WO2019043768A1 - 凝縮器および凝縮器を備えた冷凍装置 - Google Patents

凝縮器および凝縮器を備えた冷凍装置 Download PDF

Info

Publication number
WO2019043768A1
WO2019043768A1 PCT/JP2017/030829 JP2017030829W WO2019043768A1 WO 2019043768 A1 WO2019043768 A1 WO 2019043768A1 JP 2017030829 W JP2017030829 W JP 2017030829W WO 2019043768 A1 WO2019043768 A1 WO 2019043768A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
refrigerant
flow
heat
inflow
Prior art date
Application number
PCT/JP2017/030829
Other languages
English (en)
French (fr)
Inventor
洋貴 佐藤
篤史 岐部
智隆 石川
康太 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB2000511.2A priority Critical patent/GB2578391B/en
Priority to CN201780094210.3A priority patent/CN111094875B/zh
Priority to JP2019538773A priority patent/JP6779383B2/ja
Priority to PCT/JP2017/030829 priority patent/WO2019043768A1/ja
Publication of WO2019043768A1 publication Critical patent/WO2019043768A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the present invention relates to a condenser used in a refrigerant circuit and a refrigeration system provided with the condenser.
  • a parallel flow type condenser including a plurality of refrigerant pipes, two header pipes connected to each end of each refrigerant pipe, and a plurality of fins provided between adjacent refrigerant pipes is outside the room.
  • an air conditioner used as a heat exchanger for example, refer to patent documents 1).
  • the connecting pipe is attached to one of the header pipes, and the fluid that has flowed out from the first end of the connecting pipe strikes the inner side surface of the header pipe to the inside of the refrigerant pipe. It is configured to flow into. Therefore, in this outdoor heat exchanger, the fluid flowing out from the first end of the connection pipe does not intensively flow into only a part of the refrigerant pipes, and the difference in the flow rate of refrigerant in each refrigerant pipe is reduced. It becomes possible to fully exhibit the performance as a heat exchanger.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a condenser having an improved refrigerant distribution performance and a refrigeration system provided with the condenser.
  • the condenser according to the present invention comprises a first condenser for heat exchange of the refrigerant compressed by the compressor, and a heat exchange for the refrigerant exchanged with the first condenser, which is provided below the first condenser.
  • a second condenser, and the first condenser is provided above a first inflow part for allowing the refrigerant compressed by the compressor to flow in, and is provided above the first inflow part, and the first condensation is performed.
  • a first outlet for causing the refrigerant heat-exchanged in the tank to flow out.
  • the condenser concerning the present invention the height difference between the outflow part of the refrigerant of the 1st condenser of the upper row and the outflow part of the refrigerant of the 2nd condenser of the lower stage can be enlarged. Therefore, the flow rate of the liquid-mixed two-phase refrigerant heat-exchanged in the first condenser can be increased to flow into the second condenser. Therefore, the distribution of the two-phase refrigerant is improved, and the distribution performance of the refrigerant can be improved.
  • FIG. 2 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention. It is a figure explaining the flow of the refrigerant of the conventional parallel flow type condenser. It is a figure explaining the flow of the refrigerant
  • FIG. 5 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration system according to the first embodiment includes an outdoor unit 100 and an indoor unit 200, as shown in FIG. 1, and the outdoor unit 100 and the indoor unit 200 are connected by piping. Further, the refrigeration system includes a refrigerant circuit in which the compressor 1, the condenser 3, the expansion device 6, and the evaporator 7 are sequentially connected by piping, and the refrigerant circulates.
  • the outdoor unit 100 includes a compressor 1 and a condenser 3.
  • the compressor 1 is, for example, an inverter compressor capable of capacity control, and sucks a low-temperature low-pressure gas refrigerant, compresses the gas refrigerant, and discharges it as a high-temperature high-pressure gas refrigerant.
  • the condenser 3 is, for example, an all-aluminum condenser in which each of a refrigerant pipe through which a refrigerant flows and a fin provided on the refrigerant pipe is formed of aluminum.
  • the condenser 3 is not necessarily limited to the all aluminum type.
  • the condenser 3 is a parallel flow type
  • the refrigerant pipe of the condenser 3 has a flat shape. The condenser 3 exchanges heat between the refrigerant from the compressor 1 and the air to condense and liquefy the refrigerant.
  • the outdoor unit 100 is configured to include the compressor 1 and the condenser 3, in addition, an oil separator, a receiver, a supercooling heat exchanger, an accumulator, etc. It is good also as composition provided.
  • the oil separator is provided on the discharge side of the compressor 1 and separates the oil contained in the refrigerant discharged from the compressor 1 from the refrigerant.
  • the receiver is provided on the outlet side of the condenser 3 and stores the liquid refrigerant from the condenser 3 liquefied by the condenser 3.
  • the subcooling heat exchanger is provided on the outlet side of the receiver, and performs heat exchange between the refrigerant from the receiver and the air to subcool the refrigerant.
  • the accumulator is provided on the suction side of the compressor 1 and stores excess refrigerant.
  • the indoor unit 200 includes the throttling device 6 and the evaporator 7.
  • the expansion device 6 has a function as a pressure reducing valve or an expansion valve, decompresses a refrigerant and expands it, and is constituted by an electronic expansion valve or the like whose opening degree can be controlled.
  • the evaporator 7 exchanges heat between the refrigerant decompressed by the expansion device 6 and the air to evaporate and evaporate the refrigerant.
  • FIG. 2 is a view for explaining the flow of the refrigerant in the conventional parallel flow type condenser.
  • FIG. 3 is a view for explaining the flow of the refrigerant of the parallel flow type condenser used in the condenser 3 of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a view showing a cross section of the refrigerant flow path of the parallel flow type condenser of FIG. 3, (a) is a partial structural view, (b) is a schematic view of (a) and (c) is in (b) It is sectional drawing which takes out and shows the refrigerant pipe of. The arrows in FIGS.
  • FIG. 4 shows a cross section of the refrigerant flow path of the first condenser 31, but the cross section of the refrigerant flow path of the second condenser 32 is also the same.
  • the conventional parallel flow type condenser comprises a plurality of refrigerant pipes 415, two header pipes 410 connected to each end of each refrigerant pipe 415, and an adjacent refrigerant pipe 415. And a plurality of fins 416 provided. Further, an inflow portion 411 is provided on the upper side of one header pipe 410, and an outflow portion 412 is provided on the lower side thereof.
  • the conventional parallel flow type condenser is configured such that the refrigerant flows in from the upper inflow portion 411, flows downward while flowing in the horizontal direction, and flows out from the lower outflow portion 412. Therefore, when the conventional parallel flow type condenser is used as a condenser, since the flow velocity is slow under refrigeration conditions with low evaporation temperature, the flow velocity of the condensed two-phase refrigerant can not be secured, and the distribution of the refrigerant is biased on the lower side May occur.
  • the condenser 3 is configured to have the first condenser 31 and the second condenser 32 provided below the first condenser 31. ing.
  • the upper first condenser 31 includes a plurality of refrigerant pipes 315, a first header pipe 310A and a second header pipe 310B connected to each end of each refrigerant pipe 315, and an adjacent refrigerant pipe 315. And a plurality of fins 316 provided on the Further, the first inflow portion 311 is provided on the lower side of the first header pipe 310A, and the first outflow portion 312 is provided on the upper side thereof. Further, the first header pipe 310A is provided with a partition (not shown) that divides the area where the first inflow section 311 is connected and the area where the first outflow section 312 is connected.
  • the lower second condenser 32 includes a plurality of refrigerant pipes 325, third header pipes 320A and fourth header pipes 320B connected to respective ends of the refrigerant pipes 325, and adjacent refrigerant pipes 325. And a plurality of fins 326 provided between the two.
  • the third header pipe 320A is provided with the second inflow portion 321 on the upper side thereof, and the second outflow portion 322 is provided on the lower side thereof. Further, the third header pipe 320A is provided with a partition (not shown) that partitions the area where the second inflow section 321 is connected and the area where the second outflow section 322 is connected.
