WO2018161590A1 - 调节系统并联投入系统、控制方法、装置及存储介质 - Google Patents

调节系统并联投入系统、控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2018161590A1
WO2018161590A1 PCT/CN2017/107094 CN2017107094W WO2018161590A1 WO 2018161590 A1 WO2018161590 A1 WO 2018161590A1 CN 2017107094 W CN2017107094 W CN 2017107094W WO 2018161590 A1 WO2018161590 A1 WO 2018161590A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
power
current
adjustment
unbalance
Prior art date
Application number
PCT/CN2017/107094
Other languages
English (en)
French (fr)
Inventor
付明志
王子驰
刘易雄
孟宪乐
姚颖
秦猛
魏义涛
葛媛媛
高楠
郭英杰
彭朝德
禹锦绣
Original Assignee
天津平高智能电气有限公司
平高集团有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津平高智能电气有限公司, 平高集团有限公司, 国家电网公司 filed Critical 天津平高智能电气有限公司
Publication of WO2018161590A1 publication Critical patent/WO2018161590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/26Arrangements for eliminating or reducing asymmetry in polyphase networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Definitions

  • the invention relates to the technical field of power system distribution network automation, in particular to a regulation system parallel input system, a control method, a device and a storage medium.
  • the low-voltage distribution network is mainly a voltage network that is stepped down by a 10KV/0.4KV distribution transformer. Since the distribution network is a mixed network of three-phase and single-phase users, the voltage distribution network often uses three-phase four-wire lines. powered by.
  • the output of the distribution transformer is connected to the low-voltage AC bus of the three-phase low-voltage distribution network, and the low-voltage AC bus distributes a plurality of low-voltage outlets through the low-voltage distribution switch.
  • the low-voltage outlet line combined with the actual load situation of the distribution network is divided into three-phase power branch line and single-phase power branch line, or three-phase and single-phase hybrid power branch line.
  • the single-phase power supply branch line is respectively allocated to one of the A, B, and C three-phase and the N line in the three-phase power distribution AC bus according to the single-phase load condition, and constitutes a single-phase power supply circuit.
  • the distribution transformer output will produce a three-phase imbalance.
  • the existence of three-phase unbalance in the distribution network has many hazards to the normal operation of the distribution network line, including increasing the power loss of the line, increasing the power loss of the distribution transformer, causing the three-phase load operation efficiency to decrease, and affecting the power equipment. Safe operation, zero-sequence current generation in distribution transformers, reducing the service life of power equipment, reducing transformer output, increasing the risk of power failure caused by malfunction of distribution network protection system, affecting users' normal production and domestic electricity demand .
  • embodiments of the present invention are expected to provide a parallel input system, a control method, a device, and a storage medium for an adjustment system, which can effectively adjust the three-phase imbalance in the power grid.
  • an embodiment of the present invention provides a parallel system input control method for a regulation system, which is applied to a scenario in which a three-phase unbalance adjustment system is connected to a power grid in parallel, including:
  • a three-phase unbalanced regulation system is connected into the power grid as a main system in parallel, and three-phase unbalance adjustment is performed;
  • the method further includes:
  • each slave system is sequentially input. After each slave system is input, the actual power and power thresholds of the master system at this time are compared, and the actual power of the master system at this time is When it is greater than the power threshold, it is put into the next slave system.
  • the main system and each of the slave systems each include a filter charging unit connected to the power grid, and the filter charging unit is sequentially connected to the signal acquisition and processing unit, the intelligent control unit, and the power conversion unit;
  • the intelligent control unit obtains the actual value of the three-phase current unbalance degree according to the current of the maximum current phase and the current of the minimum current phase among the three-phase currents collected by the signal acquisition processing unit, and sends the actual value of the three-phase current unbalance degree into the actual value.
  • the voltage outer loop is different from the given value of the three-phase current unbalance degree, and the closed loop control of the voltage outer loop and the current inner loop, and the Parker inverse transform, generate the active current of the maximum current in the three-phase current to the minimum current phase.
  • the compensated control signal is sent to the power conversion unit.
  • an embodiment of the present invention further provides a parallel system for adjusting a system, which is applied to a scenario in which a three-phase unbalanced adjustment system is connected to a power grid in parallel, including a three-phase unbalanced adjustment main system, and at least one three-phase unbalance adjustment From the system;
  • the three-phase unbalanced adjustment main system is configured to perform three-phase unbalance adjustment after being put into the power grid;
  • the at least one three-phase unbalance adjustment slave system is configured to be put into the grid for three-phase unbalance adjustment when the actual power of the main system is greater than a set power threshold.
  • the at least one three-phase unbalance adjustment slave system is further configured to be sequentially put into the power grid
  • the next three-phase unbalance adjustment is applied to the grid from the system.
  • the three-phase unbalance adjustment main system includes a filter charging unit connected to the power grid, and the filter charging unit is sequentially connected to the signal acquisition processing unit, the intelligent control unit, and the power conversion unit;
  • the intelligent control unit is configured to obtain a current value of the three-phase current unbalance degree according to the current of the maximum current phase and the current of the minimum current phase among the three-phase currents collected by the signal acquisition processing unit, and the three-phase current imbalance degree is actually The value is fed into the voltage outer loop and is different from the given value of the three-phase current unbalance degree. After the closed loop control of the voltage outer loop and the current inner loop, and the Parker inverse transform, the maximum current in the three-phase current is generated to the minimum current phase. A control signal for active power compensation is performed, and the control signal is sent to the power conversion unit.
  • an embodiment of the present invention further provides a parallel input control device for an adjustment system, which is applied to a scenario in which a three-phase unbalance adjustment system is connected to a power grid in parallel, including:
  • the input unit is configured to connect a three-phase unbalanced adjustment system as a main system in parallel to the power grid for three-phase unbalance adjustment;
  • a comparing unit configured to compare an actual power of the primary system with a set power threshold
  • the judging unit is configured to, when the actual power of the main system is greater than the power threshold, input at least one three-phase unbalance adjusting system into the grid as a slave system.
  • the determining unit is further configured to input at least one three-phase unbalance adjusting system into each slave system when the slave system is put into the power grid, and compare the actual power of the master system at each time after each slave system is put into the system. And the power threshold, when the actual power of the primary system at this time is greater than the power threshold, the next slave unit is put into the system.
