WO2019048950A1 - 换热装置及具有换热装置的设备 - Google Patents
换热装置及具有换热装置的设备 Download PDFInfo
- Publication number
- WO2019048950A1 WO2019048950A1 PCT/IB2018/055891 IB2018055891W WO2019048950A1 WO 2019048950 A1 WO2019048950 A1 WO 2019048950A1 IB 2018055891 W IB2018055891 W IB 2018055891W WO 2019048950 A1 WO2019048950 A1 WO 2019048950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- unit
- heat exchange
- vapor
- exchange device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
- G06F1/206—Cooling means comprising thermal management
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20145—Means for directing air flow, e.g. ducts, deflectors, plenum or guides
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20154—Heat dissipaters coupled to components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20136—Forced ventilation, e.g. by fans
- H05K7/20172—Fan mounting or fan specifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20009—Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
- H05K7/20209—Thermal management, e.g. fan control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20218—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
- H05K7/20263—Heat dissipaters releasing heat from coolant
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20327—Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20354—Refrigerating circuit comprising a compressor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20381—Thermal management, e.g. evaporation control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/071—Compressor mounted in a housing in which a condenser is integrated
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2200/00—Indexing scheme relating to G06F1/04 - G06F1/32
- G06F2200/20—Indexing scheme relating to G06F1/20
- G06F2200/201—Cooling arrangements using cooling fluid
Definitions
- the present disclosure relates to a heat exchange device which is suitable for use in a device having the heat exchange device, such as heat dissipation from a computer mainframe, but the device having the heat exchange device is not limited to being applied only to a computer mainframe.
- the first heat dissipation method is shown in FIG. 1. It is a liquid cooling system 40, and the liquid cooling system 40 is directly connected to a central processing unit 51 in a computer main unit 50. After a piping system 41 inputs a lower temperature liquid from the liquid cooling system 40 to a heat conducting portion 42 that is in contact with the central processing unit 51, the liquid absorbs heat generated by the central processing unit 51.
- the temperature of the liquid rises; then, the liquid is further discharged to a heat dissipating end 43 via the piping system 41, and the liquid in the heat dissipating end 43 is dissipated by a cooling fan 44 to lower the temperature of the liquid, and then The liquid system is again transported to the liquid cooling system 40 and the heat conducting portion 42 by the piping system 41 to generate an inner circulation and achieve a heat dissipation effect on the central processing unit 51.
- the circulation of the flow is limited by the internal space of the computer main body 50, so that the flow distance is usually short, and the line is fixed, except that the installation position is limited. If the cycle is too short, the liquid at the heat dissipating end 43 cannot effectively remove the heat, so that the liquid flowing into the heat conducting portion 42 gradually rises during long-term use, and thus the central processor 51 cannot be effectively dissipated. effect.
- the second heat dissipation method is referred to the fan cooling system shown in FIG. 2, which is a host unit 60.
- the host unit 60 is in the central processing unit 51 and a graphics processing unit (GPU).
- graphics processing unit GPU
- Each of the cooling fans 44 is disposed on the main unit 60, and a fan 64 is disposed on the main unit 60.
- the heat generated by the central processing unit 51 and the graphics processor 62 can be guided by the cooling fan 44 , and Hot air is discharged from the main unit 60 through the exhaust fan 64 to achieve a row of heat.
- the cooling fan 44 and the exhaust fan 64 are required to maintain a good heat dissipation technology in the manner of the heat dissipation fan 44.
- the main unit 60 needs to be kept in operation during the startup process, but the cooling fan 44 and The exhaust fan 64 consumes a large amount of power, and the cooling fan 44 and the exhaust fan 64 also generate noise, and after a long period of use, the temperature of the central processing unit 51 and the graphics processor 62 rises;
- the cooling fan 44 generates a flow of air to remove heat, and is disposed in the central processing unit 51 and the graphics processor.
- the cooling fan 44 on the 62 cannot directly perform an effective heat removal for the peripheral computing chip, so the overall heat dissipation effect is limited. Summary of the invention
- the main object of the present disclosure is to provide a heat exchange device that quickly and effectively cools down, and a device having a heat exchange device, the heat exchange device comprising at least: a pipeline unit capable of filling a heat transfer in the pipeline unit a vapor or gas pressurizer, the vapor or gas pressurizer is connected to the pipeline unit; a heat sink, the vapor or gas pressurizer is connected to the heat sink by the pipeline unit; The heat dissipating device is connected to the throttling device by the pipeline unit; a heat sink, the throttling device is connected to the heat sink by the pipeline unit, and the heat absorber and the vapor or gas pressurizer Connected by the pipeline unit, the heat absorber is provided with a heat absorption surface; and a control unit is connected to the vapor or gas pressurizer, the heat sink, the throttle device and the heat absorber.
- the heat exchange device as described above, wherein the heat exchange device further comprises a casing, the inside of the casing is provided with the steam or gas pressurizing device, the heat dissipating device, the throttling device and the control unit, and the control unit
- the heat absorber is disposed outside the housing.
- the heat sink is composed of a fin type heat sink, a fan or a water-cooling heat sink.
- the throttling device is a capillary tube, a temperature-sensing expansion valve, an electronic expansion valve or a first-rate orifice restrictor.
- the apparatus having a heat exchange device includes at least: an apparatus and the heat exchange apparatus as described above, wherein the apparatus is internally provided with at least one working unit; the heat absorber is in contact with the working unit.
- the apparatus having a heat exchange device includes at least: a device and a heat exchange device; wherein the heat exchange device includes at least: a pipe unit capable of filling in the pipe unit a heat transfer medium; a vapor or gas pressurizer, the vapor or gas pressurizer is connected to the pipeline unit; a heat sink, the vapor or gas pressurizer is connected to the heat sink by the pipeline unit; a throttling device, the heat dissipating device is connected to the throttling device by the pipe unit; a plurality of heat absorbers, the throttling device is connected to the heat sink by the pipe unit, and the heat sink and the steam or a gas pressurizer is connected by the pipeline unit, each of the heat absorbers is provided with a heat absorption surface; a control unit, the vapor or gas pressurizer, the heat sink, the throttle device and the heat absorber a signal connection; wherein, the device is internally provided with at least one working unit; the heat absorbing surface is in contact with the working unit.
- An apparatus having a heat exchange device as described above, wherein a plurality of the heat absorbers are connected by the pipe unit.
- An apparatus having a heat exchange device as described above, wherein a plurality of the heat absorbers are connected in series by the pipe unit.
- An apparatus having a heat exchange device as described above wherein a plurality of the heat absorbers are serially connected in series by the pipe unit.
- An apparatus having a heat exchange device as described above wherein a plurality of the working units have a plurality of chips, and the heat absorbing surface is in contact with the chip.
- An apparatus having a heat exchange device as described above, wherein the power supply unit is electrically connected to the heat exchange device.
- the heat exchange device and the device with the heat exchange device provided by the disclosure can directly contact a heat source to generate a direct cooling and heat dissipation function, thereby improving the cooling effect. Moreover, after the heat transfer medium is circulated, the temperature of the heat transfer medium can be kept at a low temperature in the heat absorbing device, so that the temperature lowering effect is not lost even if it is used for a long time.
- the device with the heat exchange device can directly contact the heat absorber, and can achieve a direct and effective heat dissipation effect, and the heat exchange device is installed in the device without adding another volume, and Since the heat sink can provide a direct and continuous heat dissipation effect, the operating temperature of the working unit can be at a better temperature, so that the delay or damage caused by overheating can be avoided.
- Figure 1 is a schematic illustration of a prior art liquid cooling system.
- FIG 2 is a schematic view of a conventional fan cooling system.
- Fig. 3 is a perspective view showing the first embodiment of the heat exchanger according to the present invention.
- Fig. 4 is a perspective exploded view showing the 1-1st embodiment of the apparatus with a heat exchange device according to the present invention.
- Fig. 5 is a schematic view showing a 1-2th embodiment of the apparatus with a heat exchange device according to the present invention.
- Fig. 6 is a perspective view showing the 1-2th embodiment of the apparatus with a heat exchange device according to the present invention.
- Fig. 7 is a schematic view showing the arrangement of the whole device of the second embodiment of the heat exchange device of the present disclosure.
- Fig. 8 is an exploded perspective view showing the entire apparatus of the 2-1th embodiment of the apparatus having the heat exchange device of the present disclosure.
- Fig. 9 is a schematic view showing the overall device erection of the 2-1th embodiment of the apparatus having the heat exchange device of the present disclosure.
- Fig. 10 is a block diagram showing the erection of the heat exchanger according to the second embodiment of the apparatus having the heat exchange device of the present disclosure.
- Figure 11 is an exploded perspective view of the entire apparatus of the third embodiment of the heat exchange device of the present disclosure.
- Fig. 12 is a schematic view showing the arrangement of the entire apparatus of the third embodiment of the heat exchange device of the present disclosure.
- Figure 13 is a schematic view showing the connection of components of the third embodiment of the heat exchange device of the present disclosure.
- Figure 14 is an exploded perspective view of the entire apparatus of the third embodiment of the apparatus having the heat exchange device of the present disclosure (1).
- Figure 15 is an exploded perspective view of the entire apparatus of the third embodiment of the apparatus having the heat exchange device of the present disclosure (2).
- Figure 16 is a schematic view of the entire apparatus of the third embodiment of the apparatus having the heat exchange device of the present disclosure.
- Figure 17 is a schematic view showing the overall operation of the third embodiment of the apparatus having the heat exchange device of the present disclosure. Description of the reference signs:
- heat exchange refers to the ability to perform cold and heat exchange
- the heat exchange device 10 includes a pipe unit 11
- the pipe unit 11 can be filled with a heat-transfer medium (not shown), which is a substance that can perform a gas-liquid conversion, and can be, for example, a refrigerant or water.
- a vapor or gas pressurizer 12 the vapor or gas pressurizer 12 being coupled to the line unit 11, the vapor or gas pressurizer 12 compressing the heat transfer medium in the line unit 11 to a high temperature and pressure
- the gaseous state; the vapor or gas pressurizer 12 can be a compressor.
- the heat dissipation device 13 includes a fin-type heat dissipation block 131 and a fan 132. After the heat transfer medium flows into the fin-type heat dissipation row 131, the fan 132 can be cooled by the fan 132, and the tube can be further cooled.
- the heat transfer medium in the circuit unit 11 is converted into a low temperature and high pressure liquid state; for example, the heat sink 13 may be the fin heat sink 131, the fan 132 or a water cooling heat sink; the water cooling heat sink is filled
- the water-cooling heat sink is formed by immersing the fin-type heat-dissipating row 131 or the pipe unit 11 in the tank body filled with water to achieve the technical effect of heat dissipation.
- the flow device 14 is connected to the pipe unit 11 and is connected to the heat sink 13 , that is, the heat sink 13 is connected to the throttle device 14 by the pipe unit 11;
- the throttling device 14 is a capillary tube, a temperature-sensing expansion valve, an electronic expansion valve or a first-class orifice oriface, and the throttling device 14 can be used for the tube
- the heat transfer medium in the road unit 11 is converted into a low temperature and low pressure gaseous state.
- a heat absorber 15 is connected to the pipeline unit 11, and the heat absorber 15 is disposed between the throttle device 14 and the vapor or gas pressurizer 12, that is, the throttle device 14
- the heat sink 15 is connected to the pipeline unit 11, and the heat absorber 15 is connected to the steam or gas pressurizer 12 by the pipeline unit 11; the heat absorber 15 is provided with a heat absorption surface 151.
- the heat absorbing surface 151 can be in contact with a heat source H and exchange heat with the heat source H. Generally, the heat source H transfers heat to the heat absorbing surface 151, so that the temperature of the heat source H can be lowered or maintained at a specific temperature.
