WO2019047559A1 - 一种并联换流器系统的控制系统及控制方法 - Google Patents

一种并联换流器系统的控制系统及控制方法 Download PDF

Info

Publication number
WO2019047559A1
WO2019047559A1 PCT/CN2018/087796 CN2018087796W WO2019047559A1 WO 2019047559 A1 WO2019047559 A1 WO 2019047559A1 CN 2018087796 W CN2018087796 W CN 2018087796W WO 2019047559 A1 WO2019047559 A1 WO 2019047559A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference value
controller
active
current
converter
Prior art date
Application number
PCT/CN2018/087796
Other languages
English (en)
French (fr)
Inventor
汪楠楠
卢宇
董云龙
田杰
姜崇学
王佳成
李钢
丁久东
李海英
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to RU2020111496A priority Critical patent/RU2740938C9/ru
Priority to DK18854241.9T priority patent/DK3664245T3/da
Priority to EP18854241.9A priority patent/EP3664245B1/en
Priority to KR1020207006872A priority patent/KR102345372B1/ko
Priority to JP2020513649A priority patent/JP6903821B2/ja
Priority to MX2020002439A priority patent/MX2020002439A/es
Priority to US16/644,225 priority patent/US11355932B2/en
Priority to CA3074761A priority patent/CA3074761A1/en
Publication of WO2019047559A1 publication Critical patent/WO2019047559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention belongs to the technical field of flexible direct current transmission of power systems, and particularly relates to a control system and a control method of a parallel converter system.
  • Flexible DC transmission technology can more effectively realize the integration of large-scale new energy sources, ensuring efficient collection, flexible transmission and dispersion of new energy.
  • a new energy source is collected by a high-voltage large-capacity flexible DC system, from the perspective of improving reliability, a plurality of inverters are generally connected in parallel, and after one inverter failure, part of the power can be transferred by other converters to reduce power loss.
  • the more common bipolar topology is that the voltage source converters are connected in parallel on the same or connected AC bus.
  • the inverter When the flexible grid is connected to the new energy island system, the inverter should supply a stable AC voltage to the island network. At this time, the total power of the flexible DC system is determined by the new energy island system.
  • the streamer transmits equalized power, or transmits power according to a set ratio, and limits the maximum power of the inverter when the converter is overloaded.
  • the object of the present invention is to provide an islanding control method and system for a parallel converter system, which uses a common AC voltage control controller to generate current control reference signals of a plurality of inverters to realize AC voltage control of the island grid and Power distribution and power limitation between multiple parallel converters.
  • a control method for a parallel converter system comprising at least two voltage source-type inverters connected in parallel, the inverters being connected in parallel on the same or connected alternating current bus, the parallel converter
  • the system includes at least one inverter operating in an island control mode, and the control method includes the following steps:
  • the active current of the converter is controlled to follow the active current reference value I dref and the reactive current follows the reactive current reference value I qref ;
  • the island control mode converter controls the amplitude and frequency of the AC bus voltage as a control target.
  • P ref is the total active power reference value of the parallel converter
  • P is the total active power of the actual parallel converter.
  • the active current reference value I dref can be multiplied by the active partition coefficient.
  • K di obtains the active current reference value I drefi of the inverter of the i-th island control mode, and the reactive current reference value I qref can be multiplied by the reactive power distribution coefficient K qi to obtain the inverter of the i-th island control mode.
  • the working current reference value I qrefi where 0 ⁇ K di ⁇ 1, 0 ⁇ K qi ⁇ 1, i ranges from 1 to the number of inverters in the island control mode, and the active partition coefficient K d of each converter
  • the reactive power distribution coefficient K q may be the same or different.
  • the inverter of any island control mode described in the step 5) adopts current vector control.
  • any converter in each of the converters limits the active current reference value to less than or equal to when the active power of the converter needs to be limited.
  • Active current limit value I dlim any converter in each of the converters limits the reactive current reference value to less than or equal to the reactive current limit when it is required to limit the reactive power of the converter Value I qlim ;
  • the active current limit value I dlim is generated by one of two solutions:
  • the active current limit value I dlim is a preset value, and the value ranges from 0 to the maximum active current of the converter;
  • the active current limit value I dlim is generated by the PI controller by the deviation between the active power limit of the converter and the actual active power;
  • the reactive current limit value I qlim is generated by one of two solutions:
  • the reactive current limit value I qlim is a preset value ranging from 0 to the maximum reactive current of the converter
  • the reactive current limit value I qlim is generated by the PI controller by the deviation of the inverter reactive power limit from the actual reactive power.
  • a control system for a parallel converter system comprising at least two voltage source-type inverters connected in parallel, the inverters being connected in parallel on the same or connected alternating current bus, the control system being public
  • the AC voltage controller and each converter independent current controller, the AC voltage controller includes the following links:
  • Reference phase generating part the reference value is calculated based on the frequency F ref system voltage phase reference ⁇ ref;
  • AC voltage sampling collecting the bus voltage on the AC bus
