩類110と炭素材料130との物理的な接触を確実に防ぐようにしてもよい。
 次に、本発明のホルムアルデヒド検知センサ100の例示的な製造工程を説明する。
 まず、電極140を有する基板160を用意する。炭素材料130を溶媒に分散させる。溶媒は、揮発性であれば特に制限はないが、例示的には、o-ジクロロベンゼンとトルエンとの混合溶媒である。なお、炭素材料130を分散媒で被覆する際には、ここに上述した分散媒を添加すればよい。次いで、電極140上にこの懸濁液をドロップキャストする。溶媒の乾燥後、応答部150が得られる。
 次いで、ヒドロキシルアミン塩類110をメタノール等溶媒に添加し、この溶液を、多孔質材料にドロップキャスト、または、浸漬する。余剰の溶媒を乾燥除去することによって、反応部120が得られる。応答部150にスペーサ170を設置し、その上を反応部120で覆い、固定すれば、本発明のセンサ100が得られる。
 次に、本発明のホルムアルデヒド検知センサ200の例示的な製造工程を説明する。
 応答部150の製造手順は、センサ100と同様であるため、説明を省略する。応答部150の所定の箇所をマスクし、インクジェットプリンタ等により、ヒドロキシルアミン塩類110をプリントすれば、本発明のセンサ200が得られる。
 次に、本発明のホルムアルデヒド検知センサ300の例示的な製造工程を説明する。
 応答部150の製造手順は、センサ100と同様であるため、説明を省略する。次に、ヒドロキシルアミン塩類110を修飾する粒子310を用意する。ヒドロキシルアミン塩類110を修飾する粒子310は、ヒドロキシルアミンまたはその誘導体が修飾された粒子310を、酸中で処理することによって、容易に得られる。これを応答部150の炭素材料130上に配置すれば、本発明のセンサ300が得られる。粒子310と応答部150の間に、紙等の通気性のあるスペーサを入れても良い。
 (実施の形態2)
 実施の形態2では、実施の形態1で説明した本発明のホルムアルデヒド検知センサを用いたシステムについて説明する。
 図4は、本発明のホルムアルデヒド検知システムを示す模式図である。
 本発明のホルムアルデヒド検知システム400(以降では単に本発明のシステムと称する場合がある)は、本発明のホルムアルデヒド検知センサ100、200、300と、センサ100、200、300からの電気抵抗値の変化を検出する検出手段410とを備える。図4では、本発明のシステム400は、電源420に接続されている。電源420は固定の電源であってもよいが、電池等であってもよい。電源420として電池を採用すれば、ポータブルな小型のシステム400を提供できる。
 検出手段410は、電気抵抗値の変化を検出できれば特に制限はないが、例示的には、電流計や発光装置である。電流計であれば、電源420の電圧が既知であれば、電流の大きさを測定することによって電気抵抗値の変化を検出できる。発光装置であれば、輝度の変化を観察することによって、電気抵抗値に変化を検出できる。このような発光装置として簡易的には発光ダイオードを使用できる。発光ダイオードを使用すれば、目視によって輝度の変化を検出できるので、ポータブルかつ簡便なシステム400を提供できる。あるいは、検出手段410は、音声報知器であってもよい。音声報知器が所定の電気抵抗値から変化すると音声を発生するよう設定しておけば、音声によりホルムアルデヒドの検知を可能にする。
 あるいは、システム400は、温度や湿度に基づく誤応答のデータを予めデータベースに格納した制御部(図示せず)を備えており、制御部が、検出手段410が検出した本発明のセンサ100、200、300における炭素材料130の電気抵抗値の変化と、制御部のデータベースに格納されたデータとを比較し、正応答と誤応答とを区別するようにしてもよい。
 実施の形態1で説明したように本発明のセンサ100、200、300は、反応部120で発生した酸が、応答部150の炭素材料130に吸着することによって生じる電気抵抗値の変化によってホルムアルデヒドを検知するが、本発明のシステム400は、応答部150の炭素材料130にエアをフローするエアフロー部やファンをさらに備えてもよい。これにより、炭素材料130に吸着した酸が素早く除去されるので、本発明のセンサ100、200、300を繰り返し利用できる。なお、エアは、空気、窒素、アルゴン等であり得る。
 図5は、本発明の別のホルムアルデヒド検知システムを示す模式図である。
 本発明の別のホルムアルデヒド検知システム500は、ホルムアルデヒド非検知センサ510(以降では単に非検知センサと称する)を備える点が、システム400と異なる。図5では、非検知センサ510は、炭素材料130を担持した電極を備えており、本発明のセンサ100、200、300の反応部120で発生した酸が供給されないように配置されている。このため、非検知センサ510は、ホルムアルデヒドには応答しないが、その他の温度や湿度といった環境に対しては、センサ100、200、300と同様に応答し得る。
 検出手段410が、本発明のセンサ100、200、300における炭素材料130の電気抵抗値の変化(ホルムアルデヒドに基づく)と、非検知センサ510における炭素材料の電気抵抗値の変化(温度や湿度に基づく)とをそれぞれ検出し、比較すれば、正応答と誤応答とを区別することができる。ここでも、検出手段410が電流計であれば、電流値の大きさを比較することによって、検出手段410が発光装置であれば、輝度の大きさを比較することによって、容易に正応答と誤応答とを区別できるので、高精度にホルムアルデヒドのみを検知するシステムを提供できる。なお、このような比較は、目視にて行ってもよいし、別途設けられる制御部(図示せず)にて自動で行って、表示部(図示せず)に表示するように構成することもできる。