  • an embodiment of the present invention further provides a parallel input control device for an adjustment system, which is applied to a scenario in which a three-phase unbalance adjustment system is connected to a power grid in parallel, the device comprising: a processor and a storage device capable of running on a processor Memory of a computer program;
  • the processor is configured to execute the parallel input control method of the adjusting system when the computer program is executed.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used in the parallel input control method of the adjustment system.
  • the beneficial effect of applying the embodiment of the present invention is: while a main three-phase unbalance adjustment system is connected into the power grid in parallel, the system calculates its own power in real time, when the actual power of the three-phase unbalance adjustment system is greater than the set power threshold. More than one three-phase unbalanced regulation system is connected in parallel to the grid.
  • the control strategy of the three-phase unbalanced adjustment slave system is input in parallel, and the adjustment requirement of the three-phase unbalance is satisfied, and the three-phase output side of the distribution transformer is realized. Balanced fast and smooth adjustment can effectively reduce the loss of distribution lines, improve the output of distribution transformers and improve the safe operation of distribution systems, thus improving the quality of power supply for users.
  • FIG. 1 is a schematic structural diagram of a three-phase unbalance adjustment system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working principle of a power conversion unit according to an embodiment of the present invention
  • FIG. 3 is a control block diagram of a three-phase unbalance adjustment system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a working process of adjusting a three-phase unbalance of a transformer output by a three-phase unbalance adjustment system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of parallel operation of multiple three-phase unbalance adjustment systems according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a plurality of three-phase unbalance adjustment systems being parallelly put into operation according to an increase in unbalance degree according to an embodiment of the present invention
  • FIG. 7 is a flow chart showing the operation of parallel removal of multiple three-phase unbalance adjustment systems according to an embodiment of the present invention.
  • the phase-to-phase reactive compensation method is used on the low-voltage side of the distribution transformer, and the phase-to-phase reactive power compensation device can only improve the output operation of the distribution transformer to a certain extent.
  • the problem of unbalanced power demand in the three-phase load imbalance cannot be fundamentally solved, and the use of reactive power compensation will cause a change in the power factor. In practical applications, it receives a large limitation and cannot be truly effective. Adjustment.
  • phase modulation load switch adjustment method That is to say, in the electric load circuit, the phase-regulating load switch is connected in series, and the distribution of the load in the three phases A, B and C is re-adjusted by the phase-adjusting load switch, so as to adjust the load imbalance.
  • multiple phase-regulated load switches need to be connected in series.
  • This method also has the adjustment effect, which can only be step-by-step stepwise quantization adjustment, and there are cases of over-adjustment or insufficient adjustment, and the adjustment precision is low. Precise adjustments can be made unless there are as many phase-to-phase load switches as there are all single-phase loads in the line, but this requires a very large control system to control the regulated operation of the phase-regulated load switches, increasing overall cost.
  • the system includes an intelligent control unit, a power supply unit, a signal acquisition and processing unit, a power conversion unit, a filtering and charging unit, a filtering and energy storage unit, and a display and operation. unit.
  • the corresponding terminals of the filtering and charging unit are respectively connected to the transformer output side A, B, C three-phase alternating current and N line, the filtering and charging unit is connected with the power conversion unit and the filtering and energy storage unit, the power supply unit of the power supply line and the filtering and charging unit One of the three phases A, B, and C and the N line are connected, and the required voltages such as the intelligent main control unit, the power conversion unit, the display and the operation unit are sent to the respective power consumption units.
  • the signal acquisition and processing unit is provided with a plurality of sensors, which are respectively installed in the A, B, C three-phase lines, and are configured to measure signals such as voltage and current of the system.
  • the display and operation unit are connected to the intelligent control unit through a shielded line, and real-time data exchange is performed through a standard communication protocol.
  • the intelligent control unit controls the normal operation of the whole machine through the signal line and each controlled unit.
  • the adjustment system is a three-phase unbalance adjustment system, which is an embodiment of the present invention.
  • the control method of the three-phase unbalance adjustment system shown in FIG. 1 is mainly completed by the intelligent control unit and the power conversion unit, and includes the following steps:
  • the signal acquisition and processing unit collects the three-phase grid voltage and the three-phase grid current in real time, obtains the current of the maximum current phase and the current of the minimum current phase in the three-phase current, and sends it to the intelligent control unit, and the intelligent control unit according to the maximum current phase
  • the current of the current and the minimum current phase obtains the actual value of the three-phase current imbalance, and the calculation formula is as follows:
  • K is the actual value of the three-phase current unbalance
  • I max is the current of the largest current phase of the three-phase current
  • I min is the current of the smallest current phase of the three-phase current.
  • the actual value of the three-phase current unbalance degree is sent to the voltage outer loop, and is different from the given value of the three-phase current unbalance degree, and the closed loop control of the voltage outer loop and the current inner loop, and the positive and negative sequence dq/abc coordinates Transforming, generating a total modulated wave that performs active power compensation by directing the maximum current in the three-phase current to the minimum current phase.
  • the above three-phase current unbalance degree set value is calculated as follows:
  • K ref is the set value of the three-phase current unbalance degree
  • I max is the current of the maximum current phase among the three-phase currents
  • I min is the current of the minimum current phase among the three-phase currents
  • I is the actual three-phase current effective value
  • the above total modulation wave is a control signal for adjusting the active power of the power conversion unit, wherein the compensation value of the active power is calculated as follows:
  • P is the compensation value of the active power
  • U is the collected three-phase voltage effective value.
  • the power conversion unit After receiving the control signal of the intelligent control unit, the power conversion unit generates a ⁇ 15 driving signal of the IGBT (Insulated Gate Bipolar Transistor) to trigger the turn-on and turn-off of the IGBT, and the power conversion unit works.
  • IGBT Insulated Gate Bipolar Transistor
  • the intelligent control unit detects the three-phase unbalance on the output side of the transformer, and determines that the C-phase load current is large. After the A and B phase load currents are small, the intelligent control unit calculates that the A and B phases need to be energized to the C phase. Transforming the current value and calculating the instantaneous phase of the C phase, the intelligent control unit generates a control signal of the power conversion unit that can be connected to the C phase, and the power conversion unit converts the control signal sent by the intelligent control unit into the driving signal of the IGBT.