  • the current reference value calculation link processing the collected bus voltage to obtain an active current reference value I dref and a reactive current reference value I qref , wherein the active current reference value I dref and the reactive current reference value I qref are valid by the bus voltage
  • the value reference value and the system voltage phase reference value ⁇ ref are uniquely determined;
  • the AC voltage controller transmits the active current reference value I dref , the reactive current reference value I qref , and the system voltage phase reference value ⁇ ref to the current controller of the inverter of each island control mode as an inverter.
  • the control signals are such that the output active current of each converter follows the active current reference value Idref and the reactive current follows the reactive current reference value Iqref .
  • the configuration of the AC voltage controller adopts one of the following two solutions:
  • the AC voltage controller and the current controller of the converter are configured in different control devices
  • the current controllers of all the inverters use only the inverter control signals output by one of the AC voltage controllers according to the set priority.
  • the AC voltage controller adopts a proportional integral controller, a synovial controller, a deadbeat controller and a non-linear controller
  • the current controller adopts a ratio One of the integral controller, the synovial controller, the deadbeat controller, and the nonlinear controller.
  • the AC voltage controller further includes a power distribution link.
  • the active current reference value I dref can be multiplied by the active power distribution coefficient K di
  • the active current reference value I drefi of the inverter of the i-th island control mode is obtained
  • the reactive current reference value I qref can be multiplied by the reactive power distribution coefficient K qi to obtain the reactive current of the converter of the i-th island control mode.
  • Reference value I qrefi where 0 ⁇ K di ⁇ 1, 0 ⁇ K qi ⁇ 1, i ranges from 1 to the number of inverters in the island control mode, and the active partition coefficient K d or reactive power of each converter
  • the distribution coefficient K q may be the same or different.
  • the current controller of the converter includes a power limiting link, and limits the active current reference value to less than or equal to the active current limit value I dlim ; the reactive current reference value The size limit is less than or equal to the reactive current limit value I qlim ;
  • the active current limit value I dlim is generated by one of two solutions:
  • the active current limit value I dlim is a preset value, and the value ranges from 0 to the maximum active current of the converter;
  • the active current limit value I dlim is generated by the PI controller by the deviation between the active power limit of the converter and the actual active power;
  • the reactive current limit value I qlim is generated by one of two solutions:
  • the reactive current limit value I qlim is a preset value ranging from 0 to the maximum reactive current of the converter
  • the reactive current limit value I qlim is generated by the PI controller by the deviation of the inverter reactive power limit from the actual reactive power.
  • the reference signal is transmitted through the backplane bus; when communicating in different devices, the standard protocol is One of IEC60044-8, Ethernet, TDM.
  • the system voltage phase is generated by a common upper AC voltage control controller, which can effectively ensure the synchronization of a plurality of inverters.
  • the control method and system for a parallel converter system provided by the present invention have the power distribution capability between parallel converters, and can realize power balance control or unbalance control of multiple parallel converters as needed.
  • the control method and system for a parallel converter system provided by the present invention have a power limiting function to avoid the situation that the issuing command exceeds the power limit of the inverter.
  • Figure 1 Schematic diagram of a parallel converter system with four inverters
  • FIG. 3 Schematic diagram of the control system of the parallel converter system
  • FIG. 1 is a schematic diagram of a parallel converter system including four inverters, including four inverters, an inverter C1, an inverter C2, an inverter C3 and an inverter C4.
  • the converter C1 is connected to the AC bus B1 via the commutation transformer T1 and the line switch Q1
  • the converter C2 is connected to the AC bus B1 via the commutation transformer T2 and the line switch Q2, and the converter C3 is commutated.
  • T3 and incoming switch Q3 are connected to AC bus B2
  • converter C4 is connected to AC bus B2 via commutation T4 and incoming switch Q4
  • AC bus B1 and AC bus B2 are connected via bus-coupled switch QM
  • AC bus B1 and The AC bus B2 is connected to an island communication system with a new energy generation system.
  • FIG. 2 is a flow chart of a control method of a parallel converter system.
  • the AC bus connected to the parallel converter adopts the following control steps:
  • K f is the proportional coefficient, and the appropriate scale factor should be selected according to the actual system, the value range is -100 to 100, and P ref is parallel commutation
  • P ref is parallel commutation
  • P is the actual active power of the actual parallel converter.
  • Step 102 Collecting the bus voltage on the AC bus; preferably, collecting the three-phase bus voltage on the AC bus, and obtaining the bus voltage d-axis component U sd according to the system voltage phase reference value ⁇ ref by Park conversion. Bus voltage q-axis component U sq .
  • Step 103 Process the collected bus voltage to obtain the active current reference value I dref and the reactive current reference value I qref ; preferably, the method is the deviation of the bus voltage d-axis component U sd from the bus voltage RMS reference value by PI