  • the refrigerant flows in from the first inflow portion 311 below the first condenser 31 in the upper stage, and flows in parallel in the horizontal direction as shown in FIG. 3 and FIG. It flows upward through the header pipe 310 B, flows in parallel in the horizontal direction, and flows out from the upper first outlet 312. Further, the refrigerant flowing out of the first outflow portion 312 flows into the second inflow portion 321 on the upper side of the second condenser 32 in the lower stage, and flows in parallel in the horizontal direction as shown in FIG. 3 and FIG.
  • the four header pipes 320B are configured to flow downward, flow in parallel in the horizontal direction, and flow out from the lower second outlet 322.
  • the condenser 3 performs heat exchange while flowing the refrigerant from the lower side to the upper side in the upper first condenser 31 and performs the heat exchange while flowing the refrigerant from the upper side to the lower side in the lower second condenser 32 It is a structure.
  • the two-phase refrigerant having a high ratio of the gas refrigerant or the gas refrigerant flows upward through the second header pipe 310B.
  • the two-phase refrigerant having a high ratio of the gas refrigerant or the gas refrigerant flows while rising through the second header pipe 310B.
  • the two-phase refrigerant having a high ratio of the liquid refrigerant or the liquid refrigerant flows the second header pipe 310B.
  • the influence of pressure loss is reduced, and furthermore, the distribution of the refrigerant is equalized.
  • the first condenser 31 has an area of the heat exchange portion formed between the first inflow portion 311 and the second header pipe 310B and between the second header pipe 310B and the first outflow portion 312. It is preferable to make the area smaller than the area of the heat exchange portion formed in By thus forming the area of the heat exchange portion of the first condenser 31, the ratio of the liquid refrigerant flowing to the second header pipe 310B can be lowered.
  • the condenser 3 by making the condenser 3 into the above configuration, the height difference between the first outflow portion 312 of the upper first condenser 31 and the second inflow portion 321 of the lower second condenser 32 is increased. be able to. Therefore, the flow rate of the two-phase refrigerant having a high ratio of the liquid refrigerant heat-exchanged by the first condenser 31 in the upper stage can be increased to flow into the second condenser 32 in the lower stage. Therefore, the distribution of the two-phase refrigerant is improved, and the distribution performance of the refrigerant can be improved. Moreover, the heat exchange efficiency is improved by improving the distribution of the two-phase refrigerant, and the heat dissipation performance can be sufficiently exhibited.
  • the flow velocity is low under freezing conditions where the evaporation temperature is low, and the flow velocity is further slowed when the equivalent diameter of the flow passage is large like a flat tube. Therefore, in the condenser 3 having the flat refrigerant pipes 315 and 325 as shown in FIG. 4, the above-mentioned effect is remarkable.
  • the condenser 3 is, for example, provided with the first condenser 31 and the second condenser 32 in close proximity, and thus the refrigerant flowing in the lower part of the first condenser 31 and the upper part of the second condenser 32
  • the heat exchange part 33 which heat-exchanges with the refrigerant
  • the heat exchange part 33 is comprised by the lower part of the 1st condenser 31 and the upper part of the 2nd condenser 32, and the clearance gap is formed among them.
  • the heat exchange unit 33 may be formed to include a member that promotes heat exchange between the lower portion of the first condenser 31 and the upper portion of the second condenser 32, for example, a metal.
  • the refrigerant flowing in the lower part of the first condenser 31 is the high temperature and high pressure gas refrigerant at the inlet of the condenser 3, and the refrigerant flowing in the upper part of the second condenser 32 is condensed in the first condenser 31 and the temperature is lowered It is a phase refrigerant.
  • the heat exchange unit 33 exchanges heat between the gas refrigerant flowing in the lower part of the first condenser 31 and the two-phase refrigerant flowing in the upper part of the second condenser 32.
  • the condenser 3 is used not only between the wind of the fan (not shown) provided therein and the refrigerant, but also between the first condenser 31 of the upper stage and the second condenser 32 of the lower stage. Heat exchange with the phase refrigerant can also be performed, and the gas refrigerant tends to condense.
  • the second inflow portion 321 is provided above the third header pipe 320A, and the second outflow portion 322 is provided below the third header pipe 320A.
  • the heat exchange is performed while flowing the refrigerant from the upper side to the lower side, but it is not limited thereto.
  • the second inflow portion 321 is provided on the lower side of the third header pipe 320A, and the second outflow portion 322 is provided on the upper side of the third header pipe 320A.
  • heat exchange may be performed.
  • the refrigerant flows out from the first outflow portion 312 on the upper side of the first condenser 31 in the upper stage, and the lower side of the second condenser 32 in the lower stage. It becomes a structure which flows in into the 2nd inflow part 321 by the side. Therefore, the height difference between the first outflow portion 312 of the upper first condenser 31 and the second inflow portion 321 of the lower second condenser 32 can be further increased.
  • the flow rate of the liquid-mixed two-phase refrigerant heat-exchanged in the upper first condenser 31 can be increased to flow into the lower second condenser 32.
  • the heat exchange efficiency in the heat exchange unit 33 can be further improved.
  • the condenser 3 As described above, the condenser 3 according to the first embodiment is provided below the first condenser 31 and the first condenser 31, which exchanges heat with the refrigerant compressed by the compressor 1, and the first condenser 31 And a second condenser 32 that exchanges heat with the heat-exchanged refrigerant.
  • the first condenser 31 is provided at a first inflow portion 311 for allowing the refrigerant compressed by the compressor 1 to flow in, and is provided on the upper side of the first inflow portion 311 and is a refrigerant heat-exchanged in the first condenser 31 And a first outlet 312 for letting out the water.
  • the condenser 3 According to the condenser 3 according to the first embodiment, the height difference between the first outflow portion 312 of the upper first condenser 31 and the second inflow portion 321 of the lower second condenser 32 is increased. be able to. Therefore, the flow rate of the liquid-mixed two-phase refrigerant heat-exchanged in the upper first condenser 31 can be increased to flow into the lower second condenser 32. Therefore, the distribution of the two-phase refrigerant is improved, and the distribution performance of the refrigerant can be improved.
  • the second condenser 32 of the condenser 3 is provided below the second inflow part 321 for allowing the refrigerant flowing out of the first outflow part 312 to flow in, and below the second inflow part 321. And a second outlet 322 for causing the refrigerant heat-exchanged in the second condenser 32 to flow out.
  • the condenser 3 has a heat exchange portion 33 in which the refrigerant flowing in the lower part of the first condenser 31 and the refrigerant flowing in the upper part of the second condenser 32 exchange heat.
  • the refrigerant flowing in the lower part of the first condenser 31 is the high-temperature high-pressure gas refrigerant at the inlet of the condenser 3
  • the refrigerant flowing in the upper part of the second condenser 32 is A two-phase refrigerant which is condensed by the first condenser 31 and whose temperature is lowered.
  • the heat exchange unit 33 exchanges heat between the gas refrigerant flowing in the lower part of the first condenser 31 and the two-phase refrigerant flowing in the upper part of the second condenser 32.
  • the condenser 3 is used not only between the wind of the fan (not shown) provided therein and the refrigerant, but also between the first condenser 31 of the upper stage and the second condenser 32 of the lower stage. Heat exchange with the phase refrigerant can also be performed, and the gas refrigerant tends to condense.
  • the second condenser 32 of the condenser 3 according to the first embodiment is provided above the second inflow part 321 and the second inflow part 321, into which the refrigerant flowing out of the first outflow part 312 flows. And a second outlet 322 for causing the refrigerant heat-exchanged in the second condenser 32 to flow out.
  • the refrigerant flows out from the first outflow portion 312 above the first condenser 31 in the upper stage, and the second inflow under the second condenser 32 in the lower stage. It flows into the part 321. Therefore, the height difference between the first outflow portion 312 of the upper first condenser 31 and the second inflow portion 321 of the lower second condenser 32 can be further increased.
  • the refrigerant pipes 315, 325 of the condenser 3 according to the first embodiment are formed of a metal containing aluminum. According to the condenser 3 according to the first embodiment, heat exchange between the lower part of the first condenser 31 and the upper part of the second condenser 32 can be promoted.