- the low temperature and low pressure gaseous medium flowing through the heat absorber 15 passes through the heat absorbing surface 151 and carries the heat transferred from the heat source H to the heat absorbing surface 151, and is converted into a low pressure high temperature.
- the gaseous medium is passed through the line unit 11 to the vapor or gas pressurizer 12 to complete a circuit.
- control unit 16 that is in signal communication with the vapor or gas pressurizer 12, the heat sink 13, the throttling device 14, and the heat sink 15 and can provide power and control the vapor or gas pressurizer 12, The heat sink 13, the throttle device 14, and the operation of the heat sink 15.
- a housing 20 is provided with the vapor or gas pressurizing device 12, the heat dissipating device 13, the throttling device 14 and the control unit 16, and the heat sink 15 is disposed on the housing 20 external.
- the housing 20 can accommodate the heat exchange device 10 as a whole for convenient carrying and installation. When heat exchange is to be performed, only the heat absorbing surface 151 of the heat absorber 15 and the heat source H are required.
- the heat source H is a chip, such as a central processing unit, and the heat absorbing surface 151 can exchange heat with the heat transfer medium filled in the low temperature and low pressure state of the pipeline unit 11 to
- the heat generated by the heat source H absorbs and converts the heat transfer medium into a high temperature and low pressure gas state; then, the heat transfer medium is sent to the vapor or gas pressurizer 12 via the line unit 11 and pressurized via the vapor or gas
- the fin heat sink 131 introduced into the heat sink 13 is again transported through the pipe unit 11 and passes through the fan 132.
- the heat transfer medium in the pipe unit 11 is converted into a low-temperature high-pressure liquid heat transfer medium; and then, the capillary is converted into a low-temperature low-pressure gas state through the capillary of the throttle device 14
- the medium is transferred to the low temperature and low pressure state of the heat transfer medium introduced into the heat absorber 15 to complete the circulation loop.
- the circulation loop can ensure that the heat transfer medium temperature of the heat absorption surface 151 can effectively dissipate heat to the heat source H; therefore, the operation of the central processing unit can be ensured at a proper operating temperature for a long time operation.
- FIG. 4 is a perspective exploded view showing the 1-1st embodiment of the device with a heat exchange device according to the disclosure.
- the heat exchange device is the same as the previous embodiment, and therefore will not be described again.
- the heat exchange device 10 is directly installed in a device 30.
- the device can be a computer host, a container or a building.
- the device 30 is the computer host.
- the device 30 has a housing 31.
- the housing 31 is a computer housing.
- the inside of the housing 31 or the inside of the device 30 has a power supply unit 32 and a working unit 33.
- the working unit 33 is a motherboard 331 is provided with a central processing unit 3311 (in the present embodiment, the heat source).
- the heat exchange device 10 is provided with the heat sink 15 relative to the working unit 33, wherein the heat absorption unit 15 Face 151 and the central processor 3311 contact.
- the power supply unit 32 can directly supply power to the heat exchange device 10, so that the heat exchange device 10 does not need to use an additional power source; generally, the heat sink 15 has a small active area, so the vapor or gas is relatively
- the power consumption of the pressurizer 12 is also small, so that the power directly used by the heat exchange device 10 of the power supply unit 32 does not affect the performance and stability of the work unit 33.
- a temperature sensor 3312 is disposed between the heat sink 15 and the central processing unit 3311 on the motherboard 331 of the working unit 33.
- the temperature sensor 3312 is clamped to the heat sink 15
- the central processing unit 3311 is in contact with the heat absorbing surface 151.
- the main board 331 is provided with a pulse width modulation (PWM) speed regulating device 3313.
- the control unit 16 is connected to the pulse width modulation speed adjusting unit 3313 to control the operating state of the heat exchange device 10.
- the control unit 16 When the working unit 33 is just started, its temperature is lower than a threshold, so the control unit 16 does not activate the vapor or gas pressurizer 12 and the fan 132; after a period of time, the working unit 33
- the temperature of the central processing unit 3311 is increased, so that the temperature sensor 3312 senses that the temperature of the central processing unit 3311 has increased; when the temperature sensor 3312 senses that the temperature of the central processing unit 3311 is equal to or exceeds the threshold value,
- the control unit 16 is signaled by the pulse width modulation speed adjusting device 3313, and the control unit 16 drives the vapor or gas pressurizer 12 and the fan 132 to operate to perform the thermal medium between the loops.
- the cycle cools down.
- the control unit 16 is notified by the pulse width modulation speed adjusting device 3313 by another signal. 16 that the operation of the heat exchange device 10 can be slowed or stopped. Therefore, the heat exchange device 10 can be operated again when needed, so that the energy loss can be reduced and the heat sink 15 can be prevented from being excessively dissipated, thereby causing the central processing unit 3311 and the working unit 33 to be frosted or under temperature. situation.
- the heat exchange device 10 is substantially the same as the previous embodiment, and therefore will not be described again.
- the inside of the device 30 has a plurality of the working units 33.
- the heat exchange device 10 of the embodiment has a plurality of the heat absorbers 15, and the plurality of heat absorbers 15 are connected by the pipeline unit 11 to complete the a circulation loop, preferably a plurality of the heat absorbers 15 are connected in series by the pipeline unit 11 to complete the circulation loop, and preferably a plurality of the heat absorbers 15 are serially connected in series by the pipeline unit 11 to complete the cycle.
- the heat absorbing surface 151 of the heat sink 15 is in contact with the central processing unit 3311 (in the present embodiment, the heat source), preferably the heat absorbing surface 151 and the corresponding central processing unit 3311 (in the present embodiment)
- the heat source is contacted, and preferably each of the heat absorbing surfaces 151 is in contact with a corresponding one of the central processing units 3311 (in the present embodiment, the heat source).
- the inside of the device 30 has two working units 33 , and the two working units 33 are respectively a motherboard 331 and a display card 332 .
- the central processing unit 3311 is provided with a graphics processor 3321 on the display card 332.
- the heat exchange device 10 is provided with two heat sinks 15 connected in series with the pipeline unit 11 in sequence with respect to the two working units 33.
- the two heat sinks 15 are in contact with the central processing unit 3311 and the graphics processor 3321 through the respective heat absorption surfaces 151, respectively.
- the device 30 can also be provided with a plurality of the power supply units 32 to switch to supply a plurality of the working units 33 or the heat exchange device 10 in response to the demand for power distribution.
- FIG. 7 is a schematic diagram of the overall device erection of the second embodiment of the heat exchange device of the present disclosure, which is liquid-cooled To heat exchange;
- the heat exchange device (10) of the present disclosure includes at least:
- the plurality of pipe units (11) are internally filled with a heat-transfer medium (not shown), wherein
- the heat transfer medium can perform a conversion between a gaseous state and a liquid state, and the heat transfer medium can be, for example, but not limited to, a substance such as a refrigerant or water;
- the vapor or gas pressurizer (12) can The heat transfer medium inside the pipeline unit (11) is compressed into a high pressure and high temperature gaseous state, wherein the vapor or gas pressurizer (12) can be, for example but not limited to, a compressor; a heat sink (13), through The pipe unit (11) is connected to the vapor or gas pressurizer (12); further, the heat sink (13) includes a fin heat sink (131) and a fan (132);
- the heat dissipating device (13) is a water-cooling heat dissipating device; in a preferred embodiment of the present disclosure, the heat dissipating device (13) and the vapor or gas pressurizing device (12) are connected to each other through the pipe unit (11).
- the heat sink (13) is formed by combining the fin heat sink (131) and the fan (132), and the heat transfer medium in the pipeline unit (11) flows into the fin heat sink (131). After that, the fan (132) can be used to cool down.
- the heat transfer medium can be converted into a liquid state of low temperature and high pressure;
- the throttle device (14) is a capillary tube, a temperature-sensitive expansion valve, an electronic expansion valve or a device such as a orifice restrictor or the like; in a preferred embodiment of the present disclosure, the throttle device (14) corresponds to the heat sink (13) through the pipe unit (11) Connecting, and the throttling device (14) can step down the heat transfer medium in the pipeline unit (11) into a low-temperature low-pressure liquid state to achieve the purpose of evaporation and freezing;
- a heat absorber (15) correspondingly connected to the throttling device (14) and the vapor or gas pressurizer (12) through the plurality of pipe units (11), wherein the heat absorber (15) a heat absorbing surface (151) is provided; in a preferred embodiment of the present disclosure, the heat absorber (15) is correspondingly connected to the throttle device (14) through the plurality of pipeline units (11) a vapor or gas pressurizer (12), wherein the heat absorbing surface (151) is provided with the heat absorbing surface (151), and the heat absorbing surface (151) is in contact with a heat source (H) and the heat source (H) Performing hot and cold exchange, wherein the heat source (H) is generated from heat generated by a chip (for example, a central processing unit), and generally, the heat source (H) transfers heat to the heat absorbing surface (151) to enable The temperature of the heat source (H) is lowered or maintained at a specific temperature, and the low temperature and low pressure liquid heat transfer medium flowing through the heat absorber (15) passes through the heat absorbing surface
- control unit (16) coupled to the vapor or gas pressurizer (12), the heat sink (13), the throttling device (14), and the heat sink (15), respectively;
- the control unit (16) is coupled to the vapor or gas pressurizer (12), the heat sink (13), the throttling device (14) and the heat sink (15) to Controlling the operation of the vapor or gas pressurizer (12), the heat sink (13), the throttling device (14) and the heat sink (15) and providing the required power;
- a heat conduction circulation box (17) includes a box body (171) and a cold body respectively disposed inside the box body (171) a liquid (not shown in the drawing), an internal pipe (172), and a cooling pipe (173), wherein the two ends of the internal pipe (172) respectively correspond to the pipe unit (11); (172) in the form of a continuous U-tube (embodiment) distribution, or other heat transfer configuration; further, the thermal cycler (17) may be further provided with a drive member (174) to drive the thermal guide Cooling fluid operation of the circulation tank (17); in a preferred embodiment of the present disclosure, the thermal conductivity circulation tank (17) is from the tank (171), the internal piping in the form of a continuous U-tube (172) And the cooling pipe (173) is combined, wherein the cooling pipe (173) is internally filled with a cooling liquid, wherein the internal pipe (172) distributed in a continuous U-tube shape can effectively raise the heat The heat transfer efficiency of the coolant in the circulation tank (17), and the two ends of the cooling pipe (173) are respectively connected to the heat absorber
- the heat exchanger (15) and the heat conduction circulation box (17) are disposed outside the casing (20); in a preferred embodiment of the present disclosure, the heat exchange device (10) can be accommodated in the casing (20) It is convenient to carry and install inside.
- the internal conduit (172) is filled with a low temperature and low pressure liquid heat transfer medium for heat exchange to absorb the heat generated by the heat source (H) and convert the heat transfer medium into a high temperature and low pressure gas state;
- the heat transfer medium flows from the internal pipe (172) to the steam or gas pressurizer (12) via the pipe unit (11), and is pressurized to a high temperature and high pressure gas state, and then passes through the pipeline again.
- the heat transfer medium in the pipe unit (11) After being introduced into the fin-type heat dissipation row (131) of the heat sink (13) and being cooled by the fan (132), the heat transfer medium in the pipe unit (11) is converted into a low-temperature high-pressure Finally, the heat transfer medium is converted into a low temperature and low pressure liquid state via the capillary of the throttling device (14), so that the heat transfer medium introduced into the internal line (172) becomes a low temperature and low pressure state to complete the circulation circuit.