  • the controller generates the active current reference value I dref , and the deviation of the q-axis component U sq and 0 of the bus voltage is generated by the PI controller by the reactive current reference value I qref , so the active current reference value I dref and the reactive current reference value I qref are actually
  • the bus voltage rms reference value and the system voltage phase reference ⁇ ref that determines the d-axis and q-axis angles are uniquely determined.
  • Step 104 Output the active current reference value I dref , the reactive current reference value I qref and the system voltage phase reference value ⁇ ref as an inverter control signal to the inverter of each island control mode.
  • the converters that need to reduce the output power can be multiplied by a power split coefficient of less than 1, such as an inverter for the i-th island control mode. It is expected that the active power is 0.5 for other converters, and the reactive power is 0.6 for other converters.
  • the reactive current reference value Iqrefi, the active and reactive power distribution coefficients of other converters are all 1. In particular, when the active and reactive partition coefficients of all island control mode converters are both 1, the power balance of each converter operates.
  • Step 105 For an inverter of any island control mode, according to the received control signal, the active current of the converter is controlled to follow the active current reference value I dref and the reactive current follows the reactive current reference value I qref .
  • the active current reference value is limited to less than or equal to the active current limit value I dlim , that is, in the range of [-I dlim , I dlim ]
  • the active current reference value is limited to less than or equal to the reactive current limit value I qlim , that is, in [-I qlim , Within the range of I qlim ]; the active current limit value I dlim is generated by one of two solutions:
  • the active current limit value I dlim is a preset value, such as the maximum active current of the converter
  • the active current limit value I dlim is the active power limit through the converter, such as the maximum overload active power, and the deviation from the actual active power is modulated by the PI controller;
  • the reactive current limit value I qlim is generated by one of two solutions:
  • the reactive current limit value I qlim is a preset value, such as the maximum reactive current of the converter
  • the reactive current limit value I qlim is the reactive power limit through the converter, such as the maximum reactive power defined by the power interval, and the deviation from the actual reactive power is modulated by the PI controller.
  • the active class control can use active power control or DC voltage control
  • the reactive power type control can use reactive power control
  • N is the number of inverters in the island control mode in the parallel converter system.
  • the current controller i is the i-th island control mode.
  • the controller of the flow device, i has a value of 1 to N, and each current controller is independent of each other.
  • the AC voltage controller and any current controller are configured in different control devices, and the control signals of the i-th converter, including the active current reference value I dref , the reactive current reference value I qref , and the communication protocol are communicated by standard protocol communication.
  • the system voltage phase reference value ⁇ ref is sent to the current controller i of the corresponding converter.
  • the AC voltage controller can be configured in the same control device as the current controller, or multiple AC voltage controllers can be configured in multiple control devices, but switching logic should be set to ensure current controllers for all inverters at the same time. Only the inverter control signal output by one of the AC voltage controllers is used according to the set priority.
  • FIG. 4 is a control functional block diagram of a parallel converter system including a dual converter, wherein the AC voltage controller includes a reference phase generation link, an AC voltage sampling link, a current reference value calculation link, and a power distribution link.
  • the reference phase generating link calculates the system voltage phase reference value ⁇ ref according to the frequency reference value F ref ; the AC voltage sampling link collects the three-phase bus voltage on the AC bus, and obtains the bus voltage d according to the system voltage phase reference value ⁇ ref by park conversion.
  • the current reference value calculation link generates the active current reference value I dref , the bus voltage q by the deviation of the bus voltage d-axis component U sd from the bus voltage rms reference value via the PI controller
  • the deviation of the axis component U sq and 0 is generated by the PI controller by the reactive current reference value I qref
  • the current reference value calculation link can also adopt the synovial controller, the deadbeat controller or the nonlinear controller;
  • the active current reference value I dref can be multiplied by the active partition coefficient K d1 to obtain the active current reference value I dref1 of the inverter in the first island control mode
  • the reactive current reference value I Qref can be multiplied by the reactive power distribution coefficient K q1 to obtain the reactive current reference value I qref1 of the converter in the first island control mode, and the inverter in the second island control
  • the deviation of the maximum overload active power P limi from the actual active P si is modulated by the PI controller to generate the active current limit value I dlimi
  • the deviation between the maximum reactive power Q limi and the actual active Q si is modulated by the PI controller to generate an active current limit.
  • the inner loop current control of the inverter adopts vector control, and the i-th inverter controls according to the active and reactive current commands output by the power limiting link and the system voltage phase reference value ⁇ ref .