  • the A and B phase electric energy is input to the storage capacitor through boost rectification, and the electric energy in the storage capacitor is converted into the same frequency, same phase and same amplitude as C
  • the grid-connected power is delivered to the C-phase to achieve automatic adjustment of the three-phase unbalance.
  • the control block diagram of the three-phase unbalance adjustment system provided by the embodiment of the present invention is shown in FIG. 3, and the three-phase unbalance adjustment system adjusts the three-phase unbalance of the transformer output as shown in FIG. 4, and FIG. 3 and FIG. 4
  • the three-phase unbalance adjustment system detects the operation status of all peripherals and the status signals of all fault detection points of the system, and judges that there is a fault (that is, the adjustment system is not working normally), re-initializes, and judges that there is no fault information.
  • Bus capacitor pre-charging and energy storage capacitor high-voltage energy storage charging that is, adjusting system pre-charging and DC bus charging, when pre-charging and energy storage charging work is not normal, re-initialize and display system status, when pre-charging and storing
  • the relevant three-phase voltage and current signals on the output side of the distribution transformer are detected, and the three-phase unbalance degree is calculated and compared with the system setting value.
  • the three-phase unbalance degree is less than the set value (the transformer is not output three)
  • the phase is unbalanced
  • the three-phase unbalance is re-detected and calculated.
  • the intelligent control unit calculates the current value, voltage value, frequency, phase and other parameters that need to be converted, generates a control signal of the power conversion unit, and issues a power conversion unit, and the power conversion unit receives the control signal and then performs power. Transform to adjust the output transformer output three-phase unbalance.
  • the intelligent control unit judges the state of the three-phase unbalanced adjustment system in real time, and if there is no fault, the three-phase unbalance adjustment is continued. If the fault occurs, the three-phase unbalance adjustment system stops working and displays the fault state.
  • FIG. 6 is a schematic flow chart of parallel connection of multiple three-phase unbalance adjustment systems with increasing unbalance degree, main and slave three-phase
  • the unbalance adjustment system is initialized, establish a communication connection with the three-phase unbalance adjustment system, and detect the three-phase voltage and current signals on the output side of the distribution transformer to obtain the three-phase unbalance degree, and the three-phase unbalance degree and the system set value. Compare.
  • the transformer does not output three-phase unbalance
  • re-detect and calculate the three-phase unbalance if the unbalance is greater than the set value (transformer output three-phase unbalance), the main three-phase unbalance
  • the regulating system performs electric energy conversion between the three phases A, B and C according to the control signal, and adjusts the three-phase unbalance of the output side of the distribution transformer.
  • the main three-phase unbalance adjustment system calculates the current actual power of the power conversion unit IGBT module in real time, and when the actual power is less than the set power threshold, the three-phase unbalance automatic adjustment is continuously performed, and when the actual power is greater than the power threshold, the increase is performed.
  • a three-phase unbalanced automatic mediation work is input from the three-phase unbalanced adjustment system, and the current actual power of the power conversion unit IGBT module in the main three-phase unbalanced adjustment system is calculated in real time. When the actual power is greater than the power threshold, one more is added. From the three-phase unbalanced adjustment system until the current actual power of the main three-phase unbalanced adjustment system power conversion unit IGBT module is less than the power threshold, the three-phase unbalance adjustment system is no longer added.
  • a plurality of three-phase unbalanced adjustment systems are continuously connected in parallel to continuously perform three-phase unbalance adjustment, and the respective working states are judged. If an operation failure occurs, the three-phase unbalance adjustment system stops working, and the other three-phase unbalance adjustment systems operate normally.
  • FIG. 7 a schematic diagram of a process for parallel removal of multiple three-phase unbalance adjustment systems according to an embodiment of the present invention is performed. After initializing the main three-phase unbalance adjustment system, the following steps are followed to control three phases. Unbalance adjustment system removes adjustment work to achieve three-phase unbalance adjustment:
  • the main three-phase unbalance adjustment system calculates the current actual power of the power conversion unit IGBT module in real time, and compares it with the set power threshold. If it is greater than the set power threshold, it continues to advance. The three-phase unbalance is automatically adjusted. If it is less than the power threshold, the main three-phase unbalance adjustment system counts the number of adjustment systems currently involved in the three-phase unbalance automatic adjustment. When the number is greater than 1, the number of the three-phase unbalance adjustment is reduced.
  • the three-phase unbalanced adjustment system reduces the current actual power and power threshold of the IGBT module of the main three-phase unbalanced adjustment system after reducing one system, and reduces the adjustment system of the three-phase unbalanced adjustment when the power is less than the power threshold Until the number of three-phase unbalanced automatic adjustment adjustment system is equal to 1, the adjustment system is no longer reduced; when the main three-phase unbalance adjustment system calculates the actual power of the current power conversion unit in real time is greater than the power threshold, the three-phase unbalance adjustment is continuously performed. .
  • the parallel input system of the adjustment system provided by the embodiment of the present invention is shown in FIG. 5, and is applied to a scenario in which a three-phase unbalance adjustment system is connected in parallel to the power grid, including a three-phase unbalanced adjustment main system, and two three-phase unbalance adjustment systems.
  • the system when input, puts the main system into the grid first, adjusts the three-phase unbalance, calculates the actual power of the main system in real time during the adjustment process, and inputs a slave system when the actual power is greater than the set power threshold.
  • the system and the main system perform three-phase adjustment the actual power of the main system is detected at the same time.
  • the actual power of the main system is greater than the set power threshold
  • another slave system is involved in the three-phase unbalance adjustment work to realize the three-phase to-be-regulated power in the main The system and the average distribution of the two slave systems. Since the three-phase power to be adjusted between the master and slave systems is evenly distributed, the actual power of the master and slave systems is approximately equal to the power to be adjusted by the system. Therefore, the actual power of each system is approximately equal regardless of the master and slave systems. Therefore, when determining whether to increase the condition of a slave system, it can be determined whether the actual power of any system is greater than a set power threshold.