- the circulation loop can ensure that the heat transfer medium temperature of the heat absorption surface (151) in contact with the cooling line (173) can effectively dissipate the heat source (H) to achieve heat exchange of the heat absorption surface (151). This, in turn, ensures that the operation of the central processor is still within an appropriate operating temperature for extended periods of operation.
- FIG. 8 and FIG. 9 it is an exploded perspective view of the overall device of the 2-1th embodiment of the device having the heat exchange device of the present disclosure, and a schematic diagram of the overall device erection, wherein the heat exchange device (10) and the 2
- the heat exchange device (10) is directly installed in a device (30), which is a mode of a computer host, a container or a building, etc.
- the device (30) is a computer mainframe, and the device (30) has a casing (31).
- the casing (31) is a computer casing.
- a power supply unit (32) and a working unit (33) are disposed inside the casing (31) or inside the device (30), and the working unit (33) is a motherboard (331), and the motherboard (331)
- the central processing unit (3311) is a heat source
- the heat exchange device (10) is provided with the heat sink (15) relative to the working unit (33), wherein the suction
- the power supply unit (32) can directly supply the power required by the heat exchange device (10) so that the heat exchange device (10) does not require an additional power source; in general, the heat sink (15)
- the area of action is small, so the relative power of the vapor or gas pressurizer (12) is not large, so the heat exchange device (10) can be directly used by the power supply unit (32).
- a temperature sensor (3312) is connected to the motherboard (331) of the working unit (33), and the temperature is The inductor (3312) is clamped between the heat sink (15) and the central processing unit (3311) and is in contact with the heat absorbing surface (151), and the main board (331) is provided with a pulse width modulation a speed regulating device (3313), the control unit (16) is connected to the pulse width modulation speed regulating device (3313) to control the operation of the heat exchange device (10), when the working unit (33) is just started, The temperature is below a threshold, so the control unit (16) does not activate the vapor or gas pressurizer (12) and the fan (132); after a period of time, the central processing on the working unit (33) The temperature of the device (3311) will rise, so the temperature sensor (3312) will sense that the temperature of the central processor (3311) has increased, when the temperature sensor (3312) senses that the temperature of the central processor (3311) is
- the speed device (3313) signals the control unit (16), the control unit (16) drives the vapor or gas pressurizer (12) and the fan (132) to operate to perform the thermal medium.
- the cycle of the circulation loop is cooled, and then when the temperature drop is completed, for example, when the temperature sensor (3312) senses that the temperature of the central processing unit (3311) is less than the threshold, the pulse width modulation speed regulating device (3313) is another
- the control unit (16) is signaled, that the control unit (16) can slow down or stop the operation of the heat exchange device (10); therefore, the heat exchange device (10) can be operated again when needed, thereby reducing energy
- the loss and avoiding excessive heat dissipation of the heat sink (15) cause the central processing unit (3311) and the working unit (33) to be frosted or under temperature.
- the device (30) has two working units (33) therein, and the plurality of working units (33) are respectively a motherboard (331) and a display card (332), and the motherboard (331) is provided with a central processing unit (3311), wherein the display card (332) is provided with a graphics processor (3321), and the heat exchange device (10) is provided with the cooling tube with respect to the plurality of working units (33)
- the road (173) is sequentially connected in series with two heat absorbers (15), wherein the plurality of heat absorbers (15) respectively pass through the respective heat absorption surfaces (151) with the central processing unit (3311) and the The graphics processor (3321) is in contact.
- the central processing unit (3311) is a 95W specification
- the graphics processor (3321) is a 150W specification, wherein the heat exchange device (10) dissipates heat between 250W and 600W.
- FIG. 10 there is shown a block diagram of a heat exchanger apparatus according to a second embodiment of the apparatus having a heat exchange device according to the present disclosure, wherein the heat exchange device (10) is substantially the same as the previous embodiment, and thus Further, the device (30) has a plurality of working units (33) therein, and the heat exchange device (10) of the embodiment has a plurality of heat absorbers (15), and the plurality of heat absorbers (15) have the tubes
- the circuit unit (11) is connected to complete the circulation circuit, preferably a plurality of heat absorbers (15) are connected in series by the cooling circuit (173) to complete the circulation circuit, preferably a plurality of the heat absorbers (15)
- the cooling circuit (173) is serially connected in series to complete the circulation circuit; the heat absorbing device (15) is in contact with the central processing unit (3311), preferably the heat absorbing surface (151) ) in contact with the corresponding central processing unit (3311), preferably each of the heat absorbing surfaces (151) is in contact with a corresponding one of the central processing units (3
- the heat exchange device of the present embodiment and the device having the heat exchange device are mainly designed by the hardware design of filling the heat transfer medium inside the pipeline unit, and the heat transfer is effectively performed by the circulation of the steam or gas pressurizer, the heat sink, and the throttle device.
- the medium flows to the heat absorber and the heat is taken away by the heat absorbing surface, and the heat source of the heat absorbing gas is quickly and stably exchanged by the heat conduction circulation box.
- the heat exchange device (10) is mainly used for heat dissipation of the computer mainframe, and the heat exchange device (10) of the present disclosure includes at least:
- the plurality of pipe units (11) are internally filled with a refrigerant medium (not shown in the drawing), and the refrigerant medium can be in a gaseous state and a liquid state. Conversion between, wherein the refrigerant medium is a refrigerant;
- a vapor or gas pressurizer (12) corresponding to the plurality of conduit units (11); in a preferred embodiment of the present disclosure, the vapor or gas pressurizer (12) can
- the piping unit (11) compresses the refrigerant of the internal refrigerant medium into a high-pressure, high-temperature gaseous state, wherein the vapor or gas pressurizer (12) can be, for example but not limited to, a compressor;
- the heat dissipating device (13) connected to the vapor or gas pressurizer (12) through the pipe unit (11); further, the heat dissipating device (13) includes a fin heat sink (131), and a fan (132); further, the heat sink (13) is a water-cooling heat sink; in a preferred embodiment of the present disclosure, the heat sink (13) and the vapor or gas pressurizer (12) pass
- the pipe unit (11) is connected to each other, and the heat sink (13) is composed of the fin heat sink (131) and the fan (132), and one side of the fin heat sink (131)
- the fan (132) is disposed, and the refrigerant of the refrigerant in the pipeline unit (11) flows into the fin heat sink (131) by the vapor or gas pressurizer (12), and the fan (132) is passed through the fan (132).
- a cooling action which in turn converts the refrigerant medium into a liquid state of low temperature and high pressure
- the throttle device (14) is a capillary tube, a temperature-sensitive expansion valve, an electronic expansion valve or a device such as a orifice restrictor or the like; in a preferred embodiment of the present disclosure, the throttle device (14) corresponds to the heat sink (13) through the pipe unit (11) Connecting, and the throttling device (14) can step down the refrigerant of the refrigerant medium in the pipeline unit (11) into a liquid state of low temperature and low pressure to achieve the purpose of evaporation and freezing;
- the chiller (18) A blower (181) is provided; further, the blower (181) is a fan; in a preferred embodiment of the present disclosure, the cooler (18) passes through the plurality of conduit units (11) And correspondingly connecting the throttling device (14) and the vapor or gas pressurizer (12), wherein the ventilator (18) is provided with the air blowing member (181), and the throttling device (14)
- the transferred refrigerant reaches the chiller (18) to reach condensation, and then the air supply member (181) transmits the circulator to the computer, and the heat source (H) from the inside of the computer is a central processing unit (not shown).
- the generated hot air in which the cold air and the hot air form a natural convection due to the difference in degree, and the cold air flows downward and the hot air flows upward to form a circulation loop, which helps to reduce the electronic components of the device (30).
- control unit (16) respectively associated with the vapor or gas pressurizer (12), the heat sink (13), the throttling The device (14), and the chiller (18) are signally connected; in a preferred embodiment of the present disclosure, the control unit (16) and the vapor or gas pressurizer (12), the heat sink (13)
- the throttling device (14) is coupled to the chiller (18) to control the vapor or gas pressurizer (12), the heat sink (13), the throttling device (14) and the chiller (18) operates and provides the power it needs;
- the housing (20) is further provided with a first housing side panel (21) and a second housing side panel (22) disposed opposite the first housing side panel (21).
- the housing (20) is composed of the first housing side panel (21), the second housing side panel (22) and the third housing side panel (23), wherein the first housing side
- the plate (21) is disposed opposite to the second casing side plate (22), and the third casing side plate (23) is disposed on the first casing side plate (21) and the second casing side
- An upper end portion of the plate (22), and the first casing side plate (21), the second casing side plate (22) and the third casing side plate (23) are enclosed as an accommodating space, and
- a partition (19) may be further disposed between the vapor or gas pressurizer (12) and the chiller (18) ; in a preferred embodiment of the present disclosure, the partition (19) is disposed at The vapor or gas pressurizer (12) is interposed between the chiller and the chiller (18) to isolate cold air from hot air.
- FIG. 14 to FIG. 17 is a schematic exploded view of the whole device of the third embodiment of the device with heat exchange device of the present disclosure (1), an exploded view of the whole device (2), a schematic diagram of the whole device, and the whole Operation diagram, wherein the heat exchange device (10) is the same as described above, and therefore will not be described again;
- the heat exchange device (10) is installed in a device (30), which is a computer host and a container Or a building or the like, in a preferred embodiment of the present disclosure, the device (30) is a computer mainframe, and the device (30) is provided with a casing (31), and the casing (31) One end portion is provided with a side plate (311), and a through hole (312) is defined in the side plate (311), wherein the housing (20) is disposed at an inner upper end portion of the outer casing (31) to enable the heat exchange device (10) is disposed at the through hole (312); in a preferred embodiment of the present disclosure, the outer casing (31) is
- the side panel (311) is opened a through hole (312); the refrigerant inside the plurality of pipeline units (11) is compressed by the vapor or gas pressurizer (12) into a high-pressure, high-temperature gaseous state, and then cooled by the heat sink (13)
- the operation of the refrigerant medium can be converted into a low-temperature high-pressure liquid state, and then the refrigerant is converted into a low-temperature low-pressure liquid state by the throttling device (14), and then condensed by the chiller (18), continuing
- the air supply member (181) transmits the cold air to the computer for circulation, and the hot air generated by the computer main body or the hot air generated by the steam or gas pressurizer (12) runs through the third housing
- the side plate (23) enters the casing (20), and the fan (132) discharges the casing (20) and the outside of the casing (31), and the exchange of cold air and hot air is completed, thereby the device (30)
- the internal system temperature is usually about 35 °
- the device (30) may further be provided with at least one power supply unit (not shown), wherein the power supply unit is powered
- the heat exchange device (10) is connected to supply the power supply required for the operation of the heat exchange device (10); further, the device (30) may be further connected with a temperature sensor (not shown), wherein the a temperature sensor is in contact with the chiller (18) to sense the temperature of the chiller (18); in addition, the device (30) can be further provided with the control unit
- a signal-connected pulse width modulation speed regulating device (not shown in the drawing), when the temperature sensor senses that the temperature of the central processing unit equals or exceeds the threshold value, the pulse width modulation speed adjusting device uses a signal Notify the control unit
- control unit (16) drives the vapor or gas pressurizer (12) and the fan (132) to operate to perform cooling of the heat medium in the circulation loop, and then when the temperature drop is completed For example, when the temperature sensor senses that the temperature of the central processing unit is less than the threshold, the control unit (16) is signaled by the pulse width modulation speed regulating device, and the control unit (16) can slow down or stop the control unit (16).
- the liquid cooling heat exchanger (10) is operated.
- the heat exchange device of the present embodiment and the device having the heat exchange device mainly pass the hardware design of filling the refrigerant medium inside the pipeline unit, and the circulation of the steam or gas pressurizer, the heat dissipating device and the throttling device effectively allow the refrigerant medium to flow in.