 システム500では、非検知センサ510がホルムアルデヒド以外の誤応答を検知するよう構成したが、非検知センサ510として、センサ100、200、300の初期状態の電気抵抗値と同じ電気抵抗値を有する抵抗を用いてもよい。この場合、正応答と誤応答との区別は困難であるが、センサ100、200、300および非検知センサ510のそれぞれに接続された検出手段410からの電流値、輝度の変化等から容易にホルムアルデヒドを検知することができる。
 以下、実施例および比較例を挙げて本発明の実施の形態をさらに具体的に説明するが、本発明はこれら実施例の範囲に限定されるものではない。
[試薬および材料]
 以降の実施例、比較例および参考例で用いた試薬および材料について説明する。すべての試薬は、特級試薬であり、シグマアルドリッチ、東京化成工業株式会社、Alfa Aesarから購入し、精製することなく、そのまま使用した。ヒドロキシルアミン塩類として次式に示す3種を用いた。
Figure JPOXMLDOC01-appb-C000004
 単層カーボンナノチューブ(SWCNT)は、一酸化炭素の不均質化反応を利用したHiPco(高圧CO)法によって調製された米国NanoIntegris社製のものを購入した。SWCNTを、Yomogida,Y.ら,Nat.Commun.,2016,7,12056に基づいて、半導体型と金属型とに分離した。次式に示す超分子ポリマーを、Ishihara,S.ら,J.Am.Chem.Soc.,2016,138,8221-8227に基づいて調製した。ここでも、nは直鎖状のC17を表し、mの平均値は、15-20程度であった。電極には、酸化アルミニウム製セラミック基板上に形成されたAuからなる櫛形電極(BVI Technologies製、No.CC1.W1)を用いた。電極間距離は200μmであった。
Figure JPOXMLDOC01-appb-C000005
[実施例1]
 実施例1では、ヒドロキシルアミン塩類110としてNHOH・HCl(ヒドロキシルアミン塩酸塩)と、炭素材料130としてSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサ100を製造した。
 図6は、本発明のホルムアルデヒド検知センサを製造する様子を示す図である。
 SWCNT(0.02mg)を、o-ジクロロベンゼン(o-DCB)とトルエンとの混合溶媒0.2mLに懸濁させた。なお、o-DCBとトルエンとは、4:1(体積比)で混合された。懸濁液を、室温下で、30分間超音波処理した。懸濁液(約0.5μL)を櫛形電極上にドロップキャストし、乾燥により溶媒を除去した。SWCNTの網目構造体の電気抵抗値が所定値となるまで、ドロップキャストを繰り返した。電気抵抗値はオームメータによって測定した。このようにして、センサの応答部(図1の150)を製造した(図6(a))。次いで、高さ0.4mmであり、ビニールテープ材料からなるスペーサ(図1の170)を応答部上に配置した(図6(b))。
 NHOH・HClを飽和するまでメタノールに添加した(約100mg/mL)。この溶液を、PVDFメンブレンフィルタ(細孔径0.2μm、メルクミリポア製、オムニポアメンブレンフィルタ、JGWP)にドロップキャストした。メタノールを大気中で乾燥させ、反応部(図1の120)を製造した。PVDFメンブレンフィルタに担持されたNHOH・HClは約0.5mgであった。なお、0.5mgという量は、大気中にサブppmオーダで存在するホルムアルデヒド(HCHO)に比べて、極めて過剰であることに留意されたい。NHOH・HClを担持したPVDFメンブレンフィルタをカットし、スペーサを介して応答部を覆った(図6(c))。PVDFメンブレンフィルタが剥がれないようテープで固定した(図6(d))。このようにして得られた実施例1のセンサの側面の様子を図6(e)に示す。
 実施例1のセンサを電源および電流計に接続し、ホルムアルデヒドを検知した。詳細には、ガラスチャンバに固定された試験クリップを用いて、センサの櫛形電極をPalmSens製MUX16マルチプレクサ付EmStatポテンショスタットに接続し、ガス検知を行った。0.1Vの定電位を櫛形電極に印加し、センサをガスに晒した際の電流値の変化をPSTrace Softwere(v.4.8)を用いて記録した。
 表2に示す測定条件1~3で、空気(ここでは圧縮空気である)とHCHOとの導入(フロー)を繰り返し、その際の電流値の変化を調べた。本願明細書では、電流値の変化を{(I(t)-I)/I}×100(%)で正規化した値を用いた。ここで、Iは、ベースラインの電流値であり、I(t)はt秒後の電流値である。印加電圧は0.1Vである。本願明細書内では、この正規化した値を実施例/比較例のセンサ間で比較することができる。結果を図7~図10に示す。
[実施例2]
 実施例2では、ヒドロキシルアミン塩類110としてNHOH・HCl(ヒドロキシルアミン塩酸塩)と、炭素材料130としてSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、ろ紙にヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。
 実施例2は、実施例1においてPVDFメンブレンフィルタに代えてろ紙(Whatman製、定性ろ紙)にNHOH・HClを担持させた以外は、実施例1と同様にしてセンサを製造した。実施例2のセンサを、実施例1と同様の手順で、表2に示す測定条件1で、ホルムアルデヒドを検知した。結果を図7に示す。
[比較例3]
 比較例3では、ヒドロキシルアミン塩類110としてNHOH・HCl(ヒドロキシルアミン塩酸塩)と、炭素材料130としてSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用いたが、SWCNTとNHOH・HClとを接触させたセンサを製造した。