Abstract

本发明公开了一种并联换流器系统的控制方法和系统,包含公共的交流电压控制器和每个换流器独立的电流控制器,交流电压控制器产生有功电流、无功电流和系统电压相位参考值并通过通讯送至每个孤岛控制模式的换流器的电流控制器作为换流器控制信号,每个换流器的输出有功和无功电流跟随相应的电流参考值,实现并联换流器系统共同控制交流母线电压的幅值和频率的控制目标。该方法和系统可靠性高,可有效保证多个换流器的同步。

Description

一种并联换流器系统的控制系统及控制方法 技术领域
本发明属于电力系统柔性直流输电技术领域,具体涉及一种并联换流器系统的控制系统及控制方法。
背景技术
柔性直流输电技术可以更有效地实现大范围新能源并网,能够保证新能源高效汇集,灵活传递及分散消纳。在通过高电压大容量柔性直流系统汇集新能源时,从提高可靠性角度,一般由多个换流器并联,在一个换流器故障后可由其他换流器转带部分功率,减少功率损失。较常见的采用双极拓扑,由电压源型换流器并联在相同或相连交流母线上。
当柔直电网接入新能源孤岛系统时,换流器应向孤岛网络供给稳定的交流电压,此时柔性直流系统的总功率有新能源孤岛系统决定。在多个换流器并联接入含新能源的孤岛系统时,除了需要考虑向孤岛网络供给稳定的交流电压外,还需要考虑多个换流器间的协调控制,如如何正常时多个换流器传输均衡的功率、或者按照设定的比例传输功率,以及在换流器过负荷时限制换流器的最大功率等。
为了实现多个换流器并联将大容量新能源通过孤岛接入方式送出,需要采用多换流器并联孤岛控制方法和系统,实现对多个换流器的协调控制。
发明内容
本发明的目的在于,提供一种并联换流器系统的孤岛控制方法和系统,该方法采用公共的交流电压控制控制器产生多个换流器的电流控制参考信号,实现孤岛电网交流电压控制以及多个并联换流器间功率分配以及功率限制。
为了达成上述目的,本发明采用的技术方案是:
一种并联换流器系统的控制方法,所述并联换流器系统包含至少两个并联的电压源型换流器,这些换流器并联在相同或相连交流母线上,所述并联换流器系统至少包括一个运行在孤岛控制模式的换流器,所述控制方法包括如下步骤:
1)根据频率参考值F ref计算系统电压相位参考值θ ref
2)采集交流母线上的母线电压;
3)处理采集到的母线电压以得到有功电流参考值I dref和无功电流参考值I qref,所述的有功电流参考值I dref和无功电流参考值I qref由母线电压有效值参考值和系统电压相位参考值θ ref唯一决定;
4)将有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref作为换流器控制信号输出至每个孤岛控制模式的换流器;
5)对于任一孤岛控制模式的换流器,根据接收到的控制信号,控制该换流器的有功电流跟随有功电流参考值I dref且无功电流跟随无功电流参考值I qref
所述孤岛控制模式的换流器以控制交流母线电压的幅值和频率为控制目标。
上述的一种并联换流器系统的控制方法,所述频率参考值F ref为系统额定频率F n, 或者为F ref=F n+K f(P ref-P),其中K f为比例系数,取值范围为-100至100,P ref为并联换流器总有功功率参考值,P为实际的并联换流器总有功功率。
上述的一种并联换流器系统的控制方法,步骤4)中所述换流器控制信号输出至第i个孤岛控制模式的换流器前,有功电流参考值I dref可乘上有功分配系数K di得到第i个孤岛控制模式的换流器的有功电流参考值I drefi,无功电流参考值I qref可乘上无功分配系数K qi得到第i个孤岛控制模式的换流器的无功电流参考值I qrefi,其中0≤K di≤1,0≤K qi≤1,i的取值范围为1至孤岛控制模式的换流器数量,各换流器的有功分配系数K d或无功分配系数K q可以相同也可以不同。
上述的一种并联换流器系统的控制方法,步骤5)中所述的任一孤岛控制模式的换流器采用电流矢量控制。
上述的一种并联换流器系统的控制方法,所述的每个换流器中任一换流器在需要对换流器的有功功率进行限制时,将有功电流参考值大小限制为小于等于有功电流限制值I dlim;所述的每个换流器中任一换流器在需要对换流器的无功功率进行限制时,将无功电流参考值大小限制为小于等于无功电流限制值I qlim
所述有功电流限制值I dlim由如下两种方案之一产生:
i)所述有功电流限制值I dlim为预设置值,取值范围为0至换流器的最大有功电流;
ii)所述有功电流限制值I dlim为通过该换流器有功功率限值与实际有功的偏差经PI控制器调制产生;
所述无功电流限制值I qlim由如下两种方案之一产生:
i)所述无功电流限制值I qlim为预设置值,取值范围为0至换流器的最大无功电流;
ii)所述无功电流限制值I qlim为通过该换流器无功功率限值与实际无功的偏差经PI控制器调制产生。
一种并联换流器系统的控制系统,所述并联换流器系统包含至少两个并联的电压源型换流器,这些换流器并联在相同或相连交流母线上,所述控制系统由公共的交流电压控制器和每个换流器独立的电流控制器组成,所述交流电压控制器包括如下环节:
参考相位产生环节:根据频率参考值F ref计算系统电压相位参考值θ ref
交流电压采样环节:采集交流母线上的母线电压;
电流参考值计算环节:处理采集到的母线电压以得到有功电流参考值I dref和无功电流参考值I qref,所述的有功电流参考值I dref和无功电流参考值I qref由母线电压有效值参考值和系统电压相位参考值θ ref唯一决定;