- the cold chiller forms cold air and is sent to the inside of the equipment, so that the hot air inside the equipment can be discharged from the heat exchanger to the outside of the equipment, and the effective heat exchange cycle is achieved to accelerate the heat dissipation effect.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种换热装置(10)及具有换热装置(10)的设备(30),换热装置(10)包括管路单元(11)、与管路单元(11)连接的蒸气或气体加压器(12)、通过管路单元(11)与加压器(12)连接的散热装置(13)、通过管路单元(11)与散热装置(13)连接的节流装置(14)、通过管路单元(11)与加压器(12)和节流装置(14)连接的吸热器(15)、控制单元(16)和壳体(20),换热装置(10)被设置在一设备(30)内,该设备(30)具有至少一个供电单元(32)和至少一个工作单元(33),工作单元(33)运行时形成热源(H),工作单元(33)与吸热器(15)的吸热面(151)接触,直接进行吸热并进行有效的换热循环以实现散热。
Description
换热装置及具有换热装置的设备
技术领域
本公开是与一种换热装置有关, 其并适用于具有该换热装置的设备, 例如一电脑主机 的散热, 但所述的具有该换热装置的设备不限于只应用在电脑主机。 背景技术
早期的散热系统, 例如装设于一电脑的一 CPU (central processing unit, 中央处理器) 及其他芯片上等热源的散热系统, 通常会在上方装设有具有散热及导热功能的一鳍片(或 称散热鳍片) , 通过该鳍片将热源导引出来, 以完成一散热的程序, 但是科技的进步, 使 得热源的接触面积缩小, 而运算速度增加, 更进一步导致整个热源发热的温度提升, 仅用 散热鳍片的散热方式, 除了效率不佳外, 因为电脑的主机壳为半密闭式, 散热不易, 长时 间使用后, 内部的积尘更会降低散热效果, 所以现在有更多散热系统的改良。
目前业界已发展出两种散热方式, 首先第一种散热方式请参阅图 1所示, 其为一液体 冷却系统 40, 该液体冷却系统 40直接与一电脑主机 50内的一中央处理器 51连接, 一管 路系统 41将温度较低的一液体从该液体冷却系统 40输入至与该中央处理器 51接触的一 导热部 42后, 该液体会吸收该中央处理器 51所产生的热量而使得该液体的温度上升; 接 着, 该液体再经由该管路系统 41导出至一散热端 43, 并通过一散热风扇 44对该散热端 43内的该液体进行散热并使该液体温度下降, 再接着通过该管路系统 41再度将该液体输 送至该液体冷却系统 40及该导热部 42而产生一内循环并达到对该中央处理器 51的散热 效果。
而, 以该液体冷却系统 40进行冷却的机制, 其流动的循环会受到该电脑主机 50内部 空间的限制, 因而通常流动距离很短, 而且线路是固定的, 除了安装的位置受限之外, 过 短的循环会使得该散热端 43 的液体无法将热有效的排除, 因而在长时间的使用下, 流入 该导热部 42的液体会逐渐升温, 进而无法对该中央处理器 51产生有效的散热作用。
又或者,第二种散热方式请配合参阅图 2所示的风扇冷却系统,其为一主机单元 60, 该主机单元 60在该中央处理器 51及一图形处理器(GPU, graphics processing unit) 62上 各设置有一个该散热风扇 44, 同时, 在该主机单元 60上并设有一排风扇 64, 通过该散热 风扇 44可以将该中央处理器 51及该图形处理器 62产生的热能导引出来, 并且通过该排 风扇 64将热空气排出该主机单元 60以达到一排热的作用。
以该散热风扇 44的方式进行散热机制者, 该散热风扇 44及该排风扇 64为了要产生 良好的散热技术效果, 需于该主机单元 60开机过程中保持运转状态, 然而运转时该散热 风扇 44及该排风扇 64会消耗大量的电量, 同时该散热风扇 44与该排风扇 64的运转也会 产生噪音, 而且经过长时间使用后, 该中央处理器 51及该图形处理器 62的温度会升高; 另外, 该散热风扇 44产生空气的流动带走热量, 装设在该中央处理器 51及该图形处理器
62上的散热风扇 44无法直接对于周边运算芯片直接做一有效的排热, 因此整体散热效果 有限。 发明内容
本公开人鉴于上述传统散热方式于实际实施仍具有多处的缺失,于是乃一本孜孜不倦 的精神, 并通过丰富的专业知识及多年的实务经验所辅佐, 而加以改善, 并据此研创出本 公开。
本公开主要目的是提供快速且有效降温的一种换热装置及一种具有换热装置的设备, 该换热装置其至少包含有: 一管路单元, 该管路单元内能够充填一热传媒介; 一蒸气或气 体加压器, 该蒸气或气体加压器与该管路单元连接; 一散热装置, 该蒸气或气体加压器与 该散热装置以该管路单元连接;一节流装置,该散热装置与该节流装置以该管路单元连接; 一吸热器, 该节流装置与该吸热器以该管路单元连接, 且该吸热器与该蒸气或气体加压器 以该管路单元连接, 该吸热器设有一吸热面; 一控制单元, 其与该蒸气或气体加压器、 该 散热装置、 该节流装置及该吸热器信号连接。
如上所述的换热装置, 其中该换热装置还包含一壳体, 该壳体的内部装设有该蒸气或 气体加压器、 该散热装置、 该节流装置及该控制单元, 而该吸热器设于该壳体的外部。
如上所述的换热装置, 其中该散热装置为一鳍片式散热排、 一风扇 或一水冷散热装 置所构成。
如上所述的换热装置, 其中该节流装置为一毛细管、 一感温式膨胀阀、 一电子式膨胀 阀或一流孔限流板。
该具有换热装置的设备, 其至少包含有: 一设备及如上所述的该换热装置, 其中, 该 设备的内部设置有至少一工作单元; 该吸热器与该工作单元接触。
于另一实施例中, 该具有换热装置的设备, 其至少包含有: 一设备及一换热装置; 其 中, 该换热装置至少包含有: 一管路单元, 该管路单元内能够充填一热传媒介; 一蒸气或 气体加压器, 该蒸气或气体加压器与该管路单元连接; 一散热装置, 该蒸气或气体加压器 与该散热装置以该管路单元连接; 一节流装置, 该散热装置与该节流装置以该管路单元连 接; 多个吸热器, 该节流装置与该吸热器以该管路单元连接, 且该吸热器与该蒸气或气体 加压器以该管路单元连接, 每一该吸热器设有一吸热面; 一控制单元, 其与该蒸气或气体 加压器、 该散热装置、 该节流装置及该吸热器信号连接; 其中, 该设备的内部设置有至少 一工作单元; 该吸热面与该工作单元接触。
如上所述的具有换热装置的设备, 其中, 多个该吸热器以该管路单元连接。
如上所述的具有换热装置的设备, 其中, 多个该吸热器以该管路单元串连。
如上所述的具有换热装置的设备, 其中, 多个该吸热器以该管路单元依序串连。 如上所述的具有换热装置的设备, 其中, 多个该工作单元具有多个芯片, 该吸热面与 该芯片接触。
如上所述的具有换热装置的设备, 其中, 多个该吸热面与对应的该芯片接触。
如上所述的具有换热装置的设备, 其中, 每一该吸热面与对应的每一该芯片接触。 如上所述的具有换热装置的设备, 其中, 该芯片为一中央处理器或一图形处理器。 如上所述的具有换热装置的设备, 其中, 该设备还设置有至少一供电单元, 该供电单 元与该工作单元电性连接。
如上所述的具有换热装置的设备, 其中, 该供电单元与该换热装置电性连接。
如上所述的具有换热装置的设备, 其中, 该工作单元还接设有一温度感应器于该吸热 面与该工作单元之间, 并与该吸热器及该工作单元接触。
如上所述的具有换热装置的设备,其中,该工作单元并设有一脉冲宽度调制调速装置, 该控制单元信号连接该脉冲宽度调制调速装置。
本公开所提供的该换热装置及该具有换热装置的设备,该换热装置的该吸热器可直接 与一热源接触, 产生直接降温散热的作用, 因此可以提升冷却效果。 而且, 该热传媒介经 过循环之后, 该热传媒介的温度在该吸热器皆可以保持低温状态, 因此即使长时间使用也 不会丧失其降温效果。同时,该具有换热装置的设备,该工作单元可直接与该吸热器接触, 而可达直接有效的散热效果, 而该换热装置装设于该设备内也不会另外增加体积, 且因该 吸热器可供直接且持续的散热效果, 使该工作单元的操作温度可以在较佳的温度内, 因此 可以避免过热所产生的迟缓或损坏。 附图说明
图 1是现有液体冷却系统的示意图。
图 2是现有风扇冷却系统的示意图。
图 3为本公开换热装置第 1实施例的立体外观图。
图 4为本公开具换热装置的设备第 1-1实施例的立体外观分解图。
图 5为本公开具换热装置的设备第 1-2实施例的示意图。
图 6为本公开具换热装置的设备第 1-2实施例的立体外观图。
图 7为本公开换热装置第 2实施例的整体装置架设示意图。
图 8为本公开具有换热装置的设备第 2-1实施例的整体装置分解示意图。
图 9为本公开具有换热装置的设备第 2-1实施例的整体装置架设示意图。
图 10为本公开具有换热装置的设备第 2-2实施例的换热装置架设方框图。
图 11为本公开换热装置第 3实施例的整体装置分解示意图。
图 12为本公开换热装置其第 3实施例的整体装置架设示意图。
图 13为本公开换热装置第 3实施例的元件连接示意图。
图 14为本公开具有换热装置的设备第 3实施例的整体装置分解示意图 (一) 。
图 15为本公开具有换热装置的设备第 3实施例的整体装置分解示意图 (二) 。
图 16为本公开具有换热装置的设备第 3实施例的整体装置示意图。
图 17为本公开具有换热装置的设备第 3实施例的整体运行示意图。 附图标记说明:
10 换热装置
11 管路单元
12 蒸气或气体加压器
13 散热装置
131 鳍片式散热排
132 风扇
14 节流装置
15 吸热器
151 吸热面
16 控制单元
17 热导循环箱
171 箱体
172 内部管路
173 冷却管路
174 驱动件
18 排冷器
181 送风件
19 隔板
20 壳体
21 第一壳体侧板
22 第二壳体侧板
23 第三壳体侧板
30 设备
31 外壳
311 侧板
312 透孔
32 供电单元
33 工作单元
331 主机板
3311 中央处理器
3312 温度感应器
3313 脉冲宽度调制调速装置
3321 图形处理器
H 热源
(现有)
40 液体冷却系统
41 管路系统
42 导热部
43 散热端
44 散热风扇
50 电脑主机
51 中央处理器
60 主机单元
62 图形处理器
64 排风扇 具体实施方式
为了便于贵审査员了解本公开的技术特征、 内容与优点及其所能实现的技术效果, 兹 将本公开配合附图, 并以实施例的表达形式详细说明如下, 而其中所使用的附图, 其主旨 仅为示意及辅助说明书之用, 未必为本公开实施后的真实比例与精准配置, 故不应就所附 的附图的比例与配置关系解读、 局限本公开于实际实施上的权利要求, 在此事先说明。
请参阅图 3所示, 其为本公开换热装置第 1实施例的立体外观图, 所称 "换热"是指 能够进行冷热交换, 该换热装置 10包含有- 一管路单元 11, 该管路单元 11内能够充填有一热传媒介(heat-transfer medium) (图 未绘出) , 该热传媒介为可以进行气态-液态之间转换的物质, 例如可以是冷媒或水。
一蒸气或气体加压器 12, 该蒸气或气体加压器 12与该管路单元 11连接, 该蒸气或 气体加压器 12可将该管路单元 11内的该热传媒介压缩成高温高压的气态状态;该蒸气或 气体加压器 12可以为一压缩机。
一散热装置 13, 该散热装置 13与该管路单元 11连接, 并接设于该蒸气或气体加压 器 12后, 亦即该蒸气或气体加压器 12与该散热装置 13以该管路单元 11连接; 该散热装 置 13包含有一鳍片式散热排 131及一风扇 132,该热传媒介流入该鳍片式散热排 131后, 可通过该风扇 132进行降温的动作, 进而可将该管路单元 11 内的该热传媒介转换成低温 高压的液态状态; 例如, 该散热装置 13可以为该鳍片式散热排 131、 该风扇 132或一水 冷散热装置; 所述该水冷散热装置为装填有水的一槽体, 而将该鳍片式散热排 131 或该 管路单元 11 浸泡入装填有水的该槽体所构成的该水冷散热装置,以达到散热的技术效果。