  • FIG. 5 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • the condenser 30 according to the second embodiment includes a first bypass pipe 331 which is branched from the first inflow portion 311 and connected to the second inflow portion 321.
  • the condenser 30 includes a second bypass pipe 332 branched from the second inflow portion 321 and connected to the second outflow portion 322.
  • the condenser 30 is provided with a flow path switching device including, for example, a first valve 51, a second valve 52, a third valve 53, a fourth valve 54, and a fifth valve 55, which are electromagnetic on-off valves. ing.
  • the first valve 51 is provided downstream of the first branch point b1 of the pipe that connects the compressor 1 and the first inflow portion 311, and the second valve 52 is provided in the first bypass piping 331.
  • the third valve 53 is a second branch point b2 of the pipe connecting the first outflow portion 312 and the second inflow portion 321, and a first junction point where the first bypass piping 331 merges with the second inflow portion 321.
  • the fourth valve 54 is provided at the second outflow portion 322, and is provided between j1 and j1.
  • the fifth valve 55 is provided upstream of the second junction point j2 of the pipe connecting the second outflow portion 322 and the expansion device 6.
  • the first valve 51 and the second valve 52, and the third valve 53 and the fourth valve 54 may be three-way valves.
  • the first bypass pipe 331, the second bypass pipe 332, and the flow path switching device are provided in the condenser 30, but the present invention is not limited thereto. It is good also as composition provided separately from.
  • first bypass pipe 331 is not limited to the above configuration, and may be branched from the pipe connecting the compressor 1 and the first inflow portion 311 and connected to the second inflow portion 321.
  • second bypass pipe 332 is not limited to the above configuration, and may be branched from the pipe connecting the first outflow portion 312 and the second inflow portion 321 and connected to the second outflow portion 322. .
  • the refrigeration system further includes a control device 150 that controls the compressor 1, the flow path switching device, and the like.
  • the control device 150 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer and software that defines the operation.
  • the refrigeration system has a first mode in which the refrigerant flows to the first condenser 31 and the second condenser 32, a second mode in which the refrigerant flows to the first condenser 31 but no refrigerant to the second condenser 32, the second condensation One of the third modes in which the refrigerant flows to the vessel 32 but does not flow to the first condenser 31.
  • FIG. 6 is a refrigerant circuit diagram during execution of the first mode of the refrigeration apparatus according to Embodiment 2 of the present invention. If refrigerant leakage does not occur in the condenser 30, the controller 150 executes the first mode. When the control device 150 executes the first mode, as shown in FIG. 6, the first valve 51, the third valve 53, and the fifth valve 55 are in the open state, and the second valve 52, the The four valves 54 are closed.
  • the refrigerant compressed by the compressor 1 flows into the first condenser 31 from the first inflow portion 311 through the first valve 51.
  • the refrigerant heat-exchanged in the first condenser 31 flows out of the first outlet 312, passes through the third valve 53, and flows in the second condenser 32 from the second inlet 321.
  • the refrigerant subjected to heat exchange in the second condenser 32 flows out of the second outlet 322, passes through the fifth valve 55, and is expanded in the expansion device 6.
  • the refrigerant expanded by the expansion device 6 is evaporated by the evaporator 7 and sucked into the compressor 1.
  • the refrigerant flows in the first flow path which flows in the order of the first condenser 31 and the second condenser 32.
  • FIG. 7 is a refrigerant circuit diagram during execution of a second mode of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the controller 150 executes the second mode.
  • the control device 150 executes the second mode, as shown in FIG. 7, the first valve 51 and the fourth valve 54 are in the open state, and the second valve 52, the third valve 53, and the fifth valve 55 And are closed.
  • the refrigerant compressed by the compressor 1 flows into the first condenser 31 from the first inflow portion 311 through the first valve 51.
  • the refrigerant heat-exchanged by the first condenser 31 flows out from the first outlet 312, flows into the second bypass pipe 332, passes through the fourth valve 54, and is expanded by the expansion device 6.
  • the refrigerant expanded by the expansion device 6 is evaporated by the evaporator 7 and sucked into the compressor 1.
  • the refrigerant flows into the first condenser 31 and then flows through the second flow path flowing into the second bypass pipe 332 without flowing into the second condenser 32.
  • FIG. 8 is a refrigerant circuit diagram during execution of the third mode of the refrigeration apparatus according to Embodiment 2 of the present invention.
  • the control device 150 executes the third mode.
  • the control device 150 executes the third mode, as shown in FIG. 8, the second valve 52 and the fifth valve 55 are in the open state, and the first valve 51, the third valve 53, and the fourth valve 54 are opened. And are closed.
  • the refrigerant compressed by the compressor 1 flows into the first bypass pipe 331, passes through the second valve 52, and flows into the second condenser 32 from the second inflow portion 321.
  • the refrigerant subjected to heat exchange in the second condenser 32 flows out of the second outlet 322, passes through the fifth valve 55, and is expanded in the expansion device 6.
  • the refrigerant expanded by the expansion device 6 is evaporated by the evaporator 7 and sucked into the compressor 1.
  • the refrigerant flows in the third flow path flowing into the second condenser 32 via the first bypass pipe 331 without flowing into the first condenser 31.
  • the refrigeration apparatus can select one of the first mode, the second mode, and the third mode according to the presence or absence of refrigerant leakage in the condenser 30 and the location of the refrigerant leakage. Run. By doing so, even if refrigerant leakage occurs in the condenser 30, the operation can be continued without stopping the operation of the refrigeration system. Therefore, the operation of the refrigeration system can be continued temporarily even during the time until the condenser 30 is replaced with a new one.
  • the condenser 30 according to the second embodiment is branched from the first bypass pipe 331 which is branched from the first inflow portion 311 and connected to the second inflow portion 321 and branched from the first outflow portion 312 and is second And a second bypass pipe 332 connected to the outflow portion 322.
  • the condenser 30 is equipped with the flow-path switching apparatus switched to either of a 1st flow path, a 2nd flow path, and a 3rd flow path.
  • the condenser 30 according to the second embodiment can be used even if a refrigerant leak occurs.
  • the refrigeration apparatus includes a refrigerant circuit in which the compressor 1, the condenser 30, the expansion device 6, and the evaporator 7 are connected by piping and a refrigerant circulates.
  • a freezing apparatus has 1st mode, 2nd mode, and 3 modes.
  • the first mode is a switching mode to the first flow path when refrigerant leakage does not occur in the condenser 30.
  • the second mode is a mode in which switching to the second flow path is performed when a refrigerant leak occurs in the second condenser 32.
  • the third mode is a mode in which switching to the third flow path is performed when refrigerant leakage occurs in the first condenser 31.
  • any one of the first mode, the second mode, and the third mode is executed depending on the presence or absence of the refrigerant leak in the condenser 30 and the location of the refrigerant leak. Therefore, even if refrigerant leakage occurs in the condenser 30, the operation of the refrigeration system can be continued without stopping the operation. Therefore, the operation of the refrigeration system can be continued temporarily even during the time until the condenser 30 is replaced with a new one.
  • the refrigerant applied to the refrigeration system of the present invention is not particularly limited.
  • the refrigerant applied to the refrigeration system of the present invention may be a single refrigerant such as R32 or a pseudo-azeotropic refrigerant such as R410A, but is a non-azeotropic refrigerant.
  • the effect is remarkable. This is because when using non-azeotropic mixed refrigerants having different boiling points, the distribution of the refrigerant tends to be uneven.
  • the non-azeotropic mixed refrigerant applied to the refrigeration system of the present invention is R448A, R449A, R407F or the like.
  • non-azeotropic mixed refrigerant to be suitably applied to a refrigeration apparatus of the invention, the R32 and R125, and R134a, and R1234yf, a mixed refrigerant of CO 2, the ratio of R32 XR32 (wt%)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