所述交流电压控制器将有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref通过通讯送至每个孤岛控制模式的换流器的电流控制器作为换流器控制信号,使得每个换流器的输出有功电流跟随有功电流参考值I dref且无功电流跟随无功电流参考值I qref
所述交流电压控制器的配置采用如下两种方案之一:
i)所述交流电压控制器与换流器的电流控制器配置在同一控制设备中;
ii)所述交流电压控制器与换流器的电流控制器配置在不同控制设备中;
当多个控制设备中配置交流电压控制器时,同一时刻,所有换流器的电流控制器按照设定的优先级仅采用其中一个交流电压控制器输出的换流器控制信号。
上述的一种并联换流器系统的控制系统,所述交流电压控制器采用比例积分控制器、滑膜控制器、无差拍控制器以及非线性控制器之一,所述电流控制器采用比例积分控制器、滑膜控制器、无差拍控制器以及非线性控制器之一。
上述的一种并联换流器系统的控制系统,交流电压控制器中还包括功率分配环节,对第i个孤岛控制模式的换流器,有功电流参考值I dref可乘上有功分配系数K di得到第i个孤岛控制模式的换流器的有功电流参考值I drefi,无功电流参考值I qref可乘上无功分配系数K qi得到第i个孤岛控制模式的换流器的无功电流参考值I qrefi,其中0≤K di≤1,0≤K qi≤1,i的取值范围为1至孤岛控制模式的换流器数量,各换流器的有功分配系数K d或无功分配系数K q可以相同也可以不同。
上述的一种并联换流器系统的控制系统,所述换流器的电流控制器包括功率限制环节,将有功电流参考值大小限制为小于等于有功电流限制值I dlim;将无功电流参考值大小限制为小于等于无功电流限制值I qlim
所述有功电流限制值I dlim由如下两种方案之一产生:
i)所述有功电流限制值I dlim为预设置值,取值范围为0至换流器的最大有功电流;
ii)所述有功电流限制值I dlim为通过该换流器有功功率限值与实际有功的偏差经PI控制器调制产生;
所述无功电流限制值I qlim由如下两种方案之一产生:
i)所述无功电流限制值I qlim为预设置值,取值范围为0至换流器的最大无功电流;
ii)所述无功电流限制值I qlim为通过该换流器无功功率限值与实际无功的偏差经PI控制器调制产生。
上述的一种并联换流器系统的控制系统,交流电压控制器与电流控制器在同一个控制设备时,通过背板总线传输参考信号;在不同装置时通过标准协议通讯,所述标准协议为IEC60044-8、以太网、TDM之一。
采用上述方案后,本发明的有益效果为:
(1)本发明提供的一种并联换流器系统的控制方法和系统,上层交流电压控制控制器和多个下层换流器的电流控制器配合,功能上解耦,满足面向对象设计要求,可靠性高。
(2)本发明提供的一种并联换流器系统的控制方法和系统,系统电压相位由公共的上层交流电压控制控制器产生,可有效保证多个换流器的同步。
(3)本发明提供的一种并联换流器系统的控制方法和系统,具备并联换流器间功率分配能力,可以根据需要实现多个并联换流器的功率平衡控制或不平衡控制。
(4)本发明提供的一种并联换流器系统的控制方法和系统,具备功率限制功能,避免下发指令超出换流器功率极限的情况出现。
(5)本发明提供的一种并联换流器系统的控制方法和系统,功率限制功能采用限制电流指令的方式实现,在交流故障时电流指令被限制后换流器转为恒定电流控制,可以实现交流系统故障穿越。
附图说明
图1;包含四个换流器的并联换流器系统示意图
图2;并联换流器系统的控制方法流程图
图3:并联换流器系统的控制系统结构示意图
图4:包含双换流器的并联换流器系统的控制功能框图
具体实施方式
以下将结合附图及具体实施例,对本发明的技术方案进行详细说明。
附图1为包含四个换流器的并联换流器系统示意图,该并联换流器系统包含换流器C1、换流器C2、换流器C3和换流器C4四个并联的换流器,换流器C1经换流变T1和进线开关Q1接入交流母线B1,换流器C2经换流变T2和进线开关Q2接入交流母线B1,换流器C3经换流变T3和进线开关Q3接入交流母线B2,换流器C4经换流变T4和进线开关Q4接入交流母线B2,交流母线B1和交流母线B2经母联开关QM连接,交流母线B1和交流母线B2均连接含新能源发电系统的孤岛交流系统。
附图2为并联换流器系统的控制方法流程图,为了维持孤岛交流系统的交流电压幅值和频率稳定,并联换流器共同连接的交流母线采用如下的控制步骤:
步骤101:根据频率参考值F ref计算系统电压相位参考值θ ref;较优地实现方法为θ ref(t)=θ ref(t-Δt)+2πF refΔt,其中θ ref(t)为当前时刻的系统电压相位参考值,θ ref(t-Δt)为间隔控制Δt周期前的系统电压相位参考值,初始时可设置θ ref(t-Δt)为0;其中F ref有两种取值方式,分别为:
i)为系统额定频率F n,如为50HZ
ii)为F ref=F n+K f(P ref-P),其中K f为比例系数,应根据实际系统选取合适的比例系数,取值范围为-100至100,P ref为并联换流器总有功功率参考值,P为实际的并联换流器总有功功率。
步骤102:采集交流母线上的母线电压;较优地实现方法为,采集交流母线上的三相母线电压,并根据系统电压相位参考值θ ref经park变换后得到母线电压d轴分量U sd和母线电压q轴分量U sq
步骤103:处理采集到的母线电压以得到有功电流参考值I dref和无功电流参考值I qref;较优地实现方法为母线电压d轴分量U sd与母线电压有效值参考值的偏差经PI控制器产生有功电流参考值I dref,母线电压q轴分量U sq与0的偏差经PI控制器产生无功电流参考值I qref,因此有功电流参考值I dref和无功电流参考值I qref实际由母线电压有效值参考值和决定d轴和q轴角度的系统电压相位参考值θ ref唯一决定。