  • the embodiment of the invention operates in parallel by a plurality of three-phase unbalance adjustment systems, improves the working efficiency of each three-phase unbalance adjustment system, reduces the overall loss of the system, reduces the power consumed during the power treatment process, and realizes three-phase unbalance adjustment.
  • the system is standardized to reduce costs and improve product reliability and consistency.
  • the parallel input control process it is used to compare the power setting of the main three-phase unbalance adjustment system.
  • the threshold value and the power threshold used to compare the main three-phase unbalance adjustment system during the parallel cut-off control process are all freely set by the user according to the system requirements.
  • the set values of the two power thresholds are different.
  • the power threshold during parallel input is greater than the threshold during system resection.
  • the actual power of the main system of the embodiment of the present invention is calculated according to the maximum current flowing through the triode in the power conversion unit and the corresponding voltage.
  • the embodiment of the invention further provides a parallel input control device for the adjustment system, which is applied to the scenario in which the three-phase unbalance adjustment system is connected to the power grid in parallel, and includes the following units:
  • Input unit configured to connect a three-phase unbalanced adjustment system as a main system in parallel to the grid for three-phase unbalance adjustment;
  • Comparing unit configured to compare actual power of the primary system with a set power threshold
  • Judging unit configured to input at least one three-phase unbalance adjusting system into the grid as a slave system when the actual power of the main system is greater than the power threshold.
  • the above-mentioned adjustment system is connected in parallel to the control device, which is actually a computer solution based on the flow of the parallel control input control method of the adjustment system of the present invention, that is, a software architecture, which can be applied to the parallel input of the three-phase unbalance adjustment system.
  • the above device is a processing process corresponding to the method flow. Since the introduction of the above method is sufficiently clear and complete, and the device claimed in this embodiment is actually a software architecture, it will not be described in detail.
  • a three-phase unbalanced adjustment system is input into the power grid as a main system in parallel, and three-phase unbalance adjustment is performed; and the actual power of the main system and the set power threshold are compared, when the actual power of the main system is greater than the power threshold.
  • At least one three-phase unbalanced adjustment system is put into the grid as a slave system. In this way, the adjustment requirement of the three-phase unbalance is satisfied, and the three-phase unbalance of the output side of the distribution transformer is quickly and smoothly adjusted, which can effectively reduce the loss of the distribution line, improve the output of the distribution transformer, and improve the safe operation of the distribution system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种调节系统并联投入系统、控制方法、装置及存储介质,方法包括:将一个主三相不平衡调节系统并联投入电网的同时,该系统实时计算自身实际功率,当三相不平衡调节系统的实际功率大于设定的功率阈值时,将一个以上的从三相不平衡调节系统并联投入电网。按照三相不平衡调节主系统中的实际功率情况,并联投入三相不平衡调节从系统的控制策略,满足了三相不平衡的调节需求,实现配电变压器输出侧三相不平衡的快速平滑调节,可以有效地降低配电线路的损耗、提高配电变压器的出力及提高配电系统安全运行能力,从而改善用户的供电质量。