 比較例3では、図6(a)に示される応答部に、直接、NHOH・HClを含有するメタノール溶液をドロップキャストし、乾燥によりメタノールを除去した。このようにして得られた比較例3のセンサを、実施例1と同様の手順で、表2に示す測定条件1で、ホルムアルデヒドを検知した。結果を図7に示す。
[実施例4]
 実施例4では、ヒドロキシルアミン塩類110としてo-ベンズヒドロキシルアミン塩酸塩と、炭素材料130としてSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。
 実施例4は、実施例1においてNHOH・HClに代えてo-ベンズヒドロキシルアミン塩酸塩を用いた以外は、実施例1と同様にしてセンサを製造した。o-ベンズヒドロキシルアミン塩酸塩はメタノールに溶解させた(67mg/mL)。PVDFメンブレンフィルタに担持されたo-ベンズヒドロキシルアミン塩酸塩は約0.5mgであった。実施例4のセンサを、実施例1と同様の手順で、表2に示す測定条件1で、ホルムアルデヒドを検知した。結果を図8に示す。
[実施例5]
 実施例5では、ヒドロキシルアミン塩類110としてo-4-ニトロベンゼンヒドロキシルアミン塩酸塩と、炭素材料130としてSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。
 実施例5は、実施例1においてNHOH・HClに代えてo-4-ニトロベンゼンヒドロキシルアミン塩酸塩を用いた以外は、実施例1と同様にしてセンサを製造した。o-4-ニトロベンゼンヒドロキシルアミン塩酸塩はメタノールに溶解させた(20mg/mL)。PVDFメンブレンフィルタに担持されたo-4-ニトロベンゼンヒドロキシルアミン塩酸塩は約0.5mgであった。実施例5のセンサを、実施例1と同様の手順で、表2に示す測定条件1で、ホルムアルデヒドを検知した。結果を図8に示す。
[実施例6]
 実施例6では、実施例1と同様の手順で、ヒドロキシルアミン塩類110としてNHOH・HClと、炭素材料130としてSWCNT(ただし、半導体型を10重量%、金属型を90重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。実施例6のセンサを、実施例1と同様の手順で、表2に示す測定条件2で、ホルムアルデヒドを検知した。結果を図9に示す。
[実施例7]
 実施例7では、実施例1と同様の手順で、ヒドロキシルアミン塩類110としてNHOH・HClと、炭素材料130としてSWCNT(ただし、半導体型を66.7重量%、金属型を33.3重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。実施例7のセンサを、実施例1と同様の手順で、表2に示す測定条件2で、ホルムアルデヒドを検知した。結果を図9に示す。
[実施例8]
 実施例8では、ヒドロキシルアミン塩類110としてNHOH・HCl(ヒドロキシルアミン塩酸塩)と、炭素材料130として超分子ポリマーで被覆したSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、PVDFメンブレンフィルタにヒドロキシルアミン塩類110を担持させた、図1に示すホルムアルデヒド検知センサを製造した。
 超分子ポリマーで被覆したSWCNTは、次のようにして調製した。SWCNT(0.02mg)と、アントラセン系リガンド(0.1mg)とを、o-ジクロロベンゼン(o-DCB)とトルエンとの混合溶媒0.2mLに懸濁させた。なお、o-DCBとトルエンとは、4:1(体積比)で混合された。次いで、酢酸銅一水和物が溶解したメタノール溶液(10.6mM、16.4μL)をこれに添加し、上述した超分子ポリマーを形成した。懸濁液を、室温下で、30分間超音波処理した。次いで、懸濁液を遠心分離機(6238×g、10000rpm、15分、Revolutionary Science製Rev Spin 102)にかけた。上澄み液(上部50%)を収集し、超分子ポリマーで被覆したSWCNTを含有する懸濁液を得た。以降の手順は、実施例1と同様であるため、説明を省略する。
 このようにして得られた実施例8のセンサを、実施例1と同様の手順で、表2に示す測定条件3~14で、ホルムアルデヒドを検知した。結果を図10~図24に示す。
[参考例9]
 参考例9では、ヒドロキシルアミン塩類110を用いない以外は、実施例8と同様の手順でホルムアルデヒド非検知センサを製造した。このようにして得られた参考例9のセンサを、実施例1と同様の手順で、表2に示す測定条件4、13および14で、ホルムアルデヒドを検知した。結果を図11、図23および図24に示す。
[実施例10]
 実施例10では、ヒドロキシルアミン塩類110として次式で示すヒドロキシルアミン塩類が修飾したポリスチレン粒子と、炭素材料130として超分子ポリマーで被覆したSWCNT(ただし、半導体型を95重量%、金属型を5重量%含有する)とを用い、図3に示すホルムアルデヒド検知センサ300を製造した。
 ヒドロキシルアミン塩類が修飾したポリスチレン粒子は次のようにして調製された。次式で示すヒドロキシルアミン誘導体が修飾したポリスチレン粒子100mg(シグマアルドリッチ製、641014-5G、100~200メッシュ、修飾量1.0~1.5mmol/g、1%ジビニルベンゼンで架橋)を、3%塩酸メタノール溶液(20mL)中で、室温、1時間攪拌し、ヒドロキシルアミンを塩酸塩とした。続いて、グラスフィルタで濾過し、大量のメタノールで余分な塩酸を十分に洗浄した後、真空乾燥を1時間行い、ヒドロキシルアミン塩類が修飾した粒子を得た。