步骤104:将有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref作为换流器控制信号输出至每个孤岛控制模式的换流器。当需要具备功率分配功能以分配多个换流器功率的功率时,对需要减小输出功率的换流器可以乘上小于1的功率分配系数,如对第i个孤岛控制模式的换流器,期望有功为其他换流器的0.5,无功为其他换流器的0.6时,发送至第i个孤岛控制模式的换流器的有功电流参考值I dref可乘上有功分配系数K di=0.5得到第i个孤岛控制模式的换流器的有功电流参考值I drefi,无功电流参考值I qref可乘上无功分配系数K qi=0.6得到第i个孤岛控制模式的换流器的无功电流参考值Iqrefi,其他换流器的有功和无功分配系数均为1。特别地,当所有孤岛控制模式的换流器的有功和无功分配系数均为1时,各换流器的功率平衡运行。
步骤105:对于任一孤岛控制模式的换流器,根据接收到的控制信号,控制该换流器的有功电流跟随有功电流参考值I dref且无功电流跟随无功电流参考值I qref。当任一孤岛控制模式的换流器需要对换流器的有功功率进行限制时,将有功电流参考值大小限制为小于等于有功电流限制值I dlim,即在[-I dlim,I dlim]范围内;当任一孤岛控制模式的换流器需要对换流器的无功功率进行限制时,将有功电流参考值大小限制为小于等于无功电流限制值I qlim,即在[-I qlim,I qlim]范围内;所述有功电流限制值I dlim由如下两种方案之一产生:
i)所述有功电流限制值I dlim为预设置值,如换流器的最大有功电流
ii)所述有功电流限制值I dlim为通过该换流器有功功率限值,如最大过负荷有功功率,与实际有功的偏差经PI控制器调制产生;
所述无功电流限制值I qlim由如下两种方案之一产生:
i)所述无功电流限制值I qlim为预设置值,如换流器的最大无功电流;
ii)所述无功电流限制值I qlim为通过该换流器无功功率限值,如功率区间限定的最大无功功率,与实际无功的偏差经PI控制器调制产生。
对于未采用孤岛控制模式且与采用孤岛控制模式的换流器并联在同一母线上的换流器,有功类控制可以采用有功功率控制或直流电压控制,无功类控制可采用无功功率控制。
附图3为并联换流器系统的控制系统结构示意图。由公共的交流电压控制器和电流控制器1至电流控制器N组成,N为并联换流器系统中孤岛控制模式的换流器数量,其中电流控制器i为第i个孤岛控制模式的换流器的控制器,i的取值为1至N,每个电流控制器相互独立。交流电压控制器与任一电流控制器配置在不同控制设备中,通过通讯采用标准协议通讯将第i个换流器的控制信号,包括有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref,送至对应的换流器的电流控制器i。交流电压控制器可以与电流控制器配置在同一控制设备中,也可以在多个控制设备中配置多个交流电压控制器,但应设置切换逻辑,保证同一时刻,所有换流器的电流控制器按照设定的优先级仅采用其中一个交流电压控制器输出的换流器控制信号。
附图4为包含双换流器的并联换流器系统的控制功能框图,其中交流电压控制器包括参考相位产生环节、交流电压采样环节、电流参考值计算环节以及功率分配环节。参考相位产生环节根据频率参考值F ref计算系统电压相位参考值θ ref;交流电压采样环节采集交流母线上的三相母线电压,并根据系统电压相位参考值θ ref经park变换后得到母线电压d轴分量U sd和母线电压q轴分量U sq;电流参考值计算环节将母线电压d轴分量U sd与母线电压有效值参考值的偏差经PI控制器产生有功电流参考值I dref,母线电压q轴分量U sq与0的偏差经PI控制器产生无功电流参考值I qref,电流参考值计算环节还可以采用滑膜控制器、无差拍控制器或非线性控制器;功率分配环节中对第1个孤岛控制模式的换流器,有功电流参考值I dref可乘上有功分配系数K d1得到第1个孤岛控制模式的换流器的有功电流参考值I dref1,无功电流参考值I qref可乘上无功分配系数K q1得到第1个孤岛控制模式的换流器的无功电流参考值I qref1,对第2个孤岛控制模式的换流器,有功电流参考值I dref可乘上有功分配系数K d2得到第2个孤岛控制模式的换流器的有功电流参考值I dref2,无功电流参考值I qref可乘上无功分配系数K q2得到第2个孤岛控制模式的换流器的无功电流参考值I qref2,其中0≤K d1≤1,0≤K q1≤1,0≤K d2≤1,0≤K q2≤1,当双换流器对称运行时,K d1=K q1=K d2=K q2=1,此时功率分配 环节相当于未配置。为双换流器配置了对应的电流控制器,分别为电流控制器1和电流控制器2,两个电流控制器均配置功率限制环节,对第i个换流器(i=1或2),最大过负荷有功功率P limi与实际有功P si的偏差经PI控制器调制产生有功电流限制值I dlimi,最大无功功率Q limi与实际有功Q si的偏差经PI控制器调制产生有功电流限制值I qlimi,当有功电流参考值I drefi超出[-I dlimi,I dlimi]范围时将被限定为边界值,当有功电流参考值I qrefi超出[-I qlimi,I qlimi]范围时将被限定为边界值。换流器的内环电流控制采用矢量控制,第i个换流器根据功率限制环节输出的有功和无功电流指令以及系统电压相位参考值θ ref进行控制。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (10)