凝縮器は、圧縮機で圧縮された冷媒を熱交換させる第1凝縮器と、第1凝縮器の下方に設けられ、第1凝縮器で熱交換された冷媒を熱交換させる第2凝縮器と、を備え、第1凝縮器は、圧縮機で圧縮された冷媒を流入させる第1流入部と、第1流入部よりも上側に設けられ、第1凝縮器で熱交換された冷媒を流出させる第1流出部と、を有するものである。

Description

凝縮器および凝縮器を備えた冷凍装置
 本発明は、冷媒回路に用いられる凝縮器、および、その凝縮器を備えた冷凍装置に関するものである。
 従来、複数の冷媒管と、各冷媒管の各端部に接続された二本のヘッダーパイプと、隣接する冷媒管の間に設けられた複数のフィンと、を備えたパラレルフロー型コンデンサーが室外熱交換器として用いられている空気調和機がある(例えば、特許文献1参照)。
 特許文献1に記載の室外熱交換器では、一方のヘッダーパイプに接続用配管が取り付けられ、接続用配管の第1の端部から流出した流体は、ヘッダーパイプの内側面に当たってから冷媒管の内部へ流れ込むように構成されている。そのため、この室外熱交換器では、接続用配管の第1の端部から流出した流体が一部の冷媒管だけに集中的に流れ込むことはなく、各冷媒管における冷媒の流量の差を縮小することができ、熱交換器としての性能を充分に発揮させることが可能となる。
特開2012-211735号公報
 しかしながら、特許文献1に記載の空気調和機において、冷房運転時に凝縮器として機能する室外熱交換器は、蒸発温度の低い冷凍条件では流速が遅いため、ヘッダーパイプから冷媒管に冷媒を流出させる際に、冷媒の分配に偏りが生じやすい。そして、室外熱交換器で冷媒の分配の不均衡が生じた場合には、凝縮器としての性能を十分に発揮しきれないという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、冷媒の分配性能を向上させた凝縮器、および、その凝縮器を備えた冷凍装置を提供することを目的としている。
 本発明に係る凝縮器は、圧縮機で圧縮された冷媒を熱交換させる第1凝縮器と、前記第1凝縮器の下方に設けられ、前記第1凝縮器で熱交換された冷媒を熱交換させる第2凝縮器と、を備え、前記第1凝縮器は、前記圧縮機で圧縮された冷媒を流入させる第1流入部と、前記第1流入部よりも上側に設けられ、前記第1凝縮器で熱交換された冷媒を流出させる第1流出部と、を有するものである。
 本発明に係る凝縮器によれば、上段の第1凝縮器の冷媒の流出部と下段の第2凝縮器の冷媒の流出部との間の高低差を大きくすることができる。したがって、第1凝縮器で熱交換された液混じりの二相冷媒の流速を上げて、第2凝縮器に流入させることができる。そのため、二相冷媒の分配がよくなり、冷媒の分配性能を向上させることができる。
本発明の実施の形態1に係る冷凍装置の冷媒回路図である。 従来のパラレルフロー型コンデンサーの冷媒の流れを説明する図である。 本発明の実施の形態1に係る冷凍装置の凝縮器に用いられているパラレルフロー型コンデンサーの冷媒の流れを説明する図である。 図3のパラレルフロー型コンデンサーの冷媒流路の断面を示す図である。 本発明の実施の形態2に係る冷凍装置の冷媒回路図である。 本発明の実施の形態2に係る冷凍装置の第1モード実行時の冷媒回路図である。 本発明の実施の形態2に係る冷凍装置の第2モード実行時の冷媒回路図である。 本発明の実施の形態2に係る冷凍装置の第3モード実行時の冷媒回路図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路図である。
 本実施の形態1に係る冷凍装置は、図1に示すように、室外ユニット100と、室内ユニット200と、を備え、室外ユニット100と室内ユニット200とが、配管で接続されている。また、冷凍装置は、圧縮機1、凝縮器3、絞り装置6、および、蒸発器7が配管で順次接続され、冷媒が循環する冷媒回路を備えている。
 室外ユニット100は、圧縮機1と、凝縮器3とを備えている。圧縮機1は、例えば、容量制御可能なインバータ圧縮機などで構成され、低温低圧のガス冷媒を吸入しそのガス冷媒を圧縮して高温高圧のガス冷媒にして吐出するものである。
 凝縮器3は、例えば、冷媒が流れる冷媒管および冷媒管に設けられたフィンのそれぞれが、アルミで形成されたオールアルミ式のコンデンサーである。ただし、凝縮器3は、必ずしもオールアルミ式に限定されるものではない。また、凝縮器3は、流入した冷媒が並行に流れる流路を有するパラレルフロー型コンデンサーであり、安価に構成することができる。また、凝縮器3の冷媒管は、扁平形状を有している。また、凝縮器3は、圧縮機1からの冷媒と空気との間で熱交換を行ない、冷媒を凝縮液化させるものである。
 なお、本実施の形態1に係る室外ユニット100は、圧縮機1と、凝縮器3とを備えた構成としたが、その他、油分離器、受液器、過冷却熱交換器、アキュムレータなどを備えた構成としてもよい。油分離器は、圧縮機1の吐出側に設けられ、圧縮機1から吐出された冷媒に含まれる油を冷媒から分離するものである。受液器は、凝縮器3の出口側に設けられ、凝縮器3で液化した凝縮器3からの液冷媒を貯留するものである。過冷却熱交換器は、受液器の出口側に設けられ、受液器からの冷媒と空気との間で熱交換を行ない、冷媒を過冷却するものである。アキュムレータは、圧縮機1の吸入側に設けられ、余剰冷媒を蓄えるものである。
 室内ユニット200は、絞り装置6と蒸発器7とを備えている。絞り装置6は、減圧弁または膨張弁としての機能を持ち、冷媒を減圧して膨張させるものであり、弁の開度が制御可能な電子式膨張弁などで構成されている。蒸発器7は、絞り装置6で減圧された冷媒と空気との間で熱交換を行ない、冷媒を蒸発気化させるものである。
 次に、本実施の形態1に係る凝縮器3について、詳細に説明する。
 図2は、従来のパラレルフロー型コンデンサーの冷媒の流れを説明する図である。図3は、本発明の実施の形態1に係る冷凍装置の凝縮器3に用いられているパラレルフロー型コンデンサーの冷媒の流れを説明する図である。図4は、図3のパラレルフロー型コンデンサーの冷媒流路の断面を示す図であり、(a)は部分構造図、(b)は(a)の模式図、(c)は(b)中の冷媒管を取り出して示す断面図である。なお、図2~図4中の矢印は、冷媒の流れを示している。また、図4は、第1凝縮器31の冷媒流路の断面を示しているが、第2凝縮器32の冷媒流路の断面も同様である。