Figure JPOXMLDOC01-appb-C000006
 ヒドロキシルアミン塩類が修飾した粒子(1mg)を、実施例1と同様の手順で得た応答部上に配置した。このようにして得た実施例10のセンサを、実施例1と同様の手順で、表2に示す測定条件15で、ホルムアルデヒドを検知した。結果を図25に示す。
 以上の実施例、比較例および参考例1~10のセンサおよび測定条件の一覧を、簡単のため、表1および表2にそれぞれまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 図7は、実施例1,2及び比較例3によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 図7によれば、実施例1のセンサは、ホルムアルデヒドを導入すると、電流値は正の変化を示し、空気をフローすると、電流値はもとに戻る挙動を示した。実施例2のセンサでは、実施例1のセンサと比較して、ホルムアルデヒドを導入した際の電流値の変化量が小さく、空気をフローした際の電流値の戻り具合が若干鈍かったものの、実施例1のセンサと同様に電流値がもとに戻る挙動を示した。
 一方、比較例3のセンサは、空気およびホルムアルデヒドをフローした際に、可逆的な応答は見られなかった。
 これらから、本発明のホルムアルデヒド検知センサは、少なくともヒドロキシルアミン塩類を含有し、ホルムアルデヒドと反応し、酸を発生させる反応部と、電気抵抗値が変化する炭素材料を担持した電極を備える応答部とを備え、ヒドロキシルアミン塩類と炭素材料とは離間していることにより、再現性良く可逆的に、ホルムアルデヒドを検知できることが示された。
 図8は、実施例1、4~5によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 図8によれば、実施例1、4~5のセンサは、いずれも、ホルムアルデヒドを導入すると、電流値は正の変化を示し、空気をフローすると、電流値はもとに戻る挙動を示した。中でも、実施例1によるセンサが、もっとも電流値の大きな変化を示した。
 これらから、反応部のヒドロキシルアミン塩類は、種類に関わらずホルムアルデヒドを検知できることが確認された。ヒドロキシルアミン塩類の中でも、ヒドロキシルアミン塩酸塩がホルムアルデヒドに対する感度および繰り返し特性に優れていることが分かった。
 図9は、実施例1、6~7によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 図9によれば、実施例1、6~7のセンサは、いずれも、ホルムアルデヒドを導入すると、電流値は正の変化を示し、空気をフローすると、電流値はもとに戻る挙動を示した。中でも、実施例1によるセンサが、もっとも電流値の大きな変化を示した。
 これらから、ホルムアルデヒドに対する感度の向上の観点から、応答部の炭素材料は、カーボンナノチューブの中でも、少なくとも半導体型を含有していることが好ましく、60重量%以上含有していることが好ましいことが示された。
 図10は、実施例1および8によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 図10によれば、実施例1および8のセンサは、いずれも、ホルムアルデヒドを導入すると、電流値は正の変化を示し、空気をフローすると、電流値はもとに戻る挙動を示した。中でも、実施例8のセンサが、もっとも電流値の大きな変化を示した。これは、カーボンナノチューブを超分子ポリマーで被覆することにより、カーボンナノチューブがより分散した網目構造体となり、比表面積が増大し、酸との反応が促進したためと考える。
 これらから、ホルムアルデヒドに対する感度の向上の観点から、応答部の炭素材料は、超分子ポリマー等の分散媒で被覆されていることが好ましいことが示された。
 図11は、実施例8および参考例9によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 図11によれば、参考例9のセンサは、ホルムアルデヒドには一切応答せず、ホルムアルデヒド非検知センサとして機能した。一方、実施例8のセンサは、ホルムアルデヒドに応答して電流値が正に増大したが、エアをフローすると、もとの電流値の値まで戻った。このことからも、本発明のセンサは、ホルムアルデヒドの繰り返し検知に有効であり、常にホルムアルデヒドをモニタリングできることが示された。
 図12は、実施例8によるセンサのホルムアルデヒドに対する応答特性のホルムアルデヒド濃度依存性を示す図である。
 図13は、図12に基づく、実施例8によるセンサのホルムアルデヒド濃度と電流値の増大との相関関係を示す図である。
 図14は、図13の一部拡大図を示す。図14では、ホルムアルデヒド濃度が0ppm及び0.05ppmにおける電流値の変化の標準偏差を示した。
 図12によれば、実施例8のセンサは、0.05ppm濃度の極めて低濃度のホルムアルデヒドに対しても応答し、電流値の変化を示した。このことから、本発明のセンサが、WHOのホルムアルデヒドに対する基準(0.08ppm)を下回るホルムアルデヒドを検知できることが示された。なお、上述の0.05ppmの濃度は、本実験系では、信頼できる濃度で発生させることのできるホルムアルデヒド濃度の限界値に相当した。尚、ホルムアルデヒド濃度が7ppm以降は、電流値の変化は飽和する傾向を示した。
 図14に示される電流値の変化の平均値(濃度0ppm)及び電流値の変化の標準偏差(濃度0ppm,0.05ppm)から、次式に基づいて、本発明のセンサの検出限界(Limit of Detection,LoD)を求めた。
LoD=meanblank+1.645×σblank+1.645σlowest conc.