Description

调节系统并联投入系统、控制方法、装置及存储介质 技术领域
本发明涉及电力系统配电网自动化技术领域,尤其涉及一种调节系统并联投入系统、控制方法、装置及存储介质。
背景技术
在电力系统中三相电流或电压幅值的不一致,且幅值差超过规定范围,称为三相不平衡。低压配电网主要是经10KV/0.4KV配电变压器降压供电的电压网络,由于配电网是三相与单相用户混合用电网,因此电压配电网常采用三相四线制线路供电。配电变压器输出侧接三相低压配电网的低压交流母线,低压交流母线经低压配电开关分配出多条低压出线。低压出线结合配电网实际负载情况分为三相用电支线和单相用电支线,或三相与单相混合用电支线。其中,单相用电支线要根据单相负载情况分别分配到三相配电交流母线中的A、B、C三相中的某一项以及N线中,构成单相供电回路。当A、B、C三相中的单相负载不相等时,配电变压器输出就会产生三相不平衡现象。
配电网中三相不平衡的存在对配电网线路的正常运行产生很多危害,主要包括增加线路的电能损耗、增加配电变压器的电能损耗、造成三相负载运行效率降低、影响用电设备安全运行、使配电变压器中产生零序电流、降低用电设备的使用寿命、降低变压器出力、增加配电网保护系统误动作造成的断电风险等,影响用户的正常生产与生活用电需求。
而且,在接入单相用电负荷时,虽然供电部门按照将单相负荷均匀分配到A、B、C三相中,而实际情况是单相负荷具有用电时间不一致、用电负荷大小不相同等随机性差异的特点,造成电压配电网中配电变压器供电 运行过程中时刻存在不平衡现象。因此,低压配电网中配电变压器三相不平衡问题是低压配电网改造与治理的必须要面对的关键问题之一。
发明内容
有鉴于此,本发明实施例期望提供一种调节系统并联投入系统、控制方法、装置及存储介质,能够实现电网中三相不平衡的有效调节。
本发明的目的是通过以下技术方案实现的:
第一方面,本发明实施例提出一种调节系统并联投入控制方法,应用于三相不平衡调节系统并联投入电网的场景,包括:
将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;
比较所述主系统的实际功率和设定的功率阈值,当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统投入电网。
上述方案中,所述方法还包括:
将至少一个三相不平衡调节系统作为从系统投入电网时,依次投入每个从系统,每投入一个从系统后,比较此时的主系统实际功率和功率阈值,当此时的主系统实际功率大于功率阈值时,投入下一个从系统。
上述方案中,所述主系统和各从系统均包括连接电网的滤波充电单元,该滤波充电单元与信号采集处理单元、智能控制单元、功率变换单元依次连接;
所述智能控制单元根据信号采集处理单元采集到的三相电流中最大电流相的电流和最小电流相的电流,得到三相电流不平衡度实际值,将三相电流不平衡度实际值送入电压外环,并与三相电流不平衡度给定值作差,经过电压外环、电流内环的闭环控制,及帕克反变换,生成将三相电流中最大电流相向最小电流相进行有功功率补偿的控制信号,并将该控制信号发送至功率变换单元。
第二方面,本发明实施例还提供一种调节系统并联投入系统,应用于三相不平衡调节系统并联投入电网的场景,包括一个三相不平衡调节主系统,和至少一个三相不平衡调节从系统;
所述三相不平衡调节主系统,配置为被投入电网后,进行三相不平衡调节;
所述至少一个三相不平衡调节从系统,配置为当主系统的实际功率大于设定的功率阈值时,被投入电网进行三相不平衡调节。
上述方案中,所述至少一个三相不平衡调节从系统,还配置为被依次投入电网;
在当前的三相不平衡调节从系统被投入后,主系统的实际功率大于功率阈值时,下一个三相不平衡调节从系统被投入电网。
上述方案中,所述三相不平衡调节主系统包括连接电网的滤波充电单元,所述滤波充电单元与信号采集处理单元、智能控制单元、功率变换单元依次连接;
所述智能控制单元,配置为根据信号采集处理单元采集到的三相电流中最大电流相的电流和最小电流相的电流,得到三相电流不平衡度实际值,将三相电流不平衡度实际值送入电压外环,并与三相电流不平衡度给定值作差,经过电压外环、电流内环的闭环控制,及帕克反变换,生成将三相电流中最大电流相向最小电流相进行有功功率补偿的控制信号,并将该控制信号发送至功率变换单元。
第三方面,本发明实施例还提出一种调节系统并联投入控制装置,应用于三相不平衡调节系统并联投入电网的场景,包括:
投入单元,配置为将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;
比较单元,配置为比较所述主系统的实际功率和设定的功率阈值;
判断单元,配置为当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统并联投入电网。
上述方案中,所述判断单元,还配置为将至少一个三相不平衡调节系统作为从系统投入电网时,依次投入每个从系统,每投入一个从系统后,比较此时的主系统实际功率和功率阈值,当此时的主系统实际功率大于功率阈值时,投入下一个从系统的单元。
第四方面,本发明实施例还提供一种调节系统并联投入控制装置,应用于三相不平衡调节系统并联投入电网的场景,所述装置包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器;其中,
所述处理器,用于运行所述计算机程序时,执行上述调节系统并联投入控制方法。
第五方面,本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于上述调节系统并联投入控制方法。
应用本发明实施例的有益效果是:将一个主三相不平衡调节系统并联投入电网的同时,该系统实时计算自身的功率,当三相不平衡调节系统的实际功率大于设定的功率阈值时,将一个以上的从三相不平衡调节系统并联投入电网。本发明实施例按照三相不平衡调节主系统中的实际功率情况,并联投入三相不平衡调节从系统的控制策略,满足了三相不平衡的调节需求,实现配电变压器输出侧三相不平衡的快速平滑调节,可以有效地降低配电线路的损耗、提高配电变压器的出力及提高配电系统安全运行能力,从而改善用户的供电质量。
附图说明
图1为本发明实施例提供的三相不平衡调节系统的结构原理示意图;
图2为本发明实施例提供的功率变换单元的工作原理示意图;
图3为本发明实施例提供的三相不平衡调节系统的控制框图;
图4为本发明实施例提供的三相不平衡调节系统调节变压器输出三相不平衡的工作流程示意图;
图5为本发明实施例提供的多个三相不平衡调节系统并联工作的示意图;
图6为本发明实施例提供的多个三相不平衡调节系统随着不平衡度增加并联投入工作的流程示意图;
图7为本发明实施例提供的多个三相不平衡调节系统随着不平衡度减少并联移除的工作流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明人在研究中发现,可以采用如下方式解决低压配电网三相不平衡问题:
第一,人工检测调节负载法。即人工检测单相负荷情况进行调节各项负载,该方法配电网工作人员根据日常的经验,定期手动进行单相负载的平衡调节,首先需要投入大量的配电网工作人员以及工作时间,造成电网运行成本高等问题;其次,反复多次分合配电开关,存在降低开关使用寿命等问题;并且调节效果只能是阶跃式分步量化调节,存在过调节或调节不足等情况,调节精度低。
第二,相间无功补偿法。即在配电变压器低压侧采用相间无功补偿装置,使用相间无功补偿装置只能在一定程度上改善配电变压器输出运行情 况,不能在根本上解决三相负载不平衡在成的电能需求不平衡问题,并且采用无功补偿会造成功率因数的变化,在实际应用中收到较大的限制,无法做到真正的有效调节。