一节流装置 14, 该节流装置 14与该管路单元 11连接, 并接设于该散热装置 13后, 亦即该散热装置 13与该节流装置 14以该管路单元 11连接; 该节流装置 14为一毛细管、 一感温式膨胀阀、 一电子式膨胀阀或一流孔限流板 (oriface) , 该节流装置 14 可将该管
路单元 11内的热传媒介转换成低温低压的气态状态。
一吸热器 15, 该吸热器 15与该管路单元 11连接, 该吸热器 15设于该节流装置 14 与该蒸气或气体加压器 12之间,亦即该节流装置 14与该吸热器 15以该管路单元 11连接, 且该吸热器 15与该蒸气或气体加压器 12以该管路单元 11连接;该吸热器 15上设有一吸 热面 151,该吸热面 151能够与一热源 H接触并与该热源 H进行冷热交换,一般而言该热 源 H将热量传递给该吸热面 151而能够使得该热源 H的温度降低或维持于某特定温度; 而流经该吸热器 15的低温低压的气态该热传媒介会经过该吸热面 151并将来自该热源 H 所传递给该吸热面 151的热量带走, 并转换成低压高温的气态该热传媒介, 再经该管路单 元 11流向该蒸气或气体加压器 12以完成一循环回路。
一控制单元 16, 其与该蒸气或气体加压器 12、 该散热装置 13、 该节流装置 14及该 吸热器 15信号连接并可提供电力且控制该蒸气或气体加压器 12、 该散热装置 13、 该节流 装置 14及该吸热器 15的运行。
一壳体 20, 该壳体 20内部装设有该蒸气或气体加压器 12、 该散热装置 13、 该节 流装置 14及该控制单元 16, 而该吸热器 15设于该壳体 20外部。
为供进一步了解本公开构造特征, 运用手段技术及所预期实现的技术效果, 兹将本公 开使用方式加以叙述, 相信当可由此而对本公开有更深入且具体的了解, 如下所述; 请参阅图 3所示, 该壳体 20可将该换热装置 10容置成一整体以方便携带及安装, 当 要进行换热时仅需要将该吸热器 15的该吸热面 151与该热源 H接触, 于本实施例中该热 源 H为一芯片例如一中央处理器, 该吸热面 151即能够以该管路单元 11内充填的低温低 压气态该热传媒介来进行热交换, 以将该热源 H产生的热量吸收,并使该热传媒介转换成 高温低压的气态; 接着, 该热传媒介经由该管路单元 11输送至该蒸气或气体加压器 12并 经由该蒸气或气体加压器 12加压形成高温高压的气态该热传媒介后, 再度经由该管路单 元 11输送导入该散热装置 13的鳍片式散热排 131并经过该风扇 132的排热降温后,该管 路单元 11 内的热传媒介会转换成低温高压的液态该热传媒介; 再接着, 再经由该节流装 置 14的该毛细管转换后变成低温低压的气态该热传媒介,使导入该吸热器 15的该热传媒 介为低温低压的状态以完成该循环回路。此该循环回路可以确保该吸热面 151的该热传媒 介温度可以有效对于该热源 H进行散热;是以,长时间的操作下仍可确保该中央处理器的 运行仍在一适当的操作温度内。
请一并同时参阅图 4所示, 为本公开具换热装置的设备第 1-1实施例的立体外观分解 图, 该换热装置与前一实施例相同, 故不再赘述。 其中, 该换热装置 10直接装设于一设 备 30内, 该设备可以为一电脑主机、 一货柜或一建筑物, 于本实施例中举例该设备 30为 该电脑主机。 该设备 30具有一外壳 31, 于本实施例中举例该外壳 31为电脑机壳, 该外 壳 31的内部或该设备 30的内部另具有一供电单元 32及一工作单元 33, 该工作单元 33 为一主机板 331, 该主机板 331上设有一中央处理器 3311 (于本实施例中为该热源) , 该 换热装置 10相对于该工作单元 33设有该吸热器 15, 其中该吸热面 151与该中央处理器
3311接触。 同时, 该供电单元 32可直接供给电力给予该换热装置 10, 使该换热装置 10 不需要额外使用电源; 一般而言该吸热器 15的作用面积较小, 所以相对地该蒸气或气体 加压器 12的耗电亦不大, 因此该换热装置 10直接使用该供电单元 32的电力也不会对于 该工作单元 33的效能及稳定性产生影响。 同时, 该工作单元 33的该主机板 331上还接设 有一温度感应器 3312设于该吸热器 15与该中央处理器 3311之间,该温度感应器 3312被 夹持在该吸热器 15与该中央处理器 3311之间并与该吸热面 151接触。该主机板 331上并 设有一脉冲宽度调制 (PWM, Pulse Width Modulation) 调速装置 3313, 该控制单元 16 信号连接该脉冲宽度调制调速装置 3313以控制该换热装置 10的运行状态。当该工作单元 33刚开始启动时, 其温度低于一阈值, 因此该控制单元 16并不会启动该蒸气或气体加压 器 12及该风扇 132; 当一段时间后, 该工作单元 33上的该中央处理器 3311的温度会升 高, 因此该温度感应器 3312会感知该中央处理器 3311的温度已经提高; 当该温度感应器 3312感知该中央处理器 3311的温度等于或超过该阈值时, 则由该脉冲宽度调制调速装置 3313以一信号通知该控制单元 16, 该控制单元 16即会驱动该蒸气或气体加压器 12及该 风扇 132运转以进行该热传媒介于该循环回路的循环降温。接着当温度下降完成后, 例如 该温度感应器 3312感知该中央处理器 3311的温度小于该阈值时,则由该脉冲宽度调制调 速装置 3313 以一另一信号通知该控制单元 16, 该控制单元 16即可以减缓或停止该换热 装置 10的运行。 因此, 该换热装置 10可在需要时再进行运转, 故可降低能源的损耗及避 免该吸热器 15过度散热, 而造成该中央处理器 3311及该工作单元 33结霜或温度过低的 状况。
请一并同时参阅图 5及图 6所示,其为本公开具有该换热装置的设备的第 1-2实施例, 该换热装置 10大致与前一实施例相同, 故不再赘述。 其中, 该设备 30的内部具有多个该 工作单元 33, 本实施例的该换热装置 10具有多个该吸热器 15, 多个该吸热器 15以该管 路单元 11连接以完成该循环回路, 优选为多个该吸热器 15以该管路单元 11串连以完成 该循环回路, 最佳为多个该吸热器 15以该管路单元 11依序串连以完成该循环回路; 该吸 热器 15的该吸热面 151与该中央处理器 3311 (于本实施例中为该热源) 接触, 优选地该 吸热面 151与对应的该中央处理器 3311 (于本实施例中为该热源) 接触, 最佳地每一该 吸热面 151与对应的每一该中央处理器 3311 (于本实施例中为该热源) 接触。
于图 5及图 6的实施例中, 该设备 30的内部具有两个该工作单元 33, 两个该工作单 元 33分别为该主机板 331及一显示卡 332, 该主机板 331上设有该中央处理器 3311, 该 显示卡 332上设有一图形处理器 3321, 该换热装置 10相对于两个该工作单元 33设有以 该管路单元 11依序串连的两个该吸热器 15; 其中, 两个该吸热器 15分别通过各自的该 吸热面 151与该中央处理器 3311及该图形处理器 3321接触。 当然, 该设备 30亦可设有 多个该供电单元 32, 以因应电力调配的需求而切换为将电力供给多个该工作单元 33或该 换热装置 10。
请参阅图 7所示, 为本公开换热装置第 2实施例的整体装置架设示意图, 其以液冷达
到换热; 本公开的换热装置 (10) 至少包括有:
多个管路单元 (11) ; 在本公开其一优选实施例中, 所述多个管路单元 (11) 内部填 充有一热传媒介 (heat-transfer medium) (附图未标示) , 其中该热传媒介可进行气态与 液态之间的转换, 该热传媒介可例如但不限定为冷媒或水等其中的一物质;
一蒸气或气体加压器 (12) , 对应与所述多个管路单元 (11)连接; 在本公开其一优 选实施例中, 该蒸气或气体加压器 (12)可将所述多个管路单元(11) 内部的热传媒介压 缩成高压高温的气态状态, 其中该蒸气或气体加压器 (12) 可例如但不限定为一压缩机; 一散热装置(13), 通过该管路单元(11)而对应与该蒸气或气体加压器(12)连接; 此外, 该散热装置 (13) 包括有一鳍片式散热排 (131) , 以及一风扇 (132) ; 再者, 该 散热装置 (13) 为一水冷散热装置; 在本公开其一优选实施例中, 该散热装置 (13) 与该 蒸气或气体加压器 (12)通过该管路单元 (11) 相互连接, 而该散热装置 (13) 由该鳍片 式散热排 (131) 与该风扇 (132) 所组合而成, 该管路单元 (11) 中的热传媒介流入该鳍 片式散热排 (131) 后, 可通过该风扇 (132)进行降温的动作, 进而可将该热传媒介转换 成低温高压的液态状态;
一节流装置 (14) , 通过该管路单元 (11) 而对应与该散热装置 (13) 连接; 此外, 该节流装置 (14) 为毛细管、 感温式膨胀阀、 电子式膨胀阀或流孔限流板 (orifice) 等其 中的一种装置; 在本公开其一优选实施例中, 该节流装置 (14) 与该散热装置 (13) 之间 通过该管路单元 (11)对应连接, 且该节流装置 (14) 可将该管路单元 (11) 内的热传媒 介降压转换成低温低压的液态状态, 达到蒸发冷冻的目的;
一吸热器 (15) , 分别通过所述多个管路单元 (11) 而对应连接该节流装置 (14) 与 该蒸气或气体加压器 (12) , 其中该吸热器 (15) 设置有一吸热面 (151) ; 在本公开其 一优选实施例中, 该吸热器 (15)分别通过所述多个管路单元(11) 而对应连接该节流装 置(14)与该蒸气或气体加压器(12) , 其中该吸热器(15)上设置有该吸热面(151), 该吸热面 (151) 与一热源 (H) 接触并与该热源 (H) 进行冷热交换, 其中该热源 (H) 来自一芯片 (例如: 中央处理器) 运行所产生的热能, 一般而言, 该热源 (H) 将热量传 递给该吸热面(151)而能够使该热源(H) 的温度降低或维持于某特定温度, 而流经该吸 热器(15) 的低温低压的液态热传媒介会经过该吸热面(151)并将来自该热源(H)传递 给该吸热面 (151) 的热量带走, 并转换成高温低压的气态热传媒介, 最后再经由该管路 单元 (11) 流向该蒸气或气体加压器 (12) , 以完成一循环回路;
一控制单元 (16) , 分别与该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流 装置(14), 以及该吸热器(15)信号连接;在本公开其一优选实施例中,该控制单元(16) 与该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流装置 (14) 与该吸热器 (15) 信号连接, 以控制该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流装置 (14) 与 该吸热器 (15) 的运行并提供其所需的电力;
一热导循环箱 (17) , 包括有一箱体 (171) 、 一分别设置于该箱体 (171) 内部的冷
却液(附图未标示) 、 内部管路(172) , 以及冷却管路(173 ) , 其中该内部管路(172) 二端分别对应该管路单元 (11 ) ; 此外, 该内部管路 (172) 呈连续 U型管态样 (实施方 式) 分布, 或其他的换热形态设计; 再者, 该热导循环箱 (17) 可进一步设置有一驱动件 ( 174) , 以驱动该热导循环箱 (17 ) 的冷却液运转; 在本公开其一优选实施例中, 该热 导循环箱(17) 由该箱体(171 ) 、 该呈连续 U型管态样的内部管路(172)与该冷却管路 ( 173 )所组合而成, 其中该冷却管路(173 ) 内部分别填充有冷却液, 其中呈连续 U型管 态样分布的内部管路 (172) 可有效提升该热导循环箱 (17) 冷却液的热交换效率, 且该 冷却管路 (173 ) 二端分别对应与该吸热器 (15)连接以循环带热, 而该驱动件 (174) 驱 动冷却液于该冷却管路 (173 ) 及该热导循环箱 (17) 内循环的流动 (173 ) ; 以及