 ここで、meanblankは、ホルムアルデヒドを含まない空気を導入した際の応答の電流値の変化の平均値であり、σblankは、ホルムアルデヒドを含まない空気を導入した際の応答の電流値の変化の標準偏差であり、σlowest conc.は、最低濃度(ここでは、0.05ppm)のホルムアルデヒドを導入した際の応答の電流値の変化の標準偏差である。
 センサの電流値変化量の検出限界(LoD)は、0.92%と算出され、この値は、0.016ppmに相当することが分かった。このことから、本発明のセンサを用いれば、理論的には、WHOの基準である0.08ppmを十分に下回る微量のホルムアルデヒドを検知でき、ホルムアルデヒドに対する感度に極めて優れていることが示された。
 図15は、実施例8によるセンサの水(420ppm)に対する応答特性を示す図である。
 図16は、実施例8によるセンサの水(3200ppm)に対する応答特性を示す図である。
 図17は、実施例8によるセンサのメタノール(1200ppm)に対する応答特性を示す図である。
 図18は、実施例8によるセンサのエタノール(440ppm)に対する応答特性を示す図である。
 図19は、実施例8によるセンサのテトラヒドロフラン(860ppm)に対する応答特性を示す図である。
 図20は、実施例8によるセンサのトルエン(720ppm)に対する応答特性を示す図である。
 図21は、実施例8によるセンサの各種ガスに対する応答特性の一覧を示す図である。
 図15~図20によれば、本発明のセンサは、各種ガスに対して何らかの応答を示すが、図21を参照すれば、本発明のセンサは、極めて低濃度のホルムアルデヒドであっても、ホルムアルデヒドに対して選択的かつ高感度に応答することがわかる。詳細には、0.19ppm濃度のホルムアルデヒドに対する感度は、0.19ppmの何万~何十万倍の濃度であるその他のガスに対する感度に比べて同等レベルか、極めて大きい。このことは、ホルムアルデヒドに対する感度が、その他のガスに対する感度の約10~10倍大きいことを示す。
 さらに注目すべきは、ホルムアルデヒド以外のガスは、電子を炭素材料(ここでは、SWCNTの網目構造体)に注入し、膨潤させるので、本発明のセンサは、ホルムアルデヒド以外の上記ガスを検出した場合、ホルムアルデヒドとは逆の応答特性(すなわち、導電率の低減)を示した。このことからも、本発明のセンサは、ホルムアルデヒドのみを選択的かつ高精度に検知できることがわかる。
 図22は、実施例8によるセンサの応答特性に及ぼす湿度の影響を示す図である。
 図22によれば、実施例8のセンサは、相対湿度に関わらずホルムアルデヒドに対して応答して、電流値の変化を示したが、相対湿度が低い(すなわち、乾燥空気である)ほど、ホルムアルデヒドに対する感度が低下した。しかしながら、通常使用環境下(相対湿度が12.5%~68%)においては、湿度が本発明のセンサに及ぼす影響は小さく、問題ないといえる。また、相対湿度は、別途用意した湿度計にて簡便に測定可能であり、そのデータをホルムアルデヒドセンサの補正に用いてもよい。
 図23は、相対湿度の変化およびホルムアルデヒドへの応答について、実施例8および参考例9のセンサで比較した図である。
 図24は、温度変化への応答について、実施例8および参考例9のセンサで比較した図である。
 上述したように、本発明のセンサの応答特性は、相対湿度に依存する。しかしながら、図23および図24によれば、ヒドロキシルアミン塩類を含有する反応部を有する実施例8のセンサと、反応部を有しない参考例9のセンサとは、相対湿度および温度に対して、応答強度の違いは見られるものの、同等の応答傾向を示すことが分かった。このことから、本発明のホルムアルデヒド検知センサと、ホルムアルデヒド非検知センサとを同時に用い、それらの応答特性を比較すれば、簡単に正応答(ホルムアルデヒドによる応答)と誤応答(相対湿度や温度による応答)とを正確に区別するホルムアルデヒド検知システムを提供できることが示された。すなわち、実施例8のセンサが応答し、参考例9のセンサが応答していなければ、ホルムアルデヒドを検出していると判断できる。
 図25は、実施例10によるセンサのホルムアルデヒドに対する応答特性を示す図である。
 実施例10のセンサは、ホルムアルデヒドを導入すると、電流値は正の変化を示した。このことから、本発明のホルムアルデヒド検知センサにおいて、反応部は、ヒドロキシルアミン塩類が粒子等の固形物に直接固定・担持されていてもよいことが示された。
[実施例11]
 実施例11では、ホルムアルデヒド検知センサ100として実施例8のセンサと、ホルムアルデヒド非検知センサ510として参考例9のセンサと、検出手段410として実施例8および参考例9のセンサのそれぞれに接続された発光装置(LED)とを備えた、図5に示すホルムアルデヒド検知システム500を製造した。本発明のシステムは、3.0Vのボタン電池に接続された。本発明のシステムにホルムアルデヒドを導入し、その際のLEDの変化を調べた。結果を図26に示す。
 図26は、実施例11によるホルムアルデヒド検知システムと、ホルムアルデヒドに対する応答の様子とを示す図である。
 実施例8および参考例9のセンサの抵抗は、いずれも、20kΩに設定された。このとき、LED1、2は、見た目に、同様の明るさであった(図26の左上)。ここで、0.9ppm濃度のホルムアルデヒドをシステムに導入したところ、実施例8のセンサの抵抗は、10kΩまで低下したが、参考例9のセンサの抵抗は、変化しなかった。その結果、実施例8のセンサに接続されたLED1は、参考例9のセンサに接続されたLED2よりも、明るくなった(図26の右上)。また、図23および図24を参照して説明したように、実施例8および参考例9のセンサを用いることにより、正応答と誤応答との区別も可能である。このことから、本発明のシステムは、ホルムアルデヒド検知センサを用いることにより、ホルムアルデヒドを選択的かつ高精度に検知できることが示された。
[実施例12]
 実施例12では、ホルムアルデヒド非検知センサ510として、単に20kΩの抵抗を用いた以外は、実施例11のシステムと同様であるため説明を省略する。実施例11と同様に、システムにホルムアルデヒドを導入し、その際のLEDの変化を調べた。結果を図27に示す。
 図27は、実施例12のシステムのホルムアルデヒドを導入する前のLEDの輝度の様子(A)およびホルムアルデヒドを導入した後のLEDの輝度の様子(B)を示す図である。
 図27によれば、図26と同様に、ホルムアルデヒドの導入によって、実施例8のセンサに接続されたLED1は、明るくなり、参考例9のセンサに接続されたLED2は、変化しなかった。このことからも、本発明のシステムは、ホルムアルデヒド検知センサを用いることにより、ホルムアルデヒドを選択的かつ高精度に検知できることが示された。
 本発明のホルムアルデヒド検知センサは、室内環境下において、ホルムアルデヒドを選択的に高精度に検出することができる。本発明のホルムアルデヒド検知センサは、常にホルムアルデヒドをモニタリングすることができるので、警報型の検知センサとして機能し得る。このような電気抵抗で検知するホルムアルデヒド検知センサは、各種電子機器、検出装置との組み合わせが容易であり、安価で小型で低電力消費のホルムアルデヒド検知システムを提供できる。例えば、特許文献3に記載のようなRFIDタグなどの無線通信デバイスに搭載すれば、ホルムアルデヒドセンサのIoT化や、スマートフォンなどの汎用電子機器によってホルムアルデヒドを検知できることが想定できる。