第三,调相负荷开关调节法。即在用电负荷回路先串联调相负荷开关,通过调相负荷开关重新调节负荷在A、B、C三相中的分配,达到调节负荷不平衡的目的。但是要实现负荷的调节,需要串联多个调相负荷开关。若要实现精确的调节则需要很多个开关才能实现,增加了调节成本。此方法同样存在调节效果只能是阶跃式分步量化调节,存在过调节或调节不足等情况,调节精度低。除非串联与线路中所有单相负载一样多的调相负荷开关,才能实现精确调节,但这样需要有一个很庞大的控制系统来控制调相负荷开关的调节运行,增加总体成本。
三相不平衡调节系统的一个示例图如图1所示,该系统包括智能控制单元、电源单元、信号采集与处理单元、功率变换单元、滤波与充电单元、滤波与储能单元、显示与操作单元。滤波与充电单元的对应端子分别连接变压器输出侧A、B、C三相交流电和N线,滤波与充电单元连接功率变换单元及滤波与储能单元,电源单元的电源进线与滤波与充电单元中A、B、C三相中的某一相以及N线连接,并将智能主控单元、功率变换单元、显示与操作单元等需要的电压送至各个用电单元。信号采集与处理单元中设有多个传感器,分别安装在A、B、C三相线路中,配置为测量系统的电压、电流等信号。显示与操作单元通过屏蔽线与智能控制单元连接,通过标准通信协议进行实时的数据交换。智能控制单元通过信号线与各个被控制单元进行控制,协调整机的正常运行。
当低压配电变压器的容量较大、并且三相不平衡情况较严重时,单个三相不平衡调节系统无法满足调节三相不平衡的要求。
在本发明实施例中,调节系统为三相不平衡调节系统,本发明实施例 中如图1所示的三相不平衡调节系统的控制方法主要是通过智能控制单元和功率变换单元完成的,包括以下步骤:
信号采集与处理单元实时采集三相电网电压、三相电网电流等信息,获取三相电流中最大电流相的电流和最小电流相的电流,并发送至智能控制单元,智能控制单元根据最大电流相的电流和最小电流相的电流得到三相电流不平衡度实际值,计算式如下:
Figure PCTCN2017107094-appb-000001
式中,K为三相电流不平衡度实际值,Imax为三相电流中最大电流相的电流,Imin为三相电流中最小电流相的电流。
将上述三相电流不平衡度实际值送入电压外环,并与三相电流不平衡度给定值作差,经过电压外环、电流内环的闭环控制,及正负序dq/abc坐标变换,生成将三相电流中最大电流相向最小电流相进行有功功率补偿的总调制波。上述三相电流不平衡度给定值计算式如下:
Figure PCTCN2017107094-appb-000002
式中,Kref为三相电流不平衡度给定值,Imax为三相电流中最大电流相的电流,Imin为三相电流中最小电流相的电流,I为实际的三相电流有效值。
上述总调制波即为功率变换单元调整有功功率的控制信号,其中有功功率的补偿值计算式如下:
Figure PCTCN2017107094-appb-000003
式中,P为所述有功功率的补偿值,U为采集的三相电压有效值。功率变换单元接收到智能控制单元的控制信号后生成功率变换单元内部绝缘栅双极晶体管(IGBT,Insulated Gate Bipolar Transistor)的±15驱动信号,触发IGBT的导通与关断,功率变换单元的工作原理示意图如图2所示。
例如,智能控制单元检测到变压器输出侧三相不平衡,并判断出C相负载电流较大,A、B相负载电流较小后,智能控制单元计算出A、B相需要向C相进行电能变换的电流值,同时计算出C相的瞬时相位,智能控制单元生成可与C相并网的功率变换单元的控制信号,功率变换单元将智能控制单元下发的控制信号转换成IGBT的驱动信号并触发IGBT高速导通与关断工作,将A、B相的电能经升压整流输入到储能电容,同时将储能电容中的电能转换成与C相同频率、同相位、同幅值的并网电能输送到C相,实现三相不平衡的自动调节。
本发明实施例提供的三相不平衡调节系统的控制框图如图3所示,三相不平衡调节系统调节变压器输出三相不平衡的工作流程示意图如图4所示,结合图3、图4所示,三相不平衡调节系统初始化后检测所有外设工作情况以及系统所有故障检测点的状态信号,判断存在故障(即调节系统未正常工作)时,重新进行初始化,判断不存在故障信息时,进行母线电容预充电及储能电容高压储能充电,也即调节系统预充电及直流母线充电,当预充电和储能充电工作不正常时,重新初始化并显示系统状态,当预充电和储能充电工作正常时,检测配电变压器输出侧相关三相电压、电流信号,计算三相不平衡度,与系统设定值进行比较,当三相不平衡度小于设定值(变压器未输出三相不平衡)时,重新检测并计算三相不平衡度,当三相不平衡度大于或等于设定值(即变压器输出三相不平衡)时,智能控制单元计算需要转换的电流值、电压值、频率、相位等参数,生成功率变换单元的控制信号,并下发功率变换单元,功率变换单元接收控制信号后进行功率变换,调节配电变压器输出三相不平衡。智能控制单元实时判断三相不平衡调节系统运行过程的状态,无故障出现,则持续进行三相不平衡调节,若出现故障则三相不平衡调节系统停止工作,显示故障状态。
当低压配电变压器的容量较大,并且三相不平衡情况较严重时,需要 多个三相不平衡调节系统并联进行不平衡自动调节。
本发明实施例提供的三相不平衡调节系统并联投入控制方法如图6所示,图6为多个三相不平衡调节系统随着不平衡度增加并联投入的流程示意图,主、从三相不平衡调节系统初始化后,与从三相不平衡调节系统建立通信连接,并检测配电变压器输出侧三相电压电流信号,获取三相不平衡度,将三相不平衡度与系统设定值进行比较。若不平衡度小于设定值(变压器未输出三相不平衡),重新检测并计算三相不平衡度,若不平衡度大于设定值(变压器输出三相不平衡),主三相不平衡调节系统根据控制信号在A、B、C三相间进行电能变换,调节配电变压器输出侧三相不平衡情况。
同时,主三相不平衡调节系统实时计算功率变换单元IGBT模块的当前实际功率,当实际功率小于设定的功率阈值时,持续进行三相不平衡自动调节,当实际功率大于功率阈值时,增加一个从三相不平衡调节系统投入三相不平衡自动调解工作,同时实时计算主三相不平衡调节系统中的功率变换单元IGBT模块的当前实际功率,当实际功率大于功率阈值时,再增加一个从三相不平衡调节系统,直到投入的主三相不平衡调节系统功率变换单元IGBT模块的当前实际功率小于功率阈值,不再增加从三相不平衡调节系统。
多个三相不平衡调节系统并联独立持续进行三相不平衡调节,判断各自工作状态,若发生运行故障,则本三相不平衡调节系统停止工作,其他三相不平衡调节系统正常运行。
如图7所示,为本发明实施例提供的多个三相不平衡调节系统随着不平衡度减少并联移除的流程示意图,主三相不平衡调节系统初始化后按照以下步骤控制从三相不平衡调节系统移除调节工作,实现三相不平衡调节:
主三相不平衡调节系统实时计算功率变换单元IGBT模块当前的实际功率,与设定的功率阈值进行比较,若大于该设定的功率阈值,则持续进 行三相不平衡自动调节,若小于功率阈值,主三相不平衡调节系统统计当前参与三相不平衡自动调节的调节系统数量,当数量大于1时,减少一个参与三相不平衡调节的从三相不平衡调节系统,减少一个系统后,比较该主三相不平衡调节系统的IGBT模块当前的实际功率与功率阈值,当功率小于功率阈值时,再减少一个三相不平衡调节的调节系统,直到三相不平衡自动调节的调节系统数量等于1时,不再减少调节系统;当主三相不平衡调节系统实时计算当前功率变换单元的实际功率大于功率阈值时,持续进行三相不平衡调节。
本发明实施例提供的调节系统并联投入系统如图5所示,应用于三相不平衡调节系统并联投入电网的场景,包括一个三相不平衡调节主系统,和两个三相不平衡调节从系统,在投入时,将主系统首先投入电网,进行三相不平衡的调节,调节过程中实时计算主系统的实际功率,当实际功率大于设定的功率阈值时,投入一个从系统,该从系统和主系统进行三相调节时,同时检测主系统实际功率,当主系统实际功率大于设定的功率阈值时,投入另一个从系统参与三相不平衡调节工作,实现三相待调节功率在主系统和两个从系统中的平均分配。由于主、从系统间待调节的三相功率是平均分配的,主、从系统的自身实际功率近似等于系统平均待调节的功率,因此各系统的实际功率不论主、从系统都是近似相等的,因此,在判定是否要增加一个从系统的条件时,可以判定任一系统的实际功率是否大于设定的功率阈值。