一壳体 (20) , 其内部装设有该蒸气或气体加压器 (12) 、 该散热装置 (13 ) 、 该节 流装置 (14) , 以及该控制单元 (16) , 而该吸热器 (15) 与该热导循环箱 (17) 设置于 该壳体(20)的外部;在本公开其一优选实施例中,该换热装置( 10)可容设于该壳体(20) 内而方便携带与安装, 当要进行热量交换时, 仅需将该吸热器 (15) 的吸热面 (151 ) 与 该热源 (H) 接触, 该吸热面 (151 ) 即能够以该内部管路 (172) 内部填充的低温低压的 液态热传媒介来进行热交换, 以将该热源 (H) 所产生的热量吸收, 并使该热传媒介转换 成高温低压的气体状态; 接着, 该热传媒介自该内部管路 (172) 经由该管路单元 (11 ) 流至该蒸气或气体加压器(12) , 以加压成高温高压的气体状态后, 再度通过该管路单元
( 11 )导入该散热装置(13 )的鳍片式散热排(131 )内而经由该风扇(132)排热降温后, 该管路单元(11 ) 内的热传媒介会转换成低温高压的液体状态; 最后, 该热传媒介经由该 节流装置 (14) 的毛细管转换成低温低压的液体状态, 使导入该内部管路 (172) 的热传 媒介成为低温低压的状态以完成该循环回路; 此循环回路可以确保与该冷却管路 (173 ) 接触的吸热面(151 )的热传媒介温度可以有效对该热源 (H)进行散热,以使该吸热面(151 ) 达到热交换,进而使长时间操作下仍可确保该中央处理器的运行仍在一适当的操作温度内。
此外, 请参阅图 8与图 9所示, 为本公开具有换热装置的设备的第 2-1实施例的整体 装置分解示意图, 以及整体装置架设示意图, 其中该换热装置 (10) 与第 2实施例相同, 故不再赘述; 该换热装置 (10) 直接装设于一设备 (30) 内, 该设备 (30) 为电脑主机、 货柜或建筑物等其中的一种态样,在本公开其一优选实施例中,该设备(30)为电脑主机, 而该设备 (30) 具有一外壳 (31 ) , 在本公开其一优选实施例中, 该外壳 (31 ) 为电脑机 壳, 该外壳(31 ) 内部或该设备(30) 内部设置有一供电单元(32)与一工作单元(33 ), 该工作单元(33 )为一主机板(331 ), 而该主机板(331 )上设有一中央处理器(3311 ), 其中该中央处理器 (3311 ) 即为热源, 该换热装置 (10)相对于该工作单元 (33) 设有该 吸热器 (15 ) , 其中该吸热器 (15 ) 的吸热面 (151 ) 与该中央处理器 (3311 ) 接触; 同 时, 该供电单元 (32) 可直接供给该换热装置 (10) 所需的电力, 以使该换热装置 (10) 不需要额外的电源; 一般而言, 该吸热器(15) 的作用面积较小, 所以相对地该蒸气或气 体加压器 (12)耗电量亦不大, 因此该换热装置 (10) 可直接使用该供电单元 (32) 所提
供的电力而不会对于该工作单元(33)的效能及稳定性产生影响; 同时,该工作单元(33) 的主机板 (331) 上还接设有一温度感应器 (3312) , 且该温度感应器 (3312) 被夹持在 该吸热器(15)与该中央处理器(3311)之间并与该吸热面(151)接触, 该主机板(331) 上并设有一脉冲宽度调制调速装置(3313) , 该控制单元(16)信号连接该脉脉冲宽度调 制调速装置(3313)以控制该换热装置(10)的运行, 当该工作单元(33)刚开始启动时, 其温度低于一阈值, 因此该控制单元 (16)并不会启动该蒸气或气体加压器(12)及该风 扇 (132) ; 当一段时间后, 该工作单元 (33) 上的中央处理器 (3311) 温度会升高, 因 此该温度感应器(3312)会感知该中央处理器(3311) 的温度已经提高, 当该温度感应器 (3312)感知该中央处理器(3311) 的温度等于或超过该阈值时, 则由该脉冲宽度调制调 速装置 (3313) 以一信号通知该控制单元 (16) , 该控制单元 (16) 即会驱动该蒸气或气 体加压器 (12) 及该风扇 (132) 运转以进行该热传媒介于该循环回路的循环降温, 接着 当温度下降完成后, 例如该温度感应器 (3312)感知该中央处理器(3311) 的温度小于该 阈值时, 则由脉冲宽度调制调速装置 (3313) 以另一信号通知该控制单元 (16) , 该控制 单元 (16) 即可以减缓或停止该换热装置 (10)运行; 因此, 该换热装置 (10) 可在需要 时再进行运转, 可降低能源的损耗及避免该吸热器(15)过度散热, 而造成该中央处理器 (3311) 及该工作单元 (33) 结霜或温度过低的状况。
此外, 该设备 (30) 内部具有二工作单元 (33) , 所述多个工作单元 (33) 分别为该 主机板 (331) 及一显示卡 (332) , 该主机板 (331) 上设有该中央处理器 (3311) , 而 该显示卡 (332) 上设有一图形处理器 (3321) , 该换热装置 (10) 相对于所述多个工作 单元 (33) 而设有以该冷却管路 (173) 依序串连的两个吸热器 (15) , 其中所述多个吸 热器(15)分别通过各自的吸热面(151)而与该中央处理器(3311)及该图形处理器(3321) 接触。
此外, 该中央处理器 (3311) 为 95W的规格, 而该图形处理器 (3321) 为 150W的 规格, 其中该换热装置 (10) 针对介于 250W~600W之间的热量散热。
再者, 请参阅图 10所示, 为本公开具有换热装置的设备第 2-2实施例的换热装置架 设方框图, 其中该换热装置 (10) 大致与前一实施例相同, 故不再赘述; 该设备 (30) 内 部具有多个工作单元 (33) , 本实施例的换热装置 (10) 具有多个吸热器 (15) , 而多个 吸热器 (15) 以该管路单元 (11)连接以完成该循环回路, 优选为多个吸热器 (15) 以该 冷却管路(173)串连以完成该循环回路,最佳为多个该吸热器(15)以该冷却管路(173) 依序串连以完成该循环回路; 该吸热器 (15) 该吸热面 (151) 与该中央处理器 (3311) 接触, 优选地该吸热面 (151) 与对应的该中央处理器 (3311) 接触, 最佳地每一该吸热 面 (151) 与对应的每一该中央处理器 (3311) 接触。
本实施例的换热装置与具有换热装置的设备主要通过在管路单元内部填充热传媒介 的硬件设计, 通过蒸气或气体加压器、 散热装置、 节流装置的循环, 有效让热传媒介流向 吸热器而由吸热面将热量带走, 且由热导循环箱快速稳定地交换吸热气的热源, 确实达到
有效的换热循环而加速达到散热的效果等主要优势。
请参阅图 11至图 13所示, 为本公开换热装置第 3实施例的整体装置分解示意图、 整 体装置架设示意图, 以及元件连接示意图, 其能够进行冷气循环达到冷热空气的交换; 在 本公开第 3实施例中, 换热装置(10)主要针对电脑主机的散热使用, 本公开的换热装置 (10) 至少包括有:
多个管路单元 (11) ; 在本公开其一优选实施例中, 所述多个管路单元 (11) 内部填 充有一制冷媒介 (附图未标示) , 该制冷媒介可进行气态与液态之间的转换, 其中该制冷 媒介为冷媒;
一蒸气或气体加压器 (12) , 对应与所述多个管路单元 (11)连接; 在本公开其一优 选实施例中, 该蒸气或气体加压器 (12)可将所述多个管路单元(11) 内部制冷媒介的冷 媒压缩成高压高温的气态状态, 其中该蒸气或气体加压器(12)可例如但不限定为一压缩 机;
一散热装置(13), 通过该管路单元(11)而对应与该蒸气或气体加压器(12)连接; 此外, 该散热装置 (13) 包括有一鳍片式散热排 (131) , 以及一风扇 (132) ; 再者, 该 散热装置 (13) 为一水冷散热装置; 在本公开其一优选实施例中, 该散热装置 (13) 与该 蒸气或气体加压器 (12)通过该管路单元 (11) 相互连接, 而该散热装置 (13) 由该鳍片 式散热排 (131) 与该风扇 (132) 所组合而成, 且该鳍片式散热排 (131) 的一侧设有该 风扇 (132) , 该管路单元 (11) 中的制冷媒介的冷媒由该蒸气或气体加压器 (12) 流入 该鳍片式散热排 (131) 后, 可通过该风扇 (132)进行降温的动作, 进而可将该制冷媒介 转换成低温高压的液态状态;
一节流装置 (14) , 通过该管路单元 (11) 而对应与该散热装置 (13) 连接; 此外, 该节流装置 (14) 为毛细管、 感温式膨胀阀、 电子式膨胀阀或流孔限流板 (orifice) 等其 中的一种装置; 在本公开其一优选实施例中, 该节流装置 (14) 与该散热装置 (13) 之间 通过该管路单元 (11)对应连接, 且该节流装置 (14) 可将该管路单元 (11) 内的制冷媒 介的冷媒降压转换成低温低压的液态状态, 达到蒸发冷冻的目的;
一排冷器 (18) , 分别通过所述多个管路单元 (11) 而对应连接该节流装置 (14) 与 该蒸气或气体加压器 (12) , 其中该排冷器 (18) 设置有一送风件 (181) ; 此外, 该送 风件 (181) 为一风扇; 在本公开其一优选实施例中, 该排冷器 (18) 分别通过所述多个 管路单元 (11) 而对应连接该节流装置 (14) 与该蒸气或气体加压器 (12) , 其中该排冷 器 (18) 上设置有该送风件 (181) , 由该节流装置 (14) 传送的冷媒至该排冷器 (18) 而达到冷凝, 再由该送风件(181)传送至电脑中循环, 而来自电脑内部的热源(H)为中 央处理器(图未示)运行所产生的热空气, 其中冷空气与热空气因为度差异而形成自然对 流, 而冷空气往下流动而热空气往上流动, 以形成一循环回路, 有助于降低该设备 (30) 的电子元件的使用环境温度, 以提升产品的寿命及提升散热能力;
一控制单元 (16) , 分别与该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流
装置(14), 以及该排冷器(18)信号连接;在本公开其一优选实施例中,该控制单元(16) 与该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流装置 (14) 与该排冷器 (18) 信号连接, 以控制该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节流装置 (14) 与 该排冷器 (18) 的运行并提供其所需的电力; 以及
一壳体 (20) , 其内部装设有该蒸气或气体加压器 (12) 、 该散热装置 (13) 、 该节 流装置 (14) 、 该排冷器 (18) , 以及该控制单元 (16) ; 此外, 该壳体 (20) 进一步设 置有一第一壳体侧板(21)、一与该第一壳体侧板(21)对向设置的第二壳体侧板(22), 以及一盖设于该第一壳体侧板(21 )与该第二壳体侧板(22)上端部的第三壳体侧板(23 ) ; 在本公开其一优选实施例中, 壳体(20)由该第一壳体侧板(21)、该第二壳体侧板(22) 与该第三壳体侧板(23)所组合而成,其中该第一壳体侧板(21)与该第二壳体侧板(22) 对向设置,而该第三壳体侧板(23)盖设于该第一壳体侧板(21)与该第二壳体侧板(22) 的上端部, 而该第一壳体侧板 (21) 、 该第二壳体侧板 (22) 与该第三壳体侧板 (23) 围 设成一容置空间, 而该蒸气或气体加压器(12)、该散热装置(13)、 该节流装置(14)、 该排冷器 (18) 与该控制单元 (16) 设置于该容置空间内。
此外,该蒸气或气体加压器( 12)与该排冷器( 18)之间可进一步设置有一隔板( 19) ; 在本公开其一优选实施例中, 该隔板 (19)设置于该蒸气或气体加压器(12) 与该排冷器 (18) 之间, 以隔绝冷空气与热空气。