 100、200、300 ホルムアルデヒド検知センサ
 110 ヒドロキシルアミン塩類
 120 反応部
 130 炭素材料
 140 電極
 150 応答部
 160 基板
 170 スペーサ
 310 粒子
 400、500 ホルムアルデヒド検知システム
 410 検出手段
 420 電源
 510 ホルムアルデヒド非検知センサ

Claims (20)

  1.  少なくともヒドロキシルアミン塩類を含有し、ホルムアルデヒドと反応し、酸を発生させる反応部と、
     前記反応部で発生した酸によって電気抵抗値が変化する炭素材料を担持した電極を備える応答部と
     を備え、
     前記ヒドロキシルアミン塩類と前記炭素材料とは離間している、
     ホルムアルデヒド検知センサ。
  2.  前記ヒドロキシルアミン塩類は、ヒドロキシルアミン(NHOH)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される中和塩である、
     請求項1に記載のホルムアルデヒド検知センサ。
  3.  前記ヒドロキシルアミン塩類は、NHOR(Rは、芳香族、環式または非環式の炭化水素化合物、または、それらの誘導体である)のハロゲン酸塩、硝酸塩、硫酸塩、リン酸塩、ホウ酸塩およびトリフルオロ酢酸塩からなる群から選択される中和塩である、
     請求項1に記載のホルムアルデヒド検知センサ。
  4.  前記炭素材料は、カーボンナノチューブ、カーボンナノホーン、グラフェン、フラーレンおよびそれらの誘導体からなる群から選択される、
     請求項1~3のいずれかに記載のホルムアルデヒド検知センサ。
  5.  前記カーボンナノチューブは、半導体型カーボンナノチューブを10重量%以上含有する、
     請求項4に記載のホルムアルデヒド検知センサ。
  6.  前記カーボンナノチューブは、半導体型カーボンナノチューブを60重量%以上含有する、
     請求項5に記載のホルムアルデヒド検知センサ。
  7.  前記炭素材料は、π共役系低分子、界面活性剤、ポリマーおよび超分子ポリマーからなる群から選択される分散剤によって被覆されている、
     請求項1~6のいずれかに記載のホルムアルデヒド検知センサ。
  8.  前記超分子ポリマーは次式で表される、
     請求項7に記載のホルムアルデヒド検知センサ。
    Figure JPOXMLDOC01-appb-C000001
     ここで、nは直鎖状のC17を表し、mは、2~200の自然数であり、Mは、Cu、Ni、PdおよびPtからなる群から選択される2価の遷移金属イオンである。
  9.  前記ヒドロキシルアミン塩類は、多孔質材料に担持されている、
     請求項1~8のいずれかに記載のホルムアルデヒド検知センサ。
  10.  前記多孔質材料は、紙、疎水性ポリマー、親水性ポリマー、多孔質ガラス、多孔質炭素材料および多孔質酸化物からなる群から選択される、
     請求項9に記載のホルムアルデヒド検知センサ。
  11.  前記反応部と前記応答部との間にスペーサを有する、
     請求項9または10に記載のホルムアルデヒド検知センサ。
  12.  前記ヒドロキシルアミン塩類は、粒子径が0.05μm以上5000μm以下の範囲を有する粒子に修飾されている、
     請求項1~8のいずれかに記載のホルムアルデヒド検知センサ。
  13.  前記粒子は、ポリスチレン(PS)、ポリメタクリル酸メチル(PMMA)、ポリアクリルアミド(PAM)、ポリエチレンテレフタレート(PET)、ポリカプロラクトン、ポリ酢酸ビニル、ポリビニルエチルアセテート、炭素、ガラスおよびシリカからなる群から選択される材料からなる、
     請求項12に記載のホルムアルデヒド検知センサ。
  14.  前記反応部は、塩酸、硝酸、炭酸、過塩素酸およびトリフルオロ酢酸の塩からなる群から選択される揮発性酸の塩をさらに含有する、
     請求項1~13のいずれかに記載のホルムアルデヒド検知センサ。
  15.  ホルムアルデヒド検知センサと検出手段とを備えるホルムアルデヒド検知システムであって、
     前記ホルムアルデヒド検知センサは、請求項1~14のいずれかに記載のホルムアルデヒド検知センサであり、
     前記検出手段は、前記ホルムアルデヒド検知センサからの電気抵抗値の変化を検出する、
     ホルムアルデヒド検知システム。
  16.  前記ホルムアルデヒド検知センサは、電源に接続されており、
     前記検出手段は、電流計または発光装置である、
     請求項15に記載のホルムアルデヒド検知システム。
  17.  前記発光装置は、発光ダイオードである、
     請求項16に記載のホルムアルデヒド検知システム。
  18.  炭素材料を担持した電極を備えるホルムアルデヒド非検知センサをさらに備え、
     前記ホルムアルデヒド非検知センサは、前記反応部で発生した酸が供給されないように配置されている、
     請求項15~17のいずれかに記載のホルムアルデヒド検知システム。
  19.  前記検出手段は、前記ホルムアルデヒド検知センサからの電気抵抗値の変化と、前記ホルムアルデヒド非検知センサからのそれとを比較し、ホルムアルデヒドによる応答と前記ホルムアルデヒド以外の応答とを区別する、
     請求項18に記載のホルムアルデヒド検知システム。
  20.  前記ホルムアルデヒド検知センサにおける前記応答部の前記炭素材料にエアをフローし、前記炭素材料に吸着した酸を除去するエアフロー部をさらに備える、
     請求項16~19のいずれかに記載のホルムアルデヒド検知システム。
PCT/JP2018/031385 2017-09-08 2018-08-24 ホルムアルデヒド検知センサ、および、それを用いたシステム WO2019049693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019540882A JP6774127B2 (ja) 2017-09-08 2018-08-24 ホルムアルデヒド検知センサ、および、それを用いたシステム
CN201880057881.7A CN111051868B (zh) 2017-09-08 2018-08-24 甲醛检测传感器和使用其的系统
US16/644,843 US11740198B2 (en) 2017-09-08 2018-08-24 Formaldehyde detecting sensor and system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-172699 2017-09-08
JP2017172699 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049693A1 true WO2019049693A1 (ja) 2019-03-14

Family

ID=65634809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031385 WO2019049693A1 (ja) 2017-09-08 2018-08-24 ホルムアルデヒド検知センサ、および、それを用いたシステム

Country Status (4)

Country Link