 図2に示すように、従来のパラレルフロー型コンデンサーは、複数の冷媒管415と、各冷媒管415の各端部に接続された二本のヘッダーパイプ410と、隣接する冷媒管415の間に設けられた複数のフィン416と、を備えている。また、一方のヘッダーパイプ410には、その上側に流入部411が設けられており、その下側には流出部412が設けられている。
 そして、従来のパラレルフロー型コンデンサーは、冷媒が、上側の流入部411から流入し、水平方向に流れながら下側に向かって流れ、下側の流出部412から流出するように構成されている。そのため、従来のパラレルフロー型コンデンサーは、凝縮器として用いられる場合、蒸発温度の低い冷凍条件では流速が遅いため、凝縮してきた二相冷媒の流速が確保されず、下側では冷媒の分配に偏りが生じる恐れがある。
 そこで、本実施の形態1に係る凝縮器3は、図3に示すように、第1凝縮器31と、第1凝縮器31の下方に設けられた第2凝縮器32とを有する構成となっている。
 上段の第1凝縮器31は、複数の冷媒管315と、各冷媒管315の各端部に接続された第1のヘッダーパイプ310Aおよび第2のヘッダーパイプ310Bと、隣接する冷媒管315の間に設けられた複数のフィン316と、を備えている。また、第1のヘッダーパイプ310Aには、その下側に第1流入部311が設けられており、その上側には第1流出部312が設けられている。また、第1のヘッダーパイプ310Aには、第1流入部311が接続されている領域と第1流出部312が接続されている領域とを仕切る仕切り部(図示せず)が設けられている。
 また、下段の第2凝縮器32は、複数の冷媒管325と、各冷媒管325の各端部に接続された第3のヘッダーパイプ320Aおよび第4のヘッダーパイプ320Bと、隣接する冷媒管325の間に設けられた複数のフィン326と、を備えている。また、第3のヘッダーパイプ320Aには、その上側に第2流入部321が設けられており、その下側には第2流出部322が設けられている。また、第3のヘッダーパイプ320Aには、第2流入部321が接続されている領域と第2流出部322が接続されている領域とを仕切る仕切り部(図示せず)が設けられている。
 そして、凝縮器3は、冷媒が、上段の第1凝縮器31の下側の第1流入部311から流入し、図3および図4に示すように水平方向に並行に流れて、第2のヘッダーパイプ310Bを上側に向かって流れ、水平方向に並行に流れて、上側の第1流出部312から流出する。また、第1流出部312から流出した冷媒は、下段の第2凝縮器32の上側の第2流入部321に流入し、図3および図4に示すように水平方向に並行に流れて、第4のヘッダーパイプ320Bを下側に向かって流れ、水平方向に並行に流れて、下側の第2流出部322から流出するように構成されている。そのため、凝縮器3は、上段の第1凝縮器31では下側から上側に冷媒を流しながら熱交換を行ない、下段の第2凝縮器32では上側から下側に冷媒を流しながら熱交換を行なう構成となっている。
 凝縮器3を上記の構成とすることで、上段の第1凝縮器31では、第2のヘッダーパイプ310Bに、ガス冷媒またはガス冷媒の比率が高い二相冷媒が上側に向かって流れる。
 このように、ガス冷媒またはガス冷媒の比率が高い二相冷媒が第2のヘッダーパイプ310Bを上昇しながら流れるため、液冷媒または液冷媒の比率が高い二相冷媒が第2のヘッダーパイプ310Bを上昇しながら流れる場合と比較して、圧力損失の影響が低減され、さらに、冷媒の分配が均一化される。例えば、第1凝縮器31は、第1流入部311から第2のヘッダーパイプ310Bまでの間に形成される熱交換部の面積を、第2のヘッダーパイプ310Bから第1流出部312までの間に形成される熱交換部の面積よりも、小さく形成するとよい。第1凝縮器31の熱交換部の面積をそのように形成することで、第2のヘッダーパイプ310Bに流れる液冷媒の比率を低くすることができる。
 さらに、凝縮器3を上記の構成とすることで、上段の第1凝縮器31の第1流出部312と下段の第2凝縮器32の第2流入部321との間の高低差を大きくすることができる。したがって、上段の第1凝縮器31で熱交換された液冷媒の比率が高い二相冷媒の流速を上げて、下段の第2凝縮器32に流入させることができる。そのため、二相冷媒の分配がよくなり、冷媒の分配性能を向上させることができる。また、二相冷媒の分配がよくなることにより熱交換効率が改善され、放熱性能を十分に発揮することができる。
 なお、冷凍装置では蒸発温度の低い冷凍条件では流速が遅くなり、扁平管のように流路の等価直径が大きいものではさらに流速が遅くなる。そのため、図4に示すように扁平形状の冷媒管315、325を有する凝縮器3においては、上記の効果が顕著となる。
 また、凝縮器3は、例えば、第1凝縮器31と第2凝縮器32とが近接して設けられていることにより、第1凝縮器31の下部を流れる冷媒と第2凝縮器32の上部を流れる冷媒とが熱交換する熱交換部33を備える。このように、熱交換部33は、第1凝縮器31の下部と第2凝縮器32の上部とで構成され、それらの間に間隙が形成されているものである。なお、熱交換部33は、第1凝縮器31の下部と第2凝縮器32の上部との熱交換を促進する部材、例えば金属などを含んで形成されてもよい。
 第1凝縮器31の下部を流れる冷媒は、凝縮器3入口の高温高圧のガス冷媒であり、第2凝縮器32の上部を流れる冷媒は、第1凝縮器31で凝縮され温度の低下した二相冷媒である。そして、熱交換部33は、第1凝縮器31の下部を流れるガス冷媒と第2凝縮器32の上部を流れる二相冷媒との間で熱交換を行なう。そのため、凝縮器3は、それが備えるファン(図示せず)の風と冷媒との間だけでなく、上段の第1凝縮器31と下段の第2凝縮器32との間でガス冷媒と二相冷媒との熱交換をさせることもでき、ガス冷媒が凝縮しやすくなる。
 なお、本実施の形態1に係る第2凝縮器32は、第2流入部321が第3のヘッダーパイプ320Aの上側に、第2流出部322が第3のヘッダーパイプ320Aの下側にそれぞれ設けられ、上方から下方に冷媒を流しながら熱交換を行なう構成としたが、それに限定されない。第2凝縮器32は、第2流入部321が第3のヘッダーパイプ320Aの下側に、第2流出部322が第3のヘッダーパイプ320Aの上側にそれぞれ設けられ、下方から上方に冷媒を流しながら熱交換を行なう構成とすることもできる。