本发明实施例通过多个三相不平衡调节系统并联运行,提高每一个三相不平衡调节系统的工作效率,降低系统的整体损耗,减少电能治理过程中消耗的电能,实现三相不平衡调节系统标准化设计,降低成本,提高产品的可靠性与一致性。
在并联投入控制过程中,用于比较主三相不平衡调节系统功率的设定 阈值,及在并联切除控制过程中,用于比较主三相不平衡调节系统的功率阈值,都是用户根据系统需要而自由设定的。两个功率阈值的设定值是不一样的,一般情况下,并联投入过程中的功率阈值要大于系统切除过程中的阈值。另外,本发明实施例主系统的实际功率是根据功率变换单元中流过三极管的最大电流和对应的电压计算得到的。
本发明实施例还提出一种调节系统并联投入控制装置,应用于三相不平衡调节系统并联投入电网的场景,包括以下单元:
投入单元:配置为将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;
比较单元:配置为比较所述主系统的实际功率和设定的功率阈值;
判断单元:配置为当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统并联投入电网。
上述所指的调节系统并联投入控制装置,实际上是基于本发明调节系统并联投入控制方法的流程的一种计算机解决方案,即一种软件构架,可以应用到三相不平衡调节系统的并联投入系统中,上述装置即为与方法流程相对应的处理进程。由于对上述方法的介绍已经足够清楚完整,而本实施例声称的装置实际上是一种软件构架,故不再详细进行描述。
工业实用性
本发明实施例将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;比较所述主系统的实际功率和设定的功率阈值,当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统投入电网。如此,满足了三相不平衡的调节需求,实现配电变压器输出侧三相不平衡的快速平滑调节,可以有效地降低配电线路的损耗、提高配电变压器的出力及提高配电系统安全运行能力,从而改善用户的供电质量。

Claims (10)

  1. 一种调节系统并联投入控制方法,包括:
    将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;
    比较所述主系统的实际功率和设定的功率阈值,当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统投入电网。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    将至少一个三相不平衡调节系统作为从系统投入电网时,依次投入每个从系统,每投入一个从系统后,比较此时的主系统实际功率和功率阈值,当此时的主系统实际功率大于功率阈值时,投入下一个从系统。
  3. 根据权利要求1所述的方法,其中,所述主系统和各从系统均包括连接电网的滤波充电单元,所述滤波充电单元与信号采集处理单元、智能控制单元、功率变换单元依次连接;所述方法还包括:
    所述智能控制单元根据信号采集处理单元采集到的三相电流中最大电流相的电流和最小电流相的电流,得到三相电流不平衡度实际值,将三相电流不平衡度实际值送入电压外环,并与三相电流不平衡度给定值作差,经过电压外环、电流内环的闭环控制,及帕克反变换,生成将三相电流中最大电流相向最小电流相进行有功功率补偿的控制信号,并将该控制信号发送至功率变换单元。
  4. 一种调节系统并联投入系统,包括一个三相不平衡调节主系统,和至少一个三相不平衡调节从系统;
    所述三相不平衡调节主系统,配置为被投入电网后,进行三相不平衡调节;
    所述至少一个三相不平衡调节从系统,配置为当主系统的实际功率大于设定的功率阈值时,被投入电网进行三相不平衡调节。
  5. 根据权利要求4所述的系统,其中,
    所述至少一个三相不平衡调节从系统,还配置为被依次投入电网;
    在当前的三相不平衡调节从系统被投入后,主系统的实际功率大于功率阈值时,下一个三相不平衡调节从系统被投入电网。
  6. 根据权利要求4所述的系统,其中,所述三相不平衡调节主系统包括连接电网的滤波充电单元,所述滤波充电单元与信号采集处理单元、智能控制单元、功率变换单元依次连接;
    所述智能控制单元,配置为根据信号采集处理单元采集到的三相电流中最大电流相的电流和最小电流相的电流,得到三相电流不平衡度实际值,将三相电流不平衡度实际值送入电压外环,并与三相电流不平衡度给定值作差,经过电压外环、电流内环的闭环控制,及帕克反变换,生成将三相电流中最大电流相向最小电流相进行有功功率补偿的控制信号,并将该控制信号发送至功率变换单元。
  7. 一种调节系统并联投入控制装置,包括:
    投入单元,配置为将一个三相不平衡调节系统作为主系统并联投入电网,进行三相不平衡调节;
    比较单元,配置为比较所述主系统的实际功率和设定的功率阈值;
    判断单元,配置为当主系统的实际功率大于功率阈值时,将至少一个三相不平衡调节系统作为从系统并联投入电网。
  8. 根据权利要求7所述的装置,其中,
    所述判断单元,还配置为将至少一个三相不平衡调节系统作为从系统投入电网时,依次投入每个从系统,每投入一个从系统后,比较此时的主系统实际功率和功率阈值,当此时的主系统实际功率大于功率阈值时,投入下一个从系统。
  9. 一种调节系统并联投入控制装置,所述装置包括:处理器和用于存 储能够在处理器上运行的计算机程序的存储器;其中,
    所述处理器,用于运行所述计算机程序时,执行权利要求1或2所述的调节系统并联投入控制方法。
  10. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1或2所述的调节系统并联投入控制方法。
PCT/CN2017/107094 2017-03-06 2017-10-20 调节系统并联投入系统、控制方法、装置及存储介质 WO2018161590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710128992.X 2017-03-06
CN201710128992.XA CN106816883B (zh) 2017-03-06 2017-03-06 三相不平衡调节系统并联投入系统、控制方法及装置

Publications (1)

Publication Number Publication Date
WO2018161590A1 true WO2018161590A1 (zh) 2018-09-13

Family

ID=59114790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107094 WO2018161590A1 (zh) 2017-03-06 2017-10-20 调节系统并联投入系统、控制方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN106816883B (zh)
WO (1) WO2018161590A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816883B (zh) * 2017-03-06 2019-12-06 天津平高智能电气有限公司 三相不平衡调节系统并联投入系统、控制方法及装置
CN107769231A (zh) * 2017-11-23 2018-03-06 成都汉度科技有限公司 基于三相不平衡调控方法及装置