  1. 一种并联换流器系统的控制方法,所述并联换流器系统包含至少两个并联的电压源型换流器,上述电压源型换流器并联在相同或相连交流母线上,其特征在于,所述并联换流器系统至少包括一个运行在孤岛控制模式的换流器,所述控制方法包括如下步骤:
    1)根据频率参考值F ref计算系统电压相位参考值θ ref
    2)采集交流母线上的母线电压;
    3)处理采集到的母线电压以得到有功电流参考值I dref和无功电流参考值I qref,所述的有功电流参考值I dref和无功电流参考值I qref由母线电压有效值参考值和系统电压相位参考值θ ref决定;
    4)将有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref作为换流器控制信号输出至每个孤岛控制模式的换流器;
    5)对于任一孤岛控制模式的换流器,根据接收到的控制信号,控制该换流器的有功电流跟随有功电流参考值I dref且无功电流跟随无功电流参考值I qref
    所述孤岛控制模式的换流器以控制交流母线电压的幅值和频率为控制目标。
  2. 如权利要求1所述的一种并联换流器系统的控制方法,所述频率参考值F ref为系统额定频率F n,或者为F ref=F n+K f(P ref-P),其中K f为比例系数,取值范围为-100至100,P ref为并联换流器总有功功率参考值,P为实际的并联换流器总有功功率。
  3. 如权利要求1所述的一种并联换流器系统的控制方法,步骤4)中所述换流器控制信号输出至第i个孤岛控制模式的换流器前,有功电流参考值I dref可乘上有功分配系数K di得到第i个孤岛控制模式的换流器的有功电流参考值I drefi,无功电流参考值I qref可乘上无功分配系数K qi得到第i个孤岛控制模式的换流器的无功电流参考值I qrefi,其中0≤K di≤1,0≤K qi≤1,i的取值范围为1至孤岛控制模式的换流器数量,各换流器的有功分配系数K d或无功分配系数K q可以相同也可以不同。
  4. 如权利要求1所述的一种并联换流器系统的控制方法,步骤5)中所述的任一孤岛控制模式的换流器采用电流矢量控制。
  5. 如权利要求1所述的一种并联换流器系统的控制方法,所述的每个换流器中任一换流器在需要对换流器的有功功率进行限制时,将有功电流参考值大小限制为小于等于有功电流限制值I dlim;所述的每个换流器中任一换流器在需要对换流器的无功功率进行限制时,将无功电流参考值大小限制为小于等于无功电流限制值I qlim
    所述有功电流限制值I dlim由如下两种方案之一产生:
    i)所述有功电流限制值I dlim为预设置值,取值范围为0至换流器的最大有功电流;
    ii)所述有功电流限制值I dlim为通过该换流器有功功率限值与实际有功的偏差经PI控制器调制产生;
    所述无功电流限制值I qlim由如下两种方案之一产生:
    i)所述无功电流限制值I qlim为预设置值,取值范围为0至换流器的最大无功电流;
    ii)所述无功电流限制值I qlim为通过该换流器无功功率限值与实际无功的偏差经PI控制器调制产生。
  6. 一种并联换流器系统的控制系统,所述并联换流器系统包含至少两个并联的电压源型换流器,这些换流器并联在相同或相连交流母线上,其特征在于,所述控制系统由公共的交流电压控制器和每个换流器独立的电流控制器组成,所述交流电压控制器包括如下环 节:
    参考相位产生环节:根据频率参考值F ref计算系统电压相位参考值θ ref
    交流电压采样环节:采集交流母线上的母线电压;
    电流参考值计算环节:处理采集到的母线电压以得到有功电流参考值I dref和无功电流参考值I qref,所述的有功电流参考值I dref和无功电流参考值I qref由母线电压有效值参考值和系统电压相位参考值θ ref唯一决定;
    所述交流电压控制器将有功电流参考值I dref、无功电流参考值I qref和系统电压相位参考值θ ref通过通讯送至每个孤岛控制模式的换流器的电流控制器作为换流器控制信号,使得每个换流器的输出有功电流跟随有功电流参考值I dref且无功电流跟随无功电流参考值I qref
    所述交流电压控制器的配置采用如下两种方案之一:
    i)所述交流电压控制器与换流器的电流控制器配置在同一控制设备中;
    ii)所述交流电压控制器与换流器的电流控制器配置在不同控制设备中;
    当多个控制设备中配置交流电压控制器时,同一时刻,所有换流器的电流控制器按照设定的优先级仅采用其中一个交流电压控制器输出的换流器控制信号。
  7. 如权利要求6所述的一种并联换流器系统的控制系统,所述交流电压控制器采用比例积分控制器、滑膜控制器、无差拍控制器或者非线性控制器之一,所述电流控制器采用比例积分控制器、滑膜控制器、无差拍控制器或者非线性控制器。
  8. 如权利要求6所述的一种并联换流器系统的控制系统,交流电压控制器中还包括功率分配环节,对第i个孤岛控制模式的换流器,有功电流参考值I dref可乘上有功分配系数K di得到第i个孤岛控制模式的换流器的有功电流参考值I drefi,无功电流参考值I qref可乘上无功分配系数K qi得到第i个孤岛控制模式的换流器的无功电流参考值I qrefi,其中0≤K di≤1,0≤K qi≤1,i的取值范围为1至孤岛控制模式的换流器数量,各换流器的有功分配系数K d或无功分配系数K q可以相同也可以不同。
  9. 如权利要求6所述的一种并联换流器系统的控制系统,所述换流器的电流控制器包括功率限制环节,将有功电流参考值大小限制为小于等于有功电流限制值I dlim;将无功电流参考值大小限制为小于等于无功电流限制值I qlim
    所述有功电流限制值I dlim由如下两种方案之一产生:
    i)所述有功电流限制值I dlim为预设置值,取值范围为0至换流器的最大有功电流;
    ii)所述有功电流限制值I dlim为通过该换流器有功功率限值与实际有功的偏差经PI控制器调制产生;
    所述无功电流限制值I qlim由如下两种方案之一产生:
    i)所述无功电流限制值I qlim为预设置值,取值范围为0至换流器的最大无功电流;
    ii)所述无功电流限制值I qlim为通过该换流器无功功率限值与实际无功的偏差经PI控制器调制产生。
  10. 如权利要求6所述的一种并联换流器系统的控制系统,交流电压控制器与电流控制器在同一个控制设备时,通过背板总线传输参考信号;在不同装置时通过标准协议通讯,所述标准协议为IEC60044-8协议、以太网协议或者TDM协议。
PCT/CN2018/087796 2017-09-05 2018-05-22 一种并联换流器系统的控制系统及控制方法 WO2019047559A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2020111496A RU2740938C9 (ru) 2017-09-05 2018-05-22 Система и способ контроля системы параллельных конвертеров
DK18854241.9T DK3664245T3 (da) 2017-09-05 2018-05-22 Styresystem og styringsmetode til parallelt omformersystem
EP18854241.9A EP3664245B1 (en) 2017-09-05 2018-05-22 Control system and control method for parallel converter system
KR1020207006872A KR102345372B1 (ko) 2017-09-05 2018-05-22 병렬 연결 컨버터 시스템의 제어 시스템 및 제어 방법
JP2020513649A JP6903821B2 (ja) 2017-09-05 2018-05-22 並列コンバータシステムの制御システムおよび制御方法
MX2020002439A MX2020002439A (es) 2017-09-05 2018-05-22 Un metodo de control y un sistema de control para un sistema de convertidores en paralelo.
US16/644,225 US11355932B2 (en) 2017-09-05 2018-05-22 Control system and control method for parallel converter system
CA3074761A CA3074761A1 (en) 2017-09-05 2018-05-22 Control system and control method for parallel converter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710788447.3 2017-09-05
CN201710788447.3A CN107565589B (zh) 2017-09-05 2017-09-05 一种并联换流器系统的控制系统及控制方法