US (1) US11740198B2 (ja)
JP (1) JP6774127B2 (ja)
CN (1) CN111051868B (ja)
WO (1) WO2019049693A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047021A (ja) * 2019-09-10 2021-03-25 国立研究開発法人物質・材料研究機構 アルデヒド検知センサ、および、それを用いたシステム
JPWO2021095440A1 (ja) * 2019-11-14 2021-05-20
WO2021256384A1 (ja) * 2020-06-15 2021-12-23 国立研究開発法人産業技術総合研究所 電子デバイス用材料、電子デバイス、センサー素子、およびガスセンサー
WO2022239551A1 (ja) * 2021-05-12 2022-11-17 国立研究開発法人産業技術総合研究所 ガス検出装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111398363A (zh) * 2020-04-29 2020-07-10 中国科学院上海硅酸盐研究所 一种基于二硫化钼和羟胺的甲醛气敏传感器及其制备方法
CN113984743B (zh) * 2021-09-30 2022-08-16 华南理工大学 一种基于纳米复合纤维的甲醛检测试纸及其制备方法和应用
CN114295691B (zh) * 2021-12-31 2024-04-12 佛山市顺德区阿波罗环保器材有限公司 一种甲醛检测传感器及甲醛检测系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287500A (ja) * 2002-03-28 2003-10-10 Sekisui Chem Co Ltd 住宅のホルムアルデヒド濃度の簡易測定方法及びそれを用いた新築住宅の提供方法
JP2005315739A (ja) * 2004-04-28 2005-11-10 Fis Inc 反応性ガス検出装置及びホルムアルデヒドガス検出装置
US20130202489A1 (en) * 2012-02-03 2013-08-08 The Hong Kong Polytechnic University Gas sensor with a highly porous structure constructed of catalyst-capped metal-oxide nanoclusters
US20150308995A1 (en) * 2012-11-07 2015-10-29 Qingyue Chen Analyte detectors and methods for their preparation and use
CN106290488A (zh) * 2016-09-18 2017-01-04 江南大学 一种氨基功能化碳纳米管电阻型甲醛气体传感器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415116B2 (ja) * 2004-08-05 2010-02-17 財団法人 総合科学研究機構 化学物質検出装置
JP2008082840A (ja) 2006-09-27 2008-04-10 National Institute Of Advanced Industrial & Technology ホルムアルデヒド検出体、ホルムアルデヒド検出装置、ホルムアルデヒド検出方法及びホルムアルデヒド検出試薬
CN101571506B (zh) 2008-04-29 2016-02-24 华瑞科学仪器(上海)有限公司 甲醛传感器
FR2936604B1 (fr) 2008-09-29 2010-11-05 Commissariat Energie Atomique Capteurs chimiques a base de nanotubes de carbone, procede de preparation et utilisations
CN103358870B (zh) * 2012-04-05 2016-08-31 杭州市电力局 一种新能源汽车及其电池锁紧装置
CN103969252A (zh) 2013-01-30 2014-08-06 上海市上海中学 一种含有玫瑰类花卉提取物的甲醛变色指示剂
EP3063700B1 (en) 2013-10-30 2024-04-17 Massachusetts Institute of Technology Chemical and physical sensing with a reader and rfid tags

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287500A (ja) * 2002-03-28 2003-10-10 Sekisui Chem Co Ltd 住宅のホルムアルデヒド濃度の簡易測定方法及びそれを用いた新築住宅の提供方法
JP2005315739A (ja) * 2004-04-28 2005-11-10 Fis Inc 反応性ガス検出装置及びホルムアルデヒドガス検出装置
US20130202489A1 (en) * 2012-02-03 2013-08-08 The Hong Kong Polytechnic University Gas sensor with a highly porous structure constructed of catalyst-capped metal-oxide nanoclusters
US20150308995A1 (en) * 2012-11-07 2015-10-29 Qingyue Chen Analyte detectors and methods for their preparation and use
CN106290488A (zh) * 2016-09-18 2017-01-04 江南大学 一种氨基功能化碳纳米管电阻型甲醛气体传感器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHI,DIWEN ET AL.: "Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection", SENSORS AND ACTUATORS B, vol. 177, 2013, pages 370 - 375, XP028963985, DOI: doi:10.1016/j.snb.2012.11.022 *
TANG, XIAOHUI ET AL.: "Defect-free functionalized graphene sensor for formaldehyde detection", NANOTECHNOLOGY, vol. 28, no. 5, 23 December 2016 (2016-12-23), pages 055501, XP020313077, ISSN: 0957-4484, DOI: 10.1088/1361-6528/28/5/055501 *