此外, 请一并参阅图 14至图 17所示, 为本公开具有换热装置的设备第 3实施例的整 体装置分解示意图 (一) 、 整体装置分解示意图 (二) 、 整体装置示意图, 以及整体运行 示意图, 其中该换热装置 (10) 与上文所述相同, 故不再赘述; 该换热装置 (10) 装设于 一设备 (30) 内, 该设备 (30) 为电脑主机、 货柜或建筑物等其中的一种态样, 在本公开 其一优选实施例中, 该设备 (30) 为电脑主机, 而该设备 (30) 设置有一外壳 (31) , 而 该外壳 (31) 的一端部设置有一侧板 (311) , 该侧板 (311) 上开设有一透孔 (312) , 其中该壳体 (20) 设置于该外壳 (31) 的内上端部, 以使该换热装置 (10) 组设于该透孔 (312) 处; 在本公开其一优选实施例中, 该外壳 (31) 为电脑机壳, 该外壳 (31) 的一 端部设置有一侧板 (311) , 而该侧板 (311) 上开设有一透孔 (312) ; 所述多个管路单 元(11) 内部的冷媒由该蒸气或气体加压器(12)压缩成高压高温的气态状态后, 再由该 散热装置 (13) 进行降温的动作, 进而可将该制冷媒介转换成低温高压的液态状态, 接 着由该节流装置(14)将该冷媒转换成低温低压的液态状态后至该排冷器 (18)冷凝, 继 续由该送风件 (181) 将该冷空气传送至电脑中循环, 而该电脑主机所产生的热空气或该 蒸气或气体加压器(12)运行时所产生的热空气会经由该第三壳体侧板(23)进入该壳体 (20) 内, 再由该风扇 (132) 排出壳体 (20) 与该外壳 (31) 的外部, 已完成冷空气与 热空气的交换, 借此该设备 (30) 内部系统温度通常约为 35°C至 45°C, 利用该换热装置 ( 10) 可有效降低至 10。C至 15°C。
此外, 该设备 (30) 可进一步设置有至少一供电单元 (图未示) , 其中该供电单元电
性连接该换热装置(10), 以供应该换热装置(10)运行所需的电源; 再者, 该设备(30) 可进一步接设有一温度感应器(附图未标示),其中该温度感应器与该排冷器(18)接触, 以感测该排冷器 (18)接触的温度; 此外, 该设备 (30) 可进一步设置有一与该控制单元
( 16)信号连接的脉冲宽度调制调速装置(附图未标示) , 当该温度感应器感知该中央处 理器的温度等于或超过该阈值时,则由该脉冲宽度调制调速装置以一信号通知该控制单元
( 16) , 该控制单元 (16) 即会驱动该蒸气或气体加压器 (12) 及该风扇 (132) 运转以 进行该热传媒介于该循环回路的循环降温, 接着当温度下降完成后, 例如该温度感应器感 知该中央处理器的温度小于该阈值时,则由脉冲宽度调制调速装置以另一信号通知该控制 单元 (16) , 该控制单元 (16) 即可以减缓或停止该液冷换热装置 (10) 运行。
本实施例的换热装置与具有换热装置的设备主要通过在管路单元内部填充制冷媒介 的硬件设计, 通过蒸气或气体加压器、 散热装置与节流装置的循环, 有效让制冷媒介流入 排冷器而形成冷空气后传送至设备内部,进而使设备内部的热空气可以由换热装置排出设 备外, 确实达到有效的换热循环而加速达到散热的效果等主要优势。
综上所述, 当知本公开具有产业上利用性与进步性, 且本公开未见于任何刊物, 亦具 新颖性, 当符合专利法的规定, 因此依法提出专利申请, 恳请审査员批准予以授权。
唯以上所述者,仅为本公开的一可行实施例而已,当不能以的限定本公开实施的范围; 即大凡依本公开权利要求所作的均等变化与修饰, 皆应仍属本专利涵盖的范围内。
Claims
权利要求
1、 一种换热装置, 其至少包含:
一管路单元 (11) ;
一蒸气或气体加压器 (12) , 该蒸气或气体加压器 (12) 与该管路单元 (11) 连接; 一散热装置( 13 ),该蒸气或气体加压器( 12)与该散热装置( 13 )以该管路单元(11) 连接;
一节流装置(14), 该散热装置(13)与该节流装置(14)以该管路单元(11)连接; 一吸热器(15) , 该节流装置 (14)与该吸热器(15) 以该管路单元(11)连接, 且 该吸热器 (15) 与该蒸气或气体加压器 (12) 以该管路单元 (11) 连接, 该吸热器 (15) 设有一吸热面 (151) ;
一控制单元(16) , 其与该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节流装 置 (14) 及该吸热器 (15) 信号连接;
一壳体(20) , 该壳体(20) 的内部装设有该蒸气或气体加压器(12) 、 该散热装置 (13) 、 该节流装置 (14)及该控制单元(16) , 而该吸热器(15) 设于该壳体 (20) 的 外部。
2、如权利要求 1所述的换热装置,其中,该散热装置(13)为一鳍片式散热排(131)、 一风扇 (132) 或一水冷散热装置所构成。
3、 如权利要求 1或 2所述的换热装置, 其中, 该节流装置 (14) 为一毛细管、 一感 温式膨胀阀、 一电子式膨胀阀或一流孔限流板。
4、 一种具有换热装置的设备, 其至少包含有- 一设备 (30) 及一换热装置 (10) ;
其中, 该换热装置 (10) 至少包含有:
一管路单元 (11) ;
一蒸气或气体加压器 (12) , 该蒸气或气体加压器 (12) 与该管路单元 (11) 连接; 一散热装置( 13 ),该蒸气或气体加压器( 12)与该散热装置( 13 )以该管路单元(11) 连接;
一节流装置(14), 该散热装置(13)与该节流装置(14)以该管路单元(11)连接; 多个吸热器 (15) , 该节流装置 (14) 与该吸热器 (15) 以该管路单元 (11) 连接, 且该吸热器(15)与该蒸气或气体加压器(12) 以该管路单元(11)连接, 每一该吸热器 (15) 设有一吸热面 (151) ;
一控制单元(16) , 其与该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节流装 置 (14) 及该吸热器 (15) 信号连接;
其中, 该设备 (30) 的内部设置有至少多个工作单元 (33) ; 该吸热面 (151) 与该 工作单元 (33) 接触。
5、 如权利要求 4所述的具有换热装置的设备, 其中, 多个该吸热器 (15) 以该管路 单元 (11) 依序串连。
6、 如权利要求 4所述的具有换热装置的设备, 其中, 多个该工作单元 (33) 具有多 个芯片,该吸热面(151)与该芯片接触,每一该吸热面(151)与对应的每一该芯片接触, 该芯片为一中央处理器 (3311) 或一图形处理器 (3321) 。
7、 如权利要求 4所述的具有换热装置的设备, 其中, 该设备 (30) 还设置有至少一 供电单元(32) , 该供电单元 (32)与该工作单元(33) 电性连接, 该供电单元 (32)与 该换热装置(10) 电性连接, 该工作单元(33)还接设有一温度感应器(3312)于该吸热 面 (151) 与该工作单元 (33) 之间, 并与该吸热器 (15) 及该工作单元 (33) 接触, 该 工作单元(33)并设有一脉冲宽度调制调速装置(3313) , 该控制单元(16)信号连接该 脉冲宽度调制调速装置 (3313) 。
8、 一种换热装置, 至少包括有- 多个管路单元 (11) ;
一蒸气或气体加压器 (12) , 对应与所述多个管路单元 (11) 连接;
一散热装置(13),通过该管路单元(11)而对应与该蒸气或气体加压器(12)连接; 一节流装置 (14) , 通过该管路单元 (11) 而对应与该散热装置 (13) 连接; 一吸热器(15) , 分别通过所述多个管路单元(11)而对应连接该节流装置(14)与 该蒸气或气体加压器 (12) , 其中该吸热器 (15) 设置有一吸热面 (151) ;
一控制单元(16) , 分别与该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节流 装置 (14) , 以及该吸热器 (15) 信号连接;
一热导循环箱 (17) , 包括有一箱体(171) 、 一分别设置于该箱体(171) 内部的冷 却液、 内部管路 (172) , 以及冷却管路 (173) , 其中该内部管路 (172) 与该冷却管路
(173) 通过该管路单元 (11) 而对应与该吸热器 (15) 连接; 以及
一壳体(20) , 其内部装设有该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节 流装置(14) , 以及该控制单元 (16) , 而该吸热器 (15)与该热导循环箱 (17)设置于 该壳体 (20) 的外部。
9、如权利要求 8所述的换热装置,其中该散热装置(13)包括有一鳍片式散热排(131), 以及一风扇 (132) 。
10、如权利要求 8所述的换热装置,其中该节流装置( 14)为毛细管、感温式膨胀阀、 电子式膨胀阀或流孔限流板其中之一。
11、如权利要求 8所述的换热装置,其中该内部管路( 172)呈连续 U型管态样分布。
12、 如权利要求 8所述的换热装置, 其中该热导循环箱(17)进一步设置有一驱动件
(174) , 以驱动该热导循环箱 (17) 的运转。
13、 一种具有换热装置的设备, 至少包括有- 一液冷换热装置 (10) , 包括有:
多个管路单元 (11) ;
一蒸气或气体加压器 (12) ;
一散热装置(13),通过该管路单元(11)而对应与该蒸气或气体加压器(12)连接; 一节流装置 (14) , 通过该管路单元 (11) 而对应与该散热装置 (13) 连接; 多个吸热器 (15) , 分别通过所述多个管路单元 (11) 而对应连接该节流装置 (14) 与该蒸气或气体加压器 (12) , 其中每一该吸热器 (15) 设置有一吸热面 (151) ;
一控制单元(16) , 分别与该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节流 装置 (14) , 以及所述多个吸热器 (15) 信号连接;
一热导循环箱 (17) , 包括有一箱体(171) 、 一分别设置于该箱体(171) 内部的冷 却液、 内部管路 (172) , 以及冷却管路 (173) , 其中该内部管路 (172) 与该冷却管路 (173) 通过该管路单元 (11) 而对应与所述多个吸热器 (15) 连接; 以及
一设备 (30) , 其内部包括有多个工作单元(33) , 其中所述多个工作单元(33)与 所述多个吸热面 (151) 对应连接。
14、 如权利要求 13所述的具有换热装置的设备, 其中所述多个吸热器 (15) 以所述 多个管路单元 (11) 依序串连。
15、 如权利要求 13所述的具有换热装置的设备, 其中所述多个工作单元 (33) 具有 多个芯片, 每一该吸热面 (151) 对应与每一该芯片接触, 该芯片为中央处理器 (3311) 或图形处理器 (3321) 其中之一。
16、 如权利要求 15所述的具有换热装置的设备, 其中该设备 (30) 进一步设置有至 少一供电单元 (32) , 该供电单元 (32) 电性连接所述多个工作单元 (33) , 其中该供 电单元(32)电性连接该液冷换热装置(10) , 其中该工作单元(33)与该吸热面(151) 之间进一步接设有一温度感应器(3312) , 且该温度感应器(3312)与该吸热器(15)接 触, 其中该工作单元(33)进一步设置有一与该控制单元(16)信号连接的脉冲宽度调制 调速装置 (3313) 。
17、 如权利要求 15所述的具有换热装置的设备, 其中该中央处理器 (3311) 为 95W 以上的规格, 该图形处理器(3321)为 150W以上的规格, 该液冷换热装置(10)针对介 于 250W~600W之间的热量散热。
18、 一种换热装置, 至少包括有:
多个管路单元 (11) ;
一蒸气或气体加压器 (12) , 对应与所述多个管路单元 (11) 连接;
一散热装置(13),通过该管路单元(11)而对应与该蒸气或气体加压器(12)连接; 一节流装置 (14) , 通过该管路单元 (11) 而对应与该散热装置 (13) 连接; 一排冷器(15) , 分别通过所述多个管路单元(11)而对应连接该节流装置(14)与 该蒸气或气体加压器 (12) , 其中该排冷器 (15) 设置有一送风件 (151) ;
一控制单元(16) , 分别与该蒸气或气体加压器(12) 、 该散热装置(13) 、 该节流
装置 (14) , 以及该排冷器 (15) 信号连接; 以及
一壳体(20) , 其内部装设有该蒸气或气体加压器(12) 、 该散热装置(13 ) 、 该节 流装置 (14) 、 该排冷器 (15) , 以及该控制单元 (16) 。
19、 如权利要求 18所述的换热装置, 其中该散热装置 (13 ) 包括有一鳍片式散热排 ( 131 ) , 以及一风扇 (132) 。