Publications (1)

Publication Number Publication Date
WO2019047559A1 true WO2019047559A1 (zh) 2019-03-14

Family

ID=60979217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087796 WO2019047559A1 (zh) 2017-09-05 2018-05-22 一种并联换流器系统的控制系统及控制方法

Country Status (10)

Country Link
US (1) US11355932B2 (zh)
EP (1) EP3664245B1 (zh)
JP (1) JP6903821B2 (zh)
KR (1) KR102345372B1 (zh)
CN (1) CN107565589B (zh)
CA (1) CA3074761A1 (zh)
DK (1) DK3664245T3 (zh)
MX (1) MX2020002439A (zh)
RU (1) RU2740938C9 (zh)
WO (1) WO2019047559A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800332A (zh) * 2023-01-09 2023-03-14 西安领充创享新能源科技有限公司 一种负荷调节方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565589B (zh) * 2017-09-05 2022-05-17 南京南瑞继保电气有限公司 一种并联换流器系统的控制系统及控制方法
DE102019210793A1 (de) * 2019-07-22 2021-01-28 Robert Bosch Gmbh Elektrisches Energiespeichersystem und Verfahren zu dessen Betreiben
CN111463818B (zh) * 2020-04-09 2022-07-22 南京南瑞继保电气有限公司 一种并联换流器系统控制器及控制方法
CN112054682B (zh) * 2020-09-22 2022-06-14 曲阜师范大学 一种海上风电场柔性直流输电直流变流器的均流控制方法
CN112505473B (zh) * 2020-10-21 2022-02-01 北京交通大学 柔性直流电网双极短路故障暂态电流的解析计算方法
CN113193583B (zh) * 2021-04-19 2022-07-05 中国电建集团华东勘测设计研究院有限公司 海上风场柔直系统送端mmc滑模变结构控制方法
CN114362265A (zh) * 2021-12-07 2022-04-15 燕山大学 一种用于串并联型电能路由器的无功功率灵活控制方法
CN115425698B (zh) * 2022-08-23 2023-10-20 广东电网有限责任公司广州供电局 一种柔性直流输电的混合控制下的无功分配方法及其系统
CN115940256B (zh) * 2022-11-22 2023-08-04 中国人民解放军陆军工程大学 Pet的孤岛检测过渡过程控制方法、电子设备及存储介质
CN117117946B (zh) * 2023-09-22 2024-02-09 燕山大学 一种用于串并联架构电能路由器的自由度参数设计方法
CN117293855B (zh) * 2023-11-24 2024-02-13 湖南大学 一种惯量可调的构网型新能源场站及并网方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730908A (zh) * 2013-10-30 2014-04-16 国家电网公司 一种规模化离网型微电网中储能换流器控制方法
CN103904676A (zh) * 2014-03-27 2014-07-02 浙江大学 一种vsc-hvdc的下垂控制方法
CN107565589A (zh) * 2017-09-05 2018-01-09 南京南瑞继保电气有限公司 一种并联换流器系统的控制系统及控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224831A (ja) 1985-03-29 1986-10-06 株式会社東芝 直流送電系統の制御装置
IL125328A0 (en) * 1998-07-13 1999-03-12 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
JP2001025171A (ja) 1999-07-07 2001-01-26 Toshiba Corp 自励式交直変換器の制御装置及び位相検出回路
JP3762240B2 (ja) * 2001-03-13 2006-04-05 東芝三菱電機産業システム株式会社 自励式インバータの制御装置
EP1770850A1 (en) * 2005-10-03 2007-04-04 ABB Schweiz AG Systems of parallel operating power electronic converters
US7660135B2 (en) * 2007-05-23 2010-02-09 Hamilton Sundstrand Corporation Universal AC high power inveter with galvanic isolation for linear and non-linear loads
US9425622B2 (en) * 2013-01-08 2016-08-23 Infineon Technologies Austria Ag Power converter circuit with AC output and at least one transformer
DE102012003309B4 (de) 2012-02-18 2022-10-20 Volkswagen Aktiengesellschaft Elektrisches Energiesystem in einem Kraftfahrzeug und Verfahren zum Betreiben eines Energiesystems
RU2490777C1 (ru) 2012-04-03 2013-08-20 Владимир Яковлевич Грошев Конвертер постоянного тока
US20150015072A1 (en) * 2013-07-12 2015-01-15 Infineon Technologies Austria Ag Power Converter Circuit and Method
CN104426157B (zh) * 2013-09-10 2017-04-19 台达电子企业管理(上海)有限公司 储能模块以及储能装置
WO2017004125A1 (en) * 2015-07-02 2017-01-05 Dynapower Company Llc Islanding a plurality of grid tied power converters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730908A (zh) * 2013-10-30 2014-04-16 国家电网公司 一种规模化离网型微电网中储能换流器控制方法
CN103904676A (zh) * 2014-03-27 2014-07-02 浙江大学 一种vsc-hvdc的下垂控制方法
CN107565589A (zh) * 2017-09-05 2018-01-09 南京南瑞继保电气有限公司 一种并联换流器系统的控制系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664245A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800332A (zh) * 2023-01-09 2023-03-14 西安领充创享新能源科技有限公司 一种负荷调节方法及系统

Also Published As

Publication number Publication date
US20200212674A1 (en) 2020-07-02
RU2740938C9 (ru) 2021-05-28
US11355932B2 (en) 2022-06-07
CN107565589B (zh) 2022-05-17
EP3664245B1 (en) 2022-07-06
JP6903821B2 (ja) 2021-07-14
DK3664245T3 (da) 2022-08-22
KR20200037372A (ko) 2020-04-08
RU2740938C1 (ru) 2021-01-21
KR102345372B1 (ko) 2021-12-29
MX2020002439A (es) 2020-10-05
EP3664245A4 (en) 2020-06-24
CA3074761A1 (en) 2019-03-14
CN107565589A (zh) 2018-01-09
EP3664245A1 (en) 2020-06-10
JP2020532944A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019047559A1 (zh) 一种并联换流器系统的控制系统及控制方法
CN109217687A (zh) 基于mmc的配电网电力电子变压器及其控制方法
CN106602885B (zh) 模块化多电平换流器四象限变频器
CN102780226B (zh) 基于斩控均压的链式statcom直流侧电压控制方法及控制电路
CN110086200B (zh) 一种孤岛模式下混合串并联微电网的协调控制方法
CN103904676A (zh) 一种vsc-hvdc的下垂控制方法
CN109861261B (zh) 一种基于ems的储能变流器的功率均衡控制方法以及储能控制系统
WO2018161590A1 (zh) 调节系统并联投入系统、控制方法、装置及存储介质
CN111463818B (zh) 一种并联换流器系统控制器及控制方法
CN104953625A (zh) 一种基于二次电压控制的微电网中分布式电源无功功率分配方法
CN104065104A (zh) 一种基于三相独立调节的微电网快速并网方法
Jin et al. Coordination secondary control for autonomous hybrid AC/DC microgrids with global power sharing operation
CN106921170B (zh) 一种多变流器型三相不平衡负荷综合调节系统结构及控制策略
CN108879716A (zh) 直驱永磁风机的无功协调控制方法及系统
CN106329557A (zh) 多极柔性直流输电系统的控制装置、系统及方法
CN113991670A (zh) 一种用于电网交流柔性合环控制装置及其控制方法
CN112186771B (zh) 一种基于矩阵变换器的电能路由器及电能路由方法
CN107078506B (zh) 电压源转换器
Fazal et al. Droop control techniques for grid forming inverter
CN108475927B (zh) 使用本地可用参数进行独立有功和无功功率流控制的方法
CN106208059B (zh) 可调阻抗式分布式光伏发电集群谐振抑制系统及抑制方法
WO2020152808A1 (ja) 電力供給システム、及び電力供給システムの制御方法
CN107888057B (zh) 一种地铁能量回馈装置的主从控制系统及其控制方法
Yuan et al. The research on the VSC-HVDC control system structure
CN217362658U (zh) 分布式逆变器数据传输结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3074761

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020513649

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018854241

Country of ref document: EP

Effective date: 20200302

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207006872

Country of ref document: KR

Kind code of ref document: A