 第2凝縮器32を上記の構成とすることで、凝縮器3は、冷媒が、上段の第1凝縮器31の上側の第1流出部312から流出し、下段の第2凝縮器32の下側の第2流入部321に流入する構成となる。そのため、上段の第1凝縮器31の第1流出部312と下段の第2凝縮器32の第2流入部321との間の高低差をさらに大きくすることができる。
 したがって、上段の第1凝縮器31で熱交換された液混じりの二相冷媒の流速を上げて、下段の第2凝縮器32に流入させることができる。その結果、凝縮された二相冷媒はほぼ液冷媒となっているため、熱交換部33での熱交換効率をさらに向上させることができる。
 以上、本実施の形態1に係る凝縮器3は、圧縮機1で圧縮された冷媒を熱交換させる第1凝縮器31と、第1凝縮器31の下方に設けられ、第1凝縮器31で熱交換された冷媒を熱交換させる第2凝縮器32と、を備えている。また、第1凝縮器31は、圧縮機1で圧縮された冷媒を流入させる第1流入部311と、第1流入部311よりも上側に設けられ、第1凝縮器31で熱交換された冷媒を流出させる第1流出部312と、を有する。
 本実施の形態1に係る凝縮器3によれば、上段の第1凝縮器31の第1流出部312と下段の第2凝縮器32の第2流入部321との間の高低差を大きくすることができる。したがって、上段の第1凝縮器31で熱交換された液混じりの二相冷媒の流速を上げて、下段の第2凝縮器32に流入させることができる。そのため、二相冷媒の分配がよくなり、冷媒の分配性能を向上させることができる。
 また、本実施の形態1に係る凝縮器3の第2凝縮器32は、第1流出部312から流出した冷媒を流入させる第2流入部321と、第2流入部321よりも下側に設けられ、第2凝縮器32で熱交換された冷媒を流出させる第2流出部322と、を有する。また、凝縮器3は、第1凝縮器31の下部を流れる冷媒と第2凝縮器32の上部を流れる冷媒とが熱交換する熱交換部33を有する。
 本実施の形態1に係る凝縮器3によれば、第1凝縮器31の下部を流れる冷媒は、凝縮器3入口の高温高圧のガス冷媒であり、第2凝縮器32の上部を流れる冷媒は、第1凝縮器31で凝縮され温度の低下した二相冷媒である。そして、熱交換部33は、第1凝縮器31の下部を流れるガス冷媒と第2凝縮器32の上部を流れる二相冷媒との間で熱交換を行なう。そのため、凝縮器3は、それが備えるファン(図示せず)の風と冷媒との間だけでなく、上段の第1凝縮器31と下段の第2凝縮器32との間でガス冷媒と二相冷媒との熱交換をさせることもでき、ガス冷媒が凝縮しやすくなる。
 また、本実施の形態1に係る凝縮器3の第2凝縮器32は、第1流出部312から流出した冷媒を流入させる第2流入部321と、第2流入部321よりも上側に設けられ、第2凝縮器32で熱交換された冷媒を流出させる第2流出部322と、を有する。
 本実施の形態1に係る凝縮器3によれば、冷媒が、上段の第1凝縮器31の上側の第1流出部312から流出し、下段の第2凝縮器32の下側の第2流入部321に流入する構成となる。そのため、上段の第1凝縮器31の第1流出部312と下段の第2凝縮器32の第2流入部321との間の高低差をさらに大きくすることができる。
 また、本実施の形態1に係る凝縮器3の冷媒管315、325は、アルミを含む金属で形成されている。本実施の形態1に係る凝縮器3によれば、第1凝縮器31の下部と第2凝縮器32の上部との熱交換を促進することができる。
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図5は、本発明の実施の形態2に係る冷凍装置の冷媒回路図である。
 本実施の形態2に係る凝縮器30は、図5に示すように、第1流入部311から分岐して第2流入部321に接続された第1バイパス配管331を備えている。また、凝縮器30は、第2流入部321から分岐して第2流出部322に接続された第2バイパス配管332を備えている。また、凝縮器30は、例えば電磁開閉弁である、第1バルブ51、第2バルブ52、第3バルブ53、第4バルブ54、および、第5バルブ55で構成された流路切替装置を備えている。
 第1バルブ51は、圧縮機1と第1流入部311とを接続する配管の第1分岐点b1よりも下流側に設けられており、第2バルブ52は、第1バイパス配管331に設けられている。また、第3バルブ53は、第1流出部312と第2流入部321とを接続する配管の第2分岐点b2と、第1バイパス配管331が第2流入部321に合流する第1合流点j1との間に設けられており、第4バルブ54は、第2流出部322に設けられている。また、第5バルブ55は、第2流出部322と絞り装置6とを接続する配管の第2合流点j2よりも上流側に設けられている。なお、第1バルブ51と第2バルブ52、および、第3バルブ53と第4バルブ54とは、それぞれ三方弁で構成してもよい。
 なお、本実施の形態2では、第1バイパス配管331、第2バイパス配管332、および、流路切替装置が、凝縮器30に設けられている構成としたが、それに限定されず、凝縮器30とは別体で設けられている構成としてもよい。
 また、第1バイパス配管331は、上記の構成に限定されず、圧縮機1と第1流入部311とを接続する配管から分岐して第2流入部321に接続された構成としてもよい。また、第2バイパス配管332は、上記の構成に限定されず、第1流出部312と第2流入部321とを接続する配管から分岐して第2流出部322に接続された構成としてもよい。
 また、冷凍装置は、圧縮機1、流路切替装置などを制御する制御装置150を備えている。この制御装置150は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンなどの演算装置とその動作を規定するソフトウェアで構成することもできる。
 次に、本実施の形態2の冷凍装置の動作について説明する。
 冷凍装置は、第1凝縮器31および第2凝縮器32に冷媒を流す第1モード、第1凝縮器31に冷媒を流すが第2凝縮器32に冷媒を流さない第2モード、第2凝縮器32に冷媒を流すが第1凝縮器31に冷媒を流さない第3モードのうちのいずれかを実行する。
 図6は、本発明の実施の形態2に係る冷凍装置の第1モード実行時の冷媒回路図である。
 凝縮器30で冷媒漏れが発生していない場合、制御装置150は第1モードを実行する。制御装置150が第1モード実行時は、図6に示すように、第1バルブ51と、第3バルブ53と、第5バルブ55とが開状態となっており、第2バルブ52と、第4バルブ54とが閉状態となっている。