TOMCIK,PETER ET AL.: "Microanalytical Determination of Formaldehyde by Direct Titration with Hydroxylamine Using Interdigitated Microelectrode Array Biamperometric End-Point Indicator", MICROCHIM .ACTA, vol. 141, no. 1-2, 2003, pages 69 - 72, XPP055581362, ISSN: 0026-3672, DOI: 10.1007/s00604-002-0929-1 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047021A (ja) * 2019-09-10 2021-03-25 国立研究開発法人物質・材料研究機構 アルデヒド検知センサ、および、それを用いたシステム
JP7313678B2 (ja) 2019-09-10 2023-07-25 国立研究開発法人物質・材料研究機構 アルデヒド検知センサ、および、それを用いたシステム
JPWO2021095440A1 (ja) * 2019-11-14 2021-05-20
WO2021095440A1 (ja) 2019-11-14 2021-05-20 国立研究開発法人物質・材料研究機構 アルケン検知ガスセンサ、及び、それを用いたシステム
JP7283671B2 (ja) 2019-11-14 2023-05-30 国立研究開発法人物質・材料研究機構 アルケン検知ガスセンサ、及び、それを用いたシステム
EP4063318A4 (en) * 2019-11-14 2024-03-27 National Institute for Materials Science ALK DETECTION GAS SENSOR AND SYSTEM THEREOF
WO2021256384A1 (ja) * 2020-06-15 2021-12-23 国立研究開発法人産業技術総合研究所 電子デバイス用材料、電子デバイス、センサー素子、およびガスセンサー
WO2022239551A1 (ja) * 2021-05-12 2022-11-17 国立研究開発法人産業技術総合研究所 ガス検出装置

Also Published As

Publication number Publication date
CN111051868A (zh) 2020-04-21
US11740198B2 (en) 2023-08-29
CN111051868B (zh) 2022-08-23
JPWO2019049693A1 (ja) 2020-10-01
JP6774127B2 (ja) 2020-10-21
US20210372958A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6774127B2 (ja) ホルムアルデヒド検知センサ、および、それを用いたシステム
Andre et al. Hybrid nanomaterials designed for volatile organic compounds sensors: A review
US10247689B2 (en) Low concentration ammonia nanosensor
Moon et al. Chemiresistive electronic nose toward detection of biomarkers in exhaled breath
US10809215B2 (en) Molecularly imprinted polymer sensors
Jimenez-Cadena et al. Gas sensors based on nanostructured materials
Steinhauer et al. Local CuO nanowire growth on microhotplates: In situ electrical measurements and gas sensing application
JP2018523836A (ja) 爆発物及び他の揮発性物質の検出のための電極及びその使用方法
Ma et al. Highly sensitive room-temperature NO2 gas sensors based on three-dimensional multiwalled carbon nanotube networks on SiO2 nanospheres
Su et al. Miniaturized chemical multiplexed sensor array
CN104458826B (zh) 一种新型氨气传感器及其制备工艺
TWI467168B (zh) 奈米材料混成電極及其製作方法
Wang et al. Flexible chemiresistor sensors: Thin film assemblies of nanoparticles on a polyethylene terephthalate substrate
Hannon et al. Room temperature carbon nanotube based sensor for carbon monoxide detection
Cho et al. Fabrication and characterization of VOC sensor array based on SnO 2 and ZnO nanoparticles functionalized by metalloporphyrins
Pandey et al. Chemical nanosensors for monitoring environmental pollution
JP7313678B2 (ja) アルデヒド検知センサ、および、それを用いたシステム
US11192780B1 (en) Templated nanostructure sensors and methods of manufacture
Bhagat et al. Real-time Iinterdigitated Electrode-based Sensing of VOCs at Room Temperature and Analysis
WO2021256384A1 (ja) 電子デバイス用材料、電子デバイス、センサー素子、およびガスセンサー
Kumar et al. Low-Dimensional Advanced Functional Materials as Hazardous Gas Sensing
Shinohara et al. Gas selective chemiresistor composed of molecularly imprinted polymer composit ink
US20240201153A1 (en) Composite substrate for optical-based voc detection
Rani et al. Nanotube-and nanowire-based sensors for air quality monitoring
Rathi et al. High sensitivity low noise nano-gas sensing device with IoT capabilities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852962

Country of ref document: EP

Kind code of ref document: A1