CN107895958A (zh) * 2017-11-23 2018-04-10 成都汉度科技有限公司 一种三相不平衡的调节系统
CN109193678B (zh) * 2018-09-27 2022-07-29 云南电网有限责任公司临沧供电局 一种低压配电网中电压质量的控制方法及系统
CN111510001B (zh) 2019-01-30 2021-11-30 华为技术有限公司 电源整流的方法和装置
CN111600281B (zh) * 2020-03-31 2022-03-29 国网上海市电力公司 一种配电网小电源切除方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201821108U (zh) * 2010-09-17 2011-05-04 安徽西高电气设备有限公司 一种新型动态无功补偿装置
CN201877840U (zh) * 2010-12-20 2011-06-22 宋爽 配电变压器三相不平衡调节与无功补偿装置
CN102195287A (zh) * 2011-05-20 2011-09-21 江西中能电气科技有限公司 一种适用于三相四线电网系统的并联型有源电力滤波器
CN105656062A (zh) * 2016-04-01 2016-06-08 江苏盐开电气有限公司 配电网三相负荷自动调节装置及其控制方法
CN106026142A (zh) * 2016-07-21 2016-10-12 广东电网有限责任公司惠州供电局 三相负荷不平衡补偿方法和系统
CN106816883A (zh) * 2017-03-06 2017-06-09 天津平高智能电气有限公司 三相不平衡调节系统并联投入系统、控制方法及装置
CN106887856A (zh) * 2017-03-06 2017-06-23 天津平高智能电气有限公司 三相不平衡调节控制方法、装置及三相不平衡调节系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218835B2 (ja) * 2004-08-10 2009-02-04 国立大学法人京都大学 配電系統の電圧不平衡補償装置及び方法
CN103441512B (zh) * 2013-08-13 2016-08-17 上海交通大学 基于模块化多电平变流器的无功补偿(mmc-statcom)方法
CN104659797B (zh) * 2015-02-10 2019-01-29 卢松 一种配网低压侧智能电力负荷三相不平衡治理的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201821108U (zh) * 2010-09-17 2011-05-04 安徽西高电气设备有限公司 一种新型动态无功补偿装置
CN201877840U (zh) * 2010-12-20 2011-06-22 宋爽 配电变压器三相不平衡调节与无功补偿装置
CN102195287A (zh) * 2011-05-20 2011-09-21 江西中能电气科技有限公司 一种适用于三相四线电网系统的并联型有源电力滤波器
CN105656062A (zh) * 2016-04-01 2016-06-08 江苏盐开电气有限公司 配电网三相负荷自动调节装置及其控制方法
CN106026142A (zh) * 2016-07-21 2016-10-12 广东电网有限责任公司惠州供电局 三相负荷不平衡补偿方法和系统
CN106816883A (zh) * 2017-03-06 2017-06-09 天津平高智能电气有限公司 三相不平衡调节系统并联投入系统、控制方法及装置
CN106887856A (zh) * 2017-03-06 2017-06-23 天津平高智能电气有限公司 三相不平衡调节控制方法、装置及三相不平衡调节系统

Also Published As

Publication number Publication date
CN106816883B (zh) 2019-12-06
CN106816883A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2018161590A1 (zh) 调节系统并联投入系统、控制方法、装置及存储介质
CN106887856B (zh) 三相不平衡调节控制方法、装置及三相不平衡调节系统
CN104953606B (zh) 一种孤岛微网公共耦合点电压不平衡网络化分层补偿方法
CN103501017B (zh) 微电网稳定控制器
WO2019047559A1 (zh) 一种并联换流器系统的控制系统及控制方法
CN110854882B (zh) 一种用于双路电源供电系统需量控制的装置及其方法
CN108565880B (zh) 一种分散式交直流混合系统储能soc控制方法
WO2022110977A1 (zh) 一种并离网调度方法、装置及储能空调系统
Jin et al. Coordination secondary control for autonomous hybrid AC/DC microgrids with global power sharing operation
CN109149549A (zh) 一种采用多电压均衡器并联的双极直流系统分层结构及控制方法
CN108667025A (zh) 一种中压侧电能质量多目标综合治理方法及系统
CN115776130A (zh) 并离网切换方法、储能变流器、储能系统和电力系统
CN107910869A (zh) 一种分布式静止串联补偿器控制系统及其控制方法
CN104300896B (zh) 带防逆流的光伏逆变器控制装置及其控制方法
CN109510223A (zh) 一种三相电流不平衡治理控制器、装置及控制方法
Xin et al. AC fault ride-through coordinated control strategy of LCC-MMC hybrid DC transmission system connected to passive networks
CN208386154U (zh) 一种中压侧电能质量多目标综合治理系统
Ren et al. Distributed Power Management and Adaptive Coordinated Control for SST-Based Power Systems
Tu et al. Study on an novel multi-port energy router for AC-DC hybrid microgrid
CN117335678A (zh) 级联多电平变换器的轻载控制方法及系统
Du et al. Power management strategy of AC-DC hybrid microgrid in island mode
Shahid Power quality control in grid-interactive micro-power systems
Ding et al. Coordinate control of distributed generation and power electronics loads in microgrid
CN111711201B (zh) 一种直流输电系统无功补偿装置的协调控制方法及装置
US11509137B2 (en) Voltage and current management in three-phase interconnected power systems using positive and negative sequence secondary control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17899545

Country of ref document: EP

Kind code of ref document: A1