 そして、圧縮機1で圧縮された冷媒は、第1バルブ51を通り、第1流入部311から第1凝縮器31に流入する。第1凝縮器31で熱交換された冷媒は、第1流出部312から流出し、第3バルブ53を通り、第2流入部321から第2凝縮器32に流入する。第2凝縮器32で熱交換された冷媒は、第2流出部322から流出し、第5バルブ55を通り、絞り装置6で膨張される。絞り装置6で膨張された冷媒は、蒸発器7で蒸発され、圧縮機1に吸入される。このように、第1モード実行時では、冷媒が、第1凝縮器31、第2凝縮器32の順に流入する第1流路を流れる。
 図7は、本発明の実施の形態2に係る冷凍装置の第2モード実行時の冷媒回路図である。
 次に、第2凝縮器32で冷媒漏れが発生している場合、制御装置150は第2モードを実行する。制御装置150が第2モード実行時は、図7に示すように、第1バルブ51と第4バルブ54とが開状態となっており、第2バルブ52と第3バルブ53と第5バルブ55とが閉状態となっている。
 そして、圧縮機1で圧縮された冷媒は、第1バルブ51を通り、第1流入部311から第1凝縮器31に流入する。第1凝縮器31で熱交換された冷媒は、第1流出部312から流出し、第2バイパス配管332に流入し、第4バルブ54を通り、絞り装置6で膨張される。絞り装置6で膨張された冷媒は、蒸発器7で蒸発され、圧縮機1に吸入される。このように、第2モード実行時では、冷媒が、第1凝縮器31に流入した後、第2凝縮器32に流入せずに第2バイパス配管332に流入する第2流路を流れる。
 図8は、本発明の実施の形態2に係る冷凍装置の第3モード実行時の冷媒回路図である。
 次に、第1凝縮器31で冷媒漏れが発生している場合、制御装置150は第3モードを実行する。制御装置150が第3モード実行時は、図8に示すように、第2バルブ52と第5バルブ55とが開状態となっており、第1バルブ51と第3バルブ53と第4バルブ54とが閉状態となっている。
 そして、圧縮機1で圧縮された冷媒は、第1バイパス配管331に流入し、第2バルブ52を通り、第2流入部321から第2凝縮器32に流入する。第2凝縮器32で熱交換された冷媒は、第2流出部322から流出し、第5バルブ55を通り、絞り装置6で膨張される。絞り装置6で膨張された冷媒は、蒸発器7で蒸発され、圧縮機1に吸入される。このように、第3モード実行時では、冷媒が、第1凝縮器31に流入せずに第1バイパス配管331を介して第2凝縮器32に流入する第3流路を流れる。
 以上のように、本実施の形態2に係る冷凍装置は、凝縮器30の冷媒漏れの有無および冷媒漏れの箇所に応じて、第1モード、第2モード、および、第3モードのいずれかを実行する。そうすることにより、凝縮器30で冷媒漏れが発生していても、冷凍装置の運転を停止させることなく、運転を継続できる。そのため、凝縮器30を新しいものに交換するまでの間の時間も、応急的に冷凍装置の運転を継続することができる。
 以上、本実施の形態2に係る凝縮器30は、第1流入部311から分岐して第2流入部321に接続された第1バイパス配管331と、第1流出部312から分岐して第2流出部322に接続された第2バイパス配管332と、を備えている。また、凝縮器30は、第1流路、第2流路、第3流路、のいずれかに切り替える流路切替装置を備えている。本実施の形態2に係る凝縮器30によれば、冷媒漏れが発生しても、使用することができる。
 また、本実施の形態2に係る冷凍装置は、圧縮機1、凝縮器30、絞り装置6、および、蒸発器7が配管で接続され、冷媒が循環する冷媒回路を備えている。また、冷凍装置は、第1モードと、第2モードと、3モードと、を有する。第1モードは、凝縮器30で冷媒漏れが発生していない場合、第1流路に切り替えモードである。第2モードは、第2凝縮器32で冷媒漏れが発生している場合、第2流路に切り替えるモードである。第3モードは、第1凝縮器31で冷媒漏れが発生している場合、第3流路に切り替えるモードである。
 本実施の形態2に係る冷凍装置によれば、凝縮器30の冷媒漏れの有無および冷媒漏れの箇所に応じて、第1モード、第2モード、および、第3モードのいずれかを実行する。そのため、凝縮器30で冷媒漏れが発生していても運転を停止させることなく、冷凍装置の運転を継続できる。そのため、凝縮器30を新しいものに交換するまでの間の時間も、応急的に冷凍装置の運転を継続することができる。
 この発明の冷凍装置に適用される冷媒は、特に限定されるものではない。例えば、この発明の冷凍装置に適用される冷媒は、R32などの単一冷媒、またはR410Aなどの擬似共沸混合冷媒であってもよいが、非共沸混合冷媒であるときに、この発明の効果が顕著となる。なぜなら、沸点の異なる非共沸混合冷媒を適用する場合は、冷媒の分配が不均一になりやすいからである。例えば、この発明の冷凍装置に適用される非共沸混合冷媒は、R448A、R449A、R407Fなどである。
 さらには、この発明の冷凍装置に好適に適用される非共沸混合冷媒は、R32と、R125と、R134aと、R1234yfと、COとの混合冷媒であり、R32の割合XR32(wt%)が33<XR32<39である条件と、R125の割合XR125(wt%)が27<XR125<33である条件と、R134aの割合XR134a(wt%)が11<XR134a<17である条件と、R1234yfの割合XR1234yf(wt%)が11<XR1234yf<17である条件と、COの割合XCO(wt%)が3<XCO<9である条件と、XR32とXR125とXR134aとXR1234yfとXCOとの総和が100である条件と、を全て満たす冷媒である。なぜならば、沸点の差が大きいからである。
 1 圧縮機、3 凝縮器、6 絞り装置、7 蒸発器、30 凝縮器、31 第1凝縮器、32 第2凝縮器、33 熱交換部、51 第1バルブ、52 第2バルブ、53 第3バルブ、54 第4バルブ、55 第5バルブ、100 室外ユニット、150 制御装置、200 室内ユニット、310A 第1のヘッダーパイプ、310B 第2のヘッダーパイプ、311 第1流入部、312 第1流出部、315 冷媒管、316 フィン、320A 第3のヘッダーパイプ、320B 第4のヘッダーパイプ、321 第2流入部、322 第2流出部、325 冷媒管、326 フィン、331 第1バイパス配管、332 第2バイパス配管、410 ヘッダーパイプ、411 流入部、412 流出部、415 冷媒管、416 フィン。