20、 如权利要求 18所述的换热装置, 其中该散热装置 (13 ) 为一水冷散热装置。
21、 如权利要求 18所述的换热装置, 其中该节流装置 (14) 为毛细管、 感温式膨胀 阀、 电子式膨胀阀或流孔限流板其中之一。
22、 如权利要求 18所述的换热装置, 其中该送风件(151 )为一风扇, 该蒸气或气体 加压器 (12) 与该排冷器 (15) 之间进一步设置有一隔板 (17) , 该壳体 (20) 进一步 设置有一第一壳体侧板(21 )、一与该第一壳体侧板(21 )对向设置的第二壳体侧板(22), 以及一盖设于该第一壳体侧板 (21 )与该第二壳体侧板 (22)上端部的第三壳体侧板 (23 )。
23、 一种具有换热装置的设备, 至少包括有- 一换热装置 (10) , 包括有:
多个管路单元 (11 ) ;
一蒸气或气体加压器 (12) ;
一散热装置(13 ),通过该管路单元(11 )而对应与该蒸气或气体加压器(12)连接; 一节流装置 (14) , 通过该管路单元 (11 ) 而对应与该散热装置 (13 ) 连接; 一排冷器(15) , 分别通过所述多个管路单元(11 )而对应连接该节流装置(14)与 该蒸气或气体加压器 (12) , 其中该排冷器 (15) 设置有一送风件 (151 ) ;
一控制单元(16) , 分别与该蒸气或气体加压器(12) 、 该散热装置(13 ) 、 该节流 装置 (14) , 以及该排冷器 (15) 信号连接;
一壳体(20) , 其内部装设有该蒸气或气体加压器(12) 、 该散热装置(13 ) 、 该节 流装置 (14) 、 该排冷器 (15) , 以及该控制单元 (16) ; 以及
一设备(30), 设置有一外壳(31 ), 而该外壳(31 )的一端部设置有一侧板(311 ) , 该侧板(311 )上开设有一透孔(312) , 其中该壳体(20)设置于该外壳(31 ) 的内上端 部, 以使该换热装置 (10) 组设于该透孔 (312) 处。
24、 如权利要求 23所述的具有换热装置的设备, 其中该设备 (30) 进一步设置有至 少一供电单元, 该供电单元电性连接该换热装置 (10) , 该设备 (30) 进一步接设有一 温度感应器, 且该温度感应器与该排冷器(15)接触, 该设备(30)进一步设置有一与该 控制单元 (16) 信号连接的脉冲宽度调制调速装置。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106213498 | 2017-09-11 | ||
TW106213498U TWM553549U (zh) | 2017-09-11 | 2017-09-11 | 換熱裝置及具有換熱裝置之設備 |
CN201820880011.7U CN208367614U (zh) | 2018-06-07 | 2018-06-07 | 冷气循环换热装置与具有冷气循环换热装置的设备 |
CN201820879998.0 | 2018-06-07 | ||
CN201820879998.0U CN208367613U (zh) | 2018-06-07 | 2018-06-07 | 液冷换热装置与具有液冷换热装置的设备 |
CN201820880011.7 | 2018-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019048950A1 true WO2019048950A1 (zh) | 2019-03-14 |
Family
ID=65631161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2018/055891 WO2019048950A1 (zh) | 2017-09-11 | 2018-08-06 | 换热装置及具有换热装置的设备 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20190079568A1 (zh) |
WO (1) | WO2019048950A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110831402A (zh) * | 2019-10-17 | 2020-02-21 | 珠海格力电器股份有限公司 | 一种电控箱的散热装置、电控箱及散热方法 |
CN111404057A (zh) * | 2020-04-21 | 2020-07-10 | 蒋经伟 | 一种水冷式的电力设备散热装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114531819A (zh) * | 2020-11-09 | 2022-05-24 | 富联精密电子(天津)有限公司 | 液冷散热系统和伺服器系统 |
CN116193841B (zh) * | 2023-04-26 | 2023-06-27 | 苏州市华盛源机电有限公司 | 一种组合式高效散热装置及其方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5940270A (en) * | 1998-07-08 | 1999-08-17 | Puckett; John Christopher | Two-phase constant-pressure closed-loop water cooling system for a heat producing device |
CN1356724A (zh) * | 2000-12-01 | 2002-07-03 | Lg电子株式会社 | 半导体元器件的致冷冷却装置 |
CN1567580A (zh) * | 2003-06-18 | 2005-01-19 | 中国科学院理化技术研究所 | 用于计算机芯片散热的微型制冷系统 |
CN201159876Y (zh) * | 2008-01-08 | 2008-12-03 | 京威科技有限公司 | 双回路小型化冰水冷却循环系统 |
CN101458551A (zh) * | 2007-12-11 | 2009-06-17 | 中国科学院理化技术研究所 | 一种计算机的机箱 |
TWM553549U (zh) * | 2017-09-11 | 2017-12-21 | Casing Macron Technology Co Ltd | 換熱裝置及具有換熱裝置之設備 |
CN207164691U (zh) * | 2017-09-21 | 2018-03-30 | 旭品科技股份有限公司 | 换热装置及具有换热装置的设备 |
-
2018
- 2018-08-06 WO PCT/IB2018/055891 patent/WO2019048950A1/zh active Application Filing
- 2018-08-31 US US16/118,870 patent/US20190079568A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5940270A (en) * | 1998-07-08 | 1999-08-17 | Puckett; John Christopher | Two-phase constant-pressure closed-loop water cooling system for a heat producing device |
CN1356724A (zh) * | 2000-12-01 | 2002-07-03 | Lg电子株式会社 | 半导体元器件的致冷冷却装置 |
CN1567580A (zh) * | 2003-06-18 | 2005-01-19 | 中国科学院理化技术研究所 | 用于计算机芯片散热的微型制冷系统 |
CN101458551A (zh) * | 2007-12-11 | 2009-06-17 | 中国科学院理化技术研究所 | 一种计算机的机箱 |
CN201159876Y (zh) * | 2008-01-08 | 2008-12-03 | 京威科技有限公司 | 双回路小型化冰水冷却循环系统 |
TWM553549U (zh) * | 2017-09-11 | 2017-12-21 | Casing Macron Technology Co Ltd | 換熱裝置及具有換熱裝置之設備 |
CN207164691U (zh) * | 2017-09-21 | 2018-03-30 | 旭品科技股份有限公司 | 换热装置及具有换热装置的设备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110831402A (zh) * | 2019-10-17 | 2020-02-21 | 珠海格力电器股份有限公司 | 一种电控箱的散热装置、电控箱及散热方法 |
CN111404057A (zh) * | 2020-04-21 | 2020-07-10 | 蒋经伟 | 一种水冷式的电力设备散热装置 |
CN111404057B (zh) * | 2020-04-21 | 2021-12-28 | 任焦焦 | 一种水冷式的电力设备散热装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190079568A1 (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019048950A1 (zh) | 换热装置及具有换热装置的设备 | |
CN204272576U (zh) | 液体冷却装置及具有该装置的服务器 | |
US20080006037A1 (en) | Computer cooling apparatus | |
CN210519317U (zh) | 一种用于高密度服务器机柜的热电冷却装置 | |
US20210274683A1 (en) | Server, server rack and data centre | |
CN110647223A (zh) | 一种智能化cpu冷却装置 | |
CN210605614U (zh) | 一种计算机机箱用散热装置 | |
JP6861234B2 (ja) | 室外冷却器ラックシステムを用いた液体冷却 | |
CN214901821U (zh) | 复合式冷却系统 | |
TWI487473B (zh) | 資料中心之冷卻系統 | |
CN112578875A (zh) | 一种计算机水冷散热装置 | |
US20110192572A1 (en) | Heat exchanger | |
TWM566318U (zh) | 液冷換熱裝置與具有液冷換熱裝置之設備 | |
CN206162347U (zh) | 一种密封水冷机箱 | |
CN208367613U (zh) | 液冷换热装置与具有液冷换热装置的设备 | |
CN216210884U (zh) | 一种用于计算机芯片的热电制冷散热装置 | |
TWM569443U (zh) | Cold air circulation heat exchange device and equipment having cold air circulation heat exchange device | |
TWM553549U (zh) | 換熱裝置及具有換熱裝置之設備 | |
CN104133538A (zh) | 一种区位液冷快装模块式服务器系统 | |
CN209728654U (zh) | 基于半导体热泵的笔记本电脑散热器 | |
TWI651506B (zh) | 換熱裝置 | |
CN218353000U (zh) | 一种高效大功率散热装置 | |
CN205946478U (zh) | 用于机房中服务器的冷却系统及服务器机房 | |
CN219202273U (zh) | 一种用于刀片服务器的热电制冷装置 | |
CN208367614U (zh) | 冷气循环换热装置与具有冷气循环换热装置的设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853081 Country of ref document: EP Kind code of ref document: A1 |