Claims (11)

  1.  圧縮機で圧縮された冷媒を熱交換させる第1凝縮器と、
     前記第1凝縮器の下方に設けられ、前記第1凝縮器で熱交換された冷媒を熱交換させる第2凝縮器と、を備え、
     前記第1凝縮器は、前記圧縮機で圧縮された冷媒を流入させる第1流入部と、
     前記第1流入部よりも上側に設けられ、前記第1凝縮器で熱交換された冷媒を流出させる第1流出部と、を有する
     凝縮器。
  2.  前記第2凝縮器は、
     前記第1流出部から流出した冷媒を流入させる第2流入部と、
     前記第2流入部よりも下側に設けられ、前記第2凝縮器で熱交換された冷媒を流出させる第2流出部と、を有する
     請求項1に記載の凝縮器。
  3.  前記第1凝縮器の下部を流れる冷媒と前記第2凝縮器の上部を流れる冷媒とが熱交換する熱交換部を有する
     請求項2に記載の凝縮器。
  4.  前記熱交換部は、
     前記第1凝縮器の下部と前記第2凝縮器の上部とで構成され、前記第1凝縮器の下部と前記第2凝縮器の上部との間に間隙が形成されているものである
     請求項3に記載の凝縮器。
  5.  前記第2凝縮器は、
     前記第1流出部から流出した冷媒を流入させる第2流入部と、
     前記第2流入部よりも上側に設けられ、前記第2凝縮器で熱交換された冷媒を流出させる第2流出部と、を有する
     請求項1に記載の凝縮器。
  6.  前記第1流入部から分岐して前記第2流入部に接続された第1バイパス配管と、
     前記第1流出部から分岐して前記第2流出部に接続された第2バイパス配管と、
     前記第1凝縮器、前記第2凝縮器の順に冷媒を流入させる第1流路、前記第1凝縮器に冷媒を流入させた後、前記第2凝縮器に流入させずに前記第2バイパス配管に流入させる第2流路、前記第1凝縮器に冷媒を流入させずに前記第1バイパス配管を介して前記第2凝縮器に冷媒を流入させる第3流路、のいずれかに切り替える流路切替装置と、を備えた
     請求項2~5のいずれか一項に記載の凝縮器。
  7.  前記第1凝縮器および前記第2凝縮器のそれぞれは、
     扁平形状に形成された複数の冷媒管と、前記冷媒管の間に設けられた複数のフィンとを有する
     請求項1~6のいずれか一項に記載の凝縮器。
  8.  前記冷媒管は、
     アルミを含む金属で形成されている
     請求項7に記載の凝縮器。
  9.  圧縮機、請求項1~8のいずれか一項に記載の前記凝縮器、絞り装置、および、蒸発器が配管で接続され、冷媒が循環する冷媒回路を備えた
     冷凍装置。
  10.  前記凝縮器で冷媒漏れが発生していない場合、前記第1流路に切り替える第1モードと、第2凝縮器で冷媒漏れが発生している場合、前記第2流路に切り替える第2モードと、第1凝縮器で冷媒漏れが発生している場合、前記第3流路に切り替える第3モードと、を有する
     請求項6に従属する請求項9に記載の冷凍装置。
  11.  前記冷媒は、非共沸混合冷媒である
     請求項9または10に記載の冷凍装置。
PCT/JP2017/030829 2017-08-29 2017-08-29 凝縮器および凝縮器を備えた冷凍装置 WO2019043768A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2000511.2A GB2578391B (en) 2017-08-29 2017-08-29 Condenser and refrigeration apparatus provided with condenser
CN201780094210.3A CN111094875B (zh) 2017-08-29 2017-08-29 冷凝器和具备冷凝器的制冷装置
JP2019538773A JP6779383B2 (ja) 2017-08-29 2017-08-29 凝縮器および凝縮器を備えた冷凍装置
PCT/JP2017/030829 WO2019043768A1 (ja) 2017-08-29 2017-08-29 凝縮器および凝縮器を備えた冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030829 WO2019043768A1 (ja) 2017-08-29 2017-08-29 凝縮器および凝縮器を備えた冷凍装置

Publications (1)

Publication Number Publication Date
WO2019043768A1 true WO2019043768A1 (ja) 2019-03-07

Family

ID=65525193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030829 WO2019043768A1 (ja) 2017-08-29 2017-08-29 凝縮器および凝縮器を備えた冷凍装置

Country Status (4)

Country Link
JP (1) JP6779383B2 (ja)
CN (1) CN111094875B (ja)
GB (1) GB2578391B (ja)
WO (1) WO2019043768A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281656A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置
WO2023281655A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114383218B (zh) * 2021-12-14 2024-03-19 郑州海尔空调器有限公司 用于空调器控制的方法、装置、空调器及存储介质
CN114383217B (zh) * 2021-12-14 2024-05-24 郑州海尔空调器有限公司 用于空调器控制的方法、装置、空调器及存储介质
NL2031963B1 (en) * 2022-05-23 2023-11-28 Intergas Verwarming B V Heat pump comprising a first heating circuit and a second heating circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239598A (ja) * 2003-01-17 2004-08-26 Denso Corp 熱交換器
JP2011191048A (ja) * 2010-02-16 2011-09-29 Showa Denko Kk コンデンサ
JP2016205667A (ja) * 2015-04-17 2016-12-08 株式会社デンソー 空気調和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532755B (zh) * 2008-03-14 2010-12-15 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器
KR101977863B1 (ko) * 2014-02-21 2019-05-14 한온시스템 주식회사 차량용 라디에이터
CN105509368B (zh) * 2014-09-23 2020-08-11 杭州三花研究院有限公司 一种热交换器及一种空调系统
CN105066525B (zh) * 2015-09-01 2017-12-29 青岛海尔电冰箱有限公司 制冷剂分配均匀的微通道冷凝器及冰箱
CN107084545A (zh) * 2017-05-11 2017-08-22 钹特环保科技(上海)有限公司 一种冷凝器组及其使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239598A (ja) * 2003-01-17 2004-08-26 Denso Corp 熱交換器
JP2011191048A (ja) * 2010-02-16 2011-09-29 Showa Denko Kk コンデンサ
JP2016205667A (ja) * 2015-04-17 2016-12-08 株式会社デンソー 空気調和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281656A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置
WO2023281655A1 (ja) * 2021-07-07 2023-01-12 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP4368919A4 (en) * 2021-07-07 2024-09-18 Mitsubishi Electric Corp HEAT EXCHANGER AND REFRIGERATION CYCLE DEVICE

Also Published As

Publication number Publication date
JP6779383B2 (ja) 2020-11-04
JPWO2019043768A1 (ja) 2020-03-26
CN111094875B (zh) 2021-08-27
CN111094875A (zh) 2020-05-01
GB2578391B (en) 2021-08-25
GB2578391A (en) 2020-05-06
GB202000511D0 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP5797354B1 (ja) 空気調和装置
CN111094875B (zh) 冷凝器和具备冷凝器的制冷装置
US10845099B2 (en) Refrigeration cycle apparatus with path switching circuit
US10605498B2 (en) Heat pump apparatus
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
WO1998006983A1 (fr) Conditionneur d'air
JP2007240025A (ja) 冷凍装置
JP6888068B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
WO2016208042A1 (ja) 空気調和装置
JP6643630B2 (ja) 空気調和装置
WO2013080754A1 (ja) 二重管式熱交換器及びこれを備えた空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
WO2021234956A1 (ja) 熱交換器、室外機および冷凍サイクル装置
JP2015010816A (ja) 冷媒回路および空気調和装置
KR100883600B1 (ko) 공기조화기
JP7573733B2 (ja) 冷凍サイクル装置
US20240230167A9 (en) Refrigeration cycle apparatus
WO2020148826A1 (ja) 空気調和機
KR101323527B1 (ko) 공기 조화기
WO2023132023A1 (ja) リモートコンデンサユニット、冷凍サイクル装置および冷凍装置
WO2023067807A1 (ja) 二元冷凍装置
JPWO2019180817A1 (ja) 熱交換器、冷凍サイクル装置および空気調和装置
KR20090010398U (ko) 병렬 다중 압축기용 냉.난방 시스템
JP2013036685A (ja) 冷凍装置
WO2015145712A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538773

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202000511

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170829

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923274

Country of ref document: EP

Kind code of ref